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Abstract. Sequential model synchronisation is the task of propagating changes from
one model to another correlated one to restore consistency. It is challenging to perform
this propagation in a least-changing way that avoids unnecessary deletions (which might
cause information loss). From a theoretical point of view, so-called short-cut (SC) rules
have been developed that enable provably correct propagation of changes while avoiding
information loss. However, to be able to react to every possible change, an infinite set of
such rules might be necessary. Practically, only small sets of pre-computed basic SC rules
have been used, severely restricting the kind of changes that can be propagated without
loss of information. In this work, we close that gap by developing an approach to compute
more complex required SC rules on-the-fly during synchronisation. These higher-order SC
rules allow us to cope with more complex scenarios when multiple changes must be handled
in one step. We implemented our approach in the model transformation tool eMoflon.
An evaluation shows that the overhead of computing higher-order SC rules on-the-fly is
tolerable and at times even improves the overall performance. Above that, completely new
scenarios can be dealt with without the loss of information.

1. Introduction

Model-Driven Engineering (MDE) [BCW17] provides the necessary means to tackle the
challenges of modern software systems, which become more and more complex and distributed.
Using MDE, a system can be described by various models that describe different aspects
and provide specific views onto the system itself, where each view may overlap to some
degree with other views of the same system. Consequently, if one view changes, we have to
propagate these changes to other views that share the same information. This is necessary
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to ensure that all models together consistently represent the overall system state. The
propagation process is often called model synchronisation, where we distinguish between
sequential and concurrent model synchronisation. In this paper, we will focus on the former,
where only one model is changed at a time, while the latter case would also incorporate
changes to multiple models at once.

As our methodology of choice, we employ Triple Graph Grammars (TGGs) [Sch94], which
are a declarative way to specify a consistency relationship between possibly heterogeneous
models by means of a set of graph grammar rules. By transforming these rules, we
can automatically derive different consistency restoring operators that served as central
ingredients for various model management processes, such as batch translators [Sch94,
EEE+07,HEGO14], consistency checkers [Leb18] or sequential [GW09,LAVS12,LAF+17,
FKST21] and concurrent synchronisers [OPN20,FKM+20,WFA20]. In general, synchronisers
are required to avoid information loss. Most TGG-based approaches, in fact, do not meet
this requirement: They propagate changes by deleting (parts of) the model that is to be
synchronised and then retranslating (the missing parts) from the updated model [GW09,
LAVS12,HEO+15, Leb18, LAF+17]. This procedure is both inefficient and prone to loss
of information that is private to the synchronised model. For this purpose, we introduced
Short-Cut Rules [FKST18,FKST21,KT23], which implement consistency- and information-
preserving modifications. Compared to former approaches, Short-Cut Rules reduce (or
even completely avoid) the unnecessary deletion of elements in the model that is to be
synchronised but are able to reuse these elements and integrate them consistently. In this
way, deleting elements just to re-create them is avoided and information is preserved instead.
Even more, we can provide conditions under which the application of a Short-Cut Rule
reestablishes or at least improves consistency [Kos22,KT23].

The translation and, thus, revocation of former translation steps is based on basic TGG
rules that describe atomic consistency-preserving model changes. The same holds for our first
works on Short-Cut Rules [FKST18,FKST21], where we created them by combining pairs
of basic TGG rules. While the resulting Short-Cut Rules describe useful repairs in many
situations, we found that there are cases where we have to repair multiple inconsistencies
at once to yield a better result. Hence, we here propose to concatenate TGG rules that
describe a sequence of atomic model changes and derive Short-Cut Rules from these to
repair multiple TGG rule applications at once. Since there are usually infinitely many
possibilities of concatenating TGG rules and thus infinitely many Short-Cut Rules, we
propose an analysis that determines at runtime which TGG rules to concatenate to construct
a Short-Cut Rule for a particular scenario. This allows us to also reduce information loss
during synchronisation in scenarios where the Short-Cut Rules we computed so far did not
suffice.

In more details, we make the following contributions in this paper:

• We introduce a runtime analysis for the derivation of what we call higher-order Short-
Cut Rules; their use promises to reduce the amount of lost information during model
synchronisation.

• We show how our proposed runtime analysis can be presented as an integer linear pro-
gramming (ILP) problem [LY84].

• We integrate our approach into eMoflon [WFA20], a state-of-the-art graph transformation
tool that implements TGGs.

• We evaluate our approach on a synthetic example; our key findings are that we can
indeed preserve more information in certain cases and that while our implementation
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introduces a noticeable offset in some scenarios, in others we could even improve the
runtime performance compared to our previous works.

This paper extends our previous contribution [FKMS23], where we were only able to
convey the general concept behind finding Short-Cut Rules that repair multiple steps at
once. In this extension, we provide a detailed description of the construction process of
Short-Cut Rules by presenting it as an ILP problem and, as promised in our previous work,
evaluate our approach for another scenario that is particularly challenging for it.

This paper is structured as follows: We introduce TGGs and Short-Cut Rules together
with our running example in Section 2. In Section 3, we will present our novel analysis
to determine non-trivial consistency-restoring operators in the form of Short-Cut Rules at
runtime. The construction process of Short-Cut Rules using optimisation techniques is
presented in Section 4. Section 5 presents our evaluation investigating how much information
is preserved and whether it comes with additional costs. Finally, in Section 6, we discuss
related works and summarise open challenges in Section 7.

2. Fundamentals

This section provides an informal introduction to the state-of-the-art of TGG-based
information-preserving model synchronisation. We begin with introducing TGGs along
with our running example. Then, we illustrate the need for synchronisation and exemplify
precedence graphs, which are the central data structure we use to keep track of inconsistencies
between models and to direct our synchronisation process. Finally, based on a small yet
non-trivial synchronisation example, we will motivate the need for specific repair rules,
namely Short-Cut Rules.

2.1. Running Example & Triple Graph Grammars. In our running example throughout
this paper, we will define consistency between terrace house and construction planning
models to which we will refer in the following as source and target, respectively. Due to the
complexity of the derived repair operations later in this paper, we had to choose a rather small
example. Yet, TGGs have been successfully applied in industrial applications [GHNW12,
BW03, AWO+20]. As a first step, we introduce a third correspondence model between
source and target, which connects elements from both sides and thus makes corresponding
information traceable. Figure 1 depicts the three metamodels with the source metamodel on
the left, the target metamodel on the right and the correspondence metamodel in between.
The source metamodel consists solely of the House class and HouseType enum. Each House
contains information about its HouseType and has a reference to the next House (neighbour).
The HouseType determines the architecture of a House on the target side, namely which
construction steps are needed to build that House. This relation will be expressed in
the following using a set of graph grammar rules. Additionally, each building contains
information about its architect, which has no representation in the target model. On the
target side, there are six classes. There is a (construction) Plan for every row of houses
that contains the corresponding Constructions. Each Construction contains the name of its
assigned (construction) company and a sequence of Construction Steps consisting of Cellar,
Floor and Saddle Roof elements that have to be processed in the given order. Finally, we
connect both metamodels using the correspondence type depicted as a hexagon, which maps
Houses to their corresponding Construction.
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Figure 1: Source, Target and Correspondence Metamodel

To define a consistency relationship between source and target models, we employ Triple
Graph Grammars (TGGs) [Sch94], which are a declarative and rule-based way to achieve this.
As the name indicates, the rules of a TGG define the language of all consistent triple graphs,
where our source, target and correspondence models are interpreted as graphs. Figure 2
shows the TGG rule set of our running example, consisting of the three rules on the left.
Before a rule can be applied, its precondition must be met, meaning that all context elements
in black must exist and all attribute conditions hold. When the rule is applied, all elements
depicted in green and annotated with ++ are created. The first rule is Nook Rule, which can
be applied without any precondition. It creates a Nook House together with a corresponding
Construction on the target side and a connecting correspondence link. Since this will create
the first House of a row, it also creates a Plan on the target side. Finally, each Nook House
must have a Floor but no Cellar or Saddle Roof. The two rules Cube Rule and Villa Rule are
very similar to each other in that they both require a House in the row that must already
exist together with a corresponding Construction and Plan. Given that, they create a House
with the Cube or Villa HouseType as the next House in line and a corresponding Construction,
where a Cube has a Cellar and Floor, while a Villa will have a Floor and Saddle Roof. For
better readability, we do not display edge types in the rules; they can be unambiguously
inferred from the metamodels.

Using these rules, we can create consistent models from scratch. More interestingly, we
can transform these rules to obtain forward translation rules as is depicted on the right in
Figure 2. The main difference to our original rules is that their created source elements
have now become part of the precondition. Assuming that we want to translate a source
to a target model, this makes sense as a source model must already exist beforehand. To
avoid translating elements more than once, we introduce the annotations □ → ✓□ and ✓□.1

Source elements that were created in the original TGG rule are annotated with □ → ✓□ in
the derived forward rule. This indicates that they mark elements upon translation such
that the rule is only applicable to elements that have not been marked yet. Other source
elements that were already black are annotated with ✓□, which means that these elements
must have already been marked; different formalisations of such a marking mechanism are
available [HEGO14, LAF+17,Kos22]. Also, attribute assignments now turn to attribute
constraints. In our example this means that instead of setting the HouseType each forward
rule can only be used to translate a specific HouseType. Backward rules that allow translating
construction plans to the corresponding row of houses can be derived completely analogously.

1These markings are not needed for the original TGG rules.
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Figure 2: TGG Rules

2.2. Precedence Graphs & Synchronisation. We want to incrementally synchronise
changes from one model to another. Figure 3 depicts a small model, which was consistent
w.r.t. our TGG but then was changed on the source side. On the left, we see a Nook House
h1, followed by a Villa h2 and a Cube h3, while on the right side there are the expected
corresponding elements in the form of a Plan p1 and three Constructions c1, c2 and c3, each
with its Construction Steps. As a change, we deleted the second House h2, which means that
the third House h3 now succeeds h1. Furthermore, we changed the type of h3 from Cube to
Villa.

On the right side of Figure 3, we can see a so-called precedence graph, which is of
particular interest for the rest of this paper. Some of its nodes correspond to the rule
applications that created the original triple graph; others represent rule applications that
could have possibly been used to create the newly added elements on the source side. Edges
denote sequential dependence between rule applications. Each precedence node contains the
initials of the corresponding TGG rule together with a small index, which is the same as
the one of the created elements of this rule application. Apart from that, each node has
two boxes where the left and right depict the consistency state of the source and the target
side, respectively. Blank boxes indicate that the elements on this side are still intact w.r.t.
the corresponding TGG rule, which means that they have not been tampered with or that
the changes had no consistency violating effect, e.g., by changing the architect. Green boxes
containing a “+” indicate that new elements have been detected, which can be translated
by a TGG rule, while “*” would mean that there are new elements but they cannot be
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Figure 3: Synchronisation Example

translated because some elements that would need to be marked together with them are
already marked, i.e., they are still part of another (possibly inconsistent) rule application.
In both cases, the right box for the target side is annotated with “u”, expressing our lack
of information on whether the corresponding target elements already exist. In contrast,
red boxes containing a “-” indicate that all translatable elements on this side were deleted,
meaning that created elements on the opposite side should be removed as well. A red box
with “/” states that some but not all translatable elements were deleted, which means that
the remaining elements must be translated differently than before. Finally, an orange box
with “#” means that an attribute was changed such that a rule application has become
invalid, e.g., the HouseType. A formalisation of precedence graphs via (partial) comatchs
can be found in [Kos22].

Regarding our example, we have an intact Nook Rule application N1 on top. The Villa
Rule application V2 depends on N1 as this provides the previous House, Construction and
Plan. V2 itself is no longer intact as indicated by “-” on the source side due to the deletion
of House h2. Cube Rule application C3, which depends on V2 is also no longer intact due to
an attribute change within House h3 from HouseType Cube to Villa, which is denoted as “#”.
C3 is also inconsistent due to the deletion of the edge between House h2 and h3, which is a
partial deletion meaning that not all created source elements of this rule application were
removed. Partial deletions are denoted with “/”. Due to this attribute change and the new
edge between House h1 and h3, we could retranslate h3 using Villa Rule as represented via
the precedence node V3. However, since h3 is still part of the former rule application C3, we
find an “*” annotation on the source side of V3; C3 has to be revoked before it becomes
possible to retranslate h3.
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Those annotations and the actual precedence graph are constructed using the results of
an incremental graph pattern matcher (IGPM) that tracks all rules’ pre- and postconditions.
If a postcondition is violated, then the IGPM engine will notify us that the postcondition can
no longer be matched and we can analyse which model change caused this. For preconditions,
we also track whether the source (or target) side are matched for forward (or backward)
rules, which we refer to as source (or target) matches. This gives us all possible translation
steps even if the necessary context has not yet been created on the target side that would
enable the translation to be executed. Note, however, that some steps may be mutually
exclusive either because they would translate the same elements or because they rely on
other rules to create necessary context on the opposite side.

2.3. Preserving Information using Short-Cut Rules. One sees that the above-described
change of moving the third house and changing an attribute should only trigger a change
of Construction Steps while the information about the architect should persist. To achieve
this, we use so-called Short-Cut Rules [FKST21], which describe consistency-preserving
operations, e.g., moving a house in the row without losing the target side information.
Basically, a Short-Cut Rule revokes a rule application and applies another one instead, while
preserving those elements that would be deleted just to be recreated. For our example, a
Short-Cut Rule could exchange the HouseType while adding the missing and removing the
now superfluous Construction Steps. A TGG Short-Cut Rule is created by overlapping an
inversed TGG rule (the replaced rule that revokes a former rule application) with another
TGG rule (the replacing rule). Deleted elements from the replaced rule that are overlapped
with created elements from the replacing rule are preserved and become context as they
would otherwise be unnecessarily deleted and then recreated. Consequently, deleted elements
from the replaced rule that are not in the overlap must be removed and, analogously, created
elements from the replacing rule that are not part of the overlap must be created. Finally,
only the attribute conditions from the replacing rule must hold after applying the Short-Cut
Rule as we want to revoke the former replaced rule application.

The precedence graph and the dependency links between precedence nodes tell us which
TGG rules to overlap with each other. In our example (Figure 3), there is an invalid Villa
Rule application, while there is a new Cube Rule application that could be applied instead
to make the now necessary transformation steps for Cube h3. We, thus, overlap Villa Rule
with Cube Rule such that the parent House is not overlapped as it has changed, while the
created Houses are assumed to be the same as well as their corresponding Constructions,
the Plans and Floors. Note that generally, there are many ways to overlap rules, which
means that there may be many possible Short-Cut Rules . As discussed in Section 4, we use
optimisation techniques to encode the space of all overlaps and calculate a replacing rule
that matches the given situation. Note that this process is completely automated. Figure 4
depicts the resulting Short-Cut Rule on the left. It tells us that we can move a House and
change its HouseType from Villa to Cube at the same time if, on the opposite side, we remove
the superfluous Cellar and add a new Saddle Roof.

As with TGG rules, Short-Cut Rules can be transformed to yield forward and backward
operationalised versions. On the right of Figure 4, we can see its forward operationalisation.
Intuitively, we have to make sure that a user made the same changes as the Short-Cut Rule
on the source side so that applying the forward operationalisation will propagate these
changes correctly. Similar to before, formerly created elements on the source side must be
marked because they are new, while black elements remain marked. Deleted elements on
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the source side must have been deleted by a user change. Hence, we must ensure that these
elements do no longer exist, which is expressed as a negative application condition [EEPT06]
depicted in blue and annotated with “nac”. Also note that some context elements are
omitted from the rule that would stem from the replaced rule, e.g., the context construction.
We can leave some of them out, if they are not needed to perform the Short-Cut Rule. This
is the case for the House h1, which is needed to check whether the edge to h2 has been
deleted. The “rel” annotation on the right side indicates that h1 is relaxed. Relaxed means
that this element does not necessarily need to exist, because if it was deleted together with
its adjacent edges, then the “nac” is satisfied. Of course, this is only reasonable if h1 is
indeed the House that was used as context in the replacing rule application that we are going
to replace. We ensure this by only applying Short-Cut Rules at locations with formerly
valid replaced rule applications and using the information about these rule applications to
construct those parts of our Short-Cut Rule match that overlap with the replaced rule.

Using Cube-To-Villa forward Short-Cut Rule, we can now resolve the situation from
before by first processing the deleted second House and deleting its corresponding parts and
then repairing the target side of the third House by using this rule. While the result looks
very similar to the one of translating the whole source model from scratch, we still have the
information about each Constructions’ architect, which means that this information is no
longer lost during synchronisation. Another advantage is that moving a House in a long row
of terrace Houses can be very expensive as all succeeding rule applications would have to be
revoked. In many cases, Short-Cut Rules can also help with this issue by preserving the
consistency of subsequent steps and thereby boost the performance.

3. Higher-Order Short-Cut Rules

Formally, a short-cut rule is sequentially composed from a rule that only deletes structure
and another one that only creates structure [FKST18]. (We have generalised that kind of
sequential composition to arbitrary rules in [KT23].) In practical applications so far, we
made use of a static, finite set of short-cut rules; we composed each inverse of a rule from
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the given TGG with every rule from the TGG [FKM+20,FKST21,Fri22]. Intuitively, such a
Short-Cut Rule replaces the action of the inverse rule by the one of its second input rule
(while preserving common elements). Note that the Short-Cut Rule from Section 2 is created
in that way and that such Short-Cut Rules enable repairs in many situations. But certain
complex model changes are not supported yet, namely situations in which the common effect
of several TGG rules should be replaced by the effect of another set of TGG rules. For
this, one needs Short-Cut Rules that are not just computed from the TGG rules (and their
inverses) but from (arbitrary long) concurrent rules [EEPT06], i.e., sequential compositions,
of the TGG rules (and their inverses). Yet, in contrast to before, we cannot precalculate
this set as there are usually infinitely many ways to concatenate an arbitrarily large set of
TGG rules and, thus, infinitely many Short-Cut Rules. Hence, we must investigate each
inconsistency and deduce what TGG rules to concatenate at runtime to create a helpful
higher-order Short-Cut Rule that repairs multiple rule applications at once. In this chapter,
we will explain the process of deriving these new rules using our running example and
conclude with a discussion on its correctness.

3.1. Exemplifying the Need for Higher-Order Short-Cut Rules. Figure 5 shows
another example model together with its precedence graph. We can see two Houses, where one
was of HouseType Nook and the other of HouseType Cube together with their corresponding
Constructions. Then, the first House’s HouseType was changed from Nook to Cube and another
House of HouseType Nook was added at the beginning of this row. Similar to Figure 3, this
results in an inconsistency shown in the precedence graph on the right. There, we see that
the Nook Rule application N2 has become invalid due to an attribute constraint violation.
Intuitively, we would expect that a new Construction is created for the new Nook House,
which is then added to the already existing Plan. However, our consistency specification
makes this rather hard to achieve as the Nook Rule creates this Plan together with the first
House in a row. By handling one rule application at a time, we have to translate the new
Nook House, create a corresponding Construction and another Plan. Then, we would either
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have to revoke the former Nook Rule application and retranslate the Cube House or use a
Short-Cut Rule to transform a Nook Rule to a Cube Rule application. Since Cube Rule does
not create a Plan but requires one, either way we would have to delete the old Plan and then
try to connect the newly created or preserved Constructions with the new Plan. While this
restores consistency, this procedure has two disadvantages. First, any information stored
in the original Plan would be lost and, second, we would have to fix all succeeding rule
applications to connect them with the new Plan. Hence, we want to create a Short-Cut Rule
that preserves the original Plan by translating the new Nook House and repairing the Cube
House in one step. Since also the order of the two original Houses was changed, this repair
step necessarily needs to involve reacting to that and performing the required repair for the
former Cube House that now is a Villa. Hence, a higher-order Short-Cut Rule is needed.

3.2. Deriving Higher-Order Short-Cut Rules On-the-fly. Figure 6 shows our proposed
process on how to obtain the necessary higher-order Short-Cut Rule using the information
from an annotated precedence graph. Remember, to create a Short-Cut Rule, we need two
ingredients: a higher-order replaced and higher-order replacing rule; i.e., one concurrent rule,
built from inverses of the TGG rules, and one built from the TGG rules. The first is trivial
to obtain as we can directly derive it from neighboured inconsistencies in our precedence

graph ( 2 ) by forming sets of inconsistent precedence graph nodes that are connected ( 1 ).
Such a set is found by picking an inconsistent precedence node and exploring its adjacent
neighbours. Every neighbour that is also inconsistent is added to the set and we explore its
neighbours recursively. Note that here, and also for the synthesis of the replacing rule, the
order in which we compose more than two rules is irrelevant since sequential rule composition
is associative [BK21]. In contrast, nodes that are still intact or depict alternative rule
applications are ignored and not explored further. We, thereby, identify all inconsistencies
that should be repaired in one step.

In our case, we only have one set consisting of the precedence graph nodes N2 and
C3. These nodes represent formerly valid TGG rule applications for which we know what
elements were created and which were used as precondition. We also know what changes
invalidated them. Thus, we can use this information to concatenate Nook Rule and Cube Rule

( 3 ) because we know that the Plan, House and Construction required by C3 were created
by N2. In general, the resulting replaced rule can have context elements that stem from
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rule applications that are still considered intact. The resulting inverse replaced rule ( 4 ) is
depicted on the left of Figure 7 and can delete all elements created by the corresponding
rules.

The much more challenging task is to synthesise the replacing rule. While we used
some inconsistencies to deduce our inverse replaced rule, we now need information that tells

us how to restore consistency ( 5 ). We, thus, need to use the precedence graph nodes
with “+” annotations, which indicate new translation options using entirely new elements,
and those with “*” that describe translation alternatives for elements that are still part
of an older rule application. Yet, not all of these nodes are relevant as some translations
could just be carried out without using Short-Cut Rules or they might be needed for fixing
another inconsistency. We can identify the relevant nodes as those that (partially) overlap
with nodes from our set of connected inconsistencies. Intuitively, these overlapped nodes
are the ones we would like to reuse and, thus, make part of a new rule application that is
again consistent. Naturally, “+” annotated nodes cannot overlap with any inconsistencies as
their source elements are entirely new. However, at times it is necessary to repair elements
and, simultaneously, translate new elements as we have seen in Section 3.1. We, thus, also
transitively add precedence nodes annotated with “+” if they are connected with a “*” or
“+” annotated node that already belongs to the set of relevant nodes.

In general, we try to identify clusters of precedence nodes that are connected and only
consist of nodes with a “*” or “+” annotation. The intuition behind this step is that all
these nodes represent rule applications that are related and might have to be repaired in
one step to yield a better result, where each cluster is used to create a specific replacing
rule. Having a set of possible rule applications, we now have to construct our replacing rule

( 6 ). However, we only have a partial knowledge on how to concatenate the identified rules
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because these changes have not yet been propagated. Regarding our example, we know that
we have to concatenate Nook Rule, Villa Rule and Cube Rule, but only on the source side we
know exactly how.

In general, there are more challenges that we have to overcome. First, we have to
make sure that after the repair, all elements on the source side are again part of an intact
rule application. This is a hard task because we may find that there are multiple ways to
translate a specific element, e.g., by different rules that compete with each other. Then,
selection of an appropriate set of rule applications is required. In some cases, this choice can
influence how much information on the target side is preserved. Furthermore, we must select
a set of rule applications such that the precondition of every selected rule application holds –
through other rules selected for this replacing rule or through original rule applications that
are still intact. Note that for sake of brevity, our example is rather small and does not show
such a scenario. However, we discuss this case in Section 4. Finally, we must ensure that
the newly repaired rule applications will not introduce a cyclic dependency, i.e., a situation
where rule applications would mutually guarantee their preconditions; in our example, for
instance, a cyclic row of houses.

To guarantee these conditions, we automated the encoding of the selection of a suitable
subset of to be concatenated rules and the calculation of their overlap as an ILP problem. A
solution to such a problem will essentially describe an applicable sequence of rule applications
that do not lead to a dead-end. We encode competing rule applications as mutually exclusive
binary variables and define constraints ensuring that a rule is only chosen if (one or many in
combination) other rules create the elements needed by its precondition. Hence, we have to
ensure via constraints that context elements are mapped to created elements of compatible
type (the same or a sub-type) and that edges can only be mapped if their corresponding
source and target nodes are also mapped accordingly. We also make sure that all remaining
source elements that are part of the inconsistency must be handled by the replacing rule
application. This encoding is inspired by former approaches that present the finding of
applicable TGG rule sequences as an ILP problem, e.g., [Leb18,WA20]. Regarding our
example, there are no competing rule applications but considering the precondition of Villa
Rule and Cube Rule, we know that the Plan must be the one created by the Nook Rule
application. The Construction could be taken from the Nook Rule or in case of Cube Rule
from Villa Rule. Due to our knowledge that the needed House of Cube Rule stems from a
Villa Rule application, the constraints will make it infeasible for Cube Rule to take the Nook
Rule’s Construction as there is no correspondence node between them. The identified rules

are concatenated ( 6 ) and form the replacing rule as depicted on the right of Figure 7.
Using both the inverse replaced and replacing rule as well as the information of the

actual inconsistency ( 7 ), we can now construct the Short-Cut Rule. As with the search for
a replacing rule, we know what elements to overlap on the source side. This means that
we only have to calculate the overlap for the correspondence and target side. While there
are still many possible overlaps, e.g., between all Constructions of both rules, we usually
want to find the one(s) that preserve more elements. To support least surprise, for target
elements that have a corresponding source element we prefer solutions that only identify these
target elements if their corresponding source elements are also identified. We also encode
the overlapping as an ILP problem to find an optimal solution w.r.t. preserving elements.
Currently, we do not differentiate between elements but the optimisation function can be
customised to favour elements that, e.g., contain attributes, which have no representation
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on the other side and should be prioritised. In our computation of overlaps, we also support
node type inheritance.

The resulting higher-order Short-Cut Rule is depicted in Figure 8 on the left. It results
from overlapping the Houses h2 and h3 from the replaced rule with h3 and h2 from the
replacing rule. We also overlap p, c2, f2, c3 and f3 from the replaced rule’s target side with
p, c3, f3, c2 and f2 from the replacing rule. Finally, we also overlap correspondence links
and edges if their corresponding source and target nodes are also mapped onto another.
By applying this rule, we can preserve the two Houses on the left together with their
corresponding Constructions and Floors. We also preserve the Plan and create a new Nook
House with corresponding target structures. Since h2 was a Nook House, we now assign
the new HouseType Cube, which means that we have to add a new Cellar on the target
side and make it the first Construction Step. Similarly, h3 was a Cube House but is now
transformed to a Villa House, which means that the former Cellar is now superfluous and
thus removed. Instead, we add a new Saddle Roof as a final Construction Step. As before,

we can operationalise this rule ( 8 ) to obtain a forward (and likewise backward) variant as
depicted in Figure 8 on the right. Applying it to our example from Figure 5, we can now
translate the new Nook, while simultaneously repairing the other two Houses and preserving
the Plan with its content.

3.3. Discussion. From a technical point of view, there are some aspects worth mentioning.
As a result of the construction process, we do not only get a higher-order Short-Cut Rule
but also (implicitly) its match w.r.t. the analysed inconsistency. Hence, we can directly
apply the rule and repair the inconsistencies it addresses. Besides that, however, we do



25:14 L. Fritsche, J. Kosiol, A. Lauer, A. Möller, and A. Schürr Vol. 20:3

not store the generated rule for applying it at other locations, which has two reasons.
First, a higher-order Short-Cut Rule is quite specific to a certain inconsistency that is
characterised by a set of related broken rule applications and how exactly each of them has
been invalidated. To efficiently determine whether an existing rule can be applied to another
set of inconsistencies can, thus, be very challenging and iterating and trying out all stored
rules will probably become more expensive than simply constructing the rule from scratch.
Second, as a higher-order Short-Cut Rule targets multiple inconsistencies at once, the space
of related inconsistencies is generally very large. Hence, we argue that encountering the
exact same constellation of inconsistencies is less likely. Yet, this has to be investigated
further for real-world scenarios.

Regarding our choice to use ILP solving, by applying a Short-Cut Rule, we want to
preserve as much information as possible that would otherwise be lost when unnecessarily
deleting and recreating elements. Hence, we face an optimisation problem where we want
to overlap as many created elements from both the replaced and replacing rule as these
elements end up being preserved. For our current implementation, we use ILP solving

separately for 5 and 7 . In 5 , we want to maximise the number of mappings between
context and created elements, which are the locations where the rules are glued together.
Selecting more such mappings means that less created elements must stem from outside
of the computed Short-Cut Rule and, thus, it is more likely to be actually applicable. In

7 , we want to maximise the number of mappings between created elements in both rules,
reducing the number of elements that must be deleted, potentially reducing information loss.

In the future, we intend to combine both problems 5 and 7 into a single optimisation
problem because the choice of how to construct the replaced and replacing rule may affect
the resulting mapping and, thus, the final Short-Cut Rule.

In the following, we shortly discuss applicability and correctness of the individual process

steps. In 1 , we identify clusters of related inconsistencies by analysing the precedence graph.
This information is then used to create the replaced and replacing rule. Choosing the cluster
too small, e.g., to save performance, might lead to a Short-Cut Rule that is not applicable if
necessary context has been altered and this change was not considered. In that case, we
can still fall back to restoring consistency by revoking the rule applications and applying
alternative translation steps instead, although, this has the risk of losing some information.
In contrast, if the set is chosen bigger than necessary, then the resulting ILP problems also
tend to become harder to solve as the search space increases. In our implementation, these
clusters contain all related inconsistencies that are (transitively) connected with each other
without any consistent steps in between. We, thereby, ensure that the cluster is not chosen
too small as inconsistencies that are (remotely) related are repaired together. However,
at the moment, we cannot guarantee that our chosen clusters are minimal because some
inconsistencies may be related but do not need to be handled together, i.e., could be repaired
by standard Short-Cut Rules or smaller higher-order Short-Cut Rules. In the future, we
would like to investigate ways to identify situations where these clusters could be broken
up to yield less complex ones, which has the potential of improving the performance of our

approach. All 2 , 3 and 4 are trivial as we use information about formerly valid rule
applications for which we rely on a pattern matcher to identify these locations.

Regarding 5 , we may encounter multiple alternative translation options for one
element, which may lead to an exponentially increasing number of possible translation
sequences and, thus, performance issues. However, under certain technical (and not too
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strict) circumstances, any choice can be part of a synchronisation process that finally restores
consistency [Kos22, Theorem 6.17] (also compare [Leb18, Theorem 4]). Yet, as discussed for

1 , different choices may lead to different amounts of preserved model elements. Creating

the inverse of the resulting rule in 6 is again trivial. Regarding the underlying theory of
(higher-order) Short-Cut Rules , we refer to the literature for details [FKST18,Kos22,KT23].

Importantly, for our purposes in 7 and 8 , both replaced and replacing rule are composed
from the rules of the given TGG, through our computation of Short-Cut Rules and the
information provided by the IGPM, we ensure consistent matching of the replaced and
the replacing rule, and we prevent the introduction of cyclic dependencies. This means
that we meet criteria that guarantee language-preserving applications of Short-Cut Rules
(cf. [Kos22, Theorem 4.16] or [KT23, Theorem 17]). The according application of their
operationalised versions during synchronisation then incrementally improves consistency
(compare [Kos22, Proposition 6.15]).

4. ILP-based Construction

This chapter extends our previous work [FKMS23], where we could only convey the abstract
concept of how to obtain higher-order Short-Cut Rules . Our new contribution in this regard
is a description on how to implement the concept using optimisation techniques and how to
constrain the solution space to get desirable results.

As discussed in the previous chapter, we employ ILP solving for two subsequent tasks.
First, we use it to find out how to concatenate a set of TGG rules to obtain the replacing
rule. Second, we use it to overlap both the replaced and the replacing rule to obtain the
final Short-Cut Rule. Note that the latter case was already presented in [Fri22], which is
why we will focus on creating the replacing rule. For that purpose, we slightly extend our
example from before so that creating the replacing rule is no longer straightforward and
different solutions are possible from which the most promising one should be chosen. Also
note that the entire ILP problem for this example can be found in Appendix A.
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Figure 9 shows an additional TGG rule and its forward operationalised form that extend
our rule sets from Figure 2. In contrast to Cube Rule, the new Double Cube Rule creates
two Cubes on the source side that both correspond to one newly created Construction on the
target side meaning that both Cubes are planned as a semi-detached House. The purpose
of this new rule is to introduce a kind of variability during the translation and likewise
synchronisation of a terrace house model because there may be multiple ways on how to
restore consistency now. Translating two Cubes in a row, for example, we are now able
to choose between applying Cube Forward Rule twice or Double Cube Forward Rule once.
Ultimately, this is something a modeller would have to decide on their own for two reasons:
First, there is no information on the source side on whether there should be one or two
Constructions for both Cubes in the target model. Second, choosing either option will let
us still translate all other Houses that come after both Cubes. This means that this is no
scenario where the translation may lead to a dead-end for certain translation sequences and,
thus, neither of the two possibilities is wrong. Of course, this means that for synchronisation
scenarios, we also must account for this kind of variability when we create the replacing rule.
Specifically, we may now encounter situations with alternative TGG rule concatenations
forming different replacing rules that will lead to different (but equally valid) Short-Cut
Rules in the end. For our example, this might present us with the choice between a Short-Cut
Rule that uses a Double Cube Rule and another using two concatenated Cube Rules to repair
translation steps for two former Villa Houses. Using the Short-Cut Rule based on the Double
Cube Rule would remove one of the Constructions on the other side, which could mean an
unintended loss of information. Hence, these rules mainly differ in what and how many
elements are preserved and for that reason, it is important to choose the replacing rule that
will be a better candidate for preserving information.

Figure 10 depicts a scenario in which we will encounter such a situation. As can be seen,
we start with a row of three Houses beginning with a Nook followed by two Villa Houses. For
each House, there is a corresponding Construction as well as a Plan containing them on the
target side. As before, however, we change the source side and introduce an inconsistency.
This time, we change the type of h2 and h3 from Nook and Villa to Cube. Additionally, we
add a new Nook house h1 before h2. As before, the most apparent inconsistency is that
the Constructions c2 and c3 no longer contain the necessary building steps since a Cube
has a Floor but no Saddle Roof and a Nook House has neither. Besides that, there are no
corresponding elements for the newly added Nook as it has not yet been translated to the
target side. To resolve this issue and restore consistency, we must investigate the precedence
graph that is shown on the right side of Figure 10. We see that there is a new Nook Rule
application as well as an invalidated one. The first N1 is annotated with “+” meaning that
its source elements are entirely new and thus free for translation and the latter is N2, which
became inconsistent due to an attribute change (“#”). Since the Nook is now a Cube, we
find a new Cube Rule application C2 as an alternative translation for the House h2. Besides
that, we have an inconsistent Villa Rule application V3, which was also invalidated due to
an attribute change and which caused the appearance of the new Cube Rule application
C3. In combination, changing both h2 and h3 to being Cube Houses lead to a Double Cube
Rule application DC1,2. Notably, the rule applications C2, C3 and DC1,2 can not be applied
yet, as indicated by their “*”-annotation, because they would mark elements that are still
marked by both N2 and V3. Hence, our goal in the following is to create a replacing rule
(followed by a Short-Cut Rule) that will let us translate the new Nook House and synchronise
the attribute change, while trying to preserve elements on the target side.
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We, therefore, have to consider several aspects. 1 We know of all elements that were
part of a replaced rule application, i.e., the rule applications that were once consistent and
should now be repaired. Yet, the same does not hold for the candidates that will form the
replacing rule. This is because we only know of elements from the source domain2 but not
the target domain, which in the precedence graph is expressed with a “u”. This annotation
stands for undefined and indicates that we do not know yet, whether there already are any
elements on this side that we could reuse or whether we should create them all from scratch.
Hence, we have to figure out whether context elements from one replacing rule candidate are
created by another candidate or whether they come from yet another still consistent rule
application. For example, we would have to figure out for C3 what rule application created

the Plan. 2 Some candidates may exclude each other. In our case, we know that C2 and C3

cannot coexist with DC2,3 because they mark the same elements on the source side. Hence,
we have to make sure that choosing a candidate means to exclude these other candidates

from the solution. 3 Several dependencies must be considered. There are, for example,
dependencies between replacing rule candidates such as between C2 and C3 because the
first has to be chosen (and applied) before the latter (if the latter is chosen at all). Similar
dependencies exist between rule elements, e.g., by mapping a context node to the created

2For a backward synchronisation case this would be the target domain.
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node of another rule because we assume that this rule creates the necessary context. In
our example, this could be the context Plan needed by C3 and found created by N1. Edges
and correspondence links are a special case in that regard as they are only allowed to be
mapped when their source and target elements were also mapped onto each other, ensuring

that this is indeed the same edge. 4 While there may be multiple possible replacing rules,
not all candidates are equal in how much information can be preserved in the end. Thus, we
have to find a metric for assessing the value of a solution that indicates the usefulness of a
specific replacing rule w.r.t. the final Short-Cut Rule.

4.1. Concatenation of rule candidates. As mentioned before, we will use ILP to solve
the above described problem. In general, when using ILP, we abstractly encode search spaces
by means of optimisation variables that in combination with an objective function must
adhere to certain constraints. In our case, we are only interested in 0-1 or pseudo-boolean
ILP of the form:

max(wT v)

Av ≥ b,

v ∈ {0, 1}m
(4.1)

with A ∈ Rm×n, b ∈ Rn, w ∈ Rm being a vector of weights and v being the vector of our
boolean optimisation variables v1, ..., vm. The variables can represent entities such as rule
application candidates and whether we consider them for our replacing rule or mappings
between rule elements, e.g., whether we assume that a certain context element of one rule
application will be created by a certain other one. In the following, we will write v[. . .] to
reference a specific variable in our vector v, where the value between the brackets represents
a unique index. Maximising the function should ultimately yield a valid concatenation of our
replacing rule candidates, where weights can be used to favor the selection of specific variables.
In our example, all weights will usually be set to 1. By choosing to customise these weights,
however, a user can encode restoration preferences, e.g., to give certain elements a higher
priority to be preserved or even penalise others that should be avoided. Due to the various
aspects that we have to consider, we will start with a small set of optimisation variables and
constraints and extend them step-by-step solving the above-described sub-problems along
the way.

Encoding rule applications and their dependencies. Constructing the replacing rule
means to determine, which rule candidates to concatenate. Therefore, for each replacing
rule candidate from our precedence graph, there is one variable in v that states whether
this candidate is chosen for the replacing rule or not. For our example, we would have the
following variables: v[N1], v[C1], v[C2] and v[DC2,3]. Then, we encode their dependencies
that we can read from the precedence graph, e.g., we can see that C2 depends on N1,
which means that v[C2] may only be set to 1 if v[N1] is 1 as well. This can be expressed
via the constraint v[C2] ≤ v[N1]. Consequently, we introduce the same constraint for the
other candidates: v[C3] ≤ v[C2], v[DC2,3] ≤ v[N1]. Some rule candidates are mutually
exclusive because they would mark the same elements, which must be avoided because each
element can only be translated once. Hence, we need to make sure that C2 and C3 cannot
be chosen alongside DC2,3 and vice versa because the latter marks the same elements as
both Cube Rule applications. We, therefore, add the constraints v[C2] + v[DC2,3] ≤ 1 and
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v[C3] + v[DC2,3] ≤ 1, which ensure that at most one of the terms can become 1 while the
other has to be 0.

Encoding possible dependencies of target context. In the next step, we need to
figure out how to concatenate our replacing rule candidates. While we already know how
rule application candidates can be concatenated on the source side of our example, it is
not clear where target elements come from, i.e., which rule application would create them.
Hence, we have to determine whether a context element from one rule candidate might
be the created element of another candidate. For that purpose and for each candidates
context (black) element, we search for created (‘++’, green) elements in candidates that
the current candidate (transitively) depends on and that have the compatible type and no
conflicting attribute assignments/conditions. We will call these pairs of context and created
rule elements in the following context-create mappings. Figure 11 depicts the context-create
mappings for our rule candidates in blue, e.g., the context Construction cr2,3 of DC2,3 could be
created as ncr1 from N1, which corresponds to the context-create mapping cr2,3 −→ ncr1. Note
that the source side elements are model elements from Figure 10, while the correspondence
and target side depict rule elements, which is why we draw the latter with dashed lines and
added r as a superscript to emphasise the difference. In general, there may exist several
possible mappings for each context element as is the case for the context Construction cr3
of candidate C3 that could stem from C2 or N1. While it is impossible that N1 would
create it because ultimately Construction cr2 will be the one that corresponds to the Cube
House h2, we have no static analysis to determine this beforehand and rely on the optimiser
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to find a reasonable solution in compliance with all constraints. For that reason, it is
possible that no context-create mapping is chosen, which means that we assume that the
context comes from outside our current scope. In general, we cannot be sure whether our
candidate set is actually able to create all necessary context or if the context stems from a
still valid rule application. Yet, incorporating all rule applications would severely impact
the applicability of this approach, which would scale with the size of the model rather than
the size of the change. That being said, we also create context-create mappings between
edges. In comparison with context-create mappings between nodes, however, edges can
only be mapped if their respective source and target nodes are also mapped onto another.
Hence, we constrain these edge context-create mapping variables to ensure that they are
only 1 if the correct node mappings are 1, too. For mapping edge er2 from candidate C2 to
er1 from N1, we would need to make sure that pr2 is mapped to pr1 and likewise cr2 to ncr1.
This can be expressed as v[er2 −→ er1] ≤ v[pr2 −→ pr1] and v[er2 −→ er1] ≤ v[cr2 −→ ncr1]. Finally,
we also have to create context-create mappings between correspondence links. Note that
these mappings were omitted from Figure 11 for readability reasons. These context-create
mappings are handled in a similar way as edges with the slight difference that we already
know whether their source side matches, e.g., mapping the context correspondence link from
C2 to the created one from N1, we can see that both are compatible on the source side
because they both use the same model element h1. If this is not the case, we can directly
drop the mapping and continue.

We must also add exclusions to circumvent that more than one context-create mapping
is chosen for each context element. Choosing more than one would mean that the context
element is created by more than one rule application, which cannot be the case. As before,
we can achieve this by formulating an exclusion, which ensures that the sum of all context-
create mapping variables associated with the context element is less or equal than 1, e.g.,
v[cr3 −→ ncr1] + v[cr3 −→ ncr2] ≤ 1, which states that cr3 must be the element created as ncr1, nc

r
2

or neither.

Combining rule applications and context dependency. Beyond that, we combine
our rule candidate variables from before with these new context-create mapping variables
to make sure that using a context-create mapping also implies that the respective rule
candidates are chosen as well. We can express this implication by stating that the variable
of a context-create mapping must be less or equal than the variable of a rule candidate,
which means that the first can only become 1 if the latter is 1 as well. In our example, this
must hold when setting the mapping variable v[cr3 −→ ncr2] to 1, which means that both v[C3]
and v[C2] must be 1 as well because they use elements from these candidates. Hence, we
add the constraints v[cr3 −→ ncr2] ≤ v[C2] and v[cr3 −→ ncr2] ≤ v[C3], where the context-create
mapping can only be 1 if both v[C2] and v[C3] are 1, too.

Optimisation goal. Assuming that we would now maximise the number of chosen context-
create mappings, we would get a valid replacing rule that overlaps context and created
elements as much as possible. Our constraints ensure that no competing rule candidates may
be chosen at the same time, while our constraints for edge and correspondence context-create
mappings ensure that a solution is favored that does not blindly map each context node
to any possible creating node. Instead, it should always give a higher reward when also
considering how each node is connected. Thereby, the edge and correspondence constraints
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Figure 12: Mapping Rule Candidate to Model Elements

become the glue that pushes us towards a concatenation that is not only valid but also
reasonable and applicable.

4.2. Incorporating former target side elements. The result can still be improved by
incorporating information about target side elements that were created by our formerly
valid replaced rule applications. When being presented with different alternatives as in our
example, incorporating knowledge about formerly created elements can help us making a
better decision, e.g., to preserve more elements. For example, considering our example from
above, it could be better to use a replacing rule that includes both Cube Rule candidates
instead of the Double Cube Rule because we want to repair a Nook Rule and a Villa Rule
application that both created a Construction. Choosing the Double Cube Rule would result
in a Short-Cut Rule that removes one Construction. Even if this is what we wanted, we
need the means to state that either solution should be preferred. We can achieve this by
introducing rule-model mappings between created rule elements from our rule candidates
and model elements that were created previously by rule applications that are no longer
intact and which we are trying to repair with the final Short-Cut Rule. The intuition behind
this step is that we try to find out whether we can reuse and, thus, preserve elements
created by prior rule applications that would otherwise be deleted. Figure 12 depicts these
rule-model mappings for our example, although, the rule candidate D1,2 has been omitted
for readability reasons. Similar to the context-create mappings, for each context element
in our rule candidates, we search for compatible model elements. This time, however, they
must have the same type (i.e., we exclude subtyping) or else the created rule element would
not be the same as the one we already have. Again, correspondence mappings are omitted
due to readability reasons but we discuss them in the following, too. Also note that, as
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explained previously, we do not need mappings to source side elements, because we already
know these mappings.

Having a look at Figure 12, we can see that there is only one available rule application
candidate on the right side that creates a Plan, which means that we can only map pr1 to p2.
In contrast, each of the three Constructions on the right side could be mapped to any of the
two existing Constructions in our model, which results in six mappings. This also holds for
the edges between the Plan and a Construction for which we know that there must be three
in the end but for which there are only two candidates in our model. We also map created
correspondence links for which there are also six possible mappings. Creating all these
mappings is an important difference between context-create and rule-model mappings. For
the first, we also considered dependencies between rule candidates and (implicitly) filtered
some mappings, while for the latter, we are not sure which rule application would be a
good candidate for preserving the information. This is because the order in which elements
are translated may have changed as is the case for the example in Section 3. Hence, we
create mappings from each created rule element to all matching model elements and let the
optimiser find a solution that reuses these elements in a reasonable way. Comparing the
former rule applications with the new rule application candidates and incorporating this
knowledge to improve performance is left to future work.

Encoding dependencies between rule-context mappings. Since each model element
can only be created by one rule element, we must ensure that mappings pointing to the
same model element are mutually exclusive. Similar to Section 4.1, we enforce this by
adding a constraint that ensures that only one mapping variable can be set to one, e.g.,
for mappings to c3 we add v[ncr1 −→ c3] + v[ncr2 −→ c3] + v[ncr3 −→ c3] ≤ 1. Of course, these
mappings may only be chosen if the rule application candidate on the right side is chosen as
well. As with the rule concatenation constraints, we can express this by stating that the
rule-model mapping variable may only be 1 if the rule application candidate variable is 1,
e.g., v[ncr3 −→ c3] ≤ v[C3].

Finally, we have to make sure that edges and correspondence links are not mapped if
their sources and targets are not mapped onto each other as well since edges can not be
the same if they point to different elements. In comparison to the Section 4.1, where we
mapped context to created rule elements, we are now only interested in mapping created
rule elements to formerly created model elements. However, most of our created rule edges
have one context node as source, e.g., er3. This means that we can only take such an edge if
its context rule node is mapped to a created rule node of another rule application candidate,
which is then mapped to the corresponding element in the model. For mapping er5 to e2, we
would add the following constraint: 3v[er5 −→ e2] ≤ v[ncr3 −→ c3] + v[pr1 −→ p2] + v[pr3 −→ pr1].
It states that v[er5 −→ e2] can only be 1 if the three other variables are set to 1 and sum
up to 3, which means that ncr3 and pr1 were mapped to c3 and p2, respectively, while the
context Plan from C3 is assumed to be created by N1. Only then, we can be certain that er5
could indeed create e2 if C3 is chosen. As in Section 4.1, correspondence links are handled
similarly as edges with the slight difference that we already know what element they point
to on the source side. Hence, we only have to encode constraints for the target side elements
of correspondence links.

Incorporating edges and correspondence links is crucial as this will ensure that nodes
are not reused randomly. Instead, those solutions will be preferred where relations between
model nodes are preserved. In our example, we could map the created Constructions of C2
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Figure 13: Replaced and Replacing Rule

and C3 freely but when mapping ncr3 to c2, we won’t be able to map the correspondence link
and, thus, get a smaller reward. Another interesting case is that of N1. We could not only
map its Plan pr1 to p2 in our model but also map ncr1 to c2. Doing so, however, would leave us
with no option but to remove the correspondence link between h2 and c3 because we cannot
(and probably also do not want to) repurpose the edge to point to h1. This means that
edges and likewise correspondence links are our means of reasoning on whether elements are
assumed to be the same and, thus, should be preserved. Maximising the number of chosen
mappings, finally, tells us how to concatenate some of the rule candidates in order to obtain
our final replacing rule. For our example and without choosing specific weights, we would
choose N1, C2 and C3 as our candidates, where the context Plan of the latter two stems from
N1 as well as the context Construction from C2, while C2 creates the Construction that is
needed by C3. This means that the Constructions from C2 and C3 were mapped to the model
Constructions c2 and c3, respectively. In contrast, when choosing DC1,2, we would only be
able to map one Construction from our rule application candidate to our model and there are
less context-create mappings from context to created elements, which in total gives a smaller
reward. If we would like to prefer the DC1,2 nonetheless, then we can choose specific weights
to make it more rewarding to choose it. An obvious choice would be to add a large weight to
v[DC1,2] so that the reward of choosing a Double Cube Rule is always higher than choosing
two Cube Rule candidates. As a rule of thumb, we must choose a weight that is greater than
the difference between the number of mappings a Double Cube Rule and two Cube Rules may
have. Another, more fine-granular, option is to add weightings to rule-model mappings such
that choosing mappings between a Double Cube Rule candidate and a model is worth more
than choosing similar mappings for two subsequent Cube Rules. The difference between the
first and second option is that the latter lets us prioritise specific elements over others.
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Figure 13 shows the resulting replaced and replacing rule. Both are used to create the
Short-Cut Rule shown in Figure 14 (cf. [FKST21]) by overlapping both rules and thereby
identifying common elements. Here, the overlap would be between elements with the same
name. Overlapped elements are preserved when transforming from our formerly valid
replaced rule application to the replacing rule application. Finally, applying this rule on our
changed model from Figure 10 would create the missing Construction for House h1, while
preserving the already existing Plan and changing the other Constructions to have a Cellar
instead of a Saddle Roof.

4.3. Discussion. We would like to highlight and discuss some details of our approach. First,
we would like to point out that, in general, there are multiple possible Short-Cut Rules as
there are often various possible overlaps between a replaced and a replacing rule. While
we do not search for all possible Short-Cut Rules due to performance reasons and because
many of them are not useful, we limit ourselves to finding useful ones, according to a custom
(hand-crafted) metric, i.e., a specific choice of weightings (cf. [FKMS23]). This means two
things. First, in order to preserve specific elements, we need to encode this via weights
such that a solution that focuses on these elements is preferred. Second, since we do not
search and try all Short-Cut Rules, our approach is an heuristic where in its basic form we
choose all weights to be 1 due to our experience with examples from our repository of test
scenarios3.

3www.github.com/eMoflon/emoflon-ibex-tests

www.github.com/eMoflon/emoflon-ibex-tests
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Of course, since our approach is a heuristic, it can happen that we are not able to find a
Short-Cut Rule that can be used in that particular scenario. As discussed in the previous
chapter, however, we can guarantee that each created higher-order Short-Cut Rule is indeed
correct, meaning that these rules cannot be used to perform synchronisation steps that inflict
new inconsistencies. If no rule can be found, there is still the option to retranslate elements
that were part in prior rule applications, which is guaranteed to restore consistency [Leb18].

With the current ILP formulation, mapping an element from a rule to a model gives
some reward. In contrast, we do not penalise if not all elements from a rule have a matching
counterpart in the model, which in some cases would be reasonable. A future extension
could thus introduce such a penality term, e.g., adding another rule-model mapping variable
for each rule element that has a negative weight and enforcing that for each node exactly
one rule-model mapping variable has to be chosen. If there are not enough elements in the
model to map all rule elements for a rule candidate, we would have to set variables with a
negative weight to 1, which reduces the overall reward. Then, it would become more likely
that another alternative candidate is chosen that explains more model elements.

Another important aspect is that after finding the replacing rule, we create the Short-Cut
Rule using ILP solving in a subsequent step with our former Short-Cut Rule framework
presented in [FKST21]. In fact, having found mappings from our replacing rule candidates to
both the replaced rule and the model, we could already create the Short-Cut Rule. Currently,
we rely on the former construction mechanism of Short-Cut Rules but we plan to replace it
with one that creates replaced, replacing and Short-Cut Rules in one step in the future.

5. Evaluation

We implemented our approach and integrated it into the state-of-the-art graph transforma-
tion tool eMoflon4. Our approach extends our previous work on Short-Cut Rules [FKST18,
FKST21] and while the approach has the potential to preserve more information during syn-
chronisation, we have to investigate how our original Short-Cut Rules perform in comparison.
Also, since our approach analyses dependencies and creates Short-Cut Rules on-demand at
runtime, we have to investigate whether it introduces a noteworthy offset. Thus, we pose
the following research questions:

• (RQ1) Does the new runtime analysis introduce any additional cost in comparison with
using a precalculated set of Short-Cut Rules?

• (RQ2) Does our new approach indeed preserve more information in certain cases?

Evaluation scenarios. To answer our research questions, we investigate five different
scenarios of our running example with three different resolution techniques: The legacy
algorithm [Leb18] revokes invalid rule applications and retranslates parts of the model,
while SC stands for the original Short-Cut Rule framework with precalculcated repair
rules [FKST21] and HO SC stands for our new higher-order Short-Cut Rules. We compare
both SC and HO SC with legacy to show the impact of repairing models instead of
retranslating them (partially). Note that in both SC and HO SC our algorithm falls back
to using the legacy algorithm in case no Short-Cut Rule was found.

In the first and second scenario, we have a fixed number of 2 000 rows of Houses with
around 26 000 nodes on both source and target side and we increase the number of applied

4www.emoflon.org/

www.emoflon.org/
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changes in steps of 50 from 50 to 250. Our primary goal for these scenarios is to investigate
how our approach copes with linearly scaling a number of different kinds of changes. In
contrast, the third and fourth scenario comprise two long rows of Houses that we grow
iteratively by adding new Houses in steps of 20 from 20 to 200. This change is expected
to become more expensive to resolve as the rows grow larger but should also be able to
preserve more information than the other two algorithms. The fifth scenario was not part
of our previous work and extends our former evaluation. It features one long row of 1 000
Houses, where the first House is of type Nook and all following ones are of type Villa. Then,
we change an increasing number of Houses in this row to become of type Cube starting from
10 to 60 subsequent Houses in steps of 10. Both the former Short-Cut Rule and the newer
higher higher-order Short-Cut Rule framework should be able to preserve the same amount
of information, the latter is expected to be more expensive due to the prior analysis needed
to find a suitable rule. We, thus, want to measure the effect that subsequently dependent
changes have when using our new approach.

The specific changes for each scenario and their expected outcomes are as follows: In
the first and third scenario, we add new Nook Houses at the start of each row. HO SC
can synthesise a higher-order Short-Cut Rule to react to this change, while legacy has
to re-translate each affected row and SC has to separately translate the newly created
Nook Houses and then move the affected Constructions to the newly translated Plan (using
precalculated Short-Cut Rules). In the second and fourth scenario, we relocate subrows.
This is a worst-case scenario for HO SC. In this case, every moved House’s Construction must
be repaired and moved to the new Plan. While legacy has to perform this via retranslation,
both SC and HO SC can use the same repair rules – only SC does not have the offset of
creating them on-the-fly. In the fifth scenario, we change an increasing number of Villa
Houses to being Cube, starting from the front. As a result, HO SC will have to construct
larger Short-Cut Rules, which constitutes another worst-case scenario, while legacy will
simply retranslate the Houses and SC can repair them step-by-step.

Experimental setup. We measure the time it takes to resolve the inconsistencies as well as
how many elements are deleted in the process. Every measurement was repeated five times
and we show the average runtime while the number of deleted elements did not fluctuate.
The evaluation was executed on a system with an AMD Ryzen 9 3900x with 64GB RAM. It
can be replicated using our prepared VM5, which comes with a detailed explanation on how
to reproduce the results. The current version v1.1 of our VM needs a license of the Gurobi6

ILP solver to execute the evaluation but the former version is still available and implements
the first four test scenarios without this dependency.

Results. Figure 15 shows the measured times of the all scenarios. For the first and third
scenario, where legacy and SC have to transitively retranslate/repair, creating the needed
higher-order Short-Cut Rules on-the-fly even has performance benefits. For the second and
fourth case, the results indicate that for one of the worst-case scenarios where SC will have
the same effect as HO SC, constructing higher-order Short-Cut Rules and applying them
instead of performing many smaller repair steps only introduces a small cost. However, the
fifth scenario shows there are cases where the construction of large Short-Cut Rules can be
very expensive, at least when compared to applying smaller Short-Cut Rules instead. For

5www.zenodo.org/record/10377155
6www.gurobi.com

www.zenodo.org/record/10377155
www.gurobi.com
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Figure 15: Time Comparison

changing 60 Houses, HO SC takes over 40 seconds to construct a Short-Cut Rule, where
over 90% of the time is needed to find a solution for the ILP problem.

Figure 16 shows the largest number of deleted elements (nodes and edges) for all scenarios.
As can be seen, using HO SC has the potential of preserving more information than SC
and legacy in the right cases (RQ2). In the others, both SC and HO SC outperform the
legacy algorithm; this cannot preserve any information at all.

In sum, the research questions can be answered as follows: RQ2 can be answered with
a clear yes because there is no case where our new approach preserved less information
than the former Short-Cut Rule framework and for two scenarios it even preserved more.
Regarding (RQ1), we can state that there are cases where our new approach introduces
a significant overhead compared to our previous Short-Cut Rule framework. Yet, at the
same time, there are cases where using our new framework can even save time in situations
where we cannot repair a model using smaller Short-Cut Rules and large parts have to be
retranslated to restore consistency. For several cases, both our new and the old Short-Cut
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Figure 16: Comparison of deleted elements

Rule framework even performed similarly w.r.t. the performance. Considering that using
higher-order Short-Cut Rules can indeed preserve more information, one can argue that it is
advisable to use higher-order Short-Cut Rules and switch to the former algorithm in case
that a specific scenario only consists of worst-case scenarios such as the fifth scenario of our
evaluation.

Discussion. There are several points worth mentioning. First, the current evaluation
features only one example with synthetic data. Our approach, thus, has to be evaluated
further on other (preferably real-world) scenarios with non-synthetic data and user changes.
Yet, based on our experience with our test suite of 22 TGGs7, we argue that the investigated
scenarios are representative and similar results are to be expected there as well.

Second, while using HO SC has the potential to preserve more information than the
other two approaches, there are cases where calculating a Short-Cut Rule would take too
much time. This issue could be resolved by not creating one large Short-Cut Rule to handle
all changes at once but rather splitting them up. Therefore, we need to find some criteria to
judge whether a split could cause information loss. Apart from that, we could also reduce
the size of the ILP problem by filtering those mapping variables that cannot be part of the
final solution. Currently, we encode most mappings and rely on our ILP constraints to filter
these ones out.

7https://github.com/eMoflon/emoflon-ibex-tests

https://github.com/eMoflon/emoflon-ibex-tests
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6. Related Work

In this section, we relate our approach to other sequential model synchronisation approaches.
We will first focus on TGG-based approaches and then discuss other related works with a
different methodology.

TGG-based approaches. There have been several works that implement model synchro-
nisation by transitively revoking invalid rule applications and retranslating possibly large
parts of a model [GW09,LAVS12,LAF+17]. While these approaches come with proofs of
termination, correctness and completeness, they may lead to an unnecessary information
loss and at times a decrease in performance.

In contrast, Hermann et al. [HEO+15] tried to solve this issue by calculating the maximal
still-consistent sub-model, which is used as a starting point to propagate the model changes.
Their approach is shown to be correct but cannot guarantee that all changes are carried
out in a least-changing way. Above that, calculating the sub-model is computationally very
expensive and their approach is limited to a deterministic TGG rule set only.

A very similar approach to ours is given by Giese and Hildebrandt [GHNW12] where
they propose repairing rules that closely resemble Short-Cut Rules. These also save nodes
instead of unnecessarily deleting them and are able to propagate relocations of model
elements. However, neither a construction scheme to obtain these rules is provided nor is the
preservation of information proven to be correct. Yet, using our approach from [FKST21],
we are indeed able to construct the same rules as mentioned in their work. Similarly, Blouin
et al. [BPD+14] also propose to use custom repair rules.

Another approach was initially proposed by Greenyer et al. [GPR11] and later formalised
by Orejas and Pino [OP14]. They propose that elements are never directly deleted but
rather marked. Thereby, these elements are still free to be re-used during synchronisation,
e.g., by letting a forward rule transformation take elements from the set of these elements
instead of creating new ones and, thus, prevent them from being deleted. Yet, to the best of
our knowledge, their approach was never implemented.

Finally, Anjorin et al. [ALK+15] discussed design guidelines for TGGs that lead to less
transitive dependencies between rule applications and can, thus, be synchronised without
triggering a large cascade of retranslation steps. Yet in many cases, remodelling a TGG to
comply with these guidelines means to change the defined language and may for that reason
not be desired.

In summary, there are several TGG-based approaches that acknowledge the limitations
of propagating changes by retranslating possibly large parts of a model. Some approaches
follow a similar approach as ours, yet without a formal foundation or construction concept.
Others have, to the best of our knowledge, never been implemented. While we provide both,
we extend our previous works [FKST18,FKST21] by broadening the practical applicability
and preserving information in more complex scenarios than before.

Bidirectional transformations. Another popular formal framework for bidirectional
transformations are lenses. While there are many works related to lenses and least-changing
incremental synchronisation [DXC10,HB19,HPW12,HPC18,WGW11], most are only the-
oretical and were not implemented. Most closely related to our work are the works of
Hofmann et al. [HPW12] and Wang et al. [WGW11]. Hofmann et al. introduced so-called
edit lenses that focus on the changes and how to propagate and preserve them instead of
taking a state-based approach. This is similar to our approach that works incrementally
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based on the perceived change to the model. Wang et al. too derive functions to propagate
changes between models. However, their approach is limited to tree-like structures only.

Another approach by Macedo and Cunha [MC16] was influenced by the lenses framework
and is based on ATL and SAT solving via Alloy. In their work, they describe how to encode
the search space of all feasible synchronisation solutions as an optimisation problem. Their
approach rates changes based on one of two metrics, namely the graph edit distance and the
operation-based distance. Using these ratings, a least-changing propagation is calculated,
interpreting least-change either as the minimal set of (propagation) operations needed or
the minimal set of atomic graph edit steps to be taken. In comparison to our work, they
incorporate more advanced metamodel constraints, e.g., OCL, and, generally, their approach
should yield good results. The major drawback is the scalability as it is applicable to rather
small models only.

Finally, Anjorin et al. [ADJ+17] compared three existing state-of-the art tools for
bidirectional transformations of different methodologies against each other. Specifically,
they compared the rule- and TGG-based tool eMoflon [WAF+19], the constraint-based
tool mediniQVT 8 and BiGUL [KZH16], which is a bidirectional programming language
and related to lenses. Comparing these tools, they showed that eMoflon tends to perform
better than the other two approaches w.r.t. performance. Additionally, eMoflon only failed
on one scenario, while mediniQVT failed in four and BiGUL in two. Using our previous
smaller Short-Cut Rules [FKST18], we were already able to solve the last case and as
shown in our evaluation, the new approach is able to preserve information in even more
cases. This benchmark was later extended [ABW+20], featuring more scenarios and being
implemented by a more diverse set of tools. There, eMoflons performance was showing a
worse runtime performance than most other approaches and was not able to solve 6 out of
34 cases. However, an older version was used that did not incorporate Short-Cut Rules and
worked with another incremental pattern matcher that has since been replaced by a more
efficient one.

Model repair. Model repair [MTC17] is the task of restoring the consistency of a model
with regard to some specification. Since modelling languages like UML [Obj17] can be used
to describe a single system using a set of models of different types, e.g., class and sequence
diagrams, there are several approaches to model repair that do not only restore intra-model
but also inter-model consistency, i.e., that propagate changes on one kind of model to related
models of other kinds. Recent such approaches, in particular, with support for synchronising
class and sequence diagrams, include [OPK+21, KKLE21, BHRI22,MKA+23]. In these
cases, consistency is defined via a modelling language like UML or the requirements of a
modelling framework like the Eclipse Modeling Framework [Ecl24], possibly complemented
by constraints expressed in a language like OCL [OMG14]. Generally, TGGs could also
be applied for such repair tasks. For this, it would first be necessary to develop grammars
that express the desired consistency relationships between the different kinds of models.
However, not every consistency requirement expressible in OCL can be expressed using
a TGG since for TGGs the language inclusion problem is decidable. Having their formal
foundation in the theory of graph transformation, TGG-based approaches, including ours,
often come with far more comprehensive formal guarantees than offered in approaches
like [OPK+21, KKLE21, BHRI22, MKA+23]. On the other hand, whereas TGG-based
approaches usually use repair operations that are derived from the rules of the grammar,

8mediniQVT is not maintined and no longer available.



Vol. 20:3 ADVANCED MODEL CONSISTENCY RESTORATION 25:31

approaches to model repair are often more flexible. For instance, Barriga et al. employ
machine learning [BHRI22] and Ohrndorf et al. [OPK+21] and Kretschmer et al. [KKLE21]
use information on the edit history of a model. Furthermore, Ohrndorf et al. [OPK+21] as
well as Marchezan et al. [MKA+23] do not automatically repair a model but provide the
user with a set of (relevant) repair options from which they can choose; in this way, it is
guaranteed that user intent will be met. Our approach could be extended in this direction
by not computing a single higher-order Short-Cut Rule but different interesting ones, letting
the user select between the different outcomes.

7. Conclusion

In this paper, we presented a novel approach to construct non-trivial repair rules in the
form of higher-order Short-Cut Rules from a given consistency specification. These repair
rules are constructed on demand by analysing a precedence graph that is annotated based
on user changes. Our approach was fully implemented into eMoflon, a state-of-the-art graph
transformation tool, which forms the base of our evaluation. In the evaluation, we showed
that higher-order Short-Cut Rules can preserve information in more complex cases, while
introducing only a small overhead to the runtime and at times even outperforming other
strategies in eMoflon. Next, we would like to investigate whether we can identify situations
statically where a higher-order Short-Cut Rule is needed to improve performance when
smaller Short-Cut Rules suffice. For concurrent synchronisation scenarios, these rules could
also be used to check whether sequences of user changes to both models correspond to or
contradict each other.
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Rule are named similar to Cube Rule but the second created correspondence link connecting
House h2 with the Construction is called nncori . Note that all weights are equal 1.

Objective Function.

max(v[N1] + v[C2] + v[C3] + v[DC1,2]+

v[pr2 → pr1] + v[pr3 → pr1] + v[pr2,3 → pr1]+

v[cr2 → ncr1] + v[cr3 → ncr1] + v[cr2,3 → ncr1]+

v[cr3 → ncr1] + v[er2 → er1] + v[er4 → er1]+

v[er6 → er1] + v[er4 → er3] + v[cor2 → ncor1]+

v[cor3 → ncor1] + v[cor2,3 → ncor1] + v[cor3 → ncor2]+

v[pr1 → p2] + v[ncr1 → c2] + v[ncr1 → c3]+

v[ncr2 → c2] + v[ncr2 → c3] + v[ncr3 → c2]+

v[ncr3 → c3] + v[er1 → e1] + v[er1 → e2]+

v[er3 → e1] + v[er3 → e2] + v[er5 → e1]+

v[er5 → e2] + v[ncor1 → co2] + v[ncor2 → co2]+

v[ncor3 → co2] + v[ncor1,2 → co2] + v[nncor1,2 → co2]+

v[ncor1 → co3] + v[ncor2 → co3] + v[ncor3 → co3]+

v[ncor1,2 → co3] + v[nncor1,2 → co3])

Rule Candidate Constraints.

v[C2] ≤ v[N1]

v[C3] ≤ v[DC1,2]

v[DC1,2] ≤ v[N1]

v[C2] + v[DC1,2] ≤ 1

v[C3] + v[DC1,2] ≤ 1
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Context-Create Mapping Constraints.

v[pr2 → pr1] ≤ v[N1] v[pr2 → pr1] ≤ v[C2]

v[pr3 → pr1] ≤ v[N1] v[pr3 → pr1] ≤ v[C3]

v[pr2,3 → pr1] ≤ v[N1] v[pr2,3 → pr1] ≤ v[DC1,2]

v[cr2 → ncr1] ≤ v[N1] v[cr2 → ncr1] ≤ v[C2]

v[cr3 → ncr1] ≤ v[N1] v[cr3 → ncr1] ≤ v[C3]

v[cr2,3 → ncr1] ≤ v[N1] v[cr2,3 → ncr1] ≤ v[DC1,2]

v[cr3 → ncr1] ≤ v[N1] v[cr3 → ncr1] ≤ v[C3]

v[er2 → er1] ≤ v[N1] v[er2 → er1] ≤ v[C2]

v[er4 → er1] ≤ v[N1] v[er4 → er1] ≤ v[C3]

v[er6 → er1] ≤ v[N1] v[er6 → er1] ≤ v[DC1,2]

v[er4 → er3] ≤ v[C2] v[er4 → er3] ≤ v[C3]

v[cor2 → ncor1] ≤ v[N1] v[cor2 → ncor1] ≤ v[C2]

v[cor3 → ncor1] ≤ v[N1] v[cor3 → ncor1] ≤ v[C3]

v[cor2,3 → ncor1] ≤ v[N1] v[cor2,3 → ncor1] ≤ v[DC1,2]

v[cor3 → ncor2] ≤ v[C2] v[cor3 → ncor2] ≤ v[C3]

v[cr3 → ncr1] + v[cr2 → ncr2] ≤ 1

v[er4 → er1] + v[er4 → er3] ≤ 1

v[cor3 → ncor1] + v[cor3 → ncr2] ≤ 1

v[er2 → er1] ≤ v[cr2 → ncr1] v[er2 → er1] ≤ v[pr2 → pr1]

v[er4 → er1] ≤ v[cr3 → ncr1] v[er4 → er1] ≤ v[pr3 → pr1]

v[er6 → er1] ≤ v[cr2,3 → ncr1] v[er6 → er1] ≤ v[pr1,2 → pr1]

v[er4 → er3] ≤ v[cr3 → ncr2] v[er4 → er3] ≤ v[pr1,2 → pr1]

v[cor2 → ncor1] ≤ v[cr3 → ncr1] v[cor3 → ncor1] ≤ v[cr3 → ncr1]

v[cor2,3 → ncor1] ≤ v[cr2,3 → ncr1]
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Rule-Model Mapping Constraints.

v[pr1 → p2] ≤ v[N1] v[ncr1 → c2] ≤ v[N1]

v[ncr1 → c3] ≤ v[N1] v[ncr2 → c2] ≤ v[C2]

v[ncr2 → c3] ≤ v[C2] v[ncr3 → c2] ≤ v[C3]

v[ncr3 → c3] ≤ v[C3] v[er1 → e1] ≤ v[N1]

v[er1 → e2] ≤ v[N1] v[er3 → e1] ≤ v[C2]

v[er3 → e2] ≤ v[C2] v[er5 → e1] ≤ v[C3]

v[er5 → e2] ≤ v[C3] v[ncor1 → co2] ≤ v[N1]

v[ncor2 → co2] ≤ v[C2] v[ncor3 → co2] ≤ v[C3]

v[ncor1,2 → co2] ≤ v[DC1,2] v[ncor1,2 → co2] ≤ v[DC1,2]

v[ncor1 → co3] ≤ v[N1] v[ncor2 → co3] ≤ v[C2]

v[ncor3 → co3] ≤ v[C3] v[ncor1,2 → co3] ≤ v[DC1,2]

v[nncor1,2 → co3]] ≤ v[DC1,2]

v[ncr1 → c2] + v[ncr1 → c3] ≤ 1

v[ncr2 → c2] + v[ncr2 → c3] ≤ 1

v[ncr3 → c2] + v[ncr3 → c3] ≤ 1

v[er1 → e1] + v[er1 → e2] ≤ 1

v[er3 → e1] + v[er3 → e2] ≤ 1

v[er5 → e1] + v[er5 → e2] ≤ 1

v[ncor1 → co2] + v[ncor1 → co3] ≤ 1

v[ncor2 → co2] + v[ncor2 → co3] ≤ 1

v[ncor3 → co2] + v[ncor3 → co3] ≤ 1

v[ncor1,2 → co2] + v[ncor1,2 → co3] ≤ 1

v[nncor1,2 → co2] + v[nncor1,2 → co3] ≤ 1

3v[er3 → e1] = v[ncr2 → c2] + v[pr1 → p2] + v[pr2 → pr1]

3v[er3 → e2] = v[ncr2 → c3] + v[pr1 → p2] + v[pr2 → pr1]

3v[er5 → e1] = v[ncr3 → c2] + v[pr1 → p2] + v[pr3 → pr1]

3v[er5 → e2] = v[ncr3 → c3] + v[pr1 → p2] + v[pr3 → pr1]

v[er1 → e1] ≤ v[ncr1 → c2] v[er1 → e1] ≤ v[pr1 → p2]

v[er1 → e2] ≤ v[ncr1 → c3] v[er1 → e2] ≤ v[pr1 → p2]

v[ncor2 → co2] ≤ v[ncr2 → c2] v[ncor3 → co3] ≤ v[ncr3 → c3]

v[ncor1,2 → co2] ≤ v[ncr3 → c2] v[nncor1,2 → co3] ≤ v[ncr3 → c3]

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany


	1. Introduction
	2. Fundamentals
	2.1. Running Example & Triple Graph Grammars
	2.2. Precedence Graphs & Synchronisation
	2.3. Preserving Information using Short-Cut Rules

	3. Higher-Order Short-Cut Rules
	3.1. Exemplifying the Need for Higher-Order Short-Cut Rules
	3.2. Deriving Higher-Order Short-Cut Rules On-the-fly
	3.3. Discussion

	4. ILP-based Construction
	4.1. Concatenation of rule candidates
	4.2. Incorporating former target side elements
	4.3. Discussion

	5. Evaluation
	6. Related Work
	7. Conclusion
	References
	Appendix A. 

