
Logical Methods in Computer Science
Volume 20, Issue 3, 2024, pp. 16:1–16:16
https://lmcs.episciences.org/

Submitted Jul. 01, 2022
Published Aug. 27, 2024

ON TWO-VARIABLE GUARDED FRAGMENT LOGIC WITH

EXPRESSIVE LOCAL PRESBURGER CONSTRAINTS

CHIA-HSUAN LU a AND TONY TAN b

aDepartment of Computer Science, University of Oxford, United Kingdom.
e-mail address: chia-hsuan.lu@cs.ox.ac.uk

bDepartment of Computer Science, University of Liverpool, United Kingdom.
e-mail address: tonytan@liverpool.ac.uk

Abstract. We consider the extension of the two-variable guarded fragment logic with
local Presburger quantifiers. These are quantifiers that can express properties such as “the
number of incoming blue edges plus twice the number of outgoing red edges is at most three
times the number of incoming green edges” and captures various description logics with
counting, but without constant symbols. We show that the satisfiability problem for this
logic is EXP-complete. While the lower bound already holds for the standard two-variable
guarded fragment logic, the upper bound is established by a novel, yet simple deterministic
graph-based algorithm.

1. Introduction

In this paper we consider the extension of two-variable guarded fragment logic with the
so-called local Presburger quantifiers, which we denote by GP2. These are quantifiers that
can express local numerical properties such as “the number of outgoing red edges plus twice
the number of incoming green edges is at most three times the number of outgoing blue
edges.” It was first considered by Bednarczyk, et. al. [BOPT21] and trivially subsumes
GC2 (two-variable guarded fragments with counting quantifiers), which captures various
description logics with counting such as ALCIHQ and ALCIHbself [BHLS17, BCM+03,
Grä98]. Bednarczyk, et. al. [BOPT21] showed that both satisfiability and finite satisfiability
problems are in 3-NEXP by reduction to the two-variable logic with counting quantifiers.

We show that the satisfiability problem for this logic is EXP-complete. The lower bound
is already known for the standard two-variable guarded fragments [Corollary 4.6][Grä99].
Our contribution is the upper bound, which is established by a novel, yet simple deterministic
exponential time algorithm which works similarly to the type elimination approach, first
introduced by Pratt [Pra79]. Intuitively, it starts by representing the input sentence as a
graph whose vertices and edges represent the allowed types. It then successively eliminates
the vertex or edge that contradicts the input sentence until there is no more vertex or edge
to eliminate.

Key words and phrases: Two-variable guarded fragment, local counting constraints, satisfiability, EXP-
complete.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(3:16)2024
© C.-H. Lu and T. Tan
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0009-0008-5446-9150
https://orcid.org/0009-0005-8341-2004
http://creativecommons.org/about/licenses

16:2 C.-H. Lu and T. Tan Vol. 20:3

Our algorithm has a markedly different flavour from the standard tableaux method
usually used to establish the upper bound of guarded fragments. Note that the tableaux
method works by exploiting the so-called tree-like model property, where it tries to construct
a tree-like model using a polynomial space alternating Turing machine and a configuration
of the Turing machine corresponds to an element in the model. To apply this method, it
is essential that there is only a polynomial bound on the branching degree of each node in
the tree and it is not clear whether this bound still holds for GP2. In fact, already for GC2,
the degree can be exponential (when the counting quantifiers are encoded in binary). To
circumvent the exponential blow-up, the EXP upper bound for the satisfiability problem of
GC2 is obtained by first reducing it to three-variable guarded fragments, before applying the
tableaux method [Kaz04]. It was not clear a priori how this technique can be extended to
the satisfiability of GP2.

Acknowledgement. Recently Bednarczyk and Fiuk [BF22] independently obtained the
same EXP upper bound for the satisfiability problem for GP2. Their proof uses the tableaux
method. To avoid the exponential branching degree, they restrict each node in the tableau
to correspond only to the type of an element in a model and it branches only to the
different types of the children element. This method yields an alternating polynomial space
algorithm, hence, a deterministic exponential time algorithm. A brief comparison between
their algorithm and ours is presented in Section 4.5.

Other related work. The guarded fragment is one of the most prominent decidable
fragments of first-order logic [ANvB98]. The satisfiability problem is 2-EXP-complete and
it becomes EXP-complete when the number of variables or the arity of the signature is
fixed [Theorem 4.4 and Corollary 4.6][Grä99]. Various description (DL) and modal (ML)
logics are captured by the fragment when the arity is fixed to two [Grä98, BCM+03, BHLS17].
The key reason for the decidability of the guarded fragment is the tree-like model property
which allows the application of the tableaux method [Var96].

Recently, a deterministic exponential time algorithm for a fragment of the two-variable
logic was proposed by Lin, et. al. [LLT21]. The algorithm there is also a graph-based
algorithm, and has a similar flavour to type-elimination algorithm. However, it is not clear,
a priori, how Lin, et. al.’s algorithm can be extended to GP2.

Pratt-Hartmann [Pra07] proposed an elegant reduction of the satisfiability problem for
GC2 formulas to the solvability of (exponential size) homogeneous instances of Integer Linear
Programming (ILP) which are of the form Ax̄ = 0 ∧Bx̄ ⩾ c̄, where A and B are matrices
with integer entries, x̄ is a (column) vector of variables and c̄ is a vector of integers. To
check whether Ax̄ = 0 ∧ Bx̄ ⩾ c̄ admits a solution in N, it is sufficient to check whether
it admits a solution in Q, which is known to be in PTIME. This implies the EXP upper
bound for both the satisfiability and finite satisfiability problems for GC2.

In general, GP2 captures various description logics with counting such as ALCIHQ and
ALCIHbself, but without nominals [BCM+03]. Note that allowing nominals in GC2 makes
the complexity of the satisfiability problem becomes NEXP-complete [Tob01].

Some logics that allow similar quantifiers as the local Presburger quantifiers were
proposed and studied by various researchers [Baa17, BBR20, DL10, KP10]. The decidability
result is obtained by the tableaux method, but their logics do not allow the inverses of
binary relations.

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:3

The extension of one-variable logic with quantifiers of the form ∃Sx ϕ(x), where S is a
ultimately periodic set, is NP-complete [Bed20]. This logic is similar to the quantifier-free
fragment of Boolean Algebra with Presburger Arithmetic (QFBAPA) introduced by Kuncak
and Rinard [KR07]. Semantically ∃Sx ϕ(x) means the number of x where ϕ(x) holds is in
the set S. The extension of two-variable logic with such quantifiers is later shown to be
2-NEXP by Benedikt, et. al. [BKT20] and the proof makes heavy use of the biregular graph
method introduced by Kopczynski and Tan [KT15] to analyse the spectrum of two-variable
logic with counting quantifiers. These proofs and results do not apply in our setting since
the logics they considered already subsume the two-variable logic.

Organisation. This paper is organised as follows. In Section 2 we define linear constraints
and review two structures of natural numbers for their semantics. One structure is the
standard structure of natural numbers and the other is its extension with ∞ value. In
Section 3 we present the formal definition of GP2. The main result is presented in Section 4.
We conclude with Section 5.

2. Presburger arithmetic

Let N denote the set of natural numbers including 0.

Linear constraints. We assume a countable infinite set X of variables. A linear constraint
ξ is a constraint of the form:

ξ := κ1x1 + · · · + κkxk ⊛ δ + λ1y1 + · · · + λℓyℓ,

where x1, . . . , xk, y1, . . . , yℓ are variables from X , all δ, κ1, . . . , κk, λ1, . . . , λℓ are from N and
⊛ is one of the symbols =, ̸=, ⩽, ⩾, <, >. ≡d or ̸≡d, where d ∈ N− {0}. The relation ≡d

is intended to mean congruence modulo d, i .e., n ≡d m if and only if m,n ∈ N and there is
k1, k2 ∈ N such that n+ k1d = m+ k2d.

We let var(ξ) denote the set of variables that appear in the constraint ξ mentioned
above, i.e., var(ξ) = {x1, . . . , xk, y1, . . . , yℓ}. The coefficients in ξ are the natural numbers
δ, κ1, . . . , κk, λ1, . . . , λℓ which include d when ⊛ is ≡d or ̸≡d.

A finite set C of linear constraints is also called a system of linear constraints, or in short,
system. When convenient, we will also view a system C as a conjunction of its constituent
linear constraints. We let var(C) denote the set

⋃
ξ∈C var(ξ). The coefficients in C are the

coefficients in the linear constraints in C.
We will consider two structures N and N∞ in which the satisfaction of a linear constraint

is defined. Intuitively N is the standard structure of natural numbers and N∞ is its extension
with the value ∞.

The structure N. The semantics of linear constraints can be naturally defined over the
structure of natural numbers N = (N,+, ·,⩽, 0, 1) where +, ·,⩽, 0, 1 are interpreted in the
standard way. Note that by using the relation ⩽ and the equality predicate =, we can define
the relations < and ≡d in N as follows.

• m < n if and only if m ⩽ n and m ̸= n, for every n,m ∈ N.
• n ≡d m if and only if there is k1, k2 ∈ N such that n+ k1d = m+ k2d.

16:4 C.-H. Lu and T. Tan Vol. 20:3

An assignment to the variables in ξ is a mapping F : var(ξ) → N. It satisfies the linear
constraint ξ, if ξ holds in N when each variable x is assigned with the value F (x). A solution
to a system C is an assignment F : var(C) → N that satisfies every linear constraint in C.
If such a solution exists, we say that C admits a solution in N. The following theorem
establishes useful bounds on the solution of a system of linear constraints.

Theorem 2.1. There are constants c1, c2 ∈ N such that for every system C of linear
constraints, the following holds where t = |C| and M is the maximal coefficient in C.1

(1) [ES06, Theorem 1] If C admits a solution in N, then it admits a solution in N in which
the number of variables assigned with non-zero values is at most c1t log2(c2tM).

(2) [Pap81, Theorem]2 If C admits a solution in N, then it admits a solution in N in which
every variable is assigned with a value at most c1t(tM)c2t.

Combining (1) and (2) in Theorem 2.1, we obtain the following corollary, which will be
useful to establish the upper bound of our algorithm.

Corollary 2.2. There are constants c1, c2 ∈ N such that for every system C of linear
constraints, if C admits a solution in N, then it admits a solution in N in which the number
of variables assigned with non-zero values is at most c1t log2(c2tM) and every variable is
assigned with a value at most c1t(tM)c2t, where t = |C| and M is the maximal coefficient in
the system C.

Proof. Let c1, c2 be the constant in Theorem 2.1. Let C be a system of linear constraints,
where t = |C| and M is the maximal coefficient in C. Suppose C admits a solution in N.
By (1) in Theorem 2.1, it admits a solution in N in which the number of variables assigned
with non-zero values is at most c1t log2(c2tM). Let X be the set of variables in var(C) that
are assigned with non-zero values. Thus, |X | ⩽ c1t log2(c2tM).

Let C′ be the system obtained from C by assigning all the variables not in X with
the zero value. Thus, var(C′) = X . Let t′ = |C′| and M ′ be the maximal coefficient
in C′. Note that t′ ⩽ t and M ′ ⩽ M and that C′ admits a solution in N. By (2) in
Theorem 2.1, C′ admits a solution in N in which every variable is assigned with a value
at most c1t

′(t′M ′)c2t
′
⩽ c1t(tM)c2t. This solution of C′ can be extended to a solution of C

where every variable not in X is assigned with zero value.

The structure N∞. We assume a constant symbol ∞ which symbolises the infinite value.
The extension of N with ∞ is the structure N∞ = (N ∪ {∞},+, ·,⩽, 0, 1) where +, ·,⩽
involving elements in N are defined as in N. When ∞ is involved, they are defined as follows.
n <∞ and n+∞ = ∞+ n = ∞+∞ = ∞ for every n ∈ N, n · ∞ = ∞ · n = ∞ for every
n ̸= 0, and 0 · ∞ = ∞ · 0 = 0. An assignment is a mapping F : var(ξ) → N ∪ {∞}. The
notion of a system admitting a solution in N∞ is defined in the similar manner as in N.

Note that the constraint x = x+ 1 does not admit a solution in N, but admits a unique
solution in N∞ where x is assigned with the value ∞. Thus, we can view the satisfiability

1The results by Eisenbrand and Shmonin [ES06, Theorem 1] and Papadimitriou [Pap81, Theorem] are
stated in terms of Integer Linear Programming (ILP), which is a conjunction of a finite number of linear
constraints not involving ≡d and its negation ̸≡d. Since a ≡d b is equivalent to a+ k1d = b+ k2d) for some
k1, k2 ∈ N, it is obvious that the results also hold when ≡d is involved. Note that when C contains a linear
constraint involving ≡d, the integer d is considered a coefficient in C.

2There is only one theorem in the paper by Papadimitriou [Pap81] and it is without a number.

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:5

of a system of linear constraints in N as a special case of the satisfiability in N∞, where we
have the linear constraint x ̸= x+ 1 for every variable x.

It is a folklore result that Corollary 2.2 can be extended to N∞, see, e.g., [Pra15,
Section 2.3]. We state it formally in Corollary 2.3.

Corollary 2.3. There are constants c1, c2 ∈ N such that for every system C of linear
constraints, if C admits a solution in N∞, then it admits a solution in N∞ in which the
number of variables assigned with non-zero values is at most c1t log2(c2tM)) and every
variable is assigned with either ∞ or a value at most c1t(tM)c2t, where t = |C| and M is the
maximal coefficient in C.

3. Two-variable guarded fragment with local Presburger quantifiers (GP2)

We fix a vocabulary Σ consisting of only unary and binary predicates. We do not allow for
constant symbols and we will consider the logic with the equality predicate. As usual, for a
vector x̄ of variables, φ(x̄) denotes a formula φ whose free variables are exactly those in x̄.

Let A be a structure and let a be an element in A. For a formula φ(x, y), we denote

by |φ(x, y)|x/aA the number of elements b such that A, x/a, y/b |= φ(x, y). When the value

|φ(x, y)|x/aA is not finite, we write |φ(x, y)|x/aA = ∞.

Local Presburger (LP) quantifiers. The local Presburger (LP) quantifiers are quantifiers
of the form:

P(x) :=

n∑
i=1

λi ·#ri
y [φi(x, y)] ⊛ δ +

m∑
i=1

κi ·#si
y [ψi(x, y)],

where δ, λi, κi ∈ N; each ri, si is an atom R(x, y) or R(y, x) for some binary relation R; each
φi(x, y), ψi(x, y) is a formula with free variables x and y; and ⊛ is one of the symbols =, ̸=,
⩽, ⩾, <, >, ≡d or ̸≡d, where d ∈ N− {0}. Note that P(x) has precisely one free variable
x. We say that P(x) holds in A, x/a, denoted A, x/a |= P(x), if the (in)equality ⊛ holds

in N∞ when each #ri
y [φi(x, y)] and #si

y [ψi(x, y)] are substituted with |ri(x, y) ∧ φi(x, y)|x/aA
and |si(x, y) ∧ ψi(x, y)|x/aA , respectively.

Note that the negation of the LP quantifier P(x) stated above is obtained by changing
the relation symbol ⊛ to its negated counterpart, i.e., the symbol = is changed to ̸=, ⩽
to >, ≡d to ̸≡d and so on. For example, the negation of 3 · #R(x,y)

y [φ(x, y)] ≡5 7 is

3 ·#R(x,y)
y [φ(x, y)] ̸≡5 7.
In the following, to avoid clutter, we will allow the constants in an LP quantifier to be

negative integers and write it in the form:

P(x) :=
n∑

i=1

λi ·#ri
y [φi(x, y)] ⊛ δ

When we do so, it is implicit that we mean the LP quantifier obtained after rearranging the
terms so that none of the coefficients are negative integers. For example, when we write:

3 ·#R(x,y)
y [φ(x, y)] − 2 ·#S(y,x)

y [ψ(x, y)] = −7,

we mean:
2 ·#S(y,x)

y [ψ(x, y)] = 7 + 3 ·#R(x,y)
y [φ(x, y)].

16:6 C.-H. Lu and T. Tan Vol. 20:3

We say that a quantifier P(x) is in basic form, if it is of the form:

P(x) :=
n∑

i=1

λi ·#Ri(x,y)
y [φi(x, y)] ⊛ δ,

where each φi(x, y) is either the equality x = y or the inequality x ̸= y.

Remark 3.1. With LP quantifiers one can state whether an element has finite or infinitely
many outgoing edges. Consider the following LP quantifier:

P∞(x) := #R(x,y)
y [⊤] = #R(x,y)

y [⊤] + 1.

Since the equality only holds when |R(x, y)|x/aA = ∞, it follows that A, x/a |= P∞(x) if and
only if there are infinitely many outgoing R-edges from a in the structure A.

Note that the negation of P∞(x) is:

Pfin(x) := #R(x,y)
y [⊤] ̸= #R(x,y)

y [⊤] + 1.

Thus, A, x/a |= Pfin(x) if and only if there are finitely many outgoing R-edges from a in the
structure A.

The guarded fragment class. The class GF of guarded fragment logic is the smallest set
of first-order formulas such that:3

• GF contains all atomic formulas R(x̄) and equalities between variables.
• GF is closed under boolean combinations.
• If φ(x̄) is in GF, R(z̄) is an atom and x̄, ȳ ⊆ z̄, then both ∃ȳ R(z̄)∧φ(x̄) and ∀ȳ R(z̄) → φ(x̄)
are also in GF.

We define the class GP to be the extension of GF with LP quantifiers, i.e., by adding the
following rule.

• An LP quantifier P(x) :=
∑n

i=1 λi ·#ri
y [φi(x, y)] ⊛ δ is in GP if and only if each φi(x, y)

is in GP.

We denote by GP2 the restriction of GP to formulas using only two variables: x and y. As
before, when considering GP2 formulas, we assume that the vocabulary is Σ, i.e., the arities
of the predicates is at most 2 and there is no constant symbol.

Remark 3.2. The standard quantifiers ∀ and ∃ in GF2 can be expressed using LP quantifiers.
The universal quantifier ∀y r(x, y) → φ(x, y) is equivalent to:

#r(x,y)
y [¬φ(x, y)] = 0,

and ∃y r(x, y) ∧ φ(x, y) is equivalent to:

#r(x,y)
y [φ(x, y)] ⩾ 1.

It is also for this reason that we call LP quantifiers “local Presburger quantifiers” as it allows
us the Presburger arithmetic reasoning on the neighbourhood of an element. The term
“quantifier” in this case is similar in spirit with Härtig quantifiers (cardinality comparison
quantifiers) [Här62, HaAPV91] and ultimately periodic counting quantifiers [BKT20].

3In this paper x̄, ȳ, z̄ denote vectors of variables and x̄ ⊆ z̄ means that all the variables that appear in x̄
also appear in z̄.

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:7

We denote by SAT(GP2) the problem that on input GP2 formula φ, decides if it is
satisfiable. The following lemma states that it suffices to consider only GP2 formulas in a
normal form.

Lemma 3.3. There is a linear time algorithm that converts a GP2 formula into an equisat-
isfiable first-order formula in the normal form (over an extended signature):

Ψ := ∀x γ(x) ∧
k∧

i=1

∀x∀y αi(x, y) ∧
ℓ∧

i=1

∀x
(
qi(x) → Pi(x)

)
, (3.1)

where

• γ(x) is a quantifier-free formula,
• each αi(x, y) is a quantifier-free formula of the form:

(R(x, y) ∧ x ̸= y) → β(x, y)

where R(x, y) is an atomic formula and β(x, y) is a quantifier-free formula,
• each qi(x) is an atomic formula,
• each Pi(x) is an LP quantifier in the basic form.

Proof. The proof uses a routine renaming technique (see, e.g., [Kaz04, Pra07]). For com-
pleteness, we present it here. By pushing the negation inward, we can assume that the input
formula is in negation normal form, i.e., every negation is applied only on atomic formulas.
Intuitively we rename each subformula of one free variable with a fresh unary predicate.
The renaming is done bottom-up starting from the subformula with the lowest quantifier
rank. We consider four cases.

• Case 1: A subformula in the form of an LP quantifier:

P(x) :=

n∑
i=1

λi ·#ri
y [φi(x, y)] ⊛ δ (3.2)

where each φi(x, y) is quantifier-free.
• Case 2: A subformula with one free variable x of the form:

ψ(x) := φ1(x) ∧ φ2(x) (3.3)

where φ1(x) and φ2(x) are quantifier-free.
• Case 3: A subformula with one free variable x of the form:

ψ(x) := ∀y r(x, y) → φ(x, y) (3.4)

where φ(x, y) is quantifier-free.
• Case 4: A subformula with one free variable x of the form:

ψ(x) := ∃y r(x, y) ∧ φ(x, y) (3.5)

where φ(x, y) is quantifier-free.

All the other cases can be handled in a similar manner.
We start with Case 1. Let P(x) be an LP quantifier in form of (3.2). We will first

convert it to the basic form. We introduce new binary predicates R1, . . . , Rn and rewrite
P(x) into P ′(x) as:

P ′(x) :=

n∑
i=1

λi ·#Ri(x,y)
y [x = y] + λi ·#Ri(x,y)

y [x ̸= y] ⊛ δ.

16:8 C.-H. Lu and T. Tan Vol. 20:3

It is useful to note that P ′(x) is actually equivalent to
∑n

i=1 λi ·#
Ri(x,y)
y [⊤] ⊛ δ.

Obviously, P ′(x) is in the basic form. Then we replace P ′(x) with a fresh unary predicate
symbol q(x) and add the following conjunct to the original formula.

∀x q(x) → P ′(x).

We further add the conjunct that asserts that each Ri(x, y) is equivalent to ri(x, y)∧φi(x, y):

n∧
i=1

∀x∀y Ri(x, y) →
(
ri(x, y) ∧ φi(x, y)

)
∧

n∧
i=1

∀x∀y ri(x, y) → (φi(x, y) → Ri(x, y)).

Finally note that each sentence of the form ∀x∀y S(x, y) → ζ(x, y), where S(x, y) is atomic
and ζ(x, y) is quantifier-free, can be rewritten into the form:

∀x S(x, x) → ζ(x, x) ∧ ∀x∀y S(x, y) ∧ x ̸= y → ζ(x, y).

This finishes the renaming for Case 1.
For Case 2, i.e., a subformula ψ(x) in the form of (3.3), we replace ψ(x) with a fresh

unary predicate symbol q(x) and add the following conjunct to the original formula.

∀x q(x) →
(
φ1(x) ∧ φ2(x)

)
.

Note that ∀x q(x) → (φ1(x)∧φ2(x)) is in the form of the first part of (3.1). Since
∧

i ∀xγi(x)
is equivalent to ∀x

∧
i γi(x), adding such conjunct does not violate the form of (3.1).

Finally, for Cases 3 and 4, i.e., a subformula ψ(x) in the form of (3.4) or (3.5), we can
rewrite it into an LP quantifier as in Remark 3.2 and proceed according to Case 1.

We perform such renaming procedure repeatedly until we obtain a GP2 sentence in
normal form (3.1). This completes the proof of Lemma 3.3.

Remark 3.4. We also note that if the sentence Ψ in normal form (3.1) is satisfiable, then it
is satisfied by an infinite model. Indeed, let A be a model of Ψ. We make infinitely many
copies of A, denoted by A1,A2, . . ., and disjoint union them all to obtain a new model B.
For every pair (a, b), where a and b do not come from the same Ai, we set (a, b) not to be in
any binary relation RB. It is routine to verify that B still satisfies Ψ.

We also note that there is a GP2 sentence that is satisfied only by infinite models.
Consider the following sentence with one unary predicate U and one binary predicate R.

Φ := ∀x U(x) ∧ ∀x
(
U(x) → #R(x,y)

y [⊤] = 2
)

∧ ∀x
(
U(x) → #R(y,x)

y [⊤] ⩽ 1
)

Intuitively, Φ states that every element must belong to the unary predicate U and that every
element has exactly two outgoing R-edges and at most one incoming R-edge. It is routine
to verify that an infinite binary tree (whose vertices are all in U) satisfies Φ and that every
model of Φ must be infinite.

4. The satisfiability of (GP2) with arithmetic over N∞

We introduce some terminology in Section 4.1. Then, we show how to represent GP2 formulas
as graphs in Section 4.2. The algorithm is presented in Section 4.3 and the analysis is in
Section 4.4. In Section 4.5 we make a brief comparison between our algorithm and the
approach by Bednarczyk and Fiuk [BF22]. Throughout this section we fix a sentence Ψ in
the normal form (3.1) over the signature Σ.

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:9

4.1. Terminology. A unary type (over Σ) is a maximally consistent set of atomic and
negated atomic formulas using only variable x, including atoms such as r(x, x) and their
negations ¬r(x, x). Similarly, a binary type is a maximally consistent set of binary atoms
and negations of atoms containing x ̸= y, where each atom or its negation uses two variables
x and y. The binary type that contains only the negations of atomic predicates from Σ is
called the null type, denoted by ηnull. All the other binary types are called non-null types.

Note that we require that each atom and the negation of an atom in a binary type
explicitly mentions both x and y and x ̸= y. This is a little different from the standard
definitions, such as the ones defined by Gradel, et. al. [GKV97] and Pratt-Hartmann [Pra05],
where a binary type may contain unary atoms or negations of unary atoms involving only x
or y. The purpose of such deviation is to make the disjointness between the set of unary
types and the set of binary types, which is only for technical convenience.

Note also that both unary and binary types can be identified with the quantifier-free
formula formed as the conjunction of its constituent formulas. We will use the symbols
π and η (possibly indexed) to denote unary and binary types, respectively. When viewed
as formulas, we write π(x) and η(x, y), respectively. We write π(y) to denote the formula
π(x) with x being substituted with y. We denote by η(x, y) the “reverse” of η(x, y), i.e., the
binary type obtained by swapping the variables x and y. Let Π denote the set of all unary
types over Σ and let K be the set of all non-null binary types over Σ.

For a structure A (over Σ), the type of an element a ∈ A is the unique unary type
π that a satisfies in A. Similarly, the type of a pair (a, b) ∈ A × A, where a ̸= b, is the
unique binary type that (a, b) satisfies in A. The configuration of a pair (a, b) is the tuple
(π, η, π′) where π and π′ are the types of a and b, respectively, and η is the type of (a, b).
It is a non-null configuration when η is a non-null type. In this case we will also say that
b is a (η, π′)-neighbour of a in the structure A. When (η, π′) is clear from the context,
we will simply say that b is a neighbour of a. The set of all neighbours of a is called the
neighbourhood of a.

We say that a unary type π is realised in A, if there is an element whose type is π.
Likewise, a configuration (π, η, π′) is realised in A, if there is a pair (a, b) whose configuration
is (π, η, π′).

The graph representation. In this paper the term graph means finite edge-labelled directed
graph G = (V,E), where V ⊆ Π and E ⊆ V ×K × V . We can think of an edge (π, η, π′) as
a potential configuration for a pair in a structure. We allow multiple edges between two
vertices provided that they have different labels. Similarly, we also allow multiple self-loops
on a vertex provided that they have different labels.

Let NG(π) denote the set {(η, π′)|(π, η, π′) ∈ E}, i.e., the set of all the edges going out
from π. A graphH = (V ′, E′) is a subgraph ofG = (V,E) if V ′ ⊆ V and E′ ⊆ E∩(V ′×K×V ′).
If V ′ ̸= ∅, we call H a non-empty subgraph of G.

Definition 4.1 below provides the link between structures and graphs.

Definition 4.1. A structure A conforms to a graph G, if all of the following conditions
hold.

• If a type π is realised in A, then π is a vertex in G.
• If a configuration (π, η, π′) is realised in A, where η is a non-null type, then (π, η, π′) is an
edge in G.

16:10 C.-H. Lu and T. Tan Vol. 20:3

Next, we show how the sentence Ψ can be represented as a graph. Recall that Ψ is a
GP2 sentence in the normal form (3.1). We need the following two definitions.

Definition 4.2. A unary type π is compatible with Ψ, if π(x) |= γ(x).

Definition 4.3. A configuration (π, η, π′) is compatible with Ψ, if both π and π′ are
compatible with Ψ and for each 1 ⩽ i ⩽ k:

π(x) ∧ η(x, y) ∧ π′(y) |= αi(x, y) and π(y) ∧ η(x, y) ∧ π′(x) |= αi(x, y).

Recall that for each unary type π, for each predicate U(x), exactly one of U(x) or ¬U(x)
belongs to π. Thus, to determine whether π(x) |= γ(x), it suffices to assign each atom U(x)
in γ(x) according to the type π, i.e., we assign an atom U(x) with true, if U(x) belongs to
π and false, otherwise, and evaluate the boolean value of γ(x) according to the standard
semantics of ∧, ∨ and ¬. Therefore, determining whether π is compatible with Ψ can be
done in polynomial time in the size of π and the length of Ψ. Similarly, since a configuration
(π, η, π′) determines the truth value of each atom in each αi(x, y), determining whether it is
compatible with a formula Ψ can be done in polynomial time in the size of π, η, π′ and the
length of Ψ. Thus, listing all compatible unary types and configurations takes exponential
time in the length of Ψ.

The sentence Ψ defines a directed graph GΨ, where the vertices are the unary types that
are compatible with Ψ and the edges are (π, η, π′), for every (π, η, π′) compatible with Ψ.
Note that the graph GΨ is “symmetric” in the sense that (π, η, π′) is an edge if and only if
(π′, η, π) is an edge.

Intuitively, the vertices in the graph GΨ are the unary types that do not violate ∀x γ(x)
and the edges are the binary types that do not violate the conjunct

∧k
i=1 ∀x∀y αi(x, y). Note

that if a structure A satisfies Ψ, then it is necessary that A conforms to the graph GΨ. In
the next section, we will show how to analyse the graph GΨ to infer whether the conjunct∧ℓ

i=1 ∀x qi(x) → Pi(x) can also be satisfied.

4.2. The characterisation of the satisfiability of Ψ. Recall that Ψ is a sentence in
normal form (3.1). For each 1 ⩽ i ⩽ ℓ, let the LP quantifier Pi(x) be:

Pi(x) :=

ti∑
j=1

λi,j ·#
Ri,j(x,y)
y [x ̸= y] +

t′i∑
j=1

λ′i,j ·#
R′

i,j(x,y)
y [x = y] ⊛i δi.

For a graph G, a vertex π in G and 1 ⩽ i ⩽ ℓ, we define the linear constraint QG,π
i :

QG,π
i :=

ti∑
j=1

λi,j ·

(∑
(η′,π′)∈NG(π)

and Ri,j(x,y)∈η′

zη′,π′

)
+

t′i∑
j=1

λ′i,j · χi,j ⊛i δi,

where χi,j is 1, if R′
i,j(x, x) is in π and 0, otherwise.

The variables in QG,π
i are zη′,π′ , for every (η′, π′) ∈ K × Π. Intuitively, each zη′,π′

represents the number of (η′, π′)-neighbours of an element with type π. Since every element
and every pair of elements has a unique unary and binary type, we can partition the
neighbourhood of each element according to the unary and binary types. This is the reason

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:11

each #
Ri,j(x,y)
y [x ̸= y] is replaced with the sum:∑

(η′,π′) ∈ NG(π)
and Ri,j(x,y) ∈ η′

zη′,π′ .

The coefficient χi,j indicates whether an element with type π has a R′
i,j-loop to itself. We

formalise this intuition in Lemma 4.4.

Lemma 4.4. Let G be a graph and A be a structure that conforms to G. Let 1 ⩽ i ⩽ ℓ.

Suppose there is an element a in A whose type is π and A, x/a |= Pi(x). Then, QG,π
i admits

a solution in N∞.

Proof. Let G, A, a and π be as in the hypothesis of the lemma. For every (η′, π′) ∈ NG(π),
let Dη′,π′ be the set of (η′, π′)-neighbours of a in A.

Note that for every neighbour b of a, there is exactly one (η′, π′) ∈ NG(π) where b ∈ Dη′,π′ .
In other words, the sets Dη′,π′ ’s partition the neighbourhood of a. Since A, x/a |= Pi(x), by
the semantics of the LP quantifier, the following holds.

ti∑
j=1

λi,j · |Ri,j(x, y) ∧ x ̸= y|x/aA +

t′i∑
j=1

λ′i,j · |R′
i,j(x, y) ∧ x = y|x/aA ⊛i δi.

Observe also that:

|Ri,j(x, y) ∧ x ̸= y|x/aA =
∑

(η′,π′)∈NG(π)
and Ri,j(x,y)∈η′

|Dη′,π′ |.

Furthermore, each |R′
i,j(x, y) ∧ x = y|x/aA is 1, if R′

i,j(x, x) is in π; and 0, otherwise. Hence,

|R′
i,j(x, y)∧x = y|x/aA is precisely the definition of χi,j . Thus, the assignment zη′,π′ 7→ |Dη′,π′ |

for each (η′, π′) ∈ NG(π) is a solution to the linear constraint QG,π
i .

Next, we define a system of linear constraints that captures whether a certain configura-
tion can be realised.

Definition 4.5. For an edge (π1, η, π2) in a graph G, let ZG
π1,η,π2

be the following system of
linear constraints:

zη,π2 ⩾ 1 ∧
∧

i s.t. qi(x)∈π1

QG,π1
i

Note that ZG
π1,η,π2

contains only the linear constraint QG,π1
i when the unary predicate

qi(x) belongs to π1. The intuitive meaning of ZG
π1,η,π2

is as follows. If it does not admit a
solution in N∞, then the configuration (π1, η, π2) is not realised in any model of Ψ. This

is because either zη,π2 must be zero, or QG,π1
i is violated for some i where qi(x) ∈ π1. Its

formalisation is stated as Lemma 4.6.

Lemma 4.6. Let G be a graph and A be a structure that conforms to G. Suppose there is a

pair (a, b) in A whose configuration is (π1, η, π2) and that A, x/a |=
∧ℓ

i=1(qi(x) → Pi(x)).
Then, the system ZG

π1,η,π2
admits a solution in N∞.

16:12 C.-H. Lu and T. Tan Vol. 20:3

Proof. Let G, A, a, b and (π1, η, π2) be as in the hypothesis. Using the same notation in
Lemma 4.4, let Dη′,π′ denote the set of (η′, π′)-neighbours of a, for every (η′, π′) ∈ K ×Π.
Since the configuration of (a, b) is (π1, η, π2), we have Dη,π2 ̸= ∅ and hence, |Dη,π2 | ⩾ 1.

Since A, x/a |=
∧ℓ

i=1 qi(x) → Pi(x), it is immediate that the assignment zη′,π′ 7→ |Dη′,π′ | is
a solution to the system ZG

π1,η,π2
.

To infer the satisfiability of Ψ from the graph GΨ, we will need some more terminology.

Definition 4.7. An edge (π1, η, π2) is a bad edge in a graph G (w.r.t. the sentence Ψ), if
the system ZG

π1,η,π2
does not admit a solution in N∞.

Note that by Lemma 4.6, if (π1, η, π2) is a bad edge in G, then there is no model
A that conforms to G such that the configuration (π1, η, π2) is realized in A and that
A |= ∀x (qi(x) → Pi(x)) for every 1 ⩽ i ⩽ ℓ.

Next, we define its analogue for the vertices in G.

Definition 4.8. A vertex π is a bad vertex in G (w.r.t. the sentence Ψ), if all of the following
conditions hold.

• It does not have any outgoing edge in G.

• There is 1 ⩽ i ⩽ ℓ such that π contains qi(x), but the system QG,π
i does not admit the

zero solution, i.e., the solution where all the variables are assigned with zero.

The intended meaning of a bad vertex π is that there cannot be a model A of Ψ in
which π is realised. We are now ready for the final terminology which will be crucial for
deciding the satisfiability of Ψ.

Definition 4.9. Let G be a graph and H be a non-empty subgraph of G. We say that H is
a good subgraph of G, if all of the following conditions hold.

• There is no bad vertex and no bad edge in H (w.r.t. the sentence Ψ).
• It is symmetric in the sense that (π, η, π′) is an edge in H if and only if (π′, η, π) is an
edge in H.

Theorem 4.10 states that the satisfiability of Ψ is equivalent to the existence of a good
subgraph in GΨ.

Theorem 4.10. Let Ψ be a GP2 sentence in normal form (3.1). Then, Ψ is satisfiable if
and only if there is a good subgraph in GΨ.

Proof. (only if) Let A |= Ψ. Let H be the graph where the vertices are the unary types
realised in A and the edges are the configurations realised in A. Obviously, H is symmetric
and a non-empty subgraph of GΨ such that A conforms to H. It remains to show that there
is no bad edge and no bad vertex in H.

Let (π1, η, π2) be an edge in H. By definition, there is a pair (a, b) in A whose

configuration is (π1, η, π2). Since A |= Ψ, we have A, x/a |=
∧ℓ

i=1 qi(x) → Pi(x). By
Lemma 4.6, the system ZH

π1,η,π2
admits a solution in N∞, and hence, by definition, (π1, η, π2)

is not a bad edge in H.
Next, we show that H does not contain any bad vertex. Assume to the contrary that

there is a bad vertex π in H. By definition, π does not have any outgoing edge in H. By
the construction of H, there is an element a in A whose type is π and for every relation

Ri,j(x, y), we have
∣∣Ri,j(x, y)∧x ̸= y

∣∣x/a
A = 0. Since A |= Ψ, we have A, x/a |= qi(x) → Pi(x)

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:13

for every 1 ⩽ i ⩽ ℓ. In particular, for every 1 ⩽ i ⩽ ℓ such that π contains qi(x), the system

QH,π
i admits the zero solution. This contradicts the assumption that π is a bad vertex.
(if) Let H = (V,E) be a good subgraph of GΨ. We will show how to construct a model

A |= Ψ that conforms to H. Let Ψ be a GP2 sentence as in Eq. (3.1). We consider two cases.
Case 1: There is a vertex π ∈ V that does not have any outgoing edge in H.
Let A be the structure that contains only one element whose unary type is π. Since H

is a subgraph of GΨ, the unary type π is compatible with Ψ, i.e., π(x) |= γ(x). Hence, A
satisfies the part ∀x γ(x). Since A contains only one element, it trivially satisfies the part∧k

i=1 ∀x∀y αi(x, y).

We now show that A satisfies the third part
∧ℓ

i=1 ∀x qi(x) → Pi(x). Note that π is not
a bad vertex since H is a good subgraph of GΨ. Since π does not have any outgoing edge,

by definition, for every 1 ⩽ i ⩽ ℓ, where π contains qi(x), the system QG,π
i admits the zero

solution. Since there is only one element in the structure A, it has no neighbours and hence,
the structure A satisfies the part

∧
1⩽i⩽ℓ ∀x qi(x) → Pi(x).

Case 2: Every vertex in V has at least one outgoing edge in H.
We will build a tree-like model structure A that satisfies Ψ. In the construction of the

tree, the term (η′, π′)-children of a node a means the children of a with unary type π′ and
binary type of (a, b) is η′.

The construction of A is as follows. We pick a vertex π ∈ V and start with a single
element a and sets its unary type as π. We then pick an arbitrary outgoing edge (π, η, π0)
in H. Since H is a good subgraph of GΨ, the edge (π, η, π0) is a good edge. So, by definition,
the system ZH

π,η,π0
admits a solution in N∞. Let zη′,π′ 7→ Mη′,π′ for every η′, π′ be the

solution. We add “fresh” elements b1, b2, . . . as the children of a such that for every η′, π′,
the number of (η′, π′)-neighbours of a is precisely Mη′,π′ .

We continue with the same process for the elements b1, b2, For each j = 1, 2, . . .,
let πj be the type of bj and ηj be the type of (bj , a). Consider the system ZH

πj ,ηj ,π which

admits a solution in N∞. Let zη′′,π′′ 7→ Mη′′,π′′ for every η′′, π′′ be the solution. We add
“fresh” elements cj,1, cj,2, . . . as the children of bj such that for every η′′, π′′:

• If (η′′, π′′) = (ηj , πj), the (η′′, π′′)-children of bj is precisely Mη′′,π′′ − 1.
Here we need the term −1 since the parent node a is (η′′, π′′)-neighbour of bj .

• If (η′′, π′′) ̸= (ηj , πj), the (η′′, π′′)-children of bj is precisely Mη′′,π′′ .

We repeat the same process for the elements cj,1, cj,2, . . . ad infinitum and obtain an infinite
tree-like model A. We now show A satisfies Ψ. Note that H is a subgraph of GΨ. By
the construction of GΨ, every unary type and configurations are compatible with Ψ. Since
A conforms to H, it is immediate that A satisfies the part ∀x γ(x), as well as the part∧k

i=1 ∀x∀y αi(x, y). That A satisfies the part
∧ℓ

i=1 ∀x qi(x) → Pi(x) follows from the
construction of the children of each element in A.

4.3. The algorithm. Theorem 4.10 tells us that to decide if Ψ is satisfiable, it suffices
to find if GΨ contains a good subgraph. It can be done as follows. First, construct the
graph GΨ. Then, repeatedly delete the bad edges and bad vertices from GΨ. It stops when
there is no more bad edge or vertex to delete. If the graph ends up not containing any
vertices, then Ψ is not satisfiable. If the graph still contains some vertices, then it is a good
subgraph of GΨ and by Theorem 4.10, Ψ is satisfiable. Its formal presentation can be found

16:14 C.-H. Lu and T. Tan Vol. 20:3

in Algorithm 4.11. It is worth noting that deleting a bad edge may yield a new bad edge,
hence the while-loop.

Algorithm 4.11.

Input: A sentence Ψ in normal form (3.1).
Output: Accept if and only if Ψ is satisfiable.
1: G := GΨ.
2: while G has a bad edge do
3: Delete the bad edge and its inverse from G.
4: Delete all bad vertices (if there is any) from G.
5: ACCEPT if and only if G is not an empty graph.

4.4. The complexity analysis of Algorithm 4.11. We start with the following lemma.

Lemma 4.12. Algorithm 4.11 can be implemented using a quantifier-free Presburger arith-
metic solver as a black box and the number of calls to such solver is bounded by 24n+8m,
where n and m is the number of unary and binary predicates in the input sentence Ψ.

Proof. Note that there are 2n+m unary types and 22m binary types. Here it is useful to
recall that atoms such as R(x, x) are considered unary predicates. Thus, the graph GΨ has
at most 22n+4m edges. In each iteration we check whether each edge is a bad edge, hence,
there is at most 22n+4m number of calls to the Presburger arithmetic solver. After each
iteration there is at most one less edge, hence, the 24n+8m upper bound.

Next, we show that checking whether the system ZG
π1,η,π2

admits a solution in N∞ can
be done in non-deterministic polynomial time, and hence, in deterministic exponential time,
in the length of the input Ψ.

Lemma 4.13. For every edge (π1, η, π2) in G, checking whether the system ZG
π1,η,π2

admits
a solution in N∞ takes non-deterministic polynomial time in the length of the input sentence.

Proof. Let Ψ be the input sentence in the normal form (3.1), where n and m are the number
of unary and binary relation symbols in Ψ. Thus, there are 2n+m unary types and 22m

binary types. Moreover, the system ZG
π1,η,π2

contains at most ℓ+ 1 linear constraints and

2n+3m variables.
Here we invoke Corollary 2.3 which states that there are constants c1, c2 such that

if ZG
π1,η,π2

admits a solution in N∞, then the number of variables assigned with non-zero

values is c1ℓ log2(c2ℓM)) and each value is either ∞ or at most c1ℓ(ℓM)c2ℓ, where M is the
maximal non-∞ constant in the system ZG

π1,η,π2
. Note that the value c1ℓ(ℓM)c2ℓ takes only

polynomially many bits in the length of Ψ.
We can thus design a non-deterministic polynomial time algorithm for checking the

satisfiability of ZG
π1,η,π2

: Guess the set of variables that are supposed to take non-zero values

and their values and ACCEPT if and only if it is indeed a solution for ZG
π1,η,π2

.

Since constructing the graph GΨ takes exponential time, combining it with Lemmas 4.12
and 4.13 implies the exponential time upper bound of Algorithm 4.11.

Theorem 4.14. Algorithm 4.11 runs in exponential time in the length of the input sentence.

Vol. 20:3 GF2 WITH LOCAL PRESBURGER CONSTRAINTS 16:15

We remark that the exponential time upper bound of Algorithm 4.11 also holds when
the semantics of LP quantifiers is defined on the structure N. The proof is exactly the same.
The only difference is we invoke Corollary 2.2 instead of Corollary 2.3.

4.5. Comparison with the approach by Bednarczyk and Fiuk [BF22]. An alternating
polynomial space algorithm was proposed Bednarczyk and Fiuk [BF22] for deciding the
satisfiability of GP2 sentences.4 Intuitively, it tries to build a tree-like model that satisfies
the input sentence (if satisfiable). It starts by guessing the unary type of the root node and
all the unary types of its children as well as the binary types of the edges connecting them.
Using Theorem 2.1, the number of different unary types of the children is polynomially
bounded (in the length of the input sentence).5 To verify that the LP quantifiers are satisfied,
it guesses a solution that respects the guessed binary types of the edges connecting the root
nodes and the children.

In comparison, our algorithm is a straightforward deterministic algorithm that can be
implemented easily using available Presburger solvers as a black box. Nevertheless our
algorithm is worst-case optimal, as even in the best case scenario it still requires exponential
time to build the graph representation, in contrast to the tableaux based approaches whose
performance can be efficient depending on the instances.

5. Concluding remarks

In this paper we consider the extension of GF2 with the local Presburger quantifiers which can
express rich Presburger constraints while maintaining a deterministic exponential time upper
bound. It captures various natural DLs with counting up to ALCIHbself and ALCIHQ
without constant symbols. The proof is via a novel, yet simple algorithm, which is reminiscent
of the type-elimination approach.

We note that the proof of Theorem 4.10 relies on the infinity of the model. We leave a
similar characterization for the finite models for future work. It is worth noting that the
finite satisfiability of GP2 has been shown to be decidable in 3-NEXP [BOPT21], though
the precise complexity is still not known.

Acknowledgment

We thank Bartosz Bednarczyk for his comments on the preliminary drafts of this work. We
would like to thank the anonymous reviewers for their detailed and constructive feedback
which greatly improve the presentation of this paper. This work was done when both authors
were in National Taiwan University. We acknowledge generous financial support of Taiwan
Ministry of Science and Technology under grant no. 109-2221-E-002-143-MY3.

4It is well known that the class of languages decidable by alternating polynomial space Turing machines is
equivalent to the class of languages decidable by deterministic exponential time Turing machines [CKS81].

5Note that the bound only holds for the number of unary types of the children, not the number of children
itself which can be exponential.

16:16 C.-H. Lu and T. Tan Vol. 20:3

References

[ANvB98] H. Andréka, I. Németi, and J. van Benthem. Modal languages and bounded fragments of predicate
logic. J. Philos. Log., 27(3):217–274, 1998.

[Baa17] F. Baader. A new description logic with set constraints and cardinality constraints on role
successors. In FroCoS, 2017.

[BBR20] F. Baader, B. Bednarczyk, and S. Rudolph. Satisfiability and query answering in description
logics with global and local cardinality constraints. In ECAI, 2020.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

[Bed20] B. Bednarczyk. One-variable logic meets presburger arithmetic. Theor. Comput. Sci., 802:141–146,
2020.

[BF22] B. Bednarczyk and O. Fiuk. Presburger büchi tree automata with applications to logics with
expressive counting. In WoLLIC, 2022.

[BHLS17] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description Logic. Cambridge
University Press, 2017.

[BKT20] M. Benedikt, E. Kostylev, and T. Tan. Two variable logic with ultimately periodic counting. In
ICALP, 2020.

[BOPT21] B. Bednarczyk, M. Orlowska, A. Pacanowska, and T. Tan. On classical decidable logics extended
with percentage quantifiers and arithmetics. In FSTTCS, 2021.

[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
[DL10] S. Demri and D. Lugiez. Complexity of modal logics with presburger constraints. J. Appl. Log.,

2010.
[ES06] F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer cones. Oper. Res. Lett.,

34(5):564–568, 2006.
[GKV97] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order logic.

Bull. Symbolic Logic, 3(1):53–69, 03 1997.
[Grä98] E. Grädel. Description logics and guarded fragments of first order logic. In DL, 1998.
[Grä99] E. Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
[HaAPV91] H. Herre, M. Krynicki anbd A. Pinus, and J. Väänänen. The härtig quantifier: a survey. Journal

of Symbolic Logic, 56:1153–1183, 1991.
[Här62] K. Härtig. Uber einen quantifikator mit zwei wirkungsbereichen, 1962.
[Kaz04] Y. Kazakov. A polynomial translation from the two-variable guarded fragment with number

restrictions to the guarded fragment. In JELIA, 2004.
[KP10] C. Kupke and D. Pattinson. On modal logics of linear inequalities. In AiML, 2010.
[KR07] V. Kuncak and M. Rinard. Towards efficient satisfiability checking for boolean algebra with

presburger arithmetic. In CADE, 2007.
[KT15] E. Kopczynski and T. Tan. Regular graphs and the spectra of two-variable logic with counting.

SIAM J. Comput., 44(3):786–818, 2015.
[LLT21] T. Lin, C. Lu, and T. Tan. Towards a more efficient approach for the satisfiability of two-variable

logic. In LICS, 2021.
[Pap81] C. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768, 1981.
[Pra79] V. R. Pratt. Models of program logics. In FOCS, 1979.
[Pra05] I. Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. Journal

of Logic, Language and Information, 14(3):369–395, 2005.
[Pra07] I. Pratt-Hartmann. Complexity of the guarded two-variable fragment with counting quantifiers.

J. Log. Comput., 17(1):133–155, 2007.
[Pra15] I. Pratt-Hartmann. The two-variable fragment with counting and equivalence. Math. Log. Q.,

61(6):474–515, 2015.
[Tob01] S. Tobies. Complexity results and practical algorithms for logics in knowledge representation.

PhD thesis, RWTH Aachen University, Germany, 2001.
[Var96] M. Vardi. Why is modal logic so robustly decidable? In DIMACS Workshop, 1996.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Presburger arithmetic
	3. Two-variable guarded fragment with local Presburger quantifiers GP²
	4. The satisfiability of GP² with arithmetic over 𝔑∞
	4.1. Terminology
	4.2. The characterisation of the satisfiability of Ψ
	4.3. The algorithm
	4.4. The complexity analysis of Algorithm 4.11
	4.5. Comparison with the approach by Bednarczyk and Fiuk [BF22]

	5. Concluding remarks
	Acknowledgment
	References

