
Logical Methods in Computer Science
Volume 20, Issue 4, 2024, pp. 5:1–5:47
https://lmcs.episciences.org/

Submitted Oct. 05, 2023
Published Oct. 07, 2024

FAIR ASYNCHRONOUS SESSION SUBTYPING

MARIO BRAVETTI a, JULIEN LANGE c, AND GIANLUIGI ZAVATTARO b

aUniversity of Bologna, ITALY
e-mail address: mario.bravetti@unibo.it

bUniversity of Bologna / INRIA OLAS Team, ITALY
e-mail address: gianluigi.zavattaro@unibo.it

cRoyal Holloway, University of London, Egham, UK
e-mail address: julien.lange@rhul.ac.uk

Abstract. Session types are widely used as abstractions of asynchronous message passing
systems. Refinement for such abstractions is crucial as it allows improvements of a given
component without compromising its compatibility with the rest of the system. In the
context of session types, the most general notion of refinement is asynchronous session
subtyping, which allows message emissions to be anticipated w.r.t. a bounded amount of
message consumptions. In this paper we investigate the possibility to anticipate emissions
w.r.t. an unbounded amount of consumptions: to this aim we propose to consider fair
compliance over asynchronous session types and fair refinement as the relation that preserves
it. This allows us to propose a novel variant of session subtyping that leverages the notion
of controllability from service contract theory and that is a sound characterisation of fair
refinement. In addition, we show that both fair refinement and our novel subtyping are
undecidable. We also present a sound algorithm which deals with examples that feature
potentially unbounded buffering. Finally, we present an implementation of our algorithm
and an empirical evaluation of it on synthetic benchmarks.

1. Introduction

The coordination of software components via message-passing techniques is becoming increas-
ingly popular in modern programming languages and development methodologies based on
actors and microservices, e.g., Rust, Go, and the Twelve-Factor App methodology [Ada17].
Often the communication between two concurrent or distributed components takes place
over point-to-point fifo channels.

Abstract models such as communicating finite-state machines [BZ83] and asynchronous
session types [HYC16] are essential to reason about the correctness of such systems in a
rigorous way. In particular these models are important to reason about mathematically
grounded techniques to improve concurrent and distributed systems in a compositional

This work has been partially supported by the research project FREEDA (CUP: I53D23003550006)
funded by the framework PRIN 2022 (MUR, Italy), the French ANR project SmartCloud ANR-23-CE25-0012,
and the H2020-MSCA-RISE project ID 778233 “Behavioural Application Program Interfaces (BEHAPI)” .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(4:5)2024
© M. Bravetti, J. Lange, and G. Zavattaro
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-5193-2914
https://orcid.org/0000-0001-9697-1378
https://orcid.org/0000-0003-3313-6409
http://creativecommons.org/about/licenses

5:2 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

0 1 2

!tc

!done

?tm

?over
0 1 2

?tm

?over

!tc

!done
0 1 2

!tm

!over

?tc

?done

T ′
G TG = TS TS

T ′
G = µt.⊕ {tc : t, done : µt′. &{tm : t′, over : end}}

TG = µt. &{tm : t, over : µt′.⊕ {tc : t′, done : end}}
TS = µt.⊕ {tm : t, over : µt′. &{tc : t′, done : end}}

Figure 1: Satellite protocols. T ′
G is the refined session type of the ground station, TG is the

session type of ground station, and TS is the session type of the spacecraft.

way. The key question is whether a component can be refined independently of the others,
without compromising the correctness of the whole system. In the theory of session types,
the most general notion of refinement is the asynchronous session subtyping [MYH09,
CDCY14, CDSY17], which leverages asynchrony by allowing the refined component to
anticipate message emissions, but only under certain conditions. Notably asynchronous
session subtyping rules out candidate subtypes that occur naturally in communication
protocols where, e.g., two parties simultaneously send each other a finite but unspecified
amount of messages before removing them from their buffers.

We illustrate this key limitation of the asynchronous session subtyping with Figure 1,
which depicts possible communication protocols between a spacecraft and a ground station
that communicate via two unbounded asynchronous channels (one in each direction). For
convenience, the protocols are represented as session types (bottom) and equivalent com-
municating finite-state machines (top). Consider TS and TG first. Session type TS is the
abstraction of the spacecraft. It may send a finite but unspecified number of telemetries
(tm), followed by a message over — this phase of the protocol typically models a for loop
and its exit. In the second phase, the spacecraft receives a number of telecommands (tc),
followed by a message done. Session type TG is the abstraction of the ground station. It is
the dual of TS , written TS , as required in standard binary session types without subtyping.
Since TG and TS are dual of each other, the theory of session types guarantees that they
form a correct composition, namely no communication errors can be generated and the
communication protocol can always terminate successfully, with empty queues.

However, it is clear that this protocol is not efficient: the communication is half-duplex,
i.e., it is never the case that more than one party is sending at any given time. Using
full-duplex communication is crucial in distributed systems with intermittent connectivity,
e.g., in this case ground stations are not always visible from low orbit satellites.

The abstraction of a more efficient ground station is given by type T ′
G, which sends

telecommands before receiving telemetries. In this way T ′
G and TS interact in a symmetric

manner: they first send all of their messages and then consume the messages sent from the
other partner. No communication error can occur, and the communication protocol can al-
ways terminate successfully, with empty queues. Unfortunately T ′

G is not an asynchronous sub-
type of TG according to earlier definitions of session subtyping [MYH09,CDSY17,CDCY14].
Hence they cannot formally guarantee that T ′

G is a safe replacement for TG. Note that
the composition of T ′

G and TS is not existentially bounded, hence it cannot be verified by
techniques based on communicating finite-state machines [LY19,BEJQ18,GKM06,GKM07].

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:3

Technically speaking, previous asynchronous session subtyping relations do not capture
our spacecraft example due to the notion of correct composition that they consider. For
instance, the notion of correct composition considered in [CDSY17] imposes that all sent
messages are guaranteed to be consumed along all possible computations of the receiver.
Following this approach the above type T ′

G is not a correct refinement of TG because T ′
G can

start by performing infinitely many outputs without consuming any incoming message.
The alternative notion of correct composition that we consider is weaker in that we

do not impose a sent message to be consumed along all possible paths of the receiver, but
we only require that, for all possible computation of the receiver either the message has
been already consumed or there exists a continuation of the computation in which the
message will be consumed. More precisely, our notion of correctness is as follows: given the
composition of two session types, for every computation there always exists a continuation of
such computation reaching successful termination (with empty queues). This is a reasonable
assumption, e.g., for programs that can conceptually run indefinitely but must account for
graceful termination (e.g., to release acquired resources).

According to this notion of correct composition, T ′
G and TS are correct partners in that

for every reachable state, we can always find a way to terminate successfully the interaction.
This way to termination can be selected by exiting from the initial loops of outputs of both
T ′
G and TS . The theory that we will develop will allow us to conclude that T ′

G is a correct
refinement of TG for every possible partner, not only for the partner TS .

The use of this notion of correct composition is new in the context of asynchronous
session types, but it has been already considered in several related contexts. First of
all, we observe that according to the terminology in [vGH19], our notion of correctness
coincides with imposing that successful termination is a liveness-property which holds
under the assumption of full fairness. For this reason, we name fair compliance our notion
of correct composition. Fair compliance has been already considered in the context of
synchronous session types [Pad16,CP22], in the definition of should testing [RV07] where
“every reachable state is required to be on a path to success”, and applied also to behavioural
contracts [BZ08b,BZ08a].

Given our notion of fair compliance defined on an operational model for asynchronous
session types, we define fair refinement the refinement relation that preserves it. Then, we
propose a novel variant of session subtyping called fair asynchronous session subtyping, that
leverages the notion of controllability from service contract theory, and which is a sound
characterisation of fair refinement. We show that both fair refinement and fair asynchronous
session subtyping are undecidable, but give a sound algorithm for the latter. Our algorithm
covers session types that exhibit complex behaviours (including the spacecraft example and
variants). Our algorithm has been implemented in a tool available online [The20].

Structure of the paper. The rest of this paper is structured as follows. In § 2 we recall
syntax and semantics of asynchronous session types, we define fair compliance and the
corresponding fair refinement. In § 3 we introduce fair asynchronous subtyping, the first
relation of its kind to deal with examples such as those in Figure 1. In § 4 we propose
a sound algorithm for subtyping that supports examples with unbounded accumulations,
including the ones discussed in this paper. In § 5 we discuss the implementation of this
algorithm. In § 6 we present an evaluation of our implementation on generated session types.
Finally, in § 7 we discuss related and future work. The paper includes also an the appendix

5:4 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

containing details of proofs that are not necessary in order to understand the main results
that we have proved and the corresponding proof techniques.

This paper is based on the conference publication [BLZ21]. The main novelties
w.r.t. [BLZ21] are: the inclusion of all the proofs of our results, a completely new em-
pirical evaluation of the implementation of our algorithm for checking fair asynchronous
session subtyping (see § 6), an enriched and more comprehensive related work section.

2. Fair Refinement for Asynchronous Session Types

In this section we first recall the syntax of two-party session types, their reduction semantics,
and a notion of compliance centred on the successful termination of interactions. We define
our notion of refinement based on this compliance and show that it is generally undecidable
whether a type is a refinement of another.

2.1. Preliminaries: Binary Session Types.
Syntax. The formal syntax of two-party session types is given below. We follow the
simplified notation used in, e.g., [BCZ17,BCZ18], without dedicated constructs for sending
an output/receiving an input. Additionally we abstract away from message payloads since
they are orthogonal to the results of this paper.

Definition 2.1 (Session Types). Given a set of labels L, ranged over by l, the syntax of
two-party session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | µt.T | t | end

Output selection ⊕{li : Ti}i∈I represents a guarded internal choice, specifying that a
label li is sent over a channel, then continuation Ti is executed. Input branching &{li : Ti}i∈I
represents a guarded external choice, specifying a protocol that waits for messages. If
message li is received, continuation Ti takes place. In selections and branchings each branch
is tagged by a label li, taken from a global set of labels L. In each selection/branching, these
labels are assumed to be pairwise distinct. In what follows, we leave implicit the index set
i ∈ I in input branchings and output selections when it is clear from the context. Types
µt.T and t denote standard recursion constructs. We assume recursion to be guarded in
session types, i.e., in µt.T , the recursion variable t occurs within the scope of a selection or
branching. Session types are closed, i.e., all recursion variables t occur under the scope of
a corresponding binder µt.T . Terms of the session syntax that are not closed are dubbed
(session) terms. Type end denotes the end of the interactions.

The dual of session type T , written T , is inductively defined as follows: ⊕{li : Ti}i∈I =

&{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li : T i}i∈I , end = end, t = t, and µt.T = µt.T .

2.2. Asynchronous Fair Refinement. We now define our notion of fair refinement. We
first define a reduction semantics formalizing the interaction between two binary session types
assuming asynchronous communication via FIFO buffers. Then we formalize the notion of
successful final configuration; intuitively a configuration is successful if both communicating
types have completed their send/receive operations and the buffers are empty. Compliance is
then defined as follows: two session types are compliant if, for every reachable configuration
(according to the reduction semantics), the interaction can continue to reach a successful

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:5

configuration. Finally, we say that a type T refines another type S if it can safely replace S,
i.e., if S is compliant with a type S′ then also T is compliant with S′.

In the definition of the reduction semantics for types we need some auxiliary notation.
Hereafter, we let ω range over words in L∗, write ϵ for the empty word, and write ω1 ·ω2 for
the concatenation of words ω1 and ω2, where each word may contain zero or more labels.
Also, we write T{T ′/t} for T where every free occurrence of t is replaced by T ′.

We give an asynchronous semantics of session types via transition systems whose states
are configurations of the form: [T1, ω1]|[T2, ω2] where T1 and T2 are session types equipped
with two sequences ω1 and ω2 of incoming messages (representing unbounded buffers). We
use s, s′, etc. to range over configurations.

In this paper, we use explicit unfoldings of session types, as defined below.

Definition 2.2 (Unfolding). Given session type T , we define unfold(T):

unfold(T) =

{
unfold(T ′{T/t}) if T = µt.T ′

T otherwise

Definition 2.2 is standard — an equivalent function is used in the first session subtyp-
ing [GH05]. Notice that unfold(T) unfolds all the recursive definitions in front of T , and it
is well defined for session types with guarded recursion (c.f. assumptions in Section 2.1).

Definition 2.3 (Transition Relation). The transition relation → over configurations is the
minimal relation satisfying the rules below (plus symmetric ones):

(1) if j ∈ I then [⊕{li : Ti}i∈I , ω1]|[T2, ω2] → [Tj , ω1]|[T2, ω2 ·lj];
(2) if j ∈ I then [&{li : Ti}i∈I , lj ·ω1]|[T2, ω2] → [Tj , ω1]|[T2, ω2];
(3) if [unfold(T1), ω1]|[T2, ω2] → s then [T1, ω1]|[T2, ω2] → s.

We write →∗ for the reflexive and transitive closure of the → relation.

Intuitively a configuration s reduces to configuration s′ when either (1) a type outputs
a message lj , which is added at the end of its partner’s queue; (2) a type consumes an
expected message lj from the head of its queue; or (3) the unfolding of a type can execute
one of the transitions above.

Next, we define successful configurations as those configurations where both types have
terminated (reaching end) and both queues are empty. We use this to give our definition
of compliance which holds when it is possible to reach a successful configuration from all
reachable configurations.

Definition 2.4 (Successful Configuration). The notion of successful configuration is for-
malised by a predicate s

√
defined as follows:

[T, ωT]|[S, ωS]
√

iff unfold(T)=unfold(S)=end and ωT =ωS=ϵ

Definition 2.5 (Compliance). Given a configuration s we say that it is a correct composition
if, whenever s →∗ s′, there exists a configuration s′′ such that s′ →∗ s′′ and s′′

√
.

Two session types T and S are compliant if [T, ϵ]|[S, ϵ] is a correct composition.

Observe that our definition of compliance is stronger than what is generally considered
in the literature on session types, e.g., [LY19,LY17,DY13], where two types are deemed
compliant if all messages that are sent are eventually received, and each non-terminated
type can always eventually make a move. Compliance is analogous to the notion of correct
session in [Pad16] but in an asynchronous setting.

5:6 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

A consequence of Definition 2.5 is that it is generally not the case that a session type T
is compliant with its dual T , as we show in the example below.

Example 2.6. The session type T = &{l1 : end, l2 : µt.⊕ {l3 : t}} and its dual T = ⊕{l1 :
end, l2 : µt.&{l3 : t}} are not compliant. Indeed, when T sends label l2, the configuration
[end, ϵ]|[end, ϵ] is no longer reachable.

We introduce a notion of refinement that preserves compliance. This follows previous
work done in the context of behavioural contracts [BZ08b] and synchronous multi-party
session types [Pad16]. The key difference with these works is that we are considering
asynchronous communication based on (unbounded) fifo queues. Asynchrony makes fair
refinement undecidable, as we show below.

Definition 2.7 (Refinement). A session type T refines S, written T ⊑ S, if for every S′ s.t.
S and S′ are compliant then T and S′ are also compliant.

In contrast to traditional (synchronous and asynchronous) subtyping for session types [GH05,
CDSY17,MYH09], this refinement is not covariant on outputs, i.e., it does not always allow
a refined type to have output selections with less labels.1

Example 2.8. Let T = µt.⊕ {l1 : t} and S = µt.⊕ {l1 : t, l2 : end}. We have that T is
a synchronous (and asynchronous) subtype of S. However T is not a refinement of S. In
particular, the type S = µt. &{l1 : t, l2 : end} is compliant with S but not with T , since T
does not terminate.

2.3. Undecidability of Fair Refinement. Next, we show that the refinement relation ⊑
is generally undecidable. The proof of undecidability exploits results from the tradition of
computability theory, i.e., Turing completeness of queue machines. The crux of the proof is
to reduce the problem of checking the reachability of a given state in a queue machine to
the problem of checking the refinement between two session types.

Preliminaries. Below we consider only state reachability in queue machines, and not the
typical notion of the language recognised by a queue machine (see, e.g., [BCZ17] for a
formalisation of queue machines). Hence, we use a simplified formalisation, where no input
string is considered.

Definition 2.9 (Queue Machine). A queue machine M is defined by a five-tuple (Q,Γ, $, s, δ)
where:

• Q is a finite set of states;
• Γ is a finite set denoting the queue alphabet (ranged over by A,B,C,X);
• $ ∈ Γ is the initial queue symbol;
• s ∈ Q is the start state;
• δ : Q× Γ → Q× Γ∗ is the transition function (Γ∗ is the set of sequences of symbols in Γ).

Considering a queue machine M = (Q,Γ, $, s, δ), a configuration of M is an ordered pair
(q, γ) where q ∈ Q is its current state and γ ∈ Γ∗ is the queue. The starting configuration is
(s, $), consisting of the start state s and the initial queue symbol $.

Next, we define the transition relation (→M), leading a configuration to another, and
the related notion of state reachability.

1The synchronous subtyping in [GH05] follows a channel-oriented approach; hence it has the opposite
direction and is contravariant on outputs.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:7

Definition 2.10 (State Reachability). Given a machine M=(Q,Γ, $, s, δ), the transition
relation →M over configurations Q × Γ∗ is defined as follows. For p, q ∈ Q, A ∈ Γ, and
α, γ ∈ Γ∗, we have (p,Aα) →M (q, αγ) whenever δ(p,A) = (q, γ). Let →∗

M be the reflexive
and transitive closure of →M .
A target state qf ∈ Q is reachable in M if there is γ ∈ Γ∗ s.t. (s, $) →∗

M (qf , γ).

Since queue machines can deterministically encode Turing machines (see, e.g., [BCZ17]),
checking state reachability for queue machines is undecidable.

To prove the undecidability of fair refinement, we consider an arbitrary queue machine
M , and a target state qf for which we define two session types T and S such that T ⊑ S if
and only if state qf is reachable in M . Hereafter, we use convenient notations for denoting
output selections and input branchings. Instead of using labels indexed on an indexing set
I, as in the input branching syntax &{li : Ti}i∈I , we also use explicitly distinct labels, as in
&{l : Tl,m : Tm} (we use the same notation for output selections). We also use the union
operator to combine disjoint sets of labels, for instance, instead of writing ⊕{lk : Tk}k∈I∪J , we
use the notation ⊕{li : Ti}i∈I ∪ {lj : Tj}j∈J (we use the same notation for input branchings).

We start by defining the type T = [[M, qf , E]].2 This type reproduces the finite control
of the queue machine M , with a couple of differences: (i) it initialises the queue with symbol
$, and (ii) the state qf produces the additional ending symbol E to communicate the end
of the computation, then it consumes all symbols in the queue and successfully terminates
when E is read from the queue. In this way, the queue is empty when the type T successfully
terminates.

Definition 2.11 (Finite Control Encoding). Let M = (Q,Γ, $, s, δ) be a queue machine,
qf ∈ Q, and E ̸∈ Γ be the additional ending symbol; we define [[M, qf , E]] as follows:

[[M, qf , E]] = ⊕{$: [[s]]∅}
where, given q ∈ Q \ {qf} and S ⊆ Q, [[q]]S is defined as follows:

[[q]]S =

µq.&{A :⊕{BA

1 : · · · ⊕ {BA
nA

: [[q′]]S∪q}}}A∈Γ

if q ̸∈ S and δ(q, A) = (q′, BA
1 · · ·BA

nA
)

q if q ∈ S

while [[qf]]
S = ⊕

{
E :

(
µt.&{A :t}A∈Γ ∪ {E : end}

) }
We now define the type S = [[M,E]], that repeatedly behaves like a producer/consumer

for all the symbols of the queue alphabet plus the ending symbol E, with the difference that
after producing and consuming the ending symbol E, the type becomes end.

Definition 2.12 (Producer/consumer). Let M = (Q,Γ, $, s, δ) be a queue machine and
E ̸∈ Γ be the ending symbol. We define [[M,E]] as

[[M,E]] = µt.⊕ {A : &{A : t}}A∈Γ ∪ {E : &{E : end}}

While T = [[M, qf , E]] and S = [[M,E]] may appear unrelated, we have that under some
conditions T ⊑ S holds. Namely, T ⊑ S if and only if qf is reachable in M . To prove this,
we first characterize the set of types that are compliant with S. This set consists of types

2In the definition of the type T = [[M, qf , E]], as well as in the definition S = [[M,E]], we make the non
restrictive assumption that the set of labels L of the Definition 2.1 of the syntax of session types includes the
symbols in the considered queue machine alphabet Γ plus the additional symbol E.

5:8 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

that have the same behaviour (according to type bisimilarity) of S, i.e., the dual of S. The
type S, instead of being a producer/consumer, is a consumer/producer which sends the
messages it receives back to the partner. This simulates a FIFO queue that receives messages
and sends messages in the same order of reception. Hence, the finite control encoding T ,
when combined with such consumer/producer (i.e. any type having the same behaviour of
S), faithfully reproduces the same behaviour of the encoded queue machine. A successful
configuration can be reached only if the type modeling the finite control terminates, and
this is possible only if the final state qf is reached.

As mentioned above, the proof relies on the notion of type bisimilarity.

Definition 2.13 (Type bisimilarity). A relation R on session types is a bisimulation
whenever (T, S) ∈ R implies:

(1) if T = end then unfold(S) = end;
(2) if T = ⊕{li : Ti}i∈I then unfold(S) = ⊕{li : Si}i∈I with ∀i ∈ I. (Ti, Si) ∈ R;
(3) if T = &{li : Ti}i∈I then unfold(S) = &{li : Si}i∈I with ∀i ∈ I. (Ti, Si) ∈ R;
(4) if T = µt.T ′ then (T ′{T/t}, S) ∈ R.

T is bisimilar to S, written T ∼ S, if there is a bisimulation R such that (T, S) ∈ R.

Session type bisimilarity will be used only in the proof of undecidability of refinement
and will not be involved in further developments in the remainder of the paper. Namely,
we need bisimilarity in Lemma 2.16 to characterise the session types that are compliant
with S = [[M,E]]. Notice also that the relation ∼ is symmetric, i.e., if (S, T) ∈ ∼ then also
(T, S) ∈ ∼. In fact, the first three items of the above Definition simply check whether the
l.h.s. and the r.h.s. terms are either both end or have the same branching structure (i.e.,
the same set of labels) up-to unfolding of the r.h.s. But the same effect of unfolding on the
r.h.s. can be obtained on the l.h.s. by (possibly repeated) application of the fourth item of
the above definition.

In the proof of undecidability of refinement we need a result about bisimilar session types,
i.e., bisimilarity preserves compliance. Namely, we have that T is compliant with S if and
only if T ′ is compliant with S′ assuming T ∼ T ′ and S ∼ S′. This is an immediate corollary
of the following Lemma (which directly follows from the bisimilarity of the considered types
T and R).

Lemma 2.14. Consider the configuration [T, ωT]|[S, ωS] and the session type R s.t. T ∼ R.
We have that:

• [T, ωT]|[S, ωS]
√

if and only if [R,ωT]|[S, ωS]
√
;

• [T, ωT]|[S, ωS] → [T ′, ω′
T]|[S′, ω′

S] if and only if there exists R′ ∼ T ′ s.t. [R,ωT]|[S, ωS] →
[R′, ω′

T]|[S′, ω′
S].

Corollary 2.15. Consider two pairs of bisimilar session types: T ∼ T ′ and S ∼ S′. We
have that T is compliant with S if and only if T ′ is compliant with S′. Moreover, we have
that T ⊑ S if and only if T ′ ⊑ S′.

As informally mentioned above, type bisimilarity allows us to characterize the set of types
that are compliant with a producer/consumer type S = [[M,E]], for some queue machine M
and additional ending symbol E. This result is formalized by the following Lemma (proof in
Appendix A.1).

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:9

Lemma 2.16. Let M = (Q,Γ, $, s, δ) be a queue machine and E ̸∈ Γ the additional ending
symbol. Posing S = [[M,E]], for every session type S′ with input/output labels in Γ ∪ {E}
we have that S′ is compliant with S if and only if S′ ∼ S.

The type S behaves like a FIFO queue, which simply returns the messages it has received from
the partner (in the same order). Hence a type simulating the finite control T = [[M, qf , E]],
for the same queue machine M and additional ending symbol E as above, turns out to be
compliant with S if and only if the final state qf is reachable in M (remember that only the
encoding of qf allows to reach end). This result is formalized in the next theorem (proof in
Appendix A.1).

Theorem 2.17. Let M = (Q,Γ, $, s, δ) be a queue machine, qf ∈ Q, E ̸∈ Γ the additional

ending symbol. Posing T = [[M, qf , E]] and S = [[M,E]], we have that T is compliant with S
if and only if qf is reachable in M .

Notice that the above theorem formalizes a reduction from the reachability problem in queue
machines to the verification of compliance between session types. Hence, we can already
conclude that the compliance relation is undecidable.

We now combine Corollary 2.15, Lemma 2.16 and Theorem 2.17 to prove the undecid-
ability of refinement. Consider the two above types T = [[M, qf , E]] and S = [[M,E]]. By

Lemma 2.16 we have that S is compliant only with S and its bisimilar types. Given that
bisimulation preserves compliance (Corollary 2.15) we have that T refines S if and only if
it is compliant with S. But the latter holds if and only if qf is reachable in M (Theorem
2.17). In this way we reduce the reachability problem in queue machines to the verification
of refinement between session types. We formally state this result in the theorem below
(proof in Appendix A.1).

Theorem 2.18. Let M = (Q,Γ, $, s, δ) be a queue machine, qf ∈ Q, E ̸∈ Γ the additional
ending symbol. Posing T = [[M, qf , E]] and S = [[M,E]], we have that T ⊑ S if and only if
qf is reachable in M .

As a direct consequence of the above theorem and the undecidability of reachability in queue
machines, we can conclude that refinement (Definition 2.7) is also undecidable.

Corollary 2.19. Given two session types T and S, it is in general undecidable to check
whether T ⊑ S holds.

2.4. Controllability and its Decidability. Given a notion of compliance, controllability
amounts to checking the existence of a compliant partner (see, e.g., [Loh08,Wei08,BZ09]).
In our setting, a session type is controllable if there exists another session type with which it
is compliant.

Checking for controllability algorithmically is not trivial as it requires to consider
infinitely many potential partners. For the synchronous case, an algorithmic characterisation
was studied in [Pad16]. In the asynchronous case, the problem is even harder because each
of the infinitely many potential partners may generate an infinite state computation (due to
unbounded buffers): specifically this reflects in the proof of its algorithmic characterisation.
The main contribution of this subsection is, thus, to give an algorithmic characterisation
of controllability in the asynchronous setting that is proven to be sound and complete.
Doing this is important because controllability is an essential ingredient for defining fair
asynchronous subtyping, see Section 3.

5:10 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

0 1 2 3

4

?l1

?l3

?l2 !l4

!l5 !l6

Figure 2: Example of an uncontrollable session type, see Example 2.21.

Definition 2.20 (Characterisation of Controllability, T ctrl). We preliminarly define judge-
ment T ok for session types T having single input choices, i.e. such that all their input
branches include just one possible choice. T ok is defined inductively as follows:

end ok

end ∈ T T{end/t} ok
µt.T ok

T ok

&{l : T} ok
∀i ∈ I. Ti ok

⊕{li : Ti}i∈I ok
where end ∈ T holds if end occurs in T .

We now define predicate T ctrl over arbitrary session types T as follows. T ctrl holds
true if and only if there exists T ′ such that:

(i) T ′ is obtained from T by syntactically replacing every input choice &{li : Ti}i∈I
occurring in T with a term &{lj : T ′

j} (with j ∈ I). Formally this is denoted by

T sin T ′, where sin (standing for “single input choices”) is defined as the smallest
relation over session types such that:

end sin end t sin t

T sin T ′

µt.T sin µt.T ′
Tj sin T ′

j j ∈ I

&{li : Ti}i∈I sin &{lj : T ′
j}

∀i ∈ I. Ti sin T ′
i

⊕{li : Ti}i∈I sin ⊕ {li : T ′
i}i∈I

In the following we use sin(T) to denote the set of single input choice types T ′ such
that T sin T ′.

(ii) T ′ ok holds true.

A type T such that T ctrl is indeed controllable, in that T ′, the dual of type T ′ considered
above, is compliant with T (the predicate end∈T in the premise of the rule for recursion
guarantees that a successful configuration is always reachable while looping). Moreover the
above definition naturally yields a simple algorithm that decides whether or not T ctrl holds
for a type T , i.e., we first pick a single branch for each input prefix syntactically occurring
in T (there are finitely many of them) and then we inductively check if T ′ ok holds.

Example 2.21. Consider the session type T (see Figure 2 for a graphical representation):

T = µt. &{l1 : &{l2 : ⊕{l4 : end, l5 : µt
′.⊕ {l6 : t′}}, l3 : t}}

T ctrl does not hold because it is not possible to construct a T ′ as specified in Def-
inition 2.20 for which T ′ ok holds. In this case we have just two possible types T ′

that can be obtained by input choice replacement: T ′ = µt. &{l1 : &{l3 : t}} and
T ′ = µt. &{l1 : &{l2 : ⊕{l4 : end, l5 : µt′. ⊕ {l6 : t′}}}}. For the former T ′ ok does
not hold because there is no end in the body of µt; for the latter, instead, T ′ ok does not
hold because there is no end in the body of µt′.

As a result of Theorem 2.22 (below), there is no session type S that is compliant with
T . Hence T is not controllable.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:11

The following theorem shows that the judgement T ctrl, as defined above, precisely
characterises controllability (i.e., the existence of a compliant type). Its proof is rather
complex (it requires introducing significant auxiliary technical machinery) and can be found
in Appendix A.2.

Theorem 2.22. T ctrl holds if and only if there exists a session type S such that T and S
are compliant.

Sketch of the proof. The proof relies on expressing session types via a set of equations, where
each of the variables t is mapped to an equation. In essence, from T controllable we show
that there exists a compliant type by considering the type T ′ (in equation set notation),
where T ′ is the type with single input branches obtained from T by input choice replacement.
The more difficult part of the proof is the opposite implication, where from the existence of
any compliant S we show that T is controllable. This amounts to show that it is possible to
build T ′ from the transition system of the correct composition [T, ϵ]|[S, ϵ] (in equation set
notation), which is, in general, infinite state.

3. Fair Asynchronous Session Subtyping

In this section, we present our novel variant of asynchronous subtyping which we call fair
asynchronous subtyping.

First, we need to define a distinctive notion of unfolding. As anticipated in the intro-
duction (see the discussion about Figure 1), our subtyping will identify the type T ′

G as a
subtype of TG, with

TG = µt. &{tm : t, over : µt′.⊕ {tc : t′, done : end}}
Following the approach taken in other definitions of asynchronous subtyping [MY15,CDSY17,
CDCY14], our definition will require to decompose the candidate supertype (TG in our
case) as an input context, with holes filled with subtypes starting with output selections.
Notice that the subterm ⊕{tc : t′, done : end} of TG which starts with an output selection
is not a correct subtype because it contains the free occurrence of the recursive variable
t′. Our distinctive notion of unfolding, will replace such free variable with its definition.
More precisely, we define the function selUnfold(T) to unfold type T by replacing recursion
variables with their corresponding definitions only if they are guarded by an output selection.
In the definition, we use the predicate ⊕g(t, T) which holds if all instances of variable t are
output selection guarded, i.e., t occurs free in T only inside subterms ⊕{li : Ti}i∈I .

Definition 3.1 (Selective Unfolding). Given a term T , we define selUnfold(T) =

⊕{li : Ti}i∈I if T = ⊕{li : Ti}i∈I
&{li : selUnfold(Ti)}i∈I if T = &{li : Ti}i∈I
T ′{µt.T ′/t} if T = µt.T ′, ⊕g(t, T ′)

µt.selUnfold(selRepl(t, t̂, T ′){µt.T ′/̂t}) with t̂ fresh if T = µt.T ′, ¬ ⊕ g(t, T ′)

t if T = t

end if T = end

where, selRepl(t, t̂, T ′) is obtained from T ′ by replacing the free occurrences of t that are
inside a subterm ⊕{li : Si}i∈I of T ′ by t̂.

5:12 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

Example 3.2. Consider the type T = µt.&{l1 : t, l2 : ⊕{l3 : t}}, then we have

selUnfold(T) = µt.&{l1 : t, l2 : ⊕{l3 : µt. &{l1 : t, l2 : ⊕{l3 : t}}}}
i.e., the type is only unfolded within output selection sub-terms. Note that t̂ is used to
identify where unfolding must take place, e.g.,
selRepl(t, t̂,&{l1 : t, l2 : ⊕{l3 : t}}) = &{l1 : t, l2 : ⊕{l3 : t̂}}.

The last auxiliary notation required to define our notion of subtyping is that of input
contexts, which are used to record inputs that may be delayed in a candidate super-type. In
contrast to previous works on asynchronous subtyping, these input contexts may include
recursive constructs.

Definition 3.3 (Input Context). An input context A is a session type with several holes
defined by the syntax:

A ::= []k | &{li : Ai}i∈I | µt.A | t

where the holes []k, with k ∈ K, of an input context A are assumed to be pairwise distinct.
We assume that recursion is guarded, i.e., in an input context µt.A, the recursion variable t
must occur within a subterm &{li : Ai}i∈I .

We write holes(A) for the set of hole indices in A. Given a type Tk for each k ∈ K, we
write A[Tk]

k∈K for the type obtained by filling each hole k in A with the corresponding Tk.

In contrast to previous works [CDSY17,MYH09,CDCY14,BCZ17,BZ19,BCL+19], these
input contexts may contain recursive constructs. This is crucial to deal with examples such
as Figure 1.

We are now ready to define the fair asynchronous subtyping relation, written ≤. The
rationale behind asynchronous session subtyping is that under asynchronous communication
it is unobservable whether or not an output is anticipated before an input, as long as
this output is executed along all branches of the candidate super-type. Besides the usage
of our new recursive input contexts the definition of fair asynchronous subtyping differs
from those in [CDSY17,MYH09,CDCY14,BCZ17,BZ19,BCL+19] in that controllability
plays a fundamental role: the subtype is not required to mimic supertype inputs leading to
uncontrollable behaviours.

Definition 3.4 (Fair Asynchronous Subtyping, ≤). A relation R on session types is a
controllable subtyping relation whenever

(T, S) ∈ R implies:

(1) if T = end then unfold(S) = end;
(2) if T = µt.T ′ then (T ′{T/t}, S) ∈ R;
(3) if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and ∀k ∈ K. (Tk, Sk) ∈ R,

where K = {k ∈ J | Sk is controllable};
(4) if T = ⊕{li : Ti}i∈I then selUnfold(S)=A[⊕{li :Ski}i∈I]k∈K and ∀i∈I. (Ti,A[Ski]

k∈K)∈
R.

T is a controllable subtype of S if there is a controllable subtyping relation R s.t. (T, S) ∈ R.
T is a fair asynchronous subtype of S, written T ≤ S, whenever: S controllable implies that
T is a controllable subtype of S.

Notice that the top-level check for controllability in the above definition is consistent
with the inner controllability checks performed in Case (3).

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:13

Subtyping simulation game. Session type T is a fair asynchronous subtype of S if S is
not controllable or if T is a controllable subtype of S. Intuitively, the above co-inductive
definition says that it is possible to play a simulation game between a subtype T and its
supertype S as follows. Case (1) says that if T is the end type, then S must also be end.
Case (2) says that if T is recursively defined, then T is replaced by the unfolding of its
definition, S is left unchanged and the simulation game continues. Case (3) says that if T is
an input branching, then the sub-terms in S that are controllable can reply by inputting at
most some of the labels li in the branching (contravariance of inputs), and the simulation
game continues (see Example 3.5). Case (4) says that if T is an output selection, then
S can reply by outputting all the labels li in the selection, possibly after executing some
inputs, after which the simulation game continues. We comment further on Case (4) with
Example 3.6.

Example 3.5. Consider T = &{l1 : end, l2 : end} and S = &{l1 : end, l3 : µt.⊕ {l4 : t}}.
We have T ≤S. Once branch l3, that is uncontrollable, is removed from S, we can apply
contravariance for input branching. We have I = {1, 2} ⊇ {1} = K in Definition 3.4.

Example 3.6. Consider TG and T ′
G from Figure 1. For the pair (T ′

G, TG), we apply Case (4)
of Definition 3.4 for which we compute

selUnfold(TG) = A[⊕{tc : µt′.⊕ {tc : t′, done : end}, done : end}]
with A = µt.&{tm : t, over : []1}. Observe that A contains a recursive sub-term, such
contexts are not allowed in previous works [CDSY17,MYH09,CDCY14].

The use of selective unfolding makes it possible to express TG in terms of a recursive
input context A with holes filled by types (i.e., closed terms) that start with an output
prefix. Indeed selective unfolding does not unfold the recursion variable t (not guarded by
an output selection), which becomes part of the input context A. Instead it unfolds the
recursion variable t′ (which is guarded by an output selection) so that the term that fills the
hole, which is required to start with an output prefix, is a closed term.

Case (4) of Definition 3.4 requires us to check that the following pairs are in the relation:
(i) (T ′

G,A[µt′.⊕{tc : t′, done : end}]) and (ii) (µt′. &{tm : t′, over : end},A[end]). Observe
that TG = A[µt′.⊕ {tc : t′, done : end}]. Hence, we have T ′

G ≤ TG with

R=
{
(T ′

G, TG), (end, end), (µt
′.&{tm : t′, over : end}, µt.&{tm : t, over : end})

}
and R is a controllable subtyping relation.

We show that fair asynchronous subtyping is sound w.r.t. fair refinement. In fact, fair
asynchronous subtyping can be seen as a sound coinductive characterisation of fair refinement.
Namely this result gives an operational justification to the syntactical definition of fair
asynchronous session subtyping. Note that ≤ is not complete w.r.t. ⊑, see Example 3.9.

The proof of soundness of fair asynchronous subtyping w.r.t. fair refinement is rather
complex and can be found in Appendix A.3, here we report the two main results and a
sketch of their proofs.

Proposition 3.7. Given two session types T and S, if T ≤S then, for every ω, R, and
ωR such that [S, ω]|[R,ωR] is a correct composition, there exist T ′, ω′, R′, and ω′

R such that
[T, ω]|[R,ωR] →∗ [T ′, ω′]|[R′, ω′

R] and [T ′, ω′]|[R′, ω′
R]
√
.

Sketch of the proof. Given that [S, ω]|[R,ωR] is a correct composition, there exist S′, ω′′,
R′′, and ω′′

R such that [S, ω]|[R,ωR] →∗ [S′, ω′′]|[R′′, ω′′
R] and [S′, ω′]|[R′′, ω′′

R]
√
. The thesis

is proved by induction on the length of this sequence of transitions.

5:14 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

If the length is 0, then [S, ω]|[R,ωR]
√
, that implies unfold(S) = end, that also implies

unfold(T) = end (because T ≤S), from which we have [T, ω]|[R,ωR]
√
.

If the length is greater than 0, we proceed by case analysis on the first possible transition
[S, ω]|[R,ωR] → [S′′, ω′′′]|[R′′′, ω′′′

R].
If the transition is inferred byR it is sufficient to observe that S′′ = S and [T, ω]|[R,ωR] →

[T, ω′′′]|[R′′′, ω′′′
R], and then apply the inductive hypothesis because [S′′, ω′′′]|[R′′′, ω′′′

R] is a
correct composition in that it is reachable from a correct composition.

We now consider that the transition is inferred by S.
There are three possible cases:

(1) unfold(S) = ⊕{li : Si}i∈I ,
(2) unfold(S) = &{li : Si}i∈I and T starts with an input branching (i.e., unfold(T) = &{lj :

Tj}j∈J),
(3) unfold(S) = &{li : Si}i∈I and T starts with an output branching (i.e., unfold(T) = ⊕{lj :

Tj}j∈J).
In the first two cases we have that the above initial transition is [S, ω]|[R,ωR] →
[Si, ω

′′′]|[R′′′, ω′′′
R], for some i ∈ I. Given that T ≤S, it is possible to show that i ∈ J ,

that Ti≤Si, and also [T, ω]|[R,ωR] → [Ti, ω
′′′]|[R′′′, ω′′′

R]. Then we can apply the inductive
hypothesis because Ti≤Si and [Si, ω

′′′]|[R′′′, ω′′′
R] is a correct composition.

In the third case, given that T ≤S, and S is controllable, we have that selUnfold(S) =
A[⊕{li : Ski}i∈J]k∈K , and unfold(T) = ⊕{lj : Tj}j∈J with Tj ≤A[Skj]

k∈K , for every j ∈ J .
We first observe that the sequence of transitions [S, ω]|[R,ωR] →∗ [S′, ω′′]|[R′′, ω′′

R], with
[S′, ω′′]|[R′′, ω′′

R]
√
, includes at least one output selection lj executed by one of the output

selections filling the holes in A. This label lj is the first one emitted by the l.h.s. type after it
has executed input branchings in A. We have that the same sequence of transitions, excluding
the output of lj , can be executed from the configuration [A[Skj]

k∈K , ω]|[R,ωR · lj]. Such

a sequence is [A[Skj]
k∈K , ω]|[R,ωR ·lj] →∗ [S′, ω′′]|[R′′, ω′′

R], with [S′, ω′′]|[R′′, ω′′
R]
√
; notice

that it is shorter than the above one. We now consider [T, ω]|[R,ωR] → [Ti, ω]|[R,ωR ·lj].
We can now apply the inductive hypothesis on the shorter sequence [A[Skj]

k∈K , ω]|[R,ωR ·
lj] →∗ [S′, ω′′]|[R′′, ω′′

R], because Tj ≤A[Skj]
k∈K (and because it is possible to prove that

[A[Skj]
k∈K , ω]|[R,ωR · lj] is also a correct composition, see Proposition A.9 in Appendix

A.3).

Theorem 3.8. Given two session types T and S, if T ≤S then T ⊑ S.

Sketch of the proof. If S is not controllable, then the thesis trivially holds because T ⊑ S for
every T .

Consider now S controllable. The thesis is proved by showing that if T ≤S then, for
every ω, R, and ωR such that [S, ω]|[R,ωR] is a correct composition, we have that the
following holds:
if [T, ω]|[R,ωR] → [T ′, ω′]|[R′, ω′

R] then there exists S′ such that T ′≤S′ and [S′, ω′]|[R′, ω′
R]

is a correct composition.
The above implies the thesis because, given T ≤S and the correct composition [S, ϵ]|[R, ϵ],

if there exists a computation [T, ϵ]|[R, ϵ] →∗ [T ′, ω′]|[R′, ω′
R], we can apply the above re-

sult on each step of the computation to prove that there exists S′ such that T ′≤S′ and
[S′, ω′]|[R′, ω′

R] is a correct composition. Then, by Proposition 3.7, we have that there exist T ′′,
ω′′, R′′, and ω′′

R such that [T ′, ω′]|[R′, ω′
R] →∗ [T ′′, ω′′]|[R′′, ω′′

R] and [T ′′, ω′′]|[R′′, ω′′
R]
√
.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:15

Example 3.9. Let T = ⊕{l1 : &{l3 : end}} and S = &{l3 : ⊕{l1 : end, l2 : end}}.
We have T ⊑ S, but T is not a fair asynchronous subtype of S since {l1} ≠ {l1, l2}, i.e.,
covariance of outputs is not allowed.

3.1. Undecidability of fair asynchronous session subtyping. In this section we address
the problem of checking fair asynchronous session subtyping, and we show that it is actually
undecidable. We have already proved that the fair refinement relation ⊑ is undecidable
(Corollary 2.19) and that the fair asynchronous subtyping relation ≤ is a subset of the
refinement relation ⊑ (Theorem 3.8). From these results we cannot immediately conclude
that fair asynchronous subtyping is also undecidable; hence we need a specific proof for this
additional undecidability result. The approach we take has some commonalities with the
one adopted in Section 2.3, as we also proceed by reduction from undecidability properties
in queue machines. Nevertheless, there are several relevant differences. First, we consider
termination in queue machines instead of state reachability. Then we need to slightly modify
the encodings of both the finite control and of the queue of the considered machine. And
finally, the proof of correctness of the encoding is significantly different as subtyping is
defined on the syntax of types, while refinement is defined on the operational semantics of
(the parallel composition of) session types.

As anticipated above, we reduce the problem of checking the (non)termination of a queue
machine to the problem of checking subtyping between two session types. In Definition 2.10
we have defined (q, γ) →M (q′, γ′) denoting computation steps of a queue machine. We
have that one queue machine M terminates if and only if there exists a configuration with
empty queue that is reachable from the initial configuration, i.e., (s, $) →∗

M (q′, ϵ). This
holds because the transition function is total in queue machines, hence if the queue is not
empty there is always a possible transition. In case the queue machine does not terminate,
we have that (q, $) →∗

M (q′, γ′) implies the existence of an additional computation step
(q′, γ′) →M (q′′, γ′′).

Given a queue machine M = (Q,Γ, $, s, δ) and an additional ending symbol E ̸∈ Γ,
we now define the types T = [[[M, ,E]]] and S = [[[M,E]]] in such a way that M does not
terminate if and only if T ≤S. The encodings [[[M, ,E]]] and [[[M,E]]] are similar to the
corresponding encodings [[M, qf , E]] and [[M,E]] defined in Definitions 2.11 and 2.12, but
with the following differences:

• there is no specific target state qf ;
• the encoding [[[M,E]]] starts with an input branching with only one branch labeled with
the initial queue symbol $ and continuation corresponding to the producer/consumer
[[M,E]] as defined in Definition 2.12;

• in order to be a potential subtype of S = [[[M,E]]], all of the output selections in T =
[[[M, ,E]]] must have branchings for all of the symbols in Γ ∪ {E} (because these are the
labels in the output selection in the potential supertype); among all of these branchings
only one will be consistent with the encoding of the finite control, while the continuations
in the other branchings are guaranteed to be always good subtypes (this is guaranteed by
a type that nondeterministically produces symbols, and that after producing the ending
symbol E it is able to recursively consume all possible symbols in Γ, and then become
end after consuming the ending symbol E).

5:16 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

Definition 3.10 (New Finite Control Encoding). Let M = (Q,Γ, $, s, δ) be a queue machine
and let E ̸∈ Γ be the additional ending symbol. We define [[[M, ,E]]] as follows:

[[[M, ,E]]] = [[[s]]]∅

with, given q ∈ Q and S ⊆ Q, [[[q]]]S is defined as follows:

[[[q]]]S =

µq.&{A :{{BA

1 · · ·BA
nA

}}S∪{q}
q′

}A∈Γ

if q ̸∈ S and δ(q, A) = (q′, BA
1 · · ·BA

nA
)

q if q ∈ S
where

{{B1 · · ·Bm}}Tr =

[[[r]]]T if m = 0

⊕
({

B1 : {{B2 . . . Bm}}Tr
}
∪{

A : V
}
A∈Γ\{B1} ∪ {E : V ′}

) otherwise

with V = µt.
(
⊕ {A : t}A∈Γ ∪ {E : V ′}

)
and V ′ = µt.

(
&{A :t}A∈Γ ∪ {E : end}

)
.

Definition 3.11 (New Producer/consumer). Let M = (Q,Γ, $, s, δ) be a queue machine
and E ̸∈ Γ be the ending symbol. We define [[[M,E]]] as

[[[M,E]]] = &{$: [[M,E]]}
with [[M,E]] as defined in Definition 2.12.

We now prove that the above two types T = [[[M, ,E]]] and S = [[[M,E]]] are such that
T ≤S if and only if the machine M does not terminate. We report a sketch of the proof,
the details are in Appendix A.4.

Theorem 3.12. Given a queue machine M and the ending symbol E, consider T = [[[M, ,E]]]
and S = [[[M,E]]]. We have that T ≤S if and only if M does not terminate.

Sketch of the proof. The only-if part is proved by considering the contrapositive statement,
that is, if the queue machine M terminates then T ≰S. If the queue machine terminates,
we have that (s, $) →∗

M (q′, ϵ). Consider now the pair of types (T, S) with T = [[[M, ,E]]]
and S = [[[M,E]]]. If, by contradiction, T ≤S, since S is controllable (it is compliant, e.g.,
with its dual) we have that by Definition 3.4 there exists a fair asynchronous subtyping
relation R such that (T, S) ∈ R. By applying the definition of fair asynchronous subtyping
relation we have that R will have to include other pairs of types (T ′′, S′′) corresponding
with configurations (q′′, γ′′) reachable in the queue machine M . The types T ′′ represent the
corresponding state q′′, while the types S′′ represent the corresponding queue γ′′. Consider
now the pair of types (Tf , Sf) corresponding with the final configuration (q′, ϵ): Tf starts
with an input branching (representing the willingness to consume one symbol from the
queue) while Sf starts with an output selection (in fact, the representation of the queue
starts with a sequence of input branchings, one for each symbol in the queue, followed by an
output selection and, given that it represents the empty queue, the initial sequence of input
branching is absent). Summarising, we have that (Tf , Sf) ∈ R, Tf starts with an input
branching, and Sf with an output selection: hence there is a pair in R which does not satisfy
the item for input selection in Definition 3.4, thus contradicting the initial assumption about
R being a fair asynchronous subtyping relation.

The if part is proved by showing that if the queue machine M does not terminate
then there exists a fair asynchronous subtyping relation R that contains the pair (T, S),

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:17

hence T ≤S. There are two kinds of pairs in R: (i) the pairs discussed in the above only-if
part of the proof that corresponds to the path in the subtyping simulation game that
reproduces the computation of the queue machine M , and (ii) other pairs corresponding to
alternative paths. Here, we only comment the new pairs of kind (ii). The l.h.s. types in

these pairs are generated by considering the alternative branches in the types {{B1 · · ·Bm}}Tr
in Definition 3.10, namely those involving the types denoted with V and V ′. These types
are of two kinds: (a) they are able to recursively perform all possible outputs until the label
E is selected (type V), or (b) they are able to recursively perform all possible inputs until
the label E is selected (type V ′). All of these pairs satisfy the constraints in Definition 3.4
(under the assumption that also a final pair (end, end) belongs to R). Summarising, there
exists a fair asynchronous subtyping relation R such that (T, S) ∈ R in that this is the first
pair of the kind (i) above. Hence we can conclude that T ≤S.

As a direct consequence of the above theorem and the undecidability of termination in
queue machines, we can conclude that fair asynchronous subtyping (Definition 3.4) is also
undecidable.

Corollary 3.13. Given two session types T and S, it is in general undecidable to check
whether T ≤S.

4. A Sound Algorithm for Fair Asynchronous Subtyping

We propose an algorithm which soundly verifies whether a session type is a fair asynchronous
subtype of another. The algorithm relies on building a tree whose nodes are labelled by
configurations of the simulation game induced by Definition 3.4. The algorithm analyses the
tree to identify witness subtrees which contain input contexts that are growing following a
recognisable pattern.

Example 4.1. Recall the satellite communication example (Figure 1). The spacecraft
with protocol TS may be a replacement for an older generation of spacecraft which follows
the more complicated protocol T ′

S , see Figure 3. Type T ′
S notably allows the reception of

telecommands to be interleaved with the emission of telemetries. The new spacecraft may
safely replace the old one because TS ≤T ′

S .
However, checking TS ≤T ′

S leads to an infinite accumulation of input contexts, hence it
requires to consider infinitely many pairs of session types. E.g., after TS selects the output
label tm twice, the subtyping simulation game considers the pair (TS , T

′′
S), where T

′′
S is given

in Figure 3. The pairs generated for this example illustrate a common recognisable pattern
where some branches grow infinitely (the tc-branch), while others stay stable throughout
the derivation (the done-branch). The crux of our algorithm is to use a finite parametric
characterisation of the infinitely many pairs occurring in the check of TS ≤T ′

S .

The simulation tree for T ≤S, written simtree(T, S), is the labelled tree representing
the simulation game for T ≤S, i.e., simtree(T, S) is a tuple (N,n0,↠, λ) where N is its set
of nodes, n0 ∈ N is its root, ↠ is its transition relation, and λ is its labelling function,
such that λ(n0) = (S, T). We omit the formal definition of ↠, as it is straightforward from
Definition 3.4 following the subtyping simulation game discussed after that definition. We
give an example below.

Notice that the simulation tree simtree(T, S) is defined only when S is controllable, since
T ≤S holds without needing to play the subtyping simulation game if S is not controllable.

5:18 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

0123 4 5

?tc
?done

!tm
!over

?tc

?done

!tm

!over

T ′
S = µt .&

{
tc : ⊕{tm : t, over : µt′. &{tc : t′, done : end}},
done : µt′′.⊕ {tm : t′′, over : end}

}
T ′′
S = &

{
tc : &{ tc : T ′

S ,
done : µt′′.⊕ {tm : t′′, over : end} },

done : µt′′.⊕ {tm : t′′, over : end}
}

Figure 3: T ′
S is an alternative session type for TS , see Example 4.1.

We say that a branch of simtree(T, S) is successful if it is infinite or if it finishes in a leaf
labelled by (end, end). All other branches are unsuccessful. Under the assumption that S
is controllable, we have that all branches of simtree(T, S) are successful if and only if T ≤S.
As a consequence checking whether all branches of simtree(T, S) are successful is generally
undecidable. It is possible to identify a branch as successful if it visits finitely many pairs
(or node labels), see Example 3.6; but in general a branch may generate infinitely many
pairs, see Examples 4.1 and 4.5.

In order to support types that generate unbounded accumulation, we characterise finite
subtrees — called witness subtrees, see Definition 4.6 — such that all the branches that
traverse these finite subtrees are guaranteed to be successful.

Notation. We give a few auxiliary definitions and notations. Hereafter A and A′ range
over extended input contexts, i.e., input contexts that may contain distinct holes with the
same index. These are needed to deal with unfoldings of input contexts, see Example 4.2.

The set of reductions of an input context A is the minimal set S s.t. (i) A ∈ S; (ii) if
&{li : Ai}i∈I ∈ S then ∀i ∈ I.Ai ∈ S and (iii) if µt.A′ ∈ S then A′{µt.A′/t} ∈ S. Notice
that due to unfolding (item (iii)), the reductions of an input context may contain extended
input contexts. Moreover, given a reduction A′ of A, we have that holes(A′) ⊆ holes(A).

Example 4.2. Consider the following extended input contexts:

A1 = µt. &{l1 : []1, l2 : &{l3 : t}} A2 = &{l3 : µt. &{l1 : []1, l2 : &{l3 : t}}}

unfold(A1) = &{l1 : []1, l2 : &{l3 : µt. &{l1 : []1, l2 : &{l3 : t}}}}
Context A2 is a reduction of A1, i.e., one can reach A2 from A1, by unfolding A1 and
executing the input l2. Context unfold(A1) is also a reduction of A1. Observe that unfold(A1)
contains two distinct holes indexed by 1.

Given an extended context A and a set of hole indices K such that K ⊆ holes(A), we
use the following shorthands. Given a type Tk for each k ∈ K, we write A⌊Tk⌋k∈K for the
extended context obtained by replacing each hole k ∈ K in A by Tk. Also, given an extended
context A′ we write A⟨A′⟩K for the extended context obtained by replacing each hole k ∈ K
in A by A′. When K = {k}, we often omit K and write, e.g., A⟨A′⟩k and A⌊Tk⌋k.

Example 4.3. Using the above notation and posing A = &{tc : []1, done : []2}, we can
rewrite T ′′

S (Figure 3) as A⟨A⌊T ′
S⌋1⟩1⌊µt′′.⊕ {tm : t′′, over : end}⌋2.

Example 4.4. Consider the session type below

S = &{l1 : &{l1 : T1, l2 : T2, l3 : T3}, l2 : &{l1 : T1, l2 : T2, l3 : T3}, l3 : T3}.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:19

(TS , A⌊T ′
S , T

′
1⌋{1,2})

(µt′.&{tc : t′, done : end}, A⟨A⌊T ′′
1 ⌋1⟩1⌊end⌋2)

(µt′.&{tc : t′, done : end}, A⌊T ′′
1 ⌋1⌊end⌋2) (end, end)

(TS , A⟨A⌊T ′
S⌋1⟩1⌊T ′

1⌋2)

!over

?tc
?done

!tm

(TS , T
′
S)

!tm

(µt′.&{tc : t′, done : end}, A⌊T ′′
1 ⌋1⌊end⌋2)

(end, end) (µt′.&{tc : t′, done : end}, T ′′
1)

(end, end) (µt′.&{tc : t′, done : end}, T ′′
1)

!over

?done
?tc

?done
?tc

=

A = &{tc : []1, done : []2}
T ′
1 = µt′′.⊕ {tm : t′′, over : end}

T ′′
1 = µt′. &{tc : t′, done : end}

Figure 4: Simulation tree for TS ≤ T ′
S (Figures 1 and 3), the root of the tree is in bold.

Posing A = &{l1 : []1, l2 : []2, l3 : []3} we have holes(A) = {1, 2, 3}. Assuming J = {1, 2}
and K = {3}, we can rewrite S as A⟨A⌊Tj⌋j∈J⟩J⌊Tk⌋k∈K .

Example 4.5. Figure 4 shows the partial simulation tree for TS ≤ T ′
S , from Figures 1 and 3

(ignore the dashed edges for now). Notice how the branch leading to the top part of the tree
visits only finitely many node labels (see dotted box), however the bottom part of the tree
generates infinitely many labels, see the path along the !tm transitions in the dashed box.

Witness subtrees. Next, we define witness trees which are finite subtrees of a simulation
tree which we prove to be successful. The role of the witness subtree is to identify branches
that satisfy a certain accumulation pattern. It detects an input context A whose holes fall
in two categories: (i) growing holes (indexed by indices in J below) which lead to an infinite
growth and (ii) constant holes (indexed by indices in K below) which stay stable throughout
the simulation game. The definition of witness trees relies on the notion of ancestor of
a node n, which is a node n′ (different from n) on the path from the root n0 to n. We
illustrate witness trees with Figure 4 and Example 4.8.

Definition 4.6 (Witness Tree). A finite tree (N,n0,↠, λ) is a witness tree for A, such that
holes(A) = I, with ∅ ⊆ K ⊂ I and J = I \K, if all the following conditions are satisfied:

(1) for all n ∈ N either λ(n) = (T,A′⟨A⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K) or

λ(n) = (T,A′⟨A⟨A⌊Sj⌋j∈J⟩J⟩J⌊Sk⌋k∈K), where A′ is a reduction of A, and it holds that
• holes(A′) ⊆ K implies that n is a leaf and
• if λ(n) = (T,A[Si]

i∈I) and n is not a leaf then unfold(T) starts with an output
selection;

(2) each leaf n of the tree satisfies one of the following conditions:

5:20 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

(a) λ(n) = (T, S) and n has an ancestor n′ s.t. λ(n′) = (T, S)
(b) λ(n) = (T,A⟨A⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K) and n has an ancestor n′ s.t. λ(n′)=(T,A[Si]

i∈I)

(c) λ(n) = (T,A[Si]
i∈I) and n has an ancestor n′ s.t. λ(n′)=(T,A⟨A⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K)

(d) λ(n) = (T,A′[Sk]
k∈K′

) where K ′ ⊆ K
and for all leaves (T, S) of type (2c) or (2d) T ≤S holds.

Intuitively Condition (1) says that a witness subtree consists of nodes that are labelled by
pairs (T, S) where S contains a fixed context A (or a reduction/repetition thereof) whose
holes are partitioned in growing holes (J) and constant holes (K). Whenever all growing
holes have been removed from a pair (by reduction of the context) then this means that
the pair is labelling a leaf of the tree. In addition, if the initial input is limited to only one
instance of A, the l.h.s. type starts with an output selection so that this input cannot be
consumed in the subtyping simulation game.

Condition 2 says that all leaves of the tree must validate certain conditions from
which we can infer that their continuations in the full simulation tree lead to successful
branches. Leaves satisfying Condition (2a) straightforwardly lead to successful branches
as the subtyping simulation game, starting from the corresponding pair, has been already
checked starting from its ancestor having the same label. Leaves satisfying Condition (2b)
lead to an infinite but regular “increase” of the types in J-indexed holes — following the
same pattern of accumulation from their ancestor. The next two kinds of leaves must
additionally satisfy the subtyping relation — using witness trees inductively or based on
the fact they generate finitely many labels. Leaves satisfying Condition (2c) lead to regular
“decrease” of the types in J-indexed holes — following the same pattern of reduction from
their ancestor. Leaves satisfying Condition (2d) use only constant K-indexed holes because,
by reduction of the context A′, the growing holes containing the accumulation A have been
removed.

Remark 4.7. Definition 4.6 is parameterised by an input context A. We explain how such
contexts can be identified while building a simulation tree in Section 5.

Example 4.8. In the tree of Figure 4 we highlight two subtrees. The subtree in the dotted
box is not a witness subtree because it does not validate Condition (1) of Definition 4.6, i.e.,
there is an intermediary node with a label in which the r.h.s type does not contain A.

The subtree in the dashed box is a witness subtree with 3 leaves, where the dashed
edges represent the ancestor relation, A = &{tc : []1, done : []2}, J = {1} and K = {2}. We
comment on the leaves clockwise, starting from (end, end), which satisfies Condition (2d).
The next leaf satisfies condition (2c), while the final leaf satisfies Condition (2b).

Algorithm. Given two session types T and S we first check whether S is uncontrollable. If
this is the case we immediately conclude that T ≤S. Otherwise, we proceed in four steps.

S1 We compute a finite fragment of simtree(T, S), stopping whenever (i) we encounter a leaf
(successful or not), (ii) we encounter a node that has an ancestor as defined in Definition 4.6
(Conditions (2a), (2b), and (2c)), (iii) or the length of the path from the root of simtree(T, S)
to the current node exceeds a bound set to two times the depth of the AST of S. This
bound allows the algorithm to explore paths that will traverse the super-type at least twice.
We have empirically confirmed that it is sufficient for all examples mentioned in Section 5.
S2 We remove subtrees from the tree produced in S1 corresponding to successful branches
of the simulation game which contain finitely many labels. Concretely, we remove each

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:21

subtree whose each leaf n is either successful or has an ancestor n′ such that n′ is in the
same subtree and λ(n) = λ(n′).
S3 We extract subtrees from the tree produced in S2 that are potential candidates to be
subsequently checked. The extraction of these finite candidate subtrees is done by identifying
the forest of subtrees rooted in ancestor nodes which do not have ancestors themselves.
S4 We check that each of the candidate subtrees from S3 is a witness tree.

If an unsuccessful leaf is found in S1, then the considered session types are not related.
In S1, if the generation of the subtree reached the bound before reaching an ancestor or
a leaf, then the algorithm is unable to give a decisive verdict, i.e., the result is unknown.
Otherwise, if all checks in S4 succeed then the session types are in the fair asynchronous
subtyping relation. In all other cases, the result is unknown because a candidate subtree is
not a witness.

Example 4.9. We illustrate the algorithm above with the tree in Figure 4. After S1, we
obtain the whole tree in the figure (11 nodes). After S2, all nodes in the dotted boxed are
removed. After S3 we obtain the (unique) candidate subtree contained in the dashed box.
This subtree is identified as a witness subtree in S4, hence we have TS ≤T ′

S .

Soundness of the algorithm. The soundness of our algorithm w.r.t. fair asynchronous
session subtyping relies on proving that given a witness tree (N,n0,↠, λ) such that λ(n0) =
(T, S), then T ≤S. We formalize this in Theorem 4.13 further down below.

The definition of witness tree consider nestings of input contexts A. In the proof of
Theorem 4.13 we need the notation Ah⌊Sj⌋j∈J , to generalize to nestings of input contexts
with parametric depth, defined as follows:

• A1⌊Sj⌋j∈J is A⌊Sj⌋j∈J
• Ah⌊Sj⌋j∈J is A⟨Ah−1⌊Sj⌋j∈J⟩J , when h > 1.

Given a witness tree for A, we define a family of isomorphic trees with labels in which the
r.h.s. type has incrementally increased nestings of the input context A in the growing holes.

Definition 4.10 (h-th Witness Tree). Given a witness tree T = (N,n0,↠, λ) for A, and
h ≥ 1, we inductively define T h as follows:

• T 1 = T ;
• for h > 1, given T h−1 = (Nh−1, nh−1

0 ,↠h−1, λh−1) we define T h = (Nh, nh
0 ,↠

h, λh) with

Nh = Nh−1, nh
0 = nh−1

0 , ↠h=↠h−1, and
λh(n) = A′⟨Ah⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K if λh−1(n) = A′⟨Ah−1⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K .

We now present a preliminary Lemma stating that, given a witness subtree T of a simulation
tree, all the trees in the family T h faithfully represent the subtyping simulation game (proof
in Appendix A.5).

Lemma 4.11. Consider a witness tree T 1 = (N1, n1
0,↠

1, λ1) contained in a simulation tree.
For every h ≥ 1, we have that ↠h in T h = (Nh, nh

0 ,↠
h, λh) is compatible with the subtyping

simulation game, i.e., n ↠h n′ is present in T h if and only if there exists a simulation tree
(M,m0,↠, λ) including m ↠h m′ with λ(m) = λh(n) and λ(m′) = λh(n′).

We now move to a proposition stating that, given a witness subtree T of a simulation tree,
we have that all branches in the simulation tree that traverse T follows paths also present in
the family of trees T h or in simulation trees simtree(T ′, S′) where (T ′, S′) is a leaf of T for

5:22 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

which we know that T ′≤S′ (proof in Appendix A.5). In the statement of this proposition
we use ↠∗ to denote the reflexive and transitive closure of ↠.

Proposition 4.12. Let T and S be two session types with simtree(T, S) = (N,n0,↠, λ). If
simtree(T, S) contains a witness tree T with root n, then for every node n′ ∈ N such that
n ↠∗ n′ we have that λ(n′) is a label present either in T h, for some h, or in simtree(T ′, S′) =
(N ′, n′

0,↠, λ′) with T ′≤S′.

We can now present the main result needed to prove the soundness of our algorithm.

Theorem 4.13. Let T and S be session types s.t. simtree(T, S) = (N,n0,↠, λ). If
simtree(T, S) contains a witness subtree with root n then for every node n′ ∈ N s.t. n ↠∗ n′,
either n′ is a successful leaf, or there exists n′′ s.t. n′ ↠ n′′.

In the light of this last theorem, we can finally conclude that if the candidate subtrees of
simtree(T, S) identified with the steps S1-3 explained above are also witness subtrees (check
done in the step S4), then we have T ≤S.

5. Implementation

To evaluate our algorithm, we have produced a Haskell implementation of it, which is
available on GitHub [The20]. It implements a version of the algorithm presented in Section
4, which internally represents session types as automata (LTS) (see, e.g., [BZ21]). In this
context it is also natural to use bisimulation in place of the syntactic equality for session
types. These design choices helped us to concretise an implementation of the algorithm in
Section 4 and allowed us to implement an optimisation which minimises the input types.
We comment on this below.

Using automata internally makes it easier to identify candidate input contexts as we can
keep track of states that correspond to the input context computed when applying Case (4)
of Definition 3.4. In particular, we augment each local state in the automata representation
of the candidate supertype with two counters: the c-counter keeps track of how many times
a state has been used in an input context; the h-counter keeps track of how many times
a state has occurred within a hole of an input context. We illustrate this with Figure 5
which depicts the internal data structures our tool manipulates when checking TS ≤ T ′

S from
Figures 1 and 3. The state indices of the automata in Figure 5 correspond to the ones in
Figure 1 (2nd column) and Figure 3 (3rd column).

The first row of Figure 5 represents the root of the simulation tree, where both session
types are in their respective initial state and no transition has been executed. We use state
labels of the form nc,h where n is the original identity of the state, c is the value of the
c-counter, and h is the value of the h-counter. The second row depicts the configuration
after firing transition !tm, via Case (4) of Definition 3.4. While the candidate subtype
remains in state 0 (due to a self-loop) the candidate supertype is unfolded with selUnfold(T ′

S)
(Definition 3.1). The resulting automaton contains an additional state and two transitions.
All previously existing states have their h-counter incremented, while the new state has
its c-counter incremented. The third row of the figure shows the configuration after firing
transition !over , using Case (4) of Definition 3.4 again. In this step, another copy of state 0
is added. Its c-counter is set to 2 since this state has been used in a context twice; and the
h-counters of all other states are incremented.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:23

Last transition State of TS Representation of T ′
S

ϵ 0
00,010,020,030,0 40,0 50,0

?tc
?done

!tm
!over

?tc

?done

!tm

!over

!tm 0 00,110,120,130,1 40,1 50,1

01,0

?tc
?done

?tc
?done

!tm
!over

?tc

?done

!tm

!over

!over 1

00,210,220,230,2 40,2 50,2

01,1

02,0

?tc
?done

?tc

?done

?tc

?done

Figure 5: Internal representation of the simulation tree for TS ≤ T ′
S (fragment).

Using this representation, we construct a candidate input context by building a tree
whose root is a state qc,h such that c > 1. The nodes of the tree are taken from the states
reachable from qc,h, stopping when a state q′c′,h′ such that c′ < c is found. A leaf q′c′,h′

becomes a hole of the input context. The hole is a constant (K) hole when h′ = c, and
growing (J) otherwise. Given this strategy and the configurations in Figure 5, we successfully
identify the context A = &{tc : []1, done : []2} with J = {1} and K = {2}.

Thanks to our automata representation, it is also possible to minimise (up-to bisimu-
lation) each session-type automaton before performing Steps S1-S4. Concretely our tool
accepts an optional command-line flag that turns on the minimisation of each session type
after it has been transformed into an automaton. We discuss the benefits of this optimisation
in the next section.

We have run our tool on a dozen of examples handcrafted to test the limits of our
algorithm (inc. the examples discussed in this paper), as well as on the 174 tests taken
from [BCL+19]. All of these tests terminate under a second.

Additionally, for debugging and illustration purposes, the tool can optionally generate
graphical representations of the subtyping simulation game and of witness trees.

6. Empirical Evaluation on Synthetic Benchmarks

To evaluate the cost of our algorithm and its implementation, wrt. runtime and memory
usage, we have performed an empirical evaluation based on a family of pairs of sub/supertype
of increasing sizes. We perform our evaluation with and without our minimisation-based
optimisation and discuss the results.

Experimental setup. The family of types we consider is based on variants from our
spacecraft example: the subtype is based on variants of TS in Figure 1, while the supertype
is based on variants of T ′

S in Figure 3. The shape and size of each variant is determined by
three parameters which respectively affect the number of choices in branches (branching

5:24 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

Test(n,m, k) = TL(n, k) ≤ TR(n,m, k)

TL(n, k) = µt.⊕ {tmi : t, over : TBranL(n)}1≤i≤k

TR(n,m, k) = µt.TBran(n,m, k)

TBran(n,m, k) =

{
&{tci : TBran(n,m−1, k), done : TSelL(k)}1≤i≤n if m > 0

&{tci : TSel(n, k), done : TSelL(k)}1≤i≤n otherwise

TSel(n, k) = ⊕{tmi : t, over : TBranL(n)}1≤i≤k

TBranL(n) = µt′.&{tci : t′, done : end}1≤i≤n

TSelL(k) = µt′′.⊕ {tmi : t
′′, over : end}1≤i≤k

Figure 6: Generation of parameterised sub-type/super-type pairs. Function TR(n,m, k) is
the super-type and TL(n, k) is the sub-type, where n is the branching width (the
number of messages the type can receive at a given point), m is the branching
depth (the number of messages the type can receive consecutively), and k is the
selection width (the number of messages the type can send at a given point).

width), the number of inputs that can be accumulated in the supertype (input depth), and
the number of choices in selections (selection width).

Given values n, m, and k for each of these parameters, we generate a subtyping problem
Test(n,m, k) as described in Figure 6. We assume that n ≥ 1, m ≥ 0, and k ≥ 1 — the
branching/selection parameters need to provide at least one branch, while input depth could
be zero (no anticipation). Each test applies our algorithm to verify that TL(n, k) is a fair
asynchronous subtype of TR(n,m, k) (by construction the test always succeeds).

We describe Figure 6 in more details. The subtype TL(n, k) only depends on two
parameters: branching width (n) and selection width (k). It is similar to TS in Figure 1
except that it can send (resp. receive) different telemetry (resp. telecommand) messages. It
is a recursive type that immediately chooses between sending one of the k telemetries (tmi)
then recurse, or send a termination signal (over). In the latter case, the behaviour continues
with TBranL(n), i.e., another recursive definition followed by a branching construct where
the type expects to receive either one of the n telecommands (tci) then recurse, or receive
the termination signal done.

The supertype TR(n,m, k) depends on three parameters: branching width (n), input
depth (m), and selection width (k). This type is similar to T ′

S in Figure 3 but can send
(resp. receive) different telemetry (resp. telecommand) messages and allows the reception
of m telecommands to precede the emission of a telemetry message. TR(n,m, k) relies on
four additional definitions. TBran(n,m, k) encodes the sequence of m+ 1 inputs that can
precede the emission of telemetries. TSel(n, k) performs the selections that precede the final
series of inputs in TBranL(n). TSelL(k) performs the final series of outputs.

Figure 7 gives a graphical representation of the session-type automata generated by the
definitions in Figure 6 after minimisation up to bisimulation. The figure shows a subtype
(left) that can send four different tmi messages (k = 4), then can receive two different tci
messages (n = 2). The state labels correspond to the ones of TS in Figure 1.

The supertype (right) is more complex. It can also send four different tmi messages
(k = 4), and receive two different tci messages (n = 2). Additionally, it may postpone the

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:25

0

1

2

{!tm1, !tm2, !tm3, !tm4}

!over

?done

{?tc1, ?tc2}

00

01

02

034 1

2

3, 5

{?tc1, ?tc2}

{?tc1, ?tc2}

{?tc1, ?tc2}

{?tc1, ?tc2}

?done

?done

?done

?done

{!tm1, !tm2, !tm3, !tm4}

{!tm1, !tm2, !tm3, !tm4}

!over

!over

?done

{?tc1, ?tc2}

Figure 7: Minimised versions of TL(2, 4) (subtype, left) and TR(2, 3, 4) (supertype, right).

emission of telemetries and receive up to 4 telecommands first (m+ 1 = 4). The state labels
correspond to the ones of T ′

S in Figure 3. Note that because of minimisation the two final
states of T ′

S are merged into their 3, 5 counterpart in Figure 7. Since the emission of tmi in
TR(2, 3, 4) is further postponed compared to T ′

S , we also obtain several variants of state 0,
labelled by 0i and highlighted in gray in Figure 7.

Experimental results. Figures 8, 9, and 10 give the results of running the implementation
of our algorithm on increasingly large instances of the subtyping problem Test(n,m, k).
Each figure shows the runtime (larger data points in blue, left y-axis) and peak memory
usage (smaller data points in red, right y-axis) for each instance of the problem. Each figure
includes two x-axes: the bottom one represents the number of transitions in the automata
representation of the candidate supertype (which we consider a good measure of the size of
the subtyping problem); the top one represents the value of the variable parameter for each
experiment (e.g., branching with). Plots on the left show the result without minimisation,
plots on the right show results using minimisation up to bisimulation. Each figure depicts
20 data points unless our implementation timed out (more than 300 seconds). The yellow
curve highlights the runtime trend. It is computed using SciPy’s curve fit function.

All the benchmarks in this paper were run on a MacBook Pro with an Intel i5 CPU
with 16GB RAM running macOS 13.4. The time was measured by taking the difference
between the system clock before and after our tool was invoked. The memory usage refers
to the maximum resident set size as reported by the /usr/bin/time -l command. Each
test was ran 3 times, the plots report the average time (resp. memory) measurements. All
our test data and infrastructure are available on our GitHub repository [The20].

Figure 8 shows the result of checking Test(n, 1, 1), with n (branching width) increasing
by step of 1, from 1 to 20. The left-hand side plot shows that the tool quickly runs out of
resource without optimisation: only n ∈ {1, 2, 3} terminate in reasonable time. While the

5:26 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

0 10 20 30 40 50 60 70 80
Number of transitions in candidate supertype

0

5

10

15

20

25

30

35

40

Ti
m
e
(s
ec
on

ds
)

F(x) ≈ 0.045+0.000 * 1.166x
Execution time

0

20

40

60

80

100

120

M
em

or
y
(m

eg
ab

yt
es
)Memory usage

1 2 3
Branching width

0 10 20 30 40 50 60 70 80
Number of transitions in candidate supertype

0

5

10

15

20

25

30

35

40

Ti

e
(s
ec
on
ds
)

F(x) ≈ −1.303+0.125 * 1.088x
Execution time

0

20

40

60

80

100

120

M
em
or
y
(m
eg
ab
yt
es
)Memory usage

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Branching width

Figure 8: Increasing branching width, without (left) and with minimisation (right)

0 50 100 150 200 250

Number of transitions in candidate supertype

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m
e
(s
ec
on
ds
)

F(x) ≈ −0.140+0.113 * 1.013x
E(ecution ti e

0

2

4

6

8

10

12

14

16

M
e
or
)
(
eg
ab
)t
es
)Me or) usage

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Input depth

0 20 40 60 80 100 120

Number of transitions in candidate supertype

0.0

0.5

1.0

1.5

2.0

2.5
Ti
m
e
(s
ec
on
ds
)

F(x) ≈ −0.072+0.062 * 1.025x
E(ecution ti e

0

2

4

6

8

10

12

14

16

M
e
or
)
(
eg
ab
)t
es
)Me or) usage

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Input depth

Figure 9: Increasing input depth, without (left) and with minimisation (right)

0 25 50 75 100 125 150 175

Number of transitions in candidate supertype

0

5

10

15

20

25

30

35

40

Ti
m
e

(s
ec

on
ds

)

F(x) ≈ − 1.818 + 0.782 * 1.022x

E*ec(tion time

0

50

100

150

200

250

300

M
em

or
+

(m
eg

ab
+t

es
)Memor+ (sage

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Se ection)idth

0 20 40 60 80 100 120

Number of transitions in candidate supertype

0

5

10

15

20

25

30

35

40

Ti
m
e

(s
ec

on
ds

)

F(x) ≈ − 1.144 + 0.496 * 1.031x

E*ec(tion time

0

50

100

150

200

250

300
M

em
or

+
(m

eg
ab

+t
es

)Memor+ (sage

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Se ection)idth

Figure 10: Increasing selection width, without (left) and with minimisation (right)

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:27

asymptotic cost of the algorithm with minimised automata is still exponential, the tool can
deal with much larger input using this optimisation as show on the right.

Figure 9 shows the result of checking Test(1,m, 1), with m (input depth) increasing
by step of 3, from 1 to 58 (20 data points). Observe that minimisation nearly halves the
number of transitions in the candidate supertypes. As a consequence, the version of the tool
that minimises its input before applying the subtyping algorithm runs much faster and uses
much less memory than its non-optimised counterpart.

Figure 10 shows the result of checking Test(1, 1, k), with k (selection width) increasing
by step of 3, from 1 to 58 (20 data points). In this case minimisation has a lesser effect on
the number of transitions in the candidate supertypes, but it has still a significant effect
on runtime, e.g., the largest problem takes 20s on the minimised automata and 37s on the
non-minimised ones.

7. Related and Future Work

Related work. The relationship between refinement and subtyping in the context of syn-
chronous session types has been thoroughly investigated both for binary and multiparty
session types. For instance, Bernardi and Hennessy [BH16] establish a correspondence
between binary session subtyping and an observational preorder on session types interpreted
as contracts. A similar result has been obtained in the context of multiparty session types
by Severi and Dezani-Ciancaglini [SD19], where the subtyping is dubbed structural preorder,
while the refinement is named observational preorder. Concerning asynchronous communica-
tion we can mention previous works on refinement for asynchronous communication by some
of the authors of this paper. The work in [BZ08a] also considers fair compliance, however
here we consider binary (instead of multiparty) communication and we use a unique input
queue for all incoming messages instead of distinct named input channels. Moreover, in
the present paper we provide a sound characterisation of fair refinement using coinductive
subtyping and provide a sound algorithm and its implementation. In [BZ19, BZ21] the
asynchronous subtyping of [MY15] is used to characterise refinement for a notion of correct
composition based on the impossibility to reach a deadlock, instead of the possibility to reach
a final successful configuration as done in the present paper. The refinement from [BZ19]
does not support examples such as those in Figure 1.

Concerning fairness in the context of session types, Padovani studied a notion of fair
subtyping for synchronous multi-party session types in [Pad16]. This work notably considers
the notion of viability which corresponds, in the synchronous multiparty setting, to our
notion of controllability. We use the term controllability instead of viability following
the tradition of service contract theories like those based on Petri nets [Loh08,Wei08] or
process calculi [BZ09]. Compared to [Pad16], asynchronous communication makes it much
more involved to prove soundness and completeness of the decidable characterisation of
controllability, as we do in this paper. Indeed in the asynchronous case, transition systems
arising from the communication of two types are, in general, infinite state (due to unbounded
queues), while they are always finite state in the synchronous case. Fair refinement in [Pad16]
is characterised by defining a coinductive relation on normal form of types, obtained by
removing inputs leading to uncontrollable continuations. Instead of using normal forms, we
remove these inputs during the asynchronous subtyping check. A limited form of variance
on output is also admitted in [Pad16]. Covariance between the outputs of a subtype and

5:28 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

those of a supertype is possible when the additional branches in the supertype are not
needed to have compliance with potential partners. In [Pad16] this check is made possible
by exploiting a difference operation [Pad16, Definition 3.15] on types, which synthesises a
new type representing branches of one type that are absent in the other. We observe that
the same approach cannot work to introduce variance on outputs in an asynchronous setting.
Indeed the interplay between output anticipation and recursion could generate differences in
the branches of a subtype and a supertype that cannot be statically represented by a (finite)
session type.

Padovani also studied an alternative notion of fair synchronous subtyping in [Pad13].
Although the contribution of that paper refers to session types, the formal framework therein
seems to deviate from the usual session type approach. In particular, it considers shared
channel communication instead of binary channels: when a partner emits a message, it is
possible to have a race among several potential receivers for consuming it. As a consequence
of this alternative semantics, the subtyping in [Pad13] does not admit variance on input.
Another difference with respect to session type literature is the notion of success among
interacting sessions: a composition of session is successful if at least one participant reaches
an internal successful state. This approach has commonalities with testing [NH84], where
only the test composed with the system under test is expected to succeed, but differs from
the typical notion of success considered for session types. In [Bd10,BH16] (resp. [CDSY17])
it was proved that the Gay-Hole synchronous session subtyping (resp. orphan message free
asynchronous subtyping) coincides with refinement induced by a successful termination
notion requiring interacting processes to be both in the end state (with empty buffers, in
the asynchronous case).

More recently, van Glabbeek et al. [vGHH21] introduce a type system for multiparty
sessions that assumes fairness. Nevertheless, the notion of fairness used in that paper is
different with respect to the notion considered by Padovani [Pad16] (in the synchronous
case) and in this paper (in the asynchronous case). In fact, in [vGHH21] weak fairness
is considered, consisting of a minimal fairness assumption that “guarantees only that
concurrent transitions cannot prevent each other from happening”. On the other hand,
Padovani [Pad16] and ourselves consider a stronger notion of fairness, namely, according
to the terminology in [vGH19], we consider the composition of two session types correct if
their successful termination is a liveness property which holds under the assumption of full
fairness. In [vGH19] it is proved that, for finite state transition systems, full fairness collapses
to strong fairness of transitions, i.e., a transition which is (relentlessly) enabled infinitely
many times during a computation, it is also executed infinitely often in such computation.
Session types are finite states, but we consider asynchronous communication via unbounded
FIFO buffers, hence our transition system (Definition 2.3) describing the composition of two
session types is not finite because buffers can store an unbounded amount of messages. On
the contrary, in the context of synchronous communication the transition system describing
the composition of two session types is finite state, hence the above correspondence result
between full fairness and strong fairness applies. A strong fair session subtyping has been
recently used in a type system that guarantees fair termination of sessions for a π-calculus
like language with binary sessions [CP22]. The subtype defined in that paper differs from
previous strong fair subtypings because it also deals with higher-order types (useful to type
process languages including primitives for session creation and delegation) and because it
is only sound but not complete w.r.t. fair session type refinement. More precisely, it is

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:29

complete only for bounded processes and it does not capture subtypes like those discussed
in Example 3.5, where the supertype has an uncontrollable (infinite) branch.

Several variants of asynchronous session subtyping have been proposed in [MYH09,
CDSY17,CDCY14,MY15,GPP+21] and further studied in our earlier work [BCZ17,BCL+21,
BZ19, BCL+19]. All these variants have been shown to be undecidable [BCZ18, LY17,
BCZ17]. Moreover, all these subtyping relations are (implicitly) based on an unfair notion of
compliance. Some of these papers consider binary session types [CDSY17,CDCY14,MY15]
as we do in this paper. An interesting technical difference with these papers is that they use
finite input contexts (i.e. without recursion) while we also consider infinite input contexts
which may contain recursion — this is necessary to obtain T ′

G≤TG and TS ≤T ′
S (see

Figures 1 and 3). Moreover, the papers [CDSY17,CDCY14] impose additional constraints
in the definition of asynchronous subtyping to guarantee absence of orphan-messages. Such
constraints require the subtype not to have output loops whenever an output anticipation is
performed, thus guaranteeing that at least one input is performed in all possible paths. In
this paper, absence of orphan messages between compatible types is guaranteed as successful
termination is enforced under the assumption of full-fairness. Notice that not imposing this
orphan-message-free constraint is consistent with our recursive input contexts that allows
for input loops in the supertype whenever an output anticipation is performed. The other
papers [MYH09,GPP+21] consider asynchronous subtyping for multiparty session types. In
the binary case, a subtype can only anticipate (under some specific conditions) outputs w.r.t
input. In the multiparty context additional differences are allowed, for instance, a subtype
can anticipate also an input w.r.t. other inputs of messages coming from other partners.
Intuitively, this is possible because in the considered operational model messages coming
from different partners are stored in distinct message queues. A difference between [MYH09]
and [GPP+21] is that the former concentrates on deadlock freedom, while the latter considers
also orphan message freedom. Notably, the subtyping in [GPP+21] is proved to be precise
(i.e. sound and complete), w.r.t. a notion of refinement that preserves orphan message
freedom, deadlocks, and starvation, for a π-calculus like language with multiparty sessions.

In [BCL+19,BCL+21], we proposed a sound algorithm for the (unfair) asynchronous
subtyping in [CDSY17]. The sound algorithm that we present in this paper substantially
differs from that of [BCL+19,BCL+21]. Here we use witness trees that take under con-
sideration both increasing and decreasing of accumulated input. In [BCL+19,BCL+21],
instead, only regular growing accumulation is considered. It is worth mentioning that in
the context of multiparty session types there exist alternative sound (but not complete)
algorithmic approaches. In particular, in [DGD23] a multiparty approach is adopted: they
study properties of networks of communicating end-point types instead of studying a sub-
typing relation on binary session types in isolation, as we do in this paper. A first phase
of their algorithm infers global types from networks, and a second phase checks the well
formedness of the inferred global types. Using techniques similar to ours (i.e. reduction
from queue machines) well formedness is proved to be undecidable, but a sound algorithmic
characterisation is proposed which is based on the notion of balancing. The authors of
that paper show that, following their approach, one of the examples not captured by the
algorithm in [BCL+19,BCL+21] can be managed.

Finally, we mention work about refinement/subtyping in the context of asynchronous
multiparty sessions, where the use of global types allows for the definition of decidable
type systems. More precisely, both Castellani et al. [CDG21] and Li et al. [LSW24] study
a notion of refinement for (asynchronous) multiparty session types that ensures that the

5:30 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

implementation of a given role can be replaced by another in the context of a specific global
type. This means that the relation considers not only the component being refined, but
also the other components of the system. Unlike most subtyping relation for asynchronous
session types, this relation is decidable — this is notably due to the relation being restricted
to the specific context of a given global type.

Future work. In future work, we will investigate the possibility to characterize a notion
of fair asynchronous session subtyping which is complete with respect to our notion of fair
refinement, in particular, we are interested in a less restrictive subtyping which includes
also some form of output variance. We also plan to lift our study of fairness from binary
to multiparty session types; in fact, the notions of fair compliance and refinement extend
naturally to several partners. Finally, we will investigate a more refined termination condition
for our algorithm using ideas from [BCL+21, Theorem 3.8]. In particular, we plan to identify
conditions similar to those in Definition 4.6 such that it is always guaranteed to find, during
the computation of each branch of the simulation tree, a node with an ancestor satisfying
such conditions. Then, the initial phase of the algorithm dedicated to the identification of
the candidate subtrees can terminate when such nodes are detected, and the subsequent
phase will continue to check whether such candidate subtrees are also witness subtrees.

Acknowledgments

We thank the anonymous reviewers for their valuable feedback and insightful suggestions,
which have improved the quality of this work.

References

[Ada17] Adam Wiggins. The Twelve Factor methodology. https://12factor.net, 2017.
[BCL+19] Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A

sound algorithm for asynchronous session subtyping. In CONCUR, volume 140 of LIPIcs, pages
38:1–38:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[BCL+21] Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A sound
algorithm for asynchronous session subtyping and its implementation. Log. Methods Comput. Sci.,
17(1), 2021. URL: https://lmcs.episciences.org/7238.

[BCZ17] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. Undecidability of asynchronous session
subtyping. Inf. Comput., 256:300–320, 2017.

[BCZ18] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the boundary between decidability
and undecidability of asynchronous session subtyping. Theor. Comput. Sci., 722:19–51, 2018.

[Bd10] Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for session-based client/server
systems. In PPDP’10, pages 155–164. ACM, 2010.

[BEJQ18] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of
verifying message passing programs under bounded asynchrony. In CAV (2), volume 10982 of
Lecture Notes in Computer Science, pages 372–391. Springer, 2018.

[BH16] Giovanni Tito Bernardi and Matthew Hennessy. Modelling session types using contracts. Mathe-
matical Structures in Computer Science, 26(3):510–560, 2016.

[BLZ21] Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. Fair refinement for asynchronous ses-
sion types. In Stefan Kiefer and Christine Tasson, editors, Proc. FOSSACS 2021, volume
12650 of Lecture Notes in Computer Science, pages 144–163. Springer, 2021. doi:10.1007/
978-3-030-71995-1_8.

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–
342, 1983.

https://12factor.net
https://lmcs.episciences.org/7238
https://doi.org/10.1007/978-3-030-71995-1_8
https://doi.org/10.1007/978-3-030-71995-1_8

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:31

[BZ08a] Mario Bravetti and Gianluigi Zavattaro. Contract Compliance and Choreography Conformance
in the Presence of Message Queues. In WS-FM’08, volume 5387 of Lecture Notes in Computer
Science, pages 37–54. Springer, 2008.

[BZ08b] Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts for multi-party service
composition. Fundam. Inform., 89(4):451–478, 2008. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi89-4-05.

[BZ09] Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compliance.
Math. Struct. Comput. Sci., 19(3):601–638, 2009. doi:10.1017/S0960129509007658.

[BZ19] Mario Bravetti and Gianluigi Zavattaro. Relating session types and behavioural contracts: The
asynchronous case. In SEFM, volume 11724 of Lecture Notes in Computer Science, pages 29–47.
Springer, 2019.

[BZ21] Mario Bravetti and Gianluigi Zavattaro. Asynchronous session subtyping as communicating au-
tomata refinement. Softw. Syst. Model., 20(2):311–333, 2021. doi:10.1007/s10270-020-00838-x.

[CDCY14] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness of
subtyping in session types. In PPDP 2014, pages 146–135. ACM Press, 2014.

[CDG21] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Global types and event
structure semantics for asynchronous multiparty sessions. CoRR, abs/2102.00865, 2021. URL:
https://arxiv.org/abs/2102.00865, arXiv:2102.00865.

[CDSY17] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko Yoshida. On the
preciseness of subtyping in session types. Logical Methods in Computer Science, 13(2), 2017.

[CP22] Luca Ciccone and Luca Padovani. Fair termination of binary sessions. Proc. ACM Program. Lang.,
6(POPL):1–30, 2022. doi:10.1145/3498666.

[DGD23] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. Deconfined global types
for asynchronous sessions. Log. Methods Comput. Sci., 19(1), 2023. doi:10.46298/LMCS-19(1:
3)2023.

[DY13] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In Proc. ICALP 2013, volume 7966 of
Lecture Notes in Computer Science, pages 174–186, 2013. doi:10.1007/978-3-642-39212-2_18.

[GH05] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

[GKM06] Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920–956,
2006. doi:10.1016/j.ic.2006.01.005.

[GKM07] Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating automata with bounded
channels. Fundam. Inform., 80(1-3):147–167, 2007. URL: http://content.iospress.com/articles/
fundamenta-informaticae/fi80-1-3-09.

[GPP+21] Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise
subtyping for asynchronous multiparty sessions. Proc. ACM Program. Lang., 5(POPL):1–28, 2021.
doi:10.1145/3434297.

[HYC16] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. J.
ACM, 63(1):9, 2016. doi:10.1145/2827695.

[Loh08] Niels Lohmann. Why does my service have no partners? In WS-FM, volume 5387 of Lecture
Notes in Computer Science, pages 191–206. Springer, 2008.

[LSW24] Elaine Li, Felix Stutz, and Thomas Wies. Deciding subtyping for asynchronous multiparty sessions.
In ESOP (1), volume 14576 of Lecture Notes in Computer Science, pages 176–205. Springer, 2024.

[LY17] Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping. In
FOSSACS’17, volume 10203 of Lecture Notes in Computer Science, pages 441–457, 2017.

[LY19] Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating session
automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages 97–117.
Springer, 2019.

[MY15] Dimitris Mostrous and Nobuko Yoshida. Session typing and asynchronous subtyping for the
higher-order π-calculus. Inf. Comput., 241:227–263, 2015. doi:10.1016/j.ic.2015.02.002.

[MYH09] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially
commutative asynchronous sessions. In ESOP, volume 5502 of Lecture Notes in Computer Science,
pages 316–332. Springer, 2009.

http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-05
http://content.iospress.com/articles/fundamenta-informaticae/fi89-4-05
https://doi.org/10.1017/S0960129509007658
https://doi.org/10.1007/s10270-020-00838-x
https://arxiv.org/abs/2102.00865
https://arxiv.org/abs/2102.00865
https://doi.org/10.1145/3498666
https://doi.org/10.46298/LMCS-19(1:3)2023
https://doi.org/10.46298/LMCS-19(1:3)2023
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/j.ic.2006.01.005
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1145/3434297
https://doi.org/10.1145/2827695
https://doi.org/10.1016/j.ic.2015.02.002

5:32 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

[NH84] Rocco De Nicola and Matthew Hennessy. Testing Equivalences for Processes. Theoretical Computer
Science, 34:83–133, 1984.

[Pad13] Luca Padovani. Fair subtyping for open session types. In ICALP, volume 7966 of Lecture Notes
in Computer Science, pages 373–384. Springer, 2013.

[Pad16] Luca Padovani. Fair subtyping for multi-party session types. Math. Struct. Comput. Sci., 26(3):424–
464, 2016.

[RV07] Arend Rensink and Walter Vogler. Fair testing. Inf. Comput., 205(2):125–198, 2007. doi:10.
1016/j.ic.2006.06.002.

[SD19] Paula Severi and Mariangiola Dezani-Ciancaglini. Observational equivalence for multiparty
sessions. Fundam. Informaticae, 170(1-3):267–305, 2019. doi:10.3233/FI-2019-1863.

[The20] The Authors. Fair refinement for asynchronous session types. https://github.com/julien-lange/
fair-asynchronous-subtyping, 2020.

[vGH19] Rob van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM Comput. Surv.,
52(4):69:1–69:38, 2019.

[vGHH21] Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming just enough fairness to make
session types complete for lock-freedom. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470531.

[Wei08] Daniela Weinberg. Efficient controllability analysis of open nets. In WS-FM, volume 5387 of
Lecture Notes in Computer Science, pages 224–239. Springer, 2008.

https://doi.org/10.1016/j.ic.2006.06.002
https://doi.org/10.1016/j.ic.2006.06.002
https://doi.org/10.3233/FI-2019-1863
https://github.com/julien-lange/fair-asynchronous-subtyping
https://github.com/julien-lange/fair-asynchronous-subtyping
https://doi.org/10.1109/LICS52264.2021.9470531

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:33

Appendix A. Proofs

A.1. Undecidability of Fair Refinement. Let T = [[M, qf , E]] and S = [[M,E]]; we have
that T ⊑ S if and only if qf is reachable in M . To prove this, we first characterize the set of
types that are compliant with S.

Lemma 2.16. Let M = (Q,Γ, $, s, δ) be a queue machine and E ̸∈ Γ the additional ending
symbol. Posing S = [[M,E]], for every session type S′ with input/output labels in Γ ∪ {E}
we have that S′ is compliant with S if and only if S′ ∼ S.

Proof. Let S = [[M,E]].
We first prove the if part. Let S′ be a session type with input/output labels in Γ ∪ {E}

s.t. S′ ∼ S. We now prove that S′ is compliant with S. It is trivial to see that S is compliant
with S; this holds because in the configuration [S, ϵ]|[S, ϵ] the two parties alternate inputs
and outputs in such a way that their buffers have maximal length 1, and moreover the
possibility to successfully terminate by selecting the ending label E is never disallowed. By
Corollary 2.15 we have that also all types S′ ∼ S are compliant with S.

We now move to the only-if part. Let S′ be a session type with input/output labels in
Γ ∪ {E} s.t. S′ is compliant with S, i.e., [S, ϵ]|[S′, ϵ] is a correct composition. We have that
unfold(S′) cannot start with an output selection; in fact, if, for instance, it starts with an
output selection and it selects any label A, the type S can select a branch with a different
label A′, thus blocking. The initial input branching of unfold(S′) must have branchings
labeled with all the symbols in Γ plus the ending symbol E, in that these are the labels
that can be initially selected by S. In each continuation of S′, the unfolding of the type
should start with an output selection, otherwise the entire system is blocked in that the
continuation of S after the initial output selection starts with an input branching. Moreover,
given that these input branchings of the continuation of S have only the initially selected
label, the output selection in the continuation of S′ can have only such label. After each
of these output selections of the continuation of S′, the same reasoning can be applied,
excluding the case in which the label E was initially selected. In this case, the continuation
of S′ should be such that its unfolding is end. This because, the continuation of S becomes
end after executing the input branching labeled with E. These constraints that we have
just proved holding for the type S′ guarantee that S′ ∼ S.

In order to prove the undecidability of refinement, we first show that T is compliant with S
if and only if qf is reachable in M .

Theorem 2.17. Let M = (Q,Γ, $, s, δ) be a queue machine, qf ∈ Q, E ̸∈ Γ the additional

ending symbol. Posing T = [[M, qf , E]] and S = [[M,E]], we have that T is compliant with S
if and only if qf is reachable in M .

Proof. Consider the queue machine M , the types T = [[M, qf , E]] and S = [[M,E]] and the

initial configuration [[[s]]∅, ϵ]|[S, ϵ]. The first transition is [T, ϵ]|[S, ϵ] → [[[s]]∅, ϵ]|[S, $].
We now define a partial mapping function {{ }} from configurations (reachable from the

initial configuration [[[s]]∅, ϵ]|[S, $]) to configurations in the queue machine computation:

• {{[[[q]]∅, ωT]|[S′, ω′
S]}} = (q, ωT · ω · (ω′

S)
R) where

– ω = ϵ if S′ starts with an input branching, or ω = A if S′ starts with an output selection
with unique label A,

– the operator · stands for concatenation, and

5:34 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

– and βR is the reverse of β.

Notice that {{[[[s]]∅, ϵ]|[S, $]}} is defined and it coincides with the initial configuration of the
queue computation (s, $). In the following we use the following notation:

• [[[q]]∅, ωT]|[S′, ω′
S] ⇒ [[[q′]]∅, ω′

T]|[S′′, ω′′
S] if

– [[[q]]∅, ωT]|[S′, ω′
S] →∗ [[[q′]]∅, ω′

T]|[S′′, ω′′
S] and

– all intermediary traversed configurations are not in the domain of the partial mapping
function {{ }}.

Given that, excluding the final state qf , for each state q of the queue machine [[q]]∅ reproduces

the dequeue/enqueue actions of state q and S is a simple forwarder that repeatedly produces
and consumes the same labels, we have that given q ≠ qf we have (q, γ) →M (q′, γ′) if

and only if [[[q]]∅, ωT]|[S′, ω′
S] ⇒ [[[q′]]∅, ω′

T]|[S′′, ω′′
S] with {{[[[q]]∅, ωT]|[S′, ω′

S]}} = (q, γ) and

{{[[[q′]]∅, ω′
T]|[S′′, ω′′

S]}} = (q′, γ′).

We now prove the only-if part of the theorem. Assume that T is compliant with S. This
means that there exists a computation leading to the final successful configuration. The
unique occurrence of end is inside the type [[qf]]

S , hence we have [[[s]]∅, ϵ]|[S, $] ⇒ . . . ⇒
[[[qf]]

∅, ωT]|[S′, ω′
S] thus implying that state qf is reachable in M .

We now prove the if part. Assume that qf is reachable in M . Consider [[[s]]∅, ϵ]|[S, $] →∗

[T ′, ω′
T]|[S′, ω′

S]. There are two possible cases: either (i) it is possible to extend the sequence

of transitions as follows [T ′, ω′
T]|[S′, ω′

S] →∗ [[[q]]∅, ω′′
T]|[S′′, ω′′

S], for some state q, (ii) or during

the sequence of transitions [[[s]]∅, ϵ]|[S, $] →∗ [T ′, ω′
T]|[S′, ω′

S] a configuration is traversed in

which the l.h.s. type is [[qf]]
∅.

In the first case (i), we have that (s, $) →∗
M {{[[[q]]∅, ω′′

T]|[S′′, ω′′
S]}}; moreover, in this

computation of the queue machine the state qf is not traversed. This means that such a
queue machine computation can be extended to reach qf , hence the sequence of transitions

[[[s]]∅, ϵ]|[S, $] →∗ [[[q]]∅, ω′′
T]|[S′′, ω′′

S] can be additionally extended to reach a configuration

where the l.h.s. type is [[qf]]
∅. From such a configuration, we have that there are only finitely

many transitions leading to the final successful configuration (in this final transitions both
the queues are emptied and both types become end).

In the second case (ii), we have that a configuration whose l.h.s. type is [[qf]]
∅. As just

observed, this means that the configuration [T ′, ω′
T]|[S′, ω′

S] is an intermediary configuration
in the final sequence of transitions leading to the final successful configuration (in which
both the queues are emptied and both types are end).

By combining Theorem 2.17 with Lemma 2.16, we can finally prove that our encoding of
queue machines into session types correctly reduces state reachability into refinement.

Theorem 2.18. Let M = (Q,Γ, $, s, δ) be a queue machine, qf ∈ Q, E ̸∈ Γ the additional
ending symbol. Posing T = [[M, qf , E]] and S = [[M,E]], we have that T ⊑ S if and only if
qf is reachable in M .

Proof. We first prove the only-if part. Let T ⊑ S. By Lemma 2.16 we have that S is
compliant with S. Given that T ⊑ S, also T is compliant with S. By Theorem 2.17 this
implies that qf is reachable in M .

We now prove the if part. Assume that qf is reachable in M . As discussed in Section 2
(see footnote 2) our encoding of queue machines assumes that the set L of labels in the
Definition 2.1 of session types includes the symbols in the queue machine alphabet Γ plus
the symbol E. We now consider a queue machine M ′ = (Q′,Σ,Γ′ ⊇ Γ, $, s, δ′ ⊇ δ) obtained

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:35

by replacing the queue alphabet Γ with a richer alphabet Γ′ such that L = Γ′ ∪ {E}, and
by extending δ with a new transition relation δ′ which includes also the additional queue
symbols in its domain. The behaviour of δ′ on these additional symbols is irrelevant because
these symbols will never be placed in the queue, given that the input alphabet is still Σ. We
have that qf is reachable in M ′, simply because M ′ reproduces the same computations of

M . By Theorem 2.17 we have that T is compliant with S. By Corollary 2.15 we have that
T is compliant with all S′ such that S′ ∼ S. Under the assumption that L = Γ′ ∪ {E}, by
Lemma 2.16 we have that the set of types S′ such that S′ ∼ S precisely corresponds with
the types with which S is compliant. We have observed that T is compliant with all such S′,
hence we can conclude that T ⊑ S.

A.2. Controllability Characterisation. In this section we will prove the following theorem
about controllability characterisation.

Theorem 2.22. T ctrl holds if and only if there exists a session type S such that T and S
are compliant.

We start by introducing some notions and definitions that will be needed in the proof.
First of all we present an equivalent definition, based on purely structural induction, of

the ok predicate introduced in Definition 2.20 characterizing session type controllability.

Definition A.1. Given a session type T , we define the judgment T ok inductively as follows:

t ok end ok

end∈T ∨ ∃t′ :t′ ̸=t ∧ t′∈ free(T) T ok

µt.T ok

T ok

&{l : T} ok
∀i ∈ I. Ti ok

⊕{li : Ti}i∈I ok

where free(T) is the set of variables t occurring free in T .

In the following we will use a reformulation of session types in terms of equation sets.
In equation set notations we will use terms T that have the same syntax as those used to
denote session types, excluding the µt. recursion operator. Notice that in such notations
we consider possibly open terms T (i.e. such that free(T) is not empty). Session types are,
thus, denoted by T{t = Tt | t ∈ Vars}, with Vars being a set of variables t that includes all
variables in free(T) and also in free(Tt) for all t ∈ Vars.

Formally, given a session type T (we assume with loss of generality that each of its
recursions uses a variable with a different name) we consider its equivalent equation set
notation esn(T) = Tinit{t = Tt | t ∈ Vars}, defined as follows:

• Vars is the set of variable names used in the recursions of T
• Tinit is the only term without recursion operators satisfying: there exists a set of terms T ′

t,
one for each variable t ∈ free(Tinit), such that Tinit{T ′

t/t | t ∈ free(Tinit)} = T
• each Tt, with t ∈ Vars, is the only term without recursion operators satisfying: there exists
a set of variables Varst ⊆ free(Tt) and a set of terms T ′

t′ , one for each variable t′ ∈ Varst,
such that Tt{Tt′/t

′ | t′ ∈ Varst} = T ′′ with µt.T ′′ occurring in T .

5:36 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

Definition A.2 (Unfolding). Given session type in equation set notation we define its
unfolding unfold(T{t = Tt | t ∈ Vars}) as follows:

unfold(T{t = Tt | t ∈ Vars}) =

{
unfold(Tt′{t = Tt | t ∈ Vars}) if T = t′

T{t = Tt | t ∈ Vars} otherwise

Notice that unfolding is well defined because we consider session types with guarded recursion
in equation set notation.

The transition relation for configurations [T1{t = T1,t | t ∈ Vars1}, ω1]|[T2{t = T2,t | t ∈
Vars2}, ω2], with Ti{t = Ti,t | t ∈ Varsi}, for i ∈ {1, 2}, being session types in equation set
notation, is defined as in Definition 2.3 by using the above definition of unfolding (and by
assuming that the {t = Ti,t | t ∈ Varsi} equational part is copied, for both T1 and T2, after
every transition).

Given T1 and T2 session types, it obviously holds (by standard arguments) that the
transition system of [T, ϵ]|[S, ϵ] is bisimilar to that of [esn(T), ϵ]|[esn(S), ϵ], hence that: T
and S are compliant if and only if esn(T) and esn(S) are compliant.

We now define predicate ctrl for session types in equation set notation. ctrl is defined
as in Definition 2.20, by assuming that predicate ok is, instead, defined as follows. T{t =
Tt | t ∈ Vars} ok if there exists an indexing (total order) ti on the variables of Vars such that
{ti | 1 ≤ i ≤ n} = Vars and, for all i, with 1 ≤ i ≤ n, it, holds:

end∈Ti ∨ ∃tj :j < i ∧ tj∈ free(Ti)

Moreover, as in Definition 2.20, in order to establish ctrl of a session type T{t = Tt | t ∈
Vars} input prefix replacement must preliminarily be performed, so to obtain session types
T ′{t = T ′

t | t ∈ Vars′} where Vars′ ⊆ Vars and in both term T ′ ∈ sin(T) and all terms
T ′
t ∈ sin(Tt), with t ∈ Vars′, all input prefixes have a single label.

Proposition A.3. T ctrl if and only if esn(T) ctrl.

Proof. We first show that T ctrl implies esn(T) ctrl. Given T ′ obtained by input prefix
replacement from T (so to have input prefixes with single choices) that satisfies the ok
predicate, we correspondingly consider esn(T ′), which is an input prefix replacement of
esn(T). esn(T ′) ok is an immediate consequence of T ′ ok by considering the indexing ti of
variable names used in the recursions of T obtained as follows. We incrementally assign
indexes to variables (starting from 1) according to a depth-first visit of the syntax tree of
T as follows. When we are at a µt.T ′′ node, we have two cases. Either t has already an
assigned index (not possibile at the beginning) or not. In the latter case: we consider all
µt′. operators occurring in T ′′, if any, that syntactically include end or variable t′′ such that
t′′ ̸=t ∧ t′′∈ free(T ′′) and we assign an index to all such t′ (incrementing the last assigned
index) in increasing order from the innermost to the outermost; then we assign an index
to t (incrementing the last assigned index). Finally, in both cases, we visit all the µt′.
descendants (with no other recursion node in-between) of the µt. node, if any.

We now show that esn(T) ctrl implies T ctrl. Given Tinit{t = Tt | t ∈ Vars} obtained
by input prefix replacement from esn(T) that satisfies the ok predicate, we correspondingly
consider the only term T ′ which is an input prefix replacement of T such that esn(T ′) =
Tinit{t = Tt | t ∈ Vars}. We show that T ′ ok (Definition A.1 above) by structural induction:

• For the base cases t ok and end ok we have nothing to show.
• &{l : T ′′} ok and ⊕{li : T ′′

i}i∈I ok are a direct consequence of the induction hypothesis,
i.e. T ′′ ok and ∀i ∈ I. T ′′

i ok, respectively.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:37

• µt.T ′′ ok is a direct consequence of the induction hypothesis T ′′ ok and of the fact that:
end∈T ′′ ∨∃t′ :t′ ̸=t∧ t′∈ free(T ′′). The latter is shown as follows. From Tinit{t = Tt | t ∈
Vars} ok we know that there exists a variable indexing ti such that, for all i ∈ I it, holds:
end∈Ti ∨ ∃tj :j < i ∧ tj ∈ free(Ti). So, given index i such that ti = t, we have to show:
end∈T ′′∨∃z :z ̸= i∧tz∈ free(T ′′). What we know is that end∈Ti∨∃tj :j < i∧tj∈ free(Ti),
so there are two cases:
(1) Either it holds end∈T ′′ ∨ tj∈ free(T ′′) and we are done (with z = j).
(2) Or µtj .T

′′′, for some T ′′′, is a subterm of T ′′. In this case we show that: end∈T ′′′∨∃z :
z ̸= i ∧ tz ∈ free(T ′′′). To do this we consider index j and the defining term Tj in its
equation: we know that end∈ Tj ∨ ∃tk : k < j ∧ tk ∈ free(Tj). Now again we have
the same two cases, considering index k instead of j and term T ′′′ instead of term
T ′′. Notice that we cannot proceed like this forever because the syntax of T ′′ is finite,
hence case 1. must eventually apply. Moreover when this happens, we are sure that
the variable tz that we detect is different from t = ti (i.e. z ≠ i) because the indexing
of the variables that we consider are always strictly smaller than i.

We are now in a position to prove the desired theorem. We prove implications in the two
opposite directions one at a time.

Theorem A.4. If there exists a session type S such that T and S are compliant then T
ctrl.

Proof. Since T and S are compliant, as observed above, we have also that esn(T) and esn(S)
are compliant. Therefore (the transition system of) configuration [esn(T), ϵ]|[esn(S), ϵ] is a
correct composition according to Definition 2.5.

We now show that esn(T) ctrl: by Proposition A.3 this implies that T ctrl. In order to do
this we need to enrich the transition system representation of the behaviour of configurations
[T1{t = T1,t | t ∈ Vars1}, ω1]|[T2{t = T2,t | t ∈ Vars2}, ω2]. We assume the transition
relation → defined in Definition 2.3 to be enriched as follows: → transitions originated from
outputs of T1 (rule 1. of Definition 2.3) are assumed to be decorated with the label lj of the

performed output (denoted by
lj−→), while → transitions originated from inputs of T1 (rule

2. of Definition 2.3) are assumed to be decorated with the label lj of the performed input

(denoted by
lj−→). Notice that, in case of transitions originated from inputs or outputs of

T2 no decoration is added to transitions →. Moreover, rule 3. (about recursion unfolding) of
Definition 2.3 is assumed to just copy the decoration labeling the transition (if there is any).

We now consider such an enriched transition system over configurations [T1{t = T1,t |
t ∈ Vars1}, ω1]|[T2{t = T2,t | t ∈ Vars2}, ω2]. We use s to range over these configurations.
We say that a configuration s = [T1{t = T1,t | t ∈ Vars1}, ω1]|[T2{t = T2,t | t ∈ Vars2}, ω2]
exposes variable t′ ∈ Vars1 if T1 = t′. Moreover, we denote transition systems paths starting

from a given configuration s, i.e. finite sequences of transitions s
α1−→ s1

α2−→ s2 . . .
αn−→ sn

(where αi decorations can be ε in case of non decorated → transitions), by means of strings
⟨α1, s1⟩⟨α2, s2⟩ . . . ⟨αn, sn⟩ (strings over pairs ⟨α′, s′⟩ with α′ being a decoration or ε and s′

a configuration).
Assuming esn(T) = Tinit{t = Tt | t ∈ Vars}, we now construct an indexing on the

variables in the subset Vars′ of Vars, which includes variables t such that: a configuration s
that exposes t is reachable from the initial configuration [esn(T), ϵ]|[esn(S), ϵ]. We proceed
as follows. If Vars′ ≠ ∅, then we consider any reachable configuration s that exposes some
variable t ∈ Vars. Since [esn(T), ϵ]|[esn(S), ϵ] is a correct composition, the configuration s

5:38 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

must reach a configuration s′ such that s′
√
. We consider the path from s to s′ and the

last configuration s′′ of such a path that exposes a variable. We denote such a variable
with t1, the configuration s′′ that exposes it with s1, and the path (string) from s1 that
leads to s′ (part of the path from s to s′ considered above) with path1. In any subsequent
k-th step, with k ≥ 2, we consider the set Varsk = Vars′ − {th | h < k}. If Varsk ̸= ∅,
then we consider any reachable configuration s that exposes some variable t ∈ Varsk. Since
[esn(T), ϵ]|[esn(S), ϵ] is a correct composition, the configuration s must reach a configuration
s′ such that s′

√
. We consider the path from s to s′ and the first configuration s′′ of such a

path that either exposes a variable in {th | h < k} or is such that s′′
√
. Again we consider

the path from s to s′′ and the last configuration s′′′ of such a path that: is different from
s′′ and exposes a variable (such a variable must exist, because s exposes a variable, and
belong to Varsk because of the way we have selected s′′). We denote such a variable with tk,
the configuration s′′′ that exposes it with sk, and the path (string) from sk that leads to s′′

(part of the path from s to s′′ considered above) with pathk.
We now consider terms T ′

k for each variable tk ∈ Vars′. We build T ′
k terms inductively

by taking T ′
k = term(Ttk , sk, pathk), where term(T ′, s, optpath), with optpath being either a

path or ∗ (that represents being outside the path), is defined as follows.

• term(t, s, ε) = t
• term(end, s, ε) = end
• term(&{li : Ti}i∈I , s, ⟨lj , s′⟩path) = &{lj : term(Tj , s

′, path)}
• term(⊕{li : Ti}i∈I , s, ⟨lj , s′⟩path) = ⊕{li : T ′

i}i∈I
where T ′

j= term(Tj , s
′, path) and, for all i∈I, i ̸=j: T ′

i = term(Ti, si, ∗) with s
li−→ si

• term(T ′, s, ⟨ε, s′⟩path) = term(T ′, s′, path)
• term(t, s, ∗) = t
• term(end, s, ∗) = end

• term(&{li : Ti}i∈I , s, ∗) = &{lj : term(Tj , sj , ∗)} if s has some
l−→ transition

where j is any i ∈ I such that s
lj−→ sj

• term(⊕{li : Ti}i∈I , s, ∗) = ⊕{li : term(Ti, si, ∗)i}i∈I if s has some
l−→ transition

where, for all i∈I, s
li−→ si

• term(T ′, s, ∗) = term(T ′, s′, ∗) if T ′ /∈ {t, end} and s has neither
l−→ nor

l−→ transitions

where s′ is the first configuration having some
l−→ transition or some

l−→ transition
in the path from s to a configuration s′′ such that s′′

√
(such a path must exist because

[esn(T), ϵ]|[esn(S), ϵ] is a correct composition)

where we use ε to represent the empty string.
We also take T ′

init = term(Tinit, [esn(T), ϵ]|[esn(S), ϵ], ∗).
We now have that T ′

init{tk = T ′
k | tk ∈ Vars′} is a session type in equation notation:

Vars′ must include all variables in free(T ′
init) and also in free(T ′

k) for all tk ∈ Vars′ because,
otherwise, a configuration s exposing the variable that is not included in Vars′ would have
been reachable from the initial configuration [esn(T), ϵ]|[esn(S), ϵ] (which contradicts the
definition of Vars′). Moreover, due to the way term is defined, T ′

init{tk = T ′
k | tk ∈ Vars′} is

obtained from Tinit{t = Tt | t ∈ Vars} by performing input replacement that yields input
prefixes with single inputs. Finally, being sk the last configuration exposing a variable inside
a path ending with a configuration s that either exposes a variable in {th | h < k} (and not

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:39

having previous configurations exposing such variables) or is such that s
√
, each of the T ′

k
satisfies the constraint end∈T ′

k ∨ ∃th :h < k ∧ th∈ free(T ′
k).

Theorem A.5. If T ctrl then there exists a session type S such that T and S are compliant.

Proof. If T ctrl then esn(T) = Tinit{t = Tt | t ∈ Vars} ctrl. That is, there exists an input
prefix replacement that yields a session type T ′

init{t = T ′
t | t ∈ Vars′} such that Vars′ ⊆ Vars

(and in both term T ′
init ∈ sin(Tinit) and all terms T ′

t ∈ sin(Tt), with t ∈ Vars′, all input prefixes
have a single label) and that satisfies the ok predicate, i.e. there exists an indexing ti of the
Vars′ variables, such that: end∈T ′

ti
∨ ∃tj :j < i ∧ tj∈ free(T ′

ti
). We assume set Vars′ to be

minimal, i.e. to not include any defined but unused variable name and we take S to be the
unique session type such that esn(S) = T ′

init{t = T ′
t | t ∈ Vars′}.

In the following we will consider configurations [T1{t = Tt | t ∈ Vars}, ω1]|[T2{t = T ′
t |

t ∈ Vars′}, ω2] that are reachable from the initial configuration sinit = [esn(T), ϵ]|[esn(S), ϵ].
We say that any such configuration exposes variable t′ ∈ Vars if T1 = t′. Now, given any
configuration s reachable from the initial configuration sinit, we have that s is such that:

• ω1 = ϵ ∨ ω2 = ϵ
• There exists a configuration sϵ, which is reached from s with the transitions originated
by performing either the non-empty ω1 sequence of inputs in the lefthand type or the
non-empty sequence ω2 of inputs in the righthand type, such that sϵ = [T ′

1{t = Tt | t ∈
Vars}, ϵ]|[T ′

2{t = T ′
t | t ∈ Vars′}, ϵ], with T ′

2 ∈ sin(T ′
1).

This property of s is, indeed, an invariant property of all configurations reachable from
the initial configuration sinit in that: it is satisfied by sinit itself and it is preserved both
by transitions originated from outputs of the lefthand or righthand type (which, for a
configuration satisfying the above property, can be done only if its own queue is empty, and
have the effect of enqueuing in the righthand or lefthand type, respectively, a symbol that it
can then, dually, dequeue with an input) and by transitions originated from inputs of the
lefthand or righthand type (which just make the already existing input transition sequence
to sϵ shorter).

We now notice that it is possible to reach, from sϵ, by performing outputs of the lefthand
or righthand type immediately followed by inputs dually executed by the righthand or
lefthand type, respectively: either a configuration s′ such that s′

√
(in case end ∈ T ′

2), or a
configuration exposing an indexed variable ti ∈ Vars′. In the latter case, we can, similarly,
reach: either a configuration s′′ such that s′′

√
(in case end ∈ T ′

ti
), or a configuration

exposing an indexed variable tj ∈ Vars′ with j < i. In the latter case, we repeat, again, the
same step: we are guaranteed to eventually meet the case in which a

√
configuration is

reached in that variable indexes strictly decrease at each step. We thus have that esn(T)
and esn(S) are compliant, hence T and S are compliant.

A.3. Soundness of Fair Asynchronous Subtyping w.r.t. Fair Refinement.

Lemma A.6. Consider the session type T = A[⊕{lj : Tkj}j∈J]k∈K . Let P2 = [T, ωT]|[S, ωS]

and P i
1 = [A[Tki]

k∈K , ωT]|[S, ωS ·li], for every i ∈ J . If P2 is a correct composition then one
of the following holds:

• A does not contain any input branching and P2 → P i
1, for every i ∈ J ;

5:40 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

• A contains an input branching and P i
1 (for every i ∈ J) and P2 have at least one outgoing

transition.
For every possible transition P i

1 → P ′
1 we have that one of the following holds:

(1) P i
1 does not consume the label li and there exist A′, W , T ′

wj (for every w ∈ W , j ∈ J),

S′, ω′
T and ω′

S s.t. P ′
1 = [A′[T ′

wi]
w∈W , ω′

T]|[S′, ω′
S ·li] and

P2 → [A′[⊕{lj : T ′
wj}j∈J]w∈W , ω′

T]|[S′, ω′
S];

(2) P i
1 consumes the label li, hence P ′

1 = [A[Tki]
k∈K , ωT]|[S′, ωS], and ∃j ∈ {1, . . . ,m} s.t.

P2 →∗ [Tji, ω
′
T]|[S′, ωS] and ωT = a1·. . .·aw ·ω′

T , where a1, . . . , aw are the labels in one
of the paths to []j in A.

For every possible transition P2 → P ′
2 we have that there exist A′, W , T ′

wj (for every

w ∈ W , j ∈ J), S′, ω′
T and ω′

S s.t.
P ′
2 = [A′[⊕{lj : T ′

wj}j∈J]w∈W , ω′
T]|[S′, ω′

S] and

P i
1 → [A′[T ′

wi]
w∈W , ω′

T]|[S′, ω′
S ·li].

Lemma A.7. Consider P1 = [A[Tk]
k∈K , ωT]|[S, ωS] and P2 = [Tj , ω

′
T]|[S, ωS] with ωT =

a1 ·. . .·aw ·ω′
T , where a1, . . . , aw are the labels in one of the paths to []j in A. We have that

if P2 is a correct composition, then also P1 is a correct composition.

Proof. By contraposition, assume P1 is not a correct composition. This implies the existence
of P ′

1, from which it is not possible to reach a successful configuration, such that P1 →∗ P ′
1.

If the labels a1, . . . , aw were not consumed, we extend P1 →∗ P ′
1 to P1 →∗ P ′′

1 by allowing
the l.h.s. type to consume all the labels a1, . . . , aw. We have that also from P ′′

1 is not
possible to reach a successful configuration. We now reorder the transitions in P1 →∗ P ′′

1

such that in the initial w steps the l.h.s. type consumes the labels a1, . . . , aw. After these
transitions the configuration P2 is reached. This implies that also P2 →∗ P ′′

1 , but this is not
possible because P2 is a correct composition and from P ′′

1 no successful configuration can be
reached.

Lemma A.8. Consider the session type T = A[⊕{lj : Tkj}j∈J]k∈K . Let P2 = [T, ωT]|[S, ωS]

and P i
1 = [A[Tki]

k∈K , ωT]|[S, ωS·li], for every i ∈ J . If P2 is a correct composition then, for ev-
ery i ∈ J , there exists [T ′, ω′

T]|[S′, ω′
S] such that P i

1 →∗ [T ′, ω′
T]|[S′, ω′

S] and [T ′, ω′
T]|[S′, ω′

S]
√
.

Proof. Given that P2 is a correct composition, we know that there exists [T ′, ω′
T]|[S′, ω′

S]

s.t. [A[⊕{lj : Tkj}j∈J]k∈K , ωT]|[S, ωS] →∗ [T ′, ω′
T]|[S′, ω′

S] and [T ′, ω′
T]|[S′, ω′

S]
√
. During

this sequence of transitions, the input context A will become without input branchings,
because a configuration that contains one type with an input branching is not successful.
In other terms there exist a prefix of the sequence of transitions, at the end of which the
input context becomes without input branchings. We proceed by induction on the length of
such a prefix. If the length is zero, we can apply the first item of Lemma A.6 to conclude
that P2 → P i

1, for every i ∈ J , hence also P i
1 can reach a successful configuration. In the

inductive step, we consider the first transition of P2, we apply the last item of Lemma A.6
to show that also P i

1, for every i ∈ J , can perform a transition such that it is possible to
apply again the hypothesis on the reached configurations. This is possible because if P2 is
correct, also the configurations it can reach are correct.

Proposition A.9. Consider the session type T = A[⊕{lj : Tkj}j∈J]k∈K . If [T, ωT]|[S, ωS]

is a correct composition then, for every i ∈ J , we have that also [A[Tki]
k∈K , ωT]|[S, ωS ·li] is

a correct composition.

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:41

Proof. By contraposition, assume i ∈ J s.t. P i
1 = [A[Tki]

k∈K , ωT]|[S, ωS ·li] is not a correct
composition. This means the existence of P i

1 →∗ P ′ such that P ′ cannot reach a successful
configuration. By induction on the length of this sequence of transition we show that,
differently from what assumed, P ′ can reach a successful configuration. If the length is 0,
we simply apply Lemma A.8 to show that P i

1 = P ′ can reach a successful configuration. If
the length is not 0, we consider two possible cases: (i) the initial transition of P i

1 → P ′′

of P i
1 →∗ P ′ consumes the label li from the the queue of the r.h.s. type or (ii) it does

not. In case (i) we use the corresponding item 2 in Lemma A.6 to see that we can apply
Lemma A.7 on P2 and P ′′, in order to conclude that P ′′ is a correct composition. Given
that P ′′ →∗ P ′ we can conclude that P ′′ can reach a successful configuration. In case (ii)
we use the corresponding item 1 in Lemma A.6 to conclude that we can apply again the
inductive hypothesis on the shortest sequence of transitions P ′′ →∗ P ′. This is possible
because P2 has a corresponding transition to P2 → P ′

2, such that P ′′ and P ′
2 still satisfies

the assumption in the statement of the Lemma. In particular P ′
2 is a correct composition

because also P2 is a correct composition.

Lemma A.10. If [S, ωS]|[R,ωR] is a correct composition then S is controllable.

Proof. We show the existence of a type T such that [S, ϵ]|[T, ϵ] is a correct composition.
Consider a type T defined as follows. Assume ωS = lS1 · · · lSk and ωR = l1 · · · lRw . The

type T initially performs k outputs with single output labels l1, · · · , lk, respectively. After
such outputs, it becomes like R, with the difference that along all of its paths, the initial w
input branchings are replaced by one of its continuation as follows: the i-th input branching
is replaced by its continuation in the branch labeled with lRi .

We now show by contraposition that [S, ϵ]|[T, ϵ] is a correct composition. If [S, ϵ]|[T, ϵ] is
not correct, then there exists [S, ϵ]|[T, ϵ] →∗ [S′, ω′

S]|[T ′, ω′
T] such that from [S′, ω′

S]|[T ′, ω′
T]

it is not possible to reach a successful configuration. It is not restrictive to assume that
during [S, ϵ]|[T, ϵ] →∗ [S′, ω′

S]|[T ′, ω′
T] the r.h.s. type has produced the queue ωS (in fact,

if it has not produced them, we continue the computation performing them). We can
also assume that outputs in T , corresponding to outputs in R along an initial path with
less than w inputs have been all performed (also in this case, if these outputs were not
performed, we continue the computation executing them). We have that also [S, ωS]|[R,ωR]
can perform a computation [S, ωS]|[R,ωR] →∗ [S′, ω′

S]|[T ′, ω′
T]. Given that [S, ωS]|[R,ωR]

is a correct composition, we have that from [S′, ω′
S]|[T ′, ω′

T] will be possible to reach a
successful configuration, thus contradicting the above assumption.

Proposition 3.7. Given two session types T and S, if T ≤S then, for every ω, R, and
ωR such that [S, ω]|[R,ωR] is a correct composition, there exist T ′, ω′, R′, and ω′

R such that
[T, ω]|[R,ωR] →∗ [T ′, ω′]|[R′, ω′

R] and [T ′, ω′]|[R′, ω′
R]
√
.

Proof. Given that [S, ω]|[R,ωR] is a correct composition, there exist S′, ω′′, R′′, and ω′′
R

such that [S, ω]|[R,ωR] →∗ [S′, ω′′]|[R′′, ω′′
R] and [S′, ω′]|[R′′, ω′′

R]
√
. We proceed by induction

on the length of this sequence of transition.
If the length is 0, then [S, ω]|[R,ωR]

√
, that implies unfold(S) = end, that also implies

unfold(T) = end (because T ≤S), from which we have [T, ω]|[R,ωR]
√
.

If the length is greater than 0, we proceed by case analysis on the possible first transition
[S, ω]|[R,ωR] → [S′′, ω′′′]|[R′′′, ω′′′

R].
If the transition is inferred byR it is sufficient to observe that S′′ = S and [T, ω]|[R,ωR] →

[T, ω′′′]|[R′′′, ω′′′
R], and then apply the inductive hypothesis because [S′′, ω′′′]|[R′′′, ω′′′

R] is a
correct composition in that it is reachable from a correct composition.

5:42 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

We now consider that the transition is inferred by S.
We first discuss the case in which unfold(S) = ⊕{li : Si}i∈I . In this case, the above transition
is [S, ω]|[R,ωR] → [Si, ω

′′′]|[R′′′, ω′′′
R], for some i ∈ I. Given that T ≤S, and S is controllable

by Lemma A.10, we have unfold(T) = ⊕{li : Ti}i∈I with Ti≤Si, for every i ∈ I. This
ensures that [T, ω]|[R,ωR] → [Ti, ω

′′′]|[R′′′, ω′′′
R]. Then we can apply the inductive hypothesis

because Ti≤Si and [Si, ω
′′′]|[R′′′, ω′′′

R] is a correct composition.
We now discuss the case in which unfold(S) = &{li : Si}i∈I . There are two possible

subcases: (i) also T starts with an input branching, i.e., unfold(T) = &{lj : Tj}j∈J , or (ii) T
starts with an output selection, i.e., unfold(T) = ⊕{lj : Tj}j∈J .

In case (i), the above transition is [S, ω]|[R,ωR] → [Si, ω
′′′]|[R′′′, ω′′′

R], for some i ∈ I.
Given that T ≤S, and S is controllable by Lemma A.10, we have unfold(T) = &{lj :
Tj}j∈J , J ⊇ K, and ∀k ∈ K.Tk ≤Sk, where K = {k ∈ I | Sk is controllable}. Given that
[S, ω]|[R,ωR] is a correct composition and [S, ω]|[R,ωR] → [Si, ω

′′′]|[R′′′, ω′′′
R], also the latter

configuration is a correct composition. By Lemma A.10 we have that Si is controllable. This
implies that i ∈ K, hence also i ∈ J . This ensures that [T, ω]|[R,ωR] → [Ti, ω

′′′]|[R′′′, ω′′′
R].

Then we can apply the inductive hypothesis because Ti≤Si and [Si, ω
′′′]|[R′′′, ω′′′

R] is a correct
composition.

In case (ii), given that T ≤S, and S is controllable, we have that selUnfold(S) =
A[⊕{li : Ski}i∈J]k∈K , and unfold(T) = ⊕{lj : Tj}j∈J with Tj ≤A[Skj]

k∈K , for every j ∈ J .
We first observe that the sequence of transitions [S, ω]|[R,ωR] →∗ [S′, ω′′]|[R′′, ω′′

R], with
[S′, ω′′]|[R′′, ω′′

R]
√
, includes at least one output selection lj executed by one of the output

selections filling the holes in A. This label lj is the first one emitted by the l.h.s. type after it
has executed input branchings in A. We have that the same sequence of transitions, excluding
the output of lj , can be executed from the configuration [A[Skj]

k∈K , ω]|[R,ωR · lj]. Such

a sequence is [A[Skj]
k∈K , ω]|[R,ωR ·lj] →∗ [S′, ω′′]|[R′′, ω′′

R], with [S′, ω′′]|[R′′, ω′′
R]
√
; notice

that it is shorter than the above one. We now consider [T, ω]|[R,ωR] → [Ti, ω]|[R,ωR·lj]. We

can now apply the inductive hypothesis on the shorter sequence [A[Skj]
k∈K , ω]|[R,ωR·lj] →∗

[S′, ω′′]|[R′′, ω′′
R], because Tj ≤A[Skj]

k∈K and by Proposition A.9 [A[Skj]
k∈K , ω]|[R,ωR ·lj]

is a correct composition.

Theorem 3.8. Given two session types T and S, if T ≤S then T ⊑ S.

Proof. If S is not controllable, then the thesis trivially holds because T ⊑ S for every T .
We now consider S controllable, and we prove the thesis by showing that if T ≤S then,

for every ω, R, and ωR such that [S, ω]|[R,ωR] is a correct composition, we have that the
following holds:

• if [T, ω]|[R,ωR] → [T ′, ω′]|[R′, ω′
R] then there exists S′ such that T ′≤S′ and [S′, ω′]|[R′, ω′

R]
is a correct composition.

The above implies the thesis because, given T ≤S and the correct composition [S, ϵ]|[R, ϵ],
if there exists a computation [T, ϵ]|[R, ϵ] →∗ [T ′, ω′]|[R′, ω′

R], we can apply the above re-
sult on each step of the computation to prove that there exists S′ such that T ′≤S′ and
[S′, ω′]|[R′, ω′

R] is a correct composition. Then, by Proposition 3.7, we have that there exist
T ′′, ω′′, R′′, and ω′′

R such that [T ′, ω′]|[R′, ω′
R] →∗ [T ′′, ω′′]|[R′′, ω′′

R] and [T ′′, ω′′]|[R′′, ω′′
R]
√
.

We now prove the above result. The transition [T, ω]|[R,ωR] → [T ′, ω′]|[R′, ω′
R] can be

of four possible kinds:

(1) the consumption of a message from the r.h.s. queue, i.e. [T, ω]|[R, l·ω′
R] → [T, ω]|[R′, ω′

R];
(2) the insertion of a new message in the l.h.s. queue, i.e. [T, ω]|[R,ωR] → [T, ω ·l]|[R′, ωR];

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:43

(3) the consumption of a message from the l.h.s. queue, i.e. [T, l·q′]|[R,ωR] → [T ′, ω′]|[R,ωR];
(4) the insertion of a new message in the r.h.s. queue, i.e. [T, ω]|[R,ωR] → [T ′, ω]|[R,ωR ·l].
In the first two cases, we simply observe that there exists also [S, ω]|[R, l·ω′

R] → [S, ω]|[R′, ω′
R]

(resp. [S, ω]|[R,ωR] → [S, ω · l]|[R′, ωR]), that T ≤S, and also [S, ω]|[R′, ω′
R] (resp. [S, ω ·

l]|[R′, ωR]) is a correct composition because reachable from the correct composition [S, ω]|[R, l·
ω′
R] (resp. [S, ω]|[R,ωR]).

In the third case we have that unfold(T) starts with an input branching. Given that T ≤S,
and S is controllable, also unfold(S) must start with an input branching, i.e. unfold(S) =
&{li : Si}i∈I . By definition of ≤ we have that unfold(T) = &{lj : Tj}j∈J , J ⊇ K, and
∀k ∈ K.Tk ≤Sk, where K = {k ∈ I | Sk is controllable}. Given that [S, l ·q′]|[R,ωR] is a
correct composition, there exists i ∈ I s.t. l = li and [S, l·q′]|[R,ωR] → [Si, ω

′]|[R,ωR]. The
former configuration is a correct composition, hence also the latter is such. This implies,
by Lemma A.10, that Si is controllable, hence i ∈ K and also i ∈ J . Thus, we have
[T, l ·q′]|[R,ωR] → [Ti, ω

′]|[R,ωR], with Ti≤Si. We conclude this case by observing again
that [Si, ω

′]|[R,ωR] is a correct composition in that reachable from the correct composition
[S, l·q′]|[R,ωR].

In the fourth and last case, we have that unfold(T) starts with an output selection, and
T ′ is the continuation in the branch with label l. Given that T ≤S, and S is controllable, we
have selUnfold(S) = A[⊕{lj : Skj}j∈I]k∈K , and T ′≤Skm, for every k ∈ K and some m ∈ I

such that lm = l. It remains to show that [A[Skm]k∈K , ω]|[R,ωR ·l] is a correct composition,
but this follows from Proposition A.9 and the fact that [A[⊕{lj : Skj}j∈I]k∈K , ω]|[R,ωR], with

l = lm for some m ∈ I, is a correct composition. In fact selUnfold(S) = A[⊕{lj : Skj}j∈I]k∈K
and [S, ω]|[R,ωR] is a correct composition.

A.4. Undecidability of Fair Asynchronous Subtyping.

Theorem 3.12. Given a queue machine M and the ending symbol E, consider T = [[[M, ,E]]]
and S = [[[M,E]]]. We have that T ≤S if and only if M does not terminate.

Proof. We first consider the only-if part, proving the contrapositive statement, that is, if the
queue machine M terminates then T ≰S. If the queue machine terminates, we have that
(s, $) →∗

M (q′, ϵ). Consider now the pair of types (T, S) with T = [[[M, ,E]]] and S = [[[M,E]]].
If, by contradiction, T ≤S, since S is controllable (it is compliant, e.g., with its dual) we
have that by Definition 3.4 there exists a fair asynchronous subtyping relation R such that
(T, S) ∈ R. We now show that, by definition of fair asynchronous subtyping relation, R
will have to include other pairs of types (T ′′, S′′) corresponding with configurations (q′′, γ′′)
reachable in the queue machine M . Consider the type T :

µs.&{A :{{BA
1 · · ·BA

nA
}}{s}
q′

}A∈Γ

assuming δ(s,A) = (q′, BA
1 · · ·BA

nA
) and

{{B1 · · ·Bm}}Tr =

[[[r]]]T if m = 0

⊕
({

B1 : {{B2 . . . Bm}}Tr
}
∪{

A : V
}
A∈Γ\{B1} ∪ {E : V ′}

) otherwise

It starts with an input branching, with labels for each queue alphabet symbol including the
initial queue symbol $. Then it has a sequence of output selections, including the sequence

5:44 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

of symbols to be emitted by the queue machine after having consumed $. Consider now the
type S:

&{$: µt.⊕ {A : &{A : t}}A∈Γ ∪ {E : &{E : end}}}
It starts with an input branching with only label $, followed by an output selection on
all symbols, including label E having continuation &{E : end}. The latter ensures that
S is controllable. If we consider the constraints imposed by the Definition 3.4 on fair
asynchronous subtyping relations, we can conclude that R should contain a pair of types
(T ′, S′) where T ′ is the type corresponding to the new state of the queue machine (reached

after the above sequence of output selections {{B$
1 · · ·B$

n$
}}{s}
q′

to be emitted by the queue

machine after having consumed $) and S′ is like S, with the difference that before the output
selection there is a sequence of input branchings, each one with only one label, corresponding
with the sequence of symbols B$

1 · · ·B$
n$

in the queue after the first computation step.
This reasoning can be repeatedly applied to prove that R should also contain other pairs
of types (T ′′, S′′), one for each configuration (q′′, γ′′) reachable in the queue machine M .
Consider now the pair (Tf , Sf) ∈ R corresponding to the terminating configuration (q′, ϵ).
The type Tf , as all the types representing states in the queue machine, starts with an
input branching. The type Sf , on the other hand, represents the empty queue, so it is
µt. ⊕ {A : &{A : t}}A∈Γ ∪ {E : &{E : end}}, i.e. it is like [[M,E]] but without input
branchings before the output selection. This means that (Tf , Sf) does not satisfy the item
for input selection in Definition 3.4. Hence R cannot be a fair asynchronous subtyping, but
this contradicts the above initial assumption about R being a fair asynchronous session
subtyping.

We now move to the if part. Assume that the queue machine M does not terminate.
We show that there exists a fair asynchronous subtyping relation R that contains the pair
(T, S), hence T ≤S. There are two kinds of pairs in R: (i) the pairs discussed in the above
only-if part of the proof that corresponds to the path in the subtyping simulation game that
reproduces the computation of the queue machine M , and (ii) other pairs corresponding to
alternative paths. The pairs of types (i) satisfy the constraints imposed by Definition 3.4
because output selections of the l.h.s. type can always be mimicked by the r.h.s. type
(that always include an output selection after a sequence of input branchings with only one
label), and input branchings can always be mimicked by the r.h.s. type because under the
assumption that the queue machine does not terminate, the queue is always non-empty
during the computation. Also the pairs of type (ii) satisfy the constraints imposed by
Definition 3.4. In fact, these pairs are generated considering the alternative branches in the
l.h.s. types {{B1 · · ·Bm}}Tr in Definition 3.10, namely, the branches corresponding with the
labels A and E in the definition, that we report here for reader convenience:

{{B1 · · ·Bm}}Tr =

[[[r]]]T if m = 0

⊕
({

B1 : {{B2 . . . Bm}}Tr
}
∪{

A : V
}
A∈Γ\{B1} ∪ {E : V ′}

) otherwise

with V = µt.
(
⊕ {A : t}A∈Γ ∪ {E : V ′}

)
and V ′ = µt.

(
&{A :t}A∈Γ ∪ {E : end}

)
. The l.h.s.

type in the pairs (T ′, S′) associated with these branches, are of two kinds: (a) they are able
to recursively perform all possible outputs until the label E is selected (type V), or (b) they
are able to recursively perform all possible inputs until the label E is selected (type V ′). In
the first case (a), the constraints in Definition 3.4 are satisfied because the r.h.s. type is
always able to mimick output selections (see the above observation). In the second case

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:45

(b), we have that the output E has been previously selected by the last pair of kind (a)
considered. Hence, the r.h.s. type is a sequence of input branchings, with only one label,
where all inputs excluding the last one are different from E, and the last one, having label
E, has continuation end. This guarantees that all these pairs satisfy the constraints in
Definition 3.4, under the assumption that also a final pair (end, end) belongs to R. We the
conclude by observing that we have proved the existence of a fair session subtyping relation
R such that (T, S) ∈ R (in that this is the first pair of the kind (i) above), hence we have
that T ≤S.

A.5. Soundness of the Algorithm w.r.t. Fair Asynchronous Subtyping.

Lemma 4.11. Consider a witness tree T 1 = (N1, n1
0,↠

1, λ1) contained in a simulation tree.
For every h ≥ 1, we have that ↠h in T h = (Nh, nh

0 ,↠
h, λh) is compatible with the subtyping

simulation game, i.e., n ↠h n′ is present in T h if and only if there exists a simulation tree
(M,m0,↠, λ) including m ↠h m′ with λ(m) = λh(n) and λ(m′) = λh(n′).

Proof. We proceed by induction. If h = 1, the thesis directly follows from the fact that T 1

is contained in a simulation tree.
If h > 1, by inductive hypothesis we have that the thesis holds for T h−1. We prove that

the thesis holds also for T h showing that there exists a simulation tree including m ↠ m′

with m′ labeled with (T ′,A′′⟨Av′⌊S′
j⌋j∈J⟩J⌊S′

k⌋k∈K) if and only if there exists a simulation

tree including t ↠ t′ with t′ labeled with (T ′,A′′⟨Av′+1⌊S′
j⌋j∈J⟩J⌊S′

k⌋k∈K). The proof is by
case analysis, considering the three possible steps in the subtyping simulation game at the
basis of the definition of ↠ .

If T starts with a recursive definition, the thesis trivially holds because ↠ simply
modify the l.h.s. type by unfolding its initial recursion and leaves the r.h.s. type unchanged.

If T starts with an input branching, by Definition 3.4 we have that the r.h.s. type contains
an entire context A in its growing holes. We initially consider m ↠ m′ with m′ labeled with
(T ′,A′′⟨Av′⌊S′

j⌋j∈J⟩J⌊S′
k⌋k∈K). This means that by applying unfold() to the r.h.s. type we

obtain an input context starting with an input branching satisfying the constraints imposed
by Definition 3.4. The step of the subtyping simulation game corresponding to m ↠ m′

selects a branch of the input branching such that its continuation A′′⟨Av′⌊S′
j⌋j∈J⟩J⌊S′

k⌋k∈K

is controllable. Now consider t with label (T,A′⟨Av+1⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K). The application
of unfold() modifies the outer context in the same way thus obtaining a type starting with
the same input branching, simply with an additional nesting of A in the holes in J . The
continuation A′′⟨Av′+1⌊S′

j⌋j∈J⟩J⌊S′
k⌋k∈K is also controllable because it is an input contexts

with the set of indexed holes, hence the same set of types S′
j and S′

k. Hence it is possible to

apply a corresponding step in the subtyping simulation game t ↠ t′ with t′ labeled with
(T ′,A′′⟨Av′+1⌊S′

j⌋j∈J⟩J⌊S′
k⌋k∈K). Notice that the same reasoning can be applied assuming

that t ↠ t′ with t′ labeled with (T ′,A′′⟨Av′+1⌊S′
j⌋j∈J⟩J⌊S′

k⌋k∈K) to prove that there exists

also the corresponding step in the subtyping simulation game m ↠ m′. In this case we use
the assumption that in the growing holes of the r.h.s. type of the label of m we have an
entire context A, thus guaranteeing the presence of the same S′

j in all the continuations of
the initial input branching present in the outer context.

If T starts with an output selection, we initially consider m ↠ m′ with m′ labeled with
(T ′,A′′⟨Av′⌊S′

j⌋j∈J⟩J⌊S′
k⌋k∈K). This means that by applying selUnfold() to the r.h.s. type

5:46 M. Bravetti, J. Lange, and G. Zavattaro Vol. 20:4

we obtain an input context filled with types starting with output selections satisfying the
constraints imposed by Definition 3.4. Notice that the application of selUnfold() to the
outer input context does not remove holes, but at most replicates some of them. Moreover,
the application of selUnfold() applies to the innermost types Sj and Sk by unfolding the
variables inside outputs replacing them with their definitions (already present in Sj and Sk

given that these are closed terms). The considered step in the subtyping simulation game
modifies (the unfoldings of) Sj and Sk by resolving initial output selections, thus obtaining

S′
j and S′

k. Now consider t with label (T,A′⟨Av+1⌊Sj⌋j∈J⟩J⌊Sk⌋k∈K). What we have just

observed about the step m ↠ m′ of subtyping simulation game, holds also for this new
pair of types. The application of selUnfold() respectively modifies the outer input context
and the inner types Sj and Sk in the same way, and also the same resolution of the initial
output selections in Sj and Sk is possible. Hence there exists t ↠ t′ with t′ labeled with

(T ′,A′′⟨Av′+1⌊S′
j⌋j∈J⟩J⌊S′

k⌋k∈K). Notice that the same reasoning can be applied assuming

that t ↠ t′ with t′ labeled with (T ′,A′′⟨Av′+1⌊S′
j⌋j∈J⟩J⌊S′

k⌋k∈K) to prove that there exists

also the corresponding step in the subtyping simulation game m ↠ m′.

Proposition 4.12. Let T and S be two session types with simtree(T, S) = (N,n0,↠, λ). If
simtree(T, S) contains a witness tree T with root n, then for every node n′ ∈ N such that
n ↠∗ n′ we have that λ(n′) is a label present either in T h, for some h, or in simtree(T ′, S′) =
(N ′, n′

0,↠, λ′) with T ′≤S′.

Proof. We proceed by induction on the length of n ↠∗ n′.
If the length is 0, then n′ is the root of T hence its label is obviously in T 1.
If the length is greater than 1, consider n ↠∗ n′′ ↠ n′. By inductive hypothesis we have

that λ(n′′) is a label present either in T h, for some h, or in simtree(T ′, S′) = (N ′, n′
0,↠, λ′)

with T ′≤S′.
We start from the latter case, i.e., there exists m′′ in simtree(T ′, S′) = (N ′, n′

0,↠, λ′)
such that λ′(m′′) = λ(n′′). We have that there exists m′′ ↠ m′ in simtree(T ′, S′) s.t.
λ′(m′) = λ(n′).

We now consider the former case, i.e., there exists one node in T h, for some h, labeled
with λ(n′′). Let m′′ be such node. There are two possibilities, either (i) the node m′′ is a
leaf in T h, or (ii) it is not a leaf. In the case (ii) we have that T h contains m′′ ↠ m′, with
m′ labeled with λ(n′). If m′′ is a leaf, we consider the four kinds of leaves separately.

If m′′ is a leaf of type 2a, then there exists an ancestor m′′′ of m′′ in T h with the same
label λ(n′′). Given that the ancestor is not a leaf, T h contains m′′′ ↠ m′, with m′ labeled
with λ(n′).

If m′′ is a leaf of type 2b in T , we have λ(n′′) = (T ′,Ah+1⌊Sj⌋j∈J⌊Sk⌋k∈K). The node

n′′ has an ancestor n′′′ in T h s.t. λ(n′′′) = (T ′,Ah⌊Sj⌋j∈J⌊Sk⌋k∈K). Consider now the corre-

sponding node m′′′ in T h+1. We have that m′′′ is labeled with (T ′,Ah+1⌊Sj⌋j∈J⌊Sk⌋k∈K) =

λ(n′′). Given that m′′′ is not a leaf, T h+1 contains m′′′ ↠ m′, with m′ labeled with λ(n′).
If m′′ is a leaf of type 2c in T , we have λ(n′′) = (T ′,Ah⌊Sj⌋j∈J⌊Sk⌋k∈K). We have

two cases. If h = 1, by definition of witness tree, T ′≤Ah⌊Sj⌋j∈J⌊Sk⌋k∈K . The node n′′

has the same label as the root of simtree(T ′,Ah⌊Sj⌋j∈J⌊Sk⌋k∈K). Hence such a simulation
tree includes a transition from its root to a node labeled with λ(n′). If h > 1 the node n′′

has an ancestor n′′′ in T h such that λ(n′′′) = (T ′,Ah+1⌊Sj⌋j∈J⌊Sk⌋k∈K). Consider now the

corresponding nodem′′′ in T h−1. We have thatm′′′ is labeled with (T ′,Ah⌊Sj⌋j∈J⌊Sk⌋k∈K) =

λ(n′′). Given that m′′′ is not a leaf, T h−1 contains m′′′ ↠ m′, with m′ labeled with λ(n′).

Vol. 20:4 FAIR ASYNCHRONOUS SESSION SUBTYPING 5:47

If m′′ corresponds to leaf of type 2d in T , we have that the label λ(n′′) of m′′ is the same

as the label in the corresponding node in T , i.e. (T ′,A′[Sk]
k∈K′

). In fact labels of the leaves
of type 2d in T do not change when moving to T h. This because the input context A′ does
not include growing holes. By definition of witness tree we have that T ′≤A′[Sk]

k∈K′
. The

node n′′ has the same label as the root of simtree(T ′,A′[Sk]
k∈K′

). Hence such a simulation
tree includes a transition from its root to a node labeled with λ(n′).

Theorem 4.13. Let T and S be session types s.t. simtree(T, S) = (N,n0,↠, λ). If
simtree(T, S) contains a witness subtree with root n then for every node n′ ∈ N s.t. n ↠∗ n′,
either n′ is a successful leaf, or there exists n′′ s.t. n′ ↠ n′′.

Proof. Let T be the witness subtree with root in n. By Proposition 4.12 we have that
λ(n′) is a label present either in T h, for some h, or in simtree(T ′, S′) = (N ′, n′

0,↠, λ′) with
T ′≤S′. In the latter case the thesis trivially holds because all nodes m′ in simtree(T ′, S′)
are either successful or there exists m′ ↠ m′′. In the former case there are two cases: either
there exists an intermediary node (non-leaf) in one T h, for some h, labeled with λ(n′) is
an intermediary, or such a node can be only in leaf positions. In the first case the thesis
trivially holds because all intermediary nodes have successors. The second case can occur
only for leaves of type 2c in T , or corresponding to leaves of type 2d in T . Both cases imply
that λ(n′) = (T ′, S′) with T ′≤S′. Hence n′ has the same label as the root of simtree(T ′, S′)
and, as above, the thesis trivially holds because all nodes m′ in simtree(T ′, S′) are either
successful or there exists m′ ↠ m′′.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Fair Refinement for Asynchronous Session Types
	2.1. Preliminaries: Binary Session Types
	2.2. Asynchronous Fair Refinement
	2.3. Undecidability of Fair Refinement
	2.4. Controllability and its Decidability

	3. Fair Asynchronous Session Subtyping
	3.1. Undecidability of fair asynchronous session subtyping

	4. A Sound Algorithm for Fair Asynchronous Subtyping
	5. Implementation
	6. Empirical Evaluation on Synthetic Benchmarks
	7. Related and Future Work
	Acknowledgments
	References
	Appendix A. Proofs
	A.1. Undecidability of Fair Refinement
	A.2. Controllability Characterisation
	A.3. Soundness of Fair Asynchronous Subtyping w.r.t. Fair Refinement
	A.4. Undecidability of Fair Asynchronous Subtyping
	A.5. Soundness of the Algorithm w.r.t. Fair Asynchronous Subtyping

