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Abstract. In the timeline-based approach to planning, the evolution over time of a set of
state variables (the timelines) is governed by a set of temporal constraints. Traditional
timeline-based planning systems excel at the integration of planning with execution by
handling temporal uncertainty. In order to handle general nondeterminism as well, the
concept of timeline-based games has been recently introduced. It has been proved that
finding whether a winning strategy exists for such games is 2EXPTIME-complete. However,
a concrete approach to synthesize controllers implementing such strategies is missing. This
article fills the gap by providing an effective and computationally optimal approach to
controller synthesis for timeline-based games.

1. Introduction

Automated planning is the field of artificial intelligence that studies the development of
autonomous agents able of reasoning about how to reach some goals, starting from a high-
level description of their operating environment. It is one of the most studied fields of AI,
with early work going several decades back [MH69, FN71]. Most of the research by the
planning community focuses on the action-based approach, where planning problems are
modeled in terms of actions that an agent has to perform to suitably change its state. The
task is to devise a sequence of such actions that lead to the goal when executed starting
from a given initial state [FN71, FL03].

In this paper, we focus on the alternative paradigm of timeline-based planning, an
approach born and developed in the space sector [Mus94]. In timeline-based planning,
there is no explicit separation among actions, states, and goals. Planning domains are
represented as systems of independent but interacting components, whose behavior over
time, the timelines, is governed by a set of temporal constraints, called synchronization
rules.
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Over the years, timeline-based planning systems have been developed and successfully
exploited by space agencies on both sides of the Atlantic [CCF+06, CCD+07, FJ03, BS07,
CRK+00], for short- to long-term mission planning [CRT+15] as well as on-board auton-
omy [FCO+11]. The main advantage of such a paradigm in these contexts is the ability of
these systems of handling both planning and execution in a uniform way: by the use of
flexible timelines, timeline-based planners can produce robust plans that, during execution,
can be adapted to the current contingency.

However, flexible timelines currently employed in timeline-based systems only handle
temporal uncertainty, where the precise timings of events in the plan are unknown, but the
causal sequence of the events is determined. In particular, they cannot generate robust
plans against an environment empowered with general nondeterminism. To overcome this
limitation, the concept of timeline-based games was recently introduced [GMO+20]. In
timeline-based games, state variables belong either to the controller or to the environment.
The controller aims at satisfying its set of system rules, while the environment can make
arbitrary moves, as long as the domain rules that define the game arena are satisfied. A
controller’s strategy is winning if it guarantees that the controller wins, regardless of the
choices made by the environment. The moves available to the two players can determine
both what happens and when it happens, thus handling temporal uncertainty and general
nondeterminism in a uniform way.

Determining whether a winning strategy exists for timeline-based games has been
proved to be 2EXPTIME-complete [GMO+20]. However, there is currently no effective
way to synthesize a controller that implements such strategies. A necessary condition for
synthesizing a finite-state strategy and the corresponding controller is the availability of a
deterministic arena. Two methods to obtain such an arena have been followed in the literature,
but both have limitations and turn out to be inadequate. On the one hand, the complexity
result of [GMO+20] relies on the construction of a (doubly exponential) concurrent game
structure used to model check some Alternating-time Temporal Logic formulas [AHK02].
Even though such a structure is deterministic and theoretically suitable to solve a reachability
game and to synthesize a controller, its construction relies on theoretical nondeterministic
procedures that are not realistically implementable. On the other hand, Della Monica et
al. [DGMS18] devised an automata-theoretic solution that provides a concrete and effective
way to construct an automaton that accepts a word if and only if the original planning
problem has a solution plan. Unfortunately, the size of the resulting nondeterministic
automaton is already doubly exponential, and its determinization would result in a further
blowup and thus in a non-optimal procedure.

The present paper fills the gap by developing an effective and computationally optimal
approach to synthesizing controllers for timeline-based games. The proposed method
addresses the limitations of previous techniques by directly constructing a deterministic
finite-state automaton of an optimal doubly-exponential size, that recognizes solution plans.
Such an automaton can be turned into the arena for a reachability game, for which many
controller synthesis techniques are available in the literature. The paper is a significantly
revised and extended version of [AGG+22]. It provides a detailed account of the general
framework, gives some illustrative examples, and fully works out all the proofs.

The rest of the paper is organized as follows. After discussing related work in Section 2,
Section 3 introduces timeline-based planning and games. Section 4 presents the main
technical contribution of the paper, namely, the construction of the deterministic automaton
that recognizes solution plans. Section 5 shows how to turn such an automaton into the
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arena of a suitable game from which the controller can be synthesized. Section 6 summarizes
the main contributions of the work and suggest future research directions. All the technical
proofs are included in the appendix.

2. Related work

The paradigm of timeline-based planning has been first introduced to plan and schedule
scientific operations of the Hubble space telescope [Mus94]. In the following two decades,
many timeline-based planning systems have been developed both at NASA and ESA,
including EUROPA [BWMB+05], ASPEN [CRK+00], and APSI [DPC+08]. Such systems
have been used both for short- to long-term mission planning, e.g., for the renowned Rosetta
mission [CRT+15], and for onboard autonomy [FCO+11]. Elements of the timeline-based
and the action-based paradigm have been combined into the Action Notation Modeling
Language (ANML) [SFC08], extensively used at NASA since then.

Despite the real-world success, the timeline-based planning paradigm lacked a thorough
foundational understanding in contrast to the action-based one, which has been extensively
studied from a theoretical perspective from the start [MH69, Byl94]. To enable theoretical
investigations into timeline-based planning, Cialdea Mayer et al. [COU16] laid down the
core features of the paradigm, describing them in a uniform formalism, which has been later
studied in several contributions. The formalism was compared to traditional action-based
languages like STRIPS, and it was proved that the latter are expressible by timeline-
based languages [GMCO16]. The timeline-based plan existence problem was proved to be
EXPSPACE-complete [GMCO17] over discrete time in the general case, and PSPACE-complete
with qualitative constraints only [DGTM20]. On dense time, the problem goes from being
NP-complete to undecidable, depending on the applied syntactic restrictions [BMM+20].
Additionally, logical [DGM+17] and automata-theoretic [DGMS18] counterparts have been
investigated to study the expressiveness of timeline-based languages.

The above body of work focuses on deterministic timeline-based planning domains.
However, the paradigm also fits to uncertain domains requiring robust plans. Current
timeline-based planning systems employ the concept of flexible timelines, described as
including uncertainty in the timings of events, representing envelopes of possible executions
of the plan. Planners, when possible, produce strongly controllable flexible plans, whose
execution is then robust for the given temporal uncertainty. In order to obtain controllers
for executing strongly controllable flexible plans, the problem can be simplified by reducing
it to timed game automata [OFCF11].

While the current approach works fairly well in handling temporal uncertainty, it
does not support scenarios where the environment is fully nondeterministic. Furthermore,
as pointed out in [GMO+20], the language of timeline-based planning as formalized in
[COU16] allows one to write domains that are not solvable by strongly controllable flexible
plans, but that may easily be by strategies coping with general nondeterminism. For this
reason, [GMO+20] introduced the concept of timeline-based game, which is the focus of this
work. Timeline-based games adopt a game-theoretic point of view, where the controller
and the environment play by constructing timelines, with the controller trying to fulfill
its synchronization rules independently from the choices of the environment. This setting
allows one to handle both temporal uncertainty and general nondeterminism, thus strictly
generalizing previous approaches based on flexible timelines. In [GMO+20], the problem
of deciding the existence of a winning strategy for a given timeline-based game has been
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proved to be 2EXPTIME-complete. The proof is based on the construction of a concurrent
game structure where a suitable alternating-time temporal logic (ATL) formula is model
checked [AHK02]. However, the construction relies on nondeterministic procedures that
are not effectively implementable, and thus it does not solve the problem of synthesizing
actual controllers for timeline-based games. This work fills the gap by providing an effective
synthesis algorithm.

The devised algorithm builds on classical results in the field of reactive synthesis,
which studies how to build correct-by-construction controllers satisfying high-level logical
specifications. The original formulation of the problem of reactive synthesis is due to
Church [Chu62]. The problem for S1S specifications was later solved by Büchi and Landweber
using a non-elementary complexity algorithm [BL90]. As for Linear Temporal Logic (LTL)
specifications, the problem is 2EXPTIME-complete [PR89b, Ros92], which, interestingly,
is the same complexity as timeline-based games. In both cases, the core of the synthesis
algorithm is the construction of a deterministic arena, where the game can be solved with a
fix-point computation. This work focuses on constructing such an arena for timeline-based
games (Sections 4 and 5).

3. Preliminaries

In this section, we provide an overview of the general framework that underpins our work.
We begin by introducing the general features of timeline-based planning, and then we discuss
timeline-based games. Next, we introduce the reactive synthesis problem. Finally, we
recall the concept of difference bound matrices (DBMs) [Dil89, PH07], which are the data
structures that we will use to represent the temporal constraints of a system.

3.1. Timeline-based planning. The first basic notion is that of state variable.

Definition 3.1 (State variable). A state variable is a tuple x = (Vx, Tx, Dx, γ), where:

• Vx is the finite domain of x;
• Tx : Vx → 2Vx is the value transition function of x, which maps each value v ∈ Vx to the
set of values that can immediately follow it;
• Dx : Vx → N × N is the duration function of x, mapping each value v ∈ Vx to a pair
(dx=v

min, d
x=v
max) specifying respectively the minimum and maximum duration of any interval

where x = v;
• γ : Vx → {c, u} is the controllability tag, that, for each value v ∈ Vx, specifies whether it is
controllable (γ (v) = c) or uncontrollable (γ (v) = u).

A state variable x takes its values from a finite domain and represents a finite state
machine with a transition function Tx. The behavior over time of a state variable x is
modeled by a timeline. Intuitively, a timeline for a state variable x is a finite sequence of
tokens, that is, contiguous time intervals where x holds a given value.

Following the approach described in [GMO+20], instead of formally defining timelines
in terms of tokens, we represent executions of timeline-based systems as single words, called
event sequences, where each event describe the start/end of some token in a given time point.

To this end, we first define the notion of action.

Definition 3.2. Let SV be a set of state variables. An action is a term of the form start(x, v)
or end(x, v), where x ∈ SV and v ∈ Vx.
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Actions of the form start(x, v) are starting actions, and those of the form end(x, v) are
ending actions. We denote by ASV the set of all the actions definable over a set of state
variables SV.

Definition 3.3 (Event sequence [GMO+20]). Let SV be a set of state variables and ASV be
the set of all the actions start(x, v) and end(x, v), for x ∈ SV and v ∈ Vx. An event sequence
over SV is a sequence µ = ⟨µ1, . . . , µn⟩ of pairs µi = (Ai, δi), called events, where Ai ⊆ ASV

and δi ∈ N+, such that, for any x ∈ SV:

(1) for all 1 ≤ i ≤ n, if start(x, v) ∈ Ai, for some v ∈ Vx, then there is no start(x, v′) in any
µj before the closest event µk, with k > i, such that end(x, v) ∈ Ak (if any);

(2) for all 1 ≤ i ≤ n, if end(x, v) ∈ Ai, for some v ∈ Vx, then there is no end(x, v′) in any
µj after the closest event µk, with k < i, such that start(x, v) ∈ Ak (if any);

(3) for all 1 ≤ i < n, if end(x, v) ∈ Ai, for some v ∈ Vx, then start(x, v′) ∈ Ai, for some
v′ ∈ Vx;

(4) for all 1 < i ≤ n, if start(x, v) ∈ Ai, for some v ∈ Vx, then end(x, v′) ∈ Ai, for some
v′ ∈ Vx.

The first two conditions guarantee correct parenthesis placement by identifying the start
and the end of each token in the sequence. Condition 1 prevents a token from starting before
the end of the previous one, while condition 2 prevents the occurrence of two consecutive
ends not interleaved by a start. Conditions 3 and 4 ensure seamless continuity: each token’s
end (resp., start) is consistently followed (preceded) by the start (resp., end) of another,
except for the first (resp., last) event in the sequence. These latter conditions prevent gaps
in the timeline description of the represented plan.

In event sequences, a token for a variable x is a maximal interval with at most one
occurrence of events µi = (Ai, δi) and µj = (Aj , δj), where start(x, v) ∈ Ai and end(x, v) ∈
Aj , for some v ∈ Vx. We say such a token starts at position i and ends at position j. Note
that Definition 3.3 implies that a token that has started is not required to end before the
end of the sequence and that it can end without the corresponding starting action ever
appearing. If this is the case, we say that an event sequence is open either to the right or to
the left. Otherwise, it is said to be closed. An event sequence closed to the left and open to
the right is called a partial plan. Notice that the empty event sequence ε is closed on both
sides for any variable. Furthermore, in closed event sequences, the first event contains only
start actions, while the last one contains only end actions, one for each variable x.

Given an event sequence µ = ⟨µ1, . . . , µn⟩ over a set of state variables SV, with µi =
(Ai, δi), we define δ(µ) as

∑
1<i≤n δi, that is, δ(µ) is the time elapsed from the start to the

end of the event sequence (its duration). For any subsequence ⟨µi, . . . , µj⟩ of µ, abbreviated
µ[i...j], we denote by δi,j (or, equivalently, δ(µ[i...j])) the amount of time spanning that

subsequence. Notice that δi,j is defined as
∑

i<k≤j δk. Finally, given an event sequence

µ = ⟨µ1, . . . , µn⟩, we define µ<i as ⟨µ1, . . . , µi−1⟩, for each 1 < i ≤ n.

In timeline-based planning, the objective is to satisfy a set of synchronization rules, that
specify the desired behavior of the system (constraints and goal). These rules relate tokens,
possibly belonging to different timelines, through temporal relations among their endpoints.
Let SV be a set of state variables and N = {a, b, . . .} be a set of token names.

Definition 3.4 (Atom). An atom is a temporal relation between tokens’ endpoints of the
form ⟨term⟩ ≤[l,u] ⟨term⟩, where l ∈ N, u ∈ N ∪ {+∞}, l ≤ u, and a term is either start(a)
or end(a), for some a ∈ N.
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As an example, the atom start(a) ≤[3,7] end(b) constrains token a to start at least 3
and at most 7 time units before the end of token b, while the atom start(a) ≤[0,+∞] start(b)
simply constrains token a to start before token b.

Definition 3.5 (Synchronization rule). A synchronization rule R has one of the following
two forms:

⟨rule⟩ := a0[x0 = v0]→ ⟨body⟩
⟨rule⟩ := ⊤ → ⟨body⟩
⟨body⟩ := E1 ∨ E2 ∨ · · · ∨ Ek

Ej := ∃a1[x1 = v1]a2[x2 = v2] . . . an[xn = vn] . Cj , for 1 ≤ j ≤ k,

where ai ∈ N, xi ∈ SV, vi ∈ Vxi , and Cj is a conjunction of atoms, for 0 ≤ i ≤ n.

Terms ai[xi = vi] are referred to as quantifiers. The term a0[x0 = v0] is called the trigger.
The disjuncts in the body are called existential statements. Quantifiers refer to tokens with
the corresponding variable and value. The intuitive semantics of a synchronization rule can
be given as follows: for every token satisfying the trigger, at least one of the existential
statements must be satisfied as well. Each existential statement Ej requires the existence
of tokens that satisfy the quantifiers in its prefix and the clause Cj . A token that satisfies
the trigger of a rule is said to trigger that rule. The trigger of a rule can be empty (⊤). In
such a case, the rule is referred to as triggerless and it requires the satisfaction of its body
without any precondition.

Let a and b be token names. Here are two examples of synchronization rules (relations
= and ≤ are syntactic sugar for ≤[0,0] and ≤[0,+∞], respectively):

a[xs = Comm]→ ∃b[xg = Available] . start(b) ≤ start(a) ∧ end(a) ≤ end(b)

a[xs = Science]→ ∃b[xs = Slewing] c[xs = Earth] d[xs = Comm] .

end(a) = start(b) ∧ end(b) = start(c) ∧ end(c) = start(d)

where variables xs and xg represent the state of a spacecraft and the visibility of the
communication ground station, respectively. The first synchronization rule requires the
satellite and the ground station to coordinate their communications so that when the satellite
is transmitting, the ground station is available for reception. The second one instructs the
system to send data to Earth after every measurement session, interleaved by the required
slewing operation. Triggerless rule can be used to state the goal of the system. As an
example, the following rule ensures that the spacecraft performs some scientific measurement:

⊤ → ∃a[xs = Science]

Triggerless rules only require the existence of tokens specified by the existential statements,
being their universal quantification trivial. In fact, they are syntactic sugar, as it is possible
to translate them into triggered rules, as shown in [GMO+20]. From now on, we will not
consider them anymore.

We now formalise the above intuitive account of the semantics of synchronization rules.

Definition 3.6 (Matching functions [Gig19]). Let µ = ⟨µ1, . . . , µn⟩ be a (possibly open)
event sequence, E ≡ ∃a1[x1 = v1] . . . ak[xk = vk] . C be one of the existential statements of a
synchronization rule R ≡ a0[x0 = v0] → E1 ∨ . . . ∨ Em, and V be a set of terms such that
start(a) ∈ V or end(a) ∈ V only if a ∈ {a0, . . . , ak}. A matching function γ : V → [1, . . . , n]
maps each term T ∈ V to an event µγ(T ) in µ, such that:
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(1) for each T ∈ V , with T = start(a) (resp., T = end(a)), if a is quantified as a[x = v] in
E, then the event µγ(T ) = (AT , δT ) is such that start(x, v) ∈ AT (resp., end(x, v) ∈ AT );

(2) if both T = start(a) and T ′ = end(a) belong to V for some token name a ∈ N, then
γ(T ) and γ(T ′) identify the endpoints of the same token.

As a matter of fact, in [Gig19], matching functions are defined in terms of rule graphs,
a data structure that we do not use here. For this reason, we reformulated the original
definition in terms of event sequences.

The following definition gives a formal account of the semantics of synchronization rules.

Definition 3.7 (Semantics of synchronization rules). Let R ≡ a0[x0 = v0]→ E1 ∨ . . . ∨ Em

and let µ = ⟨µ1, . . . , µn⟩ be an event sequence. We say that R is satisfied by µ if, for
each event µi = (Ai, δi) such that start(x0, v0) ∈ Ai, there exist an existential statement
Ej ≡ ∃a1[x1 = v1] . . . ak[xk = vk] . C and a matching function γ such that if T ≤[l,u] T

′

appears in C, then l ≤ γ(T ′)− γ(T ) ≤ u, for any pair of terms T and T ′.

Timeline-based planning problems can be defined as follows.

Definition 3.8 (Timeline-based planning problem). A timeline-based planning problem is
a pair P = (SV,S), where SV is a set of state variables and S is a set of synchronization
rules over SV. An event sequence µ over SV is a solution plan for P if all the rules in S are
satisfied by µ.

3.2. Timeline-based games. We are now ready to introduce the notion of timeline-based
game, that subsumes that of timeline-based planning with uncertainty given in [COU16].

Definition 3.9 (Timeline-based game). A timeline-based game is a tuple G = (SVC , SVE , S,
D), where SVC and SVE are the sets of controlled and external state variables, respectively,
and S and D are the sets of system and domain synchronization rules, respectively, both
involving variables from SVC and SVE .

A partial plan for G is a partial plan over the variables SVC ∪ SVE . Let ΠG be the set
of all possible partial plans for G, simply Π when there is no ambiguity. Since the empty
event sequence ε is closed and δ(ε) = 0, the empty partial plan ε is a good starting point
for the game. Players incrementally build onto a partial plan, starting from ε, by playing
actions that specify which tokens to start and (or) to end, adding an event that extends the
event sequence, or complementing the existing last one.

Formally, we partition the set of all the available actions ASV into those that are playable
by either of the two players.

Definition 3.10 (Partition of player actions). Let SV = SVC∪SVE . The set ASV of available
actions over SV is partitioned into the sets AC of Charlie’s actions and AE of Eve’s actions,
which are defined as follows:

AC = {start(x, v) | x ∈ SVC , v ∈ Vx}︸ ︷︷ ︸
start tokens on Charlie’s timelines

∪ {end(x, v) | x ∈ SV, v ∈ Vx, γx(v) = c}︸ ︷︷ ︸
end controllable tokens

(1)

AE = {start(x, v) | x ∈ SVE , v ∈ Vx}︸ ︷︷ ︸
start tokens on Eve’s timelines

∪ {end(x, v) | x ∈ SV, v ∈ Vx, γx(v) = u}︸ ︷︷ ︸
end uncontrollable tokens

(2)



17:8 R. Acampora, L. Geatti, N. Gigante, A. Montanari, and V. Picotti Vol. 20:3

Hence, players can start tokens for owned variables and end them for values that they
control. Let d = max(L,U) + 1, where L and U are the maximum lower and (finite) upper
bounds appearing in any rule of G. Note that, by Definition 3.10, we may have x ∈ SVE and
γx(v) = c for some v ∈ Vx. This means that Charlie may control the duration of a variable
that belongs to Eve. This situation is symmetrical to the more common one where Eve
controls the duration of a variable that belongs to Charlie, that is, uncontrollable tokens.
As an example, Charlie may decide to start a task, without being able to foresee how long it
will take. Similarly, the environment may trigger the start of a process, e.g., fixing a plant
fault, but Charlie may be able to control, to some extent, how long it will take to end it,
e.g., we can decide to fix it today or tomorrow.

Actions combine into moves starting (resp., ending) multiple tokens simultaneously.

Definition 3.11 (Move). A move µC for Charlie is a term of the form wait(δC) or play(AC),
where 1 ≤ δC ≤ d and ∅ ̸= AC ⊆ AC is either a set of starting actions or a set of
ending actions. A move µE for Eve is a term of the form play(AE) or play(δE , AE), where
1 ≤ δE ≤ d and AE ⊆ AE is either a set of starting actions or a set of ending actions.

By Definition 3.11, moves like play(AC) and play(δE , AE) can play either start(x, v)
actions only or end(x, v) actions only. A move of the former kind is called a starting move,
while a move of the latter kind is called an ending move. We consider wait moves as ending
moves. Starting and ending moves must alternate during the game.

Let us denote the sets of Charlie’s and Eve’s moves byMC andME , respectively. A
round of the game is defined as follows.

Definition 3.12 (Round). A round ρ is a pair (µC , µE) ∈MC ×ME of moves such that:

(1) µC and µE are either both starting or both ending moves;
(2) either ρ = (play(AC), play(AE)), or ρ = (wait(δC),play(δE , AE)), with δE ≤ δC ;

A starting (resp., ending) round is one made of starting (resp., ending) moves. Since
Charlie cannot play empty moves and wait moves are ending moves, each round is unam-
biguously either a starting or an ending round. Moreover, since play(δE , AE) moves are
always paired with wait(δC) ones, which are ending moves, then play(δE , AE) moves are
necessarily ending moves (item 1 of Definition 3.12).

We can now specify how to apply a round to the current partial plan to obtain the new
one. The game always starts with a single starting round.

Definition 3.13 (Outcome of rounds). Let µ = ⟨µ1, . . . , µn⟩ be an event sequence, with
µn = (An, δn) (µn = (∅, 0) if µ = ε). Let ρ = (µC , µE) be a round, AE and AC be the sets
of actions of the two moves (AC is empty if µC is a wait move), and δE and δC be the time
increments of the moves. We define δC = 1 (resp., δE = 1) for play(AC) (resp., play(AE)).

The outcome of the application of ρ on µ is the event sequence ρ(µ) defined as follows:

(1) if ρ is a starting round, then ρ(µ) = µ<nµ
′
n, where µ′

n = (An ∪AC ∪AE , δn);
(2) if ρ is an ending round, then ρ(µ) = µµ′, where µ′ = (AC ∪AE , δE);

We say that ρ is applicable to µ if:

a) ρ(µ) complies with Definition 3.3;
b) ρ is an ending round if and only if µ is open for all variables that appear in the moves.

A single move by either player is applicable to µ if there is a move for the other player
such that the resulting round is applicable to µ. The game starts from the empty partial
plan ε, and players play in turn, composing a round from the move of each one, which is
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applied to the current partial plan to obtain the new one. We can now define the notion of
strategy for each player and that of winning strategy for Charlie.

Definition 3.14 (Strategy). A strategy for Charlie is a function σC : Π→MC that maps
any given partial plan µ into a move µC applicable to µ. A strategy for Eve is a function
σE : Π×MC →ME that maps a partial plan µ and a move µC ∈MC applicable to µ into
a move µE such that the round ρ = (µC , µE) is applicable to µ.

A sequence ρ = ⟨ρ0, . . . , ρn⟩ of rounds is called a play of the game. A play is said to be
played according to some strategy σC for Charlie, if, starting from the initial partial plan
µ0 = ε, it holds that ρi = (σC(Πi−1), µ

i
E), for some µi

E , for all 0 < i ≤ n, and to be played
according to some strategy σE for Eve if ρi = (µi

C , σE(Πi−1, µ
i
C)), for all 0 < i ≤ n. It can

be easily seen that for any pair of strategies (σC , σE) and any n ≥ 0, there is a unique play
ρn(σC , σE) of length n played according to both σC and σE .

Then, we say that a partial plan µ and the play ρ such that µ = ρ(ε) are admissible, if
the partial plan satisfies the domain rules, and that they are successful if the partial plan
satisfies the system rules.

Definition 3.15 (Admissible strategy for Eve). A strategy σE for Eve is admissible if for
each strategy σC for Charlie, there is k ≥ 0 such that the play ρk(σC , σE) is admissible.

Charlie wins if, assuming that domain rules are respected, he manages to satisfy the
system rules no matter how Eve plays.

Definition 3.16 (Winning strategy for Charlie). Let σC be a strategy for Charlie. We say
that σC is a winning strategy for Charlie if for any admissible strategy σE for Eve, there
exists n ≥ 0 such that the play ρn(σC , σE) is successful.

We say that Charlie wins the game G if he has a winning strategy, while Eve wins the
game if a winning strategy for Charlie does not exist.

3.3. Synthesis. The synthesis problem is the problem of devising an implementation that
satisfies a formal specification of an input-output relation [PR89a]. Such an implementation
may be a transducer, a Mealy machine, a Moore machine, a circuit, or the like. In the
following, we give a short account of the roles of games and strategies in game-based synthesis.

Definition 3.17 (Game Graph). A finite game graph G is a triple (Q,QC , E), where Q is a
finite set of nodes, QC ⊆ Q is the subset of Charlie’s nodes, and E ⊆ Q×Q is a transition
relation. The relation E must satisfy the condition: ∀q∃q′ : (q, q′) ∈ E (totality).

A play on a game graph G starting from the initial state q0 is an infinite sequence
p = q0q1q2 . . ., where (qi, qi+1) ∈ E, for all i ≥ 0. A game is a pair (G,W), where G is a
game graph and W is the winning condition of the game. In the general case, W consists of
the set of plays won by Charlie.

Here, we focus on reachability winning conditions, which are expressed as W := {R ⊆
Q | R ∩ F ̸= ∅}, for a given set F ⊆ Q. A play p is said to satisfy W if the set of states
visited by p, denoted by occ(p) = {q ∈ Q | ∃i . p(i) = q}, intersects W , that is, Charlie wins
the play p if p visits at least one state in F .

Definition 3.18 (Reachability game). A reachability game is a pair (G,W), where G =
(Q,QC , E) is a game graph and W is a reachability winning condition.
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A strategy for Charlie is a function f : Q∗ ·QC → Q. A play p adheres to strategy f
if, for each qi ∈ QC , qi+1 = f(q0 . . . qi). Given an initial state q, a strategy for Charlie is
a winning strategy if Charlie wins any play from q that follows the strategy f . The same
holds for Eve. Charlie (resp., Eve) wins if a winning strategy exists from q.

Given a game (G,W), with G = (Q,QC , E), the winning region of Charlie is defined
as WC := {q ∈ Q |Charlie wins from q }. The winning region WE for Eve is defined in an
analogous way. The two sets are clearly disjoint (WC ∩WE = ∅). The game is said to be
determined if WC∪WE = Q. It is well known that reachability games are determined [Tho08].

The next step is to build a Controller starting from a winning strategy f such that the
specification is met. We use Moore machines as Charlie plays first.

Definition 3.19 (Moore machine). A Moore machine is a tuple M = (Q,Σ,Γ, q0, δ, τ),
where Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite output alphabet,
q0 ∈ Q is the initial state, δ : Q× Σ→ Q is the transition function, and τ : Q→ Γ it the
output function.

By suitably tying δ and τ to f , one can effectively implement f . We refer the reader to
Definition 5.3 for the details on how we do it.

3.4. Difference Bound Matrices. Difference bound matrices (DBMs) were introduced
by Dill [Dil89] as a pragmatic representation of constraints (x− y ≤ c). Later on, Péron et
al. [PH07] suitably expanded the formalism. The following short account of the formalism is
basically borrowed from the latter work,

Let Var = {v0, v1, . . . vn} be a finite set of variables, V = Z ∪ {+∞} be a set of values
that variables and constants can take, and C be a set of constraints of the form vi − vj ≤ c,

where vi, vj ∈ Var and c ∈ V . The DBM that represents C is an (n+ 1)× (n+ 1) matrix
defined as follows:

Mij = inf{c | (vi − vj ≤ c) ∈ C},

where inf(∅) = +∞.
Mij equals the tightest value of c if there is some constraint (vi−vj ≤ c) in C; otherwise,

it is +∞. The variable v0 ∈ Var is always valued to 0, and it is used to express bounds on
variables, that is, vi ≤ c is written as vi− v0 ≤ c. In Section 4, we use DBMs to conveniently
represent atoms (see Definition 3.4).

4. A deterministic automaton for timeline-based planning

In this section, we define an encoding of timeline-based planning problems into deterministic
finite state automata (DFA). Given a timeline-based planning problem, the corresponding
automaton recognizes all and only those event sequences that represent solution plans for
the problem. In the next section, we will use such an automaton as the game arena for a
timeline-based game.
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4.1. Plans as words. Let P = (SV, S) be a timeline-based planning problem and, as already
stated in the previous section, let d = max(L,U) + 1, where L and U are the maximum
lower and (finite) upper bounds appearing in any rule of P . We restrict our attention to
event sequences where the distance between two consecutive events is at most d. Such a
restriction guarantees us the finiteness of the considered alphabet, and it does not cause any
loss in generality, as proved by Lemma 4.8 of [Gig19]. Moreover, it agrees with the notion of
move of a timeline-based game (see Definition 3.11).

We define the symbols of the alphabet Σ as events of the form µ = (A, δ), where A ⊆ ASV

and 1 ≤ δ ≤ d. Formally, Σ = 2ASV × [d], where [d] = {1, . . . , d}. Note that the size of Σ
is exponential in the size of the problem. Moreover, we define window(P ) as the sum of
all the coefficients appearing as upper bounds in the rules of P . This value represents the
maximum amount of time a rule can “count” far away from the occurrence of the quantified
tokens. Consider, for instance, the following rule:

a0[x0 = v0]→ ∃a1[x1 = v1]a2[x2 = v2]a3[x3 = v3] . (3)

start(a1) ≤[4,14] end(a0) ∧ end(a0) ≤[0,+∞] end(a2) ∧ start(a2) ≤[0,3] end(a3)

In this case, assuming the above rule to be the only one in the problem, window(P )
would be 3 + 14 = 17. Thus, the rule can account for what happens at most 17 time points
from the occurrence of its quantified tokens. For instance, if the token a1 appears at a
specific distance from a0, it has to be within less than 17 time points, and any modification
of the plan that alters this distance can break the rule’s satisfaction. However, what occurs
further away from a0 only affects the fulfillment of the rule qualitatively. Suppose that the
tokens a2 and a3 are, together, at 100 time points from a0. Changing this distance while
maintaining the qualitative order between tokens does not break the rule’s satisfaction. For
window(P )’s properties refer to [Gig19].

4.2. Matching structures. A key insight underlying the construction we are going to
outline is that every atomic temporal relation T ≤[l,u] T

′ can be rewritten as the conjunction
of two upper bound constraints T ′ − T ≤ u and T − T ′ ≤ −l, where we represent a lower
bound constraint T ′ − T ≥ l as an upper bound one. This allows us to rewrite the clause
C of an existential statement E as a constraint system ν(C) with constraints of the form
T − T ′ ≤ n, for n ∈ Z ∪ {+∞}.

The constraint system ν(C) can be represented by a difference bound matrix D indexed
by terms, where the entry D[T, T ′] gives the upper bound n on T − T ′. In building D,
we ensure the right duration of tokens by augmenting the system with constraints of the
kind start(ai)− end(ai) ≤ −dxi=vi

min and end(ai)− start(ai) ≤ dxi=vi
max , for any quantified token

ai[xi = vi] of E. As an example, the constraint system and the DBM for the above rule are
the ones in Figs. 1 and 2, respectively.

On top of DBMs, we define the concept of matching structure, a data structure that
allows us to monitor and update the fulfillment of atomic temporal relations among terms
throughout the execution of the plan. More precisely, it allows us to manipulate and reason
about existential statements of which only a portion of the requests has been satisfied by
the word read so far, while the rest is potentially satisfiable in the future.

Definition 4.1 (Matching Structure). Let E ≡ ∃a1[x1 = v1] . . . am[xm = vm] .C be an
existential statement of a synchronization rule R ≡ a0[x0 = v0]→ E1 ∨ · · · ∨ Ek over the set
of state variables SV. The matching structure for E is a tuple ME = (V,D,M, t), where:
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end(a0)− start(a1) ≤ 14

start(a1)− end(a0) ≤ −4
end(a0)− end(a2) ≤ 0

end(a3)− start(a2) ≤ 3

start(a2)− end(a3) ≤ 0

Figure 1: The constraint system of Eq. (3).

start(a0) end(a0) start(a1) end(a1) start(a2) end(a2) start(a3) end(a3)

start(a0)
end(a0) 14 0

start(a1) −4
end(a1)

start(a2) 0
end(a2)

start(a3)
end(a3) 3

Figure 2: DBM of Eq. (3). Missing entries are intended to be +∞.

• V is the set of terms start(a) and end(a), for a ∈ {a0, . . . , am};
• D is a DBM of size |V | × |V |, indexed by terms of V , whose entries take value over
Z ∪ {+∞}, where 

D[T, T ′] = n if T − T ′ ≤ n ∈ ν(C),

D[T, T ′] = 0 if T = T ′,

D[T, T ′] = +∞ otherwise;

• M ⊆ V and 0 ≤ t ≤ window(P ).

The set M contains the set of terms from V correctly seen in the sequence so far. We
say these terms have been matched by the matching structure. We use M = V \M to refer
to terms yet to be matched. We say a matching structure M to be closed if M = V , initial
if M = ∅, and active if start(a0) ∈M and it is not closed. The component t represents the
time elapsed since matching start(a0). As time progresses, we update a matching structure
as follows.

In the DBMs of a matching structure, the bounds between any pair of terms T and T ′,
with one in M while the other not, are tightened by the elapsing of time. When T ∈M and
T ′ ∈ M , D[T, T ′] is a lower bound loosened by adding the elapsed time δ. When T ∈ M
and T ′ ∈M , D[T, T ′] is an upper bound tightened by subtracting δ. Consider the DBM in
Figure 2 and the pair of terms start(a1) and end(a0). We have D[start(a1), end(a0)] = −4,
implying that start(a1)− end(a0) ≤ −4 must hold. Suppose that start(a1) ∈M (it has been
matched), and that end(a0) ∈M (it needs to be matched). Now, in a time step, the entry
in the DBM is incremented and updated to −4 + 1 = −3 reflecting the fact that we now
have 3 time steps left to match end(a0). A similar analysis leads us to the conclusion that
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the entry D[end(a0), start(a1)] = 14 has to be decremented by 1 and updated to 14− 1 = 13.
This intuition is formalized as follows.

Definition 4.2 (Time shifting). Let δ > 0 be a positive amount of time, and let M =
(V,D,M, t) be a matching structure. The result of shifting M by δ time units, written M+ δ,
is a matching structure M′ = (V,D′,M, t′), where:

• for all T, T ′ ∈ V :

D′[T, T ′] =


D[T, T ′] + δ if T ∈M and T ′ ∈M

D[T, T ′]− δ if T ∈M and T ′ ∈M

D[T, T ′] otherwise

• and

t′ =

{
t+ δ if M is active

t otherwise

Definition 4.2 specifies how to update the entries of D and how to update t to the trigger
occurrence of an active matching structure.

Definition 4.3 (Matching). Let M = (V,D,M, t) be a matching structure and I ⊆M a set
of matched terms. A matching structure M′ = (V,D,M ′, t) is the result of matching the set
I, written M ∪ I, with M ′ = M ∪ I.

To correctly match an existential statement while reading an event sequence, a matching
structure is updated only as long as one witnesses no violation of temporal constraints. As
such, we deem an event as admissible or not.

Definition 4.4 (Admissible Event). An event µ = (A, δ) is admissible for a matching
structure ME = (V,D,M, t) if and only if, for every T ∈ M and T ′ ∈ M , δ ≤ D[T ′, T ],
i.e., the elapsing of δ time units does not exceed the upper bound of some term T ′ not yet
matched by ME.

Each admissible event µ that is read can be matched with a subset of terms from the
matching structure. However, there can be multiple ways to match events and terms. To
make this choice explicit, we introduce the following definition.

Definition 4.5 (I-match Event). Let ME = (V,D,M, t) be a matching structure and I ⊆M .
An I-match event is an admissible event µ = (A, δ) for ME such that:

(1) for all token names a ∈ N quantified as a[x = v] in E we have that:
(a) if start(a) ∈ I, then start(x, v) ∈ A;
(b) end(a) ∈ I if and only if start(a) ∈M and end(x, v) ∈ A;

(2) and for all T ∈ I it holds that:
(a) for every other term T ′ ∈ V , if D[T ′, T ] ≤ 0, then T ′ ∈M ∪ I;
(b) for all T ′ ∈M , δ ≥ −D[T ′, T ], i.e., all the lower bounds on T are satisfied;
(c) for each other term T ′ ∈ I, either D[T ′, T ] = 0, D[T, T ′] = 0, or D[T ′, T ] =

D[T, T ′] = +∞.

We consider an event µ an I-match event if its actions correspond to the terms in I.
The definition in Item 1 ensures the correct matching of each term to an action it represents
and that the endpoints of a quantified token precisely identify the endpoints of a token in
the event sequence. Meanwhile, Item 2 guarantees that matching the terms in I does not
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x0

x0 = v0 x0 = v′0

x1

x1 = v′1 x1 = v1 x1 = v
′′
1

x2

x2 = v′2 x2 = v2 x2 = v
′′
2

x3

x3 = v3 x3 = v′3

Figure 3: Example of timelines for variables x0, x1, x2, x3.

violate any atomic temporal relation. In addition, Item 2a deals with the qualitative aspect
of a “happens before” relation, while Items 2b and 2c address the quantitative aspects of
the lower bounds of these relations. It is worth noting that an ∅-event is also considered
admissible.

Let MP denote the set of all matching structures for a planning problem P , and let I be
the set of all possible terms built from token names in N. To describe the evolution of a
matching structure, we define a quaternary relation S ⊆MP×Σ×I×MP as (M, µ, I,M′) ∈ S,
for an event µ = (A, δ), if and only if µ is an I-match event for M, and M′ = (M+ δ) ∪ I.

We also write M
µ,I−−→ M′ in place of (M, µ, I,M′) ∈ S. Note that, from Definition 4.5, a

single event can represent multiple I-match events for a matching structure. Therefore,
given a matching structure M and an event µ, automaton states will collect all the matching
structures M′ resulting from the relation S, for some set of terms I. Given a set of matching
structures Υ, this notion is best described by the function stepµ(Υ) = {M′ | (M, µ, I,M′) ∈
S, for some M ∈ Υ and I ∈ I}. Furthermore, we define ΥR

t ⊆ Υ as the set of all the active
matching structures M ∈ Υ with timestamp t, associated with any existential statement of R.
Matching structures in ΥR

t contribute to fulfilling the same triggering event of R, regardless
of their existential statement. We also define Υ⊥ ⊆ Υ as the set of non-active matching
structures of Υ. Lastly, we say that Υ is closed if there exists M ∈ Υ such that M is closed.

We conclude this section by providing an example of updating a matching struc-
ture M = (V,D,M, t) for the rule discussed at the beginning of the section. Consider
the set of timelines in Fig. 3. Before matching any term M is initial with M = ∅,
t = 0, D as the DBM in Fig. 2, and V as the set of term start(a) and end(a) for
a ∈ {a0, a1, a2, a3}. We begin by matching the terms start(a0) and start(a3) from the
event µ = ({start(x0, v0), start(x3, v3)}, 0) (we do not consider start(x1, v

′
1) and start(x2, v

′
2)

since they are not in V ). Such event is an I-match event for I = {start(a0), start(a3)}: it is
an admissible event (Definition 4.4), Item 1a holds, for both start(a0) and start(a3), there
are no terms that should appear before them (Item 2a), there are no related lower bounds
(Item 2b), and D[start(a0), start(a3)] = D[start(a3), start(a0)] = +∞ (Item 2c). Hence, we
update M = M ∪ I = {start(a0), start(a3)} and t = t+ δ = 0; now M is active. The next
term to consider is start(a2), which occurs after δ = 5 time steps.

First, we ensure that the event µ = (start(x2, v2), 5) is admissible. We show that
by examining the DBM in Fig. 2, we see that the elapsing of time δ does not exceed
any upper bound related to terms T ∈ M and T ′ ∈ M . Next, the set I in the current
state appears as I = {start(a2)}. Notice that we are in the case of Item 1a, and Item 2
holds because no constraint involves the term start(a2) (Item 2a), no lower bounds are



Vol. 20:3 CONTROLLER SYNTHESIS FOR TIMELINE-BASED GAMES 17:15

related to start(a2) (Item 2b), and start(a2) is the only term in I (Item 2c). Therefore,
from Definitions 4.2 and 4.3, we update M as follows: M = (M + δ) ∪ I. Each entry
of the DBM will remain unchanged since the third update case of Definition 4.2 applies,
M = M ∪ I = {start(a0), start(a3), start(a2)}, and t = t+ δ = 5.

Similarly, for the next event is µ = (start(x1, v1), 1), we check if such an event is
admissible, and indeed it is since the upper bound D[end(a0), start(a1)] = 9 ≥ δ. It is also an
I-match event for I = {start(a1)}, since it respects Item 1a and all the relations in Item 2; thus
we update M. We decrement D[end(a3), start(a2)] and increment D[start(a2), end(a3)] by
1 (see Definition 4.2), update M like follows M = {start(a0), start(a3), start(a2), start(a1)},
and t = t+ δ = 5 + 1 = 6.

The next event is µ = (end(x3, v3), 3) after 2 time steps. Note that it is an admissible
event and also an I-match event for I = {end(a3)}. In this case, we emphasize that
Items 1b and 2 are respected. We update the DBM as follows: D[end(a0), start(a1)] =
14 − 2 = 12, D[start(a1), end(a0)] = −4 + 2 = −2, D[end(a3), start(a2)] = 2 − 2 = 0,
D[start(a2), end(a3)] = 1 + 2 = 3. Then, we update M = M ∪ I = {start(a0), start(a3),
start(a2), start(a1), end(a3)} and t = t + δ = 6 + 2 = 8. Notice that if we did not match
end(a3) now, at the next time step, the timeline would have violated the rule above because
the upper bound D[end(a3), start(a2)] = 0.

The subsequent event is µ = (end(x1, v1), start(x1 = v′1), 6) for which I = end(a1). Since
there is no constraint involving end(a1), this event is admissible and an I-match event. The
DBM is shifted by 6 time steps, and M = {start(a0), start(a3), start(a2), start(a1), end(a1)}.

The last event µ = ({start(x0, v′0), start(x2, v
′′
2 ), end(x0, v0), end(x2, v2)}, 2) is admissible

and an I-match for I = {end(a0), end(a2)}, note that there is not an upper bound between
end(a0) and end(a2) and that Items 1b and 2 of the definition of I-match event are respected.

4.3. Building the automaton. We can now define the automaton. First, given an
existential statement E, let EE be the set of all existential statements in the same rule of E.
Next, let FP be the set of functions that map each existential statement of P to a set of
existential statements and let DP be the set of functions that map each existential statement
to a set of matching structures Υ. An automaton TP that checks the transition functions of
the variables is easy to define. Then, given a timeline-based planning problem P = (SV, S),
we can characterize the corresponding automaton as AP = TP ∩ SP . Here, SP checks the
fulfillment of the synchronization rules, and we define it as SP = (Q,Σ, q0, F, τ) where

(1) Q = 2MP × DP × FP ∪ {⊥} is the finite set of states, i.e., states are tuples of the form
⟨Υ,∆,Φ⟩ ∈ 2MP × DP × FP , plus a sink state ⊥;

(2) Σ is the input alphabet defined above;
(3) the initial state q0 = ⟨Υ0,∆0,Φ0⟩ is such that Υ0 is the set of initial matching structures

of the existential statements of P and, for all existential statements E of P , we have
∆0(E) = ∅ and Φ0(E) = EE;

(4) F ⊆ Q is the set of final states defined as:

F =

{
⟨Υ,∆,Φ⟩ ∈ Q

∣∣∣∣ M is not active for all M ∈ Υ

and ∆(E) = ∅ for all E of P

}
(5) τ : Q× Σ→ Q is the transition function that given a state q = ⟨Υ,∆,Φ⟩ and a symbol

µ = (A, δ) computes the new state τ(q, µ). Let stepEµ(Υ
R
t ) = {ME | ME ∈ stepµ(Υ

R
t )}.

Moreover, let ΨR
t = {E|ME ∈ stepµ(Υ

R
t )}. Then, the updated components of the state
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are based on what follows, where W = window(P ):

Υ′ = stepµ(Υ⊥) ∪
⋃{

stepµ(Υ
R
t )

∣∣∣ t ≤W − δ and stepµ(Υ
R
t ) is not closed

}
∆′(E) =

{
stepEµ(Υ

R
t ) where t is the minimum such that t > W − δ and stepEµ(Υ

R
t ) ̸= ∅

stepµ(∆(E)) if such t does not exist

Φ′(E) =

{
EE if E ∈ Ψ(E′) for some E′ such that ∆′(E′) is closed

Φ(E) \ {E′ | ∃t > W − δ . E′ ∈ ΨR
t ∧ E ̸∈ ΨR

t } otherwise

Let ∆′′(E) = ∆′(E) unless there is an E′ with E ∈ Φ′(E′) such that ∆′(E′) is closed, in
which case ∆′′(E) = ∅. Then, τ(q, µ) = ⟨Υ′,∆′′,Φ′⟩ if the following holds:
(a) for every ΥR

t , stepµ(Υ
R
t ) ̸= ∅, and

(b) for every synchronization rule R ≡ a0[x0 = v0]→ E1∨· · ·∨En in S, if start(x0, v0) ∈
A, then there exists MEi

= (V,D,M, 0) ∈ Υ′, with i ∈ {1 . . . n}, such that
start(a0) ∈M ;

Otherwise, τ(q, µ) = ⊥.
The first component Υ of an automaton’s state q is a set of matching structures that

keeps track of the occurred events in the last window(P ) time points. The timestamp t of
any matching structure in Υ satisfies t < window(P ). These matching structures evolve
using the stepµ function until they become closed or their timestamp reaches window(P ).

Matching structures that reach window(P ) get promoted to a new role where they record
the pieces of existential statements not yet matched to satisfy all the trigger events of R that
occurred before the last window(P ) time points. However, the automaton does not store
these matching structures in Υ. Instead, it uses the function ∆ mapping each existential
statement E of a rule R to the set of matching structures for E with t = window(P ). Thus,
effectively summarizing events happening before this window to keep size under control.

When a set ΥR
t exceeds the bound window(P ), the ∆ function needs to be updated

by merging the information from ΥR
t with the information already stored in ∆. However,

closing a set ∆(E) does not necessarily mean that every event that triggered R satisfies R.
This is because there may be other sets, say ∆(E′), responsible for fulfilling the same rule R,
but for different trigger events. Therefore, closing ∆(E) alone does not imply that R has
been satisfied. Conversely, there may be cases where ∆(E) and ∆(E′) contribute to match
the same trigger events, and closing either set is enough to satisfy R.

To address the issue of lost information when adding a set of matching structures to ∆,
we introduce the Φ function, mapping existential statements to sets of existential statements,
as the third component of the automaton states. For an existential statement E and for
every existential statement E′ ∈ Φ(E), it holds that the set of matching structures ∆(E′)
tracks the satisfaction of the same trigger events as the set ∆(E). This way, when a set ∆(E)
is closed, we can discard its matching structures as well as the matching structures in ∆(E′).

In Section 4.4 we state and prove soundness and completeness of the automaton
construction. Now, instead, let us address the size of the automaton.

Let us recall that we assumed that the timestamp of each event in an event sequence is
bounded. However, it is worth noting that since events may have an empty set of actions,
Theorem 4.14 can handle arbitrary event sequences as well, provided that we add suitable
empty events. Let us now analyze the size of the automaton.
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Theorem 4.6 (Size of the automaton). Let P = (SV, S) be a timeline-based planning problem
and let AP be the associated automaton. Then, the size of AP is at most doubly-exponential
in the size of P .

Proof. We define E as the overall number of existential statements in P , which is linear in the

size of P . We can then observe that |DP | ∈ O((2|MP |)
E
) = O(2E·|MP |), thus the number of ∆

functions is doubly exponential in the size of P . Next, note that |FP | ∈ O((2E)
E
) = O(2E2

).

Then, |SP | ∈ O(|Σ| ·2|MP |) indicating that the size of SP is at most exponential in the number
of possible matching structures. To bound this number, we define N as the largest finite
constant appearing in P in any atom or value duration and L as the length of the longest
existential prefix of an existential statement occurring inside a rule of P . Note that N is
exponential in the size of P since constants are expressed in binary, while L ∈ O(|P |). We
can then observe that the entries of a DBM for P , of which the number is quadratic in L, are
constrained to take values within the interval [−N,N ] (excluding the value +∞), which size

is linear in N . By Definition 4.1, it follows that |MP | ∈ O(NL2 · 2L · window(P )) indicating
that the number of matching structures is at most exponential in the size of P .

Note that our automaton is the same size as the automaton built by Della Monica et al.
in [DGMS18]. However, while their automaton is nondeterministic, ours is deterministic: an
essential property to achieve the 2EXPTIME optimal asymptotic complexity for the synthesis
procedure.

4.4. Soundness and Completeness. In the following, we present auxiliary notation,
definitions, and essential lemmas for establishing the soundness and completeness of the
automaton construction. For readability, we have included proofs in the appendix.

Definition 4.7 (Run of a matching structure). Let µ = ⟨µ1, . . . , µn⟩ be a (possibly open)
event sequence, and let ME be the initial matching structure of an existential statement E. A
run of ME on µ yielding a matching structure Mn is a sequence I = ⟨I1, . . . , In⟩ of I-match
events for the matching structures ⟨ME,M1, . . . ,Mn−1⟩, such that for every i ∈ [1, . . . , n],

Mi−1
µi,Ii−−−→ Mi. We write ME

µ,I−−→ Mn when such run exists, or ME
µ−−→ Mn, if I is not

relevant.

To link matching structures with the semantics of synchronization rules we establish a
connection between matching functions (Definition 3.6) and runs.

Lemma 4.8 (Correspondence between runs and matching functions). Let µ = ⟨µ1, . . . , µn⟩
be a (possibly open) event sequence, and let ME be the initial matching structure of an
existential statement E ≡ ∃a1[x1 = v1] . . . ak[xk = vk] . C, with C augmented with atoms
start(ai) ≤[d

xi=vi
min ,d

xi=vi
max ] end(ai), for every 0 ≤ i ≤ k. Then, there exists a run I = ⟨I1, . . . , In⟩

of ME on µ, yielding a matching structure Mn = (V,Dn,Mn, tn), if and only if there exists a
matching function γ : Mn → [1, . . . , n] such that, for every atom of the form T ≤[l,u] T

′ in C:

(I) if T ′ ∈Mn, then also T ∈Mn, γ(T ) ≤ γ(T ′), and l ≤ δ(µ[γ(T )...γ(T ′)]) ≤ u;

(II) if T ′ ̸∈Mn, but T ∈Mn, then δ(µ[γ(T )...n]) ≤ u.

Furthermore, γ and I are such that for every T ∈ Mn, T ∈ Iγ(T ), i.e., they agree on the

matching of the terms of Mn. We write ME
µ,γ−−→Mn, if γ corresponds to a run of ME, or

µ, γ |= Mn, if ME is clear from the context.
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Observation 4.9. Note that the existence of the matching function γ stated by Lemma 4.8, if
the corresponding matching structure is closed, implies the satisfaction of the given existential
statement, and vice versa.

We now state the core technical result of the completeness proof, which ensures no
important details are lost when matching structures are discarded.

Lemma 4.10. Let µ = ⟨µ1, . . . , µn⟩ be an event sequence , let ME be the initial matching
structure of some existential statement E of a rule R, and let Mr be an active matching

structure resulting from a run ME
µ,γr−−→ Mr, such that γr(start(a0)) = r. If there exists a

run ME
µ,γs−−→ Ms, such that γs(start(a0)) < r, then there exists a run ME

µ,γ−−→ M, such that
γ(start(a0)) = γs(start(a0)) and M matches at least as many tokens as Mr.

The last needed notion is that of residual matching structure, which is an active matching
structure with only infinite bounds.

Definition 4.11 (Residual matching structure). A matching structure M = (V,D,M, t) is
residual if it is active and for every T ∈M and T ′ ∈M , D[T ′, T ] = +∞.

In other words, M does not impose any finite upper bound on the distance at which
terms yet to be matched may appear relative to those already matched. The definition
implies that for any residual matching structure, denoted as M̂ = (V,D,M, t), every event
µ = (A, δ) is admissible. Additionally, it is never the case that start(a) ∈M and end(a) ∈M
for any quantified token a[x = v] of E, given that such terms always have a finite upper
bound in D that is at least as strict as the value dx=v

max. As a result, the “if” direction of

Item 1b in the Definition 4.5 of I-match never applies to M̂ for any event µ. Therefore, every
event is a valid ∅-match event for M̂.

Observation 4.12. Let ME
µ1,I1−−−→ M̂ be a run of the initial matching structure ME, on an

event sequence µ1, yielding a residual matching structure M̂. Then, for any event sequence

µ2, there exists a run ME
µ1µ2,I1I2−−−−−−→ M̂′ such that every I-match event in I2 is an ∅-match

event and M̂′ differs from M̂ by at most the value of the component t.

Consequently, whenever a residual matching structure appears in a run, it has the
potential to remain there indefinitely, which is why it is called residual.

Lemma 4.13 (Existence of residual matching structure). Let µ = ⟨µ1, . . . , µn⟩ be an
event sequence, and let Mn be an active matching structure such that µ, γ |= Mn and
δ(µ[γ(start(a0))...n]) > window(P ). If we consider the intermediate matching structures

⟨M1, . . . ,Mn−1⟩ of the run ME
µ,γ−−→ Mn, then there exists a position γ(start(a0)) ≤ k < n

such that Mk is a residual matching structure.

We are now ready to prove the final result.

Theorem 4.14 (Soundness and completeness). Let P = (SV, S) be a timeline-based planning
problem and let AP be the associated automaton. Then, any event sequence µ is a solution
plan for P if and only if µ is accepted by AP .
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5. Controller synthesis

We leverage the deterministic automaton constructed in the previous section to establish a
deterministic arena that enables us to solve a reachability game and determine whether a
controller exists. If a controller exists, our procedure allows its synthesis.

5.1. From the automaton to the arena. Let G = (SVC , SVE , S,D) be a timeline-based
game. The automaton construction we used considered a planning problem with a single set
of synchronization rules, while in G, we have to account for the roles of both S and D.

To address this, we define AS and AD as the deterministic automata constructed over
the timeline-based planning problems PS = (SVC ∪ SVE ,S) and PD = (SVC ∪ SVE ,D),
respectively. We then construct the automaton AG by taking the union of AS with the
complement of AD (AD). Note that these are standard automata-theoretic operations over
DFAs. An accepting run of AG represents either a plan that violates the domain rules or
a plan that adheres to domain and system rules, according to the definition of winning
strategy in Definition 3.16. Furthermore, AG is deterministic, and its size only polynomially
increases when built from AD and AS.

The AG automaton is not immediately applicable as a game arena since its transitions’
labels only reflect events, not game moves. In AG, a single transition can correspond to
various combinations of rounds due to the absence of wait(δ) moves in the transition’s label.
For example, an event µ = (A, 5) can arise from either a wait(5) move by Charlie, followed
by a play(5, A) move by Eve, or any wait(δ) move with δ > 5 followed by a play(5, A) move.
To obtain a suitable game arena, we need to modify AG further.

Let AG = (Q,Σ, q0, F, τ) be the automaton constructed as described above. Formally,
we define a new automaton A′

G = (Q,Σ, q0, F, τ
′) where τ ′ is a partial transition function,

meaning that the automaton is now incomplete. The function τ ′ agrees with τ on all
transitions except those of the form τ(q, (A, δ)), where δ > 1 and A contains a end(x, v)
action with x ∈ SVC . In such cases, the transition is undefined in A′

G. An example is shown
in Figure 4 (left). Note that this removal does not alter the set of plans accepted by the
automaton since for each transition τ(q, (A, δ)) = q′ with δ > 1, there exist two transitions
τ(q, (∅, δ − 1)) = q′′ and τ(q′′, (A, 1)) = q′ in A′

G.
To make the game rounds and moves explicit, we can transform the automaton by

splitting each transition into four transitions representing the four moves of the two rounds.
Starting from the incomplete automaton A′

G = (Q,Σ, q0, F, τ
′), we define a new automaton

Aa
G = (Qa,Σa, qa0 , F

a, τa) as the game arena.

(1) The set of states Qa is given by Qa = Q ∪ {qδ | 1 ≤ δ ≤ d} ∪ {qδ,A | 1 ≤ δ ≤ d,A ⊆ A}.
(2) The alphabet Σa is defined as Σa =MC ∪ME , which corresponds to the set of moves

of the two players.
(3) The initial and final states of Aa

G are qa0 = q0 and F a = F , respectively.
(4) The partial transition function τa is defined as follows. Let w = τ(q, µ) with µ = (A, δ).

We distinguish the cases where δ = 1 or δ > 1.
(a) if δ = 1, let AC ⊆ A and AE ⊆ A be the set of actions in A playable by Charlie and

by Eve, respectively. Then:
(i) τ(q,play(Ae

C)) = q1,Ae
C
, where Ae

C is the set of ending actions in AC ;

(ii) τ(q1,Ae
C
, play(Ae

E)) = q1,Ae
C∪Ae

E
, where Ae

E is the set of ending actions in AE ;

(iii) τ(q1,Ae
C∪Ae

E
,play(As

C)) = q1,Ae
C∪Ae

E∪As
C
, where As

C is the set of starting actions
in AC ;
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Figure 4: On the left, the removal of transitions µ = (A, δ) with δ > 1 and ending actions of
controllable tokens in A. On the right, the transformation of a transition of AG into
a sequence of transitions in Aa

G, with x ∈ SVC , y ∈ SVE , and γx(v1) = γy(w1) = u.

(iv) τ(q1,Ae
C∪Ae

E∪As
C
, play(As

E)) = w, where As
E is the set of starting actions in AE ;

Here, the states mentioned are added to Qa as needed.
(b) if δ > 1, let AC ⊆ A and AE ⊆ A be the set of actions in A playable by Charlie and

by Eve, respectively. Note that by construction, AC only contains starting actions.
Then:

(i) τ(q,wait(δC)) = qδC for all δ ≤ δC ≤ d;
(ii) τ(qδC , play(δ,A

e
E)) = qδ,Ae

E
where Ae

E is the set of ending actions in AE ;

(iii) τ(qδ,Ae
E
, play(AC)) = qδ,Ae

E∪AC
;

(iv) τ(qδ,Ae
E∪AC

,play(As
E)) = w where As

E is the set of starting actions in AE ;
where the mentioned states are added to Qa as needed.

All the transitions not explicitly defined above are undefined.

We present a graphical illustration of the above construction in Fig. 4. It is worth noting
that the automaton preserves the structure of the original automaton AG. For any state,
q ∈ Q and event µ = (A, δ), any sequence of moves that would result in appending µ to the
partial plan (see Definition 3.13) reaches the same state w in Aa

G as it does in AG by reading
µ. Therefore, we can consider Aa

G as being able to read event sequences, even though its
alphabet is different. We use the notation [µ] to represent the state q ∈ Qa reached by
reading µ in Aa

G. Furthermore, note that, with a slight abuse of notation, any play ρ in
the game G is a readable word by the automaton Aa

G. Thus, we can establish the following
result.

Theorem 5.1. If G is a timeline-based game, for any play ρ for G, ρ is successful if and
only if it is accepted by Aa

G.
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5.2. Computing the Winning Strategy and Building the Controller. Let us define
Qa

C ⊂ Qa as the set of states in which Charlie can make a move, and Qa
E = Qa \Qa

C as the
set of states where Eve can make a move. Additionally, we define E = {(q, q′) ∈ Qa ×Qa |
∃µ . τa(q, µ) = q′} as the set of edges in Aa

G. By solving the reachability game (GR,W),
where GR = (Qa, Qa

C , E
a) and W = {R ⊆ Qa | R ∩ F a ≠ ∅}, we aim to determine the

winning region WC and the winning strategy sC for Charlie, provided they exist. In the
following discussion, we will show that the winning strategy σC for the timeline-based game
G is derivable from strategy sC when qa0 ∈WC .

To determine the winning region WC , we use the well-known attractor construction. We
are interested to the attractor set of F a for Charlie, written AttrC(F

a), thus given i ≥ 0
we compute the set of states from which Charlie can reach a state q ∈ F a within i moves,
defined as AttriC(F

a):

Attr0C(F
a) = F a

Attri+1
C (F a) = AttriC(F

a)

∪ {qa ∈ Qa
C | ∃r

(
(qa, r) ∈ E ∧ r ∈ AttriC(F

a)
)
}

∪ {qa ∈ Qa
E | ∀r

(
(qa, r) ∈ E → r ∈ AttriC(F

a)
)
}.

The sequence Attr0C(F
a) ⊆ Attr1C(F

a) ⊆ Attr2C(F
a) ⊆ . . . eventually becomes stationary

for some index k ≤ |Qa|, hence we can define AttrC(F
a) =

⋃|Qa|
i=0 AttriC(F

a) as the attractor
set. Note that WC = AttrC(F

a) is a known fact for which proof is available in [Tho08]. Next,
we want that qa0 ∈WC since we are interested in a winning strategy σC for the timeline-based
game G. If it is the case, by defining sC(q) = µ for any µ such that τa(q, µ) = q′ with
q, q′ ∈ WC , which is guaranteed to exist by the attractor construction, we can define σC
for Charlie in G as σC(µ) = sC([µ]) for any event sequence µ. We prove this claim in the
following:

Theorem 5.2. Given Aa
G = (Qa,Σa, qa0 , F

a, τa), qa0 ∈ WC if and only if σC is a winning
strategy for Charlie for G.

Proof. (←−). From the definition of a winning strategy for Charlie in G (Definition 3.16),
we know that for every admissible strategy σE for Eve, there exists n ≥ 0 such that the
play ρn(σC , σE) is successful. By the soundness of the arena construction (Theorem 5.1),
we know that the event sequence µn representing ρn(σC , σE), when seen as a word over Σa,
is accepted by Aa

G. Therefore, µn reaches a state in the set F a starting from qa0 . By the
definition of the reachability game, this means that qa0 ∈WC . Thus, we have proved that if
σC is a winning strategy Charlie in G, then qa0 ∈WC .

(−→). If qa0 ∈ WC , then by definition, sC is a winning strategy for Charlie in the
reachability game over the arena Aa

G. Hence, any word over Σa obtained by playing with sC
is accepted by Aa

G, and therefore, by the soundness of the arena construction (Theorem 5.1),
any corresponding play ρ is successful in G. Now, recall that σC(µ) = sC([µ]) for any event
sequence µ. Hence, ρ = ρ(σC , σE) for some strategy σE of Eve. As a result, we can conclude
that σC is a winning strategy for Charlie in G.

Finally, we build a Controller that implements the winning strategy σC , provided it
exists. First, by Theorem 5.2, the existence of σC implies that qa0 ∈ WC . Next, we define
the following Moore machine (Definition 3.19) based on sC :



17:22 R. Acampora, L. Geatti, N. Gigante, A. Montanari, and V. Picotti Vol. 20:3

Definition 5.3 (Controller). Given Aa
G = (Qa,Σa, qa0 , F

a, τa), we define a Controller as
M = (Q,Σ,Γ, q0, δ, τ), where Q = Qa

C ∩WC represents the set of states, q0 = qa0 is the initial
state, Σ =ME is the input alphabet, Γ =MC is the output alphabet, δ : Q× Σ→ Q is
the transition function, and τ : Q→ Γ is the output function. The transition function δ and
the output function τ are defined as follows:

δ(qC , µE) = τa(sC(qC), µE)

τ(qC) = sC(qC).

Note that by construction the states of M belong to the winning region WC of Aa
G,

and δ follows the transition function τa of Aa
G. Hence, the output of M after reading a

word µ is exactly σC(µ) = sC([µ]) andM implements σC , which is a winning strategy by
Theorem 5.2.

6. Conclusions and Future Work

Our article presents an effective procedure for synthesizing controllers for timeline-based
games, whereas previously, only a proof of the 2EXPTIME-completeness of the problem
of determining the existence of a strategy was available in the literature. We use a novel
construction of a deterministic automaton of doubly-exponential (thus optimal) size, which
is then adapted to serve as the arena for the game. Then, with standard methods, we solve
a reachability game on the arena to effectively compute the winning strategy for the game,
if it exists.

This work paves the way for future developments. First, the procedure provided in
this article can be realistically implemented and tested. It is conceivable, though, that to
avoid the state explosion problem due to the doubly-exponential size of the automaton, it
will be necessary to apply symbolic techniques. Moreover, an implementation would also
need a concrete syntax to specify timeline-based games. Existing languages supported by
timeline-based systems (e.g., NDDL [CO96] or ANML [SFC08]) might be inadequate for
this purpose. Next, as in the case of LTL, the high complexity makes one wonder whether
simpler but still expressive fragments can be found. One possibility might be restricting the
synchronization rules to only talk about the past concerning the rule’s trigger. For co-safety
properties (i.e., properties expressing the fact that something good will eventually happen)
expressed in pure-past LTL, the realizability problem goes down to being EXPTIME-complete,
and by analogy, this might happen to pure-past timeline-based games as well.
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artificiale”, ref. no. CUP E53C23001670001 as well as that from the Interconnected Nord-Est
Innovation Ecosystem (iNEST), which received funding from the European Union Next-
GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE
4 COMPONENTE 2, INVESTIMENTO 1.5 – D.D. 1058 23/06/2022, ECS00000043). In
addition, Angelo Montanari acknowledges the support from the MUR PNRR project FAIR -
Future AI Research (PE00000013) also funded by the European Union Next-GenerationEU.
This manuscript reflects only the authors’ views and opinions, neither the European Union
n or the European Commission can be considered responsible for them. Nicola Gigante



Vol. 20:3 CONTROLLER SYNTHESIS FOR TIMELINE-BASED GAMES 17:23

acknowledges the support of the PURPLE project, 1st Open Call for Innovators of the
AIPlan4EU H2020 project, a project funded by EU Horizon 2020 research and innovation
programme under GA n. 101016442.

References

[AGG+22] Renato Acampora, Luca Geatti, Nicola Gigante, Angelo Montanari, and Valentino Picotti.
Controller synthesis for timeline-based games. Electronic Proceedings in Theoretical Computer
Science, 370:131–146, sep 2022. Tdoi:10.4204/eptcs.370.9.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J.

ACM, 49(5):672–713, 2002. Tdoi:10.1145/585265.585270.
[BL90] J Richard Buchi and Lawrence H Landweber. Solving sequential conditions by finite-state

strategies. In The Collected Works of J. Richard Büchi, pages 525–541. Springer, 1990.
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Appendix A.

Lemma 4.8 (Correspondence between runs and matching functions). Let µ = ⟨µ1, . . . , µn⟩
be a (possibly open) event sequence, and let ME be the initial matching structure of an
existential statement E ≡ ∃a1[x1 = v1] . . . ak[xk = vk] . C, with C augmented with atoms
start(ai) ≤[d

xi=vi
min ,d

xi=vi
max ] end(ai), for every 0 ≤ i ≤ k. Then, there exists a run I = ⟨I1, . . . , In⟩

of ME on µ, yielding a matching structure Mn = (V,Dn,Mn, tn), if and only if there exists a
matching function γ : Mn → [1, . . . , n] such that, for every atom of the form T ≤[l,u] T

′ in C:

(I) if T ′ ∈Mn, then also T ∈Mn, γ(T ) ≤ γ(T ′), and l ≤ δ(µ[γ(T )...γ(T ′)]) ≤ u;

(II) if T ′ ̸∈Mn, but T ∈Mn, then δ(µ[γ(T )...n]) ≤ u.

Furthermore, γ and I are such that for every T ∈ Mn, T ∈ Iγ(T ), i.e., they agree on the

matching of the terms of Mn. We write ME
µ,γ−−→Mn, if γ corresponds to a run of ME, or

µ, γ |= Mn, if ME is clear from the context.

Proof. (←−). We proceed by induction on the length of the event sequence µ = ⟨µ1, . . . , µn⟩.
Base case. If n = 0, the only well defined function on an empty codomain is the function
γ0 : ∅ → ∅ with an empty domain, which vacuously satisfies the definition of matching
function and Items (I) and (II). Then, the only run of ME = (V,D,∅, 0) on an empty event
sequence µ is the empty run I yielding ME itself, which vacuously satisfies the definition of
run.
Inductive step. Let γ : Mn → [1, . . . , n] be a matching function satisfying Items (I)
and (II), and let γ|<n : Mn−1 → [1, . . . , n− 1] be the restriction of γ on the domain Mn−1

defined as the inverse image of [1, . . . , n− 1] under γ, i.e., Mn−1 = γ−1([1, . . . , n− 1]). γ|<n

is a matching function for the event sequence µ[1...n−1] and satisfies Items (I) and (II). By the

inductive hypothesis, there exists a run ⟨I1, . . . , In−1⟩ of ME on µ[1...n−1], yielding a matching

structure Mn−1 = (V,Dn−1,Mn−1, tn−1). Let In = γ−1(n), and note that In ⊆ Mn−1. We
show that µn = (An, δn) is an In-match event for Mn−1 by breaking the proof in steps.
(Step: µn is an admissible event for Mn−1). Let T ∈ Mn−1 and T ′ ̸∈ Mn−1. If

Dn−1[T
′, T ] = +∞, δn ≤ Dn−1[T

′, T ] trivially holds. Otherwise, there exists an atom
T ≤[l,u] T

′ in C and Dn−1[T
′, T ] = u − δ(µ[γ|<n(T )...n−1]). We consider two cases based

on whether T ′ belongs to the domain of γ, or not. In the first case, γ(T ′) = n and
δ(µ[γ(T )...n−1]) + δn = δ(µ[γ(T )...γ(T ′)]) ≤ u, by Item (I). In the second case, δ(µ[γ(T )...n−1]) +

δn = δ(µ[γ(T )...n]) ≤ u, by Item (II). In either case, δn ≤ u− δ(µ[γ(T )...n−1]) = Dn−1[T
′, T ].

https://doi.org/10.1145/75277.75293
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(Step: Item 1a of Definition 4.5). Let a[x = v] be a quantified token of E. If start(a) ∈ In,
then γ(start(a)) = n and by definition of matching function start(x, v) ∈ An.
(Step: Item 1b of Definition 4.5).(←−). Let end(a) ̸∈ Mn−1 be a possible candidate

for inclusion in In. If start(a) ∈ Mn−1 and end(x, v) ∈ An, then end(x, v) ends the token
started at µγ|<n(start(a)); otherwise, there would exist µi = (Ai, δi) prior to µn such that

end(x, v) ∈ Ai, contradicting that γ|<n is undefined on end(a). By definition of matching
function, since end(x, v) ∈ An ends the token started at µγ(start(a)), we have γ(end(a)) = n
and end(a) ∈ In.
(Step: Item 1b of Definition 4.5).(−→). If end(a) ∈ In, then by definition of matching

function end(x, v) ∈ An. Furthermore, since end(a) ∈ Mn, Item (I) gives γ(start(a)) ≤
γ(end(a)) for the atom start(a) ≤[l,u] end(a) in C. By definition of event sequence, start(x, v)
and end(x, v) cannot appear in the same event; hence, γ(start(a)) < γ(end(a)) = n and
start(a) ∈Mn−1.
(Step: Item 2a of Definition 4.5). Let T be a term in In, and let T ′ ∈ V be any other term

such that Dn−1[T
′, T ] ≤ 0. Then, Dn−1[T

′, T ] can either be the lower bound of an atom
T ′ ≤[l,u] T , or the upper bound of an atom T ≤[l,u] T

′ in C. In the first case, we can directly
conclude that T ′ ∈Mn−1 ∪ In, because T ′ ∈Mn by Item (I) of γ and Mn = Mn−1 ∪ In by
definition of Mn−1 and In. In the second case, note that Dn−1[T

′, T ] = u, i.e., it has never
been decremented because T ̸∈Mn−1, and that upper bounds u can never be negative. Thus,
u is equal to 0 and γ satisfies 0 ≤ δ(µ[γ(T )...γ(T ′)]) ≤ 0 (Item (I)), meaning that γ(T ′) = γ(T )

and T ′ ∈ In.
(Step: Item 2b of Definition 4.5). Let T ∈ In and T ′ ∈Mn−1. Dn−1[T

′, T ] cannot be the
upper bound of an atom T ≤[l,u] T

′; otherwise, Item (I) would imply T ∈Mn−1, contradicting
T ∈ In. Thus, Dn−1[T

′, T ] must either represent the lower bound of an atom T ′ ≤[l,u] T in
C, or be equal to +∞. In the latter case, δn ≥ −Dn−1[T

′, T ] trivially holds. In the former
case, Dn−1[T

′, T ] = −l + δ(µ[γ|<n(T ′)...n−1]). Since γ(T ) = n, we have δ(µ[γ(T ′)...γ(T )]) =

δ(µ[γ(T ′)...n]) = δ(µ[γ(T ′)...n−1]) + δn ≥ l. Hence, δn ≥ l − δ(µ[γ(T ′)...n−1]) = −Dn−1[T
′, T ].

(Step: Item 2c of Definition 4.5). Let T, T ′ ∈ In be two distinct terms. Then, γ(T ′) = γ(T )
and δ(µ[γ(T ′)...γ(T )]) = 0. If T ≤[l,u] T

′ (resp., T ′ ≤[l,u] T ) belongs to C, then Dn−1[T, T
′]

(resp., Dn−1[T
′, T ]) is the lower bound l and equals 0 by Item (I). Otherwise, Dn−1[T, T

′] =
Dn−1[T

′, T ] = +∞.

Hence, Mn−1
µn,In−−−→ Mn is well defined and ⟨I1, . . . , In⟩ is a run of ME on µ yielding Mn.

(−→). We proceed by induction on the length of the event sequence µ = ⟨µ1, . . . , µn⟩.

Base case. An empty run I yields ME = (V,D,∅, 0) itself. Then the function γ0 : ∅→ ∅
vacuously satisfies the definition of matching function and Items (I) and (II).
Inductive step. Let I = ⟨I1, . . . , In⟩ be a run of ME on µ, yielding a matching structure
Mn = (V,Dn,Mn, tn). Note that I [1...n−1] is a run of ME on µ[1...n−1] yielding a matching

structure Mn−1 = (V,Dn−1,Mn−1, tn−1). By the inductive hypothesis, there exists a match-
ing function γ<n : Mn−1 → [1, . . . , n−1] satisfying Items (I) and (II). Let γ : Mn → [1, . . . , n]
be the extension of γ<n to Mn, such that γ(T ) = n, for all T ∈ In.
(Step: γ is a matching function). Items 1 and 2 hold for all the terms already present

in the domain of γ<n. For every term in In, Item 1 for γ follows from Item 1 of In-match
event. Let start(a), end(a) ∈Mn be two terms not both already present in Mn−1, meaning
that start(a) ∈ Mn−1 and end(a) ∈ In, for some quantified token a[x = v] in E. By
definition of In-match event, µn = (An, δn) is such that end(x, v) ∈ An and no other event in
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µ[γ<n(T )...n−1] contains an action end(x, v), otherwise end(a) would already belong to Mn−1

(by Item 1b of I-match event). Thus, end(x, v) ∈ An ends the token started at µγ(start(a)),
and γ(start(a)) and γ(end(a)) correctly identify the endpoints of such token.
(Step: Item (I) of Lemma 4.8). Let T ≤[l,u] T ′ be an atom in C, and note that γ

already satisfies Item (I) for every T ′ ∈ Mn−1. If T ′ ∈ In instead, consider the entry
Dn−1[T, T

′] representing the lower bound l of the aforementioned atom. If Dn−1[T, T
′] ≤ 0,

Item 2a of I-match event gives T ∈ Mn−1 ∪ In = Mn. If Dn−1[T, T
′] > 0, Dn−1[T, T

′] no
longer stores its initial value −l ≤ 0, meaning that T must have been previously matched
and T ∈ Mn−1 ⊆ Mn. In either case, T ∈ Mn and γ(T ) ≤ γ(T ′), because γ(T ) ≤ n.
If T ∈ In, then δ(µ[γ(T )...γ(T ′)]) = 0 ≤ u, is trivially satisfied by any upper bound u.

Furthermore, by Item 2c of I-match event, either the lower bound Dn−1[T, T
′] = 0 or the

upper bound Dn−1[T
′, T ] = 0, and they both equal their initial values l and u. Note that

the former case is also implied by the latter, so that l = 0 and l ≤ δ(µ[γ(T )...γ(T ′)]). If

T ∈ Mn−1, by Item 2b of I-match event, δn ≥ −D[T, T ′] = l − δ(µ[γ(T )...n−1]). Hence,

l ≤ δ(µ[γ(T )...n−1]) + δn = δ(µ[γ(T )...γ(T ′)]). While δn ≤ Dn−1[T
′, T ] = u − δ(µ[γ(T )...n−1]),

since µn is an admissible event for Mn−1. Hence, δ(µ[γ(T )...n−1]) + δn = δ(µ[γ(T )...γ(T ′)]) ≤ u.

(Step: Item (II) of Lemma 4.8). Let T ≤[l,u] T
′ be an atom in C such that T ∈Mn and

T ′ ̸∈Mn. Since µn is an admissible event for Mn−1, δn ≤ Dn−1[T
′, T ] = u− δ(µ[γ(T )...n−1]).

Hence, δ(µ[γ(T )...n−1]) + δn = δ(µ[γ(T )...n]) ≤ u.

Lemma 4.10. Let µ = ⟨µ1, . . . , µn⟩ be an event sequence , let ME be the initial matching
structure of some existential statement E of a rule R, and let Mr be an active matching

structure resulting from a run ME
µ,γr−−→ Mr, such that γr(start(a0)) = r. If there exists a

run ME
µ,γs−−→ Ms, such that γs(start(a0)) < r, then there exists a run ME

µ,γ−−→ M, such that
γ(start(a0)) = γs(start(a0)) and M matches at least as many tokens as Mr.

Proof. Let ME
µ,γr−−→ Mr = (V,Dr,Mr, tr) and ME

µ,γs−−→ Ms = (V,Ds,Ms, Ts), with
γs(start(a0)) ≤ γr(start(a0)). Let M = Mr ∪Ms and γ : M → [1, . . . , n] be a function
defined as:

γ(T ) =


γs(T ) if T ∈Ms ∩Mr and γs(T ) ≤ γr(T )

γr(T ) if T ∈Ms ∩Mr and γs(T ) > γr(T )

γs(T ) if T ∈Ms \Mr

γr(T ) if T ∈Mr \Ms

(Step: γ is a matching function). Item 1 of Definition 3.6 for γ follows from our
hypothesis on γs and γr. Regarding Item 2, let start(a), end(a) ∈ M for some quantified
token a[x = v] in E. If γs and γr map the endpoints of a to the same token in µ, then
γ(start(a)) and γ(end(a)) correctly identify the endpoints of that token. If instead γs and
γr map a to two distinct tokens in µ, then γ would match a according to the function whose
token comes first, correctly identifying the endpoints of such token.

(Step: γ satisfies Items (I) and (II) of Lemma 4.8). Let T ≤[l,u] T
′ be an atom in C. If

T ′ ∈M , then either T ′ ∈Ms, and T ∈Ms ⊆M , or T ′ ∈Mr, and T ∈Mr ⊆M . If γ maps
both terms with either γs or γr, then γ(T ) ≤ γ(T ′) and l ≤ δ(µ[γ(T )...γ(T ′)]) ≤ u immediately

follows. If instead γ(T ) = γs(T ) and γ(T ′) = γr(T
′), then T ′ ∈Mr and T ∈Ms ∩Mr. By

definition of γ, γs(T ) ≤ γr(T ), and, by Item (I) for γr, γr(T ) ≤ γr(T
′). Hence, γ(T ) ≤ γ(T ′).
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If T ′ ∈Ms, then γs(T
′) > γr(T

′), and:

l ≤ δγr(T ),γr(T ′) Item (I) for γr

≤ δγs(T ),γr(T ′) γs(T ) ≤ γr(T )

< δγs(T ),γs(T ′) γs(T
′) > γr(T

′)

≤ u Item (I) for γs

otherwise:

l ≤ δγr(T ),γr(T ′) Item (I) for γr

< δγs(T ),γr(T ′) γs(T ) ≤ γr(T )

≤ δγs(T ),n γr(T
′) ≤ n

≤ u Item (II) for γs

The case for γ(T ) = γr(T ) and γ(T ′) = γs(T
′) is completely symmetrical.

Lastly, if T ′ ̸∈M , but T ∈M , then either γ(T ) = γs(T ) or γ(T ) = γr(T ), and Item (II)
for γ follows from Item (II) for γs and γr.

Lemma 4.13 (Existence of residual matching structure). Let µ = ⟨µ1, . . . , µn⟩ be an
event sequence, and let Mn be an active matching structure such that µ, γ |= Mn and
δ(µ[γ(start(a0))...n]) > window(P ). If we consider the intermediate matching structures

⟨M1, . . . ,Mn−1⟩ of the run ME
µ,γ−−→ Mn, then there exists a position γ(start(a0)) ≤ k < n

such that Mk is a residual matching structure.

Proof. Let γ(start(a0)) = s, assuming there is no residual matching structure Mk in the
sequence ⟨Ms, . . . ,Mn−1⟩, then for every matching structure Mi = (V,Di,Mi, ti), where
s ≤ i < n, there exists a pair of terms (T, T ′) such that T ∈ Mi and T ′ ̸∈ Mi, and their
distance Di[T

′, T ] has a finite upper bound. Let E ⊆ V × V be the set that collects all pairs
(T, T ′) for the matching structures Mi. We define δT,T ′ as δ(µ[γ(T )...γ(T ′)]) if γ(T

′) is defined,

or as δ(µ[γ(T )...n]) otherwise. Let δE =
∑

(T,T ′)∈E δT,T ′ and note that δE ≥ δ(µ[γ(start(a0))...n]),

because every position in µ[γ(start(a0))...n] is covered by some distance δT,T ′ . Moreover,

each pair (T, T ′) ∈ E corresponds to an atom of the form T ≤[l,u] T
′ in C. According

to Lemma 4.8, we have δT,T ′ ≤ u, and therefore, δE ≤ window(P ). Hence, we have
δ(µ[γ(start(a0))...n]) ≤ δE ≤ window(P ): a contradiction hence proving the existence of a
residual matching structure Mk.

Theorem 4.14 (Soundness and completeness). Let P = (SV, S) be a timeline-based planning
problem and let AP be the associated automaton. Then, any event sequence µ is a solution
plan for P if and only if µ is accepted by AP .

Proof. (−→). Let µ = ⟨µ1, . . . , µn⟩ be a solution plan for P , and let q = ⟨q0, . . . , qn⟩ be the
run of AP on µ. We first show that the sink state is never reached, and then that qn is a
final state.

Let µs = (As, δs) be the trigger event of a rule R ≡ a0[x0 = v0] → E1 ∨ · · · ∨ Em, i.e.,
start(x0, v0) ∈ As. Since µ is a solution plan, there exist tokens satisfying an existential
statement E of R for the trigger µs. Hence, by Lemma 4.8 and Observation 4.9 there exists

a run ME
µ,γ−−→ Mn, yielding a closed matching structure Mn, such that γ(start(a0)) = s.

Let M = ⟨ME,M1, . . . ,Mn⟩ be the sequence of all the matching structures involved in
such run. Note that, by construction (Section 4.3), the states of q induce all the possible
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runs for the initial matching structures of P that can be defined on µ. In particular, the
run γ must be one of them. However, only a subsequence of the matching structures M will
appear in the states of the run q. Indeed, we can identify three key points for the sequence
M : the least position s such that Ms is active (corresponding to γ(start(a0))), the least
position h following s such that Mh no longer belongs to the component Υ of the states in
q[h...n], either because Mh is closed or because δ(µ[s...h]) > window(P ), and the least position
k following h such that Mk no longer belongs to the component ∆ of the states in q[k...n],
either because Mk is closed or because it gets discarded in favour of the matching structures
of a later trigger event.

Every matching structure in M [1...h−1] belongs to the component Υ of a corresponding
state in q[1...h−1], so the set Υ of the state qs−1 is such that Ms ∈ stepµs

(Υ⊥), satisfying

condition 5b of Section 4.3 for the trigger event µs. Matching structures M [s+1...h] instead

belong to the set stepµ(Υ
R
t ), for the partition ΥR

t tracking the satisfaction of the trigger
event µs of every state q[s...h−1]. Hence, all such states satisfy condition 5a of Section 4.3.

We now show that no active matching structures for the trigger event µs exists after
some state qh, following qs in q. Note that the run γ yields a closed matching structure, and
if it does so within window(P ) time units from the event µstart(a0), we identified such position

as the closed matching structure Mh. So that the state qh−1 is such that Mh ∈ stepµh
(ΥR

t ),

for the partition ΥR
t tracking the trigger event µs, and stepµh

(ΥR
t ) is discarded from qh.

If instead γ yields a closed matching structure after window(P ) time units from the
event µstart(a0), lets identify such position as Mj , with j ≤ n. If Mj−1 belongs to the set
∆(E) of the state qj−1, then Mj ∈ stepµj

(∆(E)), so that stepµj
(∆(E)) is closed and discarded

from qj , alongside all the other matching structures in ∆(E′), for every E′ ∈ Φ(E), i.e.,
for every other existential statement E′ of R still tracking the trigger µs. If instead Mj−1

for the trigger event µs does not belong to the set ∆(E) of the state qj−1, by construction
(Section 4.3), there exist a state qh in which the matching structures tracking µs have been
replaced by those of a later event, and they no longer appear in ∆(E) from qh onwards.

Since µ is a solution plan, the previous argument holds for all the trigger events in µ
of any rules in S. Hence, conditions 5a and 5b are always met, i.e., the sink state is never
reached, and no active matching structures belong to qn, making it a final state.

(←−). Let µ = ⟨µ1, . . . , µn⟩ be an event sequence accepted by AP and let ρ = ⟨q0, . . . , qn⟩
be its accepting run. We have to show that the plan corresponding to µ is a solution plan
for P , i.e., for every event triggering a rule R in S, at least one of the existential statements
of R is satisfied by µ.

Let µs = (As, δs) be an event in µ triggering a rule R ≡ a0[x0 = v0] → E1 ∨ · · · ∨ Em,
i.e., start(x0, v0) ∈ As. Since the sink state is never visited in an accepting run, the state qs,
reached upon reading the event µs, is such that the partition ΥR

0 , tracking the satisfaction
of the trigger event µs, is not empty. For the same reason, the partition ΥR

t tracking µs

in every state following qs can never be empty as a result of the function stepµ. However,
since the final state qn does not contain any active matching structure, there must exists a
state qh in q whose partition stepµh+1

(ΥR
t ) gets discarded from qh+1. This can happen either

because stepµh+1
(ΥR

t ) is a closed set, or because the matchings structures in stepµh+1
(ΥR

t )
get promoted to the component ∆. In the first case, we can conclude that there exists a

run ME
µ,γ−−→ Mn for the initial matching structure ME of an existential statement E of R
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such that Mn is closed and γ(start(a0)) = s, hence, by Observation 4.9 and Lemma 4.8, the
trigger event µs satisfies R.

In the second case, let Ψ be the set of existential statements having an active matching
structure in stepµh+1

(ΥR
t ), so that we can identify them as the sets ∆(E), for E ∈ Ψ, in the

states from qh+1 onwards. By Lemma 4.13, every such set contains a residual matching
structure. Hence, by Observation 4.12, they can become empty only if, at some state
qk following qh, stepµk+1

(∆(E)) contains a closed matching structure for some existential

statement E ∈ Ψ. Note that the run q is an accepting run, so every non-empty set ∆(E)
must become empty before the end of the run. Hence, qk is guaranteed to exist.

However, it may be the case that, by the time stepµk+1
(∆(E)) is closed, ∆(E) no longer

contains the matching structures for the trigger event µs, but those for a later trigger event µr

of R. Since the sets ∆(E) store only the matching structures tracking the most recent trigger
event older than window(P ). Thus, if stepµk+1

(∆(E)) contains a closed matching structure
for µs, we can directly assert the existence of a run for ME implying the satisfaction of R for
the trigger event µs. If instead stepµk+1

(∆(E)) contains a closed matching structure Mr for

a later event µr, there exists a run ME
µ,γr−−→ Mr, such that γr(start(a0)) = r. Furthermore,

by a previous consideration on qh+1, there exists a run ME

µ[1...h+1],γs−−−−−−−→ M̂h+1, yielding a

residual matching structure M̂h+1, and, by Observation 4.12, such run can be extended on

the entire event sequence ME
µ,γs−−→ M̂n, to yield a residual matching structure M̂n. Given

ME
µ,γr−−→ Mr and ME

µ,γs−−→ M̂n, with γs(start(a0)) ≤ γr(start(a0)), by Lemma 4.10, there

exists a run ME
µ,γs−−→ Mn yielding a matching structure Mn matching as many terms as Mr

and such that γs(start(a0)) = s. Hence, M is a closed matching structure for the existential
statement E, and, by Observation 4.9 and Lemma 4.8, R satisfies the trigger event µs.

Furthermore, all the value duration functions are satisfied by the tokens in µ, being
encoded as synchronisation rules by the automaton SP . Meanwhile, the automaton TP

guarantees the fulfilment of the value transition functions. Hence, we can conclude that µ is
a solution plan for P , because every rule in S is satisfied, as well as the value duration and
value transition functions of every state variable.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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