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Abstract. We tackle the challenge of ensuring the deadlock-freedom property for message-
passing processes that communicate asynchronously in cyclic process networks. Our con-
tributions are twofold. First, we present Asynchronous Priority-based Classical Processes
(APCP), a session-typed process framework that supports asynchronous communication,
delegation, and recursion in cyclic process networks. Building upon the Curry-Howard cor-
respondences between linear logic and session types, we establish essential meta-theoretical
results for APCP, most notably deadlock freedom. Second, we present a new concurrent
λ-calculus with asynchronous session types, dubbed LASTn . We illustrate LASTn by ex-
ample and establish its meta-theoretical results; in particular, we show how to soundly
transfer the deadlock-freedom guarantee from APCP. To this end, we develop a translation
of terms in LASTn into processes in APCP that satisfies a strong formulation of operational
correspondence.

1. Introduction

Modern software systems often comprise independent components that coordinate by ex-
changing messages. The π-calculus [MPW92, Mil89] is a mature formalism for specifying
and reasoning about message-passing processes; in particular, it offers a rigorous foundation
for designing type systems that statically enforce communication correctness. A well-known
approach in this line is session types [Hon93, HVK98, YV07], which specify the structure of
the two-party communication protocols implemented by the channels of a process. In this
paper, we are interested in session types as a governing discipline in concurrent and func-
tional paradigms, in conjunction with two important aspects of message-passing concurrency,
namely the network topologies formed by interacting processes and the underlying discipline
of asynchronous communication.

The study of session types has gained considerable attention after the discovery by Caires
and Pfenning [CP10] and Wadler [Wad12] of Curry-Howard correspondences between session
types and linear logic [Gir87]. The present work is motivated by (and develops further)
two salient features of type systems derived from these correspondences, namely (i) their
remarkably effective approach to establishing the deadlock-freedom property for processes,
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and (ii) their clear connections with functional calculi with concurrency. These two aspects
form the central themes of this paper, and we discuss them in order.

Deadlock Freedom. Curry-Howard approaches to session types induce a very precise form
of interaction between parallel processes: they interpret the cut rule of linear logic as the
interaction of two processes on exactly one channel. While this design elegantly rules out the
insidious circular dependencies that lead to deadlocks, there is a catch: typable processes
cannot be connected to form cyclic network topologies—only tree-shaped networks are
allowed. Hence, type systems based upon Curry-Howard foundations reject whole classes of
process networks that are cyclic but deadlock-free [DP15, DP22]. This includes important
concurrency patterns, such as those exemplified by Milner’s cyclic scheduler [Mil89].

The problem of designing type systems that rule out circular dependencies and deadlocks
while allowing for cyclic topologies has received considerable attention. Works by Kobayashi
and others have developed advanced solutions; see, e.g., [Kob06, Pad14, DG18]. In a nutshell,
these works exploit orderings based on priority annotations on types to detect and avoid
circular dependencies. Dardha and Gay [DG18] have shown how to incorporate this priority-
based approach in the realm of session type systems based on linear logic; it boils down
to replacing the cut rule with a cycle rule and adding priority checks in other selected
typing rules. Their work thus extends the class of typable processes to cover cyclic network
topologies, while retaining strong ties with linear logic.

Unfortunately, none of the methods proposed until now consider session types with
asynchronous communication. Addressing asynchronous communication is of clear practical
relevance: it is the standard in most distributed systems and web-based applications nowadays.
In a process calculi setting, asynchronous communication means that output prefixes are
non-blocking [HT91, HT92, Bou92], and that exchanged messages implicitly or explicitly
reside in an auxiliary structure, such as a buffer or a queue [BPV08]. In the context of
session types, asynchrony moreover means that the ordering of messages within a session
should be respected, but messages from different sessions need not be ordered [KYH11].

To address this gap, in the first part of the paper we define a new session-typed
asynchronous π-calculus, APCP (Asynchronous Priority-based Classical Processes), for which
we develop its fundamental meta-theoretical results. The design of APCP builds upon insights
developed in several prior works:
• Advanced type systems that exploit annotations on types to enforce deadlock freedom of

cyclic process networks, already mentioned;
• Dardha and Gay’s PCP (Priority-based Classical Processes) [DG18], also already mentioned,

which incorporates into Wadler’s CP [Wad12] (Classical Processes; derived from classical
linear logic) Padovani’s simplification of Kobayashi’s type annotations [Pad14].

• DeYoung et al.’s asynchronous semantics for session communication, defined in context of
the correspondence between intuitionistic linear logic and session types [DCPT12].

Our calculus APCP combines these semantics for asynchronous communication with PCP’s
priority-based type system. The design of APCP uncovers fundamental properties of type
systems for asynchronous communication. A particular insight is the following: because
outputs are non-blocking, APCP simplifies priority management while preserving deadlock
freedom. Additionally, as an orthogonal feature, APCP increases expressivity by supporting
tail recursion without compromising deadlock freedom. We motivate these features of APCP
by discussing Milner’s cyclic scheduler in Section 2.1.
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Functional Calculi with Concurrency. Session types are paradigm-independent, in
the sense that they can be accommodated on top of programming models and languages
in different paradigms—concurrent, object-oriented, and functional. In the functional
setting, a milestone is the asynchronous concurrent λ-calculus with sessions by Gay and
Vasconcelos [GV10], which in the following we shall call LAST.1 LAST is a call-by-value calculus
in which collections of threads (configurations) communicate following session protocols by
relying on buffered channels. The type system of LAST ensures that well-typed configurations
respect their ascribed protocols (protocol fidelity) but does not guarantee deadlock freedom,
i.e., it allows the typing of cyclic configurations with circular dependencies.

LAST has been brought back to the spotlight through Wadler’s work on GV (Good
Variation), a synchronous variant of LAST without cyclic configurations. Terms in GV are
guaranteed to be deadlock-free via a (typed) translation into CP [Wad12]. Subsequently,
Kokke and Dardha formulated PGV (Priority-based GV), an extension of GV that strictly
augments the class of deadlock-free computations with cyclic configurations by leveraging
priorities [KD21a, KD21b], following Padovani and Novara [PN15].

In the second part of the paper, we study asynchronous, deadlock-free communication with
support for cyclic topologies in the setting of a prototypical functional programming language.
We present LASTn , a new call-by-name variant of LAST. Notably, session communication in
LASTn is asynchronous—a feature not accounted for by GV and PGV (see also Section 6 for
extended comparisons).

We equip LASTn with a deliberately simple type system, with functional and session
types, which ensures type preservation/protocol fidelity but not deadlock freedom (just like
the type system for LAST). To address this gap, we develop a way of soundly transferring
the deadlock-freedom property from APCP to LASTn . This transference of results hinges
on a translation of LASTn programs into APCP processes, in the style for Milner’s seminal
work [Mil90, Mil92]. The translation clarifies the role of APCP as an abstract model for
asynchronous, functional concurrency; it satisfies in particular a tight form of operational
correspondence that follows the well-known formulation by Gorla [Gor10]. This way, we
can ensure that a (class of) well-typed LASTn programs with cyclic configurations satisfies
deadlock freedom. While the development of LASTn is of interest in itself (it improves over
GV and PGV, as just discussed), it is also a significant test for APCP, its expressiveness and
meta-theoretical results.

Contributions. In summary, in this paper we make the following contributions:
(1) The process calculus APCP, its associated type system, and its essential meta-theoretical

properties: type preservation (Theorem 3.24) and deadlock freedom (Theorem 3.31).
(2) The functional calculus LASTn , its associated type system, and its meta-theoretical

property of type preservation (Appendix A.2).
(3) A translation of LASTn into APCP that enjoys operational correspondence properties

(Theorems 5.10 and 5.11) and unlocks the transfer of deadlock freedom from APCP to
LASTn (Theorem 5.14).

Organization. In Section 2, we motivate APCP and LASTn by example. Section 3 defines
the language of APCP processes and its type system, and establishes its meta-theoretical
properties. Section 4 recalls LAST and its type system, as proposed in [GV10], and briefly
discusses the issue of devising an operationally correct translation into APCP. Building upon

1LAST stands for ‘Linear Asynchronous Session Types’.
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Figure 1: Milner’s cyclic scheduler with 6
workers. Lines denote channels
connecting processes on the in-
dicated names.

this background, Section 5 presents LASTn as a call-by-name variant of LAST, develops its
meta-theoretical results, and gives a correct translation of LASTn into APCP. Section 6 discusses
related work and Section 7 draws conclusions. Appendix A collects omitted definitions and
proofs for LASTn .

Origin of the results. The current paper combines, revises, and extends our papers [HP21,
HP22a]. Here we provide fully detailed proofs, expanded examples, and consolidated com-
parisons of related works. While the paper [HP21] offered an abridged introduction to APCP,
the paper [HP22a] developed CGV, a functional calculus with concurrency (also in the style
of Gay and Vasconcelos’ LAST), and gave a correct translation into APCP. Novelties with
respect to [HP21] include a revised treatment of type preservation and recursion in APCP.
With respect to [HP22a], in this presentation we have revised CGV into LASTn , in order to
showcase a more clear connection with LAST and a well-known reduction strategy (call by
name). As a result, Sections 4 and 5 are entirely new to this presentation.

2. Motivating Examples

In this section, we informally describe APCP and LASTn , the two calculi presented in this
paper, using motivating examples that illustrate their distinctive features and expressiveness.

2.1. Milner’s Cyclic Scheduler in APCP. We motivate APCP by considering Milner’s cyclic
scheduler [Mil89], a recursive process that relies on a cyclic network to perform asynchronous
communications. This example is inspired by Dardha and Gay [DG18], who use PCP to type
a synchronous, non-recursive version of the scheduler.
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The Scheduler, Informally. The scheduler consists of n ≥ 1 worker processes Pi (the
workers, for short), each attached to a partial scheduler Ai. The partial schedulers connect
to each other in a ring structure, together forming the cyclic scheduler. Connections consist
of pairs of endpoints; we further refer to these endpoints by the names that represent them.

The scheduler then lets the workers perform their tasks in rounds, each new round
triggered by the leading partial scheduler A1 (the leader) once each worker finishes their
previous task. We refer to the non-leading partial schedulers Ai+1 for 1 ≤ i < n as the
followers.

Figure 1 illustrates the process network of Milner’s cyclic scheduler with 6 workers
(n = 6). Each partial scheduler Ai has a name ai to connect with the worker Pi’s name bi.
The leader A1 has a name cn to connect with An and a name d1 to connect with A2 (or
with A1 if n = 1; we further elide this case for brevity). Each follower Ai+1 has a name ci
to connect with Ai and a name di+1 to connect with Ai+2 (or with A1 if i+ 1 = n; we also
elide this case).

In each round, each follower Ai+1 awaits a start signal from Ai, and then asynchronously
signals Pi+1 and Ai+2 to start. After awaiting acknowledgment from Pi+1 and a next round
signal from Ai, the follower then signals next round to Ai+2. The leader A1, which starts
each round of tasks, signals A2 and P1 to start, and, after awaiting acknowledgment from
P1, signals a next round to A2. Then, the leader awaits An’s start and next round signals.
It is crucial that A1 does not await An’s start signal before starting P1, as the leader would
otherwise not be able to initiate rounds of tasks.

Syntax of APCP. Before formally specifying the scheduler, we briefly introduce the syntax
of APCP, and how asynchronous communication works; Section 3 gives formal definitions.

Let us write a, b, c, . . . , x, y, z, . . . to denote names. We write x[a, b] and y(w, z);P to
denote processes for sending and receiving, respectively. The names a and w stand for the
payloads, whereas b and z stand for continuations, i.e., the names on which the rest of the
session should be performed. This continuation-passing style for asynchronous communication
is required to ensure the correct ordering of messages within a session. A communication
redex in APCP is thus of the form (νxy)(x[a, b] | y(w, z);P ): the restriction (νxy) serves to
declare that x and y are dual names of the same channel, and · | · denotes parallel composition.
This process reduces to P{a/w, b/z}: P ’s names w and z are substituted for by a and b,
respectively. Notice how, since the send is a standalone process, it cannot block any other
communications in the process.

The communication of labels ℓ, ℓ′, . . . follows the same principle: the process x[b] ◁ ℓ
denotes the output of a label ℓ on x, and the process y(z) ▷ ℓ;P blocks until a label ℓ is
received on y before continuing as P ; here again, b and z are continuation names that are
sent and received together with ℓ. Finally, process µX(x̃);P denotes a recursive definition.
Here, P has access to the names in x̃ and may contain recursive calls X⟨ỹ⟩ to indicate a
repetition of P . Upon such a recursive call X⟨ỹ⟩, the names in ỹ are assigned to x̃ in the
next round of P .

The Scheduler in APCP. We now formally specify the partial schedulers. Because each
sent label requires a restriction to bind the selection’s continuation name to the rest of the
session, these processes may look rather complicated. For example, (part of) the leader is
specified as follows (where d′1, a

′′
1 are used in the omitted remainder):

A1 ≜ µX(a1, cn, d1); (νad
′
1)(d1[a] ◁ start | (νba′1)(a1[b] ◁ start | a′1(a′′1) ▷ ack; . . .))
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To improve readability, we rely on the notation x ◁ ℓ · P , which is syntactic sugar that elides
the continuation name involved (cf. Notation 3.2); our use of the floating dot ‘ · ’ is intended
to stress that the communication of ℓ along x does not block any further prefixes in P , and
the overline ‘ ’ to indicate that there is a hidden restriction. Similarly, the notation x ▷ ℓ;P
elides the continuation name involved in receiving labels, though it remains blocking hence
the ‘ ; ’.

The leader and followers are then specified as follows:

A1 ≜ µX(a1, cn, d1); d1 ◁ start · a1 ◁ start · a1 ▷ ack; d1 ◁ next ·
cn ▷ start; cn ▷ next;X⟨a1, cn, d1⟩

Ai+1 ≜ µX(ai+1, ci, di+1); ci ▷ start; ai+1 ◁ start · di+1 ◁ start · ai+1 ▷ ack;
ci ▷ next; di+1 ◁ next ·X⟨ai+1, ci, di+1⟩

∀1 ≤ i < n

Assuming that each worker Pi is specified such that it behaves as expected on the name
bi, we formally specify the complete scheduler as a ring of partial schedulers connected to
workers:

Schedn ≜ (νc1d1) . . . (νcndn)
(
(νa1b1)(A1 | P1) | . . . | (νanbn)(An | Pn)

)
We return to this example in Section 3.5, where we type check the scheduler using APCP to
show that it is deadlock-free (which is not obvious from its process definition).

2.2. A Bookshop Scenario in LASTn . Our new calculus LASTn is a call-by-name variant
of Gay and Vasconcelos’ LAST [GV10] with linear resources. We briefly motivate the design
of LASTn by adapting the running example of [GV10], which involves a mother interacting
with a bookshop to buy a book for her son.

First, we define a term representing the shop. The shop has an endpoint s on which it
communicates with a client. First, the shop receives a book title and then offers a choice
between buying the book or only accessing its blurb (the text on the book’s back cover). If
the client decides to buy, the shop receives credit card information and sends the book to
the client. Otherwise, if the client requests the blurb, the shop sends its text. In LASTn , we
can define this shop as follows:

Shop(s) ≜ let (title, s1) = recv s in
case s1 of {buy : λs2.let (card, s3) = recv s2 in

let s4 = send book(title) s3 in
close s4; (),

blurb : λs2.let s3 = send blurb(title) s2 in
close s3; ()}

where notations book(title) and blurb(title) are syntactic sugar for lookup functions, imple-
mented, e.g., as labeled selections.

The functional behavior of LASTn is standard, so we only explain the message-passing
components in the above term:
• ‘recv s’ waits for a message to be ready on s, and returns a pair containing the message

and an endpoint on which to continue the session.
• ‘case s of {. . .}’ waits for a label to be ready on s, determining a continuation. Continua-

tions are defined as abstractions, which will be applied to the session’s continuation once
the label has been received.
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• ‘sendM s’ buffers the message M on endpoint s, which can be received asynchronously on
a connected endpoint.

• ‘close s;M ’ waits until the session on the endpoint s can be closed before running M ,
which acts as a continuation.

Next, we define a term abstracting the son’s behavior. Term Son(s′,m′), given below, has an
endpoint s′ on which he communicates with the shop, and an endpoint m′ for communication
with his mother. The son sends a book title to the shop, and then selects to buy. Notation
‘select ℓ s’ denotes the buffering of the label ℓ on endpoint s, to be received asynchronously
on a connected endpoint. After this selection, to let his mother pay for him, the son proceeds
to send the shop’s endpoint to his mother. Finally, he receives the book from his mother,
and returns it as a result of the computations.

Son(s′,m′) ≜ let s′1 = send “Dune” s′ in
let s′2 = select buy s′1 in
letm′

1 = send s′2m
′ in

let (book,m′
2) = recvm′

1 in

closem′
2; book

Finally, we define the mother, who has an endpoint m to communicate with her son.
She receives the shop endpoint from her son, and then sends her credit card information to
the shop. She then receives the book from the shop, and sends it to her son.

Mother(m) ≜ let (x,m1) = recvm in

letx1 = send visax in
let (book, x2) = recvx1 in
letm2 = send bookm1 in

closem2; closex2; ()

Now, we only have to compose these terms together, connecting all the endpoints appropriately.
This is achieved by term Sys below, which relies on two additional constructs.

• ‘new’ creates a new channel, and returns a pair containing the channel’s two endpoints;
asynchronous communication is achieved by connecting the endpoints through an ordered
buffer.

• ‘forkM ;N ’ denotes splitting of M as a thread, which runs concurrently to the immediate
continuation N .

Concretely, we have:

Sys ≜ let (s, s′) = new in fork Shop(s);
let (m,m′) = new in forkMother(m);
Son(s′,m′)

Note that the son cannot be forked, as he returns the result of the computation (the
book). In Sections 4 and 5 we will discuss the behavior and typing of these terms.

After presenting APCP next, in Section 5 we formally define LASTn and illustrate the
language and its runtime semantics: how new channels are created, new threads are forked,
and messages are written to and read from buffers.



6:8 B. van den Heuvel and J.A. Pérez Vol. 20:4

3. APCP: Asynchronous Priority-based Classical Processes

In this section, we define APCP, a session-typed π-calculus in which processes communicate
asynchronously on connected channel endpoints. We further refer to endpoints by the names
that represent them. As already discussed, the output of messages (names and labels) is
non-blocking, and explicit continuations ensure the ordering of messages within a session. In
our type system, names are assigned types that specify two-party protocols, in the style of
binary session types [Hon93], following the Curry-Howard correspondences between linear
logic and session types [CP10, Wad12].

APCP combines the salient features of Dardha and Gay’s PCP [DG18] with DeYoung et
al.’s semantics for asynchronous communication [DCPT12]. Recursion—not present in the
works by Dardha and Gay and DeYoung et al.—is an orthogonal feature, with syntax inspired
by the work of Toninho et al. [TCP14].

As in PCP, types in APCP rely on priority annotations, which enable cyclic connections
while ruling out circular dependencies between sessions. A key insight of our work is that
asynchrony induces different priority management than synchrony: while PCP’s blocking
outputs are compared to their continuation processes, APCP’s non-blocking outputs are only
compared to their continuation sessions (see Remark 3.15).

Properties of well-typed APCP processes are type preservation (Theorem 3.24) and
deadlock freedom (Theorem 3.31). This includes cyclically connected processes, which
priority-annotated types guarantee free from circular dependencies that may cause deadlock.

3.1. The Process Language. We write a, b, c, . . . , x, y, z, . . . to denote (channel) names
(also known as names); by convention we use the early letters of the alphabet for the objects
of output-like prefixes. Also, we write x̃, ỹ, z̃, . . . to denote sequences of names. In APCP,
communication is asynchronous (cf. [HT91, HT92, Bou92]) and dyadic: each communication
involves the transmission of a pair of names, a message name and a continuation name. With
a slight abuse of notation, we sometimes write xi ∈ x̃ to refer to a specific element in the
sequence x̃. Also, we write i, j, k, . . . to denote labels for choices and I, J,K, . . . to denote sets
of labels. We write X,Y, . . . to denote recursion variables, and P,Q, . . . to denote processes.

Definition 3.1 (APCP Syntax). The syntax of APCP processes is as follows:

P,Q ::= x[a, b] send | x(y, z);P receive
| x[b] ◁ ℓ selection | x(z) ▷ {i : P}i∈I branch
| (νxy)P restriction | P |Q parallel
| 0 inaction | [x ↔ y] forwarder
| µX(z̃);P recursive definition | X⟨z̃⟩ recursive call

Figure 2 (top) gives the syntax of processes. The send x[a, b] sends along x a message
name a and a continuation name b. The receive x(y, z);P blocks until on x a message and
continuation name are received (referred to in P as the placeholders y and z, respectively),
binding y and z in P . The selection x[b] ◁ i sends along x a label i and a continuation name
b. The branch x(z) ▷ {i : Pi}i∈I blocks until it receives on x a label i ∈ I and a continuation
name (referred to in Pi as the placeholder z), binding z in each Pi. In the rest of this paper,
we refer to sends, receives, selections, and branches—including their continuations, if any—as
prefixes. We refer to sends and selections collectively as outputs, and to receives and branches
as inputs.
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Process syntax:

P,Q ::= x[a, b] send | x(y, z);P receive
| x[b] ◁ ℓ selection | x(z) ▷ {i : P}i∈I branch
| (νxy)P restriction | P |Q parallel
| 0 inaction | [x ↔ y] forwarder
| µX(z̃);P recursive definition | X⟨z̃⟩ recursive call

................................................................................................................................................
Structural congruence:

[cong-alpha]
P ≡α Q

P ≡ Q

[cong-par-unit]

P | 0 ≡ P

[cong-par-comm]

P |Q ≡ Q | P
[cong-par-assoc]

P | (Q |R) ≡ (P |Q) |R

[cong-scope]
x, y /∈ fn(P )

P | (νxy)Q ≡ (νxy)(P |Q)

[cong-res-comm]

(νxy)(νzw)P ≡ (νzw)(νxy)P

[cong-res-symm]

(νxy)P ≡ (νyx)P

[cong-res-inact]

(νxy)0 ≡ 0

[cong-fwd-symm]

[x ↔ y] ≡ [y ↔ x]

[cong-res-fwd]

(νxy)[x ↔ y] ≡ 0

[cong-unfold]

µX(x1, . . . , xn);P ≡ P
{(

µX(y1, . . . , yn);P{y1/x1, . . . , yn/xn}
)
/X⟨y1, . . . , yn⟩

}
................................................................................................................................................

Reduction:
[red-send-recv]

(νxy)(x[a, b] | y(z, y′);Q)→Q{a/z, b/y′}

[red-sel-bra]
j ∈ I

(νxy)(x[b] ◁ j | y(y′) ▷ {i : Qi}i∈I)→Qj{b/y′}

[red-fwd]
y ̸= z

(νxy)([x ↔ z] | P )→ P{z/y}

[red-cong]
P ≡ P ′ P ′ →Q′ Q′ ≡ Q

P →Q

[red-res]
P →Q

(νxy)P → (νxy)Q

[red-par]
P →Q

P |R→Q |R

Figure 2: Definition of APCP’s process language.

Restriction (νxy)P binds x and y in P , thus declaring them as the two names of a channel and
enabling communication, as in [Vas12]. The process P |Q denotes the parallel composition
of P and Q. The process 0 denotes inaction. The forwarder [x ↔ y] is a primitive copycat
process that links together x and y. We say a forwarder [x ↔ y] in P is independent if P
does not bind x and y together through restriction (and dependent if it does). The process
µX(z̃);P denotes a recursive definition, binding occurrences of X in P ; the names z̃ form
a context for P . Then P may contain recursive calls X⟨z̃⟩ that indicate a repetition of
P , providing the names z̃ as context. We only consider contractive recursion, disallowing
processes with subexpressions of the form µX1(z̃); . . . ;µXn(z̃);X1⟨z̃⟩.
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Names and recursion variables are free unless otherwise stated (i.e., unless they are
bound somehow). We write fn(P ) and frv(P ) for the sets of free names and free recursion
variables of P , respectively, and bn(P ) for the set of bound names of P . Also, we write
P{x/y} to denote the capture-avoiding substitution of the free occurrences of y in P for
x. Notation P

{(
µX(y1, . . . , yn);P

′)/X⟨y1, . . . , yn⟩
}

denotes the substitution of occurrences
of recursive calls X⟨y1, . . . , yn⟩ in P with the recursive definition µX(y1, . . . , yn);P

′, which
we call unfolding recursion. We write sequences of substitutions P{x1/y1} . . . {xn/yn} as
P{x1/y1, . . . , xn/yn}.

Except for asynchrony and recursion, there are minor differences with respect to the
languages of Dardha and Gay [DG18] and DeYoung et al. [DCPT12]. Unlike Dardha and
Gay’s, our syntax does not include empty send and receive prefixes that explicitly close
channels; this simplifies the type system. We also do not include the operator for replicated
servers, denoted !x(y);P , which is present in [DG18, DCPT12]. Although replication can be
handled without difficulties, we omit it here; we prefer focusing on recursion, because it fits
well with the examples we consider. See Section 3.6 for further discussion.

A Convenient Notation. In the send x[a, b] and the selection x[b] ◁ ℓ, names a and b are
free. They can be bound to a continuation process using parallel composition and restriction,
as in (νay)(νbz)(x[a, b] | Py,z) and (νbz)(x[b] ◁ ℓ] | Qz), respectively. We introduce useful
notations that abstract away from elide these constructs and continuation names:

Notation 3.2 (Derivable Bound Communication). We use the following syntactic sugar:

x[y] · P ≜ (νya)(νzb)(x[a, b] | P{z/x}) x ◁ ℓ · P ≜ (νzb)(x[b] ◁ ℓ | P{z/x})
x(y);P ≜ x(y, z);P{z/x} x ▷ {i : Pi}i∈I ≜ x(z) ▷ {i : Pi{z/x}}i∈I

Note our use of ‘ · ’ instead of ‘ ; ’ in sending and selection to stress that they are non-blocking
operators. As we will see, these derived constructs are typable (Theorem 3.16)

Operational Semantics. We define a reduction relation for processes (P→Q) that formalizes
how complementary outputs/inputs on connected names may synchronize. As usual for
π-calculi, reduction relies on structural congruence (P ≡ Q), which relates processes with
minor syntactic differences. Structural congruence is the smallest congruence on the syntax
of processes (Figure 2 (top)) satisfying the axioms in Figure 2 (center).

Definition 3.3 (Structural Congruence (≡) for APCP). Structural congruence for APCP,
denoted P ≡ Q, is the smallest congruence on the syntax of processes (Definition 3.1)
satisfying the axioms in Figure 3.

Structural congruence defines the following properties for processes. Processes are equivalent
up to α equivalence (Rule [cong-alpha]). Parallel composition is associative (Rule [cong-
par-assoc]) and commutative (Rule [cong-par-comm]), with unit 0 (Rule [cong-par-
unit]). A parallel process may be moved into or out of a restriction as long as the bound
channels do not occur free in the moved process (Rule [cong-scope]): this is scope inclu-
sion and scope extrusion, respectively. Restrictions on inactive processes may be dropped
(Rule [cong-res-inact]), and the order of names in restrictions and of consecutive re-
strictions does not matter (Rules [cong-res-symm] and [cong-res-comm], respectively).
Forwarders are symmetric (Rule [cong-fwd-symm]), and equivalent to inaction if both
names are bound together through restriction (Rule [cong-res-fwd]). Finally, a recursive
definition is equivalent to its unfolding (Rule [cong-unfold]), replacing any recursive calls
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[cong-alpha]
P ≡α Q

P ≡ Q

[cong-par-unit]

P | 0 ≡ P

[cong-par-comm]

P |Q ≡ Q | P
[cong-par-assoc]

P | (Q |R) ≡ (P |Q) |R

[cong-scope]
x, y /∈ fn(P )

P | (νxy)Q ≡ (νxy)(P |Q)

[cong-res-comm]

(νxy)(νzw)P ≡ (νzw)(νxy)P

[cong-res-symm]

(νxy)P ≡ (νyx)P

[cong-res-inact]

(νxy)0 ≡ 0

[cong-fwd-symm]

[x ↔ y] ≡ [y ↔ x]

[cong-res-fwd]

(νxy)[x ↔ y] ≡ 0

[cong-unfold]

µX(x1, . . . , xn);P ≡ P
{(

µX(y1, . . . , yn);P{y1/x1, . . . , yn/xn}
)
/X⟨y1, . . . , yn⟩

}
Figure 3: Structural congruence for APCP: axioms.

with copies of the recursive definition, where the recursive definition’s contextual names are
pairwise substituted for by the call’s names.

As we will see next, the semantics of APCP is closed under structural congruence. This
means that processes are equi-recursive; however, APCP’s typing discipline (described in
Section 3.2) treats recursive types as iso-recursive (see, e.g., Pierce [Pie02]).

We define the reduction relation P → Q by the axioms and closure rules in Figure 2
(bottom). We write →∗ for the reflexive, transitive closure of →. Rule [red-send-recv]
synchronizes a send and a receive on connected names and substitutes the message and
continuation names. Rule [red-sel-bra] synchronizes a selection and a branch: the received
label determines the continuation process, substituting the continuation name appropri-
ately. Rule [red-fwd] implements the forwarder as a substitution. Rules [red-cong],
[red-res], and [red-par] close reduction under structural congruence, restriction, and
parallel composition, respectively.

Having communication of free names in sends and selections is different from commu-
nication in the works by Dardha and Gay [DG18] and DeYoung et al. [DCPT12], where,
following an internal mobility discipline [Bor98], communication involves bound names only.
Still, notice that free output is expressible in those works by combining bound output and
forwarding.

Example 3.4. To illustrate the preservation of order within a session and the asynchrony
between different sessions, we consider the following process:

P ≜ (νzu)
(
(νxy)

(
(νax′)(x[v1, a] | x′[v2, b])
| (νcz′)(z[v3, c] | y(w1, y

′); y′(w2, y
′′);Q)

)
| u(w3, u

′);R
)
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The process P defines two consecutive sends on a session from x to y, and an asynchronous
send on a session from z to u. Two reductions are possible from P :

P → (νzu)
(
(νax′)

(
x′[v2, b] | (νcz′)(z[v3, c] | a(w2, y

′′);Q{v1/w1})
)
| u(w3, u

′);R
)

(3.1)

P → (νcz′)
(
(νxy)

(
(νax′)(x[v1, a] | x′[v2, b]) | y(w1, y

′); y′(w2, y
′′);Q

)
|R{v3/w3, c/u

′}
)
(3.2)

The reduction (3.1) entails the synchronization of the send on x and the receive on y;
afterwards, the send on x′ is connected to the receive on a that prefixes Q. The reduction (3.2)
entails the synchronization of the send on z and the receive on u, connecting Q and R on a
new session between z′ and c. Note that from P there is no reduction involving the send
on x′, since x′ is connected to the continuation name of the send on x and is thus not (yet)
paired with a dual receive.

Using the sugared syntax from Notation 3.2, we can write

P = (νzu)((νxy)(x[v1] · x[v2] · 0 | z[v3] · y(w1); y(w2);Q
′) | u(w3);R

′)

where Q′ ≜ Q{y/y′′} and R′ ≜ R{u/u′}.
The following diagram illustrates all the possible reduction paths from P ; horizontal

reductions concern the session between x and y, and diagonal reductions concern the session
between z and u:

P→P1→P3→ → →
P2→P4→P5

where processes P1, P2, P3, P4, and P5 are as follows:

P1 ≜ (νzu)((νxy)(x[v2] · 0 | z[v3] · y(w2);Q
′{v1/w1}) | u(w3);R

′)

P2 ≜ (νxy)(x[v1] · x[v2] · 0 | y(w1); y(w2);Q
′) |R′{v3/w3}

P3 ≜ (νzu)(z[v3] ·Q′{v1/w1, v2/w2} | u(w3);R
′)

P4 ≜ (νxy)(x[v2] · 0 | y(w2);Q
′{v1/w1}) |R′{v3/w3}

P5 ≜ Q′{v1/w1, v2/w2} |R′{v3/w3}

Presentations of reduction for session-typed π-calculi derived from the Curry-Howard inter-
pretations of linear logic often include rules that correspond to commuting conversions in
linear logic (cf. [CP10, Wad12, DG18, DCPT12]), which allow rewriting processes in such
a way that blocking prefixes on free names are “pulled out” of restrictions. Commuting
conversions can be easily included for APCP (cf. [HP21]), but we do not consider them here.
While Dardha and Gay [DG18] rely on commuting conversions to prove deadlock freedom,
the proof of deadlock freedom for APCP takes a different approach and does not require
commuting conversions—see Section 3.3 for a detailed discussion.

3.2. The Type System. APCP types processes by assigning binary session types to names.
Following Curry-Howard interpretations, we present session types as linear logic propositions
(cf., e.g., Caires et al. [CPT16], Wadler [Wad12], Caires and Pérez [CP17], and Dardha and
Gay [DG18]). We extend these propositions with recursion and priority annotations on
connectives. Intuitively, prefixes typed with lower priority should not be blocked by those
with higher priority.
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We write ◦, π, ρ, . . . to denote priorities, and ω to denote the ultimate priority that is
greater than all other priorities and cannot be increased further. That is, ∀◦ ∈ N. ω > ◦ and
∀◦ ∈ N. ω + ◦ = ω.

Definition 3.5 (Session Types for APCP). The following grammar defines the syntax of
session types A,B. Let ◦ ∈ N.

A,B ::= A⊗◦ B |A &◦ B |⊕◦{i : A}i∈I |&◦{i : A}i∈I | • | µX.A |X
A name of type A⊗◦ B (resp. A

&◦ B) first sends (resp. receives) a name of type A and then
behaves as B. A name of type ⊕◦{i : Ai}i∈I selects a label i ∈ I and then behaves as Ai. A
name of type &◦{i : Ai}i∈I offers a choice: after receiving a label i ∈ I, the name behaves as
Ai. A name of type • is closed; it does not require a priority, as closed names do not exhibit
behavior and thus are non-blocking.

Unlike Caires and Pfenning [CP10] and Dardha and Gay [DG18], APCP does not associate
any behavior with closed sessions (i.e., no closing synchronizations). Moreover, as we will
see, APCP’s type system allows arbitrary parallel composition. Atkey et al. [ALM16] have
shown that, in presence of arbitrary parallel composition (i.e., linear logic’s Rule [mix] that
combines sequents arbitrarily, usually interpreted as session typing rule for arbitrary parallel
composition), the dual propositions 1 and ⊥ (usually associated with complementary prefixes
for closing sessions) are equivalent. Hence, since in APCP session closing is silent, we follow
Caires [Cai14] in conflating the types 1 and ⊥ to the single, self-dual type • for closed
sessions.

Type µX.A denotes a recursive type, in which A may contain occurrences of the recursion
variable X. As customary, µ is a binder: it induces the standard notions of α equivalence,
substitution (denoted A{B/X}), and free recursion variables (denoted frv(A)). We work
with tail-recursive, contractive types, disallowing types of the form µX1 . . . µXn.X1 and
µX.X ⊗◦ A. Recursive types are treated iso-recursively: there will be an explicit typing
rule that unfolds recursive types, and recursive types are not equal to their unfolding. We
postpone formalizing the unfolding of recursive types, as it requires additional definitions to
ensure consistency of priorities upon unfolding.

Duality, the cornerstone notion of session types and linear logic, ensures that the two
names of a channel have complementary behaviors. Furthermore, dual types must have
matching priority annotations. The following inductive definition of duality suffices for our
tail-recursive types (cf. Gay et al. [GTV20]).

Definition 3.6 (Duality). The dual of session type A, denoted A, is defined inductively as
follows:

A⊗◦ B ≜ A

&◦ B ⊕◦{i : Ai}i∈I ≜ &◦{i : Ai}i∈I • ≜ • µX.A ≜ µX.A

A

&◦ B ≜ A⊗◦ B &◦{i : Ai}i∈I ≜ ⊕◦{i : Ai}i∈I X ≜ X

The priority of a type is determined by the priority of the type’s outermost connective:

Definition 3.7 (Priorities). For session type A, pr(A) denotes its priority :

pr(A⊗◦ B) ≜ pr(A

&◦ B) ≜ ◦ pr(µX.A) ≜ pr(A)

pr(⊕◦{i : Ai}i∈I) ≜ pr(&◦{i : Ai}i∈I) ≜ ◦ pr(•) ≜ pr(X) ≜ ω

The priority of • and X is the constant ω: they denote the “final”, non-blocking part
of protocols. Although ⊗ and ⊕ also denote non-blocking prefixes, they do block their
continuation until they are received. Hence, their priority is not constant.
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We now turn to formalizing the unfolding of recursive types. Recall the intuition that
prefixes typed with lower priority should not be blocked by those with higher priority. Based
on this rationale, we observe that the unfolding of the recursive type µX.A should not result
in A{(µX.A)/X}, as usual; rather, the priorities of the unfolded type should be increased to
ensure a global ordering between actions.

Example 3.8. Consider the recursive type µX.A

&0 X. By unfolding this type without
increasing the priority, we obtain A

&0 (µX.A

&0 X), a type in which the priorities do not
ensure a global ordering between the two receives. In contrast, increasing the priority in the
unfolded type as in, e.g., A

&0 (µX.A

&1 X), does ensure a global ordering.

We make this intuition precise by defining the lift of priorities in types:

Definition 3.9 (Lift). For proposition A and t ∈ N, we define ↑tA as the lift operation:

↑t(A⊗◦ B) ≜ (↑tA)⊗◦+t (↑tB) ↑t(⊕◦{i : Ai}i∈I) ≜ ⊕◦+t{i : ↑tAi}i∈I ↑t• ≜ •
↑t(A

&◦ B) ≜ (↑tA)

&◦+t (↑tB) ↑t(&◦{i : Ai}i∈I) ≜ &◦+t{i : ↑tAi}i∈I
↑t(µX.A) ≜ µX.(↑tA) ↑tX ≜ X

Henceforth, the unfolding of µX.A is A{
(
µX.(↑tA)

)
/X}, denoted unfoldt(µX.A), where

t ∈ N depends on the highest priority of the types occurring in a typing context. We recall
that we do not consider types to be equi-recursive: recursive types are not equal to their
unfolding. Recursive types can only be unfolded by typing rules, discussed next.

We now define the top priority of a type, i.e., the highest priority appearing in a type:

Definition 3.10 (Top Priority). For session type A, top(A) denotes its top priority :

top(A⊗◦ B) ≜ top(A

&◦ B) ≜ max(top(A), top(B), ◦)
top(⊕◦{i : Ai}i∈I) ≜ top(&◦{i : Ai}i∈I) ≜ max(maxi∈I(top(Ai)), ◦)

top(µX.A) ≜ top(A) top(•) ≜ top(X) ≜ 0

Notice how the top priority of • and X is 0, in contrast to their priority (as given by
Definition 3.7): as we will see next, they do not contribute to the increase in priority needed
for unfolding recursive types.

Typing Rules. The typing rules of APCP ensure that prefixes with lower priority are not
blocked by those with higher priority (cf. Dardha and Gay [DG18]). To this end, they enforce
the following laws:
(1) Sends and selections with priority ◦ must have continuations/payloads with priority

strictly larger than ◦;
(2) A prefix with priority ◦ must be prefixed only by receives and branches with priority

strictly smaller than ◦;
(3) Dual prefixes leading to a synchronization must have equal priorities (cf. Definition 3.6).
Judgments are of the form Ω ⊢ P :: Γ, where:
• P is a process;
• Γ is a context that assigns types to channels (x : A);
• Ω is a context that assigns tuples of types to recursion variables (X : (A,B, . . .)).
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A judgment Ω ⊢ P :: Γ then means that P can be typed in accordance with the type
assignments for names recorded in Γ and the recursion variables in Ω. Intuitively, the latter
context ensures that types concur between the context names of recursive definitions and
calls. Both contexts Γ and Ω obey exchange: assignments may be silently reordered. Γ is
linear, disallowing weakening (i.e., all assignments must be used, except names typed •) and
contraction (i.e., assignments may not be duplicated). Ω allows weakening and contraction,
because a recursive definition may be called zero or more times.

The empty context is written ∅. In writing Γ, x : A we assume that x /∈ dom(Γ) (and
similarly for Ω). We write ↑tΓ to denote the component-wise extension of lift (Definition 3.9)
to typing contexts. Also, we write pr(Γ) to denote the least of the priorities of all types in Γ

(Definition 3.7). An assignment z̃ : Ã means z1 : A1, . . . , zk : Ak. We define the top priority
of a sequence of types top(Ã) as maxAi∈Ã(top(Ai)).

Figure 4 (top) gives the typing rules. We describe the typing rules from a bottom-up
perspective. Rule [typ-send] types a send; this rule does not have premises to provide a
continuation process, leaving the free names to be bound to a continuation process using
Rules [typ-par] and [typ-res] (discussed hereafter). Similarly, Rule [typ-sel] types an
unbound selection. Both rules require that the priority of the subject is lower than the
priorities of both objects (continuation and payload)—this enforces Law 1. Rules [typ-recv]
and [typ-bra] type receives and branches, respectively. In both cases, the used name’s
priority must be lower than the priorities of the other types in the continuation’s typing
context—this enforces Law 2.

Rule [typ-par] types the parallel composition of two processes that do not share
assignments on the same names. Rule [typ-res] types a restriction, where the two restricted
names must be of dual type and thus have matching priority—this enforces Law 3. Rule [typ-
end] silently removes a closed name from the typing context. Rule [typ-inact] types an
inactive process with no names. Rule [typ-fwd] types forwarding between names of dual
type—this also enforces Law 3.

Example 3.11. To illustrate the typing rules discussed so far, we recall process P from
Example 3.4:

P = (νzu)
(
(νxy)

(
(νax′)(x[v1, a] | x′[v2, b])
| (νcz′)(z[v3, c] | y(w1, y

′); y′(w2, y
′′);Q)

)
| u(w3, u

′);R
)

We give the typing of the two consecutive sends on x (omitting the context Ω):

◦ < pr(A1), π
[typ-send]

⊢ x[v1, a] :: x : A1 ⊗◦ A2 ⊗π B,
v1 : A1, a : A2 ⊗π B

π < pr(A2), pr(B)
[typ-send]

⊢ x′[v2, b] :: x
′ : A2 ⊗π B,

v2 : A2, b : B
[typ-par]

⊢ x[v1, a] | x′[v2, b] :: v1 : A1, v2 : A2, b : B, x : A1 ⊗◦ A2 ⊗π B,
a : A2 ⊗π B, x′ : A2 ⊗π B

[typ-res]
⊢ (νax′)(x[v1, a] | x′[v2, b]) :: v1 : A1, v2 : A2, b : B, x : A1 ⊗◦ A2 ⊗π B

As discussed before, this typing leaves the (free) names v1, v2, and b to be accounted for by
the context.

Now let us derive the typing of the consecutive receives on y, i.e., of the subprocess
y(w1, y

′); y′(w2, y
′′);Q. Because x and y are dual names in P , the type of y should be dual
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[typ-send]
◦ < pr(A),pr(B)

Ω ⊢ x[y, z] :: x : A⊗◦ B, y : A, z : B

[typ-recv]
Ω ⊢ P :: Γ, y : A, z : B ◦ < pr(Γ)

Ω ⊢ x(y, z);P :: Γ, x : A

&◦ B

[typ-sel]
j ∈ I ◦ < pr(Aj)

Ω ⊢ x[z] ◁ j :: x : ⊕◦{i : Ai}i∈I , z : Aj

[typ-bra]
∀i ∈ I. Ω ⊢ Pi :: Γ, z : Ai ◦ < pr(Γ)

Ω ⊢ x(z) ▷ {i : Pi}i∈I :: Γ, x : &◦{i : Ai}i∈I

[typ-end]
Ω ⊢ P :: Γ

Ω ⊢ P :: Γ, x : •

[typ-par]
Ω ⊢ P :: Γ Ω ⊢ Q :: ∆

Ω ⊢ P |Q :: Γ,∆

[typ-res]

Ω ⊢ P :: Γ, x : A, y : A

Ω ⊢ (νxy)P :: Γ

[typ-inact]

Ω ⊢ 0 :: ∅
[typ-fwd]

Ω ⊢ [x ↔ y] :: x : A, y : A

[typ-rec]

Ω, X : Ã ⊢ P :: z̃ : Ũ t ∈ N > top(Ã) ∀Ui ∈ Ũ . Ui = unfoldt(µX.Ai)

Ω ⊢ µX(z̃);P :: z̃ : µ̃X.A

[typ-var]

t ∈ N ∀Ui ∈ Ũ . Ui = µX.↑tAi

Ω, X : Ã ⊢ X⟨z̃⟩ :: z̃ : Ũ

................................................................................................................................................

[typ-send⋆]
Ω ⊢ P :: Γ, y : A, x : B ◦ < pr(A),pr(B)

Ω ⊢ x[y] · P :: Γ, x : A⊗◦ B

[typ-sel⋆]
Ω ⊢ P :: Γ, x : Aj j ∈ I ◦ < pr(Aj)

Ω ⊢ x ◁ j · P :: Γ, x : ⊕◦{i : Ai}i∈I

[typ-lift]
Ω ⊢ P :: Γ t ∈ N

Ω ⊢ P :: ↑tΓ

Figure 4: The typing rules of APCP (top) and derivable rules (bottom).

to the type of x above:

⊢ Q :: Γ, w1 : A1, w2 : A2, y
′′ : B π < pr(Γ, w1 : A1)

[typ-recv]
⊢ y′(w2, y

′′);Q :: Γ, w1 : A1, y
′ : A2

&π B ◦ < pr(Γ)
[typ-recv]

⊢ y(w1, y
′); y′(w2, y

′′);Q :: Γ, y : A1

&◦ A2

&π B

These two derivations tell us that ◦ < π < pr(A1), pr(A2), pr(B), pr(Γ). This way, the
type system ensures that none of the sessions in Q can be connected to sessions that block
the sends on x, x′, which may leave the door open for a deadlock otherwise. In Section 5.3,
Example 5.15 illustrates such a situation in the context of LASTn and how the type system
catches it.
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Consider the usual Rule [typ-cut] in type systems based on linear logic [CP10, Wad12]:

[typ-cut]

Ω ⊢ P :: Γ, x : A Ω ⊢ Q :: ∆, y : A

Ω ⊢ (νxy)(P |Q) :: Γ,∆

Note that a single application of Rule [typ-par] followed by Rule [typ-res] coincides with
Rule [typ-cut]. Without annotations and conditions related to priority, Rules [typ-par]
and [typ-res] give rise to deadlocks, as the following example shows.

Example 3.12. Consider the following process, arguably the paradigmatic example of a
deadlock:

Q ≜ (νxy)(νzw)(x(u); z[u′] · 0 | w(v); y[v′] · 0)
Without priorities (and priority checks), this process can be typed using Rules [typ-par]
and [typ-res] (omitting “typ-” from rule labels):

[inact]
⊢ 0 :: ∅

[end]4

⊢ 0 :: z : •, x : •, u : •, u′ : •
[send⋆]

⊢ z[u′] · 0 :: z : • ⊗ •, x : •, u : •
[recv]

⊢ x(u); z[u′] · 0 :: z : • ⊗ •, x : •

&

•

[inact]
⊢ 0 :: ∅

[end]4

⊢ 0 :: w : •, y : •, v : •, v′ : •
[send⋆]

⊢ y[v′] · 0 :: w : •, y : • ⊗ •, v : •
[recv]

⊢ w(v); y[v′] · 0 :: w : • ⊗ •, y : •

&

•
[par]+[res]2

⊢ Q :: ∅

On the other hand, were we to restrict parallel composition and restriction using Rule [typ-
cut], Q would not be typable: Rule [typ-cut] can only type one of the restrictions, not
both. With priorities, Q would not be typable either, due to the requirements induced by
Rule [typ-recv]: (i) the priority ◦ of the input on x is smaller than the priority π of the
send on z (left-hand side above), and (ii) the priority π of the input on w is smaller than the
priority ◦ of the send on y (right-hand side above). Clearly, these requirements combined are
unsatisfiable.

Rules [typ-rec] and [typ-var] type recursive definitions and recursive calls, respectively.
To justify their formulation, let us consider naive formulations for each of them:

[typ-rec-naive]

Ω ⊢ P :: z̃ : Ã

Ω, X : |z̃| ⊢ µX(z̃);P :: z̃ : µ̃X.A

[typ-var-naive]

Ω, X : |z̃| ⊢ X⟨z̃⟩ :: z̃ : X̃

Rule [typ-rec-naive] requires a name typed µX.A at the recursive definition to be typed
simply A in the recursive body. The associated Rule [typ-var-naive] then requires all
names to be typed X, using the recursive context to make sure that the number of names
concurs between recursive definition and call. However, as the following example shows, such
a combination of naive rules discards priority annotations to a point where it is possible to
type processes that deadlock:

Example 3.13. Consider the processes

P ≜ µX(x, y);x[a] · x(b); y[c] · y(d);X⟨y, x⟩,
Q ≜ µX(u, v);u(a);u[b] · v(c); v[d] ·X⟨u, v⟩.
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Notice how the recursive call in P swaps x and y. Let us see what happens if we unfold the
recursion in P and Q:

P ≡ x[a] · x(b); y[c] · y(d);µX(y, x); y[a] · y(b);x[c] · x(d);X⟨x, y⟩
Q ≡ u(a);u[b] · v(c); v[d] · µX(u, v);u(a);u[b] · v(c); v[d] ·X⟨u, v⟩

If we connect these processes on the names x and u and on y and v, we can see that the
second recursive definition of this process contains a deadlock: the second receive on y is
blocking the second send on x, while the second receive on u (waiting for the second send on
x) is blocking the second send on v (for which the second receive on y is waiting).

Yet, P is typable using the naive typing rules described above:
[typ-var-naive]

X : 2 ⊢ X⟨y, x⟩ :: x : X, y : X
· · ·

X : 2 ⊢ x[a] · x(b); y[c] · y(d);X⟨y, x⟩ :: x : • ⊗0 •

&1 X, y : • ⊗2 •

&3 X
[typ-rec-naive]

∅ ⊢ µX(x, y);x[a] · x(b); y[c] · y(d);X⟨y, x⟩ :: x : µX. • ⊗0 •

&1X,
y : µX. • ⊗2 •

&3X

Thus, these naive rules prevent the type system of APCP from guaranteeing deadlock freedom.

The solution is for Rule [typ-rec] to unfold all types. While unfolding, the priorities in
these types are lifted by a common value, denoted t in the rule, that must be greater than
the top priority occurring in the original types (cf. Definition 3.10). This makes sure that
any priority requirements that come up in the typing of the recursive body of the process
remain valid. The recursive context is used to record the bodies of the original folded types.
Rule [typ-rec] then requires that the types of names are recursive on the recursion variable
used for the call. It checks that the bodies of the types concur with the types recorded in
the recursive context, up to a lift by a common value t (i.e., the lifter used in the application
of Rule [typ-rec]).

Example 3.14. To see how the unfolding of types and the common lifter in Rule [typ-rec]
prevents P from Example 3.13 from being typable, let us attempt to find a typing derivation
for P :

[typ-var]
X : (• ⊗0 •

&1 X, • ⊗2 •

&3 X) ⊢ X⟨y, x⟩ :: x : µX.↑t(• ⊗0 •

&1 X),
y : µX.↑t(• ⊗2 •

&3 X)
· · ·

X : (• ⊗0 •

&1 X, • ⊗2 •

&3 X) ⊢ x[a] · x(b); y[c] · y(d);X⟨y, x⟩
:: x : • ⊗0 •

&1 (µX.↑t(• ⊗0 •

&1 X)),
y : • ⊗2 •

&3 (µX.↑t(• ⊗2 •

&3 X))
[typ-rec]

∅ ⊢ µX(x, y);x[a] · x(b); y[c] · y(d);X⟨y, x⟩ :: x : µX. • ⊗0 •

&1X,
y : µX. • ⊗2 •

&3X

The application of Rule [typ-var] at the top here is invalid: it is impossible to find a lifter t
that matches the priorities in the type of x with those in the second type assigned to X, while
simultaneously doing the same for the type of y and the first type assigned to X. However,
if the call were X⟨x, y⟩, the application of Rule [typ-var] would be valid.

Remark 3.15 (Comparison to PCP). Consider the typing rules for sending and selection in
PCP, in which both are blocking prefixes and do not involve continuation passing. Note that
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[typ-send∗]
⊢ P :: Γ, y : A, x : B ◦ < pr(A),pr(B)

⊢ x[y] · P :: Γ, x : A⊗◦ B

⇒
◦ < pr(A), pr(B)

[typ-send]
⊢ x[a, b] :: x : A⊗◦ B, a : A, b : B ⊢ P{z/x} :: Γ, y : A, z : B

[typ-par]
⊢ x[a, b] | P{z/x} :: Γ, x : A⊗◦ B, y : A, a : A, z : B, b : B

2×[typ-res]
⊢ (νya)(νzb)(x[a, b] | P{z/x})︸ ︷︷ ︸

x[y]·P (cf. Notation 3.2)

:: Γ, x : A⊗◦ B

[typ-sel∗]
⊢ P :: Γ, x : Aj j ∈ I ◦ < pr(Aj)

⊢ x ◁ j · P :: Γ, x : ⊕◦{i : Ai}i∈I
⇒

j ∈ I
[typ-sel]

⊢ x[b] ◁ j :: x : ⊕◦{i : Ai}i∈I , b : Aj ⊢ P{z/x} :: Γ, z : Aj
[typ-par]

⊢ x[b] ◁ j | P{z/x} :: Γ, x : ⊕◦{i : Ai}i∈I , z : Aj , b : Aj
[typ-res]

⊢ (νzb)(x[b] ◁ j | P{z/x})︸ ︷︷ ︸
x◁j·P (cf. Notation 3.2)

:: Γ, x : ⊕◦{i : Ai}i∈I

Figure 5: Proof that Rules [typ-send∗] and [typ-sel∗] are derivable (cf. Theorem 3.16).

PCP does not have recursion, and we thus omit the recursive context Ω.
[typ-send-PCP]
⊢ P :: Γ, y : A, x : B ◦ < pr(Γ)

⊢ x[y];P :: Γ, x : A⊗◦ B

[typ-sel-PCP]
⊢ P :: Γ, x : Aj j ∈ I ◦ < pr(Γ)

⊢ x ◁ j;P :: Γ, x : ⊕◦{i : Ai}i∈I
These rules are similar to the Rules [typ-send∗] and [typ-sel∗] in Figure 4 for the sugared
syntax introduced in Notation 3.2; the differences are twofold. First, the semicolons ‘ ; ’
indicate that sends and selections are indeed blocking. Second, the rules compare the priority
of the send/selection to the priorities in the context, whereas our rules compare this priority
to the priorities of the continuation of the send/selection.

As anticipated, the binding of sends and selections to continuation processes (Notation 3.2)
is consistent with typing in APCP. The corresponding typing rules in Figure 4 (bottom) are
admissible using Rules [typ-par] and [typ-res]. Note that rules for the sugared receive
and branching in Notation 3.2 are not necessary, because the sugared input constructs rely
on α renaming only. Figure 4 (bottom) also includes an admissible Rule [typ-lift] that
lifts a process’ priorities.

Theorem 3.16. Rules [typ-send∗] and [typ-sel∗] in Figure 4 (bottom) are derivable, and
Rule [typ-lift] in Figure 4 (bottom) is admissible.

Proof (Sketch). To show the derivability of Rules [typ-send∗] and [typ-sel∗], we give their
derivations in Figure 5 (omitting the recursive context Ω). Rule [typ-lift] is admissible:
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Ω ⊢ P :: Γ implies Ω ⊢ P :: ↑tΓ (cf. Dardha and Gay [DG18]), simply by increasing all
priorities in the derivation of P by t.

Theorem 3.16 highlights how APCP’s asynchrony uncovers a more primitive, lower-level view
of message passing. In the next subsection we discuss deadlock freedom, which follows from a
correspondence between reduction and the transformation of typing derivations to eliminate
applications of Rule [typ-res]. In the case of APCP, this requires care: binding sends and
selections to continuation processes leads to applications of Rule [typ-res] that do not
immediately correspond to reductions.

Remark 3.17 (Comparison To DeYoung et al.). Our rules for sending and selection are
axiomatic, whereas DeYoung et al.’s are in the form of Rules [typ-send∗] and [typ-sel∗],
even though their sends and selections are parallel atomic prefixes as well [DCPT12]. While
our type system is based on classical linear logic (with single-sided judgments), their type
system is based on intuitionistic linear logic. As a result, their typing judgments are two sided,
restriction involves a single name, and there are two rules (right and left) per connective. This
way, for instance, their right rules for sending and selection are as follows (again omitting
the recursive context Ω for a lack of recursion):

[typ-send-R]
Γ ⊢ P :: y : A ∆ ⊢ Q :: x′ : B

Γ,∆ ⊢ (νy)(νx′)(x[y, x′] | P |Q) :: x : A⊗B

[typ-sel-R]
Γ ⊢ P :: x′ : Aj j ∈ I

Γ ⊢ (νx′)(x[x′] ◁ j | P ) :: x : ⊕{i : Ai}i∈I

The following result is important: it shows that the type system of APCP is complete with
respect to types, i.e., every syntactical type has a well-typed process.

Proposition 3.18. Given a type A, there exists Ω ⊢ P :: x : A.

Proof (Sketch). By constructing P from the structure of A. To this end, we define charac-
teristc processes: a function charx(A) that constructs a process that performs the behavior
described by A on the name x.

charx(A⊗◦ B) ≜ x[y] · (chary(A) | charx(B)) charx(•) ≜ 0

charx(A

&◦ B) ≜ x(y); (chary(A) | charx(B)) charx(µX.A) ≜ µX(x); charx(A)

charx(⊕◦{i : Ai}i∈I) ≜ x ◁ j · charx(Aj) (any j ∈ I) charx(X) ≜ X⟨x⟩
charx(&◦{i : Ai}i∈I) ≜ x ▷ {i : charx(Ai)}i∈I

For finite types, it is obvious that ∅ ⊢ charx(A) :: x : A. For simplicity, we omit details about
recursive types, which require unfolding. For closed, recursive types, the thesis is obvious as
well: ∅ ⊢ charx(µX.A) :: x : µX.A.
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3.3. Type Preservation and Deadlock Freedom. Well-typed processes satisfy protocol
fidelity, communication safety, and deadlock freedom. The former two of these properties
follow from type preservation, which ensures that APCP’s semantics preserves typing. In
contrast to Caires and Pfenning [CP10] and Wadler [Wad12], where type preservation
corresponds to the elimination of (top-level) applications of Rule [typ-cut], in APCP it
corresponds to the elimination of (top-level) applications of Rule [type-res].

APCP’s semantics consists of reduction and structural congruence. Since the former relies
on the latter, we first need to show type preservation for structural congruence, i.e., subject
congruence. The structural congruence rule that unfolds recursive definitions requires care,
because the types of the unfolded process are also unfolded:

Example 3.19. Consider the following typed recursive definition:

∅ ⊢ µX(x, y);x(a); y(b);X⟨x, y⟩ :: x : µX. •

&0X, y : µX. •

&1X

Let us derive the typing of the unfolding of this process:
[typ-var]

X : (•

&2 X, •

&3 X) ⊢ X⟨x, y⟩ :: x : µX. •

&6 X︸ ︷︷ ︸
↑4(•

&2X)

, y : µX. •

&7 X︸ ︷︷ ︸
↑4(•

&3X)
[typ-end]

X : (•

&2 X, •

&3 X) ⊢ X⟨x, y⟩ :: x : µX. •

&6X, y : µX. •

&7X, b′ : •
[typ-recv]

X : (•

&2 X, •

&3 X) ⊢ y(b′);X⟨x, y⟩ :: x : µX. •

&6X, y : •

&3 µX. •

&7X
[typ-end]

X : (•

&2 X, •

&3 X) ⊢ y(b′);X⟨x, y⟩ :: x : µX. •

&6X, y : •

&3 µX. •

&7X, a′ : •
[typ-recv]

X : (•
&2 X, •

&3 X) ⊢ x(a′); y(b′);X⟨x, y⟩
:: x : •

&2 µX. •

&6X︸ ︷︷ ︸
unfold4(µX.•

&2X)

, y : •

&3 µX. •

&7X︸ ︷︷ ︸
unfold4(µX.•

&3X)
[typ-rec]

∅ ⊢ µX(x, y);x(a′); y(b′);X⟨x, y⟩ :: x : µX. •

&2X, y : µX. •

&3X
[typ-end]

∅ ⊢ µX(x, y);x(a′); y(b′);X⟨x, y⟩ :: x : µX. •

&2X, y : µX. •

&3X, b : •
[typ-recv]

∅ ⊢ y(b);µX(x, y);x(a′); y(b′);X⟨x, y⟩ :: x : µX. •

&2X, y : •

&1 µX. •

&3X
[typ-end]

∅ ⊢ y(b);µX(x, y);x(a′); y(b′);X⟨x, y⟩ :: x : µX. •

&2X, y : •

&1 µX. •

&3X, a : •
[typ-recv]

∅ ⊢ x(a); y(b);µX(x, y);x(a′); y(b′);X⟨x, y⟩
:: x : •

&0 µX. •

&2X︸ ︷︷ ︸
unfold2(µX.•

&0X)

, y : •

&1 µX. •

&3X︸ ︷︷ ︸
unfold2(µX.•

&1X)

Clearly, the typing of the unfolded process is not the same as the initial type, but they are
equal up to unfolding of types. Note that the application of Rule [typ-rec] unfolds the
types with a common lifter of 4, because it needs to be larger than the top priority in the
types before unfolding which is 3.

Hence, type preservation holds up to unfolding. To formalize this, we define the relation
(⊢ P :: Γ)

≲

Γ′, which says that Γ and Γ′ are equal up to (un)folding of recursive types
consistent with the typing of P under Γ:

Definition 3.20. We define an asymmetric relation between a typed process (Ω ⊢ P :: Γ)
and a typing context Γ′, denoted (Ω ⊢ P :: Γ)

≲

Γ′. The relation is defined by the inference
rules in Figure 6, where each rule implicitly requires that Ω ⊢ P :: Γ is a valid typing
derivation by the rules in Figure 4.

We write (Ω ⊢ P :: Γ) ∼= (Ω′ ⊢ Q :: Γ′) if (Ω ⊢ P :: Γ)

≲

Γ′ and (Ω′ ⊢ Q :: Γ′)

≲

Γ.
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[unf-fold]

(Ω ⊢ P
{(

µX(ỹ);P{ỹ/z̃}
)
/X⟨ỹ⟩

}
:: z̃ : Ũ)

≲

z̃ : Ũ ′ ∀U ′
i ∈ Ũ ′; U ′

i = unfoldt(µX.A′
i)

(Ω ⊢ P
{(

µX(ỹ);P{ỹ/z̃}
)
/X⟨ỹ⟩

}
:: z̃ : Ũ)

≲

z̃ : µ̃X.A′

[unf-unf]

(Ω ⊢ µX(z̃);P :: z̃ : µ̃X.A)

≲

z̃ : µ̃X.A′ ∀U ′
i ∈ Ũ ′. U ′

i = unfoldt(µX.A′
i)

(Ω ⊢ µX(z̃);P :: z̃ : µ̃X.A)

≲

z̃ : Ũ ′

................................................................................................................................................

[unf-send]

(Ω ⊢ x[y, z] :: x : A⊗◦ B, y : A, z : B)

≲

x : A⊗◦ B, y : A, z : B

[unf-recv]
(Ω ⊢ P :: Γ, y : A, z : B)

≲

Γ′, y : A′, z : B′

(Ω ⊢ x(y, z);P :: Γ, x : A

&◦ B)

≲

Γ′, x : A′ &◦ B′

[unf-sel]

(Ω ⊢ x[z] ◁ j :: x : ⊕◦{i : Ai}i∈I , z : Aj)

≲

x : ⊕◦{i : Ai}i∈I , z : Aj

[unf-bra]
∀i ∈ I. (Ω ⊢ Pi :: Γ, z : Ai)

≲

Γ′, z : A′
i

(Ω ⊢ x(z) ▷ {i : Pi}i∈I :: Γ, x : &◦{i : Ai}i∈I)

≲

Γ′, x : &◦{i : A′
i}i∈I

[unf-end]
(Ω ⊢ P :: Γ)

≲

Γ′

(Ω ⊢ P :: Γ, x : •) ≲

Γ′, x : •

[unf-par]
(Ω ⊢ P :: Γ)

≲

Γ′ (Ω ⊢ Q :: ∆)

≲

∆′

(Ω ⊢ P |Q :: Γ,∆)

≲

Γ′,∆′

[unf-res]

(Ω ⊢ P :: Γ, x : A, y : A)

≲

Γ′, x : A′, y : A′

(Ω ⊢ (νxy)P :: Γ)

≲

Γ′
[unf-inact]

(Ω ⊢ 0 :: ∅) ≲∅

[unf-fwd]

(Ω ⊢ [x ↔ y] :: x : A, y : A)

≲

x : A, y : A

[unf-rec]

(Ω, X : Ã ⊢ P :: z̃ : Ũ)

≲

z̃ : Ũ ′

(Ω ⊢ µX(z̃);P :: z̃ : µ̃X.A)

≲

z̃ : µ̃X.A′

[unf-var]

(Ω, X : Ã ⊢ X⟨z̃⟩ :: z̃ : Ũ)

≲

z̃ : Ũ

Figure 6: Inference rules for Definition 3.20.

The most important rules of Figure 6 are Rules [unf-unf] and [unf-fold] (above the
line), as they relate unfolding and folding; the other rule (below the line) follow the typing
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rules in Figure 4. Note that the rules in Figure 6 require no priority requirements, as they
are covered by the implicit validity of the derivation of Ω ⊢ P :: Γ.

Proposition 3.21. If (i) (Ω1 ⊢ P1 :: Γ1) ∼= (Ω2 ⊢ P2 :: Γ2) and (ii) (Ω2 ⊢ P2 :: Γ2) ∼= (Ω3 ⊢
P3 :: Γ3), then (Ω1 ⊢ P1 :: Γ1) ∼= (Ω3 ⊢ P3 :: Γ3).

Proof (Sketch). Since ∼= is reflexive by definition, it suffices to show that (i) (Ω1 ⊢ P1 :: Γ1)

≲

Γ2 and (ii) (Ω2 ⊢ P2 :: Γ2)

≲

Γ3 imply (Ω1 ⊢ P1 :: Γ1)

≲

Γ3. Assumptions (i) and (ii) relate
Γ1,Γ2,Γ3 by applications of Rules [unf-fold] and [unf-unf]. Clearly, the relation between
Γ1 and Γ3 can then be derived directly by combining the applications of these rules.

Subject congruence additionally requires the following property of typing derivations involving
recursion variables:

Proposition 3.22. Suppose given a process P and a derivation π of Ω, X : (Al)l∈L ⊢ P :: Γ.
In every step in π, the assignment X : (Al)l∈L in the recursive context is not modified nor
removed, and no other assignments on the recursion variable X are added.

Proof (Sketch). By induction on the height of the derivation π: no typing rule eliminates
assignments from the recursive context, and no typing rule changes the types assigned to a
recursion variable in the recursive context. Moreover, in our type system, any rule adding
an assignment to a context implicitly assumes that the newly introduced name or recursion
variable is not in the context yet. Hence, an assignment on X cannot be added by any
rule.

Now we can state and prove subject congruence, which holds up to the relation in Defini-
tion 3.20:

Theorem 3.23 (Subject Congruence). If Ω ⊢ P :: Γ and P ≡ Q, then there exists Γ′ such
that Ω ⊢ Q :: Γ′ and (Ω ⊢ P :: Γ) ∼= (Ω ⊢ Q :: Γ′).

Proof. By induction on the derivation of P ≡ Q. The cases for the structural rules follow
from the IH directly. All base cases are straightforward, except the cases of unfolding and
folding. We detail unfolding, where P = µX(z̃);P ′ and Q = P ′{(µX(ỹ);P ′{ỹ/z̃}

)
/X⟨ỹ⟩

}
.

The other direction, folding, is similar.
By type inversion of Rule [typ-rec],

Ω ⊢ P :: Ω; z̃ : µ̃X.A

Ω, X : Ã ⊢ P ′ :: z̃ : Ũ

where there exists t ∈ N > top(µ̃X.A) such that each

Ui = unfoldt(µX.Ai) = Ai{
(
µX.↑tAi

)
/X}.

Let ∇ denote the typing derivation of P ′.
P ′ may contain m ≥ 0 recursive calls X⟨ỹ⟩. For each call, there is an application of

Rule [typ-var] in ∇. We uniquely identify each such application of Rule [typ-var] as ∂j
for 0 < j ≤ m. Since APCP only allows tail recursion, these multiple recursive calls can only
occur inside branches on names not in z̃, so the common lifter of each ∂j must be t.

∂j

{ [typ-var]

Ω′
j , X : Ã ⊢ X⟨ỹj⟩ :: ỹj : µ̃X.↑tA
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[typ-send]
⊢ x[a, b] :: x : A⊗◦ B, a : A, b : B

⊢ P :: Γ, z : A, y′ : B
[typ-recv]

⊢ y(z, y′);P :: Γ, y : A

&◦ B
[typ-par]+[typ-res]

⊢ (νxy)(x[a, b] | y(z, y′);P ) :: Γ, a : A, b : B

→
⊢ P{a/z, b/y′} :: Γ, a : A, b : B

Figure 7: Example of subject reduction (cf. Theorem 3.24) in Rule [red-send-recv]. The
well typedness of the process before reduction allows us to infer its typing derivation,
also giving us the typing of P . Typing the process after reduction is then a matter
of inductively substituting names in the typing derivation of P .

where Ω′
j ⊇ Ω, because rules applied in ∇ can only add assignments to the recursive context.

Recall that ỹj : µ̃X.↑tA is notation for yj1 : µX.↑tA1, . . . , yjk : µX.↑tAk, as introduced in
Section 3.2.

The unfolding of a recursive process replaces each recursive call by a copy of the recursive
definition. Hence, to find a typing derivation for Q we proceed as follows, for each 0 < j ≤ m:
(1) We obtain a derivation ∇′

j of P ′{ỹj/z̃} from ∇ by substituting z̃ for ỹj (while avoiding
capturing names) and by lifting all priorities by t (including the priorities of X in the
recursive context of ∂j).

(2) We apply Rule [typ-rec] on X in the conclusion of ∇′
j , resulting in a new typing

derivation ∂′
j :

∂′
j


∇′

j

Ω′
j , X : ↑̃tA ⊢ P ′{ỹj/z̃} :: ỹj : ↑̃tU

[typ-rec]

Ω′
j ⊢ µX(ỹj);P

′{ỹj/z̃} :: ỹj : µ̃X.↑tA

For every 0 < j ≤ m, the context of the conclusion of ∂′
j coincides with the context

of the conclusion of ∂j , up to the assignment X : ↑̃tA in the recursive context not present
in ∂′

j . We intend to obtain from ∇ a new derivation ∇′ by replacing each ∂j with ∂′
j . By

Proposition 3.22, the fact that each ∂′
j is missing the assignment to X in the recursive context

does not influence the steps in ∇. Hence, we can indeed obtain such a derivation ∇′:

∇′

Ω ⊢ P ′{(µX(ỹ);P ′{ỹ/z̃}
)
/X⟨ỹ⟩

}︸ ︷︷ ︸
Q

:: z̃ : Ũ

where ∀Ui ∈ Ũ . Ui = unfoldt(Ai).
Let Γ′ = z̃ : Ũ . We have Ω ⊢ Q :: Γ′. To prove the thesis, we have to show that Γ

and Γ′ are equal up to unfolding. Following the typing rules applied in the derivation of
Ω ⊢ Q :: z̃ : Ũ , we have (Ω ⊢ Q :: z̃ : Ũ)

≲

z̃ : Ũ (cf. Definition 3.20). Then, by Rule [unf-
fold], (Ω ⊢ Q :: z̃ : Ũ)

≲

z̃ : µ̃X.A. Similarly, we have (Ω ⊢ P :: z̃ : µ̃X.A)

≲

z̃ : µ̃X.A,
so by Rule [unf-unf], (Ω ⊢ P :: z̃ : µ̃X.A)

≲

z̃ : Ũ . Hence, (Ω ⊢ P :: Γ) ∼= (Ω ⊢ Q :: Γ′),
proving the thesis.
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Having established subject congruence, we can prove that reduction preserves typing, i.e.,
subject reduction:

Theorem 3.24 (Subject Reduction). If Ω ⊢ P :: Γ and P →Q, then there exists Γ′ such
that Ω ⊢ Q :: Γ′ and (Ω ⊢ P :: Γ) ∼= (Ω ⊢ Q :: Γ′).

Proof (Sketch). By induction on the derivation of P →Q (Figure 2 (bottom)), we find a Γ′

such that Ω ⊢ Q :: Γ′ and (Ω ⊢ P :: Γ) ∼= (Ω ⊢ Q :: Γ′).
The cases of Rules [red-res] and [red-par] follow directly from the IH. Consider, e.g.,

(νxy)(P |R)→(νxy)(Q |R) derived from P →Q. By inversion of typing on the process before
reduction, e.g., Ω ⊢ P :: Γ, x : A. Then, by the IH, (Ω ⊢ P :: Γ, x : A) ∼= (Ω ⊢ Q :: Γ′, x : A′).
The thesis then follows from an application of Rules [unf-par] and [unf-res].

The case of Rule [red-cong] follows from the IH and subject congruence (Theorem 3.23).
To be precise, the rule says that (i) P ≡ P ′, (ii) P ′ → Q′, and (iii) Q′ ≡ Q imply P → Q.
By Theorem 3.23 (subject congruence) on assumptions (i) and (iii), we have (Ω ⊢ P :: Γ) ∼=
(Ω ⊢ P ′ :: Γ′) and (Ω′ ⊢ Q′ :: ∆′) ∼= (Ω′ ⊢ Q :: ∆). Also, by the IH on assumption (ii),
(Ω ⊢ P ′ :: Γ′) ∼= (Ω′ ⊢ Q′ :: ∆′) where Ω = Ω′. Then, by Proposition 3.21 (transitivity of ∼=),
(Ω ⊢ P :: Γ) ∼= (Ω ⊢ Q :: ∆), proving the thesis.

Key cases are Rules [red-send-recv], [red-sel-bra], and [red-fwd]. Figure 7 shows
the representative instance of Rule [red-send-recv], and an example where Rules [red-res],
[red-par], and [red-cong] are used.

Protocol fidelity ensures that processes respect their intended (session) protocols. Commu-
nication safety ensures the absence of communication errors and mismatches in processes.
Correct typability gives a static guarantee that a process conforms to its ascribed session
protocols; type preservation gives a dynamic guarantee. Because session types describe the
intended protocols and error-free exchanges, type preservation entails both protocol fidelity
and communication safety. For a detailed account, we refer the curious reader to the early
work by Honda et al. [HVK98], which defines error processes and shows by contradiction
that well-typed processes do not reduce to an error.

In what follows, we consider a process to be deadlocked if it is not the inactive process
and cannot reduce. Our deadlock-freedom result for APCP adapts that for PCP [DG18]. The
equivalent of our Rule [typ-res] in PCP is Rule [cycle]. Deadlock freedom for PCP involves
three steps to eliminate applications of Rule [cycle]:
(1) First, [cycle] elimination states that we can remove all applications of [cycle] in a

typing derivation without affecting the derivation’s assumptions and conclusion.
(2) Only the removal of top-level applications of [cycle] captures the intended process

semantics; the removal of other applications of [cycle] corresponds to reductions behind
prefixes, which is not allowed [Wad12, DG18]. Therefore, the second step is top-level
deadlock freedom (referred to here as progress), which states that a process with a top-
level application of [cycle] reduces until there are no top-level applications of [cycle]
left. This step requires commuting conversions: a process with a top-level application of
[cycle] may not have reductions ready, so commuting conversions are used to remove
top-level applications of [cycle] by blocking them with prefixes.

(3) Third, deadlock freedom follows for processes typable under empty contexts.
Here, we adapt and address [typ-res] elimination and progress in one proof.

As mentioned before, binding APCP’s asynchronous sends and selections to continuations
involves additional, low-level uses of [typ-res], which we cannot eliminate through process
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reduction. Therefore, we establish progress for live processes (Theorem 3.29). A process is
live if it is equivalent to a restriction on active names used for unguarded prefixes. This way,
e.g., in x[y, z] the name x is active, but y and z are not. We additionally need a notion of
evaluation context, under which reducible forwarders may occur.

Definition 3.25 (Active Names). The set of active names of P , denoted an(P ), contains
the (free) names that are used for non-blocked prefixed:

an(x[y, z]) ≜ {x} an(x(y, z);P ) ≜ {x} an(0) ≜ ∅
an(x[z] ◁ ℓ) ≜ {x} an(x(z) ▷ {i : Pi}i∈I) ≜ {x} an([x ↔ y]) ≜ ∅
an(P |Q) ≜ an(P ) ∪ an(Q) an(µX(x̃);P ) ≜ an(P )

an((νxy)P ) ≜ an(P ) \ {x, y} an(X⟨x̃⟩) ≜ ∅

Definition 3.26 (Evaluation Context). Evaluation contexts (E) are defined by the following
grammar:

E ::= [·] | E | P | (νxy)E | µX(x̃);E
We write E [P ] to denote the process obtained by replacing the hole [·] in E by P .

Definition 3.27 (Live Process). A process P is live, denoted live(P ), if
(1) there are names x, y and process P ′ such that P ≡ (νxy)P ′ with x, y ∈ an(P ′), or
(2) there are names x, y, z and process P ′ such that P ≡ E

[
(νyz)([x ↔ y] | P ′)

]
and z ̸= x

(i.e., the forwarder is independent).

We additionally need to account for recursion: as recursive definitions do not directly entail
reductions, we must fully unfold them before eliminating applications of [typ-res]:

Lemma 3.28 (Unfolding). If Ω ⊢ P :: Γ, then there is a process P ⋆ such that P ⋆ ≡ P and
P ⋆ is not of the form µX(z̃);Q.

Proof. By induction on the number n of consecutive recursive definitions prefixing P , such
that P is of the form µX1(z̃); . . . ;µXn(z̃);Q. If n = 0, the thesis follows immediately, as
P ≡ P . Otherwise, n ≥ 1. Then there are X,Q such that P = µX(z̃);Q, where Q starts
with n− 1 consecutive recursive definitions. Let R ≜ Q

{(
µX(ỹ);Q{ỹ/z̃}

)
/X⟨ỹ⟩

}
. Clearly,

R ≡ P . Then, because R starts with n−1 consecutive recursive definitions, the thesis follows
by appealing to the IH.

Dardha and Gay’s progress result concerns a sequence of reduction steps that reaches a
process that is not live anymore [DG18]. In our case, progress concerns a single reduction
step only, because recursive processes might stay live across reductions forever. Moreover,
because of our definition of liveness, we do not need commuting conversions for this step.

Theorem 3.29 (Progress). If ∅ ⊢ P :: Γ and live(P ), then there is a process Q such that
P →Q.

Proof. We distinguish the two cases of live(P ): P contains a restriction on a pair of active
names, or P contains a restriction on a forwarded name under a reduction context. In both
cases, we first unfold any recursive definitions preceding the involved prefixes/forwarders,
resulting in P ⋆ ≡ P . By subject congruence (Theorem 3.23), there exists Γ′ such that
∅ ⊢ P ⋆ :: Γ′ and (⊢ P ⋆ :: Γ′)

≲

Γ. By Definition 3.20, the only difference between Γ′ and Γ is
the unfolding of recursive types.
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(1) P ⋆ contains a restriction on a pair of active names. That is, P ⋆ ≡ (νxy)P ⋆′ and
x, y ∈ an(P ⋆′). The rest of the analysis depends on how x and y occur as active
names in P ⋆′. As a representative case, we consider that x occurs as the subject of
a send. By inversion of typing, then y occurs as the subject of a receive. Hence,
we have P ⋆ ≡ E

[
(νxy)(x[a, b] | y(v, z);P ⋆′′)

]
. Let Q ≜ E [P ⋆′′{a/v, b/z}]. Then, by

Rule [red-send-recv], P ⋆→Q. Hence, by Rule [red-cong], P →Q, proving the thesis.
(2) P ⋆ contains a restriction on a forwarded name under a reduction context. That is,

P ⋆ ≡ E
[
(νyz)([x ↔ y] | P ⋆′)

]
where z ̸= x. Let Q = E [P ⋆′{x/z}]. Then, by Rule [red-

fwd], P ⋆ →Q. Hence, by Rule [red-cong], P →Q, proving the thesis.

Our deadlock-freedom result concerns processes typable under empty contexts (as in, e.g.,
Caires and Pfenning [CP10] and Dardha and Gay [DG18]). We first need a lemma which
ensures that non-live processes typable under empty contexts do not contain prefixes
(sends/receives/selections/branches) or independent forwarders (whose endpoints are not
bound together using restriction). This lemma is in fact the crux of our deadlock-freedom
result, as it relies on the priority checks induced by our typing system:

Lemma 3.30. If ∅ ⊢ P :: ∅ and P is not live, then P contains no prefixes or independent
forwarders.

Proof. W.l.o.g., assume all recursion in P is unfolded. Take P ⋆ ≡ P such that P ⋆ =
(νxix

′
i)i∈I

∏
j∈JPj where, for every j ∈ J , Pj is a prefix or forwarder. That is, every Pj is a

thread which cannot be broken down further into parallel components or restrictions.
By abuse of notation, we write pr(Pj) to denote the priority of the type of the subject

of the prefix of Pj . Also, we write pr(x) to denote the priority of the type of x.
Towards a contradiction, assume that there is at least one prefix or independent forwarder

in P . We apply induction on the size of J .
• In the base case, J = ∅. Then there cannot be any prefixes or independent forwarders in
P : a contradiction.

• In the inductive case, J = J ′∪{j}. W.l.o.g., assume that, for every j′ ∈ J ′, pr(Pj) ≤ pr(Pj′)
(i.e., pick Pj as one of the prefixes/forwarders with the least priority of all threads). By
assumption, Pj denotes a prefix or forwarder on some endpoint xi. By well typedness,
xi is connected through restriction to x′i. By Rule [typ-res], pr(xi) = pr(x′i). Further
analysis depends on Pj : a receive (or, analogously, a branch), a send (or, analogously, a
selection), or a forwarder.
– Suppose Pj = xi(y, z);P

′
j . By Rule [typ-recv], x′i /∈ fn(P ′

j), because the rule requires
pr(xi) < pr(x′i): otherwise, this would contradict the fact that pr(xi) = pr(x′i). Hence,
there exists j′ ∈ J ′ such that x′i ∈ fn(Pj′).
If J ′ = ∅, the contradiction is immediate. Otherwise, the analysis depends on the prefix
of Pj′ . Since P is not live, this cannot be a send with subject x′i or an independent
forwarder on x′i. The prefix can also not be a dependent forwarder, for xi already
appears in Pj . This leaves us with two possibilities: a receive (or, analogously, a branch)
on another endpoint, or a send (or, analogously, a selection) with object x′i.
∗ If Pj′ = xk(v, w);P

′
j′ where x′i ∈ fn(P ′

j′), then, by Rule [typ-recv], pr(xk) < pr(x′i).
Hence, pr(Pj′) = pr(xk) < pr(x′i) = pr(xi) = pr(Pj): this contradicts the assumption
that pr(Pj) ≤ pr(Pj′).

∗ If Pj′ = x[a, b] where x′i ∈ {a, b}, w.l.o.g., assume x′i = a. Then, by Rule [typ-send],
pr(xk) < pr(x′i). The contradiction follows as in the previous case.
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– Suppose Pj = xi[a, b]. By Rule [typ-send], x′i /∈ {a, b}, because the rule requires
pr(xi) < pr(x′i): otherwise, this would contradict the fact that pr(xi) = pr(x′i). Hence,
there exists j′ ∈ J ′ such that x′i ∈ fn(Pj′). The contradiction follows as in the previous
case.

– Suppose Pj = [xi ↔ xk]. By well typedness, xi is connected through restriction to x′i.
Since P is not live, it must be that x′i = xk: Pj is not an independent forwarder. Then
there must be a j′ ∈ J ′ where Pj′ fulfills the assumption that P contains at least one
prefix or independent forwarder. The contradiction then follows from the IH.

We now state our deadlock-freedom result:

Theorem 3.31 (Deadlock Freedom). If ∅ ⊢ P :: ∅, then either P ≡ 0 or P →Q for some Q.

Proof. The analysis depends on whether P is live or not.

• If P is not live, then, by Lemma 3.30, it does not contain any prefixes or independent
forwarders. Any recursive definitions in P are thus of the form µX1(); . . . ;µXn();0:
contractiveness requires recursive calls to be prefixed by receives/branches or bound to
parallel sends/selections/forwarders, of which there are none. Hence, we can use structural
congruence to rewrite each recursive definition in P to 0 by unfolding, yielding P ′ ≡ P .
Any dependent forwarders in P are of the form (νxy)[x ↔ y], and can be rewritten to 0
using Rule [cong-res-fwd] (cf. Figure 2). The remaining derivation of P ′ only contains
applications of Rule [typ-inact], [typ-par], [typ-end], or [typ-res] on closed names. It
follows straightforwardly that P ≡ P ′ ≡ 0.

• If P is live, by Theorem 3.29 there is Q s.t. P →Q.

3.4. Reactivity. Progress (Theorem 3.29) is an important liveness property, as it defines
precisely the conditions under which processes can reduce (namely, liveness in Definition 3.27).
As such, progress plays a key role in deadlock freedom (Theorem 3.31). However, in the
presence of recursion, the strength of progress is limited: even if the majority of subprocesses
is stuck, progress holds if at least one subprocess is live. Nonetheless, APCP’s type system
allows us to prove a stronger result: reactivity, which essentially states that infinite recursion
in APCP cannot block sessions from progressing.

Processes typable under empty contexts are not only deadlock free, they are reactive,
in the following sense: for each name in the process, we can eventually observe a reduction
involving that name. To formalize this property, we define labeled reductions, which expose
details about synchronizations:

Definition 3.32 (Labeled Reductions). Consider the labels

α ::= [x ↔ y] | x⟩y : a | x⟩y : ℓ (forwarding, send/receive, selection/branching)
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where each label has subjects x and y. The labeled reduction P
α−⇁ Q is defined by the

following rules:

[lred-send-recv]

(νxy)(x[a, b] | y(v, z);P )
x⟩y:a−−−⇁ P{a/v, b/z}

[lred-sel-bra]
j ∈ I

(νxy)(x[b] ◁ j | y(z) ▷ {i : Pi}i∈I)
x⟩y:j−−−⇁ Pj{b/z}

[lred-fwd]

(νyz)([x ↔ y] | P )
[x↔y]−−−⇁ P{x/z}

[lred-cong]

P ≡ P ′ P ′ α−⇁ Q′ Q′ ≡ Q

P
α−⇁ Q

[lred-res]

P
α−⇁ Q

(νxy)P
α−⇁ (νxy)Q

[lred-par]

P
α−⇁ Q

P |R α−⇁ Q |R

Proposition 3.33. For any P and P ′, P → P ′ if and only if there exists a label α such
that P α−⇁ P ′.

Proof. Immediate by definition, because each reduction in Figure 2 (bottom) corresponds to
a labeled reduction, and vice versa.

Our reactivity result states that processes typable under empty contexts have at least
one finite reduction sequence (denoted →⋆) that enables a labeled reduction involving a
pending name—a name that occurs as the subject of a prefix and is not bound by an input
(see below). Clearly, the typed process may have other reduction sequences, not necessarily
finite.

Definition 3.34 (Pending Names). Given a process P , we define the set of pending names
of P , denoted pn(P ), as follows:

pn(x[y, z]) ≜ {x} pn(x(y, z);P ) ≜ {x} ∪ (pn(P ) \ {y, z})
pn(x[z] ◁ ℓ) ≜ {x} pn(x(z) ▷ {i : Pi}i∈I) ≜ {x} ∪ (

⋃
i∈I pn(Pi) \ {z})

pn(P |Q) ≜ pn(P ) ∪ pn(Q) pn(µX(x̃);P ) ≜ pn(P ) pn(0) ≜ ∅
pn((νxy)P ) ≜ pn(P ) pn(X⟨x̃⟩) ≜ ∅ pn([x ↔ y]) ≜ {x, y}

Note that the proof of reactivity below does not rely on deadlock freedom: suppose we are
observing a blocked pending prefix in a process with a parallel recursive definition; deadlock
freedom ensures a reduction from the recursive definition which would not unblock the
pending prefix we are observing. Instead, the proof relies on a priority analysis (similar to
the one in the proof of Lemma 3.30) to unblock pending prefixes.

Theorem 3.35 (Reactivity). Suppose given a process ∅ ⊢ P :: ∅. Then, for every x ∈ pn(P )

there exists a process P ′ such that P →⋆ P ′ and P ′ α−⇁ Q, for some process Q and label α with
subject x.

Proof. Take any x ∈ pn(P ). Because P is typable under empty contexts, x is bound to some
y ∈ pn(P ) by restriction. By typing, in P there is exactly one prefix on x and one prefix on
y (they may also occur in forwarder processes). Following the restrictions on priorities in the
typing of x and y in P , the prefixes on x and y cannot occur sequentially in P (cf. the proof
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of Lemma 3.30 for details on this reasoning). By typability, the prefix on y is dual to the
prefix on x.

We apply induction on the number of receives, branches, and recursive definitions in P
blocking the prefixes on x and y, denoted n and m, respectively. Because P is typable under
empty contexts, the blocking receives and branches that are on names in pn(P ) also have to
be bound to pending names by restriction. The prefixes on these connected names may also
be prefixed by receives, branches, and recursive definitions, so we may need to unblock those
prefixes as well. Since there can only be a finite number of names in any given process, we
also apply induction on the number of prefixes blocking these connected prefixes.
• If n = 0 and m = 0, then the prefixes on x and y occur at the top level; because they do

not occur sequentially, the synchronization between x and y can take place immediately.
Hence, P α−⇁ Q where x and y are the subjects of α. This proves the thesis, with P ′ = P .

• If n > 0 or m > 0, the analysis depends on the foremost prefixes blocking the prefixes on
x and y.

If the either of these blocking prefixes is a recursive definition (µX(ỹ)), we unfold the
recursion. Because a corresponding recursive call (X⟨z̃⟩) cannot occur as a prefix, the
effect of unfolding either (i) triggers prefixes that occur in parallel to those on x and y, or
(ii) the prefixes on x or y precede the punfolded recursive call. In either case, the number
of prefixes decreases, and the thesis follows from the IH.

Otherwise, if neither foremost prefix is a recursive definition, then the foremost prefixes
must be on names in pn(P ). Consider the prefix that is typable with the least priority.
W.l.o.g. assume that this is the foremost prefix of x. Suppose this prefix is on some name
w connected to another name z ∈ pn(P ) by restriction. By typability, the priority of w
is less than that of x and all of the prefixes in between. This means that the number of
prefixes blocking the prefix on z strictly decreases. Hence, by the IH, P →⋆ P ′′ α′

−⇁ Q′

in a finite number of steps, where w and z are the subjects of α′. The synchronization
between w and z can be performed, and n decreases. By type preservation (Theorem 3.24),
∅ ⊢ Q′ :: ∅. The thesis then follows from the IH: P →⋆ P ′′ α′

−⇁ Q′ →⋆ P ′ α−⇁ Q in finite steps,
where x and y are the subjects of α.

Note that deadlock freedom (Theorem 3.31) can be derived directly from reactivity: liveness
implies the existence of pending names, so reduction is guaranteed by Theorem 3.35. In
the following, deadlock freedom is strong enough, but in [HP22b] where we apply APCP for
the analysis of distributed implementations of multiparty session types we do rely on the
stronger reactivity.

3.5. Typing Milner’s Cyclic Scheduler. Here we show that our specification of Milner’s
cyclic scheduler from Section 2.1 is typable in APCP, and thus deadlock free (cf. Theorem 3.31).
Let us recall the process definitions of the leader and followers, omitting braces ‘{. . .}’ for
branches with one option:

A1 ≜ µX(a1, cn, d1); d1 ◁ start · a1 ◁ start · a1 ▷ ack; d1 ◁ next ·
cn ▷ start; cn ▷ next;X⟨a1, cn, d1⟩

Ai+1 ≜ µX(ai+1, ci, di+1); ci ▷ start; ai+1 ◁ start · di+1 ◁ start · ai+1 ▷ ack;
ci ▷ next; di+1 ◁ next ·X⟨ai+1, ci, di+1⟩

∀1 ≤ i < n
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[typ-var]
X : (Ta1 , Tcn , Td1) ⊢ a1 : µX.(↑t1Ta1), cn : µX.(↑t1Tcn),

d1 : µX.(↑t1Td1)
(3.9)

[typ-bra]
X : TX ⊢ a1 : µX.(↑t1Ta1), cn : &ρn{next : µX.(↑t1Tcn)},

d1 : µX.(↑t1Td1)
(3.8)

[typ-bra]
X : TX ⊢ a1 : µX.(↑t1Ta1), cn : &πn{start : &ρn{next : µX.(↑t1Tcn)}},

d1 : µX.(↑t1Td1)
(3.7)

[typ-sel∗]
X : TX ⊢ a1 : µX.(↑t1Ta1), cn : &πn{start : &ρn{next : µX.(↑t1Tcn)}},

d1 : ⊕ρ1{next : µX.(↑t1Td1)}
(3.6)

[typ-bra]
X : TX ⊢ a1 : &

κ1{ack : µX.(↑t1Ta1)},
cn : &πn{start : &ρn{next : µX.(↑t1Tcn)}},
d1 : ⊕ρ1{next : µX.(↑t1Td1)}

(3.5)

[typ-sel∗]
X : TX ⊢ a1 : ⊕◦1{start : &κ1{ack : µX.(↑t1Ta1)}},

cn : &πn{start : &ρn{next : µX.(↑t1Tcn)}},
d1 : ⊕ρ1{next : µX.(↑t1Td1)}

(3.4)

[typ-sel∗]
X : (Ta1 , Tcn , Td1)︸ ︷︷ ︸

TX

⊢ a1 : ⊕◦1{start : &κ1{ack : µX.(↑t1Ta1)}},
cn : &πn{start : &ρn{next : µX.(↑t1Tcn)}},
d1 : ⊕π1{start : ⊕ρ1{next : µX.(↑t1Td1)}}

(3.3)

[typ-rec]
∅ ⊢ a1 : µX.⊕◦1{start : &κ1{ack : X}}︸ ︷︷ ︸

Ta1

, cn : µX.&πn{start : &ρn{next : X}}︸ ︷︷ ︸
Tcn

,

d1 : µX.⊕π1{start : ⊕ρ1{next : X}}︸ ︷︷ ︸
Td1

Figure 8: Typing derivation of the leader scheduler A1 of Milner’s cyclic scheduler (processes
omitted).

Figure 8 gives the typing derivation of A1, omitting processes from judgments, with the
following priority requirements:

t1 > max(◦1, κ1, πn, ρn, π1, ρ1) (3.3)
π1 < ρ1 (3.4)
◦1 < κ1 (3.5)
κ1 < πn, ρ1 (3.6)
ρ1 < π1 + t1 (3.7)
πn < ◦1 + t1, π1 + t1 (3.8)
ρn < ◦1 + t1, π1 + t1 (3.9)

Each process Ai+1 for 0 ≤ i < n—thus including the leader—is typable as follows, assuming
ci is cn for i = 0:

∅ ⊢ Ai+1 :: ai+1 : µX.⊕◦i+1{start : &κi+1{ack : X}}, ci : µX.&πi{start : &ρi{next : X}},
di+1 : µX.⊕πi+1{start : ⊕ρi+1{next :X}}

Note how, for each 1 ≤ i ≤ n, the types for ci and di are duals and are thus assigned equal
priorities.
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[typ-close]

Ω ⊢ x[] :: x : 1◦

[typ-wait]
Ω ⊢ P :: Γ ◦ < pr(Γ)

Ω ⊢ x();P :: Γ, x : ⊥◦

[typ-cli]
◦ < pr(A)

Ω ⊢ ?x[y] :: x : ?◦A, y : A

[typ-srv]
Ω ⊢ P :: ?Γ, y : A ◦ < pr(?Γ)

Ω ⊢ !x(y);P :: ?Γ, x : !◦A

[typ-cli∗]
Ω ⊢ P :: Γ, y : A ◦ < pr(A)

Ω ⊢ ?x[y] · P :: Γ, x : ?◦A

[typ-weaken]
Ω ⊢ P :: Γ

Ω ⊢ P :: Γ, x : ?◦A

[typ-contract]
Ω ⊢ P :: Γ, x : ?◦A, x′ : ?κA π = min(◦, κ)

Ω ⊢ P{x/x′} :: Γ, x : ?πA

................................................................................................................................................

[red-close-wait]

(νxy)(x[] | y();P )→ P

[red-cli-srv]

(νxy)(?x[a] | !y(v);P |Q)→ P{a/v} | (νxy)(!y(v);P |Q)

Figure 9: Typing rules (top) and reductions (bottom) for explicit closing and replicated
servers.

The priority requirements in the typing derivation of each Ai are satisfiable. The
derivations of these processes have the following constraints:
• For A1 we require the inequalities listed above;
• For each 1 ≤ i < n, for Ai+1 we require πi < ◦i+1, πi+1, ◦i+1 < κi+1, πi+1 < ρi+1,
κi+1 < ρi, ρi+1, ρi < ◦i+1 + ti+1, ρi+1, and ρi+1 < πi+1 + ti+1.

We can satisfy these requirements by assigning πi ≜ i, ◦i ≜ i + 1, κi ≜ i + 2, and ρi ≜
i + 4 for each 1 ≤ i ≤ n, except with πn ≜ n + 3 (to satisfy (3.6) for 1 ≤ n < 4).
For the application of [typ-rec], each derivation also requires a common lifter ti+1 >
max(◦i+1, κi+1, πi, ρi, πi+1, ρi+1) for 0 ≤ i < n. The priority requirements involving ti+1

always require the priority lifted by ti+1 to be higher than the priority not lifted by ti+1, so
the common lifter requirement easily satisfies these requirements.

Recall from Section 2.1:

Schedn ≜ (νc1d1) . . . (νcndn)
(
(νa1b1)(A1 | P1) | . . . | (νanbn)(An | Pn)

)
Assuming given workers

∅ ⊢ Pi :: bi : µX.&◦i{start : ⊕κi{ack : X}}
for each 1 ≤ i ≤ n, we have ∅ ⊢ Schedn :: ∅. Hence, it follows from Theorem 3.31 that
Schedn is deadlock free for each n ≥ 1.

3.6. Extensions: Explicit Session Closing and Replicated Servers. As already
mentioned, our presentation of APCP does not include explicit closing and replicated servers.
Here we briefly discuss what APCP would look like if we were to include these constructs.

Explicit closing is useful in programming to be sure that all resources are cleaned up
correctly. There are several ways of integrating explicit closing in a calculus like APCP.
Following, e.g., [CP10, Wad12], here we achieve explicit closing by adding closes (empty
sends) x[] and waits (empty receives) x();P to the syntax in Figure 2 (top). We also add
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the Rule [red-close-wait] to Figure 2 (bottom). At the level of types, we replace the
conflated type • with 1◦ and ⊥◦, associated to closes and waits, respectively. Note that we do
need priority annotations on types for closed names now, because wait is blocking and thus
requires priority checks. In the type system in Figure 4 (top), we replace Rule [typ-end]
with Rules [type-close] and [typ-wait] in Figure 9 (top).

For replicated servers, we add (asynchronous) client requests ?x[y] and servers !x(y);P ,
with types ?◦A and !◦A, respectively. We include syntactic sugar for binding client requests
to continuations as in Notation 3.2: ?x[y] · P ≜ (νya)(?x[a] | P ). Rule [red-cli-srv] is in
Figure 9 (bottom): it connects a client and a server and forks a copy of the server. Also,
we add a structural congruence rule to clean up unused servers: (νxz)(!x(y);P ) ≡ 0. In
the type system, we add Rules [typ-cli], [typ-srv], [typ-weaken], and [typ-contract]
in Figure 9 (top); the former two are for typing client requests and servers, respectively,
and the latter two are for connecting to a server without requests and for multiple requests,
respectively. In Rule [typ-srv], notation ?Γ means that every type in Γ is of the form ?◦A.
Figure 9 (top) also includes a derivable Rule [typ-cli∗] which types the syntactic sugar for
bound client requests.

4. An Intermezzo: From APCP to LAST

As attested by its expressivity and meta-theoretical results (Theorem 3.24 and Theorem 3.31),
APCP provides a convenient framework for analyzing asynchronous message passing between
cyclically connected processes. In particular, APCP provides a firm basis for designing languages
with session-typed concurrency, asynchronous communication, and cyclic structures. Ideally,
we would like to faithfully compile any such language into APCP, in order to transfer its
correctness guarantees.

As discussed in the Introduction, we look for answers in the realm of functional pro-
gramming, in the form of variants of the λ-calculus with session-typed, message-passing
concurrency. In this context, Gay and Vasconcelos’s LAST [GV10] appears nicely positioned:
LAST is a call-by-value language in which programs consist of threads that are cyclically con-
nected on channels that provide asynchronous message passing (through buffers). The calculus
LAST has forked several variants that connect message-passing processes with message-passing
functions, as we set out to do here. Most notably, Walder [Wad12, Wad14] introduced GV, a
variant of LAST with synchronous communication and non-cyclic thread connections, and
gave a translation into his CP (the synchronous ancestor of APCP, without cyclic connections).
Subsequently, in the same spirit, Kokke and Dardha [KD21a] presented PGV, a variant of
GV with cyclic connections, and a translation from Dardha and Gay’s PCP (the synchronous
ancestor of APCP [DG18]).

Hence, LAST is a natural choice for a core programming language that can be studied
via a translation into APCP. Notice that both GV and PGV enjoy deadlock freedom by typing,
whereas LAST does not. This strengthens our motivation for designing a translation into APCP,
as transferring the deadlock-freedom property from APCP to LAST would address a significant
gap. To our knowledge, such a translational approach to ensuring deadlock freedom for LAST
programs has not been achieved before.

In this section we gently recall LAST and gradually introduce the key ingredients for
its translation into APCP. For presentational purposes, we find it useful to present a variant
of LAST that is more convenient towards a translation, denoted LAST⋆ (Section 4.1). The
type system for LAST⋆, described in Section 4.2, closely follows the one for LAST in [GV10].



6:34 B. van den Heuvel and J.A. Pérez Vol. 20:4

Terms (M,N, . . .), values (v), and reduction contexts (R ):

M,N ::= x variable | new create new channel
| () unit value | forkM ;N fork M in parallel to N
| λx.M abstraction | (M,N) pair construction
| M N application | let (x, y) = M inN pair deconstruction
| sendM N send M along N | select ℓM select label ℓ along M
| recvM receive along M | caseM of {i : N}i∈I offer labels in I along M

v ::= x | λx.M | (v, v) | ()
R ::= [·] | R M | v R | (R ,M) | (v,R ) | let (x, y) = R inM

| sendR M | send v R | recvR | select ℓR | caseR of {i : M}i∈I................................................................................................................................................
Term reduction (→M):

[red-lam]

(λx.M) v →M M{v/x}
[red-pair]

let (x, y) = (v1, v2) inM →M M{v1/x, v2/y}

[red-lift]
M →M N

R [M ]→M R [N ]

Figure 10: The LAST⋆ term language.

Then, in Section 4.3, we discuss the potential design of a translation from LAST⋆ into APCP.
We purposefully use the word “potential”: we seek a translation that is faithful, i.e., that
preserves and reflects behaviors in a precise sense. Given this focus, we shall argue that
the call-by-value semantics of LAST⋆ is not well suited for inducing a faithful translation.
As such, this section serves as motivation for introducing LASTn , a variant of LAST based
on a call-by-name semantics with constructs for session closing and explicit substitutions,
which enjoys a faithful translation into APCP and admits the translational approach to the
deadlock-freedom property (Section 5).

4.1. The Syntax and Semantics of LAST⋆. In LAST⋆, programs consist of two layers:
while terms (M,N, . . .) define the behavior of threads, configurations (C,D, . . .) are obtained
by composing threads in parallel, so as to enable their interaction by exchanging messages
on buffered channels. Before detailing these syntactic elements (and their semantics), we
point out the differences between LAST and LAST⋆. While in LAST endpoints are created by
synchronization on shared names, LAST⋆ features a dedicated construct for endpoint creation
(denoted new). Also, thread creation in LAST⋆ involves an explicit continuation, not present in
LAST. Moreover, in LAST buffers run next to threads, whereas they are integrated in endpoint
restrictions in LAST⋆. Finally, for simplicity, LAST⋆ accounts for linear sessions only.

Terms. Figure 10 (top) gives the term syntax for LAST⋆. The functional behavior of terms is
defined by standard λ-calculus constructs for variables x, the unit value (), abstraction λx.M
and application M N , and pair construction (M,N) and deconstruction let (x, y) = M inN .
As usual, to improve readability, we often write letx = M inN to denote (λx.N) M .

The remaining constructs define the thread and message-passing behavior of terms;
their exact semantics will be defined for configurations, so we briefly describe them here.
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The construct new creates a new buffered channel with two endpoints (referred to with
variables). The construct forkM ;N forks a new thread running term M and continues as
N . By involving an explicit continuation N , this is slightly different than the corresponding
construct in LAST. We can think of N as the continuation to be run immediately after M is
spawned. This is a mild generalization, as the construct in LAST corresponds to the case in
which N = (); it will be convenient for the correct translation into APCP.

The constructs sendNM and recvM denote sending and receiving messages along M
once it has reduced to a variable referring to a buffer endpoint, respectively; that is, sending
entails placing the message N at the end of the buffer, and receiving entails taking a message
from the start of the buffer (if there). The constructs select ℓM and caseM of {i : Ni}i∈I
denote selecting and offering labels along M once it has reduced to an endpoint variable,
respectively; that is, selection entails placing the label ℓ at the end of the buffer, and offering
entails taking a label j ∈ I from the start of the buffer (if there) and continuing in the
corresponding branch Nj .

Following [GV10], the term reduction semantics of LAST⋆ employs a call-by-value (CbV)
approach; Figure 10 (center) defines values v, i.e., terms that cannot further reduce on
their own: variables, abstractions, pairs, and the unit value. Figure 10 (center) also defines
reduction contexts R that define under which positions subterms may reduce. Finally,
Figure 10 (bottom) defines term reduction (→M). Rule [red-lam] reduces an abstraction
applied to a value; the substitution of a value v for a (free) variable x is denoted {v/x}, as
usual. Rule [red-pair] reduces the pair deconstruction of a pair of values to two substitutions.
Rule [red-lift] closes term reduction under reduction contexts.

Example 4.1. To illustrate the CbV semantics of LAST⋆, consider the following term and
its behavior:(

λx.x (λy.y)
) (

(λw.w) (λz.z)
)
→M

(
λx.x (λy.y)

)
(λz.z)→M (λz.z) (λy.y)→M λy.y

We will illustrate the message-passing behavior of LAST⋆ after introducing configurations
below.

Configurations. Functional calculi such as LAST⋆ feature a clear distinction between the
static and dynamic parts of their languages. That is, a LAST⋆ program starts as a closed
functions (the static part) and evolves into several threads operating in parallel and commu-
nicating through message passing (the dynamic part). We refer to the static and dynamic
parts of LAST⋆ as terms and configurations, respectively. In general, one writes a LAST⋆

program as a single main thread containing a term that forks and connects child threads.
To contrast, process calculi such as APCP blur the lines between such static and dynamic
parts, as APCP “programs” are immediately written as configurations of parallel subprocesses
connected on channels.

Figure 11 gives the configuration syntax for LAST⋆. Given a term M , the configuration
ϕM denotes a corresponding thread, where the marker ϕ is useful to distinguish the main
thread ♦ from child threads ♢—this distinction will be useful for typing. Buffered channels
are denoted (νx[m⃗⟩y)C. Here, C has access to the endpoints x and y. The buffer itself
x[m⃗⟩y is an ordered sequence of messages (values and labels, denoted m⃗) sent on x and to
be received on y. This means that C may send/select on x and receive/offer on y. Once the
buffer is empty (i.e., m⃗ = ϵ), x and y may switch roles. Configuration C ∥ D denotes the
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Markers (ϕ), messages (m,n), configurations (C,D,E), thread contexts (F ), configuration
contexts (G):

ϕ ::= ♦ | ♢ m,n ::= v | ℓ
C,D,E ::= ϕM | (νx[m⃗⟩y)C | C ∥ D

F ::= ϕR G ::= [·] | G ∥ C | (νx[m⃗⟩y)G
................................................................................................................................................

Structural congruence for configurations (≡C):

[sc-res-swap]

(νx[ϵ⟩y)C ≡C (νy[ϵ⟩x)C
[sc-res-comm]

(νx[m⃗⟩y)(νz[n⃗⟩w)C ≡C (νz[n⃗⟩w)(νx[m⃗⟩y)C
[sc-res-ext]

x, y /∈ fv(C)

(νx[m⃗⟩y)(C ∥ D) ≡C C ∥ (νx[m⃗⟩y)D
[sc-par-comm]

C ∥ D ≡C D ∥ C

[sc-par-assoc]

C ∥ (D ∥ E) ≡C (C ∥ D) ∥ E

................................................................................................................................................
Configuration reduction (→C):

[red-new]

F [new]→C (νx[ϵ⟩y)(F [(x, y)])

[red-fork]

F [forkM ;N ]→C F [N ] ∥ ♢M

[red-send]

(νx[m⃗⟩y)(F [send v x] ∥ C)→C (νx[v, m⃗⟩y)(F [x] ∥ C)

[red-recv]

(νx[m⃗, v⟩y)(F [recv y] ∥ C)→C (νx[m⃗⟩y)(F [(v, y)] ∥ C)

[red-select]

(νx[m⃗⟩y)(F [select ℓ x] ∥ C)→C (νx[ℓ, m⃗⟩y)(F [x] ∥ C)

[red-case]
j ∈ I

(νx[m⃗, j⟩y)(F [case y of {i : Mi}i∈I ] ∥ C)→C (νx[m⃗⟩y)(F [Mj y] ∥ C)

[red-res-nil]
x, y /∈ fv(C)

(νx[ϵ⟩y)C →C C

[red-par-nil]

C ∥ ♢ ()→C C

[red-lift-C]
C →C C

′

G [C]→C G [C ′]

[red-lift-M]
M →M M

′

F [M ]→C F [M ′]

[red-conf-lift-sc]
C ≡C C

′ C ′ →C D
′ D′ ≡C D

C →C D

Figure 11: The LAST⋆ configuration language: syntax and semantics.

parallel composition of C and D. Figure 11 (top) also defines thread contexts F as term
reduction contexts inside threads, and configuration contexts G .
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The reduction semantics for configurations is defined on specific arrangements of buffers
and threads. To ensure such arrangements, we define a structural congruence for con-
figurations (≡C), the least congruence on configurations satisfying the rules in Figure 11
(center). Rule [sc-res-swap] swaps the direction of buffered channels and thus the in-
put/output roles of the channel’s endpoints. Rule [sc-res-comm] defines commutativity of
buffered channels. Rule [sc-res-ext] defines scope extrusion/inclusion for buffered channels.
Rules [sc-par-comm] and [sc-par-assoc] define commutativity and associativity for parallel
composition.

Figure 11 (bottom) gives the reduction semantics for configurations (→C). It defines how
terms in threads interact with each other by exchanging messages through buffered channels.
Rule [red-new] reduces a new construct in a thread by creating a new buffered channel and
returning the endpoints x and y. Rule [red-fork] reduces a fork construct in a thread by
creating a new child thread. Rule [red-send] reduces a send by placing the value at the
end of the enclosing buffer and returning the endpoint. Dually, Rule [red-recv] reduces a
recv by retrieving the value at the start of the enclosing buffer and returning it along with
the endpoint. Rule [red-select] reduces a select by placing the label at the end of the
enclosing buffer and returning the endpoint. Dually, Rule [red-case] reduces a case by
retrieving the label at the start of the enclosing buffer and applying the label’s corresponding
continuation to the endpoint. Rule [red-res-nil] garbage collects buffers that are no longer
used, and Rule [red-par-nil] garbage collects child threads that have reduced to unit.
Rules [red-lift-C] and [red-lift-M] close configuration reduction under configuration
contexts and enable terms in threads to reduce, respectively. Rule [red-conf-lift-SC]
closes configuration reduction under structural congruence.

Example 4.2 (The Bookshop Scenario, Revisited). We illustrate the message-passing
behavior of LAST⋆ by considering the bookshop example from Section 2.2. Note that LAST⋆
does not have close constructs: we will motivate them in Section 5; here, for simplicity, we
consider the system in Section 2.2 without these constructs.

First, let us explore how ♦Sys sets up some channels and threads:

♦ let (s, s′) = new in fork Shop(s); let (m,m′) = new in forkMother(m);Son(s′,m′)

→C (νy[ϵ⟩y′)
(
♦ let (s, s′) = (y, y′) in forkShop(s);
let (m,m′) = new in forkMother(m);Son(s′,m′)

)
→C (νy[ϵ⟩y′)

(
♦ forkShop(y); let (m,m′) = new in forkMother(m);Son(y′,m′)

)
→C (νy[ϵ⟩y′)

(
♦ let (m,m′) = new in forkMother(m);Son(y′,m′) ∥ ♢Shop(y)

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ let (m,m′) = (z, z′) in forkMother(m);Son(y′,m′)

)
∥ ♢Shop(y)

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ forkMother(z);Son(y′, z′)

)
∥ ♢Shop(y)

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦Son(y′, z′) ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
Next, let us see how the son sends the book title and his choice to buy to the shop, and then
his connection with the shop to his mother, without waiting for any of his messages to be
received:

≡C (νy
′[ϵ⟩y)

(
(νz[ϵ⟩z′)

(
♦ let s′1 = send “Dune” y′ in . . . ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
→C (νy

′[“Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let s′1 = y′ in . . . ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
→C (νy

′[“Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let s′2 = select buy y′ in . . . ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
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→C (νy
′[buy, “Dune”⟩y)

(
(νz[ϵ⟩z′)

(
♦ let s′2 = y′ in . . . ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
→C (νy

′[buy, “Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ letm′

1 = send y′ z′ in . . . ∥ ♢Mother(z)
)
∥ ♢Shop(y)

)
→C (νy

′[buy, “Dune”⟩y)
(
(νz′[y′⟩z)

(
♦ letm′

1 = z′ in . . . ∥ ♢Mother(z)
)
∥ ♢Shop(y)

)
→C (νy

′[buy, “Dune”⟩y)
(
(νz′[y′⟩z)

(
♦ let (book,m′

2) = . . . ∥ ♢Mother(z)
)
∥ ♢Shop(y)

)
Now, we can see how the mother receives the shop’s connection and sends her credit card
information:

= (νy′[buy, “Dune”⟩y)
(
(νz′[y′⟩z)

(
♦ let (book,m′

2) = recv z′ in book
∥ ♢ let (x,m1) = recv z in . . .

)
∥ ♢Shop(y)

)
→C (νy

′[buy, “Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let (book,m′

2) = recv z′ in book
∥ ♢ let (x,m1) = (y′, z) in . . .

)
∥ ♢Shop(y)

)
→C (νy

′[buy, “Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let (book,m′

2) = recv z′ in book
∥ ♢ letx1 = send visa y′ in . . .

)
∥ ♢Shop(y)

)
→C (νy

′[visa, buy, “Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let (book,m′

2) = recv z′ in book
∥ ♢ letx1 = y′ in . . .

)
∥ ♢Shop(y)

)
→C (νy

′[visa, buy, “Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let (book,m′

2) = recv z′ in book
∥ ♢ let (book, x2) = recv y′ in . . .

)
∥ ♢Shop(y)

)
Finally, the sequence of reductions in Figure 12 shows how the shop reads messages and
sends the book, and how the mother forwards it to her son.

4.2. The Type System of LAST⋆. The type system for LAST⋆ includes functional types
for functions and pairs and session types for message passing. The syntax and meaning of
functional types (T ,U) and session types (S) are as follows:

T ,U ::= T × U pair | T ⊸ U function | 1 unit | S session
S ::= !T.S send | ?T.S receive | ⊕{i : T}i∈I select | &{i : T}i∈I branch

|end
Session type duality (S) is defined as usual; note that only the continuations, and not the
messages, of send and receive types are dualized.

!T.S = ?T.S ⊕{i : Si}i∈I = &{i : Si}i∈I end = end

?T.S = !T.S &{i : Si}i∈I = ⊕{i : Si}i∈I
The type system for LAST⋆ has three layers: typing for terms, for buffers, and for

configurations. Typing for terms uses judgments of the form

Γ ⊢M M : T

which decrees that M has a behavior described by T using the typing context Γ, which is
defined as a list of variable-type assignments x : T .

Figure 13 (top) gives the typing rules for terms. Rules often combine typing contexts Γ
and ∆ to form Γ,∆; this implicitly assumes that the domains of Γ and ∆ are disjoint. We
briefly comment on them:
• Rules [typ-var], [typ-abs], [typ-app], [typ-unit], [typ-pair], and [typ-split] are

standard typing rules for functional terms.
• Rule [typ-new] types the new construct as a pair of dual session types.
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(νy′[visa, buy, “Dune”⟩y)
(
(νz[ϵ⟩z′)

(
♦ let (book,m′

2) = recv z′ in book
∥ ♢ let (book, x2) = recv y′ in . . .

)
∥ ♢ let (title, s1) = recv y in . . .

)
→C (νy

′[visa, buy⟩y)
(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ let (title, s1) = (“Dune”, y) in . . .

)
→C (νy

′[visa, buy⟩y)
(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ case y of {. . .}

)
→C (νy

′[visa⟩y)
(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ (λs2 . . .) y

)
→C (νy

′[visa⟩y)
(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ let (card, s3) = recv y in . . .

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ let (card, s3) = (visa, y) in . . .

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ let s4 = send book(“Dune”) y in ()

)
→C (νy[book(“Dune”)⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ let s4 = y in ()

)
→C (νy[book(“Dune”)⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ . . .

)
∥ ♢ ()

)
→C (νy[book(“Dune”)⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ let (book, x2) = recv y′ in . . .

))
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ let (book, x2) = (book(“Dune”), y′) in . . .

))
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ letm2 = send book(“Dune”) z in ()

))
→C (νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ letm2 = send book(“Dune”) z in ()

)
→C (νz[book(“Dune”)⟩z′)

(
♦ . . . ∥ ♢ letm2 = z in ()

)
→C (νz[book(“Dune”)⟩z′)

(
♦ . . . ∥ ♢ ()

)
→C (νz[book(“Dune”)⟩z′)

(
♦ let (book,m′

2) = recv z′ in book
)

→C (νz[ϵ⟩z′)
(
♦ let (book,m′

2) = (book(“Dune”), z′) in book
)

→C (νz[ϵ⟩z′)
(
♦ book(“Dune”)

)
→C ♦ book(“Dune”)

Figure 12: Reduction sequence from Example 4.2. Recall that notation book(title) is syntactic
sugar for a lookup function. We abbreviate unchanged threads using “. . .”.

• Rule [typ-fork] takes a term M of type 1 and a term N of type T to type the fork

construct as T ; as we will see in the typing of configurations, child threads must be typed
1, which explains the type of M .

• Rule [typ-end] allows weakening typing contexts with end-typed variables, as closed
sessions are not used.

• Rule [typ-send] takes a term M of type T and a term N of type !T.S to type a send of
M along N as the continuation type S. Dually, Rule [typ-recv] takes a term M of type
?T.S to type a recv along M as a pair of the message’s payload type and continuation
T × S.

• Rule [typ-sel] takes a term M of type ⊕{i : Si}i∈I to type the selection of some j ∈ I along
M as the continuation Sj . Dually, Rule [typ-case] takes a term M of type &{i : Si}i∈I
and for every i ∈ I a term Ni typed Si ⊸ U (i.e., a function from the label i’s continuation
type Si to some common but arbitrary type U) to type a case along M as U .

Example 4.3. To illustrate the typing rules, let us derive the typing of term Son(s′,m′)
from Section 2.2. As in Example 4.2, we omit the close construct. To type the sugared
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[typ-var]

x : T ⊢M x : T

[typ-abs]
Γ, x : T ⊢M M : U

Γ ⊢M λx.M : T ⊸ U

[typ-app]
Γ ⊢M M : T ⊸ U ∆ ⊢M N : T

Γ,∆ ⊢M M N : U

[typ-unit]

∅ ⊢M () : 1

[typ-pair]
Γ ⊢M M : T ∆ ⊢M N : U

Γ,∆ ⊢M (M,N) : T × U

[typ-split]
Γ ⊢M M : T × T ′ ∆, x : T , y : T ′ ⊢M N : U

Γ,∆ ⊢M let (x, y) = M inN : U

[typ-new]

∅ ⊢M new : S × S

[typ-fork]
Γ ⊢M M : 1 ∆ ⊢M N : T
Γ,∆ ⊢M forkM ;N : T

[typ-end]
Γ ⊢M M : T

Γ, x : end ⊢M M : T

[typ-send]
Γ ⊢M M : T ∆ ⊢M N : !T.S

Γ,∆ ⊢M sendM N : S

[typ-recv]
Γ ⊢M M : ?T.S

Γ ⊢M recvM : T × S

[typ-sel]
Γ ⊢M M : ⊕{i : Si}i∈I j ∈ I

Γ ⊢M select j M : Sj

[typ-case]
Γ ⊢M M : &{i : Si}i∈I ∀i ∈ I. ∆ ⊢M Ni : Si ⊸ U

Γ,∆ ⊢M caseM of {i : Ni}i∈I : U

................................................................................................................................................

[typ-buf]

∅ ⊢B [ϵ⟩ : S′⟩S′

[typ-buf-send]
Γ ⊢M M : T ∆ ⊢B [m⃗⟩ : S′⟩S

Γ,∆ ⊢B [m⃗,M⟩ : S′⟩!T.S

[typ-buf-sel]
Γ ⊢B [m⃗⟩ : S′⟩Sj j ∈ I

Γ ⊢B [m⃗, j⟩ : S′⟩⊕{i : Si}i∈I
................................................................................................................................................

[typ-main]

Γ ⊢M M : T̂

Γ ⊢♦
C ♦M : T̂

[typ-child]
Γ ⊢M M : 1

Γ ⊢♢
C ♢M : 1

[typ-par]

Γ ⊢ϕ1
C C : T1 ∆ ⊢ϕ2

C D : T2

Γ,∆ ⊢ϕ1+ϕ2
C C ∥ D : T1 + T2

[typ-res]

Γ ⊢B [m⃗⟩ : S′⟩S ∆, x : S′ ⊢ϕ
C C : T Γ′, y : S = Γ,∆

Γ′ ⊢ϕ
C (νx[m⃗⟩y)C : T

Figure 13: LAST⋆ typing rules for terms (top), buffers (center), and configurations (bottom).

terms letx = M inN we use a sugared Rule [typ-let] derivable from Rules [typ-abs]
and [typ-app]. We consider Str (string), B (book), and P (payment) to be primitive non-
linear types that can be weakened/contracted at will and are self dual. Below, S = !P.?B.end
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and S′ = ?B.end. We omit “typ-” from rule labels.

π ≜

[var]
m′

1 : ?B.end ⊢M m
′
1 : ?B.end [recv]

m′
1 : ?B.end ⊢M recvm

′
1 : B× end

[var]
book : B ⊢M book : B

[end]
book : B,m′

2 : end ⊢M book : B
[split]

m′
1 : ?B.end ⊢M let (book,m′

2) = recvm′
1 in book : B

[var]
s′2 : S ⊢M s

′
2 : S

[var]
m′ : !S.?B.end ⊢M m

′ : !S.?B.end
[send]

s′2 : S,m
′ : !S.?B.end ⊢M send s

′
2m

′ : ?B.end
π

m′
1 : ?B.end ⊢M . . . : B

[let]
s′2 : S,m

′ : !S.?B.end ⊢M letm
′
1 = send s′2m

′ in . . . : B
. . .

s′ : !Str.⊕{buy : S, blurb : S′},m′ : !S.?B.end ⊢M Son(s
′,m′) : B

Similarly, the typings of the shop and the mother are as follows:

s : ?Str.&{buy : S, blurb : S′} ⊢M Shop(s) : 1

m : ?S.!B.end ⊢M Mother(m) : 1

As such, the types of s, s′ and m,m′ are pairwise dual. Hence, the typing of the entire system
is simply

∅ ⊢M Sys : B.

The typing for buffered channels uses judgments of the form

Γ ⊢B [m⃗⟩ : S′⟩S

The difference between S′ and S is determined by the messages in the buffer m⃗: S denotes a
sequence of sends and selections corresponding to the values and labels in m⃗, after which
the type continues as S′. Thus, S denotes the type of a buffered channel’s output endpoint
before it sent the messages in m⃗, and S′ denotes this endpoint’s current type. This way, S
signifies the type of the buffered channel’s input endpoint, corresponding to a sequence of
receives and offers corresponding to the values and labels in m⃗.

Figure 13 (center) gives the three typing rules for buffers. The typing context Γ is used
in the typing of the values in the buffer. Rule [typ-buf] types an empty buffer; as such,
S′ = S. Rule [typ-buf-send] takes a value v of type T and a buffer typed S′⟩S to insert v
at the start of the buffer now typed S′⟩!T.S. Rule [typ-buf-sel] takes a buffer typed S′⟩Sj

(for some j ∈ I) to insert j at the start of the buffer, now typed as S′⟩⊕{i : Si}i∈I .
Typing for configurations uses judgments of the form

Γ ⊢ϕ
C C : T

where the marker ϕ indicates whether C contains the main thread (ϕ = ♦) or only child
threads (ϕ = ♢). When composing configurations marked ϕ1 and ϕ2, we compute a new
marker ϕ1 + ϕ2, as follows:

♦ + ♢ ≜ ♢ + ♦ ≜ ♦ ♢ + ♢ ≜ ♢ (♦ + ♦ is undefined)

Figure 13 (bottom) gives the typing rules for configurations. Rule [typ-main] takes a term
of non-session type (denoted T̂ ) and turns it into a main thread. Rule [typ-child] takes a
term of type 1 and turns it into a child thread. Rule [typ-par] composes two configurations
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typed T1 and T2 in parallel; the rule requires one of the configurations to be typed 1 and
uses the other configuration’s type to type the composition T1 + T2:

T1 + T2 ≜


T1 if T2 = 1

T2 if T1 = 1

undefined otherwise

As such, Rule [typ-par] is not defined for configurations both not typed 1; moreover, if
both configurations contain a main thread, the sum of their markers is undefined, and the
rule cannot be applied. Rule [typ-res] types a configuration under a buffered channel with
output endpoint x and input endpoint y. The rule uses typing for buffers to type the buffer
S′⟩S. As such, the configuration should use x of type S′. Since S is the type of x before it
sent the messages already in the buffer, y should be of type S. Note that y may be used in
the configuration, but may also appear in a message in the buffer.

4.3. Towards a Faithful Translation of LAST⋆ into APCP. As already discussed, we are
interested in faithfully translating LAST⋆ into APCP. We first discuss what we mean precisely
by ‘faithful’. Then, we consider some existing translations of (variants of) the λ-calculus
with call-by-value semantics into (variants of) the π-calculus; we briefly discuss their status
with respect to our definition of faithfulness.

Faithfulness. We shall aim for correct translations in the sense of Gorla [Gor10], a well-
established set of criteria whereby faithful translations should satisfy operational correspon-
dence, a criterion that is divided into completeness and soundness properties. Intuitively,
completeness says that the target language does enough to represent the behavior of the
source language, whereas soundness says that the target language does not do too much. Al-
ternatively, one may see completeness and soundness as properties that ensure that reduction
steps are preserved and reflected by the translation, respectively.

We formulate these requirements in the specific setting of LAST⋆ and APCP, by considering
a translation of configurations into processes, denoted ‘J·Kz’, where, as usual, z denotes a
name on which the resulting process exhibits the behavior of the source term:
Completeness: If C →C D, then JCKz →∗ JDKz.
Soundness: If JCKz →∗ Q, then there exists D such that C →∗

C D and Q→∗ JDKz.
Soundness and completeness come in different flavors of strength; see, e.g., [Pet19]. Our

definitions can be seen as being strictly stronger than Gorla’s, in that we do not consider a
behavioral relation on target processes (typically used to abstract away from ‘junk processes’
in comparisons with JDKz).

Existing Translations are not Sound. We are not aware of translations of λ-calculi
with call-by-value semantics into the π-calculus that satisfy soundness as stated above. To
illustrate the problem, let us consider the well-known translation by Milner [Mil90, Mil92].
This is a translation into a π-calculus with synchronous communication, while we seek a
translation into APCP, which is asynchronous. This discrepancy is not crucial: the unsound
reductions we will show next are not enabled by the asynchrony of APCP (i.e., they are also
enabled in synchronous processes).

It is actually sufficient to consider Milner’s approach to translating variables and appli-
cations. By adapting this approach to APCP, we obtain the translations given next. Below,
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we write ‘_’ to denote a fresh name of type • ; when sending names denoted ‘_’, we omit
binders ‘(ν__)’.

JxKz ≜ (νab)(z[_, a] | b(_, c);x[_, c])

JM NKz ≜ (νab)(νcd)
(
a(_, e); (νfg)(e[_, f ] | c(_, h); g[h, z]) | JMKb | JNKd

)
Consider the very simple term x y, which cannot reduce. Yet, its translation Jx yKz does
reduce, as shown next (each step underlines the send and receive that synchronize):

Jx yKz = (νa1b1)(νc1d1)
(
a1(_, e1); (νf1g1)(e1[_, f1] | c1(_, h1); g1[h1, z])

| (νa2b2)(b1[_, a2] | b2(_, c2);x[_, c2])

| (νa3b3)(d1[_, a3] | b3(_, c3); y[_, c3])
)

→ (νc1d1)(νa2b2)
(
(νf1g1)(a2[_, f1] | c1(_, h1); g1[h1, z])

| b2(_, c2);x[_, c2]

| (νa3b3)(d1[_, a3] | b3(_, c3); y[_, c3])
)

→ (νc1d1)(νf1g1)
(
c1(_, h1); g1[h1, z]

| x[_, f1]
| (νa3b3)(d1[_, a3] | b3(_, c3); y[_, c3])

)
→ (νf1g1)(νa3b3)(g1[a3, z] | x[_, f1] | b3(_, c3); y[_, c3]) ↛

It is clear that this final term, which cannot reduce any further, cannot be reconciled with
any source LAST⋆ term. Hence, the translation is unsound.

Besides Milner’s, other translations of λ-calculi with call-by-value semantics into (variants
of) the π-calculus have been proposed by Lindley and Morris [LM15] (a precise formalization
of Walder’s [Wad12, Wad14]), by Vasconcelos [Vas00], and by Fowler et al. [FKD+23]. One
of the most significant differences between them is how they translate variables: Milner uses
sends; Lindley and Morris and Fowler et al. use forwarders; Vasconcelos uses substitutions.
None of them satisfy soundness as defined above, although Vasconcelos’ and Fowler et al.’s
enjoy a weaker form of soundness that holds up to an appropriate behavioral equivalence.

By examining these three translations, we observe that the call-by-value semantics is
overly contextual, in the sense that determining whether a subterm may reduce depends on
the context. This way, e.g., Rule [red-lam] (Figure 10) only applies to abstractions applied to
values. The semantic rules for the π-calculus are much less contextual, so translations require
additional machinery to prevent unwanted reductions. We are not aware of translations of
call-by-value λ-calculi into π that are sound, which in our view suggests that such a sound
translation may not exist.

Based on this discussion, we conclude that the call-by-value semantics of LAST⋆ does not
lend itself for a faithful representation in APCP. To address this issue, in the next section we
will propose a variant of LAST with a call-by-name semantics. This variant, denoted LASTn ,
will admit a faithful (i.e., sound and complete) translation into APCP.

5. LASTn and a Faithful Translation into APCP

Here we present LASTn , a variant of LAST with call-by-name semantics. Our presentation
proceeds gradually, based on the presentation we gave for LAST⋆ (Section 4). We then give a
typed translation of LASTn into APCP, and prove that it is faithful as discussed in Section 4.3.
Finally, we show how the translation can help us identify a fragment of deadlock-free LASTn

programs.
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Terms (M,N, . . .) and reduction contexts (R ):

M,N ::= x variable | new create new channel
| () unit value | forkM ;N fork M in parallel to N
| λx.M abstraction | (M,N) pair construction
| M N application | let (x, y) = M inN pair deconstruction
| sendM N send M along N | select ℓM select label ℓ along M
| recvM receive along M | caseM of {i : M}i∈I offer labels in I along M
| closeM ;N close M |M⦃N/x⦄ explicit substitution

R ::= [·] | R M | sendM R | recvR | let (x, y) = R inM
| select ℓR | caseR of {i : M}i∈I | closeR ;M | R ⦃M/x⦄

Figure 14: Term syntax and reduction contexts for LASTn .

5.1. The Language of LASTn . To define LASTn , we start from LAST⋆ and modify its
semantics. We only need to change the definitions of reduction contexts and reduction in
Figures 10 and 11. For the reader’s convenience, Figure 14 gives the syntax of LASTn terms
and reduction contexts; Appendix A.1 contains a full, self-contained definition of the language
and type system of LASTn .

The crux of the required changes is that call-by-name semantics applies abstractions
more eagerly, and not only when arguments are values. To be precise, term reduction changes
Rules [red-lam] and [red-pair] as follows:

[red-lam]

(λx.M) N →M M{N/x}
[red-pair]

let (x, y) = (N1, N2) inM →M M{N1/x,N2/y}

Above, we underline modified parts: instead of requiring values, the rules allow arbitrary
terms. Moreover, to enforce the eager application of these rules, we remove from the definition
of reduction contexts the clauses v R , (R ,M), and (v,R ). That is, LASTn disallows terms
in parameter positions to reduce.

Example 5.1. We consider the term from Example 4.1, now using the call-by-name semantics
of LASTn :(

λx.x (λy.y)
) (

(λw.w) (λz.z)
)
→M

(
(λw.w) (λz.z)

)
(λy.y)→M (λz.z) (λy.y)→M λy.y

Notice how here the function on x is applied before its parameter is evaluated as in Exam-
ple 4.1.

Following the same call-by-name spirit, message passing in LASTn transmits unevaluated
terms, instead of only values as in LAST⋆. To accommodate this, we replace the two reduction-
context clauses for send with the clause sendM R , and modify Rule [red-send] accordingly:

[red-send]

νx[m⃗⟩y(F [sendM x] ∥ C)→C νx[m⃗,M⟩y(F [x] ∥ C)

As is to be expected, there are subtle differences between the semantics of LASTn and
APCP. In order to deal with these discrepancies, while enabling the desired completeness and
soundness results, we enrich LASTn with explicit substitutions and closed sessions.



Vol. 20:4 ASYNCHRONOUS SESSIONS: DEADLOCK FREEDOM IN CYCLIC PROCESS NETWORKS 6:45

Explicit Substitutions. Term reductions [red-lam] and [red-pair] substitute variables
for terms, regardless of the position of these variables. To mimic this in APCP, we would have
to be able to substitute the translations of variables for translations of terms. Although
this is possible when those variables occur in reduction contexts, there is no mechanism for
representing this in APCP when they occur in different contexts (where their translations are
blocked by prefixes).

One way of dealing with this issue is to equate translations up to substitutions, using the
so-called substitution lifting [TCP12]. Here, we opt for an alternative, more direct treatment
based on explicit substitutions (see, e.g., [LM99]). Intuitively, explicit substitutions delay
variable substitution until those variables occur in reduction contexts. To incorporate explicit
substitutions, we proceed as follows:
• We add explicit substitutions to the syntax of terms M⦃N/x⦄ and configurations C⦃N/x⦄.

These are not meant to be used when writing programs, instead appearing and disappearing
as programs reduce (runtime syntax). That is, they appear when abstractions are applied
and pairs deconstructed:

[red-lam]

(λx.M) N →M M⦃N/x⦄

[red-pair]

let (x, y) = (N1, N2) inM →M M⦃N1/x,N2/y⦄

Explicit substitutions disappear when they meet the substituted variable, as per the
following rule:

[red-subst]

x⦃N/x⦄→M N

• We add reduction contexts R ⦃N/x⦄ and configuration contexts G⦃N/x⦄. We then define
a structural congruence for terms, denoted ≡M, with a single rule that enables extruding
the scope of explicit substitutions across reduction contexts:

[sc-sub-ext]
x /∈ fv(R )

(R [M ])⦃N/x⦄ ≡M R [M⦃N/x⦄]

We close term reduction under this structural congruence:

[red-lift-sc]
M ≡M M

′ M ′ →M N
′ N ′ ≡M N

M →M N

We also add rules to the structural congruence for configurations that lift explicit substitu-
tions in terms and enable scope extrusion on the level of configurations, respectively:

[sc-conf-sub]

ϕ (M⦃N/x⦄) ≡C (ϕM)⦃N/x⦄

[sc-conf-sub-ext]
x /∈ fv(G)

(G [C])⦃N/x⦄ ≡C G [C⦃N/x⦄]

• When moving terms between threads, we need to make sure that we do not affect variables
that are bound by explicit substitutions. As such we define a specific form of thread context,
denoted F̂ , that disallows the hole to appear under explicit substitutions. Configuration
reductions [red-fork], [red-send], and [red-recv] (cf. Figure 11) then use these specific
contexts.
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• To type explicit substitutions, we add the following typing rules for terms and configurations:

[typ-sub]
Γ, x : T ⊢M M : U ∆ ⊢M N : T

Γ,∆ ⊢M M⦃N/x⦄ : U

[typ-conf-sub]

Γ, x : T ⊢ϕ
C C : U ∆ ⊢M N : T

Γ,∆ ⊢ϕ
C C⦃N/x⦄ : U

Example 5.2. We revisit Example 5.1, this time using explicit substitutions:

(
λx.x (λy.y)

) (
(λw.w) (λz.z)

)
→M

(
x (λy.y)

)
⦃

(
(λw.w) (λz.z)

)
/x⦄

≡M (x⦃
(
(λw.w) (λz.z)

)
/x⦄) (λy.y)

→M

(
(λw.w) (λz.z)

)
(λy.y)

→M (w⦃(λz.z)/w⦄) (λy.y)→M (λz.z) (λy.y)

→M z⦃(λy.y)/z⦄→M λy.y

Example 5.3 (The Bookshop Scenario in LASTn). Recall the bookshop scenario introduced
in Section 2.2, already illustrated by Example 4.2 for LAST⋆. Although the end result is the
same, the CbN semantics and explicit substitutions of LASTn do change the behavior of the
system (♦ Sys) compared to its behavior under LAST⋆.

We start to illustrate this behavior by reconsidering how the system starts by setting
up channels; as we will see, not all explicit substitutions can be immediately resolved (we
sometimes abbreviate unchanged threads using “. . .”):

♦ Sys = ♦ let (s, s′) = new in . . .

→C (νy[ϵ⟩y′)♦ let (s, s′) = (y, y′) in . . .

→C (νy[ϵ⟩y′)♦ forkShop(s); . . .⦃y/s, y′/s′⦄

≡C (νy[ϵ⟩y′)
(
(♦ forkShop(s); . . .)⦃y/s, y′/s′⦄

)
→C (νy[ϵ⟩y′)

(
(♦ let (m,m′) = new in . . . ∥ ♢Shop(s))⦃y/s, y′/s′⦄

)
≡C (νy[ϵ⟩y′)

(
(♦ . . . ∥ ♢ let (title, s1) = recv (s⦃y/s⦄) in . . .)⦃y′/s′⦄

)
→C (νy[ϵ⟩y′)

(
(♦ . . . ∥ ♢ let (title, s1) = recv y in . . .)⦃y′/s′⦄

)
→2

C (νy[ϵ⟩y′)
(
(νz[ϵ⟩z′)(♦ forkMother(m);Son(s′,m′))⦃z/m, z′/m′, y′/s′⦄ ∥ ♢Shop(y)

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦Son(s′,m′)⦃z′/m′, y′/s′⦄ ∥ ♢Mother(m)⦃z/m⦄

)
∥ ♢Shop(y)

)
≡C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ let (x,m1) = recv (m⦃z/m⦄) in . . .

)
∥ ♢Shop(y)

)
→C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ . . . ∥ ♢ let (x,m1) = recv z in . . .

)
∥ ♢Shop(y)

)
= (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ Son(s′,m′)⦃z′/m′, y′/s′⦄ ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
≜ Sys1

At this point, the explicit substitutions on the main thread cannot be resolved, as neither of
m′, s′ appears under a reduction context in Sons′,m′ . We continue the example by examining
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Sys1

→5
C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦Son1(s′, z′) ∥ ♢Mother(z)

)
∥ ♢Shop(y)

)
≡C (νy[ϵ⟩y′)

(
(νz′[ϵ⟩z)

(
♦ let (book,m′

2) = recv (send s′2 z
′) in . . . ∥ ♢ . . .

)
⦃. . .⦄ ∥ ♢ . . .

)
→C (νy[ϵ⟩y′)

(
(νz′[s′2⟩z)

(
♦ let (book,m′

2) = recv z′ in . . . ∥ ♢ let (x,m1) = recv z in . . .
)

⦃. . .⦄ ∥ ♢ . . .
)

→C (νy[ϵ⟩y′)
(
(νz′[ϵ⟩z)

(
♦ . . . ∥ ♢ let (x,m1) = (s′2, z) in . . .⦃. . .⦄

)
∥ ♢ . . .

)
→C (νy[ϵ⟩y′)

(
(νz′[ϵ⟩z)

(
♦ . . . ∥ ♢ letx1 = send visa (x⦃s′2/x, . . .⦄) in . . .⦃z/m1⦄

)
∥ ♢ . . .

)
→C (νy[ϵ⟩y′)

(
(νz′[ϵ⟩z)

(
♦ . . . ∥ ♢ letx1 = . . . (s′2⦃select buy s

′
1/s

′
2, . . .⦄) in . . .

)
∥ ♢ . . .

)
→C (νy[ϵ⟩y′)

(
(νz′[ϵ⟩z)

(
♦ . . . ∥ ♢ letx1 = . . . (select buy (s′1⦃send “Dune” s′/s′1, y′/s′⦄))

in . . .
)
∥ ♢ . . .

)
→C (νy[ϵ⟩y′)

(
(νz′[ϵ⟩z)

(
♦ . . . ∥ ♢ letx1 = . . . (. . . (send “Dune” (s′⦃y′/s′⦄))) in . . .

)
∥ ♢ . . .

)
→C (νy[ϵ⟩y′)

(
(νz′[ϵ⟩z)

(
♦ . . . ∥ ♢ letx1 = . . . (. . . (. . . y′)) in . . .

)
∥ ♢ . . .

)
≜ Sys2

Figure 15: The Bookshop Scenario in LASTn (cf. Example 5.3). We abbreviate unchanged
terms and substitutions using “. . .”.

the behavior of the son at this point (abbreviating some substitutions using “. . .”):

Son(s′,m′)⦃z′/m′, y′/s′⦄

= let s′1 = send “Dune” s′ in . . .⦃z′/m′, y′/s′⦄

→M let s
′
2 = select buy s′1 in . . .⦃send “Dune” s′/s′1, z

′/m′, y′/s′⦄

→M letm
′
1 = send s′2 (m

′
⦃z′/m′

⦄) in . . .⦃select buy s′1/s
′
2, send “Dune” s′/s′1, y

′/s′⦄

→M letm
′
1 = send s′2 z

′ in . . .⦃. . .⦄

→M let (book,m′
2) = recv (m′

1⦃send s
′
2 z

′/m′
1⦄) in . . .⦃. . .⦄

→M let (book,m′
2) = recv (send s′2 z

′) in . . .⦃. . .⦄ ≜ Son1(s′, z′)

This chain of explicit substitutions cannot be resolved further: s′2 does not appear under
a reduction context. In fact, they will not be resolved until the son has delegated his
(pending) access to z′ to his mother, along with his pending messages in the form of explicit
substitutions, as shown by the sequence leading to process Sys2 in Figure 15.

At this point, the system behaves roughly as in Example 4.2: there is no further session
delegation (as we just witnessed between the son and the mother), so upcoming explicit
substitutions can be resolved straightforwardly.

Sys2 →3
C (νy

′[visa, buy, “Dune”⟩y)
(
(νz′[ϵ⟩z)

(
♦ let (book,m′

2) = recv z′ in . . .
∥ ♢ letx1 = y′ in . . .⦃z/m1⦄

)
∥ ♢Shop(y)

)
From here, the thread representing the mother can finally perform her son’s two original
outputs, followed by her own (omitted for brevity).
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Closed Sessions. Both in LASTn and APCP, closed sessions have no associated behavior. This
entails some management on both sides to garbage collect unused variables with type end.
As a result, translating terms with variables requires two forms: one for regular variables,
and another for variables typed end. Because such a translation can get burdensome, we
opt to add a form of explicit closing to LASTn . Once both endpoints of a channel have been
closed, the channel and its buffer can be garbage collected. This treatment relieves us from
translating unused variables, in such a way that the translation of terms with variables comes
in one intuitive form only. To formalize this idea, we proceed as follows:

• We add terms for endpoint closing closeM ;N and a reduction context closeR ;N .
Similar to fork, the term N is an explicit continuation for when the endpoint is closed.
We define behavior on the level of configurations by adding a new reduction rule:

[red-close]

(νx[m⃗⟩y)(F [closex;M ] ∥ C)→C (ν□[m⃗⟩y)(F [M ] ∥ C)

Here, ‘□’ is a special runtime endpoint variable: it indicates that the endpoint x has been
closed and so the variable is not used anywhere inside the enclosed configuration. Then,
buffered channels can be garbage collected when both endpoints have been closed, as
enabled by the following reduction:

[red-res-nil]

(ν□[ϵ⟩□)C →C C

• We type the session closing construct by replacing Rule [typ-end] with the following:

[typ-close]
Γ ⊢M M : end ∆ ⊢M N : T

Γ,∆ ⊢M closeM ;N : T

• We add a new session type for endpoints that have been already closed. With a slight
abuse of notation, we denote it as □. We disallow using this type in the typing of terms,
leaving it only to appear in the typing of buffered channels. To ensure that closed endpoint
variables are not used in configurations, we add side conditions to Rule [typ-res]: x = □ if
and only if S′ = □ and similarly for y. The following two new rules enable typing partially
closed buffered channels:

[typ-buf-end-L]

∅ ⊢B [ϵ⟩ : end⟩□
[typ-buf-end-R]

∅ ⊢B [ϵ⟩ : □⟩end

Example 5.4. We illustrate the explicit closing of sessions in LASTn in the context of
the bookstore scenario introduced in Section 2.2. Consider the system where all session
interactions have taken place, and all three threads are ready to close their sessions:

Sys→∗
C (νy[ϵ⟩y′)

(
(νz[ϵ⟩z′)

(
♦ close z′; book(“Dune”) ∥ ♢ close z; close y′

)
∥ ♢ close y

)
≜ Sysc
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Once again, notation book(title) is syntactic sugar for a lookup function. The order in which
endpoints are closed is unimportant; here, we execute the close primitives from left to right.

Sysc ≡C (νy[ϵ⟩y′)
(
(νz′[ϵ⟩z)

(
♦ close z′; book(“Dune”) ∥ ♢ close z; close y′

)
∥ ♢ close y

)
→C ♦ book(“Dune”) ∥ (νy[ϵ⟩y′)

(
(ν□[ϵ⟩z)♢ close z; close y′ ∥ ♢ close y

)
≡C ♦ book(“Dune”) ∥ (νy[ϵ⟩y′)

(
(νz[ϵ⟩□)♢ close z; close y′ ∥ ♢ close y

)
→C ♦ book(“Dune”) ∥ (νy[ϵ⟩y′)

(
(ν□[ϵ⟩□)♢ close y′ ∥ ♢ close y

)
→C ♦ book(“Dune”) ∥ (νy[ϵ⟩y′)

(
♢ close y′ ∥ ♢ close y

)
≡C ♦ book(“Dune”) ∥ (νy′[ϵ⟩y)

(
♢ close y′ ∥ ♢ close y

)
→C ♦ book(“Dune”) ∥ ♢ () ∥ (ν□[ϵ⟩y)♢ close y
→C ♦ book(“Dune”) ∥ (ν□[ϵ⟩y)♢ close y
≡C ♦ book(“Dune”) ∥ (νy[ϵ⟩□)♢ close y (∗)
→C ♦ book(“Dune”) ∥ (ν□[ϵ⟩□)♢()

→C ♦ book(“Dune”) ∥ ♢()

→C ♦ book(“Dune”)

Additionally, we illustrate the typing of half-closed sessions on the configuration marked (∗).
Recall from Example 4.3 that we consider B (book) a primitive non-linear type that can be
weakened/contracted at will and is self dual. We have (omitting “typ-” from rule labels):

∅ ⊢M book(“Dune”) : B
[main]

∅ ⊢♦
C ♦ book(“Dune”) : B

[var]
y : end ⊢M y : end

[unit]
∅ ⊢M () : 1

[close]
y : end ⊢M close y; () : 1

[child]
y : end ⊢♢

C ♢ close y; () : 1
[buf-end-L]

∅ ⊢B [ϵ⟩ : end⟩□
[res]

∅ ⊢♢
C (νy[ϵ⟩□)♢ close y; () : 1

[par]
∅ ⊢♦

C ♦ book(“Dune”) ∥ (νy[ϵ⟩□)♢ close y; () : B

Type Preservation. LASTn satisfies the expected correctness properties for session-typed
languages: protocol fidelity and communication safety. Both properties follow directly from
type preservation.

Theorem 5.5 (Type Preservation for LASTn). Given Γ ⊢ϕ
C C : T , if C ≡C D or C →C D,

then Γ ⊢ϕ
C D : T .

Proof. By proving subject congruence (≡C preserves typing) and subject reduction (→C

preserves typing) separately. In both cases, we first prove separately subject congruence
and subject reduction on the term level (≡M and →M, respectively). These results follow by
induction on the derivation of the structural congruence or reduction. Below we give a few
interesting cases; Appendix A.2 contains detailed proofs.
• For ≡M, the only interesting case is the only base case, i.e., Rule [sc-sub-ext]:

x /∈ fv(R ) =⇒ (R [M ])⦃N/x⦄ ≡M R [M⦃N/x⦄]

We apply induction on the structure of the reduction context R . As an interesting,
representative case, consider R = L⦃R ′/y⦄. Assuming x /∈ fv(R ), we have x /∈ fv(L) ∪
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fv(R ′). We apply inversion of typing:

Γ, y : U ⊢M L : T ∆, x : U ′ ⊢M R ′[M ] : U
[typ-sub]

Γ,∆, x : U ′ ⊢M L⦃(R ′[M ])/y⦄ : T ∆′ ⊢M N : U ′
[typ-sub]

Γ,∆,∆′ ⊢M (L⦃(R ′[M ])/y⦄)⦃N/x⦄ : T

We can derive:

∆, x : U ′ ⊢M R ′[M ] : U ∆′ ⊢M N : U ′
[typ-sub]

∆,∆′ ⊢M (R ′[M ])⦃N/x⦄ : U

Since x /∈ fv(R ′), by Rule [sc-sub-ext], (R ′[M ])⦃N/x⦄ ≡M R ′[M⦃N/x⦄]. Then, by the
IH, ∆,∆′ ⊢M R ′[M⦃N/x⦄] : U . Hence, we can conclude the following:

Γ, y : U ⊢M L : T ∆,∆′ ⊢M R ′[M⦃N/x⦄] : U
[typ-sub]

Γ,∆,∆′ ⊢M L⦃(R ′[M⦃N/x⦄])/y⦄ : T

It is straightforward to see that this reasoning works in opposite direction as well.
• For →M, all cases are straightforward.
• For ≡C, we detail the base case Rule [sc-res-swap]: (νx[ϵ⟩y)C ≡C (νy[ϵ⟩x)C.

The analysis depends on whether exactly one of x, y is □ or not. We discuss both cases.
– Exactly one of x, y is □; w.l.o.g., assume x = □. We have the following:

[typ-buf-end-R]
∅ ⊢B [ϵ⟩ : □⟩end Γ, x : end ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (ν□[ϵ⟩y)C : T

≡C

[typ-buf-end-L]
∅ ⊢B [ϵ⟩ : end⟩□ Γ, x : end ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (νy[ϵ⟩□)C : T

– Neither or both of x, y are □. We have the following:

[typ-buf]
∅ ⊢B [ϵ⟩ : S′⟩S′ Γ, x : S′, y : S′ ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (νx[ϵ⟩y)C : T

≡C

[typ-buf]
∅ ⊢B [ϵ⟩ : S′⟩S′ Γ, x : S′, y : S′ ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (νy[ϵ⟩x)C : T

• For →C, we detail the base case Rule [red-send]: (νx[m⃗⟩y)(F̂ [sendM x] ∥ C) →C

(νx[M, m⃗⟩y)(F̂ [x] ∥ C).
This case follows by induction on the structure of F̂ . The inductive cases follow from

the IH straightforwardly. The fact that the hole in F̂ does not occur under an explicit
substitution guarantees that we can move M out of the context of F̂ and into the buffer. We
consider the base case (F̂ = ϕR ). By well typedness, it must be that R = R1[closeR2;M ].
We apply induction on the structures of R1,R2 and consider the base cases: R1 = R2 = [·].
We apply inversion of typing, w.l.o.g. assuming that ϕ = ♦ and y ∈ fv(C) (omitting “typ-”
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from rule labels):

Γ ⊢B [m⃗⟩ : !T.end⟩S

∆1 ⊢M M : T
[var]

x : !T.end ⊢M x : !T.end
[send]

∆1, x : !T.end ⊢M sendM x : end ∆2 ⊢M N : U
[close]

∆1,∆2, x : !T.end ⊢M close (sendM x);N : U
[main]

∆1,∆2, x : !T.end ⊢♦
C ♦ (close (sendM x);N) : U Λ, y : S ⊢♢

C C : 1
[par]

∆1,∆2,Λ, x : !T.end, y : S ⊢♦
C ♦ (close (sendM x);N) ∥ C : U

[res]
Γ,∆1,∆2,Λ ⊢♦

C (νx[m⃗⟩y)(♦ (close (sendM x);N) ∥ C) : U

Note that the derivation of Γ ⊢B [m⃗⟩ : !T.end⟩S depends on the size of m⃗. By induction
on the size of m⃗ (IH2), we derive Γ,∆1 ⊢B [M, m⃗⟩ : end⟩S:
– If m⃗ is empty, it follows by inversion of typing that Γ = ∅ and S = !T.end:

[typ-buf]
∅ ⊢B [ϵ⟩ : !T.end⟩!T.end

Then, we derive the following:

∆1 ⊢M M : T
[typ-buf]

∅ ⊢B [ϵ⟩ : end⟩end
[typ-buf-send]

∆1 ⊢B [M⟩ : end⟩!T.end

– If m⃗ = m⃗′, L, it follows by inversion of typing that Γ = Γ′,Γ′′ and S = !T ′.end′:

Γ′ ⊢M L : T ′ Γ′′ ⊢B [m⃗
′⟩ : !T.end⟩end′

[typ-buf-send]
Γ′,Γ′′ ⊢B [m⃗

′, L⟩ : !T.end⟩!T ′.end′

By IH2, Γ′′,∆1 ⊢B [M, m⃗′⟩ : end⟩end′, allowing us to derive the following:

Γ′ ⊢M L : T ′ Γ′′,∆1 ⊢B [M, m⃗′⟩ : end⟩end′
[typ-buf-send]

Γ′,Γ′′,∆1 ⊢B [M, m⃗′, L⟩ : end⟩!T ′.end′

– If m⃗ = m⃗′, j, it follows by inversion of typing that there exist types Si for each i in a set
of labels I, where j ∈ I, such that S = ⊕{i : Si}i∈I :

Γ ⊢B [m⃗
′⟩ : !T.end⟩Sj

[typ-buf-sel]
Γ ⊢B [m⃗, j⟩ : !T.end⟩⊕{i : Si}i∈I

By IH2, Γ,∆1 ⊢B [M, m⃗′⟩ : end⟩Sj , so we derive the following:

Γ,∆1 ⊢B [M, m⃗′⟩ : end⟩Sj
[typ-buf-sel]

Γ,∆1 ⊢B [M, m⃗′, j⟩ : end⟩⊕{i : Si}i∈I
Now, we can derive the typing of the structurally congruent configuration (omitting “typ-”
from rule labels):

Γ,∆1 ⊢B [M, m⃗⟩ : end⟩S

[var]
x : end ⊢M x : end ∆2 ⊢M N : U

[close]
∆2, x : end ⊢M closex;N : U

[main]
∆2, x : end ⊢♦

C ♦ (closex;N) : U Λ, y : S ⊢♢
C C : 1

[par-R]
∆2,Λ, x : end, y : S ⊢♦

C ♦ (closex;N) ∥ C : U
[res]

Γ,∆1,∆2,Λ ⊢♦
C (νx[M, m⃗⟩y)(♦ (closex;N) ∥ C) : U
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5.2. Faithfully Translating LASTn into APCP. We now define a typed translation from
LASTn into APCP. Then, we show that this translation is operationally complete and sound,
in the sense of Section 4.3.

The Translation: Key Ideas. Before we define the translation, let us discuss its key idea,
inspired by Milner’s translation of the lazy λ-calculus [Mil92]. The most important design
decision is how to translate variables. Variables serve two purposes: (i) as placeholders
for future substitutions and (ii) as an access point to buffered channels. Accordingly, our
translation uses variables as sends that enable (i) an explicit substitution or (ii) interactions
with a buffer. Another important design decision is the translation of buffers: the buffer’s
types guide the translation to form a sequence of inputs/outputs that are explicitly forwarded
(i.e., not using the forwarder process) between the buffer endpoints.

The Translation: Types. Equipped with these ideas about translating variables and
buffers, let us give a deeper insight into our translation by taking a look at how it turns
functional and session types in LASTn into session types in APCP.

Before moving on, note that LASTn does not guarantee deadlock freedom by typing.
As such, there is no point in annotating types with priorities, as the priority requirements
induced by typing translated processes may not always be satisfiable. We therefore use a
special APCP typing judgment

⊢∗ P :: Γ

which indicates well typedness of P modulo priority annotations and requirements in Γ (we
omit Ω, as LASTn is a finite language). We will recover priorities and deadlock freedom in
Section 5.3.

Definition 5.6 below introduces two forms of type translation: while we use J−K to
translate the types of terms/configurations, we use L−M to translate the types of variables.
We write LΓM to denote a component-wise translation, where each assignment x : T translates
to an assignment x : LT M. As such, our typed translation takes, e.g., a typed term Γ ⊢M M : T
and returns a typed process

⊢∗ JMKz :: LΓM, z : JT K.

Above, JMKz is the process that models the behavior of M on a fresh name z (defined
hereafter).

Let us now define and explain the two forms of translation of types (that are mutually
recursive):

Definition 5.6 (Translation of Types).

LT M ≜ • ⊗ JT K (if T ̸= □)

JT × UK ≜ LT M ⊗ LUM JT ⊸ UK ≜ LT M

&

JUK J1K ≜ •

J!T.SK ≜ • ⊗ LT M

&

LSM J⊕{i : Si}i∈IK ≜ • ⊗&{i : LSiM}i∈I JendK ≜ • ⊗ •

J?T.SK ≜ LT M ⊗ LSM J&{i : Si}i∈IK ≜ ⊕{i : LSiM}i∈I J□K ≜ L□M ≜ •

Some intuitions follow:
• Following the intuitions above, the translation L−M (row 1) codifies a variable as a send

action that enables further behaviors.
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(• ⊗ announce pair ready
(• ⊗ announce substitution ready

JT K actual first component
)

&

receive first component
• ⊗ announce substitution ready

JSK actual second component
)

&

receive parameter
• ⊗ trigger buffer
(• ⊗ announce substitution ready

JT K actual payload
)

&

receive payload provider
•

&

await substitution ready
JSK actual continuation

Figure 16: Example 5.7: the translation for (T × S)⊸ !T.S, in detail.

• The translation J−K translates functional types straightforwardly (row 2): pairs send access
to their components as variables, abstractions receive their parameter as a variable and
then provide the return type, and units have no behavior.

• The translation of session types (rows 3 and 4) is more interesting: at a first glance they
seem to be translated dually. This is because these are types that belong to buffered
channel endpoints. As such, when a variable is typed !T.S and we send a term on this
variable, the translation sends something along the variable and thus the variable receives.
Additionally, the translation of sends and selections have an extra send: this signifies a
handshake between the variable and the buffer, indicating that both are ready to perform
the actual send/selection.

Example 5.7. We illustrate the translation of types by means of an example. After giving the
translation of the type (T × S)⊸ !T.S, we break the resulting APCP type down and explain
it in terms of the associated behavior of a process translated from a term implementing the
type.

J(T × S)⊸ !T.SK = LT × SM

&

J!T.SK

= (• ⊗ JT × SK)

&

• ⊗ LT M

&

LSM

= (• ⊗ LT M ⊗ LSM)

&

• ⊗ (• ⊗ JT K)

&

• ⊗ JSK

= (• ⊗ LT M

&

LSM)

&

• ⊗ (• ⊗ JT K)

&

•

&

JSK

= (• ⊗ (• ⊗ JT K)

&

• ⊗ JSK)

&

• ⊗ (• ⊗ JT K)

&

•

&

JSK

Figure 16 gives a detailed explanation for this translated type.
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The Translation: Terms, Configurations, and Buffers. Now we complete the definition
of our translation. We proceed inductively on the typing derivations of terms, configurations,
and buffers, obtaining typing derivations of APCP processes. Hence, the definition considers
the typing rules in Figure 13, including the changes discussed in Section 5.1.

• The translation of a well-typed term, denoted JΓ ⊢M M : T Kz, corresponds to a judgment
⊢∗ P :: ∆, z : A in APCP, where z is a fresh name that executes the behavior of M , as usual,
and the shape of the process P , context ∆, and session type A will become precise shortly.
Similarly, the translation of a well-typed configuration, denoted JΓ ⊢ϕ

C C : T Kz, corresponds
to the judgment ⊢∗ P :: ∆, z : A, for some P , ∆, and A.

• Also, JΓ ⊢B [m⃗⟩ : S′⟩SKa⟩b, the translation of a well-typed buffer holding messages m⃗,
corresponds to the judgment ⊢∗ P :: ∆, a : A, b : B, for some P , ∆, A, and B. The
translated buffer stores the translations of the messages in m⃗ and forwards them on the
fresh name b; the buffer receives new messages on the fresh name a. Note that, if the
buffer is empty, the roles of a and b may be reversed (depending on S), and the buffer may
receive new messages on b instead.

Figures 17 to 19 give the translation of term, configuration and buffer typing rules. In
the figures (and in the rest of the paper), for the sake of readability, we often omit typing
information: we write JMKz to refer to the typed process associated to JΓ ⊢M M : T Kz,
and similarly for the translations of typed configurations and buffers. The omitted typing
information/derivations is made precise by Theorem 5.8, given below.

Instead of explaining the translation separately, the figures include line-by-line explana-
tions. Recall that we often write ‘_’ to denote a fresh name of type •; when sending names
denoted ‘_’, we omit binders ‘(ν__)’.

Importantly, the translation is type preserving using the translations of types introduced
in Definition 5.6. Appendix A.3 contains a detailed proof.

Theorem 5.8 (Type Preservation for the Translation).

• If Γ ⊢M M : T , then ⊢∗ JMKz :: LΓM, z : JT K;
• If Γ ⊢ϕ

C C : T , then ⊢∗ JCKz :: LΓM, z : JT K;
• If Γ ⊢B [m⃗⟩ : S′⟩S, then ⊢∗ J[m⃗⟩Ka⟩b :: LΓM, a : LS′M, b : LSM.
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[typ-var] JxKz ≜ x[_, z]

[typ-abs] Jλx.MKz ≜ z(x, a); JMKa receive x, then run body

[typ-app] JM NKz ≜ (νab)(νcd)(JMKa run abstraction
| b[c, z] trigger function body
| d(_, e); JNKe) parameter as future substitution

[typ-unit] J()Kz ≜ 0

[typ-pair] J(M,N)Kz ≜ (νab)(νcd)(z[a, c] announce pair is ready
| b(_, e); JMKe | d(_, f); JNKf)

components as future substitutions

[typ-split] Jlet (x, y) = M inNKz ≜ (νab)(a(x, y); JNKz block body until pair ready
| JMKb) run pair

[typ-new] JnewKz ≜ (νab)(a[_, z] activate buffer
| b(_, c); (νdx)(νey)( block until activated
J[ϵ⟩Kd⟩e prepare buffer
| J(x, y)Kc)) return pair of endpoints

[typ-fork] JforkM ;NKz ≜ (νab)(a[_, z] activate bodies
| b(_, c); ( block until activated
(ν__)JMK_ | JNKc)) run bodies

[typ-close] JcloseM ;NKz ≜ (νab)(JMKa run argument to activate buffer
| b(_,_); JNKz) wait for buffer to close

[typ-send] JsendM NKz ≜ (νab)(νcd)(a(_, e); JMKe
block payload until received

| JNKc run channel term to activate buffer
| d(_, f); (νgh)( wait for buffer to activate
f [b, g] send to buffer
| h[_, z])) prepare returned endpoint variable

[typ-recv] JrecvMKz ≜ (νab)(JMKa run channel term to activate buffer
| b(c, d); receive from buffer
(νef)(z[c, e] | f(_, g); d[_, g])) returned pair

[typ-sel] Jselect j MKz ≜ (νab)(JMKa run channel term to activate buffer
| b(_, c); (νde)( wait for buffer to activate
c[d] ◁ j select with buffer
| e[_, z])) prepare returned endpoint variable

Figure 17: Translating LASTn into APCP, Part 1/3.
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[typ-case] JcaseM of {i : Ni}i∈IKz ≜ (νab)(JMKa
run channel term to activate buffer

| b(c) ▷ {i : branch on buffer
JNi cKz}i∈I)
apply continuation to endpoint

[typ-sub] JM⦃N/x⦄Kz ≜ (νxa)(JMKz run body
a(_, b); JNKb)

block until body is variable

[typ-main] J♦MKz ≜ JMKz

[typ-child] J♢MKz ≜ JMKz

[typ-par] (T1 = 1) JC ∥ DKz ≜ (ν__)JCK_ | JDKz

[typ-par] (T2 = 1) JC ∥ DKz ≜ JCKz | (ν__)JDK_

[typ-res] J(νx[m⃗⟩y)CKz ≜ (νax)(νby)(J[m⃗⟩Ka⟩b run buffer
| JCKz) run configuration

[typ-conf-sub] JC⦃N/x⦄Kz ≜ (νxa)(JCKz run configuration
| a(_, b); JNKb

block until configuration is variable

[typ-buf] (S′ = !T.S) J[ϵ⟩Ka⟩b ≜ a(_, c); (νde)(
wait for activation

c[_, d] activate send
| e(f, g); (νhk)(

receive from send
b(_, l); wait for activation
l[f, h] send to receive
| J[ϵ⟩ : S⟩SKg⟩k))

[typ-buf] (S′ = ⊕{i : Si}i∈I) J[ϵ⟩Ka⟩b ≜ a(_, c); (νde)(
wait for activation

c[_, d] activate select
| e(f) ▷ {i : (νgh)(

receive selection
b(_, k); wait for activation
k[g] ◁ i make selection
| J[ϵ⟩ : Si⟩SiKf⟩h)})

Figure 18: Translating LASTn into APCP, Part 2/3.
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[typ-buf] (S′ ∈ {?T.S,&{i : Si}i∈I}) J[ϵ⟩Ka⟩b ≜
q
[ϵ⟩ : S′⟩S′

y
b⟩a

[typ-buf] (S′ = end) J[ϵ⟩Ka⟩b ≜ a(_, c); c[_,_] | b(_, d); d[_,_]
close concurrently

[typ-buf] (S′ = □) J[ϵ⟩Ka⟩b ≜ 0

[typ-buf-send] J[m⃗,M⟩Ka⟩b ≜ (νcd)(νef)(c(_, g); JMKg
block payload until received

| b(_, h); wait for activation
h[d, e] send to receive
| J[m⃗⟩Ka⟩f) run buffer

[typ-buf-sel] J[m⃗, j⟩Ka⟩b ≜ (νcd)(b(_, e); wait for activation
e[c] ◁ j make selection
| J[m⃗⟩Ka⟩d) run buffer

[typ-buf-end-L] J[ϵ⟩Ka⟩b ≜ a(_, c); c[_,_]

[typ-buf-end-R] J[ϵ⟩Ka⟩b ≜ b(_, c); c[_,_]

Figure 19: Translating LASTn into APCP, Part 3/3.

Example 5.9. We illustrate our translation by translating a subterm of the shop defined in
Section 2.2 (leaving the translation of the syntactic sugar book(title) unspecified):

Jλs2. let (card, s3) = recv s2 in let s4 = send book(title) s3 in close s4; ()Kz
= z(s2, a0); Jλs2 . . .Kz

(νa1b1)(a1(card, s3); Jlet (card, s3) = . . .Ka0
(νa2b2)(νc2d2)( Jlet s4 = . . .Ka0
a2(s4, a3); Jλs4. . . .Ka2
(νa4b4)( Jclose . . .Ka3
s4[_, a4] Js4Ka4
| b4(_,_);

0) J()Ka3
b2[c2, a0] | d2(_, e2);

(νa5b5)(νc5d5)(a5(_, e5); Jsend . . .Ke2
Jbook(title)Ke5
| s3[_, c5] Js3Kc5
| d5(_, f5); (νg5h5)(f5[b5, g5] | h5[_, e2])))

| (νa6b6)( Jrecv . . .Kb1
s2[_, a6] Js2Ka6
| b6(c6, d6); (νe6f6)(b1[c6, e6] | f6(_, g6); d6[_, g6])))
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We also give the translation of the outer buffer in the final state of the system in
Example 5.3:

J(νy′[visa, buy, “Dune”⟩y)
(
(νz′[ϵ⟩z) . . . ∥ ♢Shop(y)

)
Kz

= (νa1y
′)(νb1y)( J(νy′[. . .⟩y) . . .Kz

(νc1d1)(νe1f1)(c1(_, g1); J[. . . , “Dune”⟩Ka1⟩b1
J“Dune”Kg1
| b1(_, h1);h1[d1, e1]

| (νc2d2)(f1(_, e2); e2[c2] ◁ buy J[. . . , buy⟩Ka1⟩f1
| (νc3d3)(νe3f3)(c3(_, g3); J[visa⟩Ka1⟩d2

JvisaKg3
| d2(_, h3);h3[d3, e3]

| f3(_, c4); (νd4e4)(c4[_, d4] | e4(f4, g4); J[ϵ⟩ : !B.end⟩!B.endKf3⟩a1
(νh4k4)(a1(_, l4); l4[f4, h4]

| g4(_, c5); c5[_,_] | k4(_, d5); d5[_,_]))))) J[ϵ⟩ : end⟩endKg4⟩k4
| J(νz′[ϵ⟩z) . . . ∥ ♢Shop(y)Kz

Design Decisions: Explicit Substitutions and Closing. Having presented our typed
translation, we reflect on our design decision to enrich LASTn with explicit substitutions and
closing.

As we will see next, adopting explicit substitutions leads to a direct operational correctness
result. To see why, suppose we were to apply substitutions immediately. As an example,
consider function application (Figure 17), which entails substituting a variable in the body
of the function. The translation would need to encode the substitution of the translation of
this variable. However, if the variable does not occur under an evaluation context, there is
no way in APCP to perform such a substitution immediately. Hence, the translation would
still need to encode such implicit substitutions in LASTn explicitly in APCP. This discrepancy
would then have to be handled by means of the aforementioned substitution lifting in our
operational correspondence results. Although this is a perfectly viable approach, we prefer
to have a more direct operational correspondence, which entails more direct proofs that are
not affected by an asymmetric treatment of substitutions.

Our choice for explicit closing of sessions is more pragmatic: it leads to a more compact
translation. Suppose we were to treat closed sessions by silently weakening them. Consider,
e.g., Rule [red-send] (Figure 11): the send primitive is replaced by a variable pointing to the
buffered channel, even if the session ends after the send. Hence, the translation would need
a separate case for translating variables for closed sessions. Consequently, the translation
would need similar such separate cases anywhere variables/closed sessions may occur. This
would lead to a translation where the key ideas are unnecessarily obfuscated. We find it then
preferable to treat closed sessions explicitly in favor of a more streamlined translation.
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Faithfulness: Operational Correspondence. Following the discussion in Section 4.3,
here we finally show that the translation presented above satisfies the operational correctness
criterion (completeness and soundness) as proposed by Gorla [Gor10]. We first state both
results, and then their proofs.

Theorem 5.10 (Completeness). Given Γ ⊢ϕ
C C : T , if C →C D, then JCKz →∗ JDKz.

Theorem 5.11 (Soundness). Given Γ ⊢ϕ
C C : T , if JCKz→∗ Q, then there exists D such that

C →∗
C D and Q→∗ JDKz.

Both results rely on the following lemma, which decomposes translations of terms/con-
figurations under contexts into some evaluation context containing the translation of the
respective term/configuration, and transfers free variables/names and substitutions in and
out of the translation (cf. Appendix A.4):

Lemma 5.12.
• JR [M ]Kz = E [JMKz′] for some E , z′;
• JF [M ]Kz = E [JMKz′] for some E , z′;
• JG [C]Kz = E [JCKz′] for some E , z′;
• x /∈ fv(C) implies x /∈ fn(JCKz);
• x ∈ fv(C) implies JC{y/x}Kz = JCKz{y/x}.

Proof (Sketch). The first three items follow by induction on the structure of the contexts. In
the base case, the context is a hole and the thesis follows immediately. The inductive cases
follow by construction of the translation and IH. The last two items follow by induction on
the structure of the configuration and construction of the translation.

Completeness additionally relies on the following lemma, that decomposes the translation of
buffers of several shapes into an evaluation context containing the translation of a continuation
of the respective buffer:

Lemma 5.13.
• S′ ̸= □ implies JΓ ⊢B [m⃗⟩ : S′⟩SKa⟩b = E

[
J∅ ⊢B [ϵ⟩ : S′⟩S′Ka⟩c

]
for some E , c;

• S′ ̸= □ implies JΓ,∆ ⊢B [M, m⃗⟩ : S′⟩SKa⟩b = E
[
J∆ ⊢B [M⟩ : S′⟩!T.S′Ka⟩c

]
for some E , c;

• S′ ≠ □ implies JΓ ⊢B [j, m⃗⟩ : S′⟩SKa⟩b = E
[
J∅ ⊢B [j⟩ : S′⟩⊕{i : Si}i∈I ∪ {j : S′}Ka⟩c

]
for

some E , c;
• S ̸= □ implies JΓ ⊢B [m⃗⟩ : end⟩SKa⟩b = E

[
J∅ ⊢B [ϵ⟩ : end⟩endKa⟩c

]
for some E , c;

• S ̸= □ implies JΓ ⊢B [m⃗⟩ : □⟩SKa⟩b = E
[
J∅ ⊢B [ϵ⟩ : □⟩endKa⟩c

]
for some E , c.

Proof (Sketch). Each item follows by induction on the size of m⃗, and a case analysis on the
shape of S. In the base case, m⃗ = ϵ and the thesis follows immediately. In the inductive
cases, the thesis follows by IH and the construction of the translation.

With these prerequisites in place, we move on to discuss the proofs of Theorems 5.10
and 5.11.

Proof of completeness (Theorem 5.10). By induction on the derivation of C→CD. We discuss
one representative rule for message passing, as well as the structural rules; other rules are
detailed in Appendix A.4.1.
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• Rule [red-send]: (νx[m⃗⟩y)(F̂ [sendM x] ∥ C)→C (νx[M, m⃗⟩y)(F̂ [x] ∥ C). W.l.o.g., as-
sume C is a child thread. By Lemma 5.12, for any L, JF [L]Kz = E1

[
JLKz′

]
for some

E1, z
′ (∗1). Moreover, since F̂ does not have its hole under an explicit substitution, it

does not capture any free variables of M ; hence, by Lemma 5.12, E1 does not capture
any free names of JMKu for any u (∗2). By inversion of typing, Γ ⊢B [m⃗⟩ : S1⟩S where
S1 = !T.S2 (∗3). By Lemma 5.13, JΓ ⊢B [m⃗⟩ : S1⟩SKa⟩b = E2

[
J∅ ⊢B [ϵ⟩ : S1⟩S1Ka⟩c

]
(∗4)

and JΓ,∆ ⊢B [M, m⃗⟩ : S1⟩SKa⟩b = E2
[
J∆ ⊢B [M⟩ : S1⟩S1Ka⟩c

]
(∗5) for some E2, c. Below,

we omit types from translations of buffers. The thesis holds as follows:

J(νx[m⃗⟩y)(F̂ [sendM x] ∥ C)Kz

= (νax)(νby)(J[m⃗⟩Ka⟩b | JF̂ [sendM x]Kz | (ν__)JCK_)

= (νax)(νby)(E2
[
J[ϵ⟩Ka⟩c

]
| E1

[
JsendM xKz′

]
| (ν__)JCK_) (∗1,∗4)

= (νax)(νby)(
E2

[
a(_, c1); (νd1e1)

(
c1[_, d1] | e1(f1, g1); (νh1k1)(c(_, l1); l1[f1, h1] | J[ϵ⟩Kg1⟩k1)

)]
| E1

[
(νa2b2)(νc2d2)

(
a2(_, e2); JMKe2 | x[_, c2] | d2(_, f2); (νg2h2)(f2[b2, g2] | h2[_, z′])

)]
| (ν__)JCK_)

(∗3)
→ (νc2d2)(νby)(

E2
[
(νd1e1)

(
c2[_, d1] | e1(f1, g1); (νh1k1)(c(_, l1); l1[f1, h1] | J[ϵ⟩Kg1⟩k1)

)]
| E1

[
(νa2b2)

(
a2(_, e2); JMKe2 | d2(_, f2); (νg2h2)(f2[b2, g2] | h2[_, z′])

)]
| (ν__)JCK_)

→ (νe1d1)(νby)(
E2

[
e1(f1, g1); (νh1k1)(c(_, l1); l1[f1, h1] | J[ϵ⟩Kg1⟩k1)

]
| E1

[
(νa2b2)

(
a2(_, e2); JMKe2 | (νg2h2)(d1[b2, g2] | h2[_, z′])

)]
| (ν__)JCK_)

→ (νb2a2)(νg2h2)(νby)(
E2

[
(νh1k1)(c(_, l1); l1[b2, h1] | J[ϵ⟩Kg2⟩k1)

]
| E1

[
a2(_, e2); JMKe2 | h2[_, z′]

]
| (ν__)JCK_)

≡ (νax)(νby)(
E2

[
(νa2b2)(νh1k1)(a2(_, e2); JMKe2 | c(_, l1); l1[b2, h1] | J[ϵ⟩Ka⟩k1)

]
| E1

[
x[_, z′]

]
| (ν__)JCK_)

(∗2)

= (νax)(νby)(E2
[
J[M⟩Ka⟩c

]
| E1

[
JxKz′

]
| (ν__)JCK_)

= (νax)(νby)(J[M, m⃗⟩Ka⟩b | JF̂ [x]Kz | (ν__)JCK_) (∗1,∗5)
= J(νx[M, m⃗⟩y)(F̂ [x] ∥ C)Kz

• Rule [red-lift-C]: C →C C
′ implies G [C]→C G [C ′]. This case follows from Lemma 5.12

and the IH.
• Rule [red-lift-M]: M →M M

′ implies F [M ]→M F [M ′]. By Lemma 5.12, it suffices to
show completeness on the level of terms. Hence, we apply induction on the derivation of
M →M M

′ (IH2). In Appendix A.4.1, this property is proven separately as Theorem A.7.
Here, we discuss one representative reduction for computation, as well as the structural
rules:
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– Rule [red-lam]: (λx.M) N →M M⦃N/x⦄. The thesis holds as follows:

J(λx.M) NKz = (νa1b1)(νc1d1)(a1(x, a2); JMKa2 | b1[c1, z] | d1(_, e1); JNKe1)
→ (νc1d1)(JMKz{c1/x} | d1(_, e1); JNKe1)
≡ (νxd1)(JMKz | d1(_, e1); JNKe1)
= JM⦃N/x⦄Kz

– Rule [red-lift]: M →M N implies R [M ]→M R [N ]. This case follows from Lemma 5.12
and IH2.

– Rule [red-lift-sc]: M ≡M M ′, M ′ →M N
′, and N ′ ≡M N imply M →M N . By IH2,

it suffices to show that the translation preserves structural congruence of terms as
structural congruence of processes. Hence, we apply induction on the derivation of
M ≡M M

′ (and similarly for N ′ ≡M N ; IH3). In Appendix A.4.1, this property is proven
separately as Theorem A.5. The inductive cases follow from IH3 and Lemma 5.12
directly. We detail the (only) base case of Rule [sc-sub-ext]: x /∈ fn(R ) implies
(R [M ])⦃N/x⦄ ≡M R [M⦃N/x⦄].
The analysis is by induction on the structure of R (IH4), assuming x /∈ fn(R ). The
base case where R = [·] is immediate. We detail one representative inductive case:
R = R ′ M ′. The thesis holds as follows:

J(R ′[M ] M ′)⦃N/x⦄Kz

= (νxa1)
(
(νa2b2)(νc2d2)(JR ′[M ]Ka2 | b2[c2, z] | d2(_, e2); JM ′Ke2) | a1(_, b1); JNKb1

)
≡ (νa2b2)(νc2d2)

(
(νxa1)(JR ′[M ]Ka2 | a1(_, b1); JNKb1) | b2[c2, z] | d2(_, e2); JM ′Ke2

)
= (νa2b2)(νc2d2)

(
J(R ′[M ])⦃N/x⦄Ka2 | b2[c2, z] | d2(_, e2); JM ′Ke2

)
≡ (νa2b2)(νc2d2)

(
JR ′[M⦃N/x⦄]Ka2 | b2[c2, z] | d2(_, e2); JM ′Ke2

)
(IH4)

= J(R ′[M⦃N/x⦄]) M ′Kz = JR [M⦃N/x⦄]Kz 3

• Rule [red-conf-lift-sc]: C ≡C C
′, C ′ →C D

′, and D′ ≡C D imply C →C D. By the IH,
it suffices to show that the translation preserves structural congruence of configurations as
structural congruence of processes. Hence, we apply induction on the derivation of C ≡C C

′

(and similarly for D′ ≡C D; IH2). In Appendix A.4.1, this property is proven separately as
Theorem A.6. The inductive cases follow from IH2 and Lemma 5.12 straightforwardly. We
detail the interesting base case of Rule [sc-res-swap]: (νx[ϵ⟩y)C ≡C (νy[ϵ⟩x)C. Both
directions are analogous; we detail the left to right direction. We first infer the typing of
the left configuration:

∅ ⊢B [ϵ⟩ : S′⟩S Γ ⊢ϕ
C C : T

[typ-res/-buf]
Γ′ ⊢ϕ

C (νx[ϵ⟩y)C : T

Here, Γ′ = Γ \ x : S′, y : S. The analysis depends on whether x = □ and/or y = □. In
each case, we show that

J∅ ⊢B [ϵ⟩ : S′⟩SKa⟩b = J∅ ⊢B [ϵ⟩ : S⟩S′Kb⟩a : (5.1)

– Case x = y = □, or x ̸= □ and x ≠ □. Either way, S′ = S. If S′ = □, both translations
are 0, from which the thesis follows immediately. Otherwise, the thesis follows by
induction on the structure of S′; clearly, the resulting translations are exactly the same.
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– Case x = □ and y ̸= □, or x ̸= □ and y = □. W.l.o.g., assume the former. Then S′ = □
and S = end. The thesis then holds as follows:

J∅ ⊢B [ϵ⟩ : □⟩endKa⟩b = b(_, c); c[_,_]

= J∅ ⊢B [ϵ⟩ : end⟩□Kb⟩c
The thesis then holds as follows:

J(νx[ϵ⟩y)CKz = (νax)(νby)(J∅ ⊢B [ϵ⟩ : S′⟩SKa⟩b | JCKz)

= (νax)(νby)(J∅ ⊢B [ϵ⟩ : S⟩S′Kb⟩a | JCKz) (5.1)

≡ (νby)(νax)(J∅ ⊢B [ϵ⟩ : S⟩S′Kb⟩a | JCKz)
= J(νy[ϵ⟩x)CKz

Proof of soundness (Theorem 5.11). By induction on the number k of steps JCKz→kQ (IH1).
We distinguish cases on all possible initial reductions JCKz → Q0 and discuss all possible
following reductions. Here, we rely on APCP’s confluence of independent reductions, allowing
us to focus on a specific sequence of reductions, postponing other possibilities that eventually
lead to the same result.

We then use induction on the structure of C (IH2). The goal is to identify some D0 such
that we can isolate k0 ≥ 0 reductions such that C →C D0 and JCKz →Q0 →k0 JD0Kz (where
k0 may be different in each case). We then have JD0Kz →k−k0 Q, so it follows from IH1 that
there exists D such that D0 →∗

C D and JD0Kz →∗ JDKz. Here, we detail only the interesting
case of an interaction between the translations of a buffer and a contained configuration;
Appendix A.4.2 details the whole proof. That is, C = (νx[m⃗⟩y)C1. We have

J(νx[m⃗⟩y)C1Kz = (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JC1Kz).

The reduction may originate from (i) J[m⃗⟩Ka1⟩b1, (ii) JC1Kz, (iii) a synchronization between
a1 in J[m⃗⟩Ka1⟩b1 and x in JC1Kz, or (iv) a synchronization between b1 in J[m⃗⟩Ka1⟩b1 and y in
JC1Kz. We detail each case:

(i) The reduction originates from J[m⃗⟩Ka1⟩b1. No matter what [m⃗⟩ is, no reduction is
possible.

(ii) The reduction originates from JC1Kz. We thus have JC1Kz → Q1. By IH2, there are
D1, k1 ≥ 0 such that C1 →C D1 and JC1Kz → Q1 →k1 JD1Kz. Let D0 ≜ (νx[m⃗⟩y)D1.
We have C →C D0. Moreover:

JCKz = (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JC1Kz)

→k1+1 (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JD1Kz)
= JD0Kz

(iii) The reduction originates from a synchronization between a1 in J[m⃗⟩Ka1⟩b1 and x in
JC1Kz. By well typedness, ∆ ⊢B [m⃗⟩ : S′⟩S. Note first that, by Lemma 5.13, S′ ̸= □
implies that there are E2, c1 such that J[m⃗⟩ : S′⟩SKa1⟩b1 = E2

[
J[ϵ⟩ : S′⟩S′Ka1⟩c1

]
. The

analysis depends on S′, so we consider all possibilities. In each case, if the reduction is
indeed possible, we show that the reduction is the first step in the execution of some
rule such that C →C D0. The corresponding reduction JCKz →Q0 →k0 JD0Kz follows
the corresponding case in the proof of Theorem 5.10 (Completeness).
• Case S′ = □. Then x = □ is not free in C1, and thus x is not free in JC1Kz: the

reduction is not possible.
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• Case S′ = end. The analysis depends on whether S = □ or not; w.l.o.g., assume not.
We have

J[ϵ⟩ : end⟩endKa1⟩c1 = a1(_, c2); . . . | . . .
Thus, the synchronization is between the receive on a1 and a send on x in JC1Kz.
A send on a variable x can only occur in the translation of that variable directly,
under some reduction context. Since x is of type end and its translation appears
under a reduction context, the only well-typed way for x to appear in C1 is if
C1 = G

[
F [closex;M1]

]
. We then have

C ≡C G ′[(νx[m⃗⟩y)(F [closex;M1] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-close].
• Case S′ = !T2.S

′
2. We have
q
[ϵ⟩ : !T2.S

′
2⟩!T2.S

′
2

y
a1⟩c1 = a1(_, c2); . . .

Thus, the synchronization is between the receive on a1 and a send on x in JC1Kz.
A send on a variable x can only occur in the translation of that variable directly,
under some reduction context. Since x is of type !T2.S

′
2 and its translation appears

under a reduction context, the only well-typed way for x to appear in C1 is if
C1 = G

[
F [sendM1 x]

]
. We then have

C ≡C G ′[(νx[m⃗⟩y)(F̂ ′[sendM1 x] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-send].
• Case S′ = ?T2.S

′
2. We have

q
[ϵ⟩ : ?T2.S

′
2⟩?T2.S

′
2

y
a1⟩c1 =

r
[ϵ⟩ : !T2.S′

2⟩!T2.S′
2

z
c1⟩a1 = c1(_, c2); . . .

Thus, the reduction is not possible.
• Case S′ = ⊕{i : Si

2}i∈I . We have
q
[ϵ⟩ : ⊕{i : Si

2}i∈I⟩⊕{i : Si
2}i∈I

y
a1⟩c1 = a1(_, c2); . . .

Thus, the synchronization is between the receive on a1 and a send on x in JC1Kz.
A send on a variable x can only occur in the translation of that variable directly,
under some reduction context. Since x is of type ⊕{i : Si

2}i∈I and its translation
appears under a reduction context, the only well-typed way for x to appear in C1 is
if C1 = G

[
F [select j x]

]
where j ∈ I. We then have

C ≡C G ′[(νx[m⃗⟩y)(F [select j x] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-select].
• Case S′ = &{i : Si

2}i∈I . We have
q
[ϵ⟩ : &{i : Si

2}i∈I⟩&{i : Si
2}i∈I

y
a1⟩c1 =

r
[ϵ⟩ : ⊕{i : Si

2}i∈I⟩⊕{i : Si
2}i∈I

z
c1⟩a1

= c1(_, c2); . . .

Thus, the reduction is not possible.
(iv) The reduction originates from a synchronization between b1 in J[m⃗⟩Ka1⟩b1 and y in

JC1Kz. By well typedness, ∆ ⊢B [m⃗⟩ : S′⟩S. The analysis depends on S, so we consider
all possibilities. In each case, if the reduction is indeed possible, we show that the
reduction is the first step in the execution of some rule such that C →C D0. The
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corresponding reduction JCKz →Q0 →k0 JD0Kz follows the corresponding case in the
proof of Theorem 5.10 (Completeness).
• Case S = □. Then y = □ is not free in C1, and thus y is not free in JC1Kz: the

reduction is not possible.
• Case S = end. By well typedness, then m⃗ = ϵ. Let C ′ ≜ (νy[ϵ⟩x)C1; we have
C ≡C C ′ and JCKz ≡ JC ′Kz (by Theorem A.6). The thesis then follows as in the
analogous case under Subcase (iii) above.

• Case S = !T2.S2. By well typedness, then m⃗ = m⃗′,M1. We have
q
[m⃗′,M1⟩ : S′⟩!T2.S2

y
a1⟩b1 = (ν . . .)(ν . . .)(. . . | b1(_, h2); . . . | . . .).

Thus, the synchronization is between the receive on b1 and a send on y in JC1Kz.
A send on a variable y can only occur in the translation of that variable directly,
under some reduction context. Since y is of type S = ?T2.S2 and its translation
appears under a reduction context, the only well-typed way for y to appear in C1 is
if C1 = G

[
F [recv y]

]
. We then have

C ≡C G ′[(νx[m⃗′,M1⟩y)(F̂ ′[recv y] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-recv].
• Case S = ?T2.S2. By well typedness, then m⃗ = ϵ; this case is analogous to

Case S = end above.
• Case S = ⊕{i : Si

2}i∈I . By well typedness, then m⃗ = m⃗′, j where j ∈ I. We have
q
[m⃗′, j⟩ : S′⟩⊕{i : Si

2}i∈I
y
a1⟩b1 = (ν . . .)(b1(_, e2); . . . | . . .).

Thus, the synchronization is between the receive on b1 and a send on y in JC1Kz.
A send on a variable y can only occur in the translation of that variable directly,
under some reduction context. Since y is of type S = &{i : Si

2}i∈I and its translation
appears under a reduction context, the only well-typed way for y to appear in C1 is
if C1 = G

[
F [case y of {i : M1.i}i∈I ]

]
. We then have

C ≡C G ′[(νx[m⃗′, j⟩y)(F [case y of {i : M1.i}i∈I ] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-case].
• Case S = &{i : Si

2}i∈I . By well typedness, then m⃗ = ϵ; this case is analogous to
Case S = end above.

5.3. Deadlock Free LASTn . By virtue of Theorem 3.31, well-typed APCP processes that
are typable under empty contexts (⊢ P :: ∅) are deadlock free. We may transfer this
result to LASTn configurations by appealing to the operational correctness of our translation
(Theorems 5.10 and 5.11 above). Each deadlock-free configuration in LASTn obtained via
this transference satisfies two requirements:
• The configuration is typable ∅ ⊢♦

C C : 1, i.e., it needs no external resources and has no
external behavior.

• The typed translation of the configuration satisfies priority requirements in APCP: it is well
typed under ‘⊢’, not only under ‘⊢∗’ (cf. Section 5.2).

We rely on soundness (Theorem 5.11) to transfer deadlock freedom to configurations:

Theorem 5.14 (Deadlock Freedom for LASTn). Given ∅ ⊢♦
C C : 1, if ⊢ JCKz :: Γ for some Γ,

then C ≡ ♦ () or C →C D for some D.
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Proof. By Theorem 5.8 (type preservation for the translation), Γ = z : J1K = z : •. Then
⊢ (νz_)JCKz :: ∅. Hence, by Theorem 3.31 (deadlock freedom), either (νz_)JCKz ≡ 0 or
(νz_)JCKz →Q for some Q. The rest of the analysis depends on which possibility holds:
• We have (νz_)JCKz ≡ 0. We straightforwardly deduce from the well typedness and

translation of C that C ≡C ♦ (), proving the thesis.
• We have (νz_)JCKz → Q for some Q. We argue that this implies that JCKz → Q0, for

some Q0.
– The reduction involves z. Since z is of type • in JCKz, then z must occur in a forwarder,

and the reduction involves a forwarder [z ↔ x] for some x. Since x is not free in JCKz,
there must be a restriction on x. Hence, the forwarder [z ↔ x] can also reduce with this
restriction, instead of with the restriction (νz_). This means that JCKz →Q0 for some
Q0.

– The reduction does not involve z, in which case the reduction must be internal to JCKz.
That is, JCKz →Q0 for some Q0 and Q ≡ (νz_)Q0.

First, by contradiction, we show that z is not involved in this reduction: Since z is of type
• in JCKz, then z must occur in a forwarder, and the reduction involves a forwarder [z ↔ x]
for some x. However, our translation (Figures 17 to 19) does not generate forwarders, so
this is clearly a contradiction. Hence, the reduction does not involve z.

Thus, the reduction must be internal to JCKz. That is, JCKz → Q0 for some Q0 and
Q ≡ (νz_)Q0. Then, by Theorem 5.11 (soundness), there exists D such that C →∗

C D.
Looking at the proof of Theorem 5.11 (in Appendix A.4.2), it is easy to see that in fact
C →+

C D. That is, there exists D0 such that C →C D0, proving the thesis.

Example 5.15. To illustrate the insights gained from deadlock analysis in APCP through
translation from LASTn , we consider a seemingly deadlock-free configuration that is not.
To this end, we first discuss how we can assign priorities to the translated types of the
configuration, and extract from the translation requirements on those priorities. Next, we
show that our example leads to unsatisfiable priority requirements, indicating the elusive
deadlock in the original configuration. We close the example by considering an alternative
configuration that is indeed deadlock free.

Our example is a classic showcase of deadlock due to cyclic connections under synchro-
nous communication. Though one would expect this example to be deadlock free under
asynchronous communication, it is not: there is a deadlock induced by the call-by-name
semantics of LASTn . Let

M(x, y) ≜ letx1 = send ()x in
let (v, y1) = recv y in
closex1; close y1; v,

C ≜ ♦ let (x, x′) = new in

let (y, y′) = new in

forkM(x, y);M(y′, x′).

Before showing the deadlock and its source, we first analyze the deadlock through translation
into APCP.

By Theorem 5.8 and assigning priority variables to each connective, we have

⊢∗ JM(x, y)Kz1 :: y : • ⊗◦1 (• ⊗◦2 •)

&◦3 • ⊗◦4 •

&◦5 •,
x : • ⊗◦6 •

&◦7 (•

&◦8 •)⊗◦9 • ⊗◦10 •

&◦11 •, z1 : •
⊢∗ JM(y′, x′)Kz2 :: x′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •,
y′ : • ⊗π6 •

&π7 (•

&π8 •)⊗π9 • ⊗π10 •

&π11 •, z2 : •
⊢∗ JCKz :: z : •
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To determine requirements on these priorities, we analyze the translations of typing rules into
APCP derivations in Figures 17 to 19 and the priority requirements induced by them. Indeed,
a deadlock is detected, because APCP requires ◦6 < π1 < π6 < ◦1 < ◦6, which is unsatisfiable.

Before detailing the origin of these requirements, we first give an intuition behind this
unsatisfiable chain of priority requirements, and how they reflect the deadlock that is indeed
present in C. From left to right, the requirements denote that (1) the send on x occurs
before the receive on x′, (2) the receive on x′ occurs before the send on y′, (3) the send on y′

occurs before the receive on y, (4) the receive on y occurs before the send on x. Steps (2)
and (3) stand out: M(x, y) and M(y′, x′) seem to define an opposite order. This is because
in, e.g., M(x, y), the call-by-name semantics of LASTn transforms the letx1 into an explicit
substitution that can only be resolved—thus enabling the send ()x—once the closex1 is
unblocked by the let (v, y1), which in turn is waiting for the recv y to be resolved. To be
precise:

M(x, y)→M

(
let (v, y1) = recv y in . . .

)
⦃send ()x/x1⦄ ≜ M ′(x, y) ↛M

M(y′, x′)→M

(
let (v′, x′1) = recvx′ in . . .

)
⦃send () y′/y′1⦄ ≜ M ′(y′, x′) ↛M

C →9
C (νs[ϵ⟩s′)(νt[ϵ⟩t′)

(
♢M ′(x, t)⦃s/x⦄ ∥ ♦M ′(y′, s′)⦃t′/y′⦄

)
↛C

We now detail the origin of the conflicting priority requirements; that is, we spell out the
rules of the translation and the induced requirements. Note that many of these rules include
names and priority variables that are not visible outside the derivation, being created from
within certain parts of the translation.

(1) Requirement ◦6 < π1 originates from the translation of new in the let (x, x′). More
precisely, the translation of new prepares the translation of the upcoming buffer, which
follows the involved types. The requirement is induced by a step in the translation of
this buffer (Rule [typ-buf] in Figure 18):

⊢∗ J[ϵ⟩ : end⟩endKg3⟩k3 :: g3 : •

&ρ5 • ⊗◦11 •, k3 : •

&ρ6 • ⊗π5 •

◦8 = π2, ◦6 < π1, ◦9 < π1,
π1 < ◦8, π1 < π5, ◦7 < ◦9,
π3 < π2, π3 < π4

⊢∗ J[ϵ⟩ : !1.end⟩!1.endKd2⟩e2 :: d2 : •

&◦6 • ⊗◦7 (• ⊗◦8 •)

&◦9 •

&◦10 • ⊗◦11 •,
e2 : •

&π1 (•

&π2 •)⊗π3 •

&π4 • ⊗π5 •

(2) Requirement π1 < π6 originates from four substeps, including intermediate priorities:
π1 < π3 < π14 < π12 < π6.
(a) π1 < π3 originates from the translation of the variable x′ (Rule [typ-var] in

Figure 17):

π1 < π3

⊢∗ Jx′Ka′4 :: x
′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •, a′4 : (•

&π2 •)⊗π3 •

&π4 • ⊗π5 •

(b) π3 < π14 originates from the translation of the recvx′ (Rule [typ-recv] in Fig-
ure 17):

⊢∗ Jx′Ka′4 ::
x′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •,
a′4 : (•

&π2 •)⊗π3 •

&π4 • ⊗π5 • π14 < π2, π14 < π15, π4 < π5, π3 < π14

⊢∗ Jrecvx′Kb′3 :: x
′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •, b′3 : (•

&π2 •)⊗π14 •

&π15 • ⊗π5 •
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(c) π14 < π12 originates from the translation of the let (v′, x′1) (Rule [typ-split] in
Figure 17):

⊢∗ Jrecvx′Kb′3
:: x′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •,
b′3 : (•

&π2 •)⊗π14 •

&π15 • ⊗π5 •

⊢∗ J. . .Ka′2
:: y′1 : • ⊗π12 •

&π11 •,
v′ : • ⊗π2 •,
x′1 : • ⊗π15 •

&π5 •

π14 < π12

⊢∗ Jlet (v′, x′1) = recvx′ in . . .Ka′2 :: x
′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •,
y′1 : • ⊗π12 •

&π11 •, a′2 : •

(d) Finally, π12 < π6 originates from the translation of the let y′1. To be precise, this
syntactic sugar breaks down into an abstraction and an application; the requirement
originates from the application (Rule [typ-app] in Figure 17):

⊢∗ Jλy′1 . . .Ka
′
1

:: x′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •,
a′1 : (• ⊗π12 •

&π11 •)

&π13 •

⊢∗ Jsend () y′Ke′1
:: y′ : • ⊗π6 •

&π7 (•

&π8 •)
⊗π9 • ⊗π10 •

&π11 •,
e′1 : • ⊗π11 •

π12 < π6,
π13 < π12

⊢∗ Jlet y′1 = send y′ in . . .Kz2 :: x′ : • ⊗π1 (• ⊗π2 •)

&π3 • ⊗π4 •

&π5 •,
y′ : • ⊗π6 •

&π7 (•

&π8 •)⊗π9 • ⊗π10 •

&π11 •,
z2 : •

(3) Requirement π6 < ◦1 originates from the buffer prepared by the translation of new in
the let (y, y′). It is derived similar to Requirement (1).

(4) Requirement ◦1 < ◦6 originates from four similar substeps as in Requirement (2).
We conclude that the translation of C cannot be typed under ⊢, because the priority
requirements cannot be satisfied. Hence, Theorem 5.14 does not apply, and so deadlock
freedom cannot be guaranteed for C.

Note that it is straightforward to define variants of C whose translations are well typed
under ⊢, thus guaranteeing deadlock freedom through Theorem 5.14. An example is the
variant of M(x, y) above in which the closex1 occurs before the let (v, y1).

Remark 5.16. Determining the deadlock freedom of well-typed LASTn programs by means of
translation into APCP is of similar complexity as a direct, priority-based approach. It is easy
to see that the translation is O(n) in the size of the LASTn typing derivation. We could add
priorities to the types of LASTn and derive priority requirements from the translation; this
would boil down to roughly the same amount of checking. Hence, the indirect approach via
APCP is similarly complex. This justifies keeping the type system of LASTn simple, compared
to type systems that use priorities for deadlock-free functional programs such as those by,
e.g., Padovani and Novara [PN15] and Kokke and Dardha [KD21a].

6. Related Work

Closely related work on the two themes of the paper (deadlock freedom by typing and
functional calculi with concurrency) has been already discussed throughout the paper. Here
we comment on other related literature.
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Asynchronous Communication. Asynchronous communication has a longstanding history
in process algebras (see, e.g., [BKT85, HJH90, BKP92]). The first accounts of asynchronous
communication for the π-calculus were developed independently by Honda and Tokoro [HT91,
HT92] and by Boudol [Bou92]. Palamidessi [Pal03] shows that the synchronous π-calculus is
strictly more expressive than its asynchronous variant, due to mixed choices : non-deterministic
choices involving both inputs and outputs. Beauxis et al. [BPV08] study the exact form
of asynchronous communication modeled by the asynchronous π-calculus; they examine
communication mediated by different mechanisms (bags, stacks, queues) in the synchronous
π-calculus, and prove that bags lead to the strongest operational correspondence with the
asynchronous π-calculus.

As discussed already, asynchrony is a relevant phenomenon in session π-calculi; the
communication structures delineated by sessions strongly influence the expected ordering of
messages. The expressiveness gap between asynchronous and synchronous communication
shown by Palamidessi in the untyped setting does not hold in this context, since session-typed
π-calculi consider only deterministic choices and do not account for mixed choices. A notable
exception is the work on mixed sessions by Casal et al. [VCAM20, CMV22], which does not
address deadlock freedom. Nevertheless, fundamental differences between mixed choices in
untyped and session-typed settings remain, as established by Peters and Yoshida [PY22].

In the context of session types, the first formal theory of asynchronous communication
for the π-calculus is by Kouzapas et al. [KYH11], using a buffered semantics. Their focus
is on the behavioral theory induced by asynchrony and the program transformations it
enables. Follow-up work [KYHH16] goes beyond to consider asynchronous communication in
combination with constructs for event-driven programming, and develops a corresponding
type system and behavioral theory. Unlike our work, these two works do not consider
deadlock freedom for asynchronous session processes.

DeYoung et al. [DCPT12] give the first connection between linear logic and a session-
typed π-calculus with asynchronous communication using a continuation-passing semantics,
and show that this semantics is equivalent to a buffered semantics. As mentioned before,
APCP’s semantics is based on this work, except that our typing rules for sending and selection
are axiomatic and that we consider recursion. On a similar line, Jia et al. [JGP16] consider
a session-typed language with asynchronous communication; their focus is on the dynamic
monitoring of session behaviors, not on deadlock freedom. Both these works are based on the
correspondence with intuitionistic linear logic, which restricts the kind of process networks
allowed by typing. Pruiksma and Pfenning [PP19, PP21] derive a “propositions-as-sessions”
type system from adjoint logic, which combines several logics with different structural
rules through modalities [Ree09, PCPR18]. Their process language features asynchronous
communication with continuation passing and their type system treats asynchronous, non-
blocking outputs via axiomatic typing rules, similar to Rules [typ-send] and [typ-sel] in
Figure 4.

Padovani’s linear type system for the asynchronous π-calculus [Pad14] has been already
mentioned in the context of deadlock freedom for cyclic process networks. His language is
different from APCP, as it lacks session constructs and does not have continuation passing
baked into the type system. While it should be possible to encode sessions in his typed
framework (using communication of pairs to model continuation passing), it seems unclear
how to transfer the analysis of deadlock freedom from this setting to a language such as
APCP via such a translation.
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LAST GV EGV PGV LASTn

[GV10] [Wad12] [FLMD19] [KD21a, KD21b] (this paper)

Communication Async. Sync. Async. Sync. Async.

Cyclic Topologies ✓ × × ✓ ✓

Deadlock
Freedom × ✓

(by typing)
✓

(by typing)
✓

(by typing)
✓

(via APCP)

Table 1: The features of CGV compared to related works.

Deadlock Freedom for Cyclic Process Networks. We have already discussed the related
works by Kobayashi [Kob06], Padovani [Pad14], and Dardha and Gay [DG18]. The work
of Kobayashi and Laneve [KL17] is related to APCP in that it addresses deadlock freedom
for unbounded process networks. Toninho and Yoshida’s work [TY18] addresses deadlock
freedom for cyclic process networks by generating global types from binary types. The work
by Balzer, Toninho and Pfenning [BP17, BTP19] is also worth mentioning: it guarantees
deadlock freedom for processes with shared, mutable resources by means of manifest sharing,
i.e., explicitly acquiring and releasing access to resources.

Functional Languages with Sessions. We have already discussed the related works by
Gay and Vasconcelos [GV10], Wadler [Wad12], Kokke and Dardha [KD21a, KD21b], and
Padovani and Novara [PN15]. Lindley and Morris [LM15] formally define a semantics for
Wadler’s GV, prove deadlock freedom and operational correspondence of the translation
into Wadler’s CP, and give a translation from CP into GV. Other related work in this line
is Fowler et al.’s Asynchronous GV with buffered asynchronous communication and a call-
by-value semantics, and Exceptional GV (EGV) which extends the former with exception
handling [Fow19, FLMD19].

Table 1 summarizes the comparison of LASTn to some of these related works. Note
that none of the mentioned works supports sending anything but values, unlike LASTn .
Our work ensures deadlock freedom for configurations with cyclic topologies by means of a
translation into a system with an established deadlock-freedom result (cf. Remark 5.16); the
alternative approach is to enhance GV’s type system with priorities, as done by Padovani and
Novara [PN15] and Kokke and Dardha [KD21a, KD21b].

Typed Encodings between (Concurrent) λ-calculi and π-calculi. Several prior works
develop typed encodings between λ- and π-calculi; to our knowledge, all of them consider
call-by-value semantics, most do not consider λ with message passing, and none translate
variables as sends, as we do. Some of these works have been already discussed in Section 4.3,
where we justified the notions of completeness and soundness relevant for our translation of
LASTn into APCP.

Vasconcelos [Vas00] translates an untyped λ-calculus into an input/output-typed π-
calculus; the translation is sound, up to barbed congruence. The aforementioned work by
Wadler [Wad12, Wad14] translates the session-typed GV with synchronous message passing into
the session-typed CP, without giving a semantics for GV nor associated completeness/soundness
results. Lindley and Morris [LM15] formalize a semantics for GV and its translation into CP,
and prove completeness. Similarly to our approach, they use closures/explicit substitutions
in GV to obtain a direct, more controlled correspondence with cut reduction in linear logic;
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however, no soundness result is given. Kokke and Dardha [KD21a] define PGV, an extension of
GV with priority annotations to support deadlock-free cyclic thread configurations; they give
a translation from PCP into PGV that is both sound and complete, but no translation in the
other direction is studied. Toninho et al. [TCP12] translate a linearly typed λ-calculus into
a session-typed π-calculus derived from intuitionistic linear logic; they prove completeness,
but for soundness they extend reduction in λ to call by name. Toninho and Yoshida [TY21]
translate a linearly typed λ-calculus without message passing into a session-typed polymorphic
π-calculus. Their translation is fully abstract: it is complete and sound, with the latter result
requiring an extension of reduction in π with commuting conversions. Fowler et al. [FKD+23]
introduce a variant of (call-by-value) GV based on hypersequents, and consider its relationship
with hypersequent CP: they exhibit translations that preserve and reflect reduction, up to
weak bisimilarity.

Other Applications of APCP. As mentioned in the introduction, two salient aspects of
Curry-Howard correspondences for session types, namely analysis of deadlock freedom and
connections with functional calculi, define the main themes of this paper. Yet another
highlight of the logical correspondences is their suitability for the analysis of multiparty
protocols. In separate work [HP22b], we have devised a methodology for the analysis of
multiparty session types (MPST) based on APCP [HYC16]. In the multiparty context, two
or more participants interact following a common protocol. APCP is well suited for the
analysis of process implementations of MPST, which rely on asynchrony and recursion. In
our analysis, multiple separate processes implement the roles of one or more participants
of a multiparty protocol. The support for cyclic process networks in APCP allows us to
connect these implementations with each other directly, without requiring an additional
process (as used in similar prior works [CP16, CMSY15, CLM+16]). The asynchrony in APCP
captures the asynchronous nature of MPST, and APCP’s recursion enables an expressive class
of supported protocols. This way, our methodology unlocks the transfer of (static) analysis
of deadlock freedom and protocol conformance from APCP to distributed implementations of
MPST. The key ideas underlying the methodology in [HP22b] can be applied to the runtime
verification of such distributed implementations, as recently shown in [HPD23].

7. Closing Remarks

In this paper, we have presented two contributions to the challenging issue of ensuring
deadlock-free, message-passing interactions in a session-typed setting. Our first contribution
is APCP: a typed framework for deadlock-free cyclic process networks with asynchronous
communication and recursion. The design of APCP and its type system has a solid basis,
with tight ties to logic (“propositions as sessions”): our syntax, semantics and type system
harmoniously integrate insights separately presented in prior works for different typed variants
of the π-calculus.

The step from synchronous communication (as in PCP [DG18]) to asynchronous commu-
nication (in APCP) is significant. In combination with cyclic process networks, asynchronous
communication enables checking a larger class of deadlock-free processes: processes that under
synchronous communication would be deadlocked due to blocking outputs may be deadlock
free in APCP (see, e.g., Example 3.4). Perhaps more significantly, asynchronous communica-
tion simplifies the priority management involved in the detection of cyclic dependencies (cf.
Remark 3.15).
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In our second contribution, we move to consider cyclic process networks with asynchronous
communication in the setting of a prototypical functional language. We introduced LASTn ,
a new functional language with asynchronous, session-typed communication. Inspired by
Gay and Vasconcelos’s LAST, the design of LASTn combines buffered communication with a
call-by-name reduction strategy, explicit substitutions, and explicit session closing. In our
opinion, this design makes LASTn an interesting object of study on its own. In the spirit
of Gay and Vasconcelos’s work, we defined a deliberately simple type system for LASTn ,
whose type preservation property ensures protocol fidelity and communication safety, but not
deadlock freedom. This means that well-typed threads in LASTn can perform session protocols
that may lead to stuck terms/configurations. To connect our contributions, and to transfer
the deadlock-freedom guarantee to the functional realm, we presented a translation from
LASTn to APCP that is operationally correct. In particular, operational correctness includes
the soundness property, which ensures that the translation reflects reduction steps and is
critical to the transfer of deadlock freedom formalized by Theorem 5.14. This way, we were
able to analyze deadlock freedom in LASTn by leaning on the established results for APCP
(Theorem 3.31) without sacrificing complexity (cf. Remark 5.16).

In future work, it would be interesting to study the extension of LASTn with recur-
sion/recursive types, and to extend our translation into APCP (and its operational correspon-
dence results) accordingly. We do not expect technical difficulties, in particular if LASTn is
enhanced with the kind of tail-recursive behavior present in APCP. In the same spirit, it would
be insightful to explore how to accommodate APCP’s support for priorities into a process
language with inductive and coinductive types (least and greatest fixed points, respectively),
such as the one studied by Rocha and Caires [RC23]. Finally, following [Kob05], it would be
interesting to study type inference algorithms for APCP which could (automatically) determine
priorities for typed processes.
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Terms (M,N, . . .) and reduction contexts (R ):

M,N ::= x variable | new create new channel
| () unit value | forkM ;N fork M in parallel to N
| λx.M abstraction | (M,N) pair construction
| M N application | let (x, y) = M inN pair deconstruction
| sendM N send M along N | select ℓM select label ℓ along M
| recvM receive along M | caseM of {i : M}i∈I offer labels in I along M
| closeM ;N close M |M⦃N/x⦄ explicit substitution

R ::= [·] | R M | sendM R | recvR | let (x, y) = R inM
| select ℓR | caseR of {i : M}i∈I | closeR ;M | R ⦃M/x⦄................................................................................................................................................

Structural congruence for terms (≡M) and term reduction (→M):

[sc-sub-ext]
x /∈ fv(R )

(R [M ])⦃N/x⦄ ≡M R [M⦃N/x⦄]

[red-lam]

(λx.M) N →M M⦃N/x⦄

[red-pair]

let (x, y) = (M1,M2) inN →M N⦃M1/x,M2/y⦄

[red-name-sub]

x⦃M/x⦄→M M

[red-lift]
M →M N

R [M ]→M R [N ]

[red-lift-sc]
M ≡M M

′ M ′ →M N
′ N ′ ≡M N

M →M N

Figure 20: The LASTn term language.

Appendix A. LASTn : Detailed Definitions and Proofs

A.1. Self-contained Definition of LASTn and its Type System. Figure 20 gives the
term language of LASTn , Figure 21 the configuration language, and Figure 22 the type system.
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Markers (ϕ), messages (m,n), configurations (C,D,E), thread contexts (F ) and
configuration contexts (G):

ϕ ::= ♦ | ♢ m,n ::= M | ℓ
C,D,E ::= ϕM | C ∥ D | (νx[m⃗⟩y)C | C⦃M/x⦄ F ::= ϕR

G ::= [·] | G ∥ C | (νx[m⃗⟩y)G | G⦃M/x⦄

................................................................................................................................................
Structural congruence for configurations (≡C):

[sc-term-sc]
M ≡M M

′

ϕM ≡C ϕM ′
[sc-res-swap]

(νx[ϵ⟩y)C ≡C (νy[ϵ⟩x)C

[sc-res-comm]

(νx[m⃗⟩y)(νz[n⃗⟩w)C ≡C (νz[n⃗⟩w)(νx[m⃗⟩y)C

[sc-res-ext]
x, y /∈ fv(C)

(νx[m⃗⟩y)(C ∥ D) ≡C C ∥ (νx[m⃗⟩y)D
[sc-par-comm]

C ∥ D ≡C D ∥ C

[sc-par-assoc]

C ∥ (D ∥ E) ≡C (C ∥ D) ∥ E

[sc-conf-sub]

ϕ (M⦃N/x⦄) ≡C (ϕM)⦃N/x⦄

[sc-conf-sub-ext]
x /∈ fv(G)

(G [C])⦃M/x⦄ ≡C G [C⦃M/x⦄]

................................................................................................................................................
Configuration reduction (→C):

[red-new]

F [new]→C (νx[ϵ⟩y)(F [(x, y)])

[red-fork]

F̂ [forkM ;N ]→C F̂ [N ] ∥ ♢M

[red-send]

(νx[m⃗⟩y)(F̂ [sendM x] ∥ C)→C (νx[M, m⃗⟩y)(F̂ [x] ∥ C)

[red-recv]

(νx[m⃗,M⟩y)(F̂ [recv y] ∥ C)→C (νx[m⃗⟩y)(F̂ [(M,y)] ∥ C)

[red-select]

(νx[m⃗⟩y)(F [select ℓ x] ∥ C)→C (νx[ℓ, m⃗⟩y)(F [x] ∥ C)

[red-case]
j ∈ I

(νx[m⃗, j⟩y)(F [case y of {i : Mi}i∈I ] ∥ C)→C (νx[m⃗⟩y)(F [Mj y] ∥ C)

[red-close]

(νx[m⃗⟩y)(F [closex;M ] ∥ C)→C (ν□[m⃗⟩y)(F [M ] ∥ C)

[red-res-nil]

(ν□[ϵ⟩□)C →C C

[red-par-nil]

C ∥ ♢ ()→C C

[red-lift-C]
C →C C

′

G [C]→C G [C ′]

[red-lift-M]
M →M M

′

F [M ]→C F [M ′]

[red-conf-lift-sc]
C ≡C C

′ C ′ →C D
′ D′ ≡C D

C →C D

Figure 21: The LASTn configuration language.
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[typ-var]

x : T ⊢M x : T

[typ-abs]
Γ, x : T ⊢M M : U

Γ ⊢M λx.M : T ⊸ U

[typ-app]
Γ ⊢M M : T ⊸ U ∆ ⊢M N : T

Γ,∆ ⊢M M N : U

[typ-unit]

∅ ⊢M () : 1

[typ-pair]
Γ ⊢M M : T ∆ ⊢M N : U

Γ,∆ ⊢M (M,N) : T × U

[typ-split]
Γ ⊢M M : T × T ′ ∆, x : T , y : T ′ ⊢M N : U

Γ,∆ ⊢M let (x, y) = M inN : U

[typ-new]

∅ ⊢M new : S × S

[typ-fork]
Γ ⊢M M : 1 ∆ ⊢M N : T
Γ,∆ ⊢M forkM ;N : T

[typ-close]
Γ ⊢M M : end ∆ ⊢M N : T
Γ,∆ ⊢M closeM ;N : T

[typ-send]
Γ ⊢M M : T ∆ ⊢M N : !T.S

Γ,∆ ⊢M sendM N : S

[typ-recv]
Γ ⊢M M : ?T.S

Γ ⊢M recvM : T × S

[typ-sel]
Γ ⊢M M : ⊕{i : Si}i∈I j ∈ I

Γ ⊢M select j M : Sj

[typ-case]
Γ ⊢M M : &{i : Si}i∈I ∀i ∈ I. ∆ ⊢M Ni : Si ⊸ U

Γ,∆ ⊢M caseM of {i : Ni}i∈I : U

[typ-sub]
Γ, x : T ⊢M M : U ∆ ⊢M N : T

Γ,∆ ⊢M M⦃N/x⦄ : U
................................................................................................................................................

[typ-buf]

∅ ⊢B [ϵ⟩ : S′⟩S′

[typ-buf-send]
Γ ⊢M M : T ∆ ⊢B [m⃗⟩ : S′⟩S

Γ,∆ ⊢B [m⃗,M⟩ : S′⟩!T.S

[typ-buf-sel]
Γ ⊢B [m⃗⟩ : S′⟩Sj j ∈ I

Γ ⊢B [m⃗, j⟩ : S′⟩⊕{i : Si}i∈I
[typ-buf-end-L]

∅ ⊢B [ϵ⟩ : end⟩□
[typ-buf-end-R]

∅ ⊢B [ϵ⟩ : □⟩end
................................................................................................................................................

[typ-main]

Γ ⊢M M : T̂

Γ ⊢♦
C ♦M : T̂

[typ-child]
Γ ⊢M M : 1

Γ ⊢♢
C ♢M : 1

[typ-par]

Γ ⊢ϕ1
C C : T1 ∆ ⊢ϕ2

C D : T2

Γ,∆ ⊢ϕ1+ϕ2
C C ∥ D : T1 + T2

[typ-res]

Γ ⊢B [m⃗⟩ : S′⟩S ∆, x : S′ ⊢ϕ
C C : T Γ′, y : S = Γ,∆

Γ′ ⊢ϕ
C (νx[m⃗⟩y)C : T

[typ-conf-sub]

Γ, x : T ⊢ϕ
C C : U ∆ ⊢M M : T

Γ,∆ ⊢ϕ
C C⦃M/x⦄ : U

Figure 22: LASTn typing rules for terms (top), buffers (center), and configurations (bottom).
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A.2. Type Preservation. Here, we prove type preservation for LASTn :

Theorem 5.5 (Type Preservation for LASTn). Given Γ ⊢ϕ
C C : T , if C ≡C D or C →C D,

then Γ ⊢ϕ
C D : T .

The proof is split into two parts: subject congruence and subject reduction. These and
intermediate results are organized as follows:

• Theorems A.1 and A.2 prove subject congruence and subject reduction for terms, respec-
tively.

• Theorems A.3 and A.4 then prove subject congruence and subject reduction for configura-
tions, respectively, from which Theorem 5.5 follows.

Theorem A.1 (Subject Congruence for Terms). If Γ ⊢M M : T and M ≡M N , then
Γ ⊢M N : T .

Proof. By induction on the derivation of M ≡M N . The inductive cases follow from the IH
directly. We consider the only Rule [sc-sub-ext]:

x /∈ fv(R ) =⇒ (R [M ])⦃N/x⦄ ≡M R [M⦃N/x⦄]

We apply induction on the structure of the reduction context R . As an interesting, represen-
tative case, consider R = L⦃R ′/y⦄. Assuming x /∈ fv(R ), we have x /∈ fv(L) ∪ fv(R ′). We
apply inversion of typing:

Γ, y : U ⊢M L : T ∆, x : U ′ ⊢M R ′[M ] : U
[typ-sub]

Γ,∆, x : U ′ ⊢M L⦃(R ′[M ])/y⦄ : T ∆′ ⊢M N : U ′
[typ-sub]

Γ,∆,∆′ ⊢M (L⦃(R ′[M ])/y⦄)⦃N/x⦄ : T

We can derive:

∆, x : U ′ ⊢M R ′[M ] : U ∆′ ⊢M N : U ′
[typ-sub]

∆,∆′ ⊢M (R ′[M ])⦃N/x⦄ : U

Since x /∈ fv(R ′), by Rule [sc-sub-ext], (R ′[M ])⦃N/x⦄ ≡M R ′[M⦃N/x⦄]. Then, by the IH,
∆,∆′ ⊢M R ′[M⦃N/x⦄] : U . Hence, we can conclude the following:

Γ, y : U ⊢M L : T ∆,∆′ ⊢M R ′[M⦃N/x⦄] : U
[typ-sub]

Γ,∆,∆′ ⊢M L⦃(R ′[M⦃N/x⦄])/y⦄ : T

It is straightforward to see that this reasoning works in opposite direction as well.

Theorem A.2 (Subject Reduction for Terms). If Γ ⊢M M : T and M→MN , then Γ ⊢M N : T .

Proof. By induction on the derivation of M →MN (IH1). The case of Rule [red-lift] follows
by induction on the structure of the reduction context R , where the base case (R = [·])
follows from IH1. The case of Rule [red-lift-sc] follows from IH1 and Theorem A.1 (subject
congruence for terms). We consider the other cases, applying inversion of typing and deriving
the typing of the term after reduction:



Vol. 20:4 ASYNCHRONOUS SESSIONS: DEADLOCK FREEDOM IN CYCLIC PROCESS NETWORKS 6:81

• Rule [red-lam]: (λx.M) N →M M⦃N/x⦄.

Γ, x : T ⊢M M : U
[typ-abs]

Γ ⊢M λx.M : T ⊸ U ∆ ⊢M N : T
[typ-app]

Γ,∆ ⊢M (λx.M) N : U

→M

Γ, x : T ⊢M M : U ∆ ⊢M N : T
[typ-sub]

Γ,∆ ⊢M M⦃N/x⦄ : U

• Rule [red-pair]: let (x, y) = (M1,M2) inN →M N⦃M1/x,M2/y⦄.

Γ ⊢M M1 : T Γ′ ⊢M M2 : T
′

[typ-pair]
Γ,Γ′ ⊢M (M1,M2) : T × T ′ ∆, x : T , y : T ′ ⊢M N : U

[typ-split]
Γ,Γ′,∆ ⊢M let (x, y) = (M1,M2) inN : U

→M

∆, x : T , y : T ′ ⊢M N : U Γ ⊢M M1 : T [typ-sub]
Γ,∆, y : T ′ ⊢M N⦃M1/x⦄ : U Γ′ ⊢M M2 : T

′
[typ-sub]

Γ,Γ′,∆ ⊢M N⦃M1/x,M2/y⦄ : U

• Rule [red-name-sub]: x⦃M/x⦄→M M .

[typ-var]
x : U ⊢M x : U Γ ⊢M M : U

[typ-sub]
Γ ⊢M x⦃M/x⦄ : U

→M

Γ ⊢M M : U

Theorem A.3 (Subject Congruence for Configurations). If Γ ⊢ϕ
C C : T and C ≡C D, then

Γ ⊢ϕ
C D : T .

Proof. By induction on the derivation of C ≡C D. The inductive cases follow from the IH
directly. The case for Rule [sc-term-sc] follows from Theorem A.1 (subject congruence for
terms). The cases for Rules [sc-res-comm], [sc-par-nil], [sc-par-comm], and [par-assoc]
are straightforward. We consider the other cases:

• Rule [sc-res-swap]: (νx[ϵ⟩y)C ≡C (νy[ϵ⟩x)C.
The analysis depends on whether exactly one of x, y is □ or not. We discuss both cases.

– Exactly one of x, y is □; w.l.o.g., assume x = □. We have the following:

[typ-buf-end-R]
∅ ⊢B [ϵ⟩ : □⟩end Γ, x : end ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (ν□[ϵ⟩y)C : T

≡C

[typ-buf-end-L]
∅ ⊢B [ϵ⟩ : end⟩□ Γ, x : end ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (νy[ϵ⟩□)C : T
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– Neither or both of x, y are □. We have the following:
[typ-buf]

∅ ⊢B [ϵ⟩ : S′⟩S′ Γ, x : S′, y : S′ ⊢ϕ
C C : T

[typ-res]
Γ ⊢ϕ

C (νx[ϵ⟩y)C : T

≡C

[typ-buf]
∅ ⊢B [ϵ⟩ : S′⟩S′ Γ, x : S′, y : S′ ⊢ϕ

C C : T
[typ-res]

Γ ⊢ϕ
C (νy[ϵ⟩x)C : T

• Rule [sc-res-ext]: x, y /∈ fv(C) =⇒ (νx[m⃗⟩y)(C ∥ D) ≡C C ∥ (νx[m⃗⟩y)D.
The analysis depends on whether C or D are child threads. W.l.o.g., we assume C is a

child thread. Assuming x, y /∈ fn(C), we apply inversion of typing:

Γ ⊢B [m⃗⟩ : S′⟩S
∆ ⊢♢

C C : 1 Λ, x : S′, y : S ⊢ϕ
C D : T

[typ-par]
∆,Λ, x : S′, y : S ⊢♢+ϕ

C C ∥ D : T
[typ-res]

Γ,∆,Λ ⊢♢+ϕ
C (νx[m⃗⟩y)(C ∥ D) : T

Then, we derive the typing of the structurally congruent configuration:

∆ ⊢♢
C C : 1

Γ ⊢B [m⃗⟩ : S′⟩S Λ, x : S′, y : S ⊢ϕ
C D : T

[typ-res]
Γ,Λ ⊢ϕ

C (νx[m⃗⟩y)D : T
[typ-par]

Γ,∆,Λ ⊢♢+ϕ
C C ∥ (νx[m⃗⟩y)D : T

The other direction is analogous.
• Rule [sc-conf-sub]: ϕ (M⦃N/x⦄) ≡C (ϕM)⦃N/x⦄.

This case follows by a straightforward inversion of typing on both terms:
Γ, x : T ⊢M M : U ∆ ⊢M N : T

[typ-sub]
Γ,∆ ⊢M M⦃N/x⦄ : U

[typ-main/child]
Γ,∆ ⊢ϕ

C ϕ (M⦃N/x⦄) : U

≡C

Γ, x : T ⊢M M : U
[typ-main/child]

Γ, x : T ⊢ϕ
C ϕM : U ∆ ⊢M N : T

[typ-conf-sub]
Γ,∆ ⊢ϕ

C (ϕM)⦃N/x⦄ : U

• Rule [sc-conf-sub-ext]: x /∈ fv(G) =⇒ (G [C])⦃M/x⦄ ≡C G [C⦃M/x⦄].
This case follows by induction on the structure of G . The inductive cases follow from

the IH straightforwardly. For the base case (G = [·]), the structural congruence is simply
an equality.

Theorem A.4 (Subject Reduction for Configurations). If Γ ⊢ϕ
C C : T and C →C D, then

Γ ⊢ϕ
C D : T .

Proof. By induction on the derivation of C →C D (IH1). The case of Rule [red-lift-C]
(C →C C

′ =⇒ G [C]→C G [C ′]) follows by induction on the structure of G , directly from IH1.
The case of Rule [red-lift-M] (M→MM

′ =⇒ F [M ]→C F [M ′]) follows by induction on the
structure of F , where the base case (F = ϕ [·]) follows from Theorem A.2 (subject reduction for
terms). The case for Rule [red-conf-lift-sc] (C ≡C C

′∧C ′→CD
′∧D′ ≡C D =⇒ C→CD)
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follows from IH1 and Theorem A.3 (subject congruence for configurations). We consider the
other cases:

• Rule [red-new]: F [new]→C (νx[ϵ⟩y)(F [(x, y)]).
This case follows by induction on the structure of F . The inductive cases follow from

the IH directly. For the base case (F = ϕ [·]), we apply inversion of typing and derive the
typing of the reduced configuration:

[typ-new]
∅ ⊢M new : S × S

[typ-main/child]
∅ ⊢ϕ

C ϕ new : S × S

→C

[typ-buf]
∅ ⊢B [ϵ⟩ : S⟩S

[typ-var]
x : S ⊢M x : S

[typ-var]
y : S ⊢M y : S

[typ-pair]
x : S, y : S ⊢M (x, y) : S × S

[typ-main/child]
x : S, y : S ⊢ϕ

C ϕ (x, y) : S × S
[typ-res]

∅ ⊢ϕ
C (νx[ϵ⟩y)(ϕ (x, y)) : S × S

• Rule [red-fork]: F̂ [forkM ;N ] →C F̂ [N ] ∥ ♢M . By induction on the structure of F̂ ,
which excludes holes under explicit substitution and so no names of M are captured by F̂ .
The inductive cases follows from the IH directly; we detail the base case (F̂ = ϕ [·]):

Γ ⊢M M : 1 ∆ ⊢M N : T
[typ-fork]

Γ,∆ ⊢M forkM ;N : T
[typ-main/-child]

Γ,∆ ⊢ϕ
C ϕ forkM ;N : T

→C

∆ ⊢M N : T
[typ-main/-child]

∆ ⊢ϕ
C ϕN : T

Γ ⊢M M : 1
[typ-child]

Γ ⊢♢
C ♢M : 1

[typ-par]
Γ,∆ ⊢ϕ+♢

C ϕN ∥ ♢M : T

Clearly, ϕ+ ♢ = ϕ, proving the thesis.
• Rule [red-send]: (νx[m⃗⟩y)(F̂ [sendM x] ∥ C)→C (νx[M, m⃗⟩y)(F̂ [x] ∥ C).

This case follows by induction on the structure of F̂ . The inductive cases follow from
the IH straightforwardly. The fact that the hole in F̂ does not occur under an explicit
substitution guarantees that we can move M out of the context of F̂ and into the buffer. We
consider the base case (F̂ = ϕR ). By well typedness, it must be that R = R1[closeR2;M ].
We apply induction on the structures of R1,R2 and consider the base cases: R1 = R2 = [·].
We apply inversion of typing, w.l.o.g. assuming that ϕ = ♦ and y ∈ fv(C) (omitting “typ-”
from rule labels):

Γ ⊢B [m⃗⟩ : !T.end⟩S

∆1 ⊢M M : T
[var]

x : !T.end ⊢M x : !T.end
[send]

∆1, x : !T.end ⊢M sendM x : end ∆2 ⊢M N : U
[close]

∆1,∆2, x : !T.end ⊢M close (sendM x);N : U
[main]

∆1,∆2, x : !T.end ⊢♦
C ♦ (close (sendM x);N) : U Λ, y : S ⊢♢

C C : 1
[par]

∆1,∆2,Λ, x : !T.end, y : S ⊢♦
C ♦ (close (sendM x);N) ∥ C : U

[res]
Γ,∆1,∆2,Λ ⊢♦

C (νx[m⃗⟩y)(♦ (close (sendM x);N) ∥ C) : U
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Note that the derivation of Γ ⊢B [m⃗⟩ : !T.end⟩S depends on the size of m⃗. By induction
on the size of m⃗ (IH2), we derive Γ,∆1 ⊢B [M, m⃗⟩ : end⟩S:
– If m⃗ is empty, it follows by inversion of typing that Γ = ∅ and S = !T.end:

[typ-buf]
∅ ⊢B [ϵ⟩ : !T.end⟩!T.end

Then, we derive the following:

∆1 ⊢M M : T
[typ-buf]

∅ ⊢B [ϵ⟩ : end⟩end
[typ-buf-send]

∆1 ⊢B [M⟩ : end⟩!T.end

– If m⃗ = m⃗′, L, it follows by inversion of typing that Γ = Γ′,Γ′′ and S = !T ′.end′:

Γ′ ⊢M L : T ′ Γ′′ ⊢B [m⃗
′⟩ : !T.end⟩end′

[typ-buf-send]
Γ′,Γ′′ ⊢B [m⃗

′, L⟩ : !T.end⟩!T ′.end′

By IH2, Γ′′,∆1 ⊢B [M, m⃗′⟩ : end⟩end′, allowing us to derive the following:

Γ′ ⊢M L : T ′ Γ′′,∆1 ⊢B [M, m⃗′⟩ : end⟩end′
[typ-buf-send]

Γ′,Γ′′,∆1 ⊢B [M, m⃗′, L⟩ : end⟩!T ′.end′

– If m⃗ = m⃗′, j, it follows by inversion of typing that there exist types Si for each i in a set
of labels I, where j ∈ I, such that S = ⊕{i : Si}i∈I :

Γ ⊢B [m⃗
′⟩ : !T.end⟩Sj

[typ-buf-sel]
Γ ⊢B [m⃗, j⟩ : !T.end⟩⊕{i : Si}i∈I

By IH2, Γ,∆1 ⊢B [M, m⃗′⟩ : end⟩Sj , so we derive the following:

Γ,∆1 ⊢B [M, m⃗′⟩ : end⟩Sj
[typ-buf-sel]

Γ,∆1 ⊢B [M, m⃗′, j⟩ : end⟩⊕{i : Si}i∈I

Now, we can derive the typing of the structurally congruent configuration (omitting “typ-”
from rule labels):

Γ,∆1 ⊢B [M, m⃗⟩ : end⟩S

[var]
x : end ⊢M x : end ∆2 ⊢M N : U

[close]
∆2, x : end ⊢M closex;N : U

[main]
∆2, x : end ⊢♦

C ♦ (closex;N) : U Λ, y : S ⊢♢
C C : 1

[par-R]
∆2,Λ, x : end, y : S ⊢♦

C ♦ (closex;N) ∥ C : U
[res]

Γ,∆1,∆2,Λ ⊢♦
C (νx[M, m⃗⟩y)(♦ (closex;N) ∥ C) : U

• Rule [red-recv]: (νx[m⃗,M⟩y)(F̂ [recv y] ∥ C)→C (νx[m⃗⟩y)(F̂ [(M,y)] ∥ C).
For this case, we apply induction on the structure of F̂ . The inductive cases follow

from the IH directly. We consider the base case (F̂ = ϕ [·]). We apply inversion of typing,
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w.l.o.g. assuming that ϕ = ♦, and then derive the typing of the reduced configuration:

π ≜

[typ-var]
y : ?T.S ⊢M y : ?T.S

[typ-recv]
y : ?T.S ⊢M recv y : T × S

[typ-main]
y : ?T.S ⊢♦

C ♦ (recv y) : T × S Λ, x : S′ ⊢♢
C C : 1

[typ-par]
Λ, x : S′, y : ?T.S ⊢♦

C ♦ (recv y) ∥ C : T × S

Γ ⊢M M : T ∆ ⊢B [m⃗⟩ : S′⟩S
[typ-buf-send]

Γ,∆ ⊢B [m⃗,M⟩ : S′⟩!T.S π
[typ-res]

Γ,∆,Λ ⊢♦
C (νx[m⃗,M⟩y)(♦ (recv y) ∥ C) : T × S

→C

∆ ⊢B [m⃗⟩ : S′⟩S

Γ ⊢M M : T
[typ-var]

y : S ⊢M y : S
[typ-pair]

Γ, y : S ⊢M (M,y) : T × S
[typ-main]

Γ, y : S ⊢♦
C ♦ (M,y) : T × S Λ, x : S′ ⊢♢

C C : 1
[typ-par]

Γ,Λ, x : S′, y : S ⊢♦
C ♦ (M,y) ∥ C : T × S

[typ-res]
Γ,∆,Λ ⊢♦

C (νx[m⃗⟩y)(♦ (M,y) ∥ C) : T × S

• Rule [red-select] is similar to the case of Rule [red-send]:

(νx[m⃗⟩y)(F [select ℓ x] ∥ C)→C (νx[ℓ, m⃗⟩y)(F [x] ∥ C).

• Rule [red-case] is similar to the case of Rule [red-recv]:

j ∈ I =⇒ (νx[m⃗, j⟩y)(F [case y of {i : Mi}i∈I ] ∥ C)→C (νx[m⃗⟩y)(F [Mj y] ∥ C)

• Rule [red-close]: (νx[m⃗⟩y)(F [closex;M ] ∥ C)→C (ν□[m⃗⟩y)(F [M ] ∥ C). By induction
on the structure of F . The inductive cases follows from the IH straightforwardly; we detail
the base case (F = ϕ [·]). Assume, w.l.o.g., that ϕ = ♦. We first derive the typing of the
configuration before reduction:

Γ ⊢B [m⃗⟩ : end⟩S

x : end ⊢M x : end ∆ ⊢M M : T
[typ-close]

∆, x : end ⊢M closex;M : T
[typ-main]

∆, x : end ⊢♦
C ♦ closex;M : T Θ ⊢♢

C C : 1
[typ-par]

∆,Θ, x : end ⊢♦
C ♦ closex;M ∥ C : T

[typ-res/-buf]
Γ′ ⊢♦

C (νx[m⃗⟩y)(♦ closex;M ∥ C) : T

We prove that Γ ⊢B [m⃗⟩ : □⟩S. The analysis depends on whether y = □.
– If y = □, then m⃗ = ϵ, S = □, Γ′ = Γ,∆,Θ, and Γ = ∅, because Γ ⊢B [m⃗⟩ : end⟩S must

be derived as follows:
[typ-buf-end-L]

∅ ⊢B [ϵ⟩ : end⟩□

The thesis holds as follows:
[typ-buf]

∅ ⊢B [ϵ⟩ : □⟩□

– If y ̸= □, then Γ′, y : S = Γ,∆,Θ. We apply induction on the size of m⃗ (IH2):
∗ If m⃗ = ϵ, then Γ = ∅, S = end, because Γ ⊢B [ϵ⟩ : end⟩S must be derived as follows:

[typ-buf]
∅ ⊢B [ϵ⟩ : end⟩end
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The thesis then holds as follows:
[typ-buf-end-R]

∅ ⊢B [ϵ⟩ : □⟩end
∗ If m⃗ = m⃗′, N , then Γ = Γ1,Γ2, and S = !U.S′, because Γ ⊢B [m⃗

′, N⟩ : end⟩S must be
derived as follows:

Γ1 ⊢M N : U Γ2 ⊢B [m⃗
′⟩ : end⟩S′

[typ-buf-send]
Γ1,Γ2 ⊢B [m⃗

′, N⟩ : end⟩!U.S′

By IH2, Γ2 ⊢B [m⃗
′⟩ : □⟩S′. The thesis then holds as follows:

Γ1 ⊢M N : U Γ2 ⊢B [m⃗
′⟩ : □⟩S′

[typ-buf-send]
Γ1,Γ2 ⊢B [m⃗

′, N⟩ : □⟩!U.S′

Now, we derive the typing of the reduced configuration:

Γ ⊢B [m⃗⟩ : □⟩S

∆ ⊢M M : T
[typ-main]

∆ ⊢♦
C ♦M : T Θ ⊢♢

C C : 1
[typ-par]

∆,Θ ⊢♦
C ♦M ∥ C : T

[typ-res/-buf]
Γ′ ⊢♦

C (ν□[m⃗⟩y)(♦M ∥ C) : T

• Rule [red-res-nil]: (ν□[ϵ⟩□)C →C C. We have
[typ-buf]

∅ ⊢B [ϵ⟩ : □⟩□ Γ ⊢ϕ
C C : T

[typ-res/-res-buf]
Γ ⊢ϕ

C (ν□[ϵ⟩□)C : T

→C

Γ ⊢ϕ
C C : T

• Rule [red-par-nil]: C ∥ ♢ ()→C C. We have the following:

Γ ⊢ϕ
C C : T

[typ-unit]
∅ ⊢M () : 1

[typ-child]
∅ ⊢♢

C ♢ () : 1
[typ-par]

Γ ⊢ϕ
C C ∥ ♢ () : T

→C

Γ ⊢ϕ
C C : T

A.3. Translation: Type Preservation.

Theorem 5.8 (Type Preservation for the Translation).
• If Γ ⊢M M : T , then ⊢∗ JMKz :: LΓM, z : JT K;
• If Γ ⊢ϕ

C C : T , then ⊢∗ JCKz :: LΓM, z : JT K;
• If Γ ⊢B [m⃗⟩ : S′⟩S, then ⊢∗ J[m⃗⟩Ka⟩b :: LΓM, a : LS′M, b : LSM.

Proof. By induction on the LASTn typing derivation. It is sufficient to give the typing of
the translations of typing rules in Figures 17 to 19 as follows; checking the derivations is
straightforward.

[typ-var] ⊢∗ Jx : T ⊢M x : T Kz :: x : LT M, z : JT K
[typ-abs] ⊢∗ JΓ ⊢M λx.M : T ⊸ UKz :: LΓM, z : LT M

&

JUK = JT ⊸ UK
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[typ-app] ⊢∗ JΓ,∆ ⊢M M N : UKz :: LΓM, L∆M, z : JUK
[typ-unit] ⊢∗ J∅ ⊢M () : 1Kz :: z : • = J1K

[typ-pair] ⊢∗ JΓ,∆ ⊢M (M,N) : T × UKz :: LΓM, L∆M,
z : (•

&

JT K)⊗ (•

&

JUK)
= LT M ⊗ LUM = JT × UK

[typ-split] ⊢∗ JΓ,∆ ⊢M let (x, y) = M inN : UKz :: LΓM, L∆M, z : JUK

[typ-new] ⊢∗ J∅ ⊢M new : S × SKz :: z : LSM ⊗ LSM = JS × SK
[typ-fork] ⊢∗ JΓ,∆ ⊢M forkM ;N : T Kz :: LΓM, L∆M, z : JT K
[typ-close] ⊢∗ JΓ,∆ ⊢M closeM ;N : T Kz :: LΓM, L∆M, z : JT K
[typ-send] ⊢∗ JΓ ⊢M sendM N : SKz :: LΓM, L∆M, z : JSK

[typ-recv] ⊢∗ JΓ ⊢M recvM : T × SKz :: LΓM, z : (•

&

JT K)⊗ (•

&

JSK)
= LT M ⊗ LSM = JT × SK

[typ-sel] ⊢∗ JΓ ⊢M select j M : SjKz :: LΓM, z : JSjK
[typ-case] ⊢∗ JΓ ⊢M caseM of {i : Ni}i∈I : UKz :: LΓM, L∆M, z : JUK
[typ-sub] ⊢∗ JΓ,∆ ⊢M M⦃N/x⦄ : UKz :: LΓM, L∆M, z : JUK

[typ-main] ⊢∗ JΓ ⊢♦
C ♦M : T̂ Kz :: LΓM, z : JT̂ K

[typ-child] ⊢∗ JΓ ⊢♢
C ♢M : 1Kz :: LΓM, z : • = J1K

[typ-par]

(T1 = 1)
⊢∗ JΓ,∆ ⊢ϕ1+ϕ2

C C ∥ D : T2Kz :: LΓM, L∆M, z : JT2K

[typ-par]

(T2 = 1)
⊢∗ JΓ,∆ ⊢ϕ1+ϕ2

C C ∥ D : T1Kz :: LΓM, L∆M, z : JT1K

[typ-res] ⊢∗ JΓ′ ⊢ϕ
C (νx[m⃗⟩y)C : T Kz :: LΓ′M, z : JT K

[typ-conf-sub] ⊢∗ JΓ,∆ ⊢ϕ
C C⦃M/x⦄ : UKz :: LΓM, L∆M, z : JUK

[typ-buf]

(S′ = !T.S)
⊢∗ J∅ ⊢B [ϵ⟩ : S′⟩S′Ka⟩b :: a : •

&

• ⊗ LT M

&

LSM = •

&

JS′K
= LS′M,

b : •

&

LT M ⊗ LSM = •

&

J?T.SK
= •

&

JS′K = LS′M

[typ-buf]

(S′ = ⊕{i : Si}i∈I)
⊢∗ J∅ ⊢B [ϵ⟩ : S′⟩S′Ka⟩b :: a : •

&

• ⊗&{i : LSiM}i∈I
= •

&

JS′K = LS′M,
b : •

&

⊕{i : LSiM}i∈I
= •

&

J&{i : Si}i∈IK
= •

&

JS′K = LS′M

[typ-buf]

(S′ ∈ {?T.S,&{i : Si}i∈I})
⊢∗ J∅ ⊢B [ϵ⟩ : S′⟩S′Ka⟩b :: a : LS′M = LS′M, b : LS′M

[typ-buf]

(S′ = end)
⊢∗ J∅ ⊢B [ϵ⟩ : S′⟩S′Ka⟩b :: a : •

&

• ⊗ • = LS′M,
b : •

&

• ⊗ • = LS′M = LS′M
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[typ-buf]

(S′ = □)
⊢∗ J∅ ⊢B [ϵ⟩ : S′⟩S′Ka⟩b :: a : • = LS′M, b : • = LS′M = LS′M

[typ-buf-send] ⊢∗ JΓ,∆ ⊢B [m⃗,M⟩ : S′⟩!T.SKa⟩b :: LΓM, L∆M, a : LS′M,
b : •

&

LT M ⊗ LSM = •

&

J?T.SK
= •

&

J!T.SK = L!T.SM

[typ-buf-sel] ⊢∗ JΓ ⊢B [m⃗, j⟩ : S′⟩⊕{i : Si}i∈IKa⟩b :: LΓM, a : LS′M,
b : •

&

⊕{i : LSiM}i∈I
= •

&

J&{i : Si}i∈IK
= •

&

J⊕{i : Si}i∈IK
= L⊕{i : Si}i∈IM

[typ-buf-end-L] ⊢∗ J∅ ⊢B [ϵ⟩ : end⟩□Ka⟩b :: a : •

&

• ⊗ • = LendM,
b : • = L□M = L□M

[typ-buf-end-R] ⊢∗ J∅ ⊢B [ϵ⟩ : □⟩endKa⟩b :: a : • = L□M,
b : •

&

• ⊗ • = LendM = LendM

A.4. Operational Correspondence. Appendices A.4.1 and A.4.2 prove completeness and
soundness, respectively. Both results rely on the following lemma, which ensures that LASTn
contexts translate to evaluation contexts in APCP.

Lemma 5.12.
• JR [M ]Kz = E [JMKz′] for some E , z′;
• JF [M ]Kz = E [JMKz′] for some E , z′;
• JG [C]Kz = E [JCKz′] for some E , z′;
• x /∈ fv(C) implies x /∈ fn(JCKz);
• x ∈ fv(C) implies JC{y/x}Kz = JCKz{y/x}.

Proof (Sketch). By induction on the structure of the contexts.

A.4.1. Completeness. Here we prove the completeness of the translation. The proof relies on
the following intermediate results:
• Theorems A.5 and A.6 prove that the translation preserves structural congruence for terms

and configurations, respectively.
• Theorem A.7 then shows that the translation is complete with respect to term reduction.
• Finally, we prove completeness (Theorem 5.10).

Theorem A.5 (Preservation of Structural Congruence for Terms). Given Γ ⊢M M : T , if
M ≡M N , then JMKz ≡ JNKz.

Proof. By induction on the derivation of M ≡M N (IH1). The inductive cases follow from IH1
and Lemma 5.12 directly. We detail the (only) base case of Rule [sc-sub-ext]: x /∈ fn(R )
implies (R [M ])⦃N/x⦄ ≡M R [M⦃N/x⦄].
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The analysis is by induction on the structure of R (IH2), assuming x /∈ fn(R ). The base
case where R = [·] is immediate. We detail one representative inductive case: R = R ′ M ′.
The thesis holds as follows:

J(R ′[M ] M ′)⦃N/x⦄Kz

= (νxa1)
(
(νa2b2)(νc2d2)(JR ′[M ]Ka2 | b2[c2, z] | d2(_, e2); JM ′Ke2) | a1(_, b1); JNKb1

)
≡ (νa2b2)(νc2d2)

(
(νxa1)(JR ′[M ]Ka2 | a1(_, b1); JNKb1) | b2[c2, z] | d2(_, e2); JM ′Ke2

)
= (νa2b2)(νc2d2)

(
J(R ′[M ])⦃N/x⦄Ka2 | b2[c2, z] | d2(_, e2); JM ′Ke2

)
≡ (νa2b2)(νc2d2)

(
JR ′[M⦃N/x⦄]Ka2 | b2[c2, z] | d2(_, e2); JM ′Ke2

)
(IH2)

= J(R ′[M⦃N/x⦄]) M ′Kz = JR [M⦃N/x⦄]Kz 1

Theorem A.6 (Preservation of Structural Congruence for Configurations). Given Γ ⊢ϕ
C C : T ,

if C ≡C D, then JCKz ≡ JDKz.

Proof. By induction on the derivation of C ≡C D (IH1). The inductive cases follow from IH1
and Lemma 5.12 straightforwardly. We detail the base cases, induced by the ten rules in
Figure 21:
• Rule [sc-term-sc]: M ≡M M ′ implies ϕM ≡C ϕM ′. We have JϕMKz = JMKz and

JϕM ′Kz = JM ′Kz. By the assumption that M ≡M M ′ and Theorem A.5, JMKz ≡ JM ′Kz.
The thesis follows immediately.

• Rule [sc-res-swap]: (νx[ϵ⟩y)C ≡C (νy[ϵ⟩x)C. Both directions are analogous; we detail
the left to right direction. We first infer the typing of the left configuration:

∅ ⊢B [ϵ⟩ : S′⟩S Γ ⊢ϕ
C C : T

[typ-res/-buf]
Γ′ ⊢ϕ

C (νx[ϵ⟩y)C : T

Here, Γ′ = Γ \ x : S′, y : S. The analysis depends on whether x = □ and/or y = □. In
each case, we show that

J∅ ⊢B [ϵ⟩ : S′⟩SKa⟩b = J∅ ⊢B [ϵ⟩ : S⟩S′Kb⟩a : (A.1)

– Case x = y = □, or x ̸= □ and x ≠ □. Either way, S′ = S. If S′ = □, both translations
are 0, from which the thesis follows immediately. Otherwise, the thesis follows by
induction on the structure of S′; clearly, the resulting translations are exactly the same.

– Case x = □ and y ̸= □, or x ̸= □ and y = □. W.l.o.g., assume the former. Then S′ = □
and S = end. The thesis then holds as follows:

J∅ ⊢B [ϵ⟩ : □⟩endKa⟩b = b(_, c); c[_,_]

= J∅ ⊢B [ϵ⟩ : end⟩□Kb⟩c
The thesis then holds as follows:

J(νx[ϵ⟩y)CKz = (νax)(νby)(J∅ ⊢B [ϵ⟩ : S′⟩SKa⟩b | JCKz)

= (νax)(νby)(J∅ ⊢B [ϵ⟩ : S⟩S′Kb⟩a | JCKz) (A.1)

≡ (νby)(νax)(J∅ ⊢B [ϵ⟩ : S⟩S′Kb⟩a | JCKz)
= J(νy[ϵ⟩x)CKz
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• Rule [sc-res-comm]: (νx[m⃗⟩y)(νz[n⃗⟩w)C ≡C (νz[n⃗⟩w)(νx[m⃗⟩y)C. The thesis holds as
follows:

J(νx[m⃗⟩y)(νz[n⃗⟩w)CKz = (νa1x)(νb1y)
(
J[m⃗⟩Ka1⟩b1 | (νa2z)(νb2w)(J[n⃗⟩Ka2⟩b2 | JCKz)

)
≡ (νa2z)(νb2w)

(
J[n⃗⟩Ka2⟩b2 | (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JCKz)

)
= J(νz[n⃗⟩w)(νx[m⃗⟩y)CKz

• Rule [sc-res-ext]: x, y /∈ fv(C) implies (νx[m⃗⟩y)(C ∥ D) ≡C C ∥ (νx[m⃗⟩y)D. The
analysis depends on which of C,D is a child thread; w.l.o.g., assume that C is. Assume
the condition; by Lemma 5.12, then x, y /∈ fn(JCK_) (∗). The thesis holds as follows:

J(νx[m⃗⟩y)(C ∥ D)Kz = (νax)(νby)(J[m⃗⟩Ka⟩b | (ν__)JCK_ | JDKz)
≡ (ν__)JCK_ | (νax)(νby)(J[m⃗⟩Ka⟩b | JDKz) (∗)
= JC ∥ (νx[m⃗⟩y)DKz

• Rule [sc-par-comm]: C ∥ D ≡C D ∥ C. The analysis depends on which of C,D is a child
thread; w.l.o.g., assume that C is. The thesis holds as follows:

JC ∥ DKz = (ν__)JCK_ | JDKz
≡ JDKz | (ν__)JCK_
= JD ∥ CKz

• Rule [sc-par-assoc]: C ∥ (D ∥ E) ≡C (C ∥ D) ∥ E. The analysis depends on which of
C,D,E are child threads; w.l.o.g., assume that C,D are. The thesis holds as follows:

JC ∥ (D ∥ E)Kz = (ν__)JCK_ | ((ν__)JDK__ | JEKz)
≡ (ν__)((ν__)JCK_ | JDK__) | JEKz
= J(C ∥ D) ∥ EKz

• Rule [sc-conf-sub]: ϕ (M⦃N/x⦄) ≡C (ϕM)⦃N/x⦄. The thesis holds as follows:

Jϕ (M⦃N/x⦄)Kz = (νxa)(JMKz | a(_, b); JNKb)
= (νxa)(JϕMKz | a(_, b); JNKb)
= J(ϕM)⦃N/x⦄Kz

• Rule [sc-conf-sub-ext]: x /∈ fv(G) implies (G [C])⦃M/x⦄ ≡C G [C⦃M/x⦄]. By Lemma 5.12,
for any D, JG [D]Kz = E [JDKz′] for some E , z′ (∗1). Assume the condition; by Lemma 5.12,
then x /∈ fn(E) (∗2). The thesis holds as follows:

J(G [C])⦃M/x⦄Kz = (νxa)(JG [C]Kz | a(_, b); JMKb)

= (νxa)(E [JCKz′] | a(_, b); JMKb) (∗1)
≡ E [(νxa)(JCKz′ | a(_, b); JMKb)] (∗2)
= E [JC⦃M/x⦄Kz′]
= JG [C⦃M/x⦄]Kz (∗1)

Theorem A.7 (Completeness of Reduction for Terms). Given Γ ⊢M M : T , if M →MN , then
JMKz →∗ JNKz.
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Proof. By induction on the derivation of M →M N . We detail each rule:
• Rule [red-lam]: (λx.M) N →M M⦃N/x⦄. The thesis holds as follows:

J(λx.M) NKz = (νa1b1)(νc1d1)(a1(x, a2); JMKa2 | b1[c1, z] | d1(_, e1); JNKe1)
→ (νc1d1)(JMKz{c1/x} | d1(_, e1); JNKe1)
≡ (νxd1)(JMKz | d1(_, e1); JNKe1)
= JM⦃N/x⦄Kz

• Rule [red-pair]: let (x, y) = (M1,M2) inN →M N⦃M1/x,M2/y⦄. The thesis holds as
follows:

Jlet (x, y) = (M1,M2) inNKz

= (νa1b1)
(
a1(x, y); JNKz
| (νa2b2)(νc2d2)(b1[a2, c2]

| b2(_, e2); JM1Ke2
| d2(_, f2); JM2Kf2)

)
→ (νa2b2)(νc2d2)(JNKz{a2/x, c2/y}

| b2(_, e2); JM1Ke2 | d2(_, f2); JM2Kf2)

≡ (νyd2)
(
(νxb2)(JNKz | b2(_, e2); JM1Ke2) | d2(_, f2); JM2Kf2

)
= JN⦃M1/x,M2/y⦄Kz

• Rule [red-name-sub]: x⦃M/x⦄→M M . The thesis holds as follows:

Jx⦃M/x⦄Kz = (νxa)(x[_, z] | a(_, b); JMKb)
→ JMKz

• Rule [red-lift]: M →M N implies R [M ]→M R [N ]. By Lemma 5.12, for any L, JR [L]Kz =
E [JLKz′] for some E , z′ (∗1). Assume the condition; by the IH, JMKz′ →∗ JNKz′ (∗2). The
thesis holds as follows:

JR [M ]Kz = E [JMKz′] (∗1)
→∗ E [JNKz′] (∗2)
= JR [N ]Kz (∗1)

• Rule [red-lift-sc]: M ≡M M ′, M ′ →M N
′, and N ′ ≡M N imply M →M N . Assume the

conditions. By Theorem A.5, JMKz ≡ JM ′Kz (∗1) and JN ′Kz ≡ JNKz (∗2). By the IH,
JM ′Kz →∗ JN ′Kz (∗3). The thesis holds as follows:

JMKz ≡ JM ′Kz (∗1)
→∗ JN ′Kz (∗3)
≡ JNKz (∗2)

Theorem 5.10 (Completeness). Given Γ ⊢ϕ
C C : T , if C →C D, then JCKz →∗ JDKz.

Proof. By induction on the derivation of C →C D. We detail every rule:
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• Rule [red-new]: F [new]→C (νx[ϵ⟩y)(F [(x, y)]). By Lemma 5.12, for any M , JF [M ]Kz =
E [JMKz′] for some E , z′ (∗). The thesis holds as follows:

JF [new]Kz = E [JnewKz′] (∗)
= E [(νab)

(
a[_, z′] | b(_, c); (νdx)(νey)(J[ϵ⟩Kd⟩e | J(x, y)Kc)

)
]

→ E [(νdx)(νey)(J[ϵ⟩Kd⟩e | J(x, y)Kz′)]
≡ (νdx)(νey)(J[ϵ⟩Kd⟩e | E [J(x, y)Kz′])
= (νdx)(νey)(J[ϵ⟩Kd⟩e | JF [(x, y)]Kz) (∗)
= J(νx[ϵ⟩y)(F [(x, y)])Kz

• Rule [red-fork]: F̂ [forkM ;N ]→C F̂ [N ] ∥ ♢M . By Lemma 5.12, for any L, JF [L]Kz =
E [JLKz′] for some E , z′ (∗1). Moreover, since F̂ does not have its hole under an explicit
substitution, it does not capture any free variables of M ; hence, by Lemma 5.12, E does
not capture any free names of JMKu for any u (∗2). The thesis holds as follows:

JF̂ [forkM ;N ]Kz = E [JforkM ;NKz′] (∗1)
= E [(νab)

(
a[_, z′] | b(_, c); ((ν__)JMK_ | JNKc)

)
]

→ E [(ν__)JMK_ | JNKz′]

≡ E [JNKz′] | (ν__)JMK_ (∗2)
= JF̂ [N ]Kz | (ν__)JMK_ (∗1)
= JF̂ [N ] ∥ ♢MKz

• Rule [red-send]: (νx[m⃗⟩y)(F̂ [sendM x] ∥ C)→C (νx[M, m⃗⟩y)(F̂ [x] ∥ C). W.l.o.g., as-
sume C is a child thread. By Lemma 5.12, for any L, JF [L]Kz = E1

[
JLKz′

]
for some

E1, z
′ (∗1). Moreover, since F̂ does not have its hole under an explicit substitution, it

does not capture any free variables of M ; hence, by Lemma 5.12, E1 does not capture
any free names of JMKu for any u (∗2). By inversion of typing, Γ ⊢B [m⃗⟩ : S1⟩S where
S1 = !T.S2 (∗3). By Lemma 5.13, JΓ ⊢B [m⃗⟩ : S1⟩SKa⟩b = E2

[
J∅ ⊢B [ϵ⟩ : S1⟩S1Ka⟩c

]
(∗4)

and JΓ,∆ ⊢B [M, m⃗⟩ : S1⟩SKa⟩b = E2
[
J∆ ⊢B [M⟩ : S1⟩S1Ka⟩c

]
(∗5) for some E2, c. Below,
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we omit types from translations of buffers. The thesis holds as follows:

J(νx[m⃗⟩y)(F̂ [sendM x] ∥ C)Kz

= (νax)(νby)(J[m⃗⟩Ka⟩b | JF̂ [sendM x]Kz | (ν__)JCK_)

= (νax)(νby)(E2
[
J[ϵ⟩Ka⟩c

]
| E1

[
JsendM xKz′

]
| (ν__)JCK_) (∗1,∗4)

= (νax)(νby)(
E2

[
a(_, c1); (νd1e1)

(
c1[_, d1] | e1(f1, g1); (νh1k1)(c(_, l1); l1[f1, h1] | J[ϵ⟩Kg1⟩k1)

)]
| E1

[
(νa2b2)(νc2d2)

(
a2(_, e2); JMKe2 | x[_, c2] | d2(_, f2); (νg2h2)(f2[b2, g2] | h2[_, z′])

)]
| (ν__)JCK_)

(∗3)
→ (νc2d2)(νby)(

E2
[
(νd1e1)

(
c2[_, d1] | e1(f1, g1); (νh1k1)(c(_, l1); l1[f1, h1] | J[ϵ⟩Kg1⟩k1)

)]
| E1

[
(νa2b2)

(
a2(_, e2); JMKe2 | d2(_, f2); (νg2h2)(f2[b2, g2] | h2[_, z′])

)]
| (ν__)JCK_)

→ (νe1d1)(νby)(
E2

[
e1(f1, g1); (νh1k1)(c(_, l1); l1[f1, h1] | J[ϵ⟩Kg1⟩k1)

]
| E1

[
(νa2b2)

(
a2(_, e2); JMKe2 | (νg2h2)(d1[b2, g2] | h2[_, z′])

)]
| (ν__)JCK_)

→ (νb2a2)(νg2h2)(νby)(
E2

[
(νh1k1)(c(_, l1); l1[b2, h1] | J[ϵ⟩Kg2⟩k1)

]
| E1

[
a2(_, e2); JMKe2 | h2[_, z′]

]
| (ν__)JCK_)

≡ (νax)(νby)(
E2

[
(νa2b2)(νh1k1)(a2(_, e2); JMKe2 | c(_, l1); l1[b2, h1] | J[ϵ⟩Ka⟩k1)

]
| E1

[
x[_, z′]

]
| (ν__)JCK_)

(∗2)

= (νax)(νby)(E2
[
J[M⟩Ka⟩c

]
| E1

[
JxKz′

]
| (ν__)JCK_)

= (νax)(νby)(J[M, m⃗⟩Ka⟩b | JF̂ [x]Kz | (ν__)JCK_) (∗1,∗5)
= J(νx[M, m⃗⟩y)(F̂ [x] ∥ C)Kz

• Rule [red-recv]: (νx[m⃗,M⟩y)(F̂ [recv y] ∥ C) →C (νx[m⃗⟩y)(F̂ [(M,y)] ∥ C). W.l.o.g.,
assume C is a child thread. By Lemma 5.12, for any L, JF [L]Kz = E

[
JLKz′

]
for some

E , z′ (∗1). Moreover, since F̂ does not have its hole under an explicit substitution, it does
not capture any free variables of M ; hence, by Lemma 5.12, E does not capture any free
names of JMKu for any u (∗2). The thesis holds as follows:

J(νx[m⃗,M⟩y)(F̂ [recv y] ∥ C)Kz

= (νax)(νby)(J[m⃗,M⟩Ka⟩b | JF̂ [recv y]Kz | (ν__)JCK_)

= (νax)(νby)(J[m⃗,M⟩Ka⟩b | E
[
Jrecv yKz′

]
| (ν__)JCK_) (∗1)

= (νax)(νby)(
(νc1d1)(νe1f1)(c1(_, g1); JMKg1 | b(_, h1);h1[d1, e1] | J[m⃗⟩Ka⟩f1)
| E

[
(νa2b2)

(
y[_, a2] | b2(c2, d2); (νe2, f2)(z′[c2, e2] | f2(_, g2); d2[_, g2])

)]
| (ν__)JCK_)
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→ (νax)(νa2b2)(
(νc1d1)(νe1f1)(c1(_, g1); JMKg1 | a2[d1, e1] | J[m⃗⟩Ka⟩f1)
| E

[
b2(c2, d2); (νe2, f2)(z

′[c2, e2] | f2(_, g2); d2[_, g2])
]

| (ν__)JCK_)

→ (νax)(νd1c1)(νf1e1)(
c1(_, g1); JMKg1 | J[m⃗⟩Ka⟩f1
| E

[
(νe2, f2)(z

′[d1, e2] | f2(_, g2); e1[_, g2])
]

| (ν__)JCK_)

≡ (νax)(νf1e1)(
J[m⃗⟩Ka⟩f1
| E

[
(νd1c1)(νe2, f2)(z

′[d1, e2] | c1(_, g1); JMKg1 | f2(_, g2); e1[_, g2])
]

| (ν__)JCK_)

(∗2)

≡ (νax)(νby)(
J[m⃗⟩Ka⟩b
| E

[
(νd1c1)(νe2, f2)(z

′[d1, e2] | c1(_, g1); JMKg1 | f2(_, g2); y[_, g2])
]

| (ν__)JCK_)

= (νax)(νby)(J[m⃗⟩Ka⟩b | E
[
J(M,y)Kz′

]
| (ν__)JCK_)

= (νax)(νby)(J[m⃗⟩Ka⟩b | JF̂ [(M,y)]Kz | (ν__)JCK_) (∗1)
= J(νx[m⃗⟩y)(F̂ [(M,y)] ∥ C)Kz

• Rule [red-select]: (νx[m⃗⟩y)(F [select ℓ x] ∥ C) →C (νx[ℓ, m⃗⟩y)(F [x] ∥ C). W.l.o.g.,
assume C is a child thread. By Lemma 5.12, for any L, JF [L]Kz = E1

[
JLKz′

]
for some

E1, z
′ (∗1). By inversion of typing, Γ ⊢B [m⃗⟩ : S1⟩S where S1 = ⊕{i : Si} ∪ {ℓ : S2} (∗2).

By Lemma 5.13,

JΓ ⊢B [m⃗⟩ : S1⟩SKa⟩b = E2
[
J∅ ⊢B [ϵ⟩ : S1⟩S1Ka⟩c

]
(∗3)

and

JΓ ⊢B [ℓ, m⃗⟩ : S0⟩SKa⟩b = E2
[
J∅ ⊢B [ℓ⟩ : S1⟩S1Ka⟩c

]
(∗4)

for some E2, c. Below, we omit types from translations of buffers. The thesis holds as
follows:

J(νx[m⃗⟩y)(F [select ℓ x] ∥ C)Kz
= (νax)(νby)(J[m⃗⟩Ka⟩b | JF [select ℓ x]Kz | (ν__)JCK_)

= (νax)(νby)(E2
[
J[ϵ⟩Ka⟩c

]
| E1

[
Jselect ℓ xKz′

]
| (ν__)JCK_) (∗1,∗3)

= (νax)(νby)(

E2
[
a(_, c1); (νd1e1)

(
c1[_, d1] | e1(f1) ▷ {i : . . .}i∈I ∪ {ℓ : (νg1h1)

(
c(_, k1); k1[g1] ◁ ℓ
| J[ϵ⟩Kf1⟩h1

)
}
)]

| E1
[
(νa2b2)

(
x[_, a2] | b2(_, c2); (νd2e2)(c2[d2] ◁ ℓ | e2[_, z′])

)]
| (ν__)JCK_)

(∗2)
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→ (νa2b2)(νby)(

E2
[
(νd1e1)

(
a2[_, d1] | e1(f1) ▷ {i : . . .}i∈I ∪ {ℓ : (νg1h1)

(
c(_, k1); k1[g1] ◁ ℓ
| J[ϵ⟩Kf1⟩h1

)
}
)]

| E1
[
b2(_, c2); (νd2e2)(c2[d2] ◁ ℓ | e2[_, z′])

]
| (ν__)JCK_)

→ (νa2b2)(νby)(

E2
[
(νd1e1)

(
a2[_, d1] | e1(f1) ▷ {i : . . .}i∈I ∪ {ℓ : (νg1h1)

(
c(_, k1); k1[g1] ◁ ℓ
| J[ϵ⟩Kf1⟩h1

)
}
)]

| E1
[
b2(_, c2); (νd2e2)(c2[d2] ◁ ℓ | e2[_, z′])

]
| (ν__)JCK_)

→ (νd2e2)(νby)(
E2

[
(νg1h1)(c(_, k1); k1[g1] ◁ ℓ | J[ϵ⟩Kd2⟩h1)

]
| E1

[
e2[_, z′]

]
| (ν__)JCK_)

≡ (νax)(νby)(
E2

[
(νg1h1)(c(_, k1); k1[g1] ◁ ℓ | J[ϵ⟩Ka⟩h1)

]
| E1

[
x[_, z′]

]
| (ν__)JCK_)

= (νax)(νby)(E2
[
J[ℓ⟩Ka⟩c)

]
| E1

[
JxKz′)

]
| (ν__)JCK_)

= (νax)(νby)(J[ℓ, m⃗⟩Ka⟩b)] | JF [x]Kz | (ν__)JCK_) (∗1,∗4)
= J(νx[ℓ, m⃗⟩y)(F [x] ∥ C)Kz

• Rule [red-case]: j ∈ I implies

(νx[m⃗, j⟩y)(F [case y of {i : Mi}i∈I ] ∥ C)→C (νx[m⃗⟩y)(F [Mj y] ∥ C).

W.l.o.g., assume C is a child thread. By Lemma 5.12, for any L, JF [L]Kz = E
[
JLKz′

]
for

some E , z′ (∗). Assume the condition. The thesis holds as follows:

J(νx[m⃗, j⟩y)(F [case y of {i : Mi}i∈I ] ∥ C)Kz
= (νax)(νby)(J[m⃗, j⟩Ka⟩b | JF [case y of {i : Mi}i∈I ]Kz | (ν__)JCK_)

= (νax)(νby)(J[m⃗, j⟩Ka⟩b | E
[
Jcase y of {i : Mi}i∈IKz′

]
| (ν__)JCK_) (∗)

= (νax)(νby)(
(νc1d1)(b(_, e1); e1[c1] ◁ j | J[m⃗⟩Ka⟩d1)
| E

[
(νa2b2)(y[_, a2] | b2(c2) ▷ {i : JMi c2Kz′}i∈I)

]
| (ν__)JCK_)

→ (νax)(νa2b2)(
(νc1d1)(a2[c1] ◁ j | J[m⃗⟩Ka⟩d1)
| E

[
b2(c2) ▷ {i : JMi c2Kz′}i∈I

]
| (ν__)JCK_)

→ (νax)(νd1c1)(J[m⃗⟩Ka⟩d1 | E
[
JMj c2Kz′{c1/c2}

]
| (ν__)JCK_)

= (νax)(νd1c1)(J[m⃗⟩Ka⟩d1 | E
[
JMj c1Kz′

]
| (ν__)JCK_) (Lemma 5.12)

≡ (νax)(νby)(J[m⃗⟩Ka⟩b | E
[
JMj yKz′

]
| (ν__)JCK_) (Lemma 5.12)

= (νax)(νby)(J[m⃗⟩Ka⟩b | JF [Mj y]Kz | (ν__)JCK_) (∗)
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= J(νx[m⃗⟩y)(F [Mj y] ∥ C)Kz

• Rule [red-close]: (νx[m⃗⟩y)(F [closex;M ] ∥ C)→C (ν□[m⃗⟩y)(F [M ] ∥ C). W.l.o.g., as-
sume C is a child thread. By Lemma 5.12, for any L, JF [L]Kz = E1

[
JLKz′

]
for some

E1, z
′ (∗1). The analysis depends on whether y = □; w.l.o.g., assume not. By inversion

of typing, Γ ⊢B [m⃗⟩ : end⟩S where S ≠ □ (∗2). By Lemma 5.13, JΓ ⊢B [m⃗⟩ : end⟩SKa⟩b =
E2

[
J∅ ⊢B [ϵ⟩ : end⟩endKa⟩c

]
(∗3) and JΓ ⊢B [m⃗⟩ : □⟩SKa⟩b = E2

[
J∅ ⊢B [ϵ⟩ : □⟩endKa⟩c

]
(∗4)

for some E2, c. Below, we omit types from translations of buffers. The thesis holds as
follows:

J(νx[m⃗⟩y)(F [closex;M ] ∥ C)Kz
= (νax)(νby)(J[m⃗⟩Ka⟩b | JF [closex;M ]Kz | (ν__)JCK_)

= (νax)(νby)(E2
[
J[ϵ⟩Ka⟩c

]
| E1

[
Jclosex;MKz′

]
| (ν__)JCK_) (∗1,∗3)

= (νax)(νby)(
E2

[
a(_, c1); c1[_,_] | b(_, d1); d1[_,_]

]
| E1

[
(νa2b2)(x[_, a2] | b2(_,_); JMKz′)

]
| (ν__)JCK_)

(∗2)

→ (νa2b2)(νby)(
E2

[
a2[_,_] | b(_, d1); d1[_,_]

]
| E1

[
b2(_,_); JMKz′

]
| (ν__)JCK_)

→ (νby)(E2
[
b(_, d1); d1[_,_]

]
| E1

[
JMKz′

]
| (ν__)JCK_)

≡ (νa_)(νby)(E2
[
b(_, d1); d1[_,_]

]
| E1

[
JMKz′

]
| (ν__)JCK_)

= (νa_)(νby)(E2
[
J[ϵ⟩Ka⟩c

]
| E1

[
JMKz′

]
| (ν__)JCK_)

= (νa_)(νby)(J[m⃗⟩Ka⟩b | JF [M ]Kz | (ν__)JCK_) (∗1,∗4)
= J(ν□[m⃗⟩y)(F [M ] | C)Kz

• Rule [red-par-nil]: C ∥ ♢ ()→C C. The thesis holds as follows:

JC ∥ ♢ ()Kz = JCKz | (ν__)0

≡ JCKz

• Rule [red-res-nil]: (ν□[ϵ⟩□)C →C C. The thesis holds as follows:

J(ν□[ϵ⟩□)CKz = (νa_)(νb_)(0 | JCKz)
≡ JCKz

• Rule [red-lift-C]: C→CC
′ implies G [C]→CG [C ′]. By Lemma 5.12, for any D, JG [D]Kz =

E
[
JDKz′

]
for some E , z′ (∗1). Assume the condition. By the IH, JCKz′→∗ JC ′Kz′ (∗2). The

thesis holds as follows:

JG [C]Kz = E
[
JCKz′

]
(∗1)

→∗ E
[
JC ′Kz′

]
(∗2)

= JG [C ′]Kz (∗1)

• Rule [red-lift-M]: M →M M
′ implies F [M ] →C F [M ′]. By Lemma 5.12, for any N ,

JF [N ]Kz = E
[
JNKz′

]
for some E , z′ (∗1). Assume the condition. By Theorem A.7,
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JMKz′ →∗ JM ′Kz′ (∗2). The thesis holds as follows:

JF [M ]Kz = E
[
JMKz′

]
(∗1)

→∗ E
[
JM ′Kz′

]
(∗2)

= JF [M ′]Kz (∗1)
• Rule [red-conf-lift-sc]: C ≡C C ′, C ′ →C D

′, and D′ ≡C D imply C →C D. Assume
the conditions. By Theorem A.6, JCKz ≡ JC ′Kz (∗1) and JD′Kz ≡ JDKz (∗2). By the IH,
JC ′Kz →∗ JD′Kz (∗3). The thesis holds as follows:

JCKz ≡ JC ′Kz (∗1)
→∗ JD′Kz (∗3)
≡ JDKz (∗2)

A.4.2. Soundness.

Theorem 5.11 (Soundness). Given Γ ⊢ϕ
C C : T , if JCKz→∗ Q, then there exists D such that

C →∗
C D and Q→∗ JDKz.

Proof. By induction on the number k of steps JCKz →k Q (IH1). We distinguish cases on
all possible initial reductions JCKz →Q0 and discuss all possible following reductions. Here,
we rely on APCP’s confluence of independent reductions, allowing us to focus on a specific
sequence of reductions, postponing other possibilities that eventually lead to the same result.

We then use induction on the structure of C (IH2). The goal is to identify some D0 such
that we can isolate k0 ≥ 0 reductions such that C →C D0 and JCKz →Q0 →k0 JD0Kz (where
k0 may be different in each case). We then have JD0Kz →k−k0 Q, so it follows from IH1 that
there exists D such that D0 →∗

C D and JD0Kz →∗ JDKz.
• Case C = ϕM . By construction, we can identify a maximal context R and a term M0

such that M = R [M0] and the observed reduction Jϕ (R [M0])Kz →Q0 originates from the
translation of M0 directly (i.e., not from inside an evaluation context in the translation of
M0 or from interaction with the translation of R ).

We detail every case for M0, though not all cases may be applicable to show a reduction.
In each case, we rely on Lemma 5.12 to work with E , z′ such that Jϕ (R [M0])Kz =
JR [M0]Kz = E

[
JM0Kz′

]
. Also, in many cases, subterms that partake in the reduction

may appear in sequences of explicit substitutions; since structural congruence can always
extrude the scope of explicit substitutions, they can, w.l.o.g., be factored out of the proofs
below.
– Case M0 = x. We have JxKz′ = x[_, z′], so no reduction is possible.
– Case M0 = (). We have J()Kz′ = 0, so no reduction is possible.
– Case M0 = λx.M1. We have Jλx.M1Kz′ = z′(x, a); JM1Ka, so no reduction is possible.
– Case M0 = M1 M2. We have

JM1 M2Kz′ = (νa1b1)(νc1d1)(JM1Ka1 | b1[c1, z′] | d1(_, e1); JM2Ke1).

The reduction can only originate from a synchronization between the send on b1 and a
receive on a1 in JM1Ka1. By well typedness, M1 must be of type T2 ⊸ T1 and M2 of
type T2. It must then be the case that M1 = λx.M1.1: this is the only possibility for a
receive on a1 in JM1Ka1.
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Let D0 ≜ ϕ (R [M1.1⦃M2/x⦄)]. We have C →C D0. Moreover:

JCKz = E
[
(νa1b1)(νc1d1)(a1(x, a2); JM1.1Ka2 | b1[c1, z′] | d1(_, e1); JM2Ke1)

]
→ E

[
(νxd1)(JM1.1Kz′ | d1(_, e1); JM2Ke1)

]
= JD0Kz

– Case M0 = new. We have

JnewKz′ = (νa1b1)
(
a1[_, z′] | b1(_, c1); (νd1x)(νe1y)(J[ϵ⟩Kd1⟩e1 | J(x, y)Kc1)

)
.

The reduction can only originate from a synchronization between the send on a1 and
the receive on b1. Let D0 ≜ (νx[ϵ⟩y)(ϕ (R [(x, y)])). We have C →C D0. Moreover:

JCKz = E
[
(νa1b1)

(
a1[_, z′] | b1(_, c1); (νd1x)(νe1y)(J[ϵ⟩Kd1⟩e1 | J(x, y)Kc1)

)]
→ (νd1x)(νe1y)(J[ϵ⟩Kd1⟩e1 | E

[
J(x, y)Kz′

]
)

= JD0Kz

– Case M0 = forkM1;M2. We have

JforkM1;M2Kz′ = (νa1)
(
a1[_, z′] | b1(_, c1); ((ν__)JM1K_ | JM2Kc1)

)
.

The reduction can only originate from a synchronization between the send on a1 and
the receive on b1. Let D0 ≜ ϕ (R [M2]) ∥ ♢M1. We have C →C D0. Moreover:

JCKz = E
[
(νa1)

(
a1[_, z′] | b1(_, c1); ((ν__)JM1K_ | JM2Kc1)

)]
→ E

[
JM2Kz′

]
| (ν__)JM1K_

= JD0Kz

– Case M0 = (M1,M2). We have

J(M1,M2)Kz′ = (νa1b1)(νc1d1)(z
′[a1, c1] | b1(_, e1); JM1Ke1 | d1(_, f1); JM2Kf1),

so no reduction is possible.
– Case M0 = let (x, y) = M1 inM2. We have

Jlet (x, y) = M1 inM2Kz′ = (νa1b1)(a1(x, y); JM2Kz′ | JM1Kb1).

The reduction can only originate from a synchronization between the receive on a1 and
a send on b1 in JM1Kb1. By well typedness, M1 must be of type T1.1 × T1.2. It must
then be the case that M1 = (M1.1,M1.2): this is the only possibility for a send on b1 in
JM1Kb1.
Let D0 ≜ ϕ (R [M1⦃M1.1/x,M1.2/y⦄]). We have C →C D0. Moreover:

JCKz = E
[
(νa1b1)(a1(x, y); JM2Kz′ | (νa2b2)(νc2d2)

(
b1[a2, c2] | b2(_, e2); JM1.1Ke2
| d2(_, f2); JM1.2Kf2

)
)
]

→ E
[
(νyd2)

(
(νxb2)(JM2Kz′ | b2(_, e2); JM1.1Ke2) | d2(_, f2); JM1.2Kf2

)]
= JD0Kz

– Case M0 = sendM1M2. We have

JsendM1M2Kz′ = (νa1b1)(νc1d1)

(
a1(_, e1); JM1Ke1 | JM2Kc1
| d1(_, f1); (νg1h1)(f1[b1, g1] | h1[_, z′])

)
.

The reduction can only originate from a synchronization between the receive on d1 and
a send on c1 in JM2Kc1. By well typedness, M2 must be of type !T1.S2. No reduction is
possible: no M2 can satisy these conditions.
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– Case M0 = recvM1. We have

JrecvM1Kz′ = (νa1b1)
(
JM1Ka1 | b1(c1, d1); (νe1f1)(z′[c1, e1] | f1(_, g1); d1[_, g1])

)
.

The reduction can only originate from a synchronization between the receive on b1 and
a send on a1 in JM1Ka1. By well typedness, M1 must be of type ?T1.S1. No reduction is
possible: no M1 can satisfy these conditions.

– Case M0 = select j M1. We have

Jselect j M1Kz′ = (νa1b1)
(
JM1Ka1 | b1(_, c1); (νd1e1)(c1[d1] ◁ j | e1[_, z′])

)
.

The reduction can only originate from a synchronization between the receive on b1 and
a send on a1 in JM1Ka1. By well typedness, M1 must be of type ⊕{i : Si

1}i∈I with j ∈ I.
No reduction is possible: no M1 can satisfy these conditions.

– Case M0 = caseM1 of {i : M i
2}i∈I . We have

JcaseM1 of {i : M i
2}i∈IKz′ = (νa1b1)(JM1Ka1 | b1(c2) ▷ {i : JM i

2 c2Kz′}i∈I).

The reduction can only originate from a synchronization between the branch on b1 and
a selection on a1 in JM1Ka1. By well typedness, M1 must be of type &{i : Si

2}i∈I . No
reduction is possible: no M1 can satisfy these conditions.

– Case M0 = closeM1;M2. We have

JcloseM1;M2Kz′ = (νa1b1)(JM1Ka1 | b1(_,_); JM2Kz′).

The reduction can only originate from a synchronization between the receive on b1 and
a send on a1 in JM1Ka1. By well typedness, M1 must be of type end. No reduction is
possible: no M1 can satisfy these conditions.

– Case M0 = M1⦃M2/x⦄. We have

JM1⦃M2/x⦄Kz′ = (νxa1)(JM1Kz′ | a1(_, b1); JM2Kb1).

The reduction can only originate from a synchronization between the receive on a1 and
a send on x in JM1Kz′. It must then be the case that M1 = R1[x]. By Lemma 5.12,
JR1[x]Kz′ = E1[JxKz1] = E1[x[_, z1]].
Let D0 ≜ ϕ (R

[
R1[M2]

]
). We have C ≡C ϕ (R

[
R1[x⦃M1/x⦄]

]
)→C D0. Moreover:

JCKz = E
[
(νxa1)(E1[x[_, z1]] | a1(_, b1); JM2Kb1)

]
→ E

[
E1[JM2Kz1]

]
= JD0Kz

• Case C = C1 ∥ C2. Assume, w.l.o.g., that C2 is a child thread. We have

JCKz = JC1Kz | (ν__)JC2K_.

The reduction may originate from JC1Kz or from JC2K_; w.l.o.g., assume the former.
We thus have JC1Kz → Q1. By IH2, there are D1, k1 ≥ 0 such that C1 →C D1 and

JC1Kz →Q1 →k1 JD1Kz. Let D0 ≜ D1 ∥ C2. We have C →C D0. Moreover:

JCKz = JC1Kz | (ν__)JC2K_

→k1+1 JD1Kz | (ν__)JC2K_
= JD0Kz
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• Case C = (νx[m⃗⟩y)C1. We have

J(νx[m⃗⟩y)C1Kz = (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JC1Kz).

The reduction may originate from (i) J[m⃗⟩Ka1⟩b1, (ii) JC1Kz, (iii) a synchronization between
a1 in J[m⃗⟩Ka1⟩b1 and x in JC1Kz, or (iv) a synchronization between b1 in J[m⃗⟩Ka1⟩b1 and y
in JC1Kz. We detail each case:

(i) The reduction originates from J[m⃗⟩Ka1⟩b1. No matter what [m⃗⟩ is, no reduction is
possible.

(ii) The reduction originates from JC1Kz. We thus have JC1Kz →Q1. By IH2, there are
D1, k1 ≥ 0 such that C1 →C D1 and JC1Kz →Q1 →k1 JD1Kz. Let D0 ≜ (νx[m⃗⟩y)D1.
We have C →C D0. Moreover:

JCKz = (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JC1Kz)

→k1+1 (νa1x)(νb1y)(J[m⃗⟩Ka1⟩b1 | JD1Kz)
= JD0Kz

(iii) The reduction originates from a synchronization between a1 in J[m⃗⟩Ka1⟩b1 and x in
JC1Kz. By well typedness, ∆ ⊢B [m⃗⟩ : S′⟩S. Note first that, by Lemma 5.13, S′ ̸= □
implies that there are E2, c1 such that J[m⃗⟩ : S′⟩SKa1⟩b1 = E2

[
J[ϵ⟩ : S′⟩S′Ka1⟩c1

]
. The

analysis depends on S′, so we consider all possibilities. In each case, if the reduction
is indeed possible, we show that the reduction is the first step in the execution of
some rule such that C →C D0. The corresponding reduction JCKz →Q0 →k0 JD0Kz
follows the corresponding case in the proof of Theorem 5.10 (Completeness).
– Case S′ = □. Then x = □ is not free in C1, and thus x is not free in JC1Kz: the

reduction is not possible.
– Case S′ = end. The analysis depends on whether S = □ or not; w.l.o.g., assume

not. We have

J[ϵ⟩ : end⟩endKa1⟩c1 = a1(_, c2); . . . | . . .
Thus, the synchronization is between the receive on a1 and a send on x in JC1Kz.
A send on a variable x can only occur in the translation of that variable directly,
under some reduction context. Since x is of type end and its translation appears
under a reduction context, the only well-typed way for x to appear in C1 is if
C1 = G

[
F [closex;M1]

]
. We then have

C ≡C G ′[(νx[m⃗⟩y)(F [closex;M1] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-close].
– Case S′ = !T2.S

′
2. We have

q
[ϵ⟩ : !T2.S

′
2⟩!T2.S

′
2

y
a1⟩c1 = a1(_, c2); . . .

Thus, the synchronization is between the receive on a1 and a send on x in JC1Kz.
A send on a variable x can only occur in the translation of that variable directly,
under some reduction context. Since x is of type !T2.S

′
2 and its translation appears

under a reduction context, the only well-typed way for x to appear in C1 is if
C1 = G

[
F [sendM1 x]

]
. We then have

C ≡C G ′[(νx[m⃗⟩y)(F̂ ′[sendM1 x] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-send].
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– Case S′ = ?T2.S
′
2. We have

q
[ϵ⟩ : ?T2.S

′
2⟩?T2.S

′
2

y
a1⟩c1 =

r
[ϵ⟩ : !T2.S′

2⟩!T2.S′
2

z
c1⟩a1 = c1(_, c2); . . .

Thus, the reduction is not possible.
– Case S′ = ⊕{i : Si

2}i∈I . We have
q
[ϵ⟩ : ⊕{i : Si

2}i∈I⟩⊕{i : Si
2}i∈I

y
a1⟩c1 = a1(_, c2); . . .

Thus, the synchronization is between the receive on a1 and a send on x in JC1Kz.
A send on a variable x can only occur in the translation of that variable directly,
under some reduction context. Since x is of type ⊕{i : Si

2}i∈I and its translation
appears under a reduction context, the only well-typed way for x to appear in C1

is if C1 = G
[
F [select j x]

]
where j ∈ I. We then have

C ≡C G ′[(νx[m⃗⟩y)(F [select j x] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-select].
– Case S′ = &{i : Si

2}i∈I . We have
q
[ϵ⟩ : &{i : Si

2}i∈I⟩&{i : Si
2}i∈I

y
a1⟩c1 =

r
[ϵ⟩ : ⊕{i : Si

2}i∈I⟩⊕{i : Si
2}i∈I

z
c1⟩a1

= c1(_, c2); . . .

Thus, the reduction is not possible.
(iv) The reduction originates from a synchronization between b1 in J[m⃗⟩Ka1⟩b1 and y

in JC1Kz. By well typedness, ∆ ⊢B [m⃗⟩ : S′⟩S. The analysis depends on S, so we
consider all possibilities. In each case, if the reduction is indeed possible, we show
that the reduction is the first step in the execution of some rule such that C →C D0.
The corresponding reduction JCKz →Q0 →k0 JD0Kz follows the corresponding case
in the proof of Theorem 5.10 (Completeness).
– Case S = □. Then y = □ is not free in C1, and thus y is not free in JC1Kz: the

reduction is not possible.
– Case S = end. By well typedness, then m⃗ = ϵ. Let C ′ ≜ (νy[ϵ⟩x)C1; we have

C ≡C C
′ and JCKz ≡ JC ′Kz (by Theorem A.6). The thesis then follows as in the

analogous case under Subcase (iii) above.
– Case S = !T2.S2. By well typedness, then m⃗ = m⃗′,M1. We have

q
[m⃗′,M1⟩ : S′⟩!T2.S2

y
a1⟩b1 = (ν . . .)(ν . . .)(. . . | b1(_, h2); . . . | . . .).

Thus, the synchronization is between the receive on b1 and a send on y in JC1Kz.
A send on a variable y can only occur in the translation of that variable directly,
under some reduction context. Since y is of type S = ?T2.S2 and its translation
appears under a reduction context, the only well-typed way for y to appear in C1

is if C1 = G
[
F [recv y]

]
. We then have

C ≡C G ′[(νx[m⃗′,M1⟩y)(F̂ ′[recv y] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-recv].
– Case S = ?T2.S2. By well typedness, then m⃗ = ϵ; this case is analogous to

Case S = end above.
– Case S = ⊕{i : Si

2}i∈I . By well typedness, then m⃗ = m⃗′, j where j ∈ I. We have
q
[m⃗′, j⟩ : S′⟩⊕{i : Si

2}i∈I
y
a1⟩b1 = (ν . . .)(b1(_, e2); . . . | . . .).
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Thus, the synchronization is between the receive on b1 and a send on y in JC1Kz.
A send on a variable y can only occur in the translation of that variable directly,
under some reduction context. Since y is of type S = &{i : Si

2}i∈I and its
translation appears under a reduction context, the only well-typed way for y to
appear in C1 is if C1 = G

[
F [case y of {i : M1.i}i∈I ]

]
. We then have

C ≡C G ′[(νx[m⃗′, j⟩y)(F [case y of {i : M1.i}i∈I ] | C2)
]
.

Hence, the observed reduction is the first step of executing Rule [red-case].
– Case S = &{i : Si

2}i∈I . By well typedness, then m⃗ = ϵ; this case is analogous to
Case S = end above.

• Case C = C1⦃M/x⦄. We have

JC1⦃M/x⦄Kz = (νxa1)(JC1Kz | a1(_, b1); JMKb1).

The reduction may originate from (i) JC1Kz or (ii) a synchronization between the receive
on a1 and a send on x in JC1Kz. We detail both cases:

(i) The reduction originates from JC1Kz. We thus have JC1Kz →Q1. By IH2, there are
D1, k1 ≥ 0 such that C1 →C D1 and JC1Kz →Q1 →k1 JD1Kz. Let D0 ≜ D1⦃M/x⦄.
We have C →C D0. Moreover:

JCKz = (νxa1)(JC1Kz | a1(_, b1); JMKb1)

→k1+1 (νxa1)(JD1Kz | a1(_, b1); JMKb1)
= JD0Kz

(ii) The reduction originates from a synchronization between the receive on a1 and a
send on x in JC1Kz. It must then be the case that C1 = G

[
F [x]

]
. By Lemma 5.12,

JG
[
F [x]

]
Kz = E [JxKz′] = E [x[_, z′]].

Let D0 ≜ G
[
F [M ]

]
. We have C ≡C G

[
F [x⦃M/x⦄]

]
→C D0. Moreover:

JCKz = (νxa1)(E [x[_, z′]] | a1(_, b1); JMKb1)

→ E [JMKz′]
= JD0Kz
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