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Abstract. In this paper, we investigate the interplay between isolated suborders and
closures. Isolated suborders are a special kind of suborders and can be used to diminish
the number of elements of an ordered set by means of a quotient construction. The decisive
point is that there are simple formulae establishing relationships between the number of
closures in the original ordered set and the quotient thereof induced by isolated suborders.
We show how these connections can be used to derive a recursive algorithm for counting
closures, provided the ordered set under consideration contains suitable isolated suborders.

1. Introduction

A widespread and common concept in various areas of mathematics and computer science
are hull or closure operators, i.e., idempotent, isotone and extensive endofunctions on some
ordered set. The best-known examples include the topological closure in traditional analysis,
the (reflexive) transitive closure of a relation or a graph, and the Kleene closure in language
theory. There are also more complicated and sophisticated appearances as for example
in automated reasoning (see e.g. [EBJ+14]), data base theory (as in [DHLM92]), or the
algebraic analysis of connected components (as demonstrated in [Glü17]). Most of this work
uses hulls or closures mainly as a tool for specific purposes but does not investigate the
properties of these operators.

If we take a look at the work dealing with actual properties of closures, then we see that
most of this work is concerned with closures on powerset lattices which falls also under the
term “Moore family” (here [CM03] gives a survey; for more recent results see e.g. [BD18]).
Some other work deals with closures on lattices although closures can also be defined on
general ordered sets. The appoach from [DHLM92] does not rely on lattice properties (it is
not explicitly stated whether a lattice structure is required); however, if one tries to extend
the ideas from one single database table to several tables, then a nearby approach (using
tuples of choice functions) leads to an order lacking at least a binary supremum operator.

In recent years, counting structures of interest has become a rising area of research
in order theory and related topics. For example, [AJS21] gives numbers of so-called dℓ-
structures of various kinds, [QRRV20] counts join-endomorphisms in lattices, [BPBV18]
generates and counts a certain kind of bisemilattices whereas the topic of [BBW21] are
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topological spaces, and different kinds of posets are counted in [FJST20]. However, to our
best knowledge, there is no work dealing with the number of closures on general lattices or
orders. The only results we are aware of concern the power set lattice (P(S),⊆). For this
special structure, the exact number of closure operators is known only up to |S| = 7 (for
curiosity, there are 14.087.648.235.707.352.472 of them, as shown in [CIR10] only in 2010).

The present work introduces a heuristic method for structuring ordered sets in a way
that eases under certain circumstances the computation of the number of closure operators.
The key idea are so called isolated suborders which are intuitively speaking suborders which
have contact with the rest of the ordered set only via their least and greatest element. By
means of quotient orders, we can reduce the number of elements of the ordered set under
consideration and obtain an ordered set with a certain structure for which there are closed
formulae available for the number of closure operators. Similar ideas were used already in
the predecessor work of [Glü21]. There, however, the area of application was restricted to
lattices whereas the present work generalizes the results to general ordered sets. We stress
that this generalization does not lead to the common loss of strength of claims associated
with generalization. In particular, the specialization of the results in the present paper to
lattices leads exactly to the results obtained in [Glü21] for lattices. This holds also for the
main result of the paper, Algorithm 2, which retains the same structure as in the predecessor
paper. Additionally to this generalization, the present work contains also thoughts about
the computation of isolated suborders.

Of course, heuristic approaches defy often precise analysis, nevertheless, heuristics are
an established tool if one has to deal with computationally hard problems. One of the oldest
examples is the A∗ algorithm, first described 1968 in [HNR68]. More recent examples are
algorithms based on tree decomposition as in [Bod88], outerplanarity as in [Kam07], or
the vast field of genetic algorithms, see e.g. [Gol89] for a first introduction. All of these
approaches have in common that a rigorous analysis is hard or even impossible; consequently,
we will also give only a rough analysis of our algorithm in Section 7.

The remainder of this work is organized as follows: in Section 2, we introduce some
notation we will use in the sequel (on other places, we introduce notation ad hoc to spare the
reader annoying look-ups). Section 3 introduces the main topic of the present work, closures,
and shows important relations between different characterizations of closures. The main tool
of the present work, isolated suborders, are the topic of Section 4 whereas Section 5 studies
the interplay between closures and isolated suborders. Because we look at isolated suborders
not only as an object of study but will use them as tool in an algorithm, we investigate in
Section 6 how to compute isolated suborders. In Section 7, we put all our results together to
obtain an algorithm for counting closures which can make use of favorable structures of an
ordered set under consideration. Finally, the concluding Section 8 gives a short retrospect of
the work, raises some open issues, and sketches ways of further research.

2. Basic Notions and Properties

In this paper, we presuppose general knowledge of order and lattice theory, and refer e.g.
to [DP02, Grä11, Rom08] for the basics and e.g. to [Bir67, JR92] for more advanced topics.
We will, however, recapitulate some topics in order to clarify matters and to obtain a
consistent notion.

The symbol ≤ and derived variants thereof (by indexes or primes) denote always an
order whose carrier set is usually denoted by S and variants thereof. Given an order ≤, we
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use the symbol ≰ for the relation ≰⇔def ¬(x ≤ y). The associated strict order, reverse order,
and strict reverse order are denoted by <, ≥, and >, respectively. In the case of existence, ⊥
and ⊤ (also possibly indexed) stand for the least and greatest element of an order. The sets
of maximal and minimal elements of a subset S′ ⊆ S are denoted by max (S′) and min (S′) ,
respectively, whereas lst(S′) denotes the (possibly empty) set of least elements of S′. An
element x is said to majorize an element y if x ≥ y holds, and we extend this concept to sets
by maj(x, S′) =df {y ∈ S′ | y ≥ x}. Two elements x and y are called comparable, written
x ≶ y, if x ≤ y or y ≤ x holds. Consequently, we call x and y incomparable if they are
not comparable, and denote this by x ̸≶ y. As usual, a chain is a set of elements which
are pairwise comparable. A subset S′ ⊆ S of an ordered set (S,≤) is called convex if for
all x, y ∈ S′ and all z ∈ S the implication x ≤ z ≤ y ⇒ z ∈ S′ holds. For intervals, we
use the common notations [a, b] =df {x | a ≤ x ∧ x ≤ b} and ]a, b] =df [a, b]\{a}. For a
relation R ⊆ S × S and a subset S′ ⊆ S, we define the restriction of R to S′ routinely by
R|S′ =df {(s′, t′) ∈ R | (s′, t′) ∈ S′ × S′}.

Given an equivalence relation E ⊆ S × S, we denote the equivalence class of an element
s ∈ S under E by [s]E . For the set of equivalence classes of such an equivalence relation
E ⊆ S×S we use the notation S/E. For an arbitrary relation R ⊆ S×S and an equivalence
relation E ⊆ S × S we define the quotient R/E ⊆ S/E × S/E by ([x]E , [y]E) ∈ R/E ⇔def

∃x′ ∈ [x]E∃y′ ∈ [y]E : (x′, y′) ∈ R. If (S,≤) is an ordered set and E ⊆ S×S is an equivalence
relation such that (S/E,≤ /E) is an ordered set, then we say that E is order generating. In
this case, we may write also ≤E instead of ≤ /E. Clearly, if under these circumstances both
[x]E and [y]E are singleton sets, then we have the equivalence x ≤ y ⇐⇒ [x]E ≤E [y]E to
which we will often refer as homomorphism properties. Trivial examples of order generating
equivalences are the identity and the universal relation. However, as counterexample, the
relation ∼ on the ordered set ( ZZ ,≤) (where ≤ denotes the usual ordering of the integers),
defined by x ∼ y ⇔def x · y ̸= 0 ∨ x = 0 = y, is obviously not order generating.

Since we will often have to consider the union of the sets of a set system C (i.e., C
is a set of sets), we use the abbreviation

⋃
C =df

⋃
C∈C

C to make the text easier to read.

Conversely, dealing with a set C, we use C{} =df {{c} | c ∈ C} to denote the set of singleton
sets consisting of the elements of C.

3. Closures

The main topic of this work, closures, can be characterized in two different ways, namely as
endofunctions on ordered sets or as subsets of ordered sets. At the end of this section we will
see that these characterizations are cryptomorphic; we start with the functional definition:

Definition 3.1. Given an ordered set (S,≤), an endofunction c on S is called a closure
operator if it fulfills the following properties for all x, y ∈ S:

(1) x ≤ c(x) (extensitivity)
(2) x ≤ y ⇒ c(x) ≤ c(y) (isotony)
(3) c(c(x)) = c(x) (idempotence)

A useful easy consequence of this definition is the following corollary:

Corollary 3.2. Let c be a closure operator and x, y ∈ S elements such that y ≥ c(x)
(y = c(x)) holds. Then x ≤ y holds.
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Proof. This follows simply from x ≤ c(x) and transitivity of ≤.

The next definition is a characterization of closures as subsets of ordered sets:

Definition 3.3. Given an ordered set (S,≤) a subset C ⊆ S is called a closure system if for
every s ∈ S the set maj(s, C) has a least element.

The set of all closure systems of an ordered set (S,≤) is denoted by C(S) (here we
assume that the order on S is clear from context).

Remark 3.4. In the literature, e.g. [Grä11], one finds a more complicated version of
Definition 3.3 which imposes also the requirement that a closure system is closed under
binary infima. However, a reviewer of [Glü21] pointed out that this requirement is redundant.
This observation lead in the consequence to the generalization of [Glü21] from lattices to the
present form handling general ordered sets. This is a rare case where generalization leads
also to simplification due to the more concise formulation of Definition 3.3.

It turns out that closure operators generate closure systems:

Lemma 3.5. For every closure operator c, the set fix(c) of fixpoints of c is a closure system.

Proof. Let s ∈ S be an arbitrary element. Clearly, c(s) ∈ fix(c) holds, and due to extensitivity
of c we have c(s) ∈ maj(s, fix(c)). Let us now pick an arbitrary f ∈ fix(c) with the property
s ≤ f . Now isotony of c and f ∈ fix(c) imply c(s) ≤ f which completes the proof.

Also, closure systems determine closure operators in a unique way:

Lemma 3.6. Let C be a closure system. Then there exists exactly one closure operator c
with fix(c) = C.

Proof. We define the function c by c(s) =df lst(maj(s, C)) (note that this is well-defined
due to the properties of a closure system according to Definition 3.3). Let us first check that
c is indeed a closure operator:

• Extensivity: this is obvious since every element is mapped to a majorizing one.
• Isotony: under the assumption s ≤ t we have maj(s, C) ⊇ maj(t, C) and hence c(s) =
lst(maj(s, C)) ≤ lst(maj(t, C)) = c(t).
• Idempotence: by already shown extensivity we have s ≤ c(s) and hence maj(s, C) ⊇
maj(c(s), C). Let us now pick an arbitrary s′ ∈ maj(s, C). Because c(s) is the least element
of maj(s, C) we have c(s) ≤ s′, hence s′ ∈ maj(c(s), C), implying maj(s, C) = maj(c(s), C).
Now c(s) = c(c(s)) follows from this set equality and definition of c.

Let us now assume that there is another closure operator c′ with fix(c′) = C, and pick an
arbitrary s ∈ S. Because c′ is idempotent, we have c′(s) ∈ C and hence c(c′(s)) = c(s) from
where we conclude that c′(s) ≤ c(s) holds (this is due to Corollary 3.2). Symmetrically, we
obtain c(s) ≤ c′(s) and hence c(s) = c′(s) which shows uniqueness of c.

Lemmata 3.5 and 3.6 establish a cryptomorphic one-to-one correspondence between
closure operators and closure systems on an ordered set. Since the main contribution of this
work deals with counting of closures (both functions and systems), it is sufficient to use the
more convenient characterization. In this case, closure systems are much easier to handle
than closure operators.
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4. Isolated Suborders

The main tool for structuring ordered sets we will use is the subject of the following definition:

Definition 4.1. Let (S,≤) be an ordered set. A subset S′ ⊆ S is called an isolated suborder
if it fulfills the following properties:

(1) S′ has a greatest element ⊤S′ and least element ⊥S′ .
(2) ∀x /∈ S′∀y′ ∈ S′ : y′ ≤ x⇒ ⊤S′ ≤ x
(3) ∀x /∈ S′∀y′ ∈ S′ : x ≤ y′ ⇒ x ≤ ⊥S′

Intuitively, an isolated suborder S′ can be “entered from below” only via ⊥S′ and “left
upwards” only via ⊤S′ . We call an isolated suborder nontrivial if S′ does not equal S. A
summit isolated suborder is a suborder S′ such that ⊤S′ ∈ max (S) holds. If |S′| > 1 holds
we call an isolated suborder nonsingleton, and a useful isolated suborder is a nontrivial
non-singleton isolated suborder.

Another property we will need to make our ideas work is that an order does not “branch
upwards” at an element under consideration (in our case at its top element):

Definition 4.2. Given an ordered set (S,≤) we call an element b ∈ S a bottleneck of an
element x ∈ S if the following conditions are fulfilled:

(1) b > x,
(2) [x, b] is a chain, and
(3) for all y ∈ S, the implication y > x⇒ (y ∈ [x, b] ∨ y > b) holds.

Consequently, an isolated suborder with bottleneck is an isolated suborder S′ such that
⊤S′ has a bottleneck. Obviously, given an element x with a bottleneck b, every element in
]x, b] is also a bottleneck of x.

Figure 1 illustrates these definitions. At the left, an isolated suborder with bottleneck is
shown. In the middle, we find an isolated suborder without bottleneck, and at the right,
a summit isolated suborder is given. Note that neither the overall order nor the isolated
suborder with bottleneck are lattices (in contrast, the other two isolated suborders are indeed
lattices).

We will use isolated suborders to derive quotients of an order. To this end, we define for an
isolated suborder S′ ⊆ S an equivalence relation∼S′ by x ∼S′ y ⇔def x = y∨(x ∈ S′∧y ∈ S′).
Clearly, for an element x /∈ S′, the equivalence class [x]∼S′ is the singleton set {x}, and for
all elements x ∈ S′ the equivalence class [x]∼S′ coincides with S′. A crucial point is that
∼S′ is even order generating:

Lemma 4.3. Let S′ be an isolated suborder of an ordered set (S,≤). Then ∼S′ is order
generating.

Proof. It is easy to see that ≤ / ∼S′ (we use this notation since we do not know yet whether
∼S′ is order generating) is both reflexive and transitive so it remains to show that it is
also antisymmetric. To this end, we pick two arbitrary [s]∼S′ , [t]∼S′ ∈ S/ ∼S′ such that
both [s]∼S′ ≤ / ∼S′ [t]∼S′ and [t]∼S′ ≤ / ∼S′ [s]∼S′ hold. In the case s, t /∈ S′, we have
[s]∼S′ = {s} and [t]∼S′ = {t}, and hence both s ≤ t and t ≤ s by homomorphism properties.
Now [s]∼S′ = [t]∼S′ is an easy consequence of the antisymmetry of ≤. If s, t ∈ S′ holds,
then we have [s]∼S′ = [t]∼S′ by construction of ∼S′ . For the last case we assume w.l.o.g.
that s ∈ S′ and t /∈ S′ hold. From [s]∼S′ ≤ / ∼S′ [t]∼S′ we conclude that there is an
s1 ∈ S′ with s1 ≤ t (note that [t]∼S′ is the singleton set {t}). By definition of an isolated
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Figure 1: Various Kinds of Isolated Suborders

suborder, this implies ⊤S′ ≤ t, and symmetrically we obtain t ≤ ⊥S′ . This leads to the chain
t ≤ ⊥S′ ≤ ⊤S′ ≤ t, implying among other things t = ⊥S′ and hence t ∈ S′, contradicting
the choice of t. This finishes the proof since it shows that the last case can not occur.

This lemma justifies the writing ≤∼S′ which we will use from now on.
An important property of isolated suborders is their convexity:

Lemma 4.4. Let S′ be an isolated suborder of an ordered set (S,≤). Then S′ is convex.

Proof. Let s, t ∈ S′ be arbitrary elements of S′ with s ≤ t, and assume that there is an
u /∈ S′ such that s ≤ u ≤ t holds. By ⊥S′ ≤ s ≤ u, we have ⊥S′ ≤ u. On the other hand,
from u ≤ t and u /∈ S′ we obtain u ≤ ⊥S′ by definition of an isolated suborder; so altogether
we have u = ⊥S′ . However, this is a contradiction to the assumption u /∈ S′.

In particular, this means that an isolated suborder S′ is the same as the interval
[⊥S′ ,⊤S′ ]. However, not every interval is an isolated suborder: consider as counterexample
the interval [∅, {1}] in the ordered set (P({1, 2}),⊆). In this setting, we have ∅ ⊆ {2} but
not {1} ⊆ {2}, so the second part of Definition 4.1 is not fulfilled.

The next lemma states intuitively spoken that isolated suborders with common elements
can not lie side by side:

Lemma 4.5. Let S1 and S2 be two isolated suborders with S1 ∩ S2 ̸= ∅. Then the set
{⊥S1 ,⊥S2 ,⊤S1 ,⊤S2} is a chain.
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Proof. Let us pick an arbitrary s12 ∈ S1 ∩ S2. In the case ⊤S1 ∈ S2, the inequality
⊤S1 ≤ ⊤S2 is easy to see. If ⊤S1 is not an element of S2, then we can conclude ⊤S2 ≤ ⊤S1

from s12 ∈ S2, s12 ≤ ⊤S1 and the properties of an isolated suborder. Symmetrically, we
can show that ⊥S1 and ⊥S2 are comparable. Now the rest is an easy consequence of
⊥S1 ,⊥S2 ≤ s12 ≤ ⊤S1 ,⊤S2 .

Now we see that two isolated suborders with a common element can be merged into one
isolated suborder:

Lemma 4.6. Let S1 and S2 be two isolated suborders with S1∩S2 ̸= ∅. Then S12 =df S1∪S2

is an isolated suborder, too.

Proof. Because {⊥S1 ,⊥S2 ,⊤S1 ,⊤S2} is a chain due to Lemma 4.5, we can assume w.l.o.g.
that ⊥S1 ≤ ⊥S2 holds. If ⊤S2 ≤ ⊤S1 holds, then we have [⊥S2 ,⊤S2 ] ⊆ [⊥S1 ,⊤S1 ], and
we obtain the claim immediately because isolated suborders are intervals. We do not
have to consider the case ⊤S1 < ⊥S2 because of S1 ∩ S2 ̸= ∅, so we only have to look at
⊥S1 ≤ ⊥S2 ≤ ⊤S1 ≤ ⊤S2 as last case.

To show that S12 is indeed an isolated suborder, we pick arbitrary s12 ∈ S12 and x /∈ S12

such that s12 ≤ x holds. In the case s12 ∈ S2 we obtain x ≥ ⊤S2 = ⊤S12 because S2 is an
isolated suborder, so let us now assume that s12 ∈ S1 holds. Due to the properties of S1, we
have here x ≥ ⊤S1 . Knowing this, we can deduce x ≥ ⊤S2 from ⊤S1 ∈ S2 and x /∈ S2. The
case x ≤ s12 can be treated by a symmetric argumentation.

An easy observation now is that S1∪S2 is an isolated suborder with bottleneck provided
that S1 and S2 are isolated suborders with bottlenecks. Moreover, if S1 and S2 are nontrivial
summit isolated suborders with ⊤S1 = ⊤S2 then S1 ∪ S2 is also a nontrivial summit isolated
suborder with greatest element ⊤S1 (or, equivalently, greatest element ⊤S2). This, together
with Lemma 4.6, proves the following theorem:

Theorem 4.7. Let (S,≤) be an ordered set.

1. Two distinct inclusion-maximal isolated suborders with bottleneck of (S,≤) are disjoint.
2. For every s ∈ max (S), there is at most one nontrivial inclusion-maximal summit isolated

suborder with s as greatest element.

The next lemma establishes a connection between isolated suborders in an ordered set
and a quotient of this order, induced by an isolated suborder.

Lemma 4.8. Let S′ be an isolated suborder of an ordered set (S,≤), and let SS′ be an
isolated suborder of S/∼S′. Then S′′ =df

⋃
SS′ is an isolated suborder of S.

Proof. Clearly, ⊥S′′ = ⊥S′ holds, provided⊥SS′ = S′, and also⊥S′′ = s, provided⊥SS′ = {s}.
Analogous equalities hold also for ⊤S′′ instead of ⊥SS′ .

To show the remaining properties of Definition 4.1, we pick arbitrary s ∈ S′′ and
t /∈ S′′ with s ≤ t. The construction of S′′ yields both [s]∼S′ ∈ SS′ and [t]∼S′ /∈ SS′ , and
homomorphism properties lead to [s]∼S′ ≤∼S′ [t]∼S′ . Because SS′ is an isolated suborder,
we can therefrom deduce that ⊤SS′ ≤∼S′ [t]∼S′ has to hold. We note that [t]∼S′ and
⊤SS′ are disjoint and consider first the case that ⊤SS′ is a singleton set. In this case, the
equality ⊤SS′ = {⊤S′′} holds which implies ⊤S′′ ≤ t. Otherwise, i.e., if ⊤SS′ has more
than one element, we have ⊤SS′ = S′, implying ⊤S′′ = ⊤S′ . Here too, we have ⊤S′′ ≤ t
by homomorphism properties and due to disjointness of [t]∼S′ and ⊤SS′ . A symmetric
argumentation applies to the case s ≥ t, hence S′′ is an isolated suborder according to
Definition 4.1.
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Next we extend this claim to isolated suborders with bottleneck:

Lemma 4.9. Let S′ be an isolated suborder of an ordered set (S,≤), and let SS′ be an
isolated suborder with bottleneck of S/∼S′ . Then S′′ =df

⋃
SS′ is an isolated suborder with

bottleneck of S.

Proof. S′′ is an isolated suborder by Lemma 4.8, and by assumption we can choose an
arbitrary bottleneck B ∈ S/∼S′ of SS′ . Now we have the following three possibilities:

1. ⊤SS′ = S′: In this case, we have ⊤S′′ = ⊤S′ and B = {b} for some b ∈ S. Hence b is a
bottleneck according to Definition 4.2 by homomorphism properties because all elements
of the (nonempty) interval ]S′, B] are singleton sets.

2. B = S′: Here ⊤SS′ = {⊤S′′} holds, and our goal is to show that ⊥S′ is a bottleneck of
S′′. By assumption, [{⊤S′′}, S′] is a chain in S/∼S′ , hence [⊤S′′ ,⊥S′ ] is a chain in S due
to the fact that S/∼S′ consists only of singleton sets except possibly S′. Now it is easy
to check the remaining properties of Definition 4.2.

3. ⊤SS′ ̸= S′ ∧ B ̸= S′: Here, we first investigate the case S′ ∈ [⊤SS′ , B]. Under this
condition, B is also a bottleneck of SS′ , and the argumentation can be carried out
analogously to the previous case. If S′ /∈ [⊤SS′ , B] holds, S/∼S′ consists of singleton sets
only, and the properties of Definition 4.2 follow easily from homomorphism properties.

An analogous lemma holds also for summit isolated suborders:

Lemma 4.10. Let S′ be an isolated suborder of an ordered set (S,≤), and let SS′ be a
summit isolated suborder of S/∼S′ . Then S′′ =df

⋃
SS′ is a summit isolated suborder of S.

Proof. By Lemma 4.8, we know that S′′ is an isolated suborder. If ⊤SS′ = {s} holds for
some s ∈ S, then s is a maximal element in (S,≤) by homomorphism properties. Moreover,
also by homomorphism properties, s is the greatest element of S′′ so S′′ is a summit isolated
suborder in this case. Let us now assume that ⊤SS′ = S′ holds. In this case, S′ is a maximal
element of (S/ ∼S′ ,≤∼S′ ), hence ⊤S′ is a maximal element of (S,≤). By construction and
homomorphism properties, ⊤S′ is the greatest element of S′′.

In our algorithm we may make use of consecutive quotients induced by various isolated
suborders. A (possibly infinite) sequence S0, S1, S2, . . . of ordered sets is called a quotient
sequence if for all i the ordered set Si+1 can be written as the quotient Si+1 = Si/∼S′

i
for

some isolated suborder S′
i of Si. Consecutive quotient formation leads to ordered sets whose

carrier sets have an increasing depth of set nesting. To be type correct, we introduce the
notation

⋃nC, defined inductively by
⋃0C =df C and

⋃n+1C =df
⋃
(
⋃nC). Intuitively

spoken, this operation removes n set brackets from the elements of C and joins them all.
In a quotient sequence, an inclusion-maximal summit isolated suborder containing a fixed

maximal element can appear as most once as a factor (if we abstract from set parentheses):

Lemma 4.11. Let S0, S1, S2, . . . be a quotient sequence, and assume that there exists an
index i such that Si+1 = Si/∼S′

i
holds for an inclusion-maximal useful summit isolated

suborder S′
i with greatest element ⊤S′

i
. Then there is no Sj with j > i containing a useful

summit isolated suborder S′
j with ⊤S′

i
∈
⋃j−i S′

j.

Proof. Assume that some Sj with j > i contains a useful summit isolated suborder S′
j . Then

we could construct an inclusion-maximal summit isolated suborder S′′
i ⊋ S′

i of Si from S′
j

backwards along the lines of Lemmata 4.8 and 4.10, contradicting the inclusion-maximality
of S′

i.
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In the next lemma, we show that if we ignore set brackets, an element can appear in at
most one inclusion-maximal isolated suborders in a quotient sequence.

Lemma 4.12. Let S0, S1, S2, . . . be a quotient sequence such that Si+1 = Si/∼S′
i
holds for

an inclusion-maximal useful isolated suborder with bottleneck S′
i for all i ≥ 0. Then S′

i and⋃j−i S′
j are disjoint for all i, j with j > i.

Proof. By the first part of Theorem 4.7 and Lemma 4.9, it is obvious that S′
i and

⋃
S′
i+1

are disjoint for all i. Now the claim follows by straightforward induction.

5. Isolated Suborders and Closure Systems

After investigating isolated suborders and their properties, we now turn our attention to
the interplay between isolated suborders and closure systems. First we show how closure
systems on an ordered set give rise to closure systems of a quotient:

Lemma 5.1. Let (S,≤) be an ordered set, S′ an isolated suborder of (S,≤), and consider a
closure system C of (S,≤).
(1) If C ∩ S′ = ∅, then C{} is a closure system of S/∼S′.

(2) If C ∩ S′ ̸= ∅, then (C\S′){} ∪ {S′} is a closure system of S/∼S′.

Proof. Because ∼S′ is order generating, S/∼S′ is a homomorphic image of (S,≤). Deploying
this fact, Definition 3.3 can now be verified easily on S/ ∼S′ for the two cases of the
Lemma.

By the nature of things, homomorphisms work in general only in one direction, so we
expect to have a harder task to show how closure systems of a quotient can induce closure
systems of the original ordered set. First we introduce a notion for “almost” closure systems:

Definition 5.2. Let (S,≤) be an ordered set with greatest element ⊤. A subset C ⊆ S is
called a preclosure system of (S,≤) if C ∪ {⊤} is a closure system of (S,≤). The set of all
preclosure systems of (S,≤) is denoted by PC(S).

Clearly, every closure system on an ordered set with greatest element is also a preclosure
system, and the empty set is a preclosure system on ordered sets with a greatest element.
An important observation for the algorithm we will develop is that |PC(S)| = 2 · |C(S)|
holds if C(S) is finite and S has a greatest element (note that this is a precondition to make
PC(S) well-defined). Another crucial fact in the further course is that a nonempty preclosure
system contains a least element majorizing ⊥ (if the order under consideration has a least
element at all):

Lemma 5.3. Let C be a nonempty preclosure system of an ordered set (S,≤) with least
element ⊥S and greatest element ⊤S. Then there is a least element c ∈ C majorizing ⊥S.

Proof. In the case ⊤S ∈ C, C is even a closure system, and Definition 3.3 entails the claim
obviously. Otherwise, we define the closure system C ′ by C ′ =df C∪̇{⊤S}, and by definition
of a closure system there is a least c′ ∈ C ′ majorizing ⊥S . This element c′ can not be ⊤S

since C ′ contains at least one element except ⊤S (recall the C was supposed to be nonempty),
so we conclude c′ ∈ C.

Now we can use preclosure systems to describe the intersection of an isolated suborder
and a closure system:
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Lemma 5.4. Let C be a closure system on an ordered set (S,≤), and let S′ be an isolated
suborder of S with greatest element ⊤S′ and least element ⊥S′. Then C ′ =df C ∩ S′ is a
preclosure system of S′. Moreover, if S′ is a summit isolated suborder, then C ′ is a closure
system of S′.

Proof. Let S′ be an arbitrary isolated suborder and consider an arbitrary s′ ∈ S′. Because
C is a closure system, it contains a least c which majorizes s′. If c ∈ S′ holds, then c is by
construction also an element of C ′. In the other case c /∈ S′ we have ⊤S′ ≤ c by definition of
an isolated suborder. Now it is obvious that ⊤S′ is a smallest element of C ′ majorizing s′.
This shows the first claim, so let us now assume that S′ is even a summit isolated suborder.
Then ⊤S′ ∈ max (S) holds by definition, hence C has to contain also ⊤S′ wherefrom the
second claim follows immediately.

The next lemma is in some sense a converse of Lemma 5.1 in the case of isolated
suborders with bottleneck:

Lemma 5.5. Let (S,≤) be an ordered set and S′ an isolated suborder of S such that ⊤S′

has a least bottleneck b. Assume that CS′ is a preclosure system of S′, and let C ′ be a closure
system of S/∼S′ with S′ ∈ C ′. Then C =df

⋃
(C ′\{S′}) ∪CS′ is a closure system of (S,≤).

Proof. Let us pick an arbitrary s ∈ S with the goal to show that there is a least c ∈ C with
s ≤ c in order to fulfill Definition 3.3. To this end, we have several cases to consider:

1. s /∈ S′: In this case, we have [s]∼S′ = {s}, and by assumption there is a least c′ ∈ C ′ with
{s} ≤∼S′ c

′. Now we have the following possibilities:
a) c′ ̸= S′: then we have c′ = {c′′} for some c′′ ∈ S. By homomorphism properties, c′′

majorizes s in (S,≤), so let us pick an arbitrary ĉ ∈ C with s ≤ ĉ. If [ĉ]∼S′ = {ĉ}
holds, then we have c′ ≤∼S′ {ĉ} since C ′ is a closure system (note that by construction
of C, {ĉ} has to be an element of C ′). Otherwise, we have [ĉ]∼S′ = S′, and because
C ′ is a closure system, we have c′ ≤∼S′ S′. In both cases we conclude c′′ ≤ ĉ by
homomorphism properties.

b) c′ = S′: here we distinguish the following cases:
i) CS′ ≠ ∅: by Lemma 5.3, there is a least c′′ ∈ CS′ majorizing ⊥S′ . By homo-

morphism properties and the assumption {s} ≤∼S′ S
′ we have s ≤ ⊥S′ , and by

transitivity we get s ≤ c′′. Let us now consider an arbitrary ĉ ∈ C with s ≤ ĉ. If
ĉ ∈ S′, then we get ĉ ∈ CS′ by construction of C. Because c′′ is the least element
of CS′ , we obtain c′′ ≤ ĉ immediately. In the case ĉ /∈ S′ we have {ĉ} ∈ C ′ by
construction of C, and as above we get {s} ≤∼S′ {ĉ}. Because C ′ is a closure
system, we obtain S′ ≤∼S′ {ĉ} and hence c′′ ≤ ĉ.

ii) CS′ = ∅: because of b /∈ S′ we have [b]∼S′ = {b}, and since C ′ is a closure system,
there is a least b′ ∈ C ′ majorizing {b}. Moreover, b′ = {c′′} has to hold for
some c′′ ∈ S (note that we have S′ <∼S′ {b} ≤∼S′ b

′), and by homomorphism
properties and transitivity we obtain s ≤ c′′. As usual we pick an arbitrary
ĉ ∈ C with s ≤ ĉ and observe that [ĉ]∼S′ = {ĉ} holds (note that we assume here
CS′ = ∅). From s ≤ ĉ we derive {s} ≤∼S′ {ĉ} and hence S′ ≤∼S′ {ĉ} (recall
c′ = S′ and the properties of c′). However, due to CS′ = ∅ and construction
of C, we obtain ĉ /∈ S′, and by order theory and homomorphism this leads to
{b} ≤∼S′ {ĉ} from where we conclude that b′ ≤∼S′ {ĉ} and eventually c′′ ≤ ĉ
hold.
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2. s ∈ S′: clearly, S′ is the least element of C ′ majorizing [s]∼S′ since [s]∼S′ = S′ and S′ ∈ C ′

hold. We have two cases:
a) CS′ contains an element s′ majorizing s: then CS′ contains also a minimal element c′′

majorizing s, and let ĉ be an arbitrary element of C such that s ≤ ĉ holds. In the
case ĉ ∈ CS′ we get c′′ ≤ ĉ immediately by the choice of c′′, so let us assume that
ĉ /∈ S′ holds. However, here we have ⊤S′ ≤ ĉ by properties of an isolated suborder,
implying c′′ ≤ ĉ.

b) CS′ contains no element majorizing s: as above, there is a least b′ = {c′′} ∈ C ′

majorizing {b}. Clearly, c′′ majorizes s in (S,≤) so we pick an arbitrary ĉ ∈ C with
s ≤ ĉ. By properties of an isolated suborder we have ⊤S′ ≤ ĉ, and because CS′ does
not contain ⊤S′ (otherwise ⊤S′ would be an element of CS′ majorizing s), we can
deduce even b ≤ ĉ. Now it is clear that c′′ ≤ ĉ holds due to {b} ≤∼S′ {ĉ} and closure
properties of C ′.

In all cases, we constructed in the form of c′′ a least element of C majorizing s.

Remark 5.6. It is necessary for the correctness of Lemma 5.5 to require that ⊤S′ has a
bottleneck. This can be seen in Figure 2. At the left, a preclosure system, indicated by
encircled elements, on an isolated suborder without bottleneck of its top element, indicated
by an ellipse, is shown. In the middle of the figure, we see a closure system on the associated
quotient order, indicated by circles. However, executing the construction from Lemma 5.5
leads to the set of encircled elements in the right picture which does not contain a least
element majorizing the middle element (the only unencircled element), and hence is no
closure system. This shows one effect of a bottleneck: it releases the top element of an
isolated suborder from the responsibility of being the least element being majorized by two
elements above it. Moreover, it it necessary to require that ⊤S′ has even a least bottleneck:
consider the ordered set S = ([0, 1],≤) (where ≤ denotes the usual order on the reals) and
the isolated suborder S′ = ({0},≤). We choose the empty set as preclosure CS′ of S′ and

[0, 1]{} as closure system C ′. Then the construction from above yields for C the set ]0, 1]
which is no closure system since it contains no least element majorizing 0.

The next lemma is a variant of the previous lemma for summit isolated suborders:

Lemma 5.7. Let (S,≤) be an ordered set, and let S′ be a summit isolated suborder of (S,≤).
Assume that CS′ is a closure system of S′, and let C ′ be a closure system of S/ ∼S′. Then
C =df

⋃
(C ′\{S′}) ∪ CS′ is a closure system of (S,≤).

Proof. As in the proof of Lemma 5.5, we pick an arbitrary s ∈ S and show the existence of
a least element of C majorizing s. We distinguish the following cases:

1. s /∈ S′: analogously to Lemma 5.5, we have [s]∼S′ = {s}, and by assumption there is a
least c′ ∈ C ′ with {s} ≤∼S′ c

′. Now we have the following possibilities:
a) c′ ̸= S′: this case can be handled exactly like the same case in the proof of Lemma 5.5.
b) c′ = S′: here we have the following cases:

i) CS′ ̸= ∅: this case can also be handled along the lines of Lemma 5.5 (note that
CS′ as closure system is also a preclosure system).

ii) CS′ = ∅: in this case we can not resort to the proof of Lemma 5.5 because the
argument there uses properties of a smallest bottleneck. However, CS′ can not
be empty because it has to contain the greatest element of S′.
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Figure 2: A preclosure system on an isolated suborder (left), a closure system on a quotient
(middle) and no closure system on the original order (right)

2. s ∈ S′: by properties of a closure system, CS′ contains a least element c′ majorizing s.
However, By construction of C and because S′ is a summit isolated suborder, all elements
of C\CS′ majorizing s are contained in CS′

In all cases, we deduced the existence of a least element of C majorizing s.

Finally, we consider the case that an isolated suborder with bottleneck does not appear
in a closure system of the quotient:

Lemma 5.8. Let (S,≤) be an ordered set, and let S′ be an isolated suborder with bottleneck
of (S,≤). Assume that C ′ is a closure system on S/∼S′ such that S′ /∈ C ′. Then C =df

⋃
C ′

is a closure system on S.

Proof. Routinely, we pick an arbitrary s ∈ S with the obligation to show the existence of a
least element of C majorizing s. Then the case s /∈ S′ is analogous to case 1.a) of the proof
of Lemma 5.5 (note that S′ /∈ C ′ was assumed). Similarly, the case s ∈ S′ can be handled
along the lines of case 2.b) of the proof of Lemma 5.5.

Now we are ready to state our main results about the relationships between closure
systems on ordered sets and quotients thereof in the following two theorems:

Theorem 5.9. Let S′ be an isolated suborder with bottleneck of an ordered set (S,≤), and
consider a subset C ⊆ S.

(1) Assume that C ′ =df C ∩ S′ ̸= ∅ holds. Then C is a closure system of S iff C ′ is a

nonempty preclosure system of S′ and (C\S′){} ∪ {S′} is a closure system of S/∼S′.

(2) Assume that C ∩ S′ = ∅ holds. Then C is a closure system of S iff C{} is a closure
system of S/∼S′.

Proof. This follows now easily from Lemmata 5.1, 5.4, 5.5 and 5.8

Theorem 5.10. Let S′ be a summit isolated suborder of an ordered set (S,≤), and consider
a subset C ⊆ S. Then C is a closure system of S iff C ∩ S′ is a closure system of S′ and
(C\S′){} ∪ {S′} is a closure system of S/∼S′.



Vol. 20:3 ISOLATED SUBORDERS AND COUNTING CLOSURE OPERATORS 11:13

Proof. This follows simply from Lemmata 5.1, 5.4 and 5.7.

6. Computing Isolated Suborders

The previous results concerned isolated suborders and their relation to closure systems.
In this section, we will become more concrete and deal with the computation of isolated
suborders. As representation for an ordered set, we assume that an ordered set is given
by its Hasse diagram as a directed graph G = (S,E) where the edges point “upwards”,
i.e., (s, t) ∈ E implies s < t. Given a path p = s1s2 . . . sn, we write s ∈ p if s = si holds
for some i ∈ [1, n] and say that p contains s. We call a node u an (s, t)-separator if every
path from s to t contains u. Routinely, we add an element ⊥ to S and consider the graph
G⊥ =df (S⊥, E⊥) with S⊥ =df S∪̇{⊥} and E⊥ =df E∪̇{(⊥,m) |m ∈ min (S)}. Intuitively,
this adds a least element to the ordered set. Additionally, we may add yet another element ⊤
to S⊥ to obtain the set S⊥,⊤ =df S⊥∪̇{⊤} and define the graph G⊥,⊤ =df (S⊥,⊤, E⊥,⊤) by
E⊥,⊤ =df E⊥∪̇{(m,⊤) |m ∈ max (S)}. Analogously to the construction of G⊥, this adds a
greatest element to the ordered set under consideration. All algorithms considered in this
section have polynomial running time so these constructions do not affect their asymptotic
complexity.

6.1. Isolated Suborders and Separators. In the sequel, we will establish a connection
between isolated suborders and separators in finite graphs. In the following two lemmata
which form the basis for Theorem 6.3, finiteness is a crucial point in order to argue about
finite paths.

Lemma 6.1. Let (S,≤) be a finite ordered set with Hasse diagram G = (S,E), and let
[s1, s2] be an isolated suborder of (S,≤). Then s1 is a (⊥, s2)-separator in G⊥,⊤, and s2 is
an (s1,⊤)-separator in G⊥,⊤.

Proof. We first show the claim that s1 is a (⊥, s2)-separator. To this end, let p = p1p2 . . . pn
with p1 = ⊥ and pn = s2 be a path in G⊥,⊤ from ⊥ to s2. Then there is an index i ∈ [1, n−1]
with pi /∈ [s1, s2] and pi+1 ∈ [s1, s2], and we claim that pi+1 = s1 holds. Let us therefore
assume that pi+1 ̸= s1 holds.

First we rule out the case i = 1: if p2 ∈ [s1, s2] and p2 ̸= s1 hold, then we have s1 < p2.
However, this contradicts minimality of p2 in (S,≤) which follows from the construction of
G⊥,⊤. The crucial point is now that all elements of p under consideration are vertices of G
(or, equivalently, elements of S).

Now we have s1 < pi+1 due to pi+1 ∈ [s1, s2] and pi+1 ≠ s1. Furthermore, we have
pi < pi+1 by construction of p, and now pi /∈ [s1, s2], pi+1 ∈ [s1, s2], and the properties of an
isolated suborder imply pi < s1. Altogether, this means pi < s1 < pi+1, contradicting the
fact that (pi, pi+1) is an edge of a Hasse diagram.

Lemma 6.2. Let (S,≤) be a finite ordered set with Hasse diagram G = (S,E), and let
[s1, s2] be a nonempty interval. Assume that both s1 is a (⊥, s2)-separator in G⊥,⊤ and s2
is an (s1,⊤)-separator in G⊥,⊤. Then [s1, s2] is an isolated suborder.

Proof. We only show that for all s′ /∈ [s1, s2] and s′′ ∈ [s1, s2] with s′ ≤ s′′ (note that this
can be strengthened s′ < s′′) the inequality s′ ≤ s1 holds. By construction, there is a path
p′ = p′1p

′
2 . . . p

′
n′ in G⊥,⊤ with p′1 = ⊥ and p′n′ = s′. Note that s1 can not be an element of p′:



11:14 R. Glück Vol. 20:3

assume there is an index i′ with p′i = s1. By construction, i′ < n′ has to hold which implies
s1 ≤ s′. Together with s′ ≤ s′′ and s′′ ∈ [s1, s2], this implies s′ ∈ [s1, s2], contradicting the
choice of s′.

Next, there is a path p′′ = p′′1p
′′
2 . . . p

′′
n′′ in G⊥,⊤ with p′′1 = s′ and p′′n′′ = s′′ (this is due to

the fact s′ < s′′). Finally, due to s′′ ∈ [s1, s2], there is a path p̂ = p̂1p̂2 . . . p̂n̂ in G⊥,⊤ with
p̂1 = s′′ and p̂n̂ = s2. The concatenation of these three paths yields a path p = p1p2 . . . pn
which has to contain s1 because s1 is a (⊥, s2)-separator. However, the discussion about p′

shows that s′ appears in p before s1, hence we have s′ ≤ s1.
Clearly, [s1, s2] has a least and a greatest element, and the remaining property of

Definition 4.1 can be shown symmetrically to above.

From the previous two lemmata, the next theorem follows immediately:

Theorem 6.3. Let (S,≤) be a finite ordered set with Hasse diagram G = (S,E). Then, an
interval [s1, s2] is an isolated suborder iff [s1, s2] is nonempty, s1 is a (⊥, s2)-separator in
G⊥,⊤, and s2 is an (s1,⊤)-separator in G⊥,⊤.

6.2. Computing Isolated Suborders. The result from Theorem 6.3 can be used to
determine all useful isolated sublattices with bottleneck in polynomial time. To this end, we
note that it is possible to decide in O(|V |+ |E|) time whether a node s is a (v1, v2)-separator
in a graph G = (V,E): we simply remove s and its adjacent edges from G and test whether
in the resulting graph v2 is reachable from v1. Algorithm 1 shows now how to compute
useful isolated suborders with bottleneck.

Algorithm 1 Computing Maximal Useful Isolated Suborders with Bottleneck

1: function Useful Maximal Isolated Suborders with Bottleneck(Hasse diagram
G = (V,E))

2: Gt ← transitive hull of G
3: elemsWithBottleneck ← topologically ordered list of all nodes of G with outdegree 1
4: candidates ← empty list of type V × V
5: maximalIsos ← empty list of type V × V
6: for all v ∈ V do
7: for all b ∈ elemsWithBottleneck with v ̸= b do
8: if (v, b) is an edge in Gt then
9: if v is a (⊥, b)-separator in G⊥,⊤ and b is a (v,⊤)-separator in G⊥,⊤ then

10: append (v, b) to candidates
11: end if
12: end if
13: end for
14: end for
15: for all v ∈ V do
16: append the last occurence of the form (v, b) in candidates to maximalIsos
17: end for
18: return maximalIsos
19: end function

First, we compute the order associated with G which can be done in O(|V 3|) time using
the Floyd-Warshall algorithm. An algorithm running in O(|V |2.371552) is given in [AW21],
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however, this algorithm is not useable in practice. Next, we collect all possible top elements
of an isolated suborder with bottleneck in the list elemsWithBottleneck in topological order.
Using standard methods, this can be carried out in O(|V |+ |E|) time. Subsequently, we
initialize two lists of type V ×V to collect intermediate results and for the final return result.

The centerpiece of the algorithm are lines 6 to 14: here we loop over all tuples (v, b) such
that [v, b] is an interval with at least two elements, and test whether such an interval fulfills
the conditions of Theorem 6.3. If so, then the respective interval is added to the candidates
list. There are at most O(|V |2) tuples of the form (v, b), and the computation in lines 9
and 10 takes O(|V | + |E|) time, so lines 6 to 14 can be carried out in O(|V |2(|V | + |E|))
time. We assume that in line 7 the elements of bottlenecks are processed in their topological
order so line 16 ensures that only inclusion-maximal suborders are added to the returned
maximalIsos list. Here, the loop from line 15 to line 17 is executed |V | times, and since the
candidates list can contain O(|V |2) elements, the running time of this loop is bounded by
O(|V |3). Altogether, the dominating part is given by lines 6 to 14, so the overall running
time is in O(|V |2(|V |+ |E|)).

This algorithm is rather simple and can be optimized in many ways. For example, once
we find an isolated suborder [v, b] with bottleneck in lines 9 and 10, we have to look in
line 7 only at elements b′ with b < b′ and can skip elements v′ with v < v′ in line 6 due to
Lemma 4.5. Moreover, ideas from [CCMP20] or [ILS12] can be used for the computation of
separators and to replace the rather primitive computation in line 9. Note also that this
algorithm returns all useful maximal isolated suborders with bottleneck and hence has a
priori a running time in Ω(|V |2). The restriction to finding only one arbitrary useful isolated
suborder with bottleneck could also lead to a better running time.

Note that this algorithm can easily be modified for the computation of useful isolated
summit suborders: instead of elemsWithBottleneck, we simply use a list maxElements
containing all maximal elements of G. Clearly, this list can be computed in O(|V |) time
because we put simply all nodes with outdegree 0 into it. A topological ordering is not
necessary; however, the running time is again dominated by lines 6 to 14, and hence amounts
to O(|V |2(|V |+ |E|)).

7. Counting Closure Operators

In this section we will apply our previous results to counting closure systems. First, we
consider some special cases in Subsection 7.1 and give afterward a recursive algorithm based
on isolated suborders in Subsection 7.2.

7.1. Special Cases. General orders may consist of several distinct connected components;
however, we will see that for counting purposes it suffices to concentrate on orders consisting
of one connected component. The following lemma shows a splitting property for closure
systems on ordered sets with two or more connected components.

Lemma 7.1. Let (S1,≤1) and (S2,≤2) be ordered sets with S1 ∩ S2 = ∅, and let C1 ⊆ S1

and C2 ⊆ S2 be closures systems of S1 and S2, resp. Then C1 ∪ C2 is a closure system of
(S12,≤12) =df (S1 ∪ S2,≤1 ∪ ≤2).

Proof. Let s ∈ S12 be arbitrary, and assume w.l.o.g. that s ∈ S1 holds. Then there is a
least (in C1) element c ∈ C1 majorizing s (wrt. ≤1). However, elements from S1 and S2
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(and hence from C1 and C2) are incomparable wrt. ≤12 by construction, so c is also a least
element (wrt. ≤12) majorizing s (wrt. ≤12).

This observation entails the following corollary:

Corollary 7.2. Let (S,≤) be an ordered set such that there is a partition of S = S1∪̇S2 into
disjoint nonempty finite subsets S1 and S2 such that for all s1 ∈ S1 and s2 ∈ S2 the elements
s1 and s2 are incomparable. Then the equality |C(S,≤)| = |C(S1,≤ |S1)| · |C(S2,≤ |S2)| holds.

Of course, the results of Lemma 7.1 and Corollary 7.2 can be extended to ordered sets
with more than two connected components by means of induction.

Next, we will derive closed formulae for the number of closure system on some special
kinds of ordered sets which may serve as termination case in the algorithm from the
following Subsection 7.2. However, we are not only interested in the overall number
of closure systems but also in the number of closure systems containing a given subset
of the ordered set under consideration. To deal with this situation, we introduce the
notations C(S)T =df {C ∈ C(S) |T ⊆ C}, C(S)−S

T =df {C ∈ C(S)T |S ∩ C = ∅}, and
C(S)ST =df {C ∈ C(S)T |S ∩ C ≠ ∅} for subsets T ⊆ S of an ordered set (S,≤). With this
notation, we have the trivial equalities C(S) = C(S)∅ (the empty set imposes no constraints)
and C(S)T = C(S)T\{m} = C(S)T∪{m} for each m ∈ max (S) (every closure system has to
contain every maximal element). Moreover, since C(S)T is the disjoint union of C(S)T∪{s}

and C(S)−{s}
T , we have the equality |C(S)T | = |C(S)T∪{s}|+ |C(S)

−{s}
T |. In particular, this

means that we do not need explicit formulae for C(S)−{s}
T .

The first special case is that of a chain:

Lemma 7.3. Let (S,≤) be a chain with n elements and consider an arbitrary T ⊆ S. Then

we have |C(S)T | = 2n−1−|T\{⊤S}|.

Proof. It is straightforward to see that for a finite chain (S,≤) a set C ⊆ S is a closure
system according to Definition 3.3 iff it contains ⊤S . Now the claim follows now the formula
for the cardinality of power sets.

Next, we consider orders with only one layer of elements between the bottom and top
element:

Definition 7.4. An ordered set (S,≤) is called a diamond of width n if its carrier set
S = {⊥S ,⊤S , b1, . . . , bn} consists of n+ 2 pairwise different elements and bi ̸≶ bj holds for
all i ̸= j. The elements (bi)1≤i≤n are called the belt elements of (S,≤).

Lemma 7.5. Let (S,≤) be a diamond of width n and let B be the set of its belt elements.
Then the following holds:

1. ⊥S ∈ T ⇒ |C(S)T | = 2n−|T\{⊤S}|

2. ⊥S /∈ T ∧ |T ∩B| > 1⇒ |C(S)T | = 2n−|T\{⊤}|

3. ⊥S /∈ T ∧ T ∩B = {bi} ⇒ |C(S)T | = 2n−1 + 1
4. ⊥S /∈ T ∧ T ∩B = ∅ ⇒ |C(S)T | = 2n + n+ 1

Proof. 1. Here, all elements of C(S)T have the form {⊥S ,⊤S} ∪ T ∪B′ for some B′ ⊆ B\T .
However, T occupies already |T\{⊤S}| places in B so the claim follows again from the
cardinality formula for power sets.

2. Because closures have to contain a least element majorizing every element, |T ∩B| > 1
implies ⊥ ∈ C for every C ∈ C(S)T which reduces this case to the previous one.
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3. Consider a closures system C ∈ C(S)T . If ⊥ /∈ C holds then bj /∈ C has to hold for
all bi ̸= bj ∈ B since C has to contain a least element majorizing any element. Hence, the
only possibility in this case is C = {⊥S , bi,⊤S}. The case ⊥ ∈ C can be treated analogously
to the first case and the result follows from summing up.

4. We have 2n closure systems of the form {⊥S ,⊤S} ∪B′ with B′ ⊆ B, n of the form
{bi,⊤S} and the trivial closure system {⊤S}.

A concept similar to diamonds are bottomless diamonds:

Definition 7.6. An ordered set (S,≤) is called a bottomless diamond of width n if its carrier
set S = {⊤S , b1, . . . , bn} consists of n+ 1 pairwise different elements and bi ̸≶ bj holds for
all i ̸= j. The elements (bi)1≤i≤n are called the belt elements of (S,≤).

Lemma 7.7. Let (S,≤) be a bottomless diamond of width n and let B be the set of its belt

elements. Then |C(S)T | = 2n−|T\{⊤S}|+1.

Proof. Clearly, every C ⊆ S is a closure system iff ⊤S ∈ C holds so the claim follows by
elementary combinatorics.

7.2. Counting Closures using Isolated Suborders. From now on we assume that every
ordered set under consideration is finite because we are interested in developing an algorithm
for counting the number of closure systems. The algorithm we are going to introduce in
Subsection 7.2 will make recursive calls computing the number of (pre)closure systems
containing already processed elements.

Let (S,≤) be an ordered set and consider an isolated suborder with bottleneck S′ ⊆ S
of S and a subset T ⊆ S with T ∩ S′ = ∅. Then we can partition the set C(S)T into

the two disjoint sets C(S)S′
T and C(S)−S′

T (where the first one consists of all elements from
C(S)T containing an element from S′ and the second one consists of all elements from C(S)T
containing no element from S′). By the first part of Theorem 5.9, we obtain the following
equation (we have to subtract 1 in order not to count the empty preclosure twice):

|C(S)S′
T | = |C(S/∼S′)T {}∪{S′}| · (|PC(S

′)| − 1). (7.1)

By an analogous argumentation we obtain the following equation by means of the second
part of Theorem 5.9:

|C(S)−S′

T | = |C(S/∼S′)
−{S′}
T {} |. (7.2)

Now we can argue as follows:

|C(S)T | = |C(S)S
′

T |+ |C(S)−S′

T | (C(S)T = C(S)S′
T ∪̇C(S)

−S′

T )

= |C(S/∼S′)T {}∪{S′}| · (|PC(S
′)| − 1) + |C(S)−S′

T | (Equation 7.1)

= |C(S/∼S′)T {}∪{S′}| · (2 · |C(S
′)| − 1) + |C(S)−S′

T | (|PC(S′)| = 2 · |C(S′)|)

= |C(S/∼S′)T {}∪{S′}| · (2 · |C(S
′)| − 1) + |C(S/∼S′)T {} | − |C(S/∼S′)T {}∪{S′}|

(|C(S/∼S′)T {} | = |C(S/∼S′)T {}∪{S′}|+ |C(S/∼S′)
−{S′}
T {} |)

= |C(S/∼S′)T {}∪{S′}| · 2(|C(S
′)| − 1) + |C(S/∼S′)T {} | (elementary calculus)

Altogether, we obtain the following equation:

|C(S)T | = |C(S/∼S′)T {}∪{S′}| · 2(|C(S
′)| − 1) + |C(S/∼S′)T {} | (7.3)
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Analogous considerations for a summit isolated suborder S′ guide us to the following
formula by means of Theorem 5.10:

|C(S)T | = |C(S/∼S′)T {} | · |C(S′)| (7.4)

Clearly, |C(S)| = |C(S)∅| holds, so we can use Equations (7.3) and (7.4) for a recursive
algorithm if the ordered set under consideration contains a useful summit isolated suborder
or a useful isolated suborder with bottleneck. However, this is only feasible if the isolated
suborder S′ and the set T are disjoint. Fortunately, we can ensure this due to Lemmata 4.11
and 4.12 by choosing first - if possible - an inclusion-maximal nontrivial summit isolated
suborder followed by the choice of inclusion maximal isolated suborders with bottleneck. A
formal description of this idea is given in Algorithm 2. Of course, if the ordered set under
consideration does not contain some kind of useful isolated suborder or does not have a
special structure for which a closed formula is available, then we have to resort to some kind
of brute force.

Let us now take a look at the functioning of this algorithm. First (lines 2 to 4), it is
tested whether the ordered set under consideration is of a special structure. For the examples
given here, it is easy to see that this can be done in linear time. In every recursive call of
#CLOSURES, the cardinality of the ordered sets in the first arguments is strictly smaller than
the cardinality of the ordered set from the first argument of the function call. The first
reason for this is that every isolated suborder with bottleneck or every nontrivial summit
isolated suborder S′ is a strict subset of S. Moreover, we consider only useful isolated
suborders S′, hence S/∼S′ contains strictly less element than S. This enforces termination
in the sense that either an ordered set with a special structure (for which a closed formula is
known) is obtained or some brute force method is applied.

Algorithm 2 Counting Closure Operators

1: function #closures(ordered set S, set T )
2: if some special case from Subsection 7.1 is applicable then
3: return the respective number
4: end if
5: if S has a useful summit isolated suborder then
6: S′ ← an inclusion maximal useful summit suborder
7: return #closures(S/∼S′ ,T {})·#closures(S′, ∅)
8: end if
9: if S has a useful isolated suborder with bottleneck then

10: S′ ← an inclusion maximal useful isolated suborder with bottleneck
11: return #closures(S/∼S′ , T {} ∪ {S′{}}) · 2(#closures(S′, ∅)-1)+
12: #closures(S/∼S′ ,T {})
13: end if
14: compute and return |C(S)T | by some brute force algorithm
15: end function

As described in Algorithm 1 and the following discussion, isolated suborders of interest
can be computed in polynomial time. Hence, we can assume that the test whether an order
has a certain structure (lines 2 to 4) and the computation of isolated sublattices in the
algorithm are bounded by a polynomial p. Let us now assume that a brute force algorithm
takes c|S| time for some c > 1 to compute the number of all closure systems. Furthermore,
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let us consider a sequence (S1,≤1), (S2,≤2), . . . of finite ordered sets with |Si| < |Si+1| such
that no Si has a useful isolated suborder (e.g., choose for (Si,≤i) the power set lattice of
[1, . . . n]). Furthermore, let (S′

i,≤′
i) be an isomorphic copy of (Si,≤i), and define the ordered

set (Ti,≤Ti) by Ti =df Si∪̇Si+1 and ≤Ti =df ≤i ∪̇ ≤′
i ∪̇Si × S′

i. Then Ti contains exactly
one useful summit isolated suborder (namely S′

i). An immediate application of a brute force
algorithm to Ti would now take O(|Ti|c) time. However, Algorithm 2 will make two recursive

calls (note that the condition in line 5 is true) on instances of sizes |Ti|
2 and |Ti|

2 + 1. Hence,

the running time in this case will amount to O(p(|Ti|)+p( |Ti|
2 )+c

|Ti|
2 +p( |Ti|

2 +1)+c
|Ti|
2

+1) ∈
O(c

|Ti|
2

+1). Asymptotically, this running time is dominated strictly by O(T c
i ), so Algorithm 1

will lead to a speed up.
Another argument in favor of Algorithm 2 can be given by means of the master theorem.

Assume that we have an order which allows recursive decomposition by means of isolated
suborders with half the size of the starting order down to orders of a constant size (dismantable
lattices as in [BM96] are a class of orders with a similar property). Then, the running time

fulfills the recursion equation T (|S|) ≤ 3T ( |S|2 +1)+p(|S|). The critical exponent in this case
is log2(3) < 1.6 which is less than the degree of p according to the analysis of Algorithm 1.
Hence, under these (admittedly artificial and favorable) circumstances, Algorithm 1 runs in
O(p) time.

8. Conclusion and Outlook

As main result, we introduced Algorithm 2 which can simplify counting of closures if the
ordered set under consideration contains certain kinds of isolated suborders. Naturally,
the question arises whether more general or other structures than isolated suborders can
be used with the same purpose. Concepts which come to mind are bisimulations which
are used also for simplification (in the sense of reducing the number of states) in model
checking in [BK08] or model refinement in [GMS10]. Also, it would be of interest to search
for more special cases than the ones from Subsection 7.1 wherefrom the Algorithm would
clearly benefit. Lastly, the algorithm is still awaiting being implemented. Part of such an
implementation would also be an optimal (i.e., linear time) algorithm for the computation
of isolated suborders along the lines sketched at the end of Subsection 6.2. A combination
of classical programming and specific systems like Mace4 (see [Mac]) or RelView (see [Rel])
seems to be an interesting and promising approach. Alas, for computing the number of
closure systems on a powerset, the approach presented here will be of no help: it is easy to
see that a powerset lattice contains no useful isolated suborders.

Acknowledgements: The author is grateful to the anonymous reviewers for their
critical but helpful comments which improved the readability of the paper and even lead to
the discovery of a mathematical error in an earlier version.
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