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ABSTRACT. We investigate a number of semantically defined fragments of Tarski’s algebra
of binary relations, including the function-preserving fragment. We address the question of
whether they are generated by a finite set of operations. We obtain several positive and
negative results along these lines. Specifically, the homomorphism-safe fragment is finitely
generated (both over finite and over arbitrary structures). The function-preserving fragment
is not finitely generated (and, in fact, not expressible by any finite set of guarded second-
order definable function-preserving operations). Similarly, the total-function-preserving
fragment is not finitely generated (and, in fact, not expressible by any finite set of guarded
second-order definable total-function-preserving operations). In contrast, the forward-
looking function-preserving fragment is finitely generated by composition, intersection,
antidomain, and preferential union. Similarly, the forward-and-backward-looking injective-
function-preserving fragment is finitely generated by composition, intersection, antidomain,
inverse, and an ‘injective union’ operation.

1. INTRODUCTION

Just as Boolean algebra can be viewed as a language for describing operations on sets, Tarski’s
relation algebra (TRA) is a language for describing operations on binary relations. It consists
of a small, finite collection of operations on binary relations (which includes, for instance,
composition and union), governed by natural equations such as Ro(SUT) = (RoS)U(RoT).
The origins of TRA trace back to the 19th century, and, more specifically, to the work of
Augustus De Morgan and Charles Peirce, but its study intensified when it was picked up
by Tarski and his students in the 1940s [Tar4l, Mad9l, Pra92]. We can view TRA as a
language for specifying operations on binary relations. Its expressive power, in terms of the
term-definable operations, corresponds precisely to the three-variable fragment of first-order
logic (FO3?) [TG87].

Many modern graph and tree query languages, such as regular path queries, SPARQL,
and XPath, which describe ways of navigating through graph-structured data, can be
identified with variants of TRA, each involving a different set of allowed operations. This

|IEE| LOGICAL METHODS © B. Bogaerts, B. ten Cate, B. McLean, and J. Van den Bussche
IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(3:20)2024 @ Creative Commons


https://lmcs.episciences.org/
https://orcid.org/0000-0003-3460-4251
https://orcid.org/0000-0002-2538-5846
https://orcid.org/0000-0003-2368-8357 
https://orcid.org/0000-0003-0072-3252
http://creativecommons.org/about/licenses

20:2 B. BoGAERTS, B. TEN CATE, B. MCLEAN, AND J. VAN DEN BUSSCHE Vol. 20:3

4 5
o®o O\/‘)O .
% %
@, i
%, L
o Qe
Y Vg G, %
© c ¥ ¢
id identity relation yes yes yes yes
0 empty relation yes yes yes yes
T universal relation (all pairs) yes yes no no
—(+) complement no no no no
(-)~ inverse yes yes no no
D(-) domain (D(R) = {(z,z) | R(x,y)}) yes yes yes yes
R(-) range (R(R) = {(4.y) | R(x.9)}) yes yes yes no
~(-) antidomain (~R = {(z,z) | =3y R(z,y)}) no 1no yes yes
-U-  union yes yes no  yes
- - intersection yes yes yes yes
-\ - relative complement no yes yes yes
-o- composition yes yes yes yes
- - left semi-join (R x S = {(z,y) € R|3z5(y,2)}) yes yes yes yes
-U-  preferential union (RUS = RU{(x,y) € S| -3z R(z,2)}) no mno yes yes

Table 1: Operations on binary relations

has generated an interest in systematically understanding the expressive power of fragments
and extensions of TRA [FGL"15a, FGL*15b, HWGV22].

Here, we study the question whether certain semantically-defined fragments of TRA can
be generated by a finite set of operations. One known positive result along these lines is the
following, where BRA(Q) denotes the binary relation algebra generated by the operations in
O (see Table 1 for a definition of the operations).

Theorem 1.1 [Ben98]. A TRA-term is “bisimulation safe” if and only if it is equivalent to
a BRA(id, o, U, ~)-term.

The precise definition of bisimulation and of bisimulation safety is not important for
us here. It suffices that bisimulation is an important equivalence relation that captures
behavioral equivalence of processes, and that an operation on binary relations is bisimulation
safe if commutes, in a natural way, with bisimulation.

We can think of Theorem 1.1 result as analogous to a preservation theorem in model
theory: it correlates a semantic property with expressibility in a natural, finitely-generated,
syntactic fragment. The above result may suggest that various other semantically-defined
fragments of TRA could be similarly characterised syntactically by a finite basis of operations.
One particular prominent semantic fragment that arises naturally in different contexts, is
the function-preserving fragment of TRA [McL18]. An operation on binary relations is said
to be function-preserving if, whenever the input relations are partial functions, so is the
output relation. It is a natural question, and an open problem in the community (although
we could not locate an explicit reference) whether the function-preserving fragment of TRA
is finitely generated.
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Contributions. As our main contribution, we establish the following positive and negative
results:

e The homomorphism-safe fragment of TRA is finitely generated (Section 3).

e The function-preserving fragment of TRA is not finitely generated (and, in fact, not ex-
pressible by any finite set of guarded second-order definable function-preserving operations).
The same holds for the total-function-preserving fragment (Section 4).

e The forward function-preserving fragment and the local injective-function-preserving
fragment are finitely generated (Section 5).

We study each of these fragments both in the general case (i.e., where the input relations
may be relations over an infinite domain) and in the finite.

Naturally, there are many other semantic fragments of TRA for which one could ask the
same finite-generatedness question. Our intention, with the above results, is to provide a
sample of interesting results when it comes to the question of finite generation for semantic
fragments of TRA. In the concluding Section 6, we will further comment on directions for
future work and connections to the formalisms we mentioned in our motivation above.

Related Work. Borner and Péschel [BP91] studied whether various clones of operations
on binary relations over a fixed finite structure are finitely generated. Their study includes
the “logical clone” (which is the set of all first-order definable operations) as well as the
“positive clone” (which is the set of all operations definable by positive-existential first-order
formulas). Our investigation is different in that we are interested in the existence of finite
bases over all (finite) structures. We will further comment on the relationship between our
results and those by Borner and Poéschel in Section 3.

Andréka et al. [ACNS5] and Borner [B86] consider the problem whether certain finitely
generated clones of operations on binary relations are in fact generated by a single operator
(analogous to the Sheffer stroke in Boolean algebra), and what is the minimum possible arity
of such an operation.

There is a substantial literature on algebras of partial functions (that is, function-
preserving fragments of TRA), focusing on the axiomatisation of their first-order theories
as well as computational aspects such as decidability and the finite model property. An
in-depth overview of known results along these lines can be found in [McL18§].

In the literature on temporal logics, there have been extensive studies concerning the
existence of temporal logics generated by a finite set of operations, that are expressively
complete for first-order logic in the sense of Kamp’s theorem [Kam68] (see [GHR94] for
an overview). One of the main differences with our setting is that, in temporal logic,
the operators are typically monadic (i.e., they correspond to FO-formulas in one free
variable), whereas in our case, the operators act on, and produce, binary relations (and hence
correspond to FO-formulas in two free variables). Closer to our setting is Venema [Ven90],
who studies expressive completeness for interval temporal logics, and showed that, on dense
linear orders, no finite set of binary operations is expressively complete for FO; and the
results on conditional XPath by Marx [Mar05], which imply that (a fragment of) TRA is
expressively complete for FO over finite sibling-ordered trees. Both are concerned with
definability of binary relations. Note however, that our objective differs from that of
[Ven90, Mar05]: we are not restricted to linear orders or trees, and we are not primarily
interested in expressive completeness with respect to FO, but rather expressive completeness
with respect to (semantic fragments of) Tarski’s relation algebra, or, equivalently, FO3.
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2. PRELIMINARIES

First-order logic and guarded second-order logic. We restrict to structures over
signatures consisting of binary relation symbols only. We write FO for first-order logic, and
we denote by FO* (for k > 1) the k-variable fragment of FO, that is, the fragment of FO
consisting of formulas that use only k variables, where nested quantifiers may reuse the same
variable.

We will also consider guarded second-order logic (GSO [GHOO02], also known as MSOq
[CE12]), which extends first-order logic with monadic second-order quantification (i.e.,
quantification over sets) as well as guarded second-order quantification, by which we mean
quantification over subrelations of relations in the signature. Thus, for example, we can
express in GSO that a pair (z,y) lies on a Hamiltonian cycle in a digraph, which is a property
that cannot be expressed in MSO [Lib04].

By the quantifier rank of a GSO-formula ¢ we will mean the maximum nesting depth of
first-order and/or second-order quantifiers. We will write A =f.q5 B to indicate that two
structures agree on all GSO-sentences of quantifier rank at most n.

Binary relation algebras. An n-ary operation on binary relations is a map O from first-
order structures A = (dom(A), R{,..., R2) to binary relations O(A) C dom(A)? that is
isomorphism invariant: for every isomorphism h : A = B, it holds that h : O(A) = O(B).
Equivalently, one may think of an n-ary operation on binary relations as mapping first-order
structures A = (dom(A), R, ..., R4) to first-order structures A’ = (dom(A), O(A)), where
the domain of the structure remains unchanged. We say that O is FO-definable if there is an
FO-formula ¢(z,y) such that O(A) = {(a,b) € dom(A)? | A |= #(a,b)} for all A. A binary
relation algebra is given by a collection O of operations on binary relations. We denote it by
BRA(QO). We say that the algebra is FO if all its operations are FO-definable.

Terms, term definable, finitely generated. Let A = BRA(QO) be a binary relation
algebra, and fix some countable infinite set of binary relation symbols Ry, Ra, ... By an n-ary
term of A we mean a syntactic expression built up from the relation symbols Ry,..., R,
using the operations in O as function symbols. For instance, R; U Ry is an example of a
l-ary TRA-term. We denote by O; the n-ary operation on binary relations defined by the
term t. We say that two n-ary terms ¢ and ¢’ are equivalent (in the finite) if, for all (finite)
structures A = (dom(A), R{, ..., R2), O4(A) = Oy(A). We say that an operation on binary
relations is term definable (in the finite) in A if there is a term of A that defines it (over
finite structures). Note that, if O consists of FO-definable operations, then every term of
BRA(Q) defines an FO-definable operation. In fact, if every operation in O is FOF-definable
(for some k > 2) then every BRA(O)-term also defines an FO*-definable operation. The
same applies in the finite.

We say that a binary relation algebra BRA(Q) is finitely generated if there is a finite
subset O’ C O, such that every operation in O is term definable in BRA(QO').
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Tarski’s relation algebra. Tarski’s relation algebra (TRA) is an example of an FO binary
relation algebra. It can be defined as TRA := BRA(id,?, —, N, 0, 7). All operations in
Table 1 are term definable in TRA. The following two classic results on TRA will be relevant
for us.

Theorem 2.1 [TG87, Section 3.9]. Both in general and in the finite: an operation on binary
relations is term definable in TRA if and only if it is FO>-definable.

Theorem 2.2 [Tar4l, Léwl5]. Both in general and in the finite: the binary relation algebra
consisting of all FO-definable operations is not finitely generated.

Theorem 2.2 in fact follows from Theorem 2.1 together with the well-known fact in
(finite) model theory that FO does not collapse to any of its finite variable fragments;
cf. also [Ven90, Theorem 2.13].

Kleene Algebra is an example of a non-FO binary relation algebra, which includes the
(GSO-definable) reflexive transitive closure operation. We omit the definition, as we will not
study it in this paper.

3. THE HOMOMORPHISM-SAFE FRAGMENT IS FINITELY GENERATED

Recall that a homomorphism i : A — B is a function from the domain of A to the domain of B
that preserves structure, i.e. such that (a,b) € R* implies (h(a), h(b)) € RP. We say that an
operation O on binary relations is homomorphism safe if, for every homomorphism h : A — B
and (a,b) € O(A), (h(a),h(b)) € O(B). Equivalently, O is homomorphism safe if and only if
every homomorphism h : A — B is also a homomorphism & : (4,0(A)) — (B, O(B)), where
(A,O(A)) denotes the expansion of the structure A with O(A) as an additional relation, and
similarly for (B, O(B)). Thus, intuitively, one can think of homomorphism-safe operations
as homomorphism-preserving operations.

As indicated in Table 1, examples of homomorphism-safe operations are U, N, and o,
but not —.

Theorem 3.1. Both in general and in the finite: a TRA-term is homomorphism-safe if and
only if it is equivalent to a BRA(id, ), T,0,U,N, 7)-term.

Proof. The right-to-left direction can be proved by a straightforward induction. We will
focus on the more interesting left-to-right direction.

We will make use of recent results regarding homomorphism-preserved FO-formulas
[BC19]. Formally, we say that an FO-formula ¢(x1,...,x,) is homomorphism preserved if
for every homomorphism h : A — B and tuple aq, ..., a,, we have A = ¢(aq,...,ay) implies
B = ¢(h(a1),...,h(an)). A classic theorem in model theory (known as the homomorphism
preservation theorem) states that a first-order formula is homomorphism preserved if and
only if it is equivalent to a positive-existential FO-formula (i.e., a formula built up from
atomic formulas using only existential quantification, conjunction, and disjunction). Ross-
man [Ros08] proved that this holds also in the finite. Bova and Chen [BC19, Corollary 24]
further refined this to finite-variable fragments (both on arbitrary structures and in the
finite): they showed that every homomorphism-preserved FOF formula is equivalent to a
positive-existential FO*-formula.

Let us now proceed with the proof of our theorem. By Theorem 2.1, it suffices to show
that every FO?-formula ¢(x1,22) (with two free variables) that is homomorphism preserved
can be translated to the TRA fragment in question. Moreover, by the aforementioned results
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of Bova and Chen, we may assume that ¢(z1, 29) is a positive-existential FO3-formula. We
inductively translate ¢(z1,z2) to a term ¢ in the specified fragment of TRA, such that
(a,b) € O (A) iff A satisfies ¢ under the assignment that maps z; and x2 to a and b,
respectively. The base cases are straightforward. In particular, R(z1,z2) translates to R,
R(z2,x1) translates to R, R(z1,z1) translates to (RNid) o T, x = y translates to id, etc.
Conjunction and disjunction translate to N and U, respectively (note that, here we take
advantage of the fact that our induction hypothesis was stated specifically for formulas
¢(x1,x2)). Therefore, only the case remains where ¢(x1,x2) is of the form Fyp(z1, z2,y). It
is not hard to see that ¢ must, in this case, be a positive Boolean combination of formulas
with at most two free variables. That is, ¥ can be written as a disjunction of conjunctions
of formulas with at most two free variables. Furthermore, we can pull the disjunction out
from under the existential quantifier, and deal with it separately. Therefore, we can assume
without loss of generality that 1 is a conjunction of formulas with two free variables. By
grouping the conjuncts appropriately, we can write ¢ as ¥1(x1,z2) A o(x1,y) A s(x2,y).
By the induction hypothesis, each of these conjuncts can be translated to a TRA-term, say,
t1,t2,t3. We can then translate ¢ as t; N (t2 o t37). []

It is worth comparing Theorem 3.1 to results by Borner and Poschel [BP91], which state
that the “logical clone” (which is defined as the binary relation algebra consisting of all FO-
definable operations on binary relations) as well as the “positive clone” (the binary relation
algebra consisting of all operations on binary relations definable by a positive-existential
FO-formula) over any fixed finite structure are finitely generated. By Rossman [Ros08],
the operations that can be defined by a positive-existential FO-formula are precisely the
homomorphism-safe FO-definable operations. We see that Theorem 3.1 is incomparable to
the results just mentioned. On the one hand, it is only concerned with TRA-term-definable
operations. On the other hand, it states that there there is a finite basis of operations from
which all homomorphism-safe TRA-terms are term definable over all (finite) structures.

One may wonder whether the approach taken in the proof of Theorem 3.1 could be used
to establish a Los—Tarski-style theorem for TRA, characterising the fragment of TRA that is
preserved by the C relation, where, by A C B, we mean that A is an induced substructure of
B. More precisely we say that a first-order formula ¢(z1,...,z,) is C-preserved if, whenever
A C B and ay,...,a, € dom(A) and A = ¢(ai,...,an), then B | ¢(a1,...,a,). The
classic Los—Tarski preservation theorem states that, on unrestricted (i.e., possibly infinite)
structures, an FO formula is C-preserved if and only if it is equivalent to an existential
FO-formula. As it turns out, however, the Los-Tarski theorem fails for FO?. More precisely,
it has been shown [AvBN23, Lemma 1 and 2] that there is a FO3-sentence over a signature
consisting of a single binary relation, that is C-preserved, but that is not equivalent, even
over finite structures, to an existential FO?-sentence.! This shows that the approach we used
for the homomorphism-safe fragment of TRA will not work for the C-preserved fragment,
which we also refer to as the C-safe fragment. So, it leaves the following question open.

Question 3.2. Is the C-safe fragment of TRA finitely generated?

IThe result in [AvBN23] is stated in terms of preservation under taking induced substructures, and it
talks about the universal fragment of FO. It is, however, equivalent by a duality argument.
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4. THE FUNCTION-PRESERVING FRAGMENT IS NOT FINITELY GENERATED

Let O be an n-ary operation on binary relations. We say that O is function preserving if
the following holds for all structures A = (dom(A), R{,..., R2): if each R is a partial
function on dom(A), then O(A) is a partial function on dom(A). Similarly, we say that O is
total-function preserving if the following holds for all structures A = (dom(A), R{',..., R:}):
if each R is a total function on dom(A), then O(A) is a total function on dom(A).

As indicated in Table 1, the following are function preserving: id, ), D, R, ~, N, \, o,
X, and LI. Let us call the binary relation algebra consisting of these operations function
algebra (FA). FA was described in [HJM16] as “in an informal sense at least, the richest
natural case” of an algebra of partial functions. In the same paper, a finite axiomatisability
result was established for FA (see also [McL18] for a systematic study of algebras of partial
functions).

Our main result in this section is the following theorem.

Theorem 4.1. Let O be any finite set of function-preserving GSO-definable operations on
binary relations. Then there is a function-preserving operation on binary relations O that is
term definable in TRA but not in BRA(O), even over finite structures in which all relations
are partial functions.

The proof will make use of the following lemma (where W denotes the operation of
disjoint union).

Lemma 4.2. For all structures A, A", B,B" and n > 0, if A =}qo A" and B =¢go B’ then
AW B =gy AW B,

Proof. The lemma can be derived from a (suitable adaptation to GSO of a) more general
Feferman—Vaught theorem for MSO [Mak04]. However, here, we give a direct argument
using an Ehrenfeucht—Fraisse-style game argument. The game we will consider is played,
as usual, between two structures, C' and C’, and has two players, Spoiler and Duplicator.
In each round, Spoiler plays first and can make two types of moves: those corresponding
to first-order quantification and those corresponding to monadic or guarded second-order
quantification. A move of the first type means that Spoiler picks an element of C' or of
C'. In this case, Duplicator must respond by picking a corresponding element of the other
structure. A move of the second type means that Spoiler picks either a subset of the domain
of C or C’ (in which case Duplicator responds by picking a corresponding subset of the
domain of the other structure) or a subrelation of one of the relations of C' or C’ (in which
case, Duplicator responds by picking a coresponding subrelation of the same relation in the
other structure). The game then continues using the same pair of structures expanded with
the chosen elements/sets/relations. The game is played for a fixed number of rounds, n.
Duplicator wins if, after n rounds, the resulting substructures satisfy the same quantifier-free
FO formulas (with the chosen elements as parameters and chosen sets/relations as relations).
It is a standard exercise to show that Duplicator has a winning strategy for the n-round
game if and only if C' =gq C".

We now use the above game to prove the statement. Since A =ggo A’ and B =gqy B,
Duplicator has winning strategies in the two corresponding n-round games. Consider now
the n-round game between AW B and A’ W B’. We will refer to A and B as the “left” part
and the “right” part of AW B and similarly for A’ and B’. Recall the two types of moves
Spoiler can make in the game. A move of the first type consists of choosing an element,
which must belong either the “left half” of the structure or to the “right half”. In this case,
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Duplicator can respond using their assumed strategy in the corresponding game. A move
of the second type involves selecting either a set of elements, or a set of a tuples from a
relation in the structure. In either case, the set in question can be naturally partitioned into
two halves, the “left half” and the “right half”. Duplicator can therefore respond to each
type of move simply by using her winning strategies for the two parts of the structure. It is
easy to see that this yields a winning strategy for Duplicator. L]

Proof of Theorem 4.1. Let n be a number greater than the maximum quantifier rank of the
GSO-formulas defining the operations in O.

For m > 0, let C), be the directed graph that has a vertex a; ; for every i € {1,...,m}
and j € {1,2,3}, and that has an edge from a;; to ay j whenever i/ = (i mod m) + 1.
In other words, C,, is a directed cycle of length m in which every vertex is replaced by
three vertices. Then let C), be the structure over the signature {f, g} obtained from C,, by
replacing every edge by an (f~ o g)-path (using a fresh intermediate vertex each time). See
Figure 1. We will refer to the vertices of the form a; ; as “normal nodes” and the added
intermediate vertices as “auxiliary nodes”. In addition, by a “cluster of auxiliary nodes” we
mean the family of nine auxiliary nodes added between the points a; ; and a(;1 mod m),j» for
j,7' € {1,2,3}, for some i € {1,...,m}.

Claim 1: There are m % m’ such that, in the structure C := C}, W C',, all normal nodes
satisfy the same GSO-formulas ¢(z) of quantifier depth n and likewise for the auxiliary
nodes.

Proof of Claim 1: Since there are (up to equivalence) only finitely many GSO-sentences
of quantifier rank at most n + 1, by the pigeonhole principle, there exist m # m’ such that
Cy, =ty CY,. Therefore, by Lemma 4.2, Cy wCY, =L O wCY,. Tt follows by invariance
under isomorphism that every normal node in Cy, W C}, satisfies the same GSO-formulas
¢(z), and similarly for the auxiliary nodes. In other words, for all GSO-formulas ¢(x), we
have that

CY ¢ C) = Vr(normal(x) — ¢(z)) V Va(normal(x) — —¢(z))
and
Cy W O = Vo (auxiliary(x) — ¢(x)) V Vo (auxiliary (x) — —¢(z))
where normal(x) is a shorthand for Jyf(y,z) and auxiliary(z) is a shorthand for Jyf(x,y).
Since Cy W CY, =¢EL CY WY, the same holds in the structure Cy, W C, for ¢ of quantifier
rank at most n. This concludes the proof of Claim 1.

Note that the signature of C' is {f, g} and that f and g are partial functions. Let X be
the set consisting of the following partial functions over the domain of C"

./,
* 9,

the identity function id,

id; which is id restricted to the auxiliary nodes,
ids which is id restricted to the normal nodes,
f Uida,

g Uida,

the empty relation 0.

Each of the partial functions in X is TRA-term definable in C, and it will be convenient
to expand C' with these partial functions. That is, we will treat C as a structure over a
signature consisting of these eight partial functions.
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Figure 1: Structure C},

Claim 2: Let ¢(z,y) be any GSO-formula that is function-preserving. Then C' = ¢(a,b)
implies that (a,b) belongs to f U gUid. In other words, ¢ defines a subrelation of fU g Uid
in C.

Proof of Claim 2: This can be shown using an automorphism argument: suppose that
C | ¢(a,b), and suppose, for the sake of a contradiction, that b is not equal to f(a), g(a), or
a itself. We will show that, then, there exists some b # b such that (C,a,b) = (C,a,b’), and
therefore C' = ¢(a,b'), contradicting the assumption that ¢(x,y) was function preserving.
We argue by cases. First, suppose that a is a normal node. We may assume without loss of
generality that a = a;,1. Recall that (a,b) € id. If b = a; 2 or b = a; 3, then we can pick '
to be a3, respectively, a; 2. It then follows from the construction of the structure C' that
(C,a,b) = (C,a,b). Similarly, if b = a; ; with ¢ # 1, then it follows from the construction
of the structure C' that (C,a,b) = (C,a,b) for all ¥ = a; y. Finally, if b is an auxiliary
node, then it follows from the construction of the structure C' that (C,a,b) = (C,a,b') for
some auxiliary node b’ # b from the same cluster. This concludes the case where a is a
normal node. Next, suppose that a is an auxiliary node, and recall that (a,b) € f U g Uid.
Regardless whether b is a normal or a special node, it follows that a and b do not co-occur
in any fact (i.e., tuple in a relation) of C. It easy to see that, then, (C,a,b) = (C,a,b’) must
be satisfied if we choose b’ # b to be another node from the same cluster as b. This concludes
the proof of Claim 2.

Claim 3: Let ¢(x,y) be any GSO-formula of quantifier rank less than n that is function-
preserving. If C' = ¢(a,b) and f(a) = b, then for all ' and &’ with f(a’) = b we have that
C E ¢(d, V). Likewise for the functions g, idy, and ids.

Proof of Claim 3: We will discuss the proof for the case for f. The same argument
applies to g, while the cases for id; and idy follow immediately from Claim 1. Assume
C,a,b = ¢(x,y). Then C,a = Jy(f(x,y) A ¢(z,y)). Therefore, by Claim 1, we have
C,d =3y(f(xz,y) A d(x,y)), and therefore, since f is a partial function and f(a’) = b, we
have C,a’,b' = ¢(x,y). This concludes the proof of Claim 3.

The next claim follows from Claim 2 and 3.
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Claim 4: If ¢(x,y) is any GSO-formula of quantifier rank less than n that is function-
preserving, then the partial function defined by ¢(x,y) in C belongs to X.

Proof of Claim 4: By Claim 2, the relation R = {(c¢,d) | C,¢,d = ¢(x,y)} is contained
in fUgUidy Uidy, while by Claim 3, RN f # 0 implies f C R, and likewise for g, id; and
ido. It follows that R must be equal to the union of a subset of the relations f, g,idy,ids. In
other words, R belongs to X. This concludes the proof of Claim 4.

Claim 4 tell us that no function-preserving GSO-operation with quantifier rank smaller
than n can take us outside of the set X. Since each operation in O is defined by a GSO-
formula of quantifier rank less than n, and is function preserving, this implies, by induction,
that every term of BRA(O) denotes one of the relations in X in C.

This implies the theorem: consider the TRA-term (f~ o g)™ Nid, where (-)™ stands
for an m-fold composition. This term denotes the identity relation restricted to the normal
nodes of C,, only; this relation does not belong to X. Therefore, this term cannot be
equivalent to any term of BRA(O). Nevertheless it is function preserving, simply because
its interpretation always consists only of reflexive edges. L]

With some minor modifications, the same argument applies to total-function-preserving
operations:

Theorem 4.3. Let O be a finite set of total-function-preserving GSO-definable operations on
binary relations. Then there is a total-function-preserving operation O that is term definable
in TRA but not in BRA(O), even over finite structures in which every relation is a total
function.

Proof. (sketch) We use the same construction as before, except that we extend the structure
C with an additional “sink node” s and an additional function () where ()(c) = s for all
nodes ¢ (including s itself). Observe that 0 is a total function. We also extend the partial
functions f and g to total functions f and g, by setting f (¢) = g(c) = s for every normal
node ¢ and f(s) = §(s) = s. Note that the old partial functions f and g are TRA-term

definable from the new ones, namely as f = f — (T o @) and g = g — (T o). Now the same
argument as before shows that the TRA-term

(f~og)y™nid)ud
(where f and g are now shorthand for the aforementioned terms, and where U is the

preferential union operator) defines a total-function-preserving operation that is not term
definable in BRA(O). []

As a consequence of Theorem 4.1, we obtain the following.

Corollary 4.4. Both in general and in the finite:

(1) The function-preserving fragment of TRA is not finitely generated. In particular, not
every function-preserving TRA-term is term definable in FA.

(2) The homomorphism-safe function-preserving fragment of TRA is not finitely generated.

(3) The C-safe function-preserving fragment of TRA is not finitely generated.

Proof. The first item follows immediately from Theorem 4.1. The other items follow from its
proof. This is because the TRA-term used as counterexample in the proof, i.e., (f~ og)" Nid,
uses only operations that are homomorphism safe and C-safe. (Note that the same does not
hold in the total-function-preserving case because there we used preferential union.) []
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Question 4.5. Is the homomorphism-safe total-function-preserving fragment of TRA finitely
generated?

Given that the function-preserving fragment of TIRA is not finitely generated, one may
ask if it is at least generated by a recursive set of operations. This is indeed the case, for a
trivial reason: for any TRA term ¢, consider the term ¢’ = ¢\ (to (T \ id)). By construction
t' always outputs a partial function. Furthermore, on any input where ¢ produces a partial
function, ¢’ produces the same output as ¢t. Therefore, the function-preserving fragment of
TRA is generated by the (recursive) set of all TRA-terms of the form ¢\ (to (T \ id)).

Another question left open by the above results is whether FA, although it is not the
function-preserving fragment of TRA, can still be characterized as a natural fragment of
TRA.

Question 4.6. Can FA be characterised as a fragment of TRA using additional properties
besides function preserving (or using a strengthening of the notion of “function preserving”)?

5. THE FORWARD FUNCTION-PRESERVING FRAGMENT IS FINITELY GENERATED

In our proof of Theorem 4.1, we implicitly made use of the fact that any binary relation
can be represented as a composition f~ o g, where f, g are partial functions. That is, we
crucially made use of the inverse operation. This is indeed essential to the proof: as we will
now show, if we restrict attention to direction-preserving operations (forward operations, as
we will call them below), then we do get a binary relation algebra that is finitely generated.

Formally, we say that an n-ary operation O on binary relations is forward if for all
structures A over signature o = {Ry,..., R,} and for all pairs (a,b) € dom(A), we have
that (a,b) € O(A) if and only if (a,b) € O(A,) where A, is the substructure of A generated
by a, i.e., the induced substructure of A whose domain consists of all elements reachable
from a by a finite directed path along the relations R{‘, el R;?. In particular, this implies
that, whenever (a,b) € O(A) then b must belong to A,. We say that O is forward over a
class of structures K if the above holds for all structures A € K.2

Lemma 5.1. Let K be any FO-definable class of structures, and let O be any FO-definable
operation on binary relations that is forward over K. Then there is a natural number m such
that, for all structures A € K and a,b € dom(A), whether (a,b) belongs to O(A) depends
only on the substructure of A consisting of the elements reachable from a by a directed path
of length at most m.

Proof. This can be shown using a simple compactness argument [Ben07]: let x be the
FO-sentence defining K, and let n be the arity of the operation O. By assumption, O
is defined by a first-order formula ¢(z,y) over the signature consisting of the relation
symbols Ri,...,R,. Let P be a fresh unary relation symbol, let ¢ be the result of
relativising all quantifiers in ¢ by P (i.e., replacing 3z by 3z(P(z) A ...) and replacing Vz
by Vz(P(z) — ...)). Furthermore, for every natural number k, let ¢;(x) be the FO-formula
expressing that all elements reachable from x by a directed path of length at most k satisfy
P. Then {x, ¢x(z) | k > 0} &= Vy(o(z,y) < (P(y) A ¢ (x,y))). It follows by compactness

2Note that being forward is a stronger requirement than requiring that b € A, for all (a,b) € O(A).
Indeed, the operation defined by the TRA-expression RN (R~ o R) satisfies the latter requirement but is not
forward.
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that, for some m, {x,¥r(z) | 0 <k <m} = Vy(é(z,y) < (P(y) A ¢F(x,y))). This proves
the lemma. ]

Theorem 5.2. Let K¢ be the class of structures in which each relation is a partial function,
and let O be any FO operation on binary relations. The following are equivalent:

(1) O is function preserving and forward over Kpy,
(2) O is term-definable in BRA(o, ~,N,U) over Kpy.

Proof. The direction from 2 to 1 is straightforward. For the direction from 1 to 2: let O be
any n-ary FO operation that is function preserving and forward over K. From the fact
that O is forward over Ky, it follows by Lemma 5.1 that there exists a constant m > 0
(depending on O) such that whether a pair (a, b) belongs to O(A), for A € K¢, depends only
on the substructure B C A consisting of the elements reachable from a by a directed path
of length at most m. For A € Ky, such a substructure B can be of size at most (n 4 1)™.
There are only finitely many isomorphism types of such structures B. Furthermore, for each
such B, the structure (B, a) can be characterised up to isomorphism by an intersection xp 4
of terms of the following forms:
o ~(fio---ofy)

“there is no outgoing f1 o---o fi path”
o ~~(fro---ofp)

“there is an outgoing f1 o---o fi path”
o ~(fio--rofpNgio---og)

“the outgoing fi o --- o fi path and the outgoing g1 o - -- o g; path do not lead to the same

node”

o ~~(fio--ofyNgio---og)

“the outgoing f1o---o fr path and the outgoing g1 o - -0 g; path do lead to the same node”
Note that here we implicitly use id (which is definable as ~(~f o f)) for the case where k = 0
or [ = 0. Finally, we can take our term to be xp 40 (f10---o fi) where f1,..., fi describes
an arbitrary directed path from a to b (or simply x B if the path is empty). Doing this for
each isomorphism type of structure B |= ¢(a,b), we obtain finitely many terms (defining
relations that are guaranteed to be pairwise disjoint from each other) we then combine using
the preferential union operator (in arbitrary order, since they are pairwise disjoint). In the
special case where there is no B = ¢(a,b), we may choose as our term () (which is definable

as ~fo f). []

The collection {o, ~, N, U} of operations identified in Theorem 5.2 is one that has already
been investigated in the literature. Specifically, Jackson and Stokes [JS11] give a finite
equational axiomatisation of the class of algebras isomorphic to a set of partial functions
equipped with these operations. The equational theory of these algebras is coNP-complete
[HIM16].

Question 5.3. Does Theorem 5.2 hold in the finite?

Although we do not know the answer to this question, we can show that Lemma 5.1
fails in the finite, and therefore, a different approach is required.

Proposition 5.4. Lemma 5.1 fails when K is the class of all finite structures (which is not
FO-definable).

Proof. Let ¢(u) be the conjunction of the following FO-formulas:
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R

Ry

Figure 2: Structure satisfying v (a, a).

R3(u,u)
Vo(Rs(u,v) = Jw(Rz(v, w) A Ra(w,v)))
Vow(Rs(u,v) A R3(v,w) — R3(u,w))
—JvRa(u,v)
Vow(Rs(u,v) A (322sR(v, 8)) A Ry (u, w) — Ra(w,v))
It follows from the fact that every quantifier is bounded by a forward-oriented atom, that
¢(u) is invariant for generated substructures [Fef68]. That is, for all structures A and
elements a, we have A = ¢(a) if and only if A, = ¢(a).

Next, let ¥(x,y) := (z = y) A Ju(R1(u, x) A p(u)).

It follows immediately from the presence of the equality conjunct that i(x,y) is function
preserving.

Claim 1: ¢(xz,y) defines a forward operation, i.e., for all finite structures A, we have

A = ¢Y(a,a) if and only if A, F ¥(a,a).

The right-to-left direction is easy (and does not depend on the restriction to finite
structures). For the other direction, suppose that A |= 1 (a,a). It follows, by the construction
of ¥ and the finiteness of the structure A, that there exist elements connected as in Figure 2.
(In fact, further facts hold that have not been drawn in the figure to avoid cluttering.
Specifically, R3(b;, b;) holds for all i < j.)

It follows that all the depicted elements belong to A,. In particular, by belongs to A,.
From this, it follows that A, = v¥(a,a). This concludes the proof of Claim 1.

Now let m be any natural number. Let A be the structure drawn above, with n = m + 1.
Let B be the identical structure but with the node by removed. Clearly, A = v (a,a) and
B [~ ¢(a,a) (because B lacks a reflexive Rs-edge). However, the induced substructures
consisting of nodes reachable from a by a directed path of length at most m are identical. []
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Proposition 5.4, incidentally, also resolves in the negative an open question about hybrid
logic posed in [AM22, Section 7], namely whether the technique used [AM22] for proving a
preservation theorem for hybrid temporal logic in the finite could be extended to prove a
similar result for the case without backward modalities. It follows from Proposition 5.4 that
the corresponding preservation theorem in the finite in fact fails for hybrid logic without
backward modalities.

We can adapt the proof of Theorem 5.2 to obtain a similar, but undirected, result for
injective partial functions. For this, we say that O is injective-function preserving if the
following holds for all structures A = (dom(A), R{l,...  R}): if each R is an injective
partial function on dom(A), then O(A) is an injective partial function on dom(A). Let us
also say that that an n-ary operation O on binary relations is local if for all structures A over
signature 0 = {R1,..., R,} and for all pairs (a,b) € dom(A), we have that (a,b) € O(A)
if and only if (a,b) € O(A]’) where A" is the induced substructure of A whose domain
consists of all elements reachable from a by a finite undirected path along the relations
R{, ..., RA. As before, this implies that, whenever (a,b) € O(A) then b must belong to A%

To state the result, we first define a variant of preferential union that is injective-function
preserving. We call this new operation injective union and use U to denote it. The operation
adds to its first argument any pairs from its second argument whose addition does not violate
functionality or injectivity. One possible term definition of injective union is as follows.

flg=(fug)n(f~ug™)~

Theorem 5.5. Let Ky be the class of structures in which each relation is an injective
partial function, and let O be any FO operation on binary relations. The following are
equivalent:

(1) O is injective-function preserving and local over Kipg.
(2) O is term-definable in BRA (o, ~, N, 1) over Kipt.

Proof. (sketch) First note that we can obtain an undirected analog of Lemma 5.1 using a
similar proof. That is, if an FO-definable operation is local over Kj,¢, then there is a natural
number m such that, for all structures A € Kjy¢ and a,b € dom(A), whether (a,b) belongs
to O(A) depends only on the substructure of A consisting of the elements reachable from a
by an undirected path of length at most m.

Next, the same proof used for Theorem 5.2 works if we replace every instance of ‘directed
path’ by ‘oriented path’ (i.e., sequence of possibly reverse-oriented edges), use = to express
reverse-oriented edges in such paths, and use U in place of L. []

The collection {o,~,N, L} of operations identified in Theorem 5.5 is one that has
been considered in the literature on inverse semigroups. Any set of injective partial functions
closed under these operations forms a Boolean inverse monoid in the sense of Lawson [Law10];
indeed these are the canonical examples of Boolean inverse monoids.?> Conversely, from the
results of Lawson it can be seen that any Boolean inverse monoid is isomorphic to one of
these algebras of injective partial functions [Law10, Proposition 2.23(2)]. Thus Theorem 5.5

3In the definition of Boolean inverse monoids, only joins of pairs of orthogonal elements are required,
that is, elements a and b such that a~ o b and @ o b~ are both zero. This is equivalent to the presence of 1,
since clearly if a collection of injective partial functions is closed under [ then it is closed under orthogonal
joins, and conversely, in the presence of the other operations, [ is expressible as the orthogonal join of
~boao~(b7), ~aobo~(a"), and aNb.
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demonstrates that within the program of studying enrichments of inverse semigroups, the
Boolean inverse monoids are in a sense the fully enriched instances.

6. CONCLUSION

In summary, our results show that certain semantic fragments of Tarski’s relation algebra,
such as the homomorphism-safe fragment, admit a syntactic characterisation in terms of
a finite set of operations, while others, such as the function-preserving fragment, do not.
We hope that these results show that the study of preservation theorems in the context of
algebras of binary relations is an interesting topic. We conclude by listing a few directions
that deserve further exploration.

Firstly, one could explore the same questions for other semantic properties of operations
on binary relations (e.g., C-safety, as mentioned in Section 3, as well as additivity [BOP*19]).
Secondly, our results concern fragments of TRA, but the same questions can be asked for
other binary relation algebras, including ones that contain the transitive closure operator.
In particular, our results leave open the question whether the function-preserving fragment
of Kleene Algebra with Tests (KAT) is finitely generated.

Finally, various applications of TRA in computer science and elsewhere are concerned
with a restricted class of structures, such as finite trees (e.g., XPath), linear orders (e.g.,
interval temporal logics), or variable-assignment spaces (e.g., dynamic predicate logic [GS91]
and the Logic of Information Flows (LIF) [Ter1l9, Moh23|). It is therefore meaningful to ask
whether our results hold also over these restricted classes of structures.
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