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Abstract. In this paper, we give a deterministic one-to-one pushdown transducer and a
normal sequence of digits compressed by it. This solves positively a question left open in a
previous paper by V. Becher, P. A. Heiber and the first author.

1. Introduction

A real number is normal to an integer base if, in its infinite expansion in that base, all blocks
of digits of the same length have the same limiting frequency. Émile Borel [Bor09] defined
normality more than one hundred years ago to formalize the most basic form of randomness
for real numbers. Many of his questions are still open, such as whether any of π, e or

√
2

is normal in some base, as well as his conjecture that the irrational algebraic numbers are
normal to each base [Bor50]. This motivates the search for new characterizations of the
concept of normality.

One characterization is based on finite state machines. A sequence of digits is normal if
and only if it cannot be compressed by lossless finite transducers (also known as finite-state
compressors). These are deterministic finite automata augmented with an output tape with
injective input-output behavior. The compression ratio of an infinite run of a transducer is
defined as the lim inf, over all its finite prefixes, of the ratio between the number of symbols
written and the number of symbols read so far. A given sequence is said to be compressed
by a given transducer if the compression ratio it achieves is less than 1.

A direct proof of the incompressibility characterization of normal sequences can be found
in [BH13]. However, the result was already known, although by indirect and more involved
arguments. For instance, combining results of Schnorr and Stimm [SS72] and Dai, Lathrop,
Lutz and Mayordomo [DLLM04] yields an earlier proof: the characterization of normality
given in [SS72] is based on martingales and the equivalence between martingales and
compressibility is shown in [DLLM04]. It is also proved in [DM06, SLZ95] that compression
ratio and decompression ratio coincide.

The notion of incompressibility by finite state machines is quite robust: adding some
feature to one-to-one transducers does not allow them to compress normal sequences. It is
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Finite-state transducer det. non-det.
No extra memory N N
One counter N N
One stack ? Y
More than one counter Y (T) Y (T)
One stack and one counter Y (T) Y (T)

Table 1: Compressibility by different kinds of transducers.

proved in [BCH15] that non-deterministic non-real-time transducers, with no extra memory
or just a single counter, cannot compress any normal sequence. Non-real-time means here
that the value of the counter can be incremented and decremented without consuming any
input symbol. It is also shown in [CH15] that two-way transducers cannot compress normal
sequences. Adding too much memory yields compressibility results: it is clear that Turing
complete machines can compress computable normal sequences like the Champernowne
sequence [Cha33]. This includes non-real-time transducers with at least two counters. Note
however that Turing completeness is not necessary. For instance, it is shown in [LS97]
that some normal sequences are compressed by Lempel-Ziv algorithm. Combining non-
determinism with a single stack also yields compressibility of some normal sequence. Results
given in [BCH15] are summarized in Table 1. One question left open was whether a
deterministic pushdown transducer can compress a normal sequence, that is the question
mark in Table 1, where (T) means Turing-complete. In this paper, we answer this question
positively.

Theorem 1.1. There is a deterministic one-to-one pushdown transducer that can compress
some normal sequence.

A more precise statement is given in Proposition 2.1 where the pushdown transducer
and the normal sequence compressed by it are made explicit.

2. Precise statement

Before giving a more precise statement, we recall a few definitions. Let A be a finite alphabet.
Let A∗ and AN be respectively the set of finite words and the set of (infinite) sequences
over A. The positions of words and sequences are numbered starting at 1. To denote the
symbol at position i of a word (respectively sequence) w we write w[i] and to denote the
substring of w from position i to j we write w[i:j]. The length of a finite word w is denoted
by |w|. The empty word is denoted by ε. For a word w = a1 · · · an, let w̃ be the reverse of w
defined by w̃ = an · · · a1. We write #E for the cardinality of a finite set E. For w and u
two words, let us denote by |w|u the number of possibly overlapping occurrences of u in w.
A sequence x ∈ AN over alphabet A is normal if

lim
n→∞

|x[1:n]|w
n

=
1

(#A)|w|

holds for each word w ∈ A∗.
A pushdown transducer is made of input and output alphabets A and B, a stack

alphabet Z containing the starting symbol z0, a finite state set Q containing the initial
state q0 and a finite set of transitions of the form p, z a|v−−→ q, h where p, q ∈ Q, a ∈ A, v ∈ B∗,



Vol. 20:3 PUSHDOWN COMPRESSION AND NORMALITY 15:3

z ∈ Z and h ∈ Z∗. The states p and q are the starting and ending states of the transition.
The symbol a and the word v are its input and output labels. The stack symbol z and
the word h are respectively the symbol popped from the stack and the word pushed to the
stack. Note that the transition p, z a|v−−→ q, h replaces the top symbol z by the word h. If
h is empty, it just pops the symbol z. The transducer is deterministic if for each triple
(p, z, a), there exists at most one triple (q, h, v) such that p, z a|v−−→ q, h is one of its transitions.
Note that pushdown transducers sometimes include transitions of the form p, z ε|v−−→ q, h,
called ε-transitions, that consume no input symbol. Such transitions are not needed for our
compressor, but are needed for the decompressor as we shall see.

A configuration C of the transducer is a pair ⟨q, h⟩ where q ∈ Q is its state and h ∈ Z∗

is its stack content. Note that the stack content is written bottom up: the top symbol is the
last symbol of h. The starting configuration is the pair ⟨q0, z0⟩ where q0 is the initial state
and z0 the starting symbol.

A run step is a pair of configuration ⟨C,C ′⟩ denoted C a|v−−→ C ′ such that C = ⟨p, wz⟩,
C ′ = ⟨q, wh⟩ for some word w ∈ Z∗ and p, z a|v−−→ q, h is a transition of the transducer. A
finite (respectively infinite) run is a finite (respectively infinite) sequence of consecutive run
steps

C0
a1|v1−−−→ C1

a2|v2−−−→ · · · an|vn−−−→ Cn.

The input and output labels of the run are respectively a1 · · · an and v1 · · · vn. Note that a
transition p, z a|v−−→ q, h can be seen as a run step whose starting stack content is reduced to
a single symbol z. Conversely, each run step is obtained from a transition p, z a|v−−→ q, h by
adding a stack content w below the top symbol z.

Let A be the alphabet {0, . . . , k−1} for some positive integer k and let B be the alphabet
A ⊎ {△,□} where △ and □ are two new symbols not in A. Now we give the deterministic
pushdown transducer Tk with input alphabet A and output alphabet B. We first describe it
informally and second we give a more formal description of its transitions. The transducer Tk
proceeds as follows whenever it reads a symbol a ∈ A from the input tape. If the symbol a
is different from the top symbol of the stack, the symbol a is pushed onto the stack and
it is also written to the output tape. If the symbol a is equal to the top symbol of the
stack, this top symbol is popped. Every two symbols consecutively popped from the stack,
a symbol □ is written to the output tape. An additional symbol △ is also written to the
output tape if the whole sequence of consecutive popped symbols is of odd length. In other
words, after a maximal sequence of n consecutive pops, is written to the output tape either
the word □n/2 if n is even or the word □(n−1)/2△ if n is odd. This coding of the length n
is far from being optimal but it is sufficient to get compression. More formally the state
set of Tk is Q = {0, 1} and the initial state is q0 = 0. Its stack alphabet is A ⊎ {⊥} and the
start symbol z0 is the new symbol ⊥. As the symbol ⊥ is different from any input symbol,
it is never popped from the stack. Therefore, the symbol ⊥ always remains at the bottom of
the stack and it is used to mark it. The transitions set E of Tk is defined as follows.
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E ={0, z a|a−−→ 0, za : z ̸= a} Pushing a and outputting a

{0, z a|ε−−→ 1, ε : z = a} Popping z = a and outputting ε

{1, z a|□−−→ 0, ε : z = a} Popping z = a and outputting □

{1, z a|△a−−−→ 0, za : z ̸= a} Pushing a and outputting △a

The function realized by this transducer is one-to-one and the inverse function can even
be computed by the following deterministic pushdown transducer. This transducer works
as follows. Each symbol a ∈ A is pushed to the stack and output. When △ is read, one
symbol from the stack is popped and output. When □ is read, two symbols from the stack
are popped and output (the topmost first).

E′ ={0, z a|a−−→ 0, za : z, a ∈ A} Pushing a and outputting a

{0, z
△|z−−→ 0, ε : z ∈ A} Reading △, popping and outputting

the top stack symbol

{0, z □|z−−→ 1, ε : z ∈ A} Reading □, popping and outputting

the top stack symbol

{1, z ε|z−−→ 0, ε : z ∈ A} Popping and outputting

the top stack symbol again

Let T be a pushdown transducer with input alphabet A and output alphabet B. The
compression ratio ρ of an infinite run

C0
a1|v1−−−→ C1

a2|v2−−−→ C2
a3|v3−−−→ · · ·

is

ρ = lim inf
n→∞

|v1 · · · vn| log#B

n log#A

The factors log#A and log#B take into account the alphabet sizes. Without them, it
would be to easy to compress by taking a larger alphabet B. The transducer T is said to
compress a sequence x if it realizes a one-to-one function and if the compression ratio ρ of
the infinite run of T on input x satisfies ρ < 1.

The following proposition is a more precise reformulation of Theorem 1.1.

Proposition 2.1. Let A be the alphabet {0, . . . , k − 1} for some large enough integer k.
Let wn be, for each integer n ⩾ 1, the concatenation in lexicographic order of all words of
length n over A. The deterministic pushdown transducer Tk given above compresses the
normal sequence x = w1w̃1w2w̃2w3w̃3 · · · .

Before proving the proposition, we make some comments. The proof that the se-
quence x is normal is an easy adaptation that the Champernowne sequence is normal [BC18,
Thm 7.7.1].

The proposition states the result for k large enough. The proof below shows that the
condition k ⩾ 7 is sufficient but numerical experiments show that k ⩾ 5 is actually sufficient.
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Some other normal sequences are compressible by the same transducer. For each integer
n ⩾ 1, let u1, . . . , uℓn be an enumeration in some order of all words of length n over A. This
means that ℓn = (#A)n. Let wn be the word u1ũ1u2ũ2 · · ·uℓn ũℓn for each integer n ⩾ 1.
The sequence x = w1w2w3 · · · is also compressible by the same transducer Tk. It seems that
this result can be proved using the same techniques. However, our numerical experiments
suggest that the compression ratio of this latter sequence is worse than the one given in the
proposition.

Our numerical experiments show that the compression ratio converges to 3/4 when
the alphabet size k goes to infinity. It seems that the same ideas used in the proof of the
proposition can achieve this result, but we preferred simplicity in our presentation.

3. Proof

Now we introduce a congruence ∼ on A∗ which is used to characterize stack contents of
the pushdown transducer Tk. Let → be the relation defined on A∗ as follows. Two words
w and w′ satisfy w → w′ if there are two words u and v and a symbol a ∈ A such that
w = uaav and w′ = uv. The word w′ is thus obtained from w by deleting two consecutive
identical symbols. A word w is irreducible for → if it contains no consecutive occurrences of
the same symbol. Let ∗−→ be the reflexive-transitive closure of the relation →. Let us recall
that the relation → is Noetherian if there is no infinite chain w0 → w1 → w2 → · · · and
that it is confluent if the relations w ∗−→ w1 and w ∗−→ w2 imply that there exists another
word w′ such that w1

∗−→ w′ and w2
∗−→ w′.

Lemma 3.1. The relation → is Noetherian and confluent.

Proof. Since w → w′ implies |w| > |w′|, the relation → is obviously Noetherian. Hence, by
Newman’s lemma, it is sufficient for confluence to prove that → is locally confluent. This
means that relations w → w1 and w → w2 imply that there exists w′ such that w1

∗−→ w′

and w2
∗−→ w′. Suppose that w → w1 and w → w2 where w1 and w2 are obtained from w

by deleting respectively the blocks aa and bb of two identical symbols. Either the two
blocks overlaps and a = b or they are disjoint. In the former case, w is equal to u1aaau3
for u1, u3 ∈ A∗ and in the latter case, w is equal to u1aau2bbu3 for u1, u2, u3 ∈ A∗ if it is
assumed, by symmetry, that aa occurs before bb. In the former case w′ = w1 = w2 = u1au3
and in the latter case w1 = u1u2bbu3 and w2 = u1aau2u3 and then w1 → w′ and w2 → w′

where w′ = u1u2u3.

The fact that → is Noetherian and confluent implies that for each word w, there is
a unique irreducible word ŵ such that w ∗−→ ŵ. Let us define the equivalence relation ∼
on A∗ by w ∼ w′ if and only if ŵ = ŵ′. It can be checked that the relation ∼ is the
reflexive-symmetric-transitive closure of →, that is, the relation (→ ∪ ←)∗: the equality
ŵ = ŵ′ implies the relations w ∗−→ ŵ = ŵ′ ∗←− w′ and the converse is due to confluence which
allows us to replace each pattern w1

∗←− w ∗−→ w2 by the pattern w1
∗−→ w′ ∗←− w2 for some

word w′. The equivalence relation ∼ is actually a congruence: if u ∼ u′ and v ∼ v′, then
uv ∼ u′v′. Note that each palindrome of even length, that is, each word of the form ww̃,
satisfies ww̃ ∼ ε. The following lemma is easily proved by induction on the length of w.

Lemma 3.2. After reading a word w, the stack content of Tk is ⊥ŵ where ŵ is the unique
irreducible word such that w ∗−→ ŵ.
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Let us recall that the input sequence is w1w̃1w2w̃2w3w̃3 · · · . The lemma just stated
above implies that the stack only contains the bottom symbol ⊥ after reading the prefix
w1w̃1 · · ·wnw̃n because wiw̃i ∼ ε for each integer i ⩾ 1.

Let P = {1, . . . , |wnw̃n|} be the set of positions of symbols in wnw̃n. Each symbol of
wnw̃n is consumed by either a pushing transition or a popping transition. In the former
case, the consumed symbol is pushed to the stack. In the latter case, the same symbol as the
one consumed is popped from the stack. This dichotomy induces the partition P = P0 ⊎ P1

where P0 is the set of positions of symbols being pushed and P1 is the set of positions of
symbols popping. Since the stack only contains the bottom symbol ⊥ before and after
reading wnw̃n, each pushed symbol is popped later. Then, the run of Tk also induces a
function f from P0 to P1 which maps each position of a pushed symbol to the position of
the symbol that pops it. This function f is of course, one-to-one and onto because each
pushed symbol is popped by exactly one symbol. By definition, the function f satisfies that
i < f(i) for each i in P0 and that the symbols at positions i and f(i) are the same. The
stack policy implies that if two positions i and j in P0 satisfy i < j, then f(i) > f(j). Let
us call an edge a pair (i, f(i)). An edge is short if f(i)− i = 1 and is long if f(i)− i > 1.

0 0 0 1 2 2 1 1
1 2 3 4 5 6 7 8

1 1 2 2 1 0 0 0
9 10 11 12 13 14 15 16

Figure 1: Example of a function f : f(3) = 14.

Let us call a block a maximal set {i, i+ 1, . . . , j} of consecutive positions with the same
symbol at each position. Maximal means here that the set cannot be expanded to the left
because either i = 1 or symbols at positions i − 1 and i are different and that it cannot
be expanded to the right because either j = |wnw̃n| or symbols at positions j and j + 1
are different. The following lemma states a link between the number of long edges and the
length of the output of Tk.

Lemma 3.3. While reading wnw̃n, the transducer Tk writes at most |wnw̃n| − h/6 symbols
where h is the number of blocks of length 1 in wnw̃n.

Proof. Let d be the difference between the length of wnw̃n and the number of symbols
written by Tk while reading wnw̃n. We have to prove that d ⩾ h/6. Each symbol pushed to
the stack by Tk is also written to the output tape. A maximal sequence of n consecutive
popping transitions of Tk writes □n/2 if n is even and □(n−1)/2△ if n is odd. This shows that
such a maximal sequence of length n ⩾ 2 contributes ⌊n/2⌋ ⩾ n/3 to d.

Let N be the number of popping transitions belonging to a sequence of at least two
popping transitions. From the previous reasoning d ⩾ N/3.

For each block of length 1, there is a long edge (i, f(i)) such that either i or f(i) belongs
to the block. This shows that the number of long edges is at least h/2. Due to the nesting
of edges, the position f(i)− 1 is also the arrival of another edge. These two edges contribute
at least 1 to N . This shows that N ⩾ h/2 and hence d ⩾ h/6.
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Lemma 3.4. For n ⩾ 3, the number of blocks of length 1 in wnw̃n is exactly

(k − 1)2

k2
|wnw̃n|.

Proof. Note that wn starts with n occurrences of the symbol 0 and ends with n occurrences
of the symbol k − 1. It follows that a block of length 1 in wnw̃n can occur neither at the
beginning nor at the end of wn and w̃n. The number of blocks of length 1 in wnw̃n is twice
the number of blocks of length 1 in wn.

If each word of length n has exactly m cyclic occurrences in a word w, then each word u
of length 1 ⩽ ℓ ⩽ n has mkn−ℓ occurrences since u is the prefix of kn−ℓ words of length n.
By Theorem 5 in [ABFY16], each word of length n has exactly n cyclic occurrences in wn.
Applying the previous remark for ℓ = 3 yields that each word of length 3 has exactly nkn−3

cyclic occurrences in wn. A block of length 1 corresponds to an occurrence of a word abc
where the symbols a, b, c ∈ A satisfy a ̸= b and b ̸= c. Such a word abc cannot overlap
the border of wn. It follows that each word abc with a ̸= b and b ̸= c has exactly nkn−3

occurrences in wn. Since the length of wn is nkn and there are k(k − 1)2 such words abc,
the proof is complete.

Proof of Proposition 2.1. Combining Lemmas 3.3 and 3.4 yields that, for n ⩾ 3, the
number of symbols written by Tk while reading the word wnw̃n is at most (1 − (k −
1)2/6k2)|wnw̃n|. Therefore the transducer Tk given above compresses the normal sequence
x = w1w̃1w2w̃2w3w̃3 · · · as soon as the following inequality holds.(

1− (k − 1)2

6k2

)
log(k + 2)

log k
< 1

The first term of the left hand side decreases to 5/6 and the second term decreases to 1.
The inequality is satisfied for k ⩾ 7 since it boils down to 943 < 749.
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