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Abstract. Session types are formal specifications of communication protocols, allowing
protocol implementations to be verified by typechecking. Up to now, session type disciplines
have assumed that the communication medium is reliable, with no loss of messages. However,
unreliable broadcast communication is common in a wide class of distributed systems such
as ad-hoc and wireless sensor networks. Often such systems have structured communication
patterns that should be amenable to analysis by means of session types, but the necessary
theory has not previously been developed. We introduce the Unreliable Broadcast Session
Calculus, a process calculus with unreliable broadcast communication, and equip it with a
session type system that we show is sound. We capture two common operations, broadcast
and gather, inhabiting dual session types. Message loss may lead to non-synchronised
session endpoints. To further account for unreliability we provide with an autonomous
recovery mechanism that does not require acknowledgements from session participants. Our
type system ensures soundness, safety, and progress between the synchronised endpoints
within a session. We demonstrate the expressiveness of our framework by implementing
Paxos, the textbook protocol for reaching consensus in an unreliable, asynchronous network.

1. Introduction

Networks that use a shared, stateless communication medium, such as wireless sensor
networks or ad-hoc networks, are widely used. They are complex in nature, and their design
and verification is a challenging topic. In the presence of unreliability, these networks feature
structured communication, which lends itself to being formalised. The use of a formalism in
a first step can help in understanding and implementing network protocols, and then move
on to proving their correctness.

One such formalisation is session types [HVK98]. Session types specify structured
communication (protocols) in concurrent, distributed systems. They allow implementations
of such protocols to be verified by type-checking, for properties such as session fidelity
and deadlock freedom. A prolific topic of research, session types have found their way
into many programming languages and paradigms [ABB+16], with several session type
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technologies developed [GR17]. An assumption of session types so far has been the reliability
of communication. That is, that messages are never lost and are always delivered to the
receiver. However, it is not realistic to assume reliability in ad-hoc and wireless sensor
networks. Such networks use a shared, stateless communication medium and broadcast
to deliver messages. Broadcast collisions and the stateless nature of the communication
medium will occasionally lead to message loss.

In this paper we introduce the Unreliable Broadcast Session Calculus (UBSC) accompa-
nied by a safe and sound session type system. The semantics of the calculus are inspired
by the practice of ad-hoc and sensor networks. More concretely, the semantics describe
asynchronous broadcast and gather operations between a set of network nodes operating in
an unreliable context. Unreliable communication allows for link failures and lost messages,
that may lead to situations where a network node is not synchronised with the rest of the
computation. To cope with these cases, the semantics of the calculus offer flexible recovery
mechanisms that follow the practice of ad-hoc and sensor networks.

We develop a session type system based on binary session types [HVK98] for the UBSC.
The syntax and the duality operator for the UBSC session types are identical to the syntax
and duality operator for standard binary session types. However, a non-trivial type system
describes the interaction between multiple nodes, in contrast to binary session types that
describe interaction only between two processes. Moreover, the type system, ensures session
safety and soundness of the communication interaction and of the recovery mechanisms. The
main idea for the type system is to interpret the case of failure and message loss as a node
that is not synchronised with the overall session type protocol. The session type system
ensures that the conditions for recovery are adequate to support safe session interaction.
The type system is proved to be sound via a type preservation theorem and safe via a type
safety theorem stating that a well-typed network will never reduce to an undesirable/error
state. The type system also ensures progress within a session, under standard conditions of
non-session interleaving. An additional progress result states that every non-synchronised
node within a typed process may eventually recover.

Notably, our system does not introduce the description of failure and recovery at the type
level as in [APN17, CHY08, CGY16]. Our approach assumes that every interaction described
at the type level can fail and can lead to non-synchronised session endpoints. Moreover,
all non-synchronised endpoints can eventually recover. In [APN17, CHY08, CGY16], non-
synchronised endpoints (or multiparty roles) recover at runtime using safe recovery as
permitted by the session type description. Thus, the description of recovery actions at
each communication interaction would require long and tedious description of protocols. As
shown in Section 2.2, a second advantage of our approach is the lack of global, and often
complicated and unnatural, synchronisation between failed session endpoints (or multiparty
roles) in order for the session to safely recover.

1.1. Unreliable Broadcast Session Communication. The communication assumptions
of the UBSC are based on the practice of networks such as ad-hoc and wireless networks, and
Ethernet networks. Specifically, the semantics of the calculus are justified by the following
assumptions:

A1. The network nodes operate within a shared, stateless communication medium. The
term broadcast in these networks is understood when a node transmits a message within
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the shared communication medium, which is then “instantly” received by a set of nodes
that share the communication medium.

A2. The communication medium is considered unreliable, therefore transmitted messages
may fail to be delivered to some or to all the receivers. In practice, unreliability arises for
various reasons, e.g. weak transmission signal or message collisions.

A3. A network node transmits a message only once; we assume that a message is received
at most once, i.e. there is no duplication of successfully received messages.

A4. There is no mechanism to acknowledge a successful message reception, i.e. upon reception
a receiver network node does not reply with an acknowledgement message. Lack of
acknowledgement messages, implies that a transmitting network node cannot possibly
know the subset of network nodes that successfully received the transmitted message.

A5. Messages are either lost, or delivered without being corrupted. This can be achieved by
assuming an underlying mechanism that detects, e.g. through parity bit comparison, and
rejects all corrupted messages. Rejected messages are considered lost.

A6. The network nodes operate at an arbitrary speed. Each network node decides to perform
an interaction (either transmission, or internal processing) at an arbitrary moment.

The semantics of the UBSC deploy the mechanisms that support safe session interaction
and, at the same time, respect assumptions A1-A6. Specifically, the semantics of the calculus
deploy mechanisms that respect the following session type principles:

S1. We assume binary interaction within a session. The interaction within a session name s
is defined between a s̆-endpoint, uniquely used by a single network node, and a s-endpoint
shared by an arbitrary number of network nodes.

The one to many correspondence between endpoints gives rise to a broadcasting
operation, as imposed by assumption A1, where the s̆-endpoint broadcasts a value towards
the s-endpoints, and a gather operation, where the s̆-endpoint gathers messages sent from
the s-endpoints.

S2. Safe session interaction requires that messages are delivered in the order they are
transmitted. Ordered message delivery is a direct consequence of assumptions A1, A3,
and A5.

S3. Session interaction is subject to unreliability. Assumptions A2 and A6 imply that session
endpoints may become non-synchronised with the overall session interaction.

S4. Safe session interaction requires that two session endpoints can communicate whenever
they are synchronised.

S5. To ensure progress, endpoints that cannot progress, e.g. because the endpoint is not syn-
chronised or because the opposing endpoint is deadlocked, need to be able to autonomously
recover. Autonomous recovery is a consequence of assumptions A4 and A6 that imply
that a network node does not have global information whether an endpoint can progress
or not, a behaviour typical for ad-hoc and wireless sensor networks.

Below, we use a simple example to introduce the basic assumptions of the UBSC. Prior
to the example, consider the following informal presentation of the syntax of the calculus.
The calculus defines the syntax for network nodes. Specifically, a network node,

N = [P |
∏

i∈I si[c, m̃i] ]

composes a binary session π-calculus [HVK98] process P together with a finite parallel
composition of session buffer terms,

∏
i∈I si[c, m̃i].

A session π-calculus process of the form s!⟨v⟩.P denotes a process that is ready to send
value v via channel (or session) endpoint s and proceed as process P . Dually, a process of
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the form s?(x).P denotes a process that is ready to receive a value on channel endpoint s
and substitute it on variable x within process P . A buffer term, s[c, m̃], represents a first-in
first-out message buffer that interacts on session endpoint s. The buffer stores messages
m̃ and keeps track of the session endpoint state using integer counter c. Multiple network
nodes can be composed in parallel N1 || . . . ||Nn to form a network. We often write term,∏

j∈J [Pj |
∏

i∈Ij si[c, m̃i] ] to represent a parallel composition of network nodes.

The next example demonstrates the semantics and basic typing ideas for the UBSC.
Variations of the example will be used as a running example throughout the paper.

Example 1.1 (A simple Heartbeat Protocol). The heartbeat protocol, is a simple sensor
network protocol where one, or more, network nodes periodically broadcast a heartbeat
message to signal that they are alive. In the UBSC, a simple heartbeat interaction can be
specified with the following network.

Heartbeat = [ s̆!⟨hbt⟩.P0 | s̆[0, ε] ] ||
∏

i∈I [ s?(x).Pi | s[0, ε] ]

The network implements the requirements of S1 on session channel s; the s̆-endpoint is
uniquely used by network node [ s̆!⟨hbt⟩.P0 | s̆[0, ε] ], and the s-endpoint is shared among an
arbitrary number of network nodes, represented by network

∏
i∈I [ s?(x).Pi | s[0, ε] ].

Under the requirements of S2 for ordered delivery of messages, it is typical for nodes
in ad-hoc and wireless networks, to deploy a received message buffer that follows a first-in
first-out policy. The use of a message buffer leads to asynchronous communication semantics,
where we first observe a message stored in a message buffer and then extracted from the
buffer for processing. At each buffer there is also a counter which is increased with every
endpoint interaction and keeps track of the session endpoint state. The counter is used by
the semantics to maintain interaction between synchronised endpoints, as required by S4. In
the example above, each session endpoint is associated with a corresponding empty message
buffer, s[0, ε], (similarly s̆[0, ε] for the s̆-endpoint). The state counter designates that all
endpoints are in the 0 state.

A heartbeat (hbt) message is broadcast on the s̆-endpoint and it is received by the
s-endpoints, as expected by the requirements of S1. As required by S3, the broadcast
interaction is subject to unreliability and is captured by the reduction:

Heartbeat −→ Heartbeat′ = [P0 | s̆[1, ε] ]
||

∏
j∈J [ s?(x).Pj | s[1, hbt] ] ||

∏
k∈K [ s?(x).Pk | s[0, ε] ]

where I = J ∪K and J,K are disjoint. The broadcast message is received instantly during
the transmission time. Failure of reception is modelled by the fact that only an arbitrary
subset of the network nodes, indexed by set J , accept the heartbeat message. Each successful
receiver uses the session queue to buffer the heartbeat message and model asynchronous
communication.

Following the requirements of S4, the reduction semantics, defined in Section 2.2, allow
for interaction only between the s̆-endpoint and the s-endpoints that are in the same state.
To maintain synchronisation, a successful interaction increases the session state counter on
each buffer by 1. The network nodes that failed to receive the heartbeat messages, indexed
by set K, do not update their session counter, therefore they are considered non-synchronised
and cannot continue to safely interact with the s̆-endpoint.

In practice, state counting implies an underlying mechanism where each transmitted
message includes a header that tags the message with the corresponding session and state
counter. A network node can only accept a message if it implements the corresponding
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session endpoint and the session endpoint is synchronised with the state of the message. In
a different case the message is dropped and considered lost.

Each receiver will then interact locally with its own queue and extract the message for
processing. For example, network node, [ s?(x).Pq | s[1, hbt] ] will interact with its local buffer
using the reduction:

Heartbeat′ −→ [P0 | s̆[1, ε] ] || [Pq{hbt/x} | s[1, ε] ]
||

∏
j∈J\{q}[ s?(x).Pj | s[1, hbt] ] ||

∏
k∈K [ s?(x).Pk | s[0, ε] ]

In network Heartbeat′, the nodes described by set K appear to be stuck because the receiving
s-endpoints are non-synchronised with the s̆-endpoint. The requirements of S5 impose
the development of recovery semantics, in order to observe session progress. For example,
recovery on network Heartbeat′ is described by the interaction.

Heartbeat′ −→ [P0 | s̆[1, ε] ] || [Pq{1/x} | s[1, ε] ]
||

∏
j∈J [ s?(x).Pj | s[1, hbt] ] ||

∏
k∈K\{q}[ s?(x).Pk | s[0, ε] ]

Whenever a session endpoint is possibly unable to progress, the reduction semantics use a
default expression, in this case the unit (1) expression, to substitute the receive variable.

However, due to assumptions A4 and A6, a network node does not have knowledge
whether an endpoint can progress or not. This situation also exists in the practice of ad-hoc
and wireless sensor networks that approximate lack of progress using necessary but not
sufficient conditions, combined with internal mechanisms, e.g. timeout signals, to achieve
recovery and progress. Here the conditions that are necessary but not sufficient to detect
lack of progress are the receiving prefix and the empty s-buffer.

The typing system ensures the conditions for a safe recovery. The full semantics of the
calculus offer the programmer multiple and flexible recovery choices to deploy whenever the
session safety conditions are met.

1.2. Related Work. The UBSC follows the principles of [KGG14], where the authors
provided semantics to a syntax for an unreliable broadcasting session calculus through an
encoding into the psi-calculus [BHJ+11]. The work also provides with a sound session type
system for the aforementioned syntax. In comparison to [KGG14], in this work we define
the syntax and semantics of a more sophisticated calculus that includes distinction between
processes and nodes, asynchronous semantics through buffers, and more advanced recovery
mechanisms. The type system is also non-trivial, despite the fact that the session types
syntax remains the same. In contrast to [KGG14], we also prove type safety and progress
results.

Asynchronous session semantics and their corresponding session typing systems are
studied, both for binary [HKP+10, KYHH16] and multiparty [HYC08, CDYP16] session
types. However, our calculus is the first calculus that supports asynchronous broadcast
semantics, in contrast to point-to-point communication proposed by state-of-the-art session
type calculi.

Session types for reliable gather semantics were proposed in [CDP12] but a correspond-
ing session calculus, was never proposed. Structured multiparty session interaction for
a parametrised (arbitrary) number of participants is studied in [DYBH12, NY15], where
the authors propose a framework for describing the behaviour of an arbitrary number of
participants that implement different interacting roles. A parametrised multiparty session
type protocol can be instantiated to a specific number of participants. Our framework can
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handle an arbitrary number of agents within a session as a result of the shared unreliable com-
munication medium. Agents might arbitrarily lose messages and become non-synchronised
and arbitrarily recover and re-synchronise.

Session type systems in an unreliable context are studied in [APN17, CHY08, CGY16].
Adameit et al. [APN17] extend multiparty session types with optional blocks that cover
a limited class of link failures. Specifically, the authors extend the typing syntax with
constructs that allow the description of a default value each role needs to receive whenever
there is a possibility of link of failure. In contrast, our framework does not require to
describe failures at the type level, rather than it enforces a number of conditions for a session
safe recovery whenever a failure occurs. Furthermore, it assumes that every interaction is
subject to failure and proposes several recovery mechanisms, inspired by the practice of
wireless sensor-networks. Our calculus, also, supports broadcast semantics in contrast to
point-to-point communication supported by [APN17].

Recovery after failure, was introduced in the shape of exception handling in the bi-
nary [CHY08] and multipary [CGY16] session types. Both works present a procedure where
upon an exception during communication the session endpoints are informed and safely
handle the exception. Similarly to [APN17], the type discipline proposes a complicated
syntax for exception description at the type level. Moreover, exception handling within ses-
sion types assumes strong global synchronisation requirements among the session endpoints.
In contrast, our recovery semantics are implemented locally, thus being more natural and
general; each network node can autonomously and safely recover from a communication
failure, by choosing between several recovery mechanisms.

The report in [PNC23] presents fault-tolerant multiparty session types; an extension
to multiparty session types that handles failures such as unreliable communication and
process crashes, applied to a calculus that supports failure patterns. Moreover, this work
demonstrates fault tolerant multiparty session types with an application on the rotating
coordination algorithm. An additional work that describes recovery patterns is found
in [BD23], which develops an asynchronous multiparty framework that accommodates non-
Byzantine faults in unreliable settings. The work in [PNC23] has similar recovery semantics
as our work adapted in the context of multiparty session types. Nevertheless, we are the
first to define patterns of broadcast and gather that are found in more dynamic systems
with share communication medium, such as wireless sensor networks. Moreover, our work
is the first to demonstrate an implementation of the Paxos protocol defined as sessions of
structured interaction.

1.3. Overview. In Section 2 we present the Unreliable Broadcast Session Calculus —
UBSC. UBSC is accompanied by the first type system for structured communication in an
unreliable broadcast setting. The calculus develops all the necessary mechanisms to satisfy
the requirements S1-S5 under the assumptions A1-A6.

Section 3 presents the UBSC session type system. Interestingly, we do not introduce
the description of unreliability at the type level, keeping the session type syntax identical
to standard binary session type syntax. The type system makes use of the synchronisation
notion to cope with non-synchronised session endpoints and to ensure session duality.

In Section 4, the type system is proved to be sound via a type preservation theorem
and safe via a type safety theorem. A process is safe whenever it can never reduce to an
error process. In turn, error processes are a class of processes that do not respect the session
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types principles. Section 4 also includes a set of progress results that ensure safe progress
within a session and safe session recovery.

We demonstrate the expressiveness of our framework in Section 5 with a session spec-
ification of the Paxos consensus algorithm, which is the standard consensus algorithm in
distributed systems. We argue that our framework can provide support for the implementa-
tion of such protocols and their extensions.

Finally, section 6 discusses the possibility for future work and concludes the article.

2. Asynchronous Unreliable Broadcast Session Calculus

In this Section, we define the syntax and the semantics for the Unreliable Broadcast Session
Calculus. The semantics are extensively demonstrated using several examples.

2.1. Syntax. Assume the following disjoint sets of names/variables: C is a countable set of
shared channels ranged over by a, b, . . . ; S is a countable set of session channels ranged over
by s, s′, . . . , where each session channel has two distinct endpoints s and s̆ (we write κ to
denote either s or s̆); V is a countable set of variables ranged over by x, y, z, . . . ; and Lab is
a countable set of labels ranged over by ℓ, ℓ′, . . . . We let n range over shared channels or
sessions. We write k to denote either κ or x or x̆, where x̆ is used to distinguish a variable
used as a s̆-endpoint.

Let c to range over natural numbers, N and let true and false be the boolean values.
Let E be a non-empty set of expressions ranged over by e, e′, . . . . Elements of E contain
natural numbers and boolean values, and may contain variables. Function fv(e) returns the
variables in expression e. Expressions that do not contain variables, i.e. fv(e) = ∅, are called
closed. Assume a binary operation ⊙ on E called aggregation operator, and an element 1
of E called unit. We define an evaluation operator ↓: E → E from closed expressions to
single value expressions (natural numbers, boolean values, 1value, etc.). Let F ⊆ E be a
non-empty set of conditions ranged over by φ. Closed conditions are evaluated to boolean
values φ ↓= true or φ ↓= false. We use metavariable u to denote either shared names,
session names, expressions or variables.

The syntax of processes, P,Q,R ∈ P, buffers, B ∈ B, and networks, N ∈ N , is then
defined in Figure 1. Functions returning the set of free names, fn(P ), bound names, bn(P ),
and free and bound names, n(P ) are defined in the expected way. Terms (Req) and (Acc) bind x̆

and x in P respectively, and term (Rcv) binds x in P . In term (Def), def {Di(x̃i)
def
= Pi}i∈I in P ,

Di(x̃i) binds x̃i in Pi. Moreover, terms {Di}i∈I are bound in P . Term (Inact) is the inactive
term. Terms (Req) and (Acc) express the processes that are ready to initiate a fresh session
on a shared channel a via a request/accept interaction, respectively. Term (Snd) defines a
prefix ready to send an expression on session k. Term (Rcv) defines a prefix ready to receive
a message on session k and substitute it on x. The prefix also provides with an expression e,
called default expression, that will be substituted on x in the case of recovery. We often
write k?(x).P for k?(x)⟨1⟩.P . The select prefix, defined by term (Sel), is ready to send a
label ℓ over session k. Dually, the branch prefix, defined by term (Bra), is ready to receive a
label from a predefined set of label {ℓi}i∈I on session k. Moreover, the branch prefix defines
a default label, df, with a process R used for in the case of recovery.

In a highly dynamic unreliable environment, it is convenient to consider non-deterministic
choice — term (Sum). We write

∑
1≤i≤n Pi for process P1 + . . .+Pn. Term (Cond) is a standard
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a, b, . . . ∈ C (ShCh) s, s′, . . . ∈ S (SCh)

ℓ, ℓ′, . . . ∈ Lab (Labels) x, y, . . . ∈ V (Var)

e, e′, . . . ∈ E (Exp) c, c′, . . . ∈ N (Cnt)

κ ::= s̆ | s (Endp) k ::= κ | x (Sess)

v ::= a | κ | e (Identifier)

P,Q,R ::= 0 (Inact) | k ◁ ℓ.P (Sel)

| a!(x̆).P (Req) | k ▷ {ℓi : Pi, df : R}i∈I (Bra)

| a?(x).P (Acc) | P + P (Sum)

| k!⟨e⟩.P (Snd) | D⟨ṽ⟩ (PVar)

| k?(x)⟨e⟩.P (Rcv) | if φ thenP elseP (Cond)

| def {Di(x̃i)
def
= Pi}i∈I in P (Def)

N,M ::= [P |B ] (Node) m ::= e | ℓ (Msg)

| N ||M (Par) h ::= (c, e) (TMsg)

| (ν n)N (Restr) B ::= ε | B | s[c, m̃] | B | s̆[c, h̃] (Buffer)

Figure 1: Syntax of Processes, Buffers, and Networks

conditional term. Finally, terms (Def) and (PVar) express a named recursive process definition
with parameters, cf. [HVK98]. We assume a standard variable substitution over processes
P{e/x}, inductively defined to include a standard variable substitution over expressions,
e′{e/x}. Moreover, the process variable substitution P{P ′(x̃)/D} is defined inductively with
D⟨ṽ⟩{P (x̃)/D} = P{ṽ/x̃} as the basic definition case. Concurrency is introduced at the
network level, rather than at process level.

Term B, is a parallel composition of session buffers, that are used to store messages and
keep track of the session state via natural number c. Buffer terms are used to model a form
of asynchrony that preserves the order of received messages, as required by S2. The purpose
of counter c is to keep track of the session state in the presence of communication failure,
and to synchronise the interaction between session prefixes, as required by S4. Message loss
in an unreliable setting leads to session endpoints that are not synchronised with the overall
protocol, as expected by S3. To ensure correctness, many frameworks and algorithms that
operate in an unreliable setting use message tagging or state counting; for example, the
TCP/IP protocol tags packets with unique sequential numbers to maintain consistency in
the case of packet loss. In our setting, state counting is necessary to maintain the correct
semantics within a session. The type system in Section 3 provides with static guarantees for
a session despite the dynamic nature of session reduction.

Buffer terms on s-endpoints store messages m that range over expressions e and labels ℓ.
Buffer terms on s̆-endpoints store messages, h, which are expressions tagged with a session
counter, h = (c, e). The session counter in h distinguishes the session state, at which the
expression e needs to be received.

Network (Node) consists of a process P , and the necessary buffer terms, B, used for
asynchronous session communication. A process may participate in several sessions, and
therefore, more than one buffer term may be present in a node. The type system ensures
that there is no more than one buffer term on the same session in each network node. We
write [P ] for node [P | ε ].
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P1 + P2 ≡ P2 + P1 (P1 + P2) + P3 ≡ P1 + (P2 + P3) P ≡α P ′

def {Di(x̃i)
def
= Pi}i∈I in P ≡ def {Di(x̃i)

def
= Pi}i∈I in P{Pk(x̃k)/Dk} k ∈ I

B |B′ ≡ B′ |B (B |B′) |B′′ ≡ B | (B′ |B′′)

N1 ||N2 ≡ N2 ||N1 (N1 ||N2) ||N3 ≡ N1 || (N2 ||N3) N ≡ [0 ] ||N
(ν n)(ν m)N ≡ (ν m)(ν n)N (ν n)N ||M ≡ (ν n)(N ||M) if n /∈ fn(M)

[P |B ] ≡ [P ′ |B′ ] if P ≡ P ′ and B ≡ B′ N ≡α N ′

Figure 2: Structural Congruence for Processes, Buffers, and Networks

A network is a parallel composition of nodes — term (Par). We write
∏

i∈I Ni for the
parallel composition of N1 || · · · ||Nn for (possibly empty) I = {1, . . . , n}. Network (Restr)

binds both session and shared channels. We write (ν ñ)N for the network (ν n1) . . . (ν nm)N ,
where the sequence ñ may be empty. We also extend the fn(·) function to networks.

2.2. Operational Semantics. The operational semantics are defined as a reduction relation
on networks with the use of a standard structural congruence relation.

Structural Congruence. The structural congruence on processes, resp. buffers and networks,
is defined to be the least congruence relation satisfying the rules in Figure 2. Structural
congruence on processes considers commutativity and associativity of the + operator, and
includes the unfolding of definitions and alpha-conversion. Named definition substitution is
defined up-to structural congruence. The parallel composition is commutative and associative
for buffer terms and for network terms, with [0 ] as the unit for network terms. Name
restriction order is irrelevant, and moreover, the scope of restricted channels can be extruded.
The clause for network nodes simply bridges the buffer and process congruences with the
structural congruence for network. Finally, structural congruence allows alpha renaming for
networks.

The operational semantics is defined as the least relation on networks, N −→ N ′,
satisfying the rules given in Figure 3 (Network Semantics), Figure 4 (Process Communication
Semantics), and Figure 5 (Recovery Semantics).

2.2.1. Operational Semantics for Networks. In Figure 3 rules [NDet], [Def], [RPar], [RRes], and
[RCong] are standard congruence rules for operator +, named definition, parallel composition,
name restriction, and structural congruence, respectively.

2.2.2. Operational Semantics for Broadcast and Gather Operations. Figure 4 defines the
reduction semantics for the broadcast and gather operations. Rule [Conn] establishes a
session between a request network node and several accept network nodes. It is a broadcast
(one-to-many) communication between the request network node and an arbitrary (possibly
empty) set of accepting network nodes described by I. Unreliability is achieved because
set I is chosen arbitrarily from a set of parallel nodes and then using the reduction rule
[RPar] to close the reduction of the entire network. The interaction creates a fresh session s
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[P1 |B ] ||N −→ [P ′ |B′ ] ||N ′

[P1 + P2 |B ] ||N −→ [P ′ |B′ ] ||N ′ [NDet]

[Def]

[P |B ] ||N −→ [P ′ |B′ ] ||N ′

[ def {Di(x̃i)
def
= Pi}i∈I in P |B ] || N −→ [ def {Di(x̃i)

def
= Pi}i∈I in P ′ |B′ ] || N ′

[RPar]

N −→ N ′

N ||M −→ N ′ ||M

[RCong]

N ≡ N1 N1 −→ N2 N2 ≡ N ′

N −→ N ′

[RRes]

N −→ N ′

(ν n)N −→ (ν n)N ′

Figure 3: Reduction rules for networks.

s fresh

[ a!(x̆).P |B ] ||
∏

i∈I [ a?(x).Pi |Bi ]

−→ (ν s)([P{s̆/x̆} |B | s̆[0, ε] ] ||
∏

i∈I [Pi{s/x} |Bi | s[0, ε] ])

[Conn]

e ↓= e′

[ s̆!⟨e⟩.P |B | s̆[c, m̃] ] ||
∏

i∈I [Pi |Bi | s[c, m̃i] ]

−→ [P |B | s̆[c + 1, m̃] ] ||
∏

i∈I [Pi |Bi | s[c + 1, m̃i · e′] ]

[Bcast]

c1 ≥ c2 e ↓= e′

[ s!⟨e⟩.P1 |B1 | s[c1, m̃] ] || [P2 |B2 | s̆[c2, h̃] ]

−→ [P1 |B1 | s[c1 + 1, m̃] ] || [P2 | s̆[c2, h̃ · (c1, e
′)] ]

[Ucast]

[ s?(x)⟨e′⟩.P |B | s[c, e · m̃] ] −→ [P{e/x} |B | s[c, m̃] ] [Rcv]

h̃′ = B(h̃, c) e = V(h̃, c)

[ s̆?(x).P |B | s̆[c, h̃] ] −→ [P{e/x} |B | s̆[c + 1, h̃′] ]
[Gthr]

[ s̆ ◁ ℓ.P |B | s̆[c, m̃] ] ||
∏

i∈I [Pi |Bi | s[c, m̃i] ]

−→ [P |B | s̆[c + 1, m̃] ] ||
∏

i∈I [Pi |Bi | s[c + 1, m̃i · ℓ] ]
[Sel]

k ∈ I

[ s ▷ {ℓi : Pi, df : R}i∈I |B | s[c, ℓk · m̃] ] −→ [Pk |B | s[c, m̃] ]
[Bra]

Figure 4: Reduction rules for Broadcast and Gather Operations.
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with a unique s̆-endpoint in the request side and a shared s-endpoint on the accept sides. A
corresponding session buffer term is created in all connected network nodes.

There are two kind of session communication distinguished by the interaction between
the s̆-endpoint and s-endpoint: broadcast communication; and unicast communication. Rule
[Bcast] defines the asynchronous broadcasting semantics; the s̆-endpoint broadcasts evaluated
message e′, with the message being enqueued to the buffers of the s-endpoint, thus modelling
asynchrony. The crucial condition for a broadcast interaction is that all participating nodes
are synchronised in the same session state c. After the interaction all participating nodes
update their state to c + 1. Unreliability is modelled by the fact that the, possibly empty,
set I is chosen arbitrarily from a set of parallel nodes, and then using reduction rule [RPar]

to close the reduction for the entire network.
Rule [Ucast] defines the case where an s-endpoint enqueues an evaluated message e′

in the buffer of the unique s̆-endpoint. The message e′, when enqueued, is tagged with
the sender’s session state c, as h = (c, e′), since all the messages on the same state will be
gathered by the s̆-endpoint (rule [Gthr]). The session state counter of the s-endpoint will
be updated, in contrast to the state counter of the s̆-endpoint. The s̆-endpoint remains in
the same state since it needs to continue the [Ucast] interactions with other network nodes.
Increasing the state counter does not disallow the s-endpoint to be involved in a subsequent
[Ucast] interaction, i.e the s-endpoint is not considered non-synchronised. This is captured
by condition c1 ≥ c2 that ensures that a s-endpoint exists in the same or in a later session
state from the s̆-endpoint, prior to interacting. The [Ucast] semantics follow the practice of
ad-hoc and sensor networks, where a sender node cannot locally know whether the receiving
node has performed a gather prior to sending a subsequent message. For further intuition
on the [Ucast] rule, see Example 2.1.

Rule [Rcv] defines the interaction of a process with its s-endpoint buffer; a (Rcv) process
on endpoint s receives and substitutes on variable x the next available expression, e, from the
s-endpoint buffer. Session state c is not updated, because it was updated by the operation
that stored expression e in the buffer. Expression e′ is not used in this rule, since it is a default
value used for recovery in the case where the session endpoint becomes non-synchronised.
The case for recovery is described by recovery rule [Rec] defined in Section 2.2.3.

Rule [Gthr] defined the interaction between a process and its s̆-endpoint buffer, where it
gathers, via the ⊙ operator, all the expression messages that are tagged with state, c, of the
state of the s̆-endpoint. After the reduction the state of the s̆-endpoint increases by 1. The
rule uses auxiliary operations V(h̃, c) and B(h̃, c):

V((c, e) · h̃, c) = e⊙ V(h̃, c) V(ε, c) = 1 V((c′, e) · h̃, c) = V(h̃, c) if c′ ̸= c

B((c, e) · h̃, c) = B(h̃, c) B(ε, c) = ε B((c′, e) · h̃, c) = (c′, e) · B(h̃, c) if c′ ̸= c

Operation V(h̃, c) goes through the messages h̃ and returns, up to operator ⊙, all expressions

e tagged with session state c, (c, e). Operation B(h̃, c) returns a new h̃′ by removing all
messages tagged with session state c, (c, e). The [Gthr] semantics also describes the case
where the s̆-endpoint gathers no messages, capturing the case where all message where either
lost or not delivered yet; operator V(h̃, s̃) will return unit, 1, if there are no messages tagged

with state c in h̃. The gather pattern is common in ad-hoc networks; see, for example, the
RIME communication stack [DOH07] for wireless sensor networks.

Rules [Sel] and [Bra] are similar to rule [Bcast] and [Rcv]; the s̆-endpoint selects and
broadcasts a label to the corresponding s-endpoint buffer terms, and dually the s-endpoints
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e ↓= e′

[ s?(x)⟨e⟩.P |B | s[c, ε] ] −→ [P{e′/x} |B | s[c + 1, ε] ]
[Rec]

fs(B) = fs(R)

[ s ▷ {ℓi : Pi, df : R}i∈I |B |B′ | s[c, ε] ] −→ [R |B ]
[BRec]

[ s!⟨e⟩.P |B | s[c, m̃] ] −→ [P |B | s[c + 1, m̃] ] [Loss]

φ ↓= true fs(B) = fs(P1)

[ if φ thenP1 elseP2 |B |B′ ] −→ [P1 |B ]
[True]

φ ↓= false fs(B) = fs(P2)

[ if φ thenP1 elseP2 |B |B′ ] −→ [P2 |B ]
[False]

Figure 5: Reduction rules for recovery.

receive a label from its session buffer and proceeds accordingly. The dual case where multiple
s-endpoint select a label is not defined, since gathering (i.e. branching on) multiple labels on
the s̆-endpoint makes no sense in session types semantics. Rule [Bra] also defines a default
label, df, with a process R, used when there is a need to recover. Recovery on process R is
described by recover rule [BRec] defined in Section 2.2.3.

An implementation of the above semantics in real systems, e.g. wireless ad-hoc networks,
requires that sent messages are tagged with the the session state of the sender. This
allows a prospective receiver to check the session state conditions of the interaction and act
accordingly, e.g. a receiver will check its session state against the message tag and only then
will store a broadcast message.

2.2.3. Operational Semantics for Recovery. The semantics of the calculus offer flexibility,
and recovery in a context of asynchrony and unreliability. Figure 5 defines the semantics for
these mechanisms. Crucially, the recovery semantics depend on conditions that are checked
locally within a network node, thus following the typical behaviour of ad-hoc and sensor
networks.

Rule [Rec] describes the recovery conditions for a s-endpoint input prefix. Lack of
messages in the corresponding s-buffer may trigger recovery, where the evaluation of the
default expression is substituted in the continuation of the process. The interaction results in
an increase of the s-endpoint session state counter, aligning the s-endpoint with the overall
session interaction.

Rule [BRec] describes the conditions for recovering from a branch prefix. Lack of messages
in the corresponding s-buffer may trigger a recovery, by continuing with the default label
process R. A branch recover is hard; the reduction drops the corresponding s-endpoint and
s-buffer. A process R cannot implement a behaviour for the s-endpoint because it cannot
possibly know the corresponding choice from the s̆-endpoint, in the case recovery results in
a synchronised s-endpoint.
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Reduction rules [Rec] and [BRec] describe recovery from a situation where a s-endpoint
might not be able to progress. For example, it may be the case that the s-endpoint is non-
synchronised, or the network node using the s̆-endpoint is deadlocked due to the interleaving
with other behaviour. However, due to assumptions A2, A4 and A6, a network node cannot
possibly have the knowledge to decide whether a local session endpoint can progress or not.
Assumption A4 implies that a node cannot know whether a send message was received.
Assumption A2 implies that a network node cannot know whether an expected message was
lost and, moreover, due to assumption A6, if an expected message was not send yet.

Therefore, reduction rules [Rec] and [BRec] allow nodes to act autonomously, which means
that network nodes can recover even if their recovery is not necessary to achieve progress.
For example, the following reduction on rule [Rec]

[ s̆!⟨e⟩.0 | s̆[0, ε] ] || [ s?(x).0 | s̆[0, ε] ] −→ [ s̆!⟨e⟩.0 | s̆[0, ε] ] || [0 | s̆[1, ε] ]

is not necessary to achieve progress, because the s̆-endpoints and s-endpoint are in a state
that can eventually interact.

In practice communicating nodes require necessary but not sufficient conditions together
with mechanisms, such as time-outs, to approximate lack of progress. This means that, in
practice, there is always the possibility to recover even if endpoint interaction is eventually
possible. We could define, for example, semantics that use global information to recover
but then we would not respect assumptions A4 and A6. For example, rule [Rec] might be
defined as:

c < c′

[ s?(x)⟨e⟩.P |B | s[c, ε] ] || [P ′ |B′ | s̆[c′, h̃] ] −→ [P{e/x}B | s[c + 1, ε] ] || [P ′ |B′ | s̆[c′, h̃] ]

The rule uses global information between network nodes. Condition c < c′ checks that the
s-endpoint exists in an earlier state than the s̆-endpoint. The recovery takes place only after
ensuring that the s-endpoint is non-synchronised. Rule [BRec] can also be accommodated in
a similar fashion.

Rule [Loss] allows for message loss on the s-endpoint; a process simply proceeds by
dropping its sending prefix. Similarly with rule [Rec], the session state is updated/increased,
allowing the s-endpoint to re-synchronise with the s̆-endpoint. Rules [Loss] and [Ucast]

realistically model unreliable unicast communication since messages can always be lost and,
moreover, due to assumption A4 a node cannot possibly know if a message was passed to
the receiver and should always update its state. The application of rule [Loss] implies two
cases: i) the s-endpoint exists in a later state than the state of the s̆-endpoint, in which case
the s-endpoint is considered synchronised, similarly to rule [Ucast]; ii) the s-endpoint prior
to [Loss] exists in an earlier state than the s̆-endpoint, in which case the application of the
[Loss] rule is the only interaction that can be done towards recovery and synchronisation of
the s-endpoint.

Rules [True] and [False] offer the programmer additional flexibility when handling shared
session endpoints. The conditional process gives the ability to discontinue using some
sessions in its branches. Thus, a session can be dropped based on the truth evaluation
of condition φ. When the process proceeds to a branch it must drop the buffers not
used by the continuation (condition fs(B′) = fn(Pi) \ fn(Pj), i ̸= j). The case where no
sessions are dropped, corresponds to standard conditional semantics. Explicitly dropping a
communication channel is a common pattern in the context of unreliable communication.
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2.3. Encoding Node Failure and Recovery Process. The UBSC semantics are powerful
enough to express sophisticated patterns of network node failure and recovery. We provide
the semantics for a recovery pattern, typically found in ad-hoc and sensor network, through
an encoding in the UBSC. The encoding is useful to avoid long and tedious descriptions of
recovery interaction.

The recovery pattern takes advantage of the interplay between rules [Rec], [True], and
[False], to describe a mechanism that recovers by proceeding to a recovery process. We
defined the UBSC with recovery terms by extending the terms of UBSC in Figure 1 as:

P ::= . . . | P ⋄ R (Recov)

Additionally, in the case of a branch prefixed process we write k ▷ {li : Pi}i∈I ⋄ R, instead of
k ▷ {li : Pi, df : R′}i∈I ⋄ R.

The semantics of the processes of the form P ⋄ R are then defined through a syntactic
encoding into the terms of UBSC (syntax of Figure 1):

[[0 ⋄ R]]
def
= 0

[[D⟨ṽ⟩ ⋄ R]]
def
= D⟨ṽ⟩

[[k?(x).P ⋄ R]]
def
= k?(exc)⟨x⟩.if x ̸= exc then [[P ⋄ R]] elseR

[[k ▷ {li : Pi}i∈I ⋄ R]]
def
= k ▷ {li : ([[Pi ⋄ R]]), df : R}i∈I

[[(def {Di(x̃i)
def
= Pi}i∈I in P ) ⋄ R]]

def
= def {Di(x̃i)

def
= [[Pi ⋄ R]]}i∈I in [[P ⋄ R]]

and homomorphic for the rest of the syntax of the UBSC with recovery processes. The
encoding assumes the existence of an exception value, exc, which is used internally for the
purpose of detecting recovery. Encoding for terms (Inact) and (PVar) is the identity. The
recovery behaviour of the encoding for terms (Rcv) and (Bra) is based on reduction rules [Rec],
[BRec], [True], and [False]; whenever a process exists in a s-endpoint input prefix (prefixes
receive and branch) and the recovery conditions for rules [Rec] and [BRec] hold, the network
node can recover by continuing to a recovery process R. Note that sessions can be dropped
following the semantics of rules [BRec], [True], and [False]. Finally, term (Def) is defined
inductively both on the named definitions and on the process body.

2.4. Reduction Semantics Examples. The next two examples demonstrate some rules
and basic intuition of the operational semantics. The first example demonstrates the
semantics for rule [Conn], and the interplay between the rules [Ucast], [Loss], and [Gthr].

Example 2.1 (A Heartbeat Protocol). Consider a variant of the Heartbeat protocol,
introduced in Example 1.1, where a node periodically gathers heartbeat messages from nodes
within the network.

Heartbeat = [ a!(y̆).y̆?(x1).y̆?(x2).P0 ]
|| [ a?(y).y!⟨hbt1⟩.y!⟨hbt1⟩.P1 ] || [ a?(y).y!⟨hbt2⟩.y!⟨hbt2⟩.P2 ]

Node [ a!(y̆).y̆?(x).y̆?(x).P0 ] requests a new session on shared name a. After the establishment
of the new session each accepting node will periodically send a heartbeat message to the
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requestor node. Consider now the interaction:

Heartbeat −→ (ν s)([ s̆?(x1).s̆?(x2).P0 | s̆[0, ε] ]
|| [ s!⟨hbt1⟩.s!⟨hbt1⟩.P1 | s[0, ε] ] || [ s!⟨hbt2⟩.s!⟨hbt2⟩.P2 | s[0, ε] ])

−→ (ν s)([ s̆?(x1).s̆?(x2).P0 | s̆[0, (0, hbt2)] ]
|| [ s!⟨hbt1⟩.s!⟨hbt1⟩.P1 | s[0, ε] ] || [ s!⟨hbt2⟩.P2 | s[1, ε] ])

−→ (ν s)([ s̆?(x1).s̆?(x2).P0 | s̆[0, (0, hbt2), (1, hbt2)] ]
|| [ s!⟨hbt1⟩.s!⟨hbt1⟩.P1 | s[0, ε] ] || [P2 | s[2, ε] ])

−→ (ν s)([ s̆?(x1).s̆?(x2).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ]
|| [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ])

= Heartbeat1

The first interaction is an instance of rule [Conn] and has lead to the establishment of new
session involving all the network nodes. The second interaction uses an instance of the
rule [Ucast] where network node [ s!⟨hbt2⟩.s!⟨hbt2⟩.P2 | s[0, ε] ] sends a heartbeat message
to the s̆-endpoint network node. Observe that the session state of the sender node has
increased by one. The third interaction is also an instance of rule [Ucast] and yet another
heartbeat message from the same network node is unicast to the s̆-endpoint network node.
The node can unicast the heartbeat message even if it is in a later session state. This
is because messages are gathered at each session state. In the last interaction, network
node [ s!⟨hbt1⟩.s!⟨hbt1⟩.P1 | s[0, ε] ] also unicasts a heartbeat message. Consider then that
the s̆-endpoint gathers the heartbeat messages:

Heartbeat1 −→ (ν s)([ s̆?(x2).P0{hbt1 ⊙ hbt2/x1} | s̆[1, (1, hbt2)] ]
|| [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ])

−→ (ν s)([P0{hbt1 ⊙ hbt2/x1}{hbt2/x2} | s̆[2, ε] ]
|| [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ])

= Heartbeat2

Two instances of the rule [Gthr] allow for the s̆-endpoint to consume all the messages from the
s̆-buffer. The first interaction gathers all heartbeat messages tagged with state 0, whereas the
second interaction gathers all the heartbeat messages tagged with state 1. Each interaction
updates the state counter of the s̆-endpoint. After the last two interactions the s-endpoint
[ s!⟨hbt1⟩.P1 | s[1, ε] ] is found in a non-synchronised state. However an instance of rule [Loss]

can be observed that will re-synchronise the non-synchronised s-endpoint:

Heartbeat2 −→ (ν s)([P0{hbt1 ⊙ hbt2/x1}{hbt2/x2} | s̆[2, ε] ]
|| [P1 | s[2, ε] ] || [P2 | s[2, ε] ])

A second example demonstrates a typical pattern of interaction found ad-hoc and sensor
networks when running consensus protocols. In this example, rules [True]/[False] are used to
drop connections.

Example 2.2 (Dropping Connections). It is typical in consensus algorithms for a node to
establish multiple connections with other nodes but maintaining active only the one with the
highest id number, e.g. the Paxos consensus algorithm [Lam98, L+01] (also see Section 5).
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For example, consider network:

Network = [ a!(w).w̆!⟨id2⟩.P0 ] || (ν s)([ s̆!⟨id1⟩.P1 | s̆[0, ε] ]
|| [ s?(x).(P + a?(w).w?(y).if x > y thenP elseP ′) | s[0, ε] ])

with s /∈ fn(P ′). Node [ s?(x).(P + a?(w).w?(y).if x > y thenP elseP ′) | s[0, ε] ] has already
established a connection on channel s and awaits for a connection id number; a [Bcast] and a
[Rcv] interaction will result in:

Network −→−→ [ a!(w).w̆!⟨id2⟩.P0 ] || (ν s)([P1 | s̆[1, ε] ]
|| [P + a?(w).w?(y).if id1 > y thenP elseP ′ | s[1, ε] ])

= Network1

The resulting network has the option to either continue interaction on the s-endpoint via
process P , or establish a new connection on shared channel a. Assume that the latter
interaction takes place:

Network1 −→ (ν s, s′)([ s̆′!⟨id2⟩.P0 | s̆[0, ε] ] || [P1 | s̆[1, ε] ]
|| [ s′?(y).if id1 > y thenP elseP ′ | s[1, ε] | s′[0, ε] ])

= Network2

The s′-endpoint also receives a connection id number, via reduction rules [Bcast] and [Rcv]:

Network2 −→−→ (ν s, s′)([P0 | s̆[1, ε] ] || [P1 | s̆[1, ε] ]
|| [ if id1 > id2 thenP elseP ′ | s[1, ε] | s′[1, ε] ])

= Network3

The receiving node will then compare the two connection id numbers and decide to drop
the session with the smallest corresponding id number and continue with the corresponding
process; it will continue the interaction on the s-endpoint in process P in the case where
the newest connection is dropped, or, otherwise, it will proceed with the interaction on
the s′-endpoint via process P ′. For example, if id2 > id1 the network will reduce using an
instance of rule [False] and result as in:

Network3 −→ (ν s)([P1 | s̆[1, ε] ]) || (ν s′)([P0 | s̆[1, ε] ] || [P ′ | s′[1, ε] ])

The next example demonstrates a simple recursive behaviour, where a s̆-endpoint
recurses or terminates an session interaction based on the acknowledgements it receives by
the corresponding s-endpoints.

Example 2.3 (Recursive Interaction). The following presents an example where the s̆-
endpoint sends a message and then requires from the corresponding s-endpoints to reply
with an acknowledgement. By inspecting the acknowledgements, the s̆-endpoint decides to
terminate the interaction or to reiterate. Consider the network:
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P = def

Q(w)
def
= w̆!⟨v⟩.w̆?({xi}i∈I).

if cond({xi}i∈I) then w̆ ◁ accept.0
else w̆ ◁ restart.P ⟨w⟩

in Q⟨s⟩

Pk = def Rk(w)
def
= w?(x).w!⟨ackk⟩.w ▷ {accept : 0, restart : Q⟨w⟩, df : 0}

in Rk⟨s⟩
Recursive = [P | s̆[0, ε] ] ||

∏
J∈J [Pj | s[0, ε] ]

where operation ⊙ aggregates all acknowledgements as a set {acki}i∈I . A [Bcast] followed
by a series of [Rcv] and [Ucast] interactions, and finally a [Gthr] operation, results in (the
recursive process definition is ommitted):

Recursive −→∗ Recursive1
= [ if cond({xi}i∈I) then s̆ ◁ accept.0 else s̆ ◁ restart.Q⟨s⟩ | s̆[2, ε] ]
||

∏
k∈K1

[ s ▷ {accept : 0, restart : Rk⟨s⟩, df : 0} | s[2, ε] ]
||

∏
k∈K2

[Pk | s[0, ε] ]

with K1 ∪K2 = J and K1 ∩K2 = ∅. If the condition on {ack}i∈I is true then after a [Sel]

on label accept followed by a series of [Bra] interactions the network may result in:

Recursive1 −→∗ [0 | s̆[3, ε] ] ||
∏

k∈K1
[0 | s[3, ε] ] ||

∏
k∈K2

[Qk | s[0, ε] ]

Note that each node in network
∏

k∈K2
[Q | s[0, ε] ] can terminate following a sequence of

[Rec], [Loss] and [BRec] interactions. If the condition on {ack}i∈I is false then after a [Sel] on
label restart followed by a series of [Bra] interactions the network may result in:

Recursive1 −→∗ [P | s̆[3, ε] ] ||
∏

k∈K1
[Q | s[3, ε] ] ||

∏
k∈K2

[Qk | s[0, ε] ]

where the network reiterates. Note that subnetwork
∏

k∈K2
[Q | s[0, ε] ] will not participate

in the next iteration, since it can only terminate its interaction by recovering following a
sequence of [Rec], [Loss] and [BRec] interactions.

3. Session Types

We now introduce the session type system for the UBSC. The type system combines ideas
from [HKP+10, Kou12] to type buffer terms. A novel notion is the notion of endpoint
synchronisation used to cope with the presence of non-synchronised session endpoints and
with recovery semantics.

3.1. Type Syntax. The session types syntax follows the standard binary session types
syntax as introduced by Honda et al. [HVK98]. However, we have no session delegation
since channel delegation is not found in systems with unreliable communication such as
sensor networks.

Definition 3.1 (Session Type). Let B be a set of base types ranged over by β. Session
types are inductively defined by the following grammar:

T ::= !β.T | ?β.T | ⊕ {ℓi : Ti}i∈I | &{ℓi : Ti}i∈I | end | t | µ t.T
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Type !β.T describes the sending of a value of type β and then proceeding with type T .
Type ?β.T describes the reception of a value with type β and then proceeding with type
T . Type ⊕{ℓi : Ti}i∈I selects a label from the set of labels {ℓi}i∈I and then proceeds with
the corresponding type {Ti}i∈I . Dually, type &{ℓi : Ti}i∈I branches on the set of labels
{ℓi}i∈I and then proceeds with the corresponding type {Ti}i∈I . Type end is the inactive
type, whereas t is the recursive variable. Finally, type µ t.T is the recursive type, which
binds free occurrences of t in T . We define a capture avoiding substitution on types T{T ′/t}
in the usual way. We assume equi-recursive types, µ t.T = T{µ t.T/t}.

Our calculus does not incorporate session delegation. Session delegation is rather
unnatural in an unreliable setting supporting broadcasting and gather semantics, and
sharing of channel resources. Moreover, session delegation is valid only for s̆-endpoints,
which are linear, and it would require additional syntax and reduction semantics beyond
broadcast and gather operations.

The duality operator also follows the standard binary session type definition [HVK98].
A simple inductive definition is enough to capture session endpoint duality because of the
lack of delegation [BDGK14].

Definition 3.2 (Type Duality).

end = end !β.T = ?β.T ?β.T = !β.T t = t µ t.T = µ t.T

⊕{ℓi : Ti}i∈I = &{ℓi : T i}i∈I &{ℓi : Ti}i∈I = ⊕{ℓi : T i}i∈I

Two types T1 and T2 are dual if T 1 = T2. Note T = T for any T . Next, we define a
buffer type syntax used to type message buffers (cf. [HKP+10, Kou12]).

Definition 3.3 (Buffer Types). Buffer types are inductively defined by the following
grammar:

M ::= ε | !β.M | ⊕ℓ.M

Buffer types are used to type buffer terms; they describe the types of the values, !β.M ,
or labels, ⊕ℓ.M , in a session buffer term.

The ◦ operator is used to combine session types and buffer types (cf. [HKP+10, Kou12]).

Definition 3.4 (Operator ◦).

?β.T ◦ !β.M = T ◦M &{li : Ti}i∈I ◦ ⊕ℓk.M = Tk ◦M
µt.T ◦M = T{µ t.T/t} ◦M T ◦ ε = T

The ◦ operator combines a session type with a buffer type and returns a session type
(cf. [HKP+10, Kou12]). It works inductively by removing the prefix from the input session
when the prefix of the buffer type is dual. The intuition for the ◦ operator considers that
messages within a session buffer have already been received from a node (see typing rule
[TNode] in Figure 8), so the operator consumes a buffer type against a session type.

3.2. Typing System. We define the typing contexts used by the typing system.

Definition 3.5 (Typing Context). We define Γ, ∆, and Θ typing contexts:

Γ ::= ∅ | Γ, x : β | Γ, a : T | Γ, D(x̃) : (Γ; ∆)

∆ ::= ∅ | ∆, k : T | κ : (c, T )

Θ ::= ∅ | Θ, κ : (c,M)
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Γ; ∅ ⊢ ε [BEmp] Γ;Θ,κ:(c,ε)⊢κ[c,ε] [SEmp]
{Γ; Θi ⊢ Bi}i∈{1,2}
Γ; Θ1,Θ2 ⊢ B1 |B2

[BPar]

Γ; Θ, (c,M) ⊢ s[c, m̃] Γ ⊢ e : β

Γ; Θ, s : (c,M.!β) ⊢ s[c, m̃ · e]
[SExp]

Γ; Θ, (c,M) ⊢ s[c, m̃]

Γ; Θ, s : (c,M.⊕ℓ) ⊢ s[c, m̃ · ℓ]
[SLab]

h̃′ = B(h̃, c) Γ ⊢ V(h̃, c) : β Γ; Θ, s̆ : (c,M) ⊢ s̆[c′, h̃′]

Γ; Θ, s̆ : (c + 1,M.!β) ⊢ s̆[c′, h̃]
[LExp]

Figure 6: Typing rules for session buffers

Context Γ is called shared context and maps variables to ground types, shared names to
session types, and recursive variables to typing contexts (Γ; ∆). Context ∆ is called linear
context and maps session names and session variables to session types, and session names to
tuples, (c, T ), that combine an integer value, c, that corresponds to session state together
with a session type, T . Similarly, context Θ is called buffer context and maps session names
to tuples, (c,M), that combine an integer value, c, that corresponds to session state together
with a buffer type, M .

Contexts are treated as sets. We write Γ,Γ′ to denote the union of contexts Γ and Γ′.
We also write ∆,∆′, resp. Θ,Θ′, for the disjoint union of contexts ∆ and ∆′, resp. Θ and Θ′.
We define the domain of dom(·) of contexts Γ, ∆, and Θ in the expected way.

The ◦ operator is lifted to combine contexts ∆ and Θ:

∆ ◦ Θ = {κ : (c, T ◦M) | κ : T ∈ ∆ ∧ κ : (c,M) ∈ Θ}

The result of the ◦ operator on contexts is a new linear context.
The typing judgement for expressions is defined as the least relation Γ ⊢ e : β that

respects: i) the types of value and unit expressions (e.g., nat, bool ∈ B); and ii) the types of
variables in expressions, e.g. whenever x ∈ fv(e), then Γ ⊢ e is defined if x : β ∈ Γ for some
β.

The typing judgement for session buffers, Γ; Θ ⊢ B, is defined as the least relation
that satisfies the rules in Fig. 6. Rule [BEmp] types the empty buffer term with an empty
Θ context. Rule [SEmp] types an empty κ-endpoint buffer. It maps, in context Θ, the
κ-endpoint to the state of the κ-buffer together with the empty buffer type. Rule [BPar] types
a parallel composition of session buffer terms, with the disjoint union of the two respective
Θ environments. Buffers for s-endpoints are typed with rules [SExp] and [SLab]; the type of
an expression (respectively, label) is appended at the end of the buffer type of s within the
Θ context.

Rule [LExp] types the s̆-endpoints buffers. The rule works by reconstructing the messages
within the s̆-buffer using operation h̃′ = B(h̃, c), with h′ appearing in the premise, and h
appearing in the conclusion. Rule [LExp] appends to the type of s̆ within context Θ, the type
of value V(h̃, c), which is ⊙-composition of all expressions associated with session state c,
that appears at the type of the premise. The session state is updated at the conclusion.

The typing judgement for processes, Γ; ∆ ⊢ P , is defined as the least relation that
satisfies the rules in Fig. 7. Rule [TInact] is standard for typing the inactive process. Rule
[SWk] defines standard session type weakening for context ∆. The next three rules are
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Γ; ∅ ⊢ 0 [TInact]
Γ; ∆ ⊢ P

Γ; ∆, k : end ⊢ P
[SWk]

Γ, a : T ; ∆, x̆ : T ⊢ P

Γ, a : T ; ∆ ⊢ a!(x̆).P
[TReq]

Γ, a : T ; ∆, x : T ⊢ P

Γ, a : T ; ∆ ⊢ a?(x).P
[TAcc]

Γ; ∆, k : T ⊢ P Γ ⊢ e : β

Γ; ∆, k : !β.T ⊢ k!⟨e⟩.P
[TSnd]

Γ ⊢ e : β Γ, x : β; ∆, k : T ⊢ P

Γ; ∆, k : ?β.T ⊢ k?(x)⟨e⟩.P
[TRcv]

Γ; ∆ ⊢ Pi i ∈ {1, 2}
Γ; ∆ ⊢ P1 + P2

[TSum]

Γ; ∆, k : Tj ⊢ P j ∈ I (∃s ∈ S, k = s̆) ∨ (∃x ∈ V, k = x̆)

Γ; ∆, k : ⊕{ℓi : Ti}i∈I ⊢ k ◁ ℓj .P
[TSel]

∀i ∈ I,Γ; ∆,∆′, k : Ti ⊢ Pi (∃s ∈ S, k = s) ∨ (∃x ∈ V, k = x) Γ; ∆′ ⊢ R

∀s ∈ S, s̆ /∈ dom(∆)

Γ; ∆,∆′, k : &{ℓi : Ti}i∈I ⊢ k ▷ {ℓi : Pi, df : R}i∈I
[TBr]

{Γ; ∆,∆i ⊢ Pi ∀s ∈ S, s̆ /∈ dom(∆i)}i∈{1,2}
Γ; ∆,∆1,∆2 ⊢ if φ thenP1 elseP2

[TCond]

Γ′ ⊢ ui : βi iff ui ∈ ṽ ỹ = dom(∆′) ki : Ti ∈ ∆ iff yi : Ti ∈ ∆′

Γ, D(x̃, ỹ) : (Γ′; ∆′); ∆ ⊢ D⟨ṽ, k̃⟩
[TVar]

∀i ∈ I,Di(x̃i) : (Γi,∆i) ∈ Γ ∧ Γ,Γi; ∆i ⊢ Pi Γ; ∆ ⊢ P

Γ; ∆ ⊢ def {Di(x̃i)
def
= Pi}i∈I in P

[TRec]

Figure 7: Typing rules for processes

standard session type rules (cf. [HVK98]) for typing session request, rule [TReq], session
accept, rule [TAcc], and session send, rule [TSnd], respectively.

Rule [TRcv] is used to type the (Rcv) process, which requires for the default expression e
to have the same type as variable x. Rule [TSum] types non-deterministic behaviour. The
rule expects the same type for each process combined by the [TSum] operator.

The next two rules are standard rules for typing session select, rule [TSel], and session
branch, rule [TBr], prefixes, respectively. The extra conditions on rules [TSel] and [TBr] ensure
correctness of the selection/branching interaction as an interaction between s̆-endpoint
and s-endpoint, respectively; only s̆-endpoints and x̆ variables are typed by rule [TSel], and
similarly only s-endpoints and x variables are being typed by rule [TBr]. The recovery process
in the branch prefixed process is used to drop session endpoints including the s-endpoint,
thus typing rule [TBr] ensures that the recovery process R is typed with a subset of the
linear context, excluding the s-endpoint. Moreover, the rule ensures that only s-endpoints
are be dropped.



Vol. 20:3 SESSION TYPES FOR ASYNCHRONOUS UNRELIABLE BROADCAST COMMUNICATION 13:21

Γ; Θ ⊢ B Γ; ∆ ⊢ P dom(∆) = dom(Θ)

Γ; ∆ ◦ Θ ⊢ [P |B ]
[TNode]

Γ, a : T ; ∆ ⊢ N

Γ; ∆ ⊢ (ν a)N
[TCRes]

{Γ; ∆,∆i ⊢ Ni}i∈{1,2} ∀s ∈ S, s̆ /∈ dom(∆)

Γ; ∆,∆1,∆2 ⊢ N1 ||N2

[TPar]

Γ; ∆,∆′, s̆ : (c, T ) ⊢ N ∆′ = s : (c, T ) ∨ ∆′ = ∅ s /∈ dom(∆)

Γ; ∆ ⊢ (ν s)N
[TSRes]

Figure 8: Typing rules for networks

A novel rule is [TCond], that types the conditional process; since the conditional process
is used to drop session endpoints, the typing rule splits the contexts ∆i of the two branches
into common and non-common, i.e. dropped, session endpoints. The rule also ensures that
only s-endpoints can be dropped.

Rules [TVar], and [TRec] are standard. Rule [TVar] requires that recursive variables are
mapped in the Γ context and checks whether the arguments application has the correct
type with respect to context Γ. Similarly rule [TRec] requires to checks context Γ and the
recursive definition for type consistency.

The typing judgement for networks, Γ; ∆ ⊢ N , is defined as the least relation that
satisfies the rules in Fig. 8. Rule [TNode] type a network node. The rule combines the
contexts of the process, P , and the session buffer terms, B using operator ◦. Rule [TNode]

requires that dom(∆) = dom(Θ) implying that: i) all the session names that appear in the
network process have their corresponding session buffer present in the network node; and ii)
process P does not contain free session variables, i.e. x : T /∈ ∆.

Rule [TPar] requires that parallel components of a network should share the same type
for common s-endpoints. The next rule is [TCRes], which restricts shared name a by removing
it from Γ. Finally, rule [TSRes] captures the interaction intuition between the s̆-endpoint and
the s-endpoints. A session name s can be restricted whenever its two endpoints are dual
when in the same state c, or if only the s̆-endpoint is present in the typing context. The
latter condition captures the case where the s-endpoints were not created due to message
loss or lost due to recovery.

The following example gives the typing for the Recursive network in Example 2.3.

Example 3.6 (Typing for Example 2.3). Given Γ such that Γ ⊢ v : β and for all i ∈ I,Γ ⊢
acki : ackType, and moreover T = µt.!β.?ackType.⊕ {accept : end, restart : t}, the reader can
verify that Γ; s̆ : T, s : T ⊢ Recursive.

Typing System for Runtime Processes. The typing system presented so far can only type
networks with s-endpoints that are in the same state with the corresponding s̆-endpoint.
This is demonstrated with the following example.

Example 3.7 (Heartbeat at Runtime). Consider an instance of Example 1.1 with two
s-endpoints:

Heartbeat = [ s̆!⟨hbt⟩.P0 | s̆[0, ε] ] || [ s?(x).P1 | s[0, ε] ] || [ s?(x).P2 | s[0, ε] ]
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All the endpoints in the above network are in the same state. Assuming that value hbt has
type b, the Heartbeat network can by typed as

hbt : b; s̆ : (0, !b.end), s : (0, ?b.end) ⊢ Heartbeat

Following reduction rule [Bcast] we can observe an unreliable broadcast operation that results
in

Heartbeat −→ Heartbeat′ = [P0 | s̆[1, ε] ] || [ s?(x).P1 | s[1, hbt] ] || [ s?(x).P2 | s[0, ε] ]

The typing system presented so far cannot type the networks that may arise at runtime
where some s-endpoints are not synchronised with the corresponding s̆-endpoint. In network
Heartbeat′, the second network node is typed as hbt : b; s : (1, end) ⊢ [ s?(x).P1 | s[1, hbt] ]
and the third network node is typed as hbt : b; s : (0, ?b.end) ⊢ [ s?(x).P2 | s[0, ε] ]. Thus, we
cannot apply rule [TPar] that requires the same type for the two s-endpoints.

We can achieve typing by using the session state information to construct the type
information that was lost due to unreliable communication. The key is to use a typing rule
to synchronise the the s-endpoints that are not synchronised with the s̆-endpoint.

We define type advancement as a transition relation on types. The type advancement
relation is used to define the notion of endpoint synchronisation.

Definition 3.8 (Type Advancement). Relation T �n T ′ is defined as:

?β.T �1 T !β.T �1 T
k ∈ I

⊕{ℓi : Ti}i∈I �1 Tk

k ∈ I

&{ℓi : Ti}i∈I �1 Tk

T �0 T
T �n T ′′ T ′′ �1 T ′

T �n+1 T ′

It is useful to distinguish output advance by writing !β.T �o T , extended to T �n
o T in

the standard way. Intuitively, T �n T ′ says that T ′ is reached in n advancements from T .
Type advancement for recursive types is obtained by expansion.

Next, we use type advancement (Definition 3.8) and the session state information within
a linear context to define the linear context synchronisation relation over linear contexts.

Definition 3.9 (Linear Context Synchronisation). We define the relation ∆ ↪→ ∆′ inductively
as follows.

∅ ↪→ ∅
∆ ↪→ ∆′ T �m−n T ′ n ≤ m

∆, s : (n, T ) ↪→ ∆′, s : (m,T ′)

∆ ↪→ ∆′ T ′ �n−m
o T n ≥ m

∆, s : (n, T ) ↪→ ∆′, s : (m,T ′)

Linear context synchronisation is crucial for the correctness of the type system and
it used for achieving s-endpoint synchronisation. The middle rule states that the type of
an s-endpoint can use type advancement to proceed its state within a linear context. The
right rule describes the opposite case where the type of an s-endpoint uses output type
advancement, to reconstruct a previous session state. The requirement for output type
advancement is aligned with the fact that a non-synchronised s-endpoint may use reduction
rule [Loss], that drops output session prefixes. Finally the left rule is a basic case rule for the
linear context.

Figure 9 defines rule [TSynch]. Rule [TSynch], is used to provides static guarantees of type
duality between all non-synchronised sessions endpoints that may arise during execution.
The rule uses linear context synchronisation, ∆ ↪→ ∆′, to synchronise non-synchronised
s-endpoints.
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Γ; ∆′ ⊢ N ∆′ ↪→ ∆

Γ; ∆ ⊢ N
[TSynch]

Figure 9: Runtime Typing Rule

Rule [TSynch] types only networks that result at runtime, where due to unreliability,
session endpoints become unsynchronised, and it is important to prove the properties of
progress (Theorem 4.12) and recovery (Theorem 4.15) in Section 4. The main use of the
rule is to align non-synhronised s-endpoints in a linear context in order to apply typing rule
[TPar], as well as enforcing the notion of duality between s̆-endpoint and s-endpoint as in
typing rule [TSRes]. Inspecting rule [TSynch] from the point of view of single network node
it seems that [TSynch] adds a degree of non-determinism during runtime typing. However,
at the network level, the state counter of the s̆-endpoint can deterministically guide the
computation of the linear context synchronisation for the corresponding s-endpoints within
a network, i.e., an implementation of runtime checking will seek, during linear context
synchornisation to align the counter of the s-endpoints with the counter of the s̆-endpoint.

Example 3.10 (Typing Heartbeat at Runtime). For example we can use [TSynch] to
synchronise the type of network node [ s?(x).P2 | s[0, ε] ] in Example (3.7).

hbt : b; s : (0, ?b.end) ⊢ [ s?(x).P2 | s[0, ε] ] s : (0, ?b.end) ↪→ s : (1, end)

hbt : b; s : (1, end) ⊢ [ s?(x).P2 | s[0, ε] ]
[TSynch]

This leads to typing judgement

hbt : b; s̆ : (1, end), s : (1, end) ⊢ Heartbeat′

A network N , resp. process P , is called well-typed, whenever Γ; ∆ ⊢ N , resp. Γ; ∆ ⊢ P ,
for some contexts Γ and ∆.

3.3. Typing Derivation Example. We present the typing derivation for the Heartbeat1
network in Example 2.1. The example demonstrates linear context synchronisation which is
a main notion of the typing system.

Example 3.11 (Typing derivation for the Heartbeat Protocol). Recall, network Heartbeat1
in Example 2.1:

Heartbeat1 = (ν s)([ s̆?(x).s̆?(x).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ]
|| [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ])

Also, consider that the heartbeat message has type b. We first type network node

[ s̆?(x).s̆?(x).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ]
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We give the type derivation for buffer s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)].

Γ; s̆ : (0, ε) ⊢ s̆[0, ε] [SEmp] ε=B((0,hbt2),(0,hbt1),0)

Γ ⊢ V((0, hbt2), (0, hbt1), 0) : b

Γ; s̆ : (1, !b) ⊢ s̆[0, (0, hbt2), (0, hbt1)]
[LExp]

(0, hbt2), (0, hbt1) = B((0, hbt2), (1, hbt2), (0, hbt1), 1)

Γ ⊢ V((0, hbt2), (1, hbt2), (0, hbt1), 1) : b

Γ; s̆ : (2, !b.!b) ⊢ s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)]
[LExp]

(3.1)

The typing for the buffer constructs a derivation using typing rules: i) [SEmp] to initially type
the empty buffer; ii) [LExp] to buffer s̆[0, (0, hbt2), (0, hbt1)] that contains only the heartbeat
messages send at session state 0 of the protocol; and iii) [LExp] again to type the entire buffer.
The instances of the [LExp] typing rule make use of operations B(·, c) and V(·, c) to type the
messages at each session state. The network node is then typed using an instance of rule
[TNode]:

Γ; s̆ : T ⊢ P0

Γ; s̆ : ?b.?b.T ⊢ s̆?(x).s̆?(x).P0

[TRcv]

Γ; s̆ : (2, !b.!b) ⊢ s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] 3.1

s̆ : ?b.?b.T ◦ s̆ : (2, !b.!b) = s̆ : (2, T )

Γ; s̆ : (2, T ) ⊢ [ s̆?(x).s̆?(x).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ]
[TNode]

(3.2)

The rule uses the ◦ operator to combine tuple (2, !b.!b), derived from typing derivation 3.1,
and session type ?b.?b.T , derived from typing rule [TRcv]. The result is tuple (2, T ), denoting
that the s̆-endpoint is in state 2 and has type T .

We continue by typing network node [P2 | s[2, ε] ] using an instance of typing rule [TNode]:

Γ; s : (2, ε) ⊢ s[2, ε] [SEmp] Γ;s:T⊢P2 s:T◦s:(2,ε)=s:(2,T )

Γ; s : (2, T ) ⊢ [P2 | s[2, ε] ]
[TNode] (3.3)

Similarly to the previous derivation, the ◦ operator is used to combine tuple (2, ε), derived
from rule [SEmp], and session type T , derived from typing judgement Γ; s : T ⊢ P2. The result
is tuple (2, T ), which means that the s-endpoint used by the network node is in state 2 and
has type T .

The network node [ s!⟨hbt1⟩.P1 | s[1, ε] ] is also typed using an instance of rule [TNode]:

[TSnd]

Γ; s : T ⊢ P1 Γ ⊢ hbt1 : b

Γ; s : !b.T ⊢ s!⟨hbt1⟩.P1

Γ; s : (1, ε) ⊢ s[1, ε] [SEmp]

s : !b.T ◦ s : (1, ε) = s : (1, !b.T )

Γ; s : (1, !b.T ) ⊢ [ s!⟨hbt1⟩.P1 | s[1, ε] ]
[TNode]

(3.4)
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The s-endpoint used by the network node is in state 1 and has type !b.T . However, it is not
in the same state with the s̆-endpoint in derivation 3.2, therefore we apply rule [TSynch] to
achieve endpoint synchronisation.

Γ; s : (1, !b.T ) ⊢ [ s!⟨hbt1⟩.P1 | s[1, ε] ] 3.4
!b.T �2−1 T

s : (1, !b.T ) ↪→ s : (2, T )

Γ; s : (2, T ) ⊢ [ s!⟨hbt1⟩.P1 | s[1, ε] ]
[TSynch]

(3.5)

The [TSynch] rule uses linear context synchronisation, Definition 3.9, to synchronise type

!b.T from state 1 to state 2 and get (2, T ).
We then apply rule [TPar] twice to get:

Γ; s : (2, T ) ⊢ [ s!⟨hbt1⟩.P1 | s[1, ε] ] 3.5 Γ; s : (2, T ) ⊢ [P2 | s[2, ε] ] 3.3

Γ; s : (2, T ) ⊢ [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ]
[TPar] (3.6)

and also

Γ; s : (2, T ) ⊢ [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ] 3.6

Γ; s̆ : (2, T ) ⊢ [ s̆?(x).s̆?(x).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ] 3.2

Γ; s̆ : (2, T ), s : (2, T ) ⊢ [ s̆?(x).s̆?(x).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ]

|| [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ]

[TPar] (3.7)

Finally, we use rule [TSRes] to restrict session s and provide with the typing derivation for
network Heartbeat1:

Γ; s̆ : (2, T ), s : (2, T ) ⊢ [ s̆?(x).s̆?(x).P0 | s̆[0, (0, hbt2), (1, hbt2), (0, hbt1)] ]

|| [ s!⟨hbt1⟩.P1 | s[1, ε] ] || [P2 | s[2, ε] ]
3.7

Γ; ∅ ⊢ Heartbeat1
[TSRes]

Both endpoints are in the same state, 2, and have dual types, thus safe interaction endpoint
interaction respects session duality and session s can be restricted.

4. Type Soundness, Type Safety, and Progress

In this Section we prove that the proposed type system is sound via a type preservation
theorem and safe via a type safety theorem. Before we proceed with the main results we
deploy the necessary technical machinery and auxiliary results.

We define the notion of the well-formed Linear Context.

Definition 4.1 (Well-formed Linear Context). A context ∆ is well-formed whenever s̆ :
(c, T ) ∈ ∆ implies either

• s : (c, T ) ∈ ∆; or
• s /∈ dom(∆).

Well-formed linear context ∆ requires that whenever the s̆-endpoint is present in ∆,
then the corresponding s-endpoint, if present in ∆, needs to be syncrhonised with the
s̆-endpoint and, additionally, have dual type with respect to the s̆-endpoint. The case where
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a corresponding s-endpoint is not present in ∆ captures the case where no s-endpoints were
created or when all s-endpoints were dropped.

The next definition captures the interaction of processes at the type level.

Definition 4.2 (Linear Context Advancement). Advancement relation, �, over linear
contexts is defined as:

• ∆, s̆ : (c, !β.T1), s : (c, ?β.T2) � ∆, s̆ : (c + 1, T1), s : (c + 1, T2).
• ∆, s̆ : (c,⊕{li : Ti}), s : (c,&{li : T ′

i}) � ∆, s̆ : (c + 1, Tk), s : (c + 1, T ′
k).

• ∆, s : (c, !β.T1), s̆ : (c, ?β.T2) � ∆, s : (c + 1, T1), s̆ : (c + 1, T2)
• ∆, {s : (c, Ti)}i∈I � ∆

The first two cases of linear context advancement define session interaction at type level
and align with broadcasting and selection interactions. The third case aligns with the session
gather interaction. The fourth case indicates that a linear context advances by reducing in
size. The definition aligns with the fact that processes may drop s-endpoints due to rules
[Rec], [BRec], [True], and [False].

The next lemma shows that the well-formedness of ∆ is preserved by linear context
inclusion and linear context advancement.

Lemma 4.3. Let ∆ be well-formed. If ∆ � ∆′ then ∆′ is well-formed.

The next Lemma is a consequence of the typing system.

Lemma 4.4. Consider networks

• If N1 ≡ [ s̆!⟨e⟩.P |B | s̆[c, h̃] ] and Γ; ∆ ⊢ N1 with ∆ well-formed, then h̃ = ε.
• If N2 ≡ [ s!⟨e⟩.P |B | s[c, m̃] ] and Γ; ∆ ⊢ N2 with ∆ well-formed, then m̃ = ε.
• If N3 ≡ [ s̆ ◁ l.P |B | s[c, m̃] ] and Γ; ∆ ⊢ N3 with ∆ well-formed, then m̃ = ε.

Proof. The proof follows the requirement on rule [TNode] and the fact that operations: i)

!β.T ◦ !β
′.M ; !β.T ◦ ⊕ℓ.M ; ⊕{ℓ : T} ◦ !β

′.M ; and ⊕{ℓ : T} ◦ ⊕ℓ.M are undefined.

The above lemma states a standard property for asynchronous session type systems
(cf. [GV10]), which requires that in a session typed setting whenever a network node has a
send prefix, the corresponding session buffer is necessarily empty. This is because correct
send/receive interaction will consume any messages in the session buffer prior to the send
prefix.

We can now state and prove the Typing Preservation Theorem.

Theorem 4.5 (Typing Preservation). If Γ; ∆ ⊢ N and N −→ N ′ and ∆ well-formed, then
there exist well-formed ∆′ such that ∆ � ∆′ and Γ; ∆′ ⊢ N ′.

Proof. By induction on the depth of the derivation of N −→ N ′. For the full proof see
Appendix A.2 in page 38.

Type preservation theorem states that a reduction maintains typing and well-formedness.
Towards the statement of a type safety theorem, we proceed by defining the notion

of the error network. The class of error networks indicates all networks that should not
be typed with a well-formed linear context by the proposed typing system. We define the
notion of an error network, cf. [YV07], as the network that contains an invalid s-pair that
cannot make a safe communication interaction.
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Definition 4.6 (Error Network). Let s-prefix be a network of the form

Brcc = [ s̆!⟨e⟩.P1 | s̆[c, ε] |B ] Gthc = [ s̆?(x)⟨e⟩.P2 | s̆[c, h̃] |B ]
Unic = [ s!⟨e′⟩.P3 | s[c, ε] |B ] Rcvc = [ s?(x

′).P4 | s[c, m̃] |B ]
Selc = [ s̆ ◁ ℓ.P5 | s̆[c, ε] |B ] Brac = [ s ▷ {ℓi : Pi, df : R}i∈I | s[c, m̃] |B ]

An invalid s-pair is one of the following parallel compositions of s-prefixes:

Brcc || Brcc′ Gthc || Gthc′ Selc || Selc
′

Brcc || Gthc′ Brcc || Selc
′

Brcc || Unic Brcc || Brac

Gthc || Selc
′

Gthc || Rcvc Gthc || Brac

Selc || Rcvc Selc || Unic

A network N is called an error network whenever there exists an invalid s-pair M such that
for some network N ′ it holds that N ≡ (ν ñ)(N ′ ||M).

An invalid s-pair is formed by a parallel composition of two s-prefixes. All other parallel
compositions between two s-prefixes are considered valid. An error network is any network
that composes in parallel at least one invalid s-pair. Equivalently, a valid network is a
parallel composition of network terms of which all s-prefixes that are in the same session
state, consists of at most one broadcast prefix (resp. gather, selection) and many receive
prefixes (resp. send, branch).

An invalid s-pair is either a composition of a s̆-prefix and a s-prefix that cannot safely
interact, or a composition of two s̆-prefixes that violates linearity conditions. In the latter
case the composition of two s̆-endpoint is always an error regardless of the state they are in.
In the former case we require that the two s-prefixes are in the same state c, because for such
s-redexes not in the same state, reduction semantics will never allow an interaction, other
than recovery (reduction rules [Rec], [BRec], [Loss]). The next example presents instances of
error networks.

Example 4.7 (Error Network). As a first example, consider an instance of error network
Brcc ||Brac

[ s̆!⟨e⟩.P | s̆[c, ε] ] || [ s ▷ {ℓi : Pi, df : R}i∈I | s[c, m̃] ]

The network cannot perform a safe interaction on channel s, because the s̆-endpoint does
not select a continuation on the s-endpoint, therefore the above network cannot observe
a reduction. The network is not typable, because two session endpoints (s̆-endpoint and
s-endpoint) do not have dual types.

A more interesting example is given by an instance of the error network N ||Brcc ||Brcc

[ s̆!⟨e⟩.0 | s̆[c, ε] ] || [ s̆!⟨e⟩.0 | s̆[c, ε] ] || [ s?(x).0 | s[c, ε] ]

The network cannot perform a safe interaction on channel s, because the s-endpoint can
interact with either of the s̆-endpoints. Network N is not typable, because of the requirement
on rule [TPar] that the s̆-endpoint is linear.

We also do not consider as invalid s-pair the case where two s-endpoints are composed,
i.e. redexes of the form Rcvc ||Unic,Rcvc ||Brac and Unic ||Brac. Such redexes may be
well-typed, due to the requirement for linear context synchronisation on the [TSynch] rule.
However, composing them with a corresponding s̆-endpoint results in an non well-typed
network. Disallowing such s-redexes would require more complicated semantics that record
interaction sequences instead of session state. The next example clarifies this last intuition.
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Example 4.8. Consider for example an instance of network Rcv0 ||Uni0:

[ s?(x).0 | s[0, ε] ] || [ s!⟨e⟩.0 | s[0, ε] ]

The network may be well-typed, due to linear context synchronisation, with well-formed
context ∆ = s : (1, s : end) using derivation:

Γ; s : ?β1.end ⊢ s?(x).0 Γ; s : (0, ε) ⊢ s[0, ε]

s : ?β1.end ◦ s : (0, ε) = s : (0, ?β1.end)

Γ; (0, ?β1.end) ⊢ [ s?(x).0 | s[0, ε] ]
[TNode]

s : (0, ?β1.end) ↪→ s : (1, end)

Γ; s : (1, s : end) ⊢ [ s?(x).0 | s[0, ε] ]
[TSynch]

(4.1)

Γ; s : !β2.end ⊢ s!⟨e⟩.0 Γ; s : (0, ε) ⊢ s[0, ε]

s : !β2.end ◦ s : (0, ε) = s : (0, !β1.end)

Γ; s : (0, !β1.end) ⊢ [ s!⟨e⟩.0 | s[0, ε] ]
[TNode]

s : (0, !β2.end) ↪→ s : (1, end)

Γ; s : (1, end) ⊢ [ s!⟨e⟩.0 | s[0, ε] ]
[TSynch]

(4.2)

that allows the usage of rule [TPar] to get

Γ; s : (1, end) ⊢ [ s?(x).0 | s[0, ε] ] 4.1

Γ; s : (1, end) ⊢ [ s!⟨e⟩.0 | s[0, ε] ] 4.2

Γ; s : (1, end) ⊢ [ s?(x).0 | s[0, ε] ] || [ s!⟨e⟩.0 | s[0, ε] ]
[TPar]

However, attempting to add a network node that implements the s̆-endpoint would result in
an non well-typed network. For example, networks:

N1 = [ s̆!⟨e⟩.0 | s̆[0, ε] ] || [ s?(x).0 | s[0, ε] ] || [ s!⟨e⟩.0 | s[0, ε] ]
N2 = [ s̆?(x).0 | s̆[0, ε] ] || [ s?(x).0 | s[0, ε] ] || [ s!⟨e⟩.0 | s[0, ε] ]

are both non well-typed. In network N1, the s̆-endpoint is typed as Γ; s̆ : (0, !β.end) ⊢
[ s̆!⟨e⟩.0 | s̆[0, ε] ] and cannot be synchronised with the type of network node [ s!⟨e⟩.0 | s[0, ε] ].
Similarly in network N2, the s̆-endpoint is typed as Γ; s̆ : (0, ?β.end) ⊢ [ s̆?(x).0 | s̆[0, ε] ] and
cannot be synchronised with the type of network node [ s?(x).0 | s[c, ε] ].

The next theorem shows that our framework enjoys type safety.

Theorem 4.9 (Type Safety). Let network N such that Γ; ∆ ⊢ N for some Γ and some
well-formed ∆. If there exists network N ′ such that N −→∗ N ′, then network N ′ is not an
error network.

Proof. From Theorem 4.5 and the fact that an error network is not well-typed with a
well-formed linear context.

Type safety states that a network typed with a well-formed context can always interact
safely, i.e. never reduce to an error.
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4.1. Progress. We prove that a network typed with a well-formed session environment
can ensure strong progress properties. We formally introduce the notion of a deadlocked
network.

Definition 4.10 (Shared name prefixed process). A process is called shared input prefixed
process if it has the form a?(x).P . A process is called shared output prefixed process if it has
the form a!(x̆).P .

Definition 4.11 (Deadlocked Network). A network N is called deadlocked whenever

N ≡ (ν ñ)(
∏

i∈I [
∑

j∈Ji Pj |Bi ])

and for all i ∈ I we have that for all j ∈ Ji, Pj is prefixed with an input shared name.

It is easy to show that whenever a network N is a deadlocked network, it holds that
there exists no N ′ such that N −→ N ′. We can now formulate a basic progress result:

Theorem 4.12 (Progress). Let N be a network such that Γ; ∆ ⊢ N for some Γ and some
well-formed ∆. Then either

• N ≡
∏

i∈j [0 ]; or
• N is a deadlocked network; or
• N −→ N ′ for some N ′.

Proof. The proof is straightforward since all instances of a session prefixed processes in a
network node can perform an interaction, e.g. due to recovery semantics, whenever they are
well-typed. Processes that are prefixed with an output on shared name in a network can
also perform an interaction, whenever they are well-typed.

The progress result states that unless a deadlocked occurs due to shared names, a
network term is always able to progress. Indeed, due to the recovery semantics sessions can
progress even if they are interleaved. If we combine the progress result with the result for
4.9 we can also deduce that a network progresses in a session safe manner.

The progress result, however, does not indicate the nature of progress within a session,
nor it provides additional insight on the nature of the recovery semantics in the progress
within a session. We state two results on session progress and on session recovery. We
first establish the notion of a simple network, following the notion of the simple process
in [HYC08].

Definition 4.13. A network N is called simple if it is well-typed with a type derivation
where the linear environment in the premise and the conclusion for each prefix rule in
Figure 7 has at most one element.

Intuitevely, a simple network is a network whose composing processes do not implement
more than one active session name during their interaction, e.g. session interaction does not
interleave. For example, network N ≡ [ a?(x).s!⟨hbt⟩.x!⟨hbt⟩.0 | s[0, ε] ] is not simple because
session name s and session variable x (which will be substistuted with a fresh session at
runtime) will be both active at runtime.

The next theorem states a form of session fidelity where a session within a simple
network is always able to progress without observing a recovery interaction.

Theorem 4.14 (Session Progress). Let N be a simple network such that Γ; ∆ ⊢ N for some
Γ and some well-formed ∆. If

N ≡ (ν ñ)([P | s̆[c, m̃] |B ] ||
∏

i∈I [Pi | s[c, m̃i] |Bi ] ||M)
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with i) s̆ ∈ fs(P ), ii) for all i ∈ I it holds that s ∈ fs(Pi), and iii) s /∈ fn(M), then there
exists N ′ such that N −→∗ N ′ with

• N ′ ≡ (ν ñ′)([P ′ | s̆[c + 1, m̃′] |B′ ] ||
∏

j∈J [Pj | s[c + 1, m̃j ] |Bj ] ||M ′);
• −→∗ does not involve reduction rules [Rec], [BRec], and [Loss];
• J ⊆ I.

Proof. The proof comes from the fact that Γ; ∆ ⊢ N and ∆ well-formed. The typing
judgement implies that sub-network:

N ′ ≡ (ν ñ)([P | s̆[c, m̃] |B ] ||
∏

i∈I [Pi | s[c, m̃i] |Bi ])

is also typed with a well-typed linear context and from the fact that it is a simple network
we can show that it can perform the desired reduction using either: i) [Bcast] reduction
possibly followed by several [Rcv] reductions; ii) or a [Sel] reduction possible followed by
several [Bra] reductions; iii) or several [Ucast] reductions followed by a [Gthr] reduction.

The next theorem demonstrates the ability of s-endpoints that are not synchronised
with the corresponding s̆-endpoint to recover, given that the entire network is a simple
network.

Theorem 4.15 (Session Recovery). Let N be a simple network such that Γ; ∆ ⊢ N for some
Γ and some well-formed ∆. If

N ≡ (ν ñ)([P | s̆[c, m̃] |B ] ||
∏

i∈I [Pi | s[ci, m̃i] |Bi ] ||M)

and for all i ∈ I, ci < c, then there exists N ′ such that N −→∗ N ′ with

N ′ ≡ (ν ñ)([P | s̆[c, m̃] |B ] ||
∏
j∈J

[P ′
j | s[c, m̃′

j ] |B′
j ] ||

∏
k∈K

[P ′
k |B′

k ] ||M)

with J,K ⊆ I and J ∩K = ∅.

Proof. The proof is done by double induction; the first is an induction on the size of I and
the second is an induction on size c − ci. The fact that N is simple allows us to observe
recovery rules [Rec], [BRec] and [Loss] on the session prefixes of processes Pi that will increase
the counter of the s-endpoint until it reaches the value of counter c. However, in the case of
a [Cond] process term a s-endpoint might be dropped resulting in a partition of the I set
into sets J and K.

5. The Paxos Consensus Protocol

We present a session safe implementation of the Paxos consensus protocol using the UBSC.
Paxos [Lam98, L+01] is a protocol for reaching consensus in a network that operates under
conditions of unreliability. It ensures that network agents can agree on a single value in the
presence of failures. Despite being the standard consensus algorithm, Paxos is notoriously
difficult to understand, and real-world implementations have brought forth many problems
that are not taken into account by the theoretical model of Paxos [CGR07].

The session type representation of Paxos is not used to prove the correctness of the
protocol itself, but to check whether the Paxos protocol enjoys session types properties,
i.e., type preservation, type safety, and progress, under the particular session specification.
Session types can also help to identify subtle interactions such as branching or dropping
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sessions. Furthermore, a session type representation allows for the basic algorithm to be
easily extended while still providing formal guarantees.

5.1. The Paxos Protocol. We implement the most basic protocol of the Paxos family as
described in [L+01]. The network agents act autonomously and propose values for consensus
to the other agents within the network. If eventually a majority of agents run for long
enough without failing, consensus on one of the proposed values is guaranteed. A correct
implementation of the protocol ensures that:

• Only a value that has been proposed for consensus is chosen.
• The agents within the network agree on a single value.
• An agent is never informed that a value is chosen for consensus, unless it has been chosen

for consensus.

The Paxos setting assumes asynchronous non-Byzantine communication that operates under
the following assumptions:

• Messages can take arbitrarily long to be delivered, can be duplicated, but are not delivered
corrupted.

• Agents operate at an arbitrary speed, may stop operating and may restart. However, it is
assumed that agents maintain persistent storage that survives crashes.

Following the Paxos setting assumptions, an implementation of the Paxos protocol in
UBSC is ensured to be correct under the assumptions A1-A6. Specifically: requirement S2
ensures asynchronous communication; requirement A4 ensures non-Byzantine communication;
requirement A5 ensures non-corrupted delivered messages; requirement A6 ensures that
agents operate at an arbitrary speed; and requirement A3 ensures that messages are never
duplicated, which is subsumed by the Paxos requirement that messages might be duplicated,
i.e., the properties of the Paxos protocol are also ensured in a setting where messages are
never duplicated. Moreover, requirement A6 can express the case where an agent has failed
by allowing the agent to take an arbitrary long time to perform an action. If the agent
eventually interacts then it is considered to have restarted maintaining, through persistent
storage, all the information it had prior to the fail.

Paxos agents implement three roles: i) a proposer agent proposes values towards the
network for reaching consensus; ii) an acceptor accepts a value from those proposed, whereas
a majority of acceptors accepting the same value implies consensus and signifies protocol
termination; and iii) a learner discovers the chosen consensus value. The implementation of
the protocol may proceed over several rounds. A successful round has two phases: Prepare
and Accept.

The protocol ensures that in the case where a consensus value v has already been chosen
among the majority of the network agents, broadcasting a new proposal request with a higher
proposal number will result in choosing the already chosen consensus value v. Following this
fact, we assume for simplicity that a learner has the same implementation as a proposer.

5.2. Implementation of the Paxos protocol in UBSC. Figure 10 describes the im-
plementation of the Paxos protocol in our framework. The implementation assumes that
expressions contain finite sets of integer tuples. We use notation {(ri, vi)i}i∈I for such a
finite set. Moreover, we assume that the aggregation operation is defined as a union of sets
of integer tuples.
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PaxosType = !prepare.?promise.⊕
{
accept : !(round, value).end,
restart : end

}
PaxosNodeidr,v = [Paxosidr,v ]

Paxosidr,v = def

Proposer(x, y)
def
= a!(s).s̆!⟨x⟩.s̆?({(ri, vi)}i∈I).

if |I| > M
2 then

s̆ ◁ accept.s̆!⟨(x, v = choose({(ri, vi)}i∈I , id))⟩.
Paxos⟨x, v⟩

else
s̆ ◁ restart.Paxos⟨x, y⟩

Acceptor(x, y)
def
= a?(s).s?(x

′).
if (x′ > x) then

s!⟨x, y⟩.s ▷
{
accept : s?(x

′, y′).Paxos⟨x′, y′⟩,
restart : Paxos⟨x, y⟩

}
else
Paxos⟨x, y⟩

Paxos(x, y)
def
= Proposer⟨x + 1, y⟩ + (Acceptor⟨x, y⟩ ⋄ Paxos(x, y))

in
Paxos⟨r, v⟩

Figure 10: Implementation of the Paxos consensus protocol

The interaction for establishing a consensus value takes place within a single session
that involves the nodes of the network. The communication behaviour of the Acceptor is
described by session type PaxosType, whereas the communication behaviour of the proposer
is described by the dual type PaxosType. The PaxosType session type provides with a
type level description of the protocol in [L+01]. The fact that the type is enforced to
the implementation, through the type system, together with the fact that the underlying
assumptions of our calculus are covered by the assumptions of the Paxos setting, provide
supporting evidence for proving the correctness of the implementation.

A Paxos agent is described by network node PaxosNodeidr,v = [Paxosidr,v ] where r is
the number of the current proposal number, v is the consensus value that corresponds
to proposal number r, and id is a unique node identity number. A Paxos agent non-
deterministically behaves either as a proposer, (definition Proposer(x, y)) or as an acceptor
(definition Acceptor(x, y) ⋄ Paxos(x, y)). The definition of the acceptor requires that during
computation an acceptor agent recovers when an input endpoint does not progress, by
dropping all active sessions and proceeding to process Paxos⟨r, v⟩.

If a Paxos agent decides to act as a proposer, it does so by increasing its current proposal
number and proceeding to process Proposer⟨r + 1, v⟩. It then requests a new session and
enters the Prepare phase. All the Paxos agents that accept a session request act as acceptors.
The proposer then broadcasts towards the network a prepare message request, type prepare,
that contains the proposal number r.
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All the acceptors that received the prepare message check whether the proposal number
is greater than the one they currently have. If not, they drop the session and restart
the computation proceeding to process Paxos⟨r, v⟩. Otherwise, they reply with a promise
message, type promise, not to respond to a prepare message with a lower round number.
The promise message contains the current proposal number and the current consensus value
of the acceptor. If this is the first time the acceptor is involved in a consensus round and it
has no information of consensus value then the promise message will contain empty values
(ϵ, ϵ). Here assume that for all proposal numbers r it holds that r > ϵ.

After all the involved acceptors reply with a promise message, the protocol enters
the Accept phase. The proposer gathers all the promises as a set of promise messages,
{(ri, vi)}i∈I , and then checks whether the majority of acceptors have replied using condition
|I| ≤ M

2 , with M being the number of the nodes in the network. Note that for clarity, in the
Proposer agent we use the set notation {(ri, vi)}i∈I in place of variable in an input process.

If the check fails the proposer sends a restart label to all the acceptors, and restarts
its own computation by proceeding to process Paxos⟨r, v⟩. All acceptors that receive label
restart also restart their computation by proceeding to process Paxos⟨r, v⟩.

If the majority check is passed, the proposer selects a value to submit to the acceptors
by inspecting the promises received and choosing the value corresponding to the highest
proposal number received in a promise message. If no value is received then it chooses its id
value. This is expressed by computation

vk = choose({(ri, vi)}i∈I , id) when ∀i ∈ I, rk ≥ ri and
id = choose({(ri, vi)}i∈I , id) when ∀i ∈ I, ri = ϵ

The proposer then broadcasts an accept message, which is an accept label followed by a
tuple that contains the current proposal number and the chosen highest value. Finally, it
updates its own proposal number and consensus value and proceed to process Paxos⟨r, v⟩.
Moreover, all acceptors that receive the accept message update their proposal number and
their consensus value, and proceed to state Paxos⟨r, v⟩.

Network node PaxosNoden,v can be typed using the following typing judgement:

a : PaxosType; ∅ ⊢ PaxosNodeidn,v

Shared channel a uses type PaxosType, thus all establish sessions of the computation follow
the behaviour of the Paxos protocol as described by the PaxosType session type. Subsequently,
a network that describes a set of nodes that run the Paxos protocol is defined as:

N =
∏
i∈I

PaxosNodeiϵ,ϵ

Network N is typed using typing judgement a : PaxosType; ∅ ⊢ N . Typing is possible due to
the typing of network node PaxosNodeidn,v and multiple applications of rule [TPar].

The paxos process Paxosidr,v is recursive, where each recursion indicates a new propose
round that implies the creation of a new session of type PaxosType. Each iteration creates a
new session by necessity, since if, due to reliability, a session within a propose round does
not include the majority of Paxos acceptors then it is necessary to terminate the session and
reiterate. This is reflected by the fact that type PaxosType is not recursive.

Our typing framework guaranties that network N , which is typed with a well-formed
(empty) linear context, will never reduce to an error state (Theorem 4.5). Moreover, the
fact that a Paxos network is a simple network (Definition 4.13) and the progress results
(Theorems 4.14 and 4.14) ensure that the interaction takes place within a session as defined
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by the session type. This lifts the burden from the programmer to check for deadlocks and
type mismatches, and leaves only the burden for implementing correctly the algorithmic
logic. If the algorithmic logic is implemented correctly, then the fact that the assumptions
of the UBSC are covered by the execution context of Paxos ensures the properties of the
Paxos protocol.

More complicated Paxos networks can be described. For example, we can allow a Paxos
agent that acts as an acceptor to establish multiple sessions with different proposers during
an execution and explicitly drop the session with the lowest proposal number:

Acceptor(x, y)
def
= a?(s).s?(x

′).Acc⟨s, x, x′, y⟩

Acc(w, x, x′, y)
def
= if (x′ > x) then

w!⟨x, y⟩.
AcceptPhase⟨w, x, y⟩

+ a?(s
′).s′?(x

′′).
if (x′′ > x′)

Acc⟨s′, x, x′′, y⟩
else
AcceptPhase⟨w, x, y⟩


else
Paxos⟨x, y⟩

AcceptPhase(w, x, y)
def
= w ▷

{
accept : w?(x

′, y′).Paxos⟨x′, y′⟩,
restart : Paxos⟨x, y⟩

}
The definition of the acceptor has the option, expressed as non-deterministic choice, to
establish a new session, i.e. enter a prepare phase with a different proposer, while in the
accept phase of another proposal. The computation then compares the proposal numbers
from the two sessions. Following the result of the comparison, the computation will explicitly
drop the session with the lowest proposal number and proceed as described by the type of
the session with the highest proposal number. The above process is well-typed; note that the
application of rule [TSum] ensures that the two branches of the non-deterministic operator
have the same session type.

The new acceptor definition results in a network that is not simple following Defini-
tion 4.13, therefore the conditions for Session Progress (Theorem 4.14) and Session Recovery
(Theorem 4.15) do not hold. Nevertheless, the network will never reduce to an error net-
work (Definition 4.6) and it can be proven that it still enjoys the progress property via
Theorem 4.12. Moreover we can show that individual sessions can still progress and recover.

6. Conclusion and Future Work

This paper is motivated by the need to to sufficiently define a session type framework for
systems such as ad-hoc and wireless sensor networks. The basic characteristic of these
networks is a lossy stateless communication medium shared among an arbitrary number of
agents.

To this end, we have introduce the asynchronous unreliable broadcast calculus accompa-
nied with a corresponding session type framework. The semantics of the calculus are inspired
by the practice of ad-hoc and wireless sensor network and develop the necessary mechanisms
to support safe session interaction and recovery. Asynchrony is achieved with the use of
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message buffers. The main session communication operations include asynchronous broadcast
operation and the asynchronous gather communication pattern in the presence of link failure
and message loss. Message loss may lead to session endpoints that are not synchronised
with the overall protocol. In such a case the semantics propose the appropriate mechanisms
for autonomous session recovery. The recovery semantics find sufficient justification from
the practice of networks that operate in an unreliable setting.

Our session type systems ensures safe and sound communication interaction that respects
the session types principles. A type preservation theorem ensures the soundness of the system,
whereas a type safety theorem ensures that the system will never reduce an undesired/error
state. Finally, a set of progress properties ensure that sessions may always progress, and, in
the case of non-synchronisation, a session can always safely recover.

The syntax and semantics of the UBSC are expressive enough to describe non-trivial
communication protocols that operate in an unreliable setting. We used the UBSC to
describe a basic implementation of the Paxos consensus algorithm, the standard protocol
for achieving consensus in an asynchronous unreliable setting. Our framework satisfies the
underlying operation assumptions of the Paxos protocol. The computation for reaching
consensus takes place within a single session, therefore a single session type can describe
the interaction of the Paxos agents. The session typing system ensures that a Paxos agent
interaction follows the Paxos session protocol.

Moreover, this work follows the syntax of binary session types, where a rather intrigate
typing system enforces the static properties of soundness, safety, and deadlock freedom to a
calculus that supports realistic interactions of broadcast, gather, and recovery. However, it
is not in the aim (nor in the static nature) of the UBSC session type system to guaranty
more dynamic properties that have to do with the algorithm correctness, e.g., to prove that
the Paxos protocol will eventually reach consensus.

Future Work. Our system is open for further extensions in the future. A first direction
is to capture more complicated patterns beyond the unreliable broadcast communication
and the gather communication pattern. We would also like to investigate more elaborate
autonomous recovery mechanisms, e.g. to explicitly define time-out and interrupt routines.

Another interesting direction is the extension of the system with locations and mobility,
cf. [HR02], as this would allow the use of session types in a highly dynamic and complex
setting. Location and node mobility is an important feature which allows for new nodes to
be introduced, disabled, or migrate between locations within a network. Locality and/or
mobility might also imply semantics that take into account broadcast/communication range.
The feature of communication range further strengthens the need for the existence of
autonomous recovery mechanisms.

An important direction for future research is to develop a more robust session type
system, based on multiparty session types, where network agents can interact with multiple
roles inside a session. The research direction on a multiparty session type framework in
the context of unreliable broadcast communication can follow principles from the work on
parametrised multiparty session types [NY15], where a session type system is developed for
describing interaction among an arbitrary number of agents.
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Appendix A. Proofs

A.1. Congruence invariance proof.

Lemma A.1 (Congruence Invariance). • If P ≡ P ′, then Γ; ∆ ⊢ P if, and only if, Γ; ∆ ⊢
P ′.

• If N ≡ N ′, then Γ; ∆ ⊢ N if, and only if, Γ; ∆ ⊢ N ′.

Proof. By induction on the structural congruence definition.

Lemma A.2 (Substitution). • Whenever Γ ⊢ e : β and Γ, x : β; ∆ ⊢ P , then Γ; ∆ ⊢
P{e/x}.

• Whenever Γ; ∆, x : T ⊢ P , then Γ; ∆, s : T ⊢ P{s/x}.

Proof. By induction on the definition of processes.

A.2. Typing Preservation proof. Now we are ready to prove the typing preservation
property of our system.

Proof of Theorem 4.5. By induction on the depth of derivation of N −→ N ′.

• Rule [Conn]

Assume

s fresh

[ a!(x̆).P |B ] |
∏

i∈I [ a?(x).Qi |Bi ]

−→ (ν s)([P{s̆/x̆} |B | s̆[0, ε] ] ||
∏

i∈I [Qi{s/x} |Bi | s[0, ε] ])

and

Γ; ∆ ⊢ [ a!(x̆).P |B ] ||
∏
i∈I

[ a?(x).Qi |Bi ]

with ∆ well-formed. From the latter typing judgement we get the derivation

Γ; ∆0,∆1 ⊢ [ a!(x̆).P |B ]

Γ; ∆0,∆2 ⊢
∏

i∈I [ a?(x).Qi |Bi ]

∆0 only s-endpoints ∆ = ∆0,∆1,∆2

Γ; ∆ ⊢ [ a!(x̆).P |B ] ||
∏

i∈I [ a?(x).Qi |Bi ]
[TPar]

We continue the above derivation for node [ a!(x̆).P |B ]

Γ; ∆′′
1, x̆ : T ⊢ P Γ ⊢ a : T

Γ; ∆′′
1 ⊢ a!(x̆).P

[TReq]

Γ; Θ ⊢ B ∆′
1 = ∆′′

1 ◦ Θ

Γ; ∆′
1 ⊢ [ a!(s).P |B ]

[TNode]

∆′
1 ↪→ ∆0,∆1

Γ; ∆0,∆1 ⊢ [ a!(s).P |B ]
[TSynch]
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For every node [ a?(x).Qi |Bi ] we can derive

Γ; ∆′′
i , x : T ⊢ Qi Γ ⊢ a : T

Γ; ∆′′
i ⊢ a?(x).Qi

[TAcc]

Γ; Θi ⊢ Bi ∆′
i = ∆′′

i ◦ Θi

Γ; ∆′
i ⊢ [ a?(x).Qi |Bi ]

[TNode]

∆′
i ↪→ ∆0,∆i

Γ; ∆0,∆i ⊢ [ a?(x).Qi |Bi ]
[TSynch]

and also with multiple applications of the [TPar] rule we get

{Γ; ∆0,∆i ⊢ [ a?(x).Qi |Bi ]}i∈I ∆2 =
⋃

i∈I ∆i

Γ; ∆0,∆2 ⊢
∏

i∈I [ a?(x).Qi |Bi ]
[TPar]

We can then combine the information from the latter transition to derive the type for the
result of the reduction (ν s)([P{s̆/x̆} |B | s̆[0, ε] ] ||

∏
i∈I [Qi{s/x} |Bi | s[0, ε] ]). We first

type network node [P{s̆/x̆} |B | s̆[0, ε] ]:

Γ; s̆ : (0, ε) ⊢ s̆[0, ε] [SEmp]

Γ; Θ ⊢ B (from former derivation)

Γ; Θ, s̆ : (0, ε) ⊢ B | s̆[ε, ε]
[BPar]

Substitution Lemma A.2 and former derivation

Γ; ∆′′
1, x̆ : T ⊢ P imply Γ; ∆′′

1, s̆ : T ⊢ P{s̆/x̆}

∆′′
1, s̆ : T ◦ Θ, s̆ : (0, ε) = ∆′

1, s̆ : (0, T )

Γ; ∆′
1, s̆ : (0, T ) ⊢ [P{s̆/x̆} |B | s̆[0, ε] ]

[TNode]

Linear context synchronisation (Definition 3.9) and former result

∆′
1 ↪→ ∆0,∆1 imply ∆′

1, s : 0, s̆ : T ↪→ ∆0,∆1, s̆ : (0, T )

Γ; ∆0,∆1, s̆ : (0, T ) ⊢ [P{s̆/x̆} |B | s̆[0, ε] ]
[TSynch]
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Similarly we type every network node [Qi{s/x} |Bi | s[0, ε] ]

Γ; s : (0, ε) ⊢ s[0, ε] [SEmp]

Γ; Θ ⊢ Bi (from former derivation)

Γ; Θ, s : (0, ε) ⊢ Bi | s[ε, ε]
[BPar]

Substitution Lemma A.2 and former derivation

Γ; ∆′′
i , x : T ⊢ Qi imply Γ; ∆′′

i , s : T ⊢ Qi{s/x}

∆′′
i , s : T ◦ Θ, s : (0, ε) = ∆′

is : (0, T )

Γ; ∆′
i, s : (0, T ) ⊢ [Qi{s/x} |Bi | s[0, ε] ]

[TNode]

Linear context synchronisation (Definition 3.9) and former result

∆′
i ↪→ ∆0,∆1 imply ∆′

i, s : (0, T ) ↪→ ∆0,∆i, s : (0, T )

Γ; ∆0,∆i, s : (0, T ) ⊢ [Qi{s/x} |Bi | s[0, ε] ]
[TSynch]

We can now have a multiple application of the [TPar] rule to type network∏
i∈I [Qi{s/x} |Bi | s[0, ε] ]

Γ; ∆0,∆i, s : (0, T ) ⊢ [Qi{s/x} |Bi | s[0, ε] ]

from former result ∆2 =
⋃

i∈I ∆i

Γ; ∆0,∆2, s : (0, T ) ⊢
∏

i∈I [Qi{s/x} |Bi | s[0, ε] ]
[TPar]

We then use typing rule [TPar] followed by rule [TSRes] to type the result of the reduction
(ν s)([P{s̆/x̆} |B | s̆[0, ε] ] ||

∏
i∈I [Qi{s/x} |Bi | s[0, ε] ]):

[TSRes]

[TPar]

Γ; ∆0,∆1, s̆ : (0, T ) ⊢ [P{s̆/x̆} |B | s̆[0, ε] ]

Γ; ∆0,∆2, s : (0, T ) ⊢
∏

i∈I [Qi{s/x} |Bi | s[0, ε] ]

Γ; ∆, s̆ : (0, T ), s : (0, T ) ⊢ [P{s̆/x̆} |B | s̆[0, ε] ] ||
∏

i∈I [Qi{s/x} |Bi | s[0, ε] ]

Γ; ∆ ⊢ (ν s)([P{s̆/x̆} |B | s̆[0, ε] ] ||
∏

i∈I [Qi{s/x} |Bi | s[0, ε] ])

The last result together with the trivial result ∆ � ∆ concludes the case.
• Rule [Bcast]

Assume

[ s̆!⟨e⟩.P |B | s̆[c, ε] ] ||
∏
i∈I

[Pi |Bi | s[c, m̃i] ] −→ [P |B | s[c+ 1, ε] ] ||
∏
i∈I

[Pi |Bi | s[c+ 1, m̃i · e] ]

and

Γ; ∆ ⊢ [ s̆!⟨e⟩.P |B | s̆[c, ε] ] ||
∏
i∈I

[Pi |Bi | s[c, m̃i] ]
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with ∆ well-formed. We proceed with the typing derivation of the latter typing judgement.

well-formed ∆ implies ∆ = ∆0,∆1, s̆ : (c, !β.T ),∆2, s : (c, ?β.T )

with ∆0 only s-endpoints

Γ; ∆0,∆1, s̆ : (c, !β.T ) ⊢ [ s̆!⟨e⟩.P |B | s̆[c, ε] ]

Γ; ∆0,∆2, s : ?β.T ⊢
∏

i∈I [Pi |Bi | s[c, m̃i] ]

Γ; ∆ ⊢ [ s̆!⟨e⟩.P |B | s̆[c, ε] ] ||
∏

i∈I [Pi |Bi | s[c, m̃i] ]
[TPar]

We continue the above derivation for network node [ s̆!⟨e⟩.P |B | s̆[c, ε] ]:

Γ; s̆ : (c, ε) ⊢ s̆[c, ε] [SEmp] Γ;Θ⊢B

Γ; Θ, s̆ : (c, ε) ⊢ B | s̆[c, ε]
[BPar]

Γ; ∆′′
1, s̆ : T ⊢ P Γ ⊢ e : β

Γ; ∆′′
1, s̆ : !β.T ⊢ s̆!⟨e⟩.P

[TSnd]

∆′
1, s̆ : (c, !β.T ) = ∆′′

1, s̆ : !β.T ◦ Θ, s̆ : (c, ε)

Γ; ∆′
1, s̆ : (c, !β.T ) ⊢ [ s̆!⟨e⟩.P |B | s̆[c, ε] ]

[TNode]

∆′
1, s̆ : (c, !β.T ) ↪→ ∆0,∆1, s̆ : (c, !β.T )

Γ; ∆0,∆1, s̆ : (c, !β.T ) ⊢ [ s̆!⟨e⟩.P |B | s̆[c, ε] ]
[TSynch]

We then derive the typing for network nodes [Pi |Bi | s[c, m̃i] ]

[TNode]

Γ; s : (c,M) ⊢ s[c, m̃i] [SExp] Γ;Θi⊢Bi

Γ; Θi, s : (c,M) ⊢ Bi | s[c, m̃i]
[BPar]

Γ; ∆′′
i , s : T ′ ⊢ Pi ∆′

i, s : (c, ?β.T ) = ∆′′
1, s : T ′ ◦ Θ, s : (c,M)

Γ; ∆′
i, s : (c, ?β.T ) ⊢ [Pi |Bi | s[c, m̃i] ]

∆′
i, s : (c, ?β.T ) ↪→ ∆0,∆i, s : (c, ?β.T )

Γ; ∆0,∆i, s : (c, ?β.T ) ⊢ [Pi |Bi | s[c, m̃i] ]
[TSynch]

We can now have multiple applications of rule [TPar] to get:

Γ; ∆0,∆i, s : (c, ?β.T ) ⊢ [Pi |Bi | s[c, m̃i] ] ∆2 =
⋃

i∈I ∆i

Γ; ∆0,∆2, s : (c, ?β.T ) ⊢
∏

i∈I [Pi |Bi | s[c, m̃i] ]
[TPar]

Using the above information we can type the result of the reduction, [P |B | s[c +
1, ε] ] ||

∏
i∈I [Pi |Bi | s[c+ 1, m̃i · e] ]. We begin with the typing derivation for network node
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[P |B | s[c + 1, ε] ]:

[TSynch]

Γ; s̆ : (c + 1, ε) ⊢ s̆[c + 1, ε] [SEmp] Γ;Θ⊢B

Γ; Θ, s̆ : (c + 1, ε) ⊢ B | s̆[c + 1, ε]
[BPar]

from former derivation Γ; ∆′′
1, s̆ : T ⊢ P

∆′
1, s̆ : (c + 1, T ) = ∆′′

1, s̆ : T ◦ Θ, s̆ : (c + 1, ε)

Γ; ∆′
1, s̆ : (c + 1, T ) ⊢ [P |B | s̆[c, ε] ]

[TNode]

Linear context synchronisation (Definition 3.9) and former result

∆′
1, s̆ : (c, !β.T ) ↪→ ∆0,∆1, s̆ : (c, !β.T ) implies

∆′
1, s̆ : (c + 1, T ) ↪→ ∆0,∆1, s̆ : (c + 1, T )

Γ; ∆0,∆1, s̆ : (c + 1, T ) ⊢ [P |B | s̆[c + 1, ε] ]

We derive the typing judgement for network node
∏

i∈I [Pi |Bi | s[c + 1, m̃i · e] ]:

[TSynch]

[BPar]

from former judgement

Γ; s : (c,M) ⊢ s[c, m̃i · e]
Γ; s : (c + 1,M.!β) ⊢ s[c + 1, m̃i · e]

[SExp]
Γ; Θi ⊢ Bi

Γ; Θi, s : (c + 1,M.!β) ⊢ Bi | s[c + 1, m̃i · e]

Γ; ∆′′
i , s : T ′ ⊢ Pi

Operator ◦ (Definition 3.4) and former result

∆′
i, s : (c, ?β.T ) = ∆′′

1, s : T ′ ◦ Θ, s : (c,M) imply

∆′
i, s : (c + 1, T ) = ∆′′

1, s : T ′ ◦ Θ, s : (c + 1,M.!β)

Γ; ∆′
i, s : (c + 1, T ) ⊢ [Pi |Bi | s[c + 1, m̃i · e] ]

[TNode]

∆′
i, s : (c + 1, T ) ↪→ ∆0,∆i, s : (c + 1, T )

Γ; ∆0,∆i, s : (c + 1, T ) ⊢ [Pi |Bi | s[c + 1, m̃i · e] ]

We can now have multiple applications of rule [TPar] to get:

Γ; ∆0,∆i, s : (c + 1, T ) ⊢ [Pi |Bi | s[c + 1, m̃i · e] ] ∆2 =
⋃

i∈I ∆i

Γ; ∆0,∆2, s : (c + 1, T ) ⊢
∏

i∈I [Pi |Bi | s[c + 1, m̃i · e] ]
[TPar]

The final rule needed to be applied is [TPar] to get:

Γ; ∆0,∆1, s̆ : (c + 1, T ) ⊢ [P |B | s̆[c + 1, ε] ]

Γ; ∆0,∆2, s : (c + 1, T ) ⊢
∏

i∈I [Pi |Bi | s[c + 1, m̃i · e] ]

Γ; ∆0,∆1, s̆ : (c + 1, T ),∆2, s : (c + 1, T ) ⊢ [P |B | s̆[c + 1, ε] ]

||
∏

i∈I [Pi |Bi | s[c + 1, m̃i · e] ]

[TPar]
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The case concludes because ∆ = ∆0,∆1, s̆ : (c, !β.T ),∆2, s : ?β.T and ∆ � ∆0,∆1, s̆ :
(c + 1, T ),∆2, s : (c + 1, T ) as required.

• Rule [Ucast]

Assume

[Ucast]

c1 ≥ c2

[ s!⟨e⟩.P1 |B1 | s[c1, ε] ] || [P2 |B2 | s̆[c2, h̃] ]

−→ [P1 |B1 | s[c1 + 1, ε] ] || [P2 | s̆[c2, h̃ · (c1, e)] ]

and

Γ; ∆ ⊢ [ s!⟨e⟩.P1 |B1 | s[c1, ε] ] || [P2 |B2 | s̆[c2, h̃] ]

We provide the derivation for the latter typing judgement.

well-formed ∆ implies ∆ = ∆0,∆1, s : (c3, T ),∆2, s̆ : (c3, T )

with ∆0 only s-endpoints and

Γ; ∆0,∆1, s : (c3, T ) ⊢ [ s!⟨e⟩.P1 |B1 | s[c1, ε] ]

Γ; ∆0,∆0, s̆ : (c3, T ) ⊢ [P2 |B2 | s̆[c2, h̃] ]

Γ; ∆ ⊢ [ s!⟨e⟩.P1 |B1 | s[c1, ε] ] || [P2 |B2 | s̆[c2, h̃] ]
[TPar]

We continue with the typing derivation for network node: [ s!⟨e⟩.P1 |B1 | s[c1, ε] ]

Γ; s : (c1, ε) ⊢ s[c1, ε] [SEmp] Γ;Θ1⊢B1

Γ; Θ1, s : (c1, ε) ⊢ B1 | s[c1, ε]
[BPar]

Γ; ∆′′
1, s : T1 ⊢ P1 Γ ⊢ e : β

Γ; ∆′′
1, s : !β.T1 ⊢ s̆!⟨e⟩.P1

[TSnd]

∆′
1, s : (c1, !β.T1) = ∆′′

1, s : !β.T1 ◦ Θ1, s : (c1, ε)

Γ; ∆′
1, s : (c1, !β.T1) ⊢ [ s!⟨e⟩.P1 |B1 | s[c1, ε] ]

[TNode]

∆′
1 ↪→ ∆0,∆1 c3 ≥ c1 !β.T1 �c3−c1 T

∆′
1, s : (c1, !β.T1) ↪→ ∆0,∆1, s : (c3, T )

Γ; ∆0,∆1, s : (c3, T ) ⊢ [ s!⟨e⟩.P1 |B1 | s[c1, ε] ]
[TSynch]
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We also continue the derivation of network node [P2 |B2 | s̆[c2, h̃] ]:

. . .

Γ; s̆ : (c3,M) ⊢ s̆[c2, h̃]
[LExp]

c3 ≥ c1 Γ; Θ2 ⊢ B2

Γ; Θ2, s̆ : (c3,M) ⊢ B2 | s̆[c2, h̃]
[BPar]

Γ; ∆′′
2, s̆ : T2 ⊢ P2 ∆′

2, s̆ : (c3, T ) = ∆′′
2, s̆ : T2 ◦ Θ2, s̆ : (c3,M)

∆′
2, s̆ : (c3, T ) ⊢ [P2 |B2 | s̆[c2, h̃] ]

[TNode]

∆′
2, s̆ : (c3, T ) ↪→ ∆0,∆2, s̆ : (c3, T )

∆0,∆2, s̆ : (c3, T ) ⊢ [P2 |B2 | s̆[c2, h̃] ]
[TSynch]

Using the above information we can type the result of the reduction, [P1 |B1 | s[c1 +

1, ε] ] || [P2 | s̆[c2, h̃ · (c1, e)] ]. We begin with the typing derivation for network node
[P1 |B1 | s[c1 + 1, ε] ]:

[TNode]

Γ; s : (c1 + 1, ε) ⊢ s[c1 + 1, ε] [SEmp] Γ;Θ1⊢B1

Γ; Θ1, s : (c1 + 1, ε) ⊢ B1 | s[c1 + 1, ε]
[BPar]

Γ; ∆′′
1, s : T1 ⊢ P1 ∆′

1, s : (c1 + 1, T1) = ∆′′
1, s : T ◦ Θ1, s : (c1 + 1, ε)

Γ; ∆′
1, s : (c1 + 1, T1) ⊢ [P1 |B1 | s[c1 + 1, ε] ]

results ∆′
1, s : (c1, !β.T1) ↪→ ∆0,∆1, s : (c3, T ) and c3 ≥ c1 imply

∆′
1 ↪→ ∆0,∆1 c4 = c3 ∨ c4 = c3 + 1 T1 �c4−c1+1 T ′

∆′
1, s : (c1 + 1, T1) ↪→ ∆0,∆1, s : (c4, T

′)

Γ; ∆0,∆1, s : (c4, T
′) ⊢ [P1 |B1 | s[c1 + 1, ε] ]

[TSynch]
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We continue with the typing derivation for network node [P2 | s̆[c2, h̃ · (c1, e)] ]:

[TNode]

[BPar]

Γ; s̆ : (c3,M) ⊢ s̆[c2, h̃]

c4 = c3 ∨ c4 = c3 + 1

Γ; s̆ : (c4,M.!β) ⊢ s̆[c2, h̃ · (c1, e)]
[LExp]

Γ; Θ2 ⊢ B2

Γ; Θ2, s̆ : (c4,M.!β) ⊢ B2 | s̆[c2, h̃ · (c1, e)]

Γ; ∆′′
2, s̆ : T2 ⊢ P2 ∆′

2, s̆ : (c4, T
′
) = ∆′′

2, s̆ : T2 ◦ Θ2, s̆ : (c4,M.!β)

∆′
2, s̆ : (c4, T

′
) ⊢ [P2 |B2 | s̆[c2, h̃] ]

∆′
2, s̆ : (c4, T

′
) ↪→ ∆0,∆2, s̆ : (c4, T

′
)

∆0,∆2, s̆ : (c4, T
′
) ⊢ [P2 |B2 | s̆[c2, h̃] ]

[TSynch]

We apply rule [TPar] to get

Γ; ∆0,∆1, s : (c4, T
′) ⊢ [P1 |B1 | s[c1 + 1, ε] ]

∆0,∆2, s̆ : (c4, T ′) ⊢ [P2 |B2 | s̆[c2, h̃] ]

Γ; ∆0,∆1, s : (c4, T
′),∆2, s̆ : (c4, T

′
) ⊢ [P1 |B1 | s[c1 + 1, ε] ] || [P2 |B2 | s̆[c2, h̃] ]

[TPar]

From here there are two cases: If c4 = c3 then T ′ = T and the result follows from the fact
that ∆0,∆1, s : (c4, T

′),∆2, s̆ : (c4, T ′) = ∆0,∆1, s : (c3, T ),∆2, s̆ : (c3, T ). If c4 = c3 + 1
then T �1 T ′ and the results follows the fact that ∆0,∆1, s : (c3, T ),∆2, s̆ : (c3, T ) �1

∆0, s : (c4, T
′),∆2, s̆ : (c4, T ′)

• Rule [Rcv]

Assume

[ s?(x)⟨e′⟩.P |B | s[c, e · m̃] ] −→ [P{e/x} |B | s[c, m̃] ]

with

Γ; ∆ ⊢ [ s?(x)⟨e′⟩.P |B | s[c, e · m̃] ]

and ∆ well-formed. We give the derivation for the latter typing judgement

Γ; s : (c,M) ⊢ B | s[c, m̃]

Γ; s : (c, !β.M) ⊢ B | s[c, e · m̃]
[SExp] Γ; Θ ⊢ B

Γ; Θ, s : (c, !β.M) ⊢ B | s[c, e · m̃]
[BPar]

Γ ⊢ e′ : β Γ, x : β; ∆′, s : T ′ ⊢ P

Γ; ∆′, s : ?β.T
′ ⊢ s?(x)⟨e′⟩.P

[TRcv]

∆ = ∆′, s : (c, T ) = ∆′, s : ?β.T
′ ◦ Θ, (c, !β.M)

= ∆, s : T ′ ◦ Θ, s : (c,M)

Γ; ∆ ⊢ [ s?(x)⟨e′⟩.P |B | s[c, e · m̃] ]
[TNode]
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The above result allows us to produce the typing derivation for the result of the reduction,
[P{e/x} |B | s[c, m̃] ]:

Γ; s : (c,M) ⊢ B | s[c, m̃] Γ; Θ ⊢ B

Γ; Θ, s : (c,M) ⊢ B | s[c, m̃]
[BPar]

Γ; ∆′, s : T ′ ⊢ P ∆ = ∆′, s : (c, T ) = ∆, s : T ′ ◦ Θ, s : (c,M)

Γ; ∆ ⊢ [P{e/x} |B | s[c, m̃] ]
[TNode]

as required.
• Rule [Gthr].

Assume

h̃′ = B(h̃, c + 1) e = V(h̃, c + 1)

[ s̆?(x).P |B | s̆[c, h̃] ] −→ [P{e/x} |B | s̆[c + 1, h̃′] ]
[Gthr]

with

Γ; ∆ ⊢ [ s̆?(x).P |B | s̆[c, h̃] ]

and ∆ well-formed. We produce the derivation of the latter typing judgement: We first
type the session buffer s̆[c, h̃]:

Γ; s̆ : (c, ε) ⊢ s̆[c, ε] [SEmp]

ε = B(h̃1, c + 1) Γ ⊢ V (h̃1, c + 1) : β

Γ; s̆ : (c + 1, !β) ⊢ s̆[c, h̃1]
[LExp]

...

Γ; s̆ : (c′ − 1, !β.M) ⊢ s̆[c, h̃c′−c]

h̃ = B(h̃c′−c, c
′) Γ ⊢ V (h̃, c′) : β′

Γ; s̆ : (c′, !β.M.!β
′) ⊢ s̆[c, h̃]

[LExp]



c′ − c
applications
of rule [LExp]

We now produce the typing derivation for term [ s̆?(x).P |B | s̆[c, h̃] ]:

Γ; s̆ : (c′, !β.M.!β
′) ⊢ s̆[c, h̃] Γ; Θ ⊢ B

Γ; Θ, s̆ : (c′, !β.M.!β
′) ⊢ B | s̆[c, h̃]

[BPar]

Γ, x : β; ∆′, s̆ : T ′ ⊢ P

Γ; ∆′, s̆ : ?β.T
′ ⊢ s̆?(x).P

[TRcv]

∆ = ∆′, s̆ : (c′, T ) = ∆′, s̆ : ?β.T
′ ◦ Θ, s̆ : (c′, !β.M.!β

′)

= ∆′, s̆ : T ′ ◦ Θ, s̆ : (c′,M.!β
′)

Γ; ∆ ⊢ [ s̆?(x).P |B | s̆[c, h̃] ]
[TNode]
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We use the above information to produce the typing derivation for the result of the
reduction. We first produce the typing derivation for session buffer s̆[c + 1, h̃′]

Γ; s̆ : (c + 1, ε) ⊢ s̆[c + 1, ε] [SEmp]

ε = B(h̃′2, c + 2) Γ ⊢ V (h̃′2, c + 2) : β′′

Γ; s̆ : (c + 2, !β
′′) ⊢ s̆[c + 1, h̃′2]

[LExp]

...

Γ; s̆(c′ − 1,M) ⊢ s̆[c + 1, h̃′c′−c+1]

h̃′ = B(h̃′c′−c+1, c
′) Γ ⊢ V (h̃′, c′) : β′

Γ; s̆ : (c′,M.!β
′) ⊢ s̆[c + 1, h̃′]

[LExp]



c′ − c + 1
applications
of rule [LExp]

Finally we give the typing derivation for network node: [P{e/x} |B | s̆[c + 1, h̃′] ]

[BPar]

Γ; s̆ : (c′,M.!β
′) ⊢ s̆[c + 1, h̃′] Γ; Θ ⊢ B

Γ; Θ, s̆ : (c′,M.!β
′) ⊢ B | s̆[c′, h̃′]

From Substitution Lemma A.2

Γ, x : β; ∆′, s̆ : T ′ ⊢ P implies Γ; ∆′, s̆ : T ′ ⊢ P{e/x}

Γ; ∅ ⊢ R ∆ = ∆′, s̆ : (c′, T ) = ∆′, s̆ : T ′ ◦ Θ, s̆ : (c′,M.!β
′)

Γ; ∆ ⊢ [ s̆?(x).P |B | s̆[c, h̃] ]
[TNode]

The result follows the fact that ∆ � ∆.
• Rule [Sel]. The proof is similar to the proof for rule [Bcast].
• Rule [Bra]. The proof is similar to the proof for rule [Rcv].
• Rule [Loss]

Assume

[ s!⟨e⟩.P |B | s[c, ε] ] −→ [P |B | s[c + 1, ε] ]

with

Γ; ∆ ⊢ [ s!⟨e⟩.P |B | s[c, ε] ]

and ∆ well-formed. We provide the derivation of the latter typing judgement:

Γ; s : (c, ε) ⊢ s[c, ε] [SEmp] Γ;Θ⊢B

Γ; Θ, s : (c, ε) ⊢ B | s[c, ε]
[BPar]

Γ; ∆′, s : T ⊢ P Γ ⊢ e : β

Γ; ∆′, s : !β. ⊢ s!⟨e⟩.P
[TSnd]

∆ = ∆′, s : (c, !β.T ) = ∆′, s : !β.T ◦ Θ, s : (c, ε)

Γ; ∆ ⊢ [ s!⟨e⟩.P |B | s[c, ε] ]
[TNode]
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The above result allows us to produce the typing derivation for the result of the reduction,
[P |B | s[c + 1, ε] ]

[TSynch]

Γ; s : (c + 1, ε) ⊢ s[c + 1, ε] [SEmp] Γ;Θ⊢B

Γ; Θ, s : (c + 1, ε) ⊢ B | s[c + 1, ε]
[BPar]

Γ; ∆′, s : T ⊢ P ∆′, s : (c + 1, T ) = ∆′, s : T ◦ Θ, s : (c + 1, ε)

Γ; ∆′, s : (c + 1, T ) ⊢ [P |B | s[c + 1, ε] ]
[TNode]

∆′ ↪→ ∆′
!β.T �c+1−c

o T

∆′, s : (c + 1, T ) ↪→ ∆′, s : (c, !β.T )
∆ = ∆′, s : (c, !β.T )

Γ; ∆ ⊢ [P |B | s[c + 1, ε] ]

as required.
• Rule [Rec]

Assume
[ s?(x)⟨e⟩.P |B | s[c, ε] ] −→ [P{e/x} |B | s[c + 1, ε] ] [Rec]

with
Γ; ∆ ⊢ [ s?(x)⟨e⟩.P |B | s[c, ε] ]

and ∆ well-formed. We give the derivation for the latter typing judgement

Γ; s : (c, ε) ⊢ s[c, ε] [SEmp] Γ;Θ⊢B

Γ; Θ, s : (c, ε) ⊢ B | s[c, ε]
[BPar]

Γ ⊢ e : β Γ, x : β; ∆′, s : T ⊢ P

Γ; ∆′, s : ?β.T ⊢ s?(x)⟨e⟩.P
[TRcv]

∆ = ∆′, s : (c, ?β.T ) = ∆′, s : ?β.T ◦ Θ, (c, ε)

Γ; ∆ ⊢ [ s?(x)⟨e′⟩.P |B | s[c, e · m̃] ]
[TNode]

The above result allows us to produce the typing derivation for the result of the reduction,
[P{e/x} |B | s[c + 1, ε] ]

[TSynch]

Γ; s : (c + 1, ε) ⊢ s[c + 1, ε] Γ; Θ ⊢ B

Γ; Θ, s : (c + 1, ε) ⊢ B | s[c, m̃]
[BPar]

Γ; ∆′, s : T ⊢ P{e/x} ∆′, s : (c + 1, T ) = ∆, s : T ◦ Θ, s : (c + 1, ε)

Γ; ∆′, s : (c + 1, T ) ⊢ [P{e/x} |B | s[c, m̃] ]
[TNode]

∆′, s : (c + 1, T ) ↪→ ∆′, s : (c, ?β.T ) ∆ = ∆′, s : (c, ?β.T )

Γ; ∆ ⊢ [P{e/x} |B | s[c, m̃] ]
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as required.
• Rule [BRec]

Assume

fs(B) = fs(R)

[ s ▷ {ℓi : Pi, df : R}i∈I |B |B′ | s[c, ε] ] −→ [R |B ]
[BRec]

with

Γ; ∆ ⊢ [ s ▷ {ℓi : Pi, df : R}i∈I |B |B′ | s[c, ε] ]

and ∆ well-formed. The last result follows typing derivation:

Γ; s : (c, ε) ⊢ s[c, ε] [SEmp]

Γ; Θ1 ⊢ B′ Γ; Θ2 ⊢ B Θ = Θ1,Θ2

Γ; Θ, s : (c, ε) ⊢ B |B′ | s[c, ε]
[BPar]

∀i ∈ I,Γ; ∆1,∆2, s : Ti ⊢ Pi

only s-endpoints in ∆1 Γ; ∆2 ⊢ R ∆′ = ∆1,∆2

Γ; ∆′, s : &{li : Ti}i∈I ⊢ s ▷ {ℓi : Pi, df : R}i∈I
[TBr]

∆ = ∆′, s : &{li : Ti}i∈I ◦ Θ, s : (c, ε)

Γ; ∆ ⊢ [ s ▷ {ℓi : Pi, df : R}i∈I |B |B′ | s[c, ε] ]
[TNode]

We can now provide the typing derivation for the result of the reduction [R |B ]

Γ; ∆2 ⊢ R Γ; Θ2 ⊢ B fs(R) = fs(B) implies ∆′′ = ∆2 ◦ Θ2

Γ; ∆′′ ⊢ [R |B ]
[TNode]

Because ∆1 includes only s-enpoints, we can use � to drop them:

∆ = ∆1,∆2, s : &{li : Ti}i∈I ◦ Θ1,Θ2, s : (c, ε)

= (∆1 ◦ Θ1), (∆2 ◦ Θ2), s : (c,&{li : Ti}i∈I)

� (∆2 ◦ Θ2)

= ∆′′

as required
• Rule [True]

Assume

⊩ φ fs(P1) = fs(B)

[ if φ thenP1 elseP2 |B |B′ ] −→ [P1 |B ]
[True]

with

Γ; ∆ ⊢ [ if φ thenP1 elseP2 |B |B′ ]
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and ∆ well-type. The derivation for the latter typing judgement is

Γ; Θ1 ⊢ B Γ; Θ2 ⊢ B′

Γ; Θ1,Θ2 ⊢ B |B′ [BPar]

[TCond]

Γ ⊢ φ : bool Γ; ∆0,∆1 ⊢ P1 Γ; ∆0,∆2 ⊢ P2

i, j ∈ {1, 2} ∧ i ̸= j =⇒ dom(∆i) = fs(Pi) − fs(Pj)

Γ; ∆0,∆1,∆2 ⊢ if φ thenP1 elseP2

Γ; ∅ ⊢ R ∆ = ∆0,∆1,∆2 ◦ Θ1,Θ2

Γ; ∆ ⊢ [ if φ thenP1 elseP2 |B |B′ ]
[TNode]

We use the above information to type the result of the reduction [P1 |B ]:

Γ; ∆0,∆1 ⊢ P1 Γ; ∅ ⊢ R Γ; Θ1 ⊢ B ∆′ = ∆0,∆1 ◦ Θ1

Γ; ∆′ ⊢ [P1 |B ]
[TNode]

The reduction condition requires that fs(B) = fs(P1). From the last equation and the fact
that fs(B) = dom(Θ1) we have that fs(P1) = dom(Θ1). Also fs(P1) = dom(∆0,∆1). From
the latter two equalities we can conclude that ∆0,∆1 ◦Θ1 is defined and fs(P1) = dom(∆′).
Moreover, fs(P1) ∪ fs(P2) = ∆. Therefore, ∆′ ⊆ ∆ as required.

• Rule [False]. The proof the same with the proof of case [True].
• Rule (Sum).

Assume

[P1 |B ] ||N −→ [P ′ |B′ ] ||N ′

[P1 + P2 |B ] ||N −→ [P ′ |B′ ] ||N ′ [NDet]

with

Γ; ∆ ⊢ [P1 + P2 |B ] ||N

and ∆ well-formed.
We produce the derivation for the latter typing judgement.

[TSum]

Γ; ∆′′
1 ⊢ P1 Γ; ∆′′

1 ⊢ P2

Γ; ∆′′
1 ⊢ P1 + P2

Γ; Θ ⊢ B ∆′
1 = ∆′′

1 ◦ Θ

Γ; ∆′
1 ⊢ [P1 + P2 |B ]

[TNode]

∆′
1 ↪→ ∆0,∆1

Γ; ∆0,∆1 ⊢ [P1 + P2 |B ]
[TSynch]

Γ; ∆0,∆2 ⊢ N ∆0 only s-endpoints ∆ = ∆0,∆1,∆2

Γ; ∆ ⊢ [P1 + P2 |B ] ||N
[TPar]
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We can now produce the typing derivation for the left hand side network of the premise
[P1 |B ] ||N :

[TNode]

Γ; ∆′′
1 ⊢ P1 Γ; Θ ⊢ B ∆′

1 = ∆′′
1 ◦ Θ

Γ; ∆′
1 ⊢ [P1 |B ]

∆′
1 ↪→ ∆0,∆1

Γ; ∆0,∆1 ⊢ [P1 |B ]
[TSynch]

Γ; ∆0,∆2 ⊢ N ∆0 only s-endpoints ∆ = ∆0,∆1,∆2

Γ; ∆ ⊢ [P1 |B ] ||N
[TPar]

The latter two derivations have the same typing contexts. The result is then immediate
from the induction hypothesis; from the fact that type preservation holds on the premise
of the reduction, we have that

Γ; ∆′ ⊢ [P ′ |B′ ] ||N ′

and ∆ � ∆′. The latter results is what needed to conclude type preservation for the
reduction.

• Rule [Def].
Assume

[P |B ] ||N −→ [P ′ |B′ ] ||N ′

[ def {Di(x̃i)
def
= Pi}i∈I in P |B ] ||N −→ [ def {Di(x̃i)

def
= Pi}i∈I in P ′ |B′ ] ||N ′

[Def]

with

Γ; ∆ ⊢ [ def {Di(x̃i)
def
= Pi}i∈I in P |B ] ||N

and ∆ well-formed.
We produce the typing derivation of the latter judgement. We begin with the typing

derivation for network node [ def {Di(x̃i)
def
= Pi}i∈I in P |B ]:

[TRec]

∀i ∈ I,Di(x̃i) : (Γi,∆i) ∈ Γ ∧ Γ,Γi; ∆i ⊢ Pi Γ; ∆′′
1 ⊢ P

Γ; ∆′′
1 ⊢ def {Di(x̃i)

def
= Pi}i∈I in P

Γ; Θ ⊢ B ∆′
1 = ∆′′

1 ◦ Θ

Γ; ∆′
1 ⊢ [ def {Di(x̃i)

def
= Pi}i∈I in P |B ]

[TNode]

∆′
1 ↪→ ∆0,∆1

Γ; ∆0,∆1 ⊢ [ def {Di(x̃i)
def
= Pi}i∈I in P |B ]

[TSynch]

We type the entire network node [ def {Di(x̃i)
def
= Pi}i∈I in P |B ] ||N :

Γ; ∆0,∆1 ⊢ [ def {Di(x̃i)
def
= Pi}i∈I in P |B ]

Γ; ∆0,∆2 ⊢ N ∆0 only s-endpoint ∆ = ∆0,∆1,∆2

Γ; ∆ ⊢ [ def {Di(x̃i)
def
= Pi}i∈I in P |B ] ||N

[TPar]
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We can use the above information to produce the typing derivation of the network term
[P |B ] ||N in the premise of the reduction:

[TNode]

Γ; ∆′′
1 ⊢ P Γ; Θ ⊢ B ∆′

1 = ∆′′
1 ◦ Θ

Γ; ∆′
1 ⊢ [P |B ]

∆′
1 ↪→ ∆0,∆1

Γ; ∆0,∆1 ⊢ [P |B ]
[TSynch]

Γ; ∆0,∆2 ⊢ N ∆0 only s-endpoint ∆ = ∆0,∆1,∆2

Γ; ∆ ⊢ [ def P |B in ||N ]
[TPar]

The results then comes from the induction hypothesis; the latter typing derivation and the
reduction on the premise of the case implies typing derivation Γ; ∆′ ⊢ [ def P ′ |B′ in ||N ′ ]
and ∆ � ∆′, which concludes the case.

• Rule [TPar].
Assume

N −→ N ′

N ||M −→ N ′ ||M
[RPar]

with

Γ; ∆ ⊢ N ||M

and ∆ well-formed.
We provide with the typing derivation for the latter typing judgement.

Γ; ∆0,∆1 ⊢ N Γ; ∆0,∆2 ⊢ M

dom(∆0) only s-endpoints ∆ = ∆0,∆1,∆2

Γ; ∆ ⊢ N ||M
[TPar]

From the fact that Γ; ∆0,∆1 ⊢ N , the reduction, and the induction hypothesis we can
conclude that Γ; ∆′ ⊢ N and ∆0,∆1 � ∆′. It remains to type the network term N ||M
and show the Typing Preservation requirements for ∆′. This can be analysed in several
sub-cases.
– ∆′ = ∆′

0,∆
′
1 with ∆′

0 = ∆0, {si : (ci, Ti)}i∈I and ∆1 = ∆′
1, {sj : (cj , Tj)}j∈J . This

implies derivation:

Γ; ∆′
0,∆

′
1 ⊢ N ′ ∆0 = ∆′

0,∆
′′
0 Γ; ∆0,∆2 ⊢ M

Γ; ∆′
0,∆

′′
0,∆2 ⊢ M

dom(∆0) only s-endpoints and ∆′
0 ⊆ ∆0 implies

dom(∆′
0) only s-endpoints

Γ; ∆′
0,∆

′′
0,∆

′
1,∆2 ⊢ N ||M

[TPar]

as required, because ∆ = ∆0,∆1,∆2 � ∆′
0,∆

′′
0,∆

′
1,∆2 = ∆0,∆

′
1,∆2
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– ∆′ = ∆0,∆
′
1 and ∆1 � ∆′

1 implies:

Γ; ∆0,∆
′
1 ⊢ N ′ Γ; ∆0,∆2 ⊢ M dom(∆0) only s-endpoints

Γ; ∆0,∆
′
1,∆2 ⊢ N ||M

[TPar]

as required, because ∆ = ∆0,∆1,∆2 � ∆0,∆
′
1,∆2.

– ∆′ = ∆′
0,∆

′
1 with ∆0,∆1 � ∆′

0,∆
′
1. The latter assumption, the fact that dom(∆0)

contains only s-endpoints, and Linear Context Advancement (Definition 4.2) imply that
∆0 = ∆′′

0, s : (c, T ) and ∆1 = ∆′′
1, s̆ : (c, T ) and furthermore ∆0 = ∆′′

0, s : (c + 1, T ′) and

∆′
1 = ∆′′

1, s̆ : (c + 1, T ′). Note that T � T ′. These last equations allows to type the
resulting network of the reduction:

Γ; ∆0,∆2 ⊢ M ∆0 = ∆′′
0, s : (c, T )

Γ; ∆′′
0, s : (c, T ),∆2 ⊢ M

∆′′
0,∆2 ↪→ ∆′′

0,∆2 T �c+1−c T ′

∆′′
0, s : (c, T ),∆2 ↪→ ∆′′

0, s : (c + 1, T ′),∆2

Γ; ∆′′
0, s : (c + 1, T ′),∆2 ⊢ M

[TSynch]

Γ; ∆′′
0, s : (c + 1, T ′),∆′′

1, s̆ : (c + 1, T ′) ⊢ N ′

dom(∆′′
0, s : (c + 1, T ′)) only s-endpoints

Γ; ∆′′
0, s : (c + 1, T ′),∆′′

1, s̆ : (c + 1, T ′),∆2 ⊢ N ||M
[TPar]

as required, because ∆ = ∆0,∆1,∆2 � ∆′
0,∆

′
1,∆2 = ∆′

0, s : (c + 1, T ′),∆′′
1, s̆ : (c +

1, T ′),∆2.
– ∆ = ∆′

0,∆1 and ∆0 � ∆′
0 cannot happen because dom(∆0) has only s-endpoints.

• Rule [RCong]. The result is immediate by applying Congruence Invariant (Lemma A.1) on
the induction hypothesis.

• Rule [RRes].
Assume

N −→ N ′

(ν n)N −→ (ν n)N ′ [RRes]

with

Γ; ∆ ⊢ (ν n)N

and ∆ well-formed.
There are two sub-cases for the typing derivation of the latter judgement:

– n = a. Restrict shared name. In this sub-case the typing derivation for network term
(ν a)N is as:

Γ, a : T ; ∆ ⊢ N

Γ; ∆ ⊢ (ν a)N
[TCRes]

From Γ, a : T ; ∆ ⊢ N , well-formed ∆, and the induction hypothesis we conclude that
Γ, a : T ; ∆′ ⊢ N ′ and either ∆′ ⊆ ∆ or ∆ � ∆′. From the last typing judgement we can
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type the result of the reduction (ν a)N :

Γ, a : T ; ∆′ ⊢ N ′

Γ; ∆′ ⊢ N ′ [TCRes]

to conclude the sub-case.
– n = s. Restrict session name. In this sub-case the typing derivation for network term

(ν s)N is as:

Γ; ∆,∆′′′, s̆ : (c, T ) ⊢ N ∆′′′ = s : (c, T ) ∨ ∆′′′ = ∅
Γ; ∆ ⊢ (ν s)N

[TSRes]

Typing context ∆, s̆ : (c, T ) is well-formed because ∆ is well-formed, see well-formedmess
Definition 4.1.
From Γ; ∆, s̆ : (c, T ), s : (c, T ) ⊢ N , well-formed ∆, s̆ : (c, T ), s : (c, T ), and the induction
hypothesis we conclude that Γ; ∆′ ⊢ N ′ and ∆, s̆ : (c, T ), s : (c, T ) � ∆′. All it remains
is to conclude te case, is the typing derivation of the result of the reduction (ν s)N ′.
If ∆, s̆ : (c, T ), s : (c, T ) � ∆′ then there are two sub-cases:
∗ ∆′ = ∆′′, s̆ : (c, T ), s : (c, T ) with ∆ � ∆′′, which implies

Γ; ∆′′, s̆ : (c, T ), s : (c, T ) ⊢ N ′

Γ; ∆′′ ⊢ (ν s)N ′ [TSRes]

as required.
∗ ∆′ = ∆, s̆ : (c, T ), s : (c, T ) with s̆ : (c, T ), s : (c, T ) � s̆ : (c + 1, T1), s : (c + 1, T2),

which implies

Γ; ∆, s̆ : (c + 1, T ′), s : (c + 1, T ′) ⊢ (ν n)N ′

From the definition of � we get that T ′
1 = T

′
2

Γ; ∆ ⊢ (ν s)N ′ [TSRes]

as required.
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