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Abstract. Whereas string diagrams for strict monoidal categories are well understood,
and have found application in several fields of Computer Science, graphical formalisms for
non-strict monoidal categories are far less studied. In this paper, we provide a presentation
by generators and relations of string diagrams for non-strict monoidal categories, and
show how this construction can handle applications in domains such as digital circuits and
programming languages. We prove the correctness of our construction, which yields a novel
proof of Mac Lane’s strictness theorem. This in turn leads to an elementary graphical proof
of Mac Lane’s coherence theorem, and in particular allows for the inductive construction of
the canonical isomorphisms in a monoidal category.

1. Introduction

String diagrams are a rigorous graphical notation for morphisms in a category, which is
proving useful in a broad variety of application domains, such as quantum systems [CK17],
computational linguistics [CGS13], digital circuits [GJL17], or signal flow analysis [BSZ21]
— see e.g. [PZ23] for a recent overview. What the majority of string diagrammatic notations
have in common is that they are devised for monoidal categories in which the tensor is strict,
i.e. the associator and unitor morphisms are identities. As Joyal and Street explain in their
seminal Geometry of Tensor Calculus [JS91], the choice of using a strict monoidal category
was motivated by convenience (“simplicity of exposition”) and by a wish to focus on “aspects
other than the associativity of tensor product”. Furthermore, they believed that “most
results obtained with the hypothesis that a tensor category is strict can be reformulated and
proved without this condition.”

Indeed, in terms of mathematical power, this statement is true. However, string diagrams
have been used increasingly as a convenient syntax for languages with models in (strict)
monoidal categories. And, when used as syntax, the distinction between strict and non-strict
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tensor becomes relevant, if not in terms of mathematical expressiveness then at least as a
mechanism of abstraction. This is why modern programming languages, and even some
modern hardware design languages such SystemVerilog [SDF06], use non-strict features
such as tuples and structs which can nest in non-trivial ways. These non-strict structures
could be manually ‘strictified’ by the programmer by flattening them into arrays. Using
such programmer conventions instead of native syntactic support does not entail a loss
of expressiveness, but a loss of code readability, convenience, and general programmer
effectiveness.

In this paper, we address the problem of expanding the graphical language of string
diagrams with the required features that allow the expression of non-strict tensors. What
makes the language of strict tensors convenient for the graphical representation is that
objects are naturally represented as lists of wires. This suggests that string diagrams make
use of strictness in an essential way and, indeed, naive attempts to define string diagram
languages for non-strict monoidal categories can render the notation so heavy-going as to lose
the intuitiveness that makes it so attractive in the first place. A more sophisticated solution,
which we propose here, is to deliberately use the strictification of a possibly non-strict
monoidal category in order to make string diagrams function in this setting with a minimum
of additional overhead. These points will be illustrated with examples in Section 2.

Concretely, the basic idea is to use new operations to ‘pack’ pairs of wires into single
wires with internal tensorial structure and to ‘unpack’ structured wires into pairs of wires
labelled with the tensor component objects. The repeated application of unpacking can
flatten any wire with an arbitrarily complex tensor structure into a list of wires labelled
with elementary objects. Other new operations are used to ‘hide’ or ‘reveal’ wires labelled
with the tensor unit. These four families of new operations are used to define the associators
and the unitors of the strictified category.

1.1. Contributions. We propose a strictification construction yielding a graphical language
for non-strict monoidal categories. With respect to traditional string diagrams, it provides a
more fine-grained representation of tensoring, whose usefulness we demonstrate in motivating
examples drawn from circuit theory and programming language semantics. The bulk of
the paper is then dedicated to showing that the construction is correct, i.e. the strictified
category in which string diagrams live is monoidally equivalent to the original non-strict
category. Our proof of monoidal equivalence is new: in contrast to Mac Lane’s we do not rely
on the coherence theorem, and instead construct the functors of the equivalence explicitly.
Consequently, we are able to give a new elementary proof of the coherence theorem: we show
graphically that the free monoidal category on a single generator forms a preorder. The
remainder of the coherence result is largely a reformulation Mac Lane’s original corollary,
but in a way that we believe has pedagogical value.

1.2. Related Work. The use of adapter morphisms which can ‘pack’ and ‘unpack’ wires
has been explored in various forms. Our adapters can be recovered as instances of more
sophisticated constructs used in the study of coherence of weakly distributive categories
[BCST96]. These categories use two distinct tensors and an additional kind of wire (‘thinning
links’) in their string diagram language. Note that weakly distributive categories are precisely
monoidal categories when the two monoidal structures coincide. This observation is not
explored in [BCST96] but it is discussed in the context of proof nets in the follow up
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work [CS17], which also mentions that ‘thinning links’ may be removed when considering
the case of monoidal categories. Still, it is not obvious how this observation would lead
to coherence results for “mere” monoidal categories as a corresponding simplification of
the coherence of weakly distributive categories. A non-diagrammatic approach giving a
type theory for symmetric monoidal categories can also be found in [Shu19]. The idea also
appears in the study of quantum [CDP21] and reversible [CKS21] circuits, although these do
not study the connection to the strictness and coherence theorems. The distinctive feature
of our paper is to show explicitly how introducing adapters allows non-strict categories to
take advantage of graph based datastructures for strict monoidal categories such as those of
[WZ21]. More concretely, by explicitly defining the functors mapping between a non-strict
category and its ‘strictified’ counterpart, we obtain datastructure-independent algorithms for
translating between strict and non-strict settings. In addition, we formulate our approach
using presentations by generators and relations, which brings the strictness question much
closer to current graphical calculi approaches to circuits such as [Laf03, WZ22, GKS22,
BPSZ19, BF18]. Finally, our approach allows us to give a self-contained proof of Mac Lane’s
strictness theorem that does not rely on the coherence theorem, allowing us to avoid its
associated pitfalls.

Note this paper extends the work published at CSL’23 [WGZ23] with the material
presented in Section 4 and Section 6.

1.3. Synopsis. In Section 2 we present our graphical calculus for (non-strict) monoidal
categories, in the form of a strictification procedure. Subsections 2.1, 2.2, and 2.3 illustrate
a series of motivating examples. Section 3 justifies our construction by proving that it
yields an equivalence of categories. Section 4 shows how the strictness result extends to the
symmetric monoidal case. Section 5 revisits MacLane’s Coherence theorem and some of its
consequences in light of the approach we presented. Finally, in Section 6, we give a graphical
exposition of Mac Lane’s corollary to the coherence theorem. Section 7 is dedicated to
conclusions and future work.

2. A graphical language for (non-strict) monoidal categories

We assume familiarity with string diagrams for strict monoidal categories, see e.g. [Sel10].
Let us fix an arbitrary (non-strict) monoidal category C . We construct its strictification as
the strict monoidal category C defined as follows.

Definition 2.1. (C , •) is the strict monoidal category freely generated by:

(1) Objects A for each A ∈ C
(2) Generators (2.1), with f : A→ B for each f : A→ B ∈ C
(3) functoriality equations (2.2)
(4) adapter equations (2.3), and
(5) associator/unitor equations (2.4)

Note that because C is strict by definition, we are entitled to use string diagrammatic
notation. Thus, a morphism with m inputs and n outputs will have domain and codomain
of the form A1 • · · · •Am and B1 • · · · •Bn, respectively.
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ϕϕ∗IC IC = IC

(2.3)

α = Φ

ΦΦ∗

Φ∗

A⊗B

B ⊗ C

A

B

C
α−1 =

Φ∗

Φ∗ Φ

Φ

A⊗B

B ⊗ C

A

B

C

λ = Φ∗
ϕ∗

λ−1 = Φ
ϕ

ρ = Φ∗
ϕ∗

ρ−1 = Φ
ϕ

(2.4)

This is a functorial construction, yielding a monoidal equivalence between C and C , as we
will prove in Section 3. Note that although the category C is essentially the same as that
given by Mac Lane [ML97, p. 257], its construction differs in one key respect. Namely, to
define his equivalent strict category, Mac Lane relies on the coherence theorem to define
both composition of arrows and to ensure the functors in the equivalence are monoidal.
In contrast, the adapter generators and equations of C mean that Definition 2.1 does not
require use of the coherence theorem, and can therefore be used to prove it.

The functoriality equations are so-called as they ensure functoriality of the construction.
The ‘adapter’ equations and ‘associator/unitor’ equations further ensure this functor is
monoidal and it forms one half of a monoidal equivalence. Sec. 3 will make it clear that
these equations are essentially obtained by freely adding the morphisms required by the
definition of a monoidal functor (3.1).

Besides its mathematical significance, the interest of this construction lies in providing a
means of manipulating morphisms of non-strict monoidal categories graphically. In particular,
the ϕ and ϕ∗ generators can be used to explicitly summon and dispell the monoidal unit,
while the Φ and Φ∗ generators can be thought of as systematic ways of packing and unpacking
wires into more complex wires with internal structure. The next subsections will showcase
how this additional layer of structure can be useful in categorical models of computation.

2.1. Circuit Description Languages with Tuples. Categorical models of circuit de-
scription languages are a prime source of examples of monoidal categories, for instance
combinational [Laf03] or sequential [GJL17] circuits. The graphical representation of circuits
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also fits naturally and intuitively the box-and-wire model used by string diagrams. More
precisely, the circuit description languages in loc. cit. (and variations thereof) are instances
of strict monoidal categories.

From the point of view of expressiveness, i.e. realising circuits with certain desired
behaviours, the strict setting does not introduce any limitations. Consistent with this
observation, standard hardware description languages (HDL) such as Verilog can also be
modelled using a strict monoidal tensor. However, larger and more complex designs stand
to benefit from the additional level of structure which a non-strict tensor can offer and,
indeed, more modern HDLs, intended for more complex designs, such as SystemVerilog have
syntactic facilities which require a non-strict tensor: structs.

Consider the following simple example. Suppose that some circuitry is needed to process
network packets, which consist of a header (of size h = 96 bits), a payload (of size p = 896
bits) and an error-correcting trailer (of size e = 32 bits). In the older Verilog language, the
header and the payload can be combined in a single, wider, data bus of h+ p = 992 bits,
but the two components can only be extracted using numerical indexing. This is a primitive
form of ‘flattening’ a data structure into an array, and in the more modern SystemVerilog it
can be avoided by using a struct. This means that a data type of ‘message’ (say m) can
access its components as fields (projections), namely m.h and m.p. Since structs can have
other structs as fields, the way in which the components are associated is relevant, which
means that the tensor must no longer be strict.

On the other hand, ‘flattening’ the structure of a data bus to an array of bits can
be useful. In the current example, in computing the error-correcting code e, the way the
message is partitioned into header and payload is no longer relevant, so it is convenient to
unpack the tensor h⊗ p into a flat array of h+ p wires from which an error-correcting code
e is computed by a generic circuit of the appropriate width. Structures that can be flattened
like this are called in SystemVerilog packed structs, and to model them properly both strict
and non-strict tensorial facilities are required in the categorical model.

Finally, the error-correcting code can be packed with the original message into an
error-correcting message with three components. It is obviously important to be able to
retrieve the header, payload, and error-correcting code separately from the message, and
it should be equally obvious that once the internal structure of the message is non-trivial
a calculus of indices would be a complicated, awkward, and error-prone way to access the
components.

parity
H ⊗ P H

P
E (H ⊗ P )⊗ EΦ

Φ∗

Graphically, this circuit is represented above. In order to make this diagram completely
formal, what we are using here is the C construction described in Sec. 2 applied to one of the
categories C of digital circuits (combinational or sequential) mentioned earlier. This gives
us the best of both worlds: the ‘non-strictness’ of circuits-with-tuples, and the graphical
syntax of string diagrams.

Strictifying Strict Categories. The ‘strictification’ procedure is not just useful for
providing a graphical syntax for non-strict monoidal categories, but can also provide a more
ergonomic syntax for monoidal categories that are already strict. Suppose we wish to work
in Lafont’s strict monoidal category of circuits [Laf03], and suppose we would like to define
the ‘parity’ function used earlier. Using our construction, we can define it recursively as
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follows:

parity0 = false
0 0 1 parityn =

parityn−1
XOR

n

n− 1

1
1

1

Φ∗

Notice that in the ‘base’ language of Lafont’s PROP of circuits we cannot truly depict this
diagram, since there is no way to treat a bundle of n wires as a pair of 1 and n− 1 wires.
To do this formally we require the adapter morphisms as defined in Section 2.

2.2. Programming Languages. Programming languages, largely based on the lambda
calculus, commonly include product formation as a syntactic feature. Therefore, a graphical
syntax based on its categorical model, as used for example in [AGSZ21], needs to have a non-
strict tensor. However, having only the non-strict tensor leads to an awkward graphical syntax
in which all generators have a single wire going in and a single wire going out. Diagrams
in which the interfaces can be intermediated using lists of wires require mechanisms for
strictification. This can be realised by applying the strictification construction to a Cartesian
closed category, which will allow the expression of examples such as the one below.

Consider the simple task of summing two complex numbers, whose real and imaginary
parts are encoded as floating-point numbers. That is, while we have a primitive type
of reals, we model complex numbers as pairs C = R × R. A natural way to write such a
program in a diagrammatic form is pictured below.

+

+

CC× C

C

C

R

R

R

R

R

R

Φ∗

Φ∗

Φ∗

Φ

Even in categorical models of the simply-typed λ-calculus (STLC) without product, stric-
tification has a role to play. As usual, this role is cloaked in informality which in some
contexts can lead to ambiguity. STLC is interpreted by giving meaning to type judgements
Γ ⊢ t : T with Γ a context, t a term, and T a type. The context Γ = x1 : T1, . . . , xn : Tn is
a list of typed variables which is interpreted as the tensor T1 ⊗ · · · ⊗ Tn, virtually always
treated as if it were strict. This informal strictification can be problematic though when
product types are used, as the objects Ti in the interpretation of the context also contain
tensors. So the strictification must be fine-grained enough to allow only the flattening of
those tensors representing the comma of the context, and not those of the product formation.
Our approach offers this level of granularity.

2.3. Strict vs. Non-Strict String Diagrams. Our final example concerns the usability
problems of non-strict diagrams without strictification and illustrate how our approach to
strictification with packing and unpacking wires makes rigorous the intuition that formulating
certain properties in terms of strict monoidal categories does not entail a loss of generality.
Our example uses braided autonomous categories. Here, each object A has a dual A∗, there
exists a family of isomorphisms cA,B : A ⊗ B → B ⊗ A called braidings, and families of
adjunctions ηA : I → A∗ ⊗ A, ϵ : A⊗ A∗ → I with certain properties which we may elide
in the formulation of the example. Consider the property of braided monoidal categories
to be autonomous if and only if they are right-autonomous [JS93, Prop. 7.2]. The proof is
formulated in terms of string diagrams in [Sel10, Lem. 4.17], which makes it more intuitive.
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The idea of the proof is to show that isomorphisms bA : A∗∗ → A, b−1A : A → A∗∗ can
be constructed. They are defined as follows:

bA = A∗∗
ηA⊗id−−−−→ A∗⊗A⊗A∗∗

id⊗cA,A∗∗
−−−−−−→ A∗⊗A∗∗⊗A ϵA∗⊗id−−−−→ A

b−1A = A
id⊗ηA∗−−−−→ A⊗A∗∗⊗A∗

c−1
A∗∗,A−−−−→ A∗∗⊗A⊗A∗ id⊗ϵA−−−→ A∗∗.

The fact that bA; b
−1
A = id becomes elegantly obvious when the terms are rendered as string

diagrams which can be manipulated graphically:

bA = A∗∗ A
b−1A

=
A A∗∗

The exposition includes the standard caveat that “Here we have written, without loss of
generality, as if [the category] were strict monoidal.” We shall now show, graphically, that
this is indeed the case.

First we note that in the non-strict setting (without strictification) all string diagrams
must be equipped with gadgets that make sure that there is a single wire on the left, and a
single wire on the right. These gadgets are of course the bundlers and unbundlers introduced
earlier. Therefore, in the non-strict setting, taking into account all the relevant associators,
the diagram for bA becomes much more complicated, denying the intuitiveness we expect
from a graphical notation (see below).

1 1

2 2 3 3

4 4 5 5

6 67 7

8 8

This is why a naive approach to non-strict string diagram construction is not effective.
However, the complications are only an artefact of the construction of the diagram in a
purely non-strict setting. The strictification equations come to rescue and, in this case,
cancel out all bundler-unbundler pairs in the order indicated by the numerical labels attached
to them, resulting in exactly the same diagram of bA that was constructed in the strict
setting. So, indeed, working in the strict setting implied no loss of generality!

3. Strictness

We now show that C is monoidally equivalent to C , constituting a proof of Mac Lane’s
strictness theorem, since C is an arbitrary monoidal category. Our approach is to define
monoidal functors S : C → C : N , and we begin by recalling the definition of monoidal
functor.

Definition 3.1. Monoidal Functor
Let (C ,⊗, IC ) and (D , •, ID) be monoidal categories. A monoidal functor is a functor
F : C → D equipped with natural isomorphisms ΦX,Y : F (X) • F (Y ) → F (X ⊗ Y ) and
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ϕ : ID → F (IC ) such that the following diagrams commute for all objects A,B,C ∈ C .

(F (A) • F (B)) • F (C) F (A) • (F (B) • F (C))

F (A) • F (B ⊗ C)

F (A⊗ (B ⊗ C))

F (A⊗B) • F (C)

F ((A⊗B)⊗ C)

αD

idF (A) • ΦB,C

ΦA,B⊗C

ΦA,B • idF (C)

ΦA⊗B,C

F (αC )

(3.1)

F (A) • ID F (A) • F (IC )

F (A⊗ IC )F (A)

idF (A) • ϕ

ΦA,IC

F (ρC )

ρD

ID • F (B) F (IC ) • F (B)

F (IC ⊗B)F (B)

ϕ • idF (B)

ΦIC ,B

F (λC )

λD
(3.2)

With this definition it is straightforward to see how to define a monoidal functor from
C to C .

Definition 3.2. Let S : C → C be the strictification functor defined on objects and
morphisms as S(A) := A and S(f) := f , respectively

Proposition 3.3. (S,Φ, ϕ) is a monoidal functor.

Proof. S preserves identities and composition (and is therefore a functor) by the functor
equations (2.2):

S(idA) = idA = idA S(f # g) = f # g = f # g = S(f) # S(g)

It is a monoidal functor using the adapter generators Φ = Φ and ϕ = ϕ from (2.1). For

this to work, we must have that Φ is a natural isomorphism and ϕ an isomorphism,

respectively. This is a straightforward consequence of the adapter equations (2.3): Φ∗#(f•g) =
Φ∗ # (f • g) # Φ # Φ∗ = f ⊗ g # Φ∗ and ϕ # ϕ∗ = id by definition. Similarly, we require that the
diagrams of (3.1) and (3.2) commute. Again, this is precisely what the the associator/unitor
equations (2.4) state, and so S is a monoidal functor.

Remark 3.4. Notice that C is defined by freely adding the requirements of Definition 3.1.
Generators Φ and ϕ and equations (2.3) give the natural isomorphism Φ and isomor-

phism ϕ, while the commuting diagrams (3.1) and (3.2) are precisely the ‘associator/unitor’
equations (2.4).

We can now define the other half of the monoidal equivalence S ⊣ N . In doing so, we’ll
make use of the fact that morphisms of a monoidal category can be written in a ‘sequential
normal form’ (Appendix A), i.e. as a series of ‘slices’

(id⊗ g1 ⊗ id) # (id⊗ g2 ⊗ id) # . . . # (id⊗ gn ⊗ id)

where each gi is a generator. We take advantage of this form to define N : our definition is
defined on ‘slices’ idX • q • idY for some generator q, and then freely on composition so that
N (f # g) = N (f) # N (g).
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Definition 3.5. We define the nonstrictification functor N : C → C inductively on objects:

N (IC ) := IC N (A) := A N (A •R) := A⊗N (R)

And on morphisms we give a recursive definition, with the following base cases:

N (idIC
) := idIC

N (f) := f

N (ΦA,B) := idA⊗B = N (Φ∗A,B)

N (ϕ) := idIC
= N (ϕ∗)

N (f • idY ) := f ⊗ idN (Y )

N (ΦA,B • idY ) := αA,B,N (Y )

N (Φ∗A,B • idY ) := α−1A,B,N (Y )

N (ϕ • idY ) := λ−1N (Y )

N (ϕ∗ • idY ) := λN (Y )

N (idA • f) := idA ⊗ f

N (idA • ΦB,C) := idA⊗(B⊗C)

N (idA • Φ∗B,C) := idA⊗(B⊗C)

N (idA • ϕ) := ρ−1A

N (idA • ϕ∗) := ρA

With a single recursive case, for q ∈ {Φ, ϕ,Φ∗, ϕ∗, idQ}

N (idA • q • r) := idA ⊗N (q • r)

Finally take N (f # g) := N (f) # N (g).

This definition is well defined with respect to the equations of Definition 2.1; we give
a proof in Appendix B, where we also note that N(f) is the same regardless of which
‘sequential normal form’ decomposition we choose for f .

Remark 3.6. The definition of N can be explained more intuitively in terms of programming.
If we think of each ‘slice’ of the sequential normal form as a list of primitive arrows of C ,
then the definition of N is essentially a list recursion in which we have a separate case for 1,
2, and n-element lists.

Now we will show that N is a monoidal functor. To do this, we must specify the
‘coherence maps’: a natural isomorphism ΨX,Y : N (X)⊗N (Y ) → N (X•Y ) and isomorphism
ψ : IC → N (IC ) as mandated by Definition 3.1.

Definition 3.7. We define Ψ, the coherence natural isomorphism for N , in the following
cases:

ΨIC ,IC
:= λIC

= ρIC
ΨX,IC

:= ρN (X) ΨIC ,Y := λN (Y )

ΨA,Y := idA⊗N (Y ) ΨA•X,Y := α−1A,N (X),N (Y ) # (idA ⊗ΨX,Y )

Definition 3.8. The coherence isomorphism ψ for N is defined as follows:

ψIC
:= idIC

Remark 3.9. Note that both λIC
and ρIC

have the correct type as a choice for ΨIC ,IC
.

In fact, they are equal: unitors coincide at the unit object, i.e. λIC
= ρIC

, as noted
in [EGNO15, Corollary 2.2.5].

Proposition 3.10. (N ,Ψ, ψ) is a monoidal functor.

Proof. It is clear that Ψ and ψ are natural isomorphisms since they are both composites of
natural isomorphisms. Thus it remains to check the diagrams of Definition 3.1 commute.

The squares (3.2) commute because ψ = id, and ΨA,IC
= ρ and ΨIC ,B = λ by definition.

Now let us check that the hexagon (3.1) commutes. Note that in the following we use
that N (αC ) = id, because C is strict, and so the hexagon axiom becomes a pentagon.
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We will approach the problem inductively, checking base cases where A = I and A = A,
and finally the inductive step with A = A • R. Let us begin with A = I, and taking the
outer path of the hexagon we calculate as follows:

(idIC
⊗ΨB,C) # ΨIC ,B•C # Ψ−1B,C # (ΨIC ,B ⊗ idN (C))

−1

= (idIC
⊗ΨB,C) # λN (B•C) # Ψ−1B,C # (λN (B) ⊗ idN (C))

−1

= λN (B)⊗N (C) # (λN (B) ⊗ idN (C))
−1

= αIC ,N (B),N (C)

Wherein we expanded the definition of Ψ, then used naturality of ΨB,C before applying the
monoidal triangle lemma of [EGNO15, (2.12)].

Now consider the second base case, where A is the ‘singleton list’ A. In this case,
the hexagon diagram commutes immediately because ΨA,B = idA⊗N (B) and ΨA,B•C =

idA⊗N (B•C). More explicitly, we calculate as follows, starting again with the outer path of

the hexagon and expanding definitions:

(idA ⊗ΨB,C) # ΨA,B•C # Ψ−1A•B,C # (ΨA,B ⊗ idN (C))

= (idA ⊗ΨB,C) # (idA ⊗ΨB,C)
−1 # αA,N (B),N (C)

= αA,N (B),N (C)

Finally let us prove the inductive step. Assume that the hexagon commutes for objects R,
B, C, giving us the equation

ΨR,B•C # Ψ−1R•B,C = (idN (R) ⊗Ψ−1B,C) # αN (R),N (B),N (C) # (ΨR,B ⊗ idN (C))

We may then rewrite the following subterm of the monoidal hexagon as follows:

idA⊗(ΨR,B•C #Ψ−1R•B,C) = idA⊗(idN (R)⊗Ψ−1B,C)#idA⊗αN (R),N (B),N (C) #idA⊗(ΨR,B⊗idN (C))

We can then rewrite idA ⊗ αN (R),N (B)N (C) using the monoidal category pentagon axiom,
and then use naturality of α to reduce the outer path of the monoidal hexagon until we are
left with αA⊗N (R),N (B),N (C), as required.

Finally, we must check that S and N indeed form an equivalence. First, recall the
definition

Definition 3.11 (Equivalence of categories). An equivalence is a pair of functors C
F→
←
G

D
and a pair of natural isomorphisms η : idC → G ◦ F and ϵ : F ◦G→ idD .

We begin by showing naturality of η.

Proposition 3.12. N ◦ S = idC .

Proof. N (S(f)) = N (f) = f = idC (f)

Remark 3.13. Note that Proposition 3.12 shows that the composite N ◦S is actually equal
to the identity functor, and thus ηA = idA. In fact, this will make the composite of the two
functors a split idempotent.

Now we prove naturality of ϵ. This proof is somewhat more involved: unlike 3.12, the
composite S ◦ N is merely isomorphic to the identity functor, not equal on the nose. Thus,
we begin with an inductive definition:
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Definition 3.14. We define the (monoidal) natural isomorphism ϵ : S ◦ N → idC for the
composite S ◦ N inductively:

ϵIC
:= ϕ∗ = ϕ∗

ϵA := idA =

ϵA•R := Φ∗ # (idA • ϵR) = Φ∗
ϵR

(3.3)

Proposition 3.15. If ϵ is natural for f and g, then it is natural for f # g.

Proof. Take morphisms f : X → Y and g : Y → Z. By assumption, we have:

S(N (f)) = ϵX # f # ϵ−1Y S(N (g)) = ϵY # g # ϵ−1Z

from which we can derive

ϵ−1X # S(N (fg)) # ϵZ = ϵ−1X # S(N (f) # N (g)) # ϵZ = ϵ−1X # S(N (f)) # S(N (g)) # ϵZ
= ϵ−1X # ϵX # f # ϵ−1Y # ϵY # g # ϵ−1Z # ϵZ
= f # g

(3.4)

as required.

Proposition 3.16. ϵ : S ◦ N → idC is a monoidal natural isomorphism.

Proof. We begin by showing naturality inductively, having already proven the inductive step
for composition in Proposition 3.15. We again use Proposition A.1–that each morphism f in
C can be decomposed into ‘slices’ f = t1 # . . . # tn with each ti of the form idX • gi • idY , with
each gi : A→ B a generator. It thus suffices to prove that t = ϵ−1X•A•Y # S(N (t)) # ϵX•B•Y for
an arbitrary ‘slice’ t. One can check this by a second induction whose base case and inductive
step correspond to the definition of N (Definition 3.5). To be precise, one can check this
property graphically for each base case N (idIC

) . . .N (idA), and additionally for the inductive

step N (idA • q • r). Finally, note that ϵ is indeed a monoidal natural transformation, which
can be verified by another straightforward induction.

Theorem 3.17 (Mac Lane’s Strictness Theorem). For any monoidal category C there is a
monoidally equivalent strict category.

Proof. S and N are monoidal functors by Propositions 3.3 and 3.10, and they form a
monoidal equivalence with η and ϵ by Propositions 3.12 and 3.16. Since C was arbitrary,
the proof is complete.

Note that in contrast to Mac Lane’s proof of Theorem 3.17, we make no reference to the
coherence theorem. We can therefore make use of the strictness theorem to prove coherence,
which is the subject Section 5.

4. Symmetric Monoidal Strictness

We now show how the strictness theorem extends to the symmetric monoidal case, beginning
with how the braiding σ of C extends to C .
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Definition 4.1 (Braiding of C ). Let C be a symmetric monoidal category. The braiding
σX,Y in C is defined as

σX,Y := σΦ Φ∗
ϵ−1X

ϵ−1Y

ϵY

ϵX

where ϵ is given in Definition 3.14.

Proposition 4.2 (Naturality of braiding). The braiding in Definition 4.1 is natural.

Proof. We have that ϵ is natural by Proposition 3.16. The result then follows by applying
naturality of ϵ, adapters, and σ.

Example 4.3. When X = A and Y = B naturality follows from naturality of adapters and
the braiding in C .

Φ Φ∗σ
f

g
= Φ Φ∗σf ⊗ g

= Φ Φ∗g ⊗ fσ

= Φ Φ∗σ
g

f

This braiding makes C symmetric monoidal.

Proposition 4.4. If C is symmetric monoidal then C is symmetric monoidal.

Proof. Let the braiding of C be defined as in 4.1. It is natural by Proposition 4.2, and
σX,Y # σY,X = idX•Y because adapters, ϵ, and σ are all isomorphisms. Finally, we must show
that the unitor coherence and associator coherence axioms of symmetric monoidal categories
are satisfied. The unit coherence follows straightforwardly. Calculating for σX,IC

we have

σX,IC
= σΦ Φ∗

ϕ∗

ϕ

= σλ−1 ρ

=

where the final step follows from the unitor coherence in C . The case of σX,IC
holds in

essentially the same way.
By similar calculations one may show that the associator coherence holds. Essentially,

the proof follows by naturality and the associator coherence of C .
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In addition, the monoidal functor S extends to a symmetric monoidal functor.

Proposition 4.5. If C is symmetric monoidal, then S : C → C is a symmetric monoidal
functor.

Proof. For S to be symmetric monoidal, we require that σS(A),S(B) = Φ # S(σA,B) # Φ∗. This
is immediate if we simply apply S, yielding the equality

σS(A),S(B) = σA,B = Φ Φ∗σ

which holds by Definition 4.1.

Finally, for C and C to be symmetric monoidally equivalent, we must also have that N
is a symmetric monoidal functor.

Proposition 4.6. If C is symmetric monoidal, then N : C → C is a symmetric monoidal
functor.

Proof. One can check by straightforward induction that N (ϵX • ϵY ) = ΨX,Y . Having done
so, the result is immediate:

N

 σΦ Φ∗
ϵ−1X

ϵ−1Y

ϵY

ϵX

 = Ψ−1X,Y # σ # ΨY,X

as required.

5. Coherence

We can now give an elementary proof of Mac Lane’s coherence theorem. In [ML97], Mac
Lane gives his theorem in two parts: Theorem 1 [ML97, p. 166] and its corollary [ML97,
p. 169]. The ‘meat’ of the proof is in the former part, corresponding to our Section 5.1. A
graphical exposition of Mac Lane’s proof of the corollary is given in Section 6.

Mac Lane begins by defining a certain preorder W , which he then shows enjoys the
following property:

Theorem 5.1. (Mac Lane’s Coherence Theorem [ML97, p. 166])
Let M be an arbitrary monoidal category, and let M be an object of M . Then there is a
unique strict monoidal functor W → M such that W 7→M .

In contrast, we will define W so this unique functor is easy to construct, and then use W
to give a graphical proof that W is a preorder. Note that the monoidal functor in question
is strict, so its coherence maps are identities.
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5.1. The free monoidal category on one generator. We begin by defining W . Again,
recall that our definition differs from Mac Lane; we will later show that this definition indeed
yields a preorder in order to guarantee that we indeed prove the same theorem.

Definition 5.2. We define W as the monoidal category freely generated by a single object
W and no morphisms except those required by the definition of a monoidal category. 1

Remark 5.3. The objects of W are IW , W , and their tensor products. The arrows are
id, ρ, λ, α and their composites and tensor products.

It is now clear that the statement of Mac Lane’s Theorem 1 holds for our definition
of W :

Proposition 5.4. Given an arbitrary monoidal category M and object M ∈ M , there is a
unique strict monoidal functor W → M with W 7→M .

Proof. Suppose U : W → M is such a (strict) monoidal functor. Then we must have that
U(W ) =M by assumption, and

U(I) = I U(A⊗M) = U(A)⊗U(M) U(f) = f, f ∈ {α, λ, ρ, id} U(f ⊗ g) = U(f)⊗U(g)

because U is strict. But this accounts for all objects and morphisms of W , and so U must
be unique.

However, to constitute a proof of the coherence theorem we must now prove that W is
a preorder. Our argument proceeds in three main steps. We will show the following:

(1) For any monoidal category C , If C is a preorder, then so is C
(2) W is generated solely by adapters {Φ, ϕ} and their inverses.
(3) W is a preorder (which we prove graphically)

The first two steps are straightforward; we address them now. The third requires more
work, and is contained in Section 5.2.

Proposition 5.5. If C is a preorder, then so is C .

Proof. Let f, g : C (A,B). Recall that N ◦ S = id, and so we can derive f = N (S(f)) =
N (S(g)) = g where we used that S(f) = S(g) because C is a preorder.

Another lemma shows we can reason about W by considering only adapters:

Proposition 5.6. W is generated by Φ, ϕ and their inverses.

Proof. Arrows of W are by definition either adapters Φ, ϕ, their inverses, or morphisms f
for some f ∈ W . But note that all such f ∈ W are either id, ρ, λ, α or their composites. It
is clear that each of λ, ρ, α can each be written as adapters by equations (2.4), so it remains
to show that composites of such morphisms can also be written this way.

That is, we must show that S(f ⊗ g) can be expressed using only adapters and their
composites. This can be proved inductively: if S(f),S(g) can be expressed using adapters,
then so too can compositions S(f #g) = S(f)#S(g) and tensors S(f⊗g) = Φ#(S(f)•S(g))#Φ∗.

Thus every morphism of W can be expressed in terms of adapters, and so the category
can be said to be generated by (only) adapters.

1Mac Lane denotes the generating object as (−) to suggest an “empty place”. We follow Peter Hines’
convention [Hin15] and use W instead.



Vol. 20:4 STRING DIAGRAMS FOR STRICTIFICATION AND COHERENCE 8:15

5.2. Graphical proof that W is a preorder. We can now prove graphically that W is a
preorder using a normal form argument. Our approach is as follows:

(1) Define for each object a size in N (Definition 5.7)
(2) Prove all morphisms in W go between objects of the same size (Proposition 5.8)
(3) Define a canonical arrow can(A,B) between any two objects of the same size (Definition

5.13)
(4) Show that any arrow is equal to the canonical one (Proposition 5.15)

Note that we make heavy use of Proposition 5.6, which lets us reason about W inductively
in terms of adapters and their tensors and composites.

We begin–following Mac Lane–by defining the size of an object (the same as Mac Lane’s
notion of length [ML97, p. 165]) as follows:

Definition 5.7. We define the size of an object as the number of occurrences of W , defined
inductively:

size(IW ) := 0 size(IW ) := 0 size(W ) := 1

size(A⊗B) := size(A) + size(B) size(X • Y ) := size(X) + size(Y )

Proposition 5.8. W morphisms preserve size:
If f : A→ B is a morphism in W , then size(A) = size(B).

Proof. Induction on morphisms.

We will define the canonical arrow can(A,B) in two halves, pack and unpack. To do
so, we will first need some additional definitions.

Definition 5.9. We define the ‘packing’ and ‘unpacking’ morphisms pack and unpack in
terms of objects of W . Let A ∈ W be an object. Then pack(A) is the morphism defined
inductively as follows:

pack(IW ) := pack(IW ) := pack(W ) :=
W

pack(A⊗B) :=
pack(A)

pack(B)
pack(X • Y ) :=

pack(X)

pack(Y)

And define unpack(A) as pack(A)−1.

Remark 5.10. It can be more intuitive to define unpack first, thinking of it as the adapter
which removes extraneous IC objects and ‘normalises’ the object into a flat array of W
objects. In this view, pack is the adapter morphism taking a fixed number of W objects
and assembling them into a certain bracketing, with unit objects inserted as appropriate.

In Definition 5.9 we implicitly used that W is a groupoid to define unpack, which we
now prove:

Proposition 5.11. W is a groupoid.

Proof. Generators and identities have inverses by Definition 2.1, which allows an inductive
definition for tensor and composition, i.e. (f # g)−1 = g−1f−1 and (f • g)−1 = f−1 • g−1
respectively.
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Now, in order to define the canonical arrow as a composition of pack and unpack, we
will need the following lemma which states that for objects of the same size, we can compose
their unpack and pack morphisms.

Proposition 5.12. pack(A) :W
size(A) → A.

In other words, for an object A of size n, the domain of pack(A) is the n-fold •-tensoring
of W .

Proof. Simple induction on objects (the domain of each pack(A) is either IW , W
k
or a

tensoring of terms)

Definition 5.13. To each pair of objects A, B of the same size, we can define a canonical
arrow as follows:

can(A,B) := unpack(A) # pack(B)

Note that the composition of Definition 5.13 is well-typed because size(A) = size(B)

by Proposition 5.8: cod(unpack(A)) =W
size(A)

=W
size(B)

= dom(pack(B))

Example 5.14. The canonical arrow between W ⊗ (IW ⊗ W ) and (W ⊗ IW ) ⊗ W is

. Note that this is equal to the associator αW,IW ,W .

We can now show that every morphism f : A→ B in W is equal to can(A,B).

Proposition 5.15. f = unpack(A) # pack(B) for all f : A→ B in W .

Proof. By induction. On the base case–generators–the proof is straightforward; we give it
for identities and generators ϕ and Φ , with the proofs for inverse generators following

by a symmetric argument.

can(X,X) = unpack(X) # pack(X) = pack(X)−1 # pack(X) = idX

can(IW , IW ) = unpack(IW ) # pack(IW ) = # =

can(A •B,A⊗B) = unpack(A •B) # pack(A⊗B) =
unpack(A)

unpack(B)
=

The composition of canonical morphisms is canonical:

can(X,Y ) # can(Y,Z) = unpack(X) # pack(Y ) # unpack(Y ) # pack(Z)

= unpack(X) # pack(Y ) # pack(Y )−1 # pack(Z)
= unpack(X) # pack(Z)
= can(X,Z)

And so is the tensor product:

can(X1, Y1) • can(X2, Y2) =
unpack(X1)

unpack(X2)

pack(Y1)

pack(Y2)

= unpack(X1 •X2) pack(Y1 • Y2)

= can(X1 •X2, Y1 • Y2)

Proposition 5.16. W is a preorder.
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Proof. By Proposition 5.8 we know that all morphisms f : A→ B have the property that
size(A) = size(B). We then define for any such objects a canonical morphism can(A,B)
in Definition 5.13. This canonical isomorphism is unique by Definition 5.15, and so W is a
preorder.

Since we have now proven that W is a preorder, it is now straightforward to prove
Theorem 5.1. Note that this is essentially the opposite of the approach taken by Mac Lane,
who defines a preorder, and then shows the existence of a unique strict monoidal functor.

Proof. (Proof of Theorem 5.1)
By Proposition 5.4 there is a unique, strict monoidal functor from W to an arbitrary
monoidal category M with W 7→ A for some A ∈ M . Moreover, W is a preorder, and so by
Proposition 5.5, so is W .

A first consequence of the coherence theorem is that N is a strict inverse to S for
morphisms f : A→ B in W .

Proposition 5.17. If f : A→ B then S(N (f)) = f .

Proof. We know that for any A ∈ W that N (A) = A. Thus for f : A→ B we have N (f) :
A→ B and thus S(N (f)) : A→ B. But W is a preorder, so we have S(N (f)) = f .

Proposition 5.17 guarantees that any morphism of this type formed from adapters
genuinely represents a specific morphism in C built from associators and unitors; we can use
this fact in to restate the coherence theorem in terms of adapter morphisms. Mac Lane’s
corollary then follows straightforwardly: the basic idea is to ‘export’ commuting diagrams
from W to an arbitrary monoidal category by interpreting the objects of W as functors,
and arrows as natural transformations. We provide a graphical exposition of this proof in
Section 6.

6. Coherence Corollary

We can now state and prove Mac Lane’s corollary [ML97, p. 169] to the coherence theorem.
Note that whereas this proof of the corollary is just a reformulation of Mac Lane’s argument
in diagrammatic terms, the previous proof of Theorem 5.1 differs significantly.

Let us begin with an informal statement of the theorem. Take a commuting diagram
of W , for instance the triangle axiom below left (6.1):

W ⊗ (IC ⊗W ) (W ⊗ IC )⊗W

W ⊗W

αW,IC ,W

idW ⊗ λW ρW ⊗ idW

(6.1)

A⊗ (IC ⊗B) (A⊗ IC )⊗B

A⊗B

αA,IC ,B

idA ⊗ λB ρA ⊗ idB

(6.2)

The coherence theorem allows one to ‘export’ this diagram to an arbitrary monoidal
category M by replacing each ith occurrence of W in a vertex with some Ai in M . For
instance, let A and B be M objects, then we substitute the first occurrence of W in each
vertex for A, and the second for B, giving us the following commuting diagram in M on the
right (6.2).
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Remark 6.1. The coherence theorem does not say that diagrams in M whose edges
are components of natural transformations all commute; only those which correspond to
diagrams in W . Put another way, if we have parallel M -arrows f, g : A→ B such that f, g
are constructed from associators and unitors, we may not in general conclude that f = g.

Now, it is not immediately obvious how even this informal coherence result follows from
the statement of Theorem 5.1. Although for some fixed object X ∈ M there is a unique,
strict monoidal functor U : W → M , this does not let us obtain every diagram we would
like. In particular, using S in this way we cannot obtain diagrams with multiple variables
such as (6.2)–only those where every W is replaced by X.

To allow for diagrams with multiple variables, Mac Lane constructs the non-strict
monoidal category It(M ).

Definition 6.2 (It(M ), [ML97, p. 169]). Fix an arbitrary monoidal category (M ,⊗, IM , α, λ, ρ).
Then It(M ) is the category with:

(1) Objects: functors M n → M
(2) Arrows: natural transformations

With M n denoting the n-fold product M × n. . .× M

Proposition 6.3. It(M ) is a (non-strict) monoidal category (from [ML97, p. 169])
The monoidal unit is the constant functor ConstI : 1 → M . The monoidal product
□ : It(M )× It(M ) → It(M ) is defined on objects (functors) as:

F□G =
F

G
⊗ MM n+m

and pointwise on arrows η : F1 → G1 and µ : F2 → G2 so that for F1,G1 : M n → M and
F2,G2 : Mm → M the component at A×B ∈ M n × Mm is

(η□µ)A×B =

[
η

µ
F1□F2 G1□G2

]
A×B

=
ηA

µB
F1(A)⊗ F2(B) G1(A)⊗ G2(B)

Associators and unitors are similarly defined pointwise, i.e.:

λFA
=

[
ConstIM

□F
F

]
A

= IM ⊗ F(A)
F(A)

ρFA
= F(A)⊗ IM

F(A)

αF,G,HA,B,C
=

G(B)⊗ H(C)

F(A)⊗ G(B)
F(A)

H(C)

Proof. Associators and unitors are natural since each of their components is natural. That is,
given a natural transformation µ : F → G we know that ρF #µ = (µ□id) #ρG precisely because
components are both sides are always equal, i.e for all A we have ρFA

# µA = (µ□id)A # ρGA
.

A similar argument applies to α and λ. Further, the axioms of monoidal categories are
satisfied for the same reason: each diagram commutes because all its components commute
using the monoidal structure of M .
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This will allow us to regard objects A ∈ W of size n as functors by applying the monoidal
functor U(A) : M n → M as follows:

IM 7→ M
1

CI W 7→ M M A⊗B 7→ U(A)

U(B)
⊗ MM n+m (6.3)

In the above, CI denotes the constant functor ConstI : 1 → M mapping the single
object of 1 to the monoidal unit IM .

Now, U : W → It(M ) preserves diagrams since it is a functor, and so we may picture
the triangle axiom in It(M ) graphically as below.

αW,IW ,W

ρW ⊗ idWidW ⊗ λW

⊗ ⊗ ⊗ ⊗

⊗

CI CI

(6.4)

Note the use of graphical notation is justified by Proposition 6.3. In (6.4), vertices (in blue)
depict functors, and edges depict natural transformations. This transformation of W -objects
to functors formalises the intuition of ‘replacing the ith occurrence of W in a diagram’. That
is, for a given diagram in W with vertices Vi of size n, we now simply make a particular
choice of M n-object for each vertex and apply U(Vi) : M n → M to obtain a ‘multivariable’
diagram in M .

Mac Lane then states the coherence result corollary as follows:

Corollary 6.4 [ML97, p. 169]. Let M be a monoidal category. There is a function
which assigns to each pair of objects A,B ∈ W of size n a (unique) natural isomorphism
canM (A,B) : U(A) → U(B) called the canonical map from U(A) to U(B), in such a way
that the identity arrow ConstIM

→ ConstIM
is canonical (between functors of 0 variables)

the identity transformation id : idM → idM is canonical, α, λ, ρ (and their inverses) are
canonical, and the composite and □-product of canonical maps is canonical.

Proof from [ML97, p. 169]. Let U : W → It(M ) be the unique strict monoidal functor
mapping W to the identity functor id : M → M so that U acts on objects as in (6.3). Then
U acts on morphisms of W as follows:

idIW
7→ id idW 7→ id

λA 7→ λU(A) ρA 7→ ρU(A) αA,B,C 7→ αU(A),U(B),U(C)

f ⊗ g 7→ U(f)□U(g)

And so canM (A,B) = U(f) for each unique f : A→ B.

Finally, note that the canonical morphism canM (A,B) can be defined as canM (A,B) =
(U ◦ N )(can(A,B)) thus we may use the normal form can(A,B) to determine the canonical
natural isomorphism in It(M ).
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7. Conclusions

The body of work on string diagrams in general is broad and growing rapidly. It is
therefore slightly surprising that the fundamental issue of non-strict tensorial composition
has not received more attention. On the one hand, this is reasonable. The assumption of
strictness does not entail a loss of generality, as indeed we have confirmed via an example in
Sec. 2.3. However, non-strict tupling is a basic feature of programming languages, and even
hardware description languages, and modelling it using string diagrams requires the proper
mathematical framework.

This framework, the main contribution of the paper given in Def. 2.1, shows a way to
strictify a possibly non-strict monoidal category. The body of the paper proves that the
definition has all the desired properties and, in the process, we discuss two new proofs for
Mac Lane’s strictness and coherence theorems, respectively. We believe that, as is usually the
case, the string-diagrammatic perspective has pedagogical value, lending concrete intuitions
to what otherwise seems like an abstract symbolic exercise.

7.1. Further work. Lack of support for non-strict tensor limits the range of many appli-
cations of string diagrams. The first immediate question to study the strictification recipe
in the context of applications to programming languages with higher-order functions, such
as high-level circuit synthesis [Ghi07] or automatic differentiation [AGSZ21]. These can
be formulated using hierarchical string diagrams (based on ‘functorial boxes’ [Mel06]) to
represent the structure of monoidal-closed and cartesian-closed categories, see [GZ23] for
an overview. Similar considerations motivate the study of strictification of traced monoidal
categories, which can be used as models of digital circuits [GJL17].

Further, our construction expands the use of datastructures and algorithms currently
limited only to the strict case (e.g., [WZ21, WZ23]). Such datastructures are typically based
on graph or hypergraph representations for performance reasons; applying our construction
allows us to leverage those benefits essentially for free. In cases where such datastructures
and algorithms are proven correct, it may be beneficial to reproduce the proofs in this paper
in a formal theorem prover in order to provide end-to-end verification of applications.

Finally, a formal understanding of non-strict monoidal categories may open the door to
more graphical approaches for theorem proving. Interactive graphical theorem provers using
string diagrams for strict monoidal categories such as homotopy.io represent a refreshingly
new approach to the design of proof assistants. Since models of, for example, intuitionistic
logic are non-strict, the novel string diagrams in this paper could be used perhaps to develop
similar graphical proof assistant for more conventional logics.
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[Mel06] Paul-André Melliès. Functorial boxes in string diagrams. In Zoltán Ésik, editor, Computer Science
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Appendix A. Sequential Normal Form

The following proposition is well-known (see for example [Laf03]) and straightforward to
prove, but we provide a proof anyway for completeness.

Proposition A.1. let C be a monoidal category presented by generators Σ and some
equations. Then any (finite) term t representing a morphism of C can be factored into
‘slices’:

(id⊗ ϵ1 ⊗ id) # (id⊗ ϵ2 ⊗ id) # . . . # (id⊗ ϵn ⊗ id)

where each ϵi is a generator.

This factorization can be diagrammed as follows:

#ϵ1 ϵ2 . . . ϵn# #
X1

A1

Y1

X1

B1

Y1

X2

A2

Y2

X2

B2

Y2

Xn

An

Yn

Xn

Bn

Yn
Note that in general Xi ̸= Xi+1 and so on- i.e., the generators need not be “aligned” in

this factorization. For example, we can have morphisms like the following:

Example A.2.

ϵ1

ϵ2

Proof. We proceed by induction on terms. Let S0 denote the set of terms consisting of
identities and generators, Then let

Sn = S0 ∪ {t # u|t, u ∈ Sn−1} ∪ {t⊗ u|t, u ∈ Sn−1}
It is clear that terms in S0 are already in sequential normal form, so it remains to prove

the inductive case, beginning with composition. Let v be a term in Sn+1. Now by inductive
hypothesis, any term in w ∈ Sn has an equivalent term in sequential normal form, which
we’ll denote ŵ. Now there are three cases:
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(1) If v ∈ Sn, then we have v̂ by inductive hypothesis.
(2) If v = t # u, then t̂ and û exist by inductive hypothesis, and we can form v̂ = t̂ # û.
(3) If v = t⊗ u, then v̂ = (t̂⊗ id) # (id⊗ û)

and the proof is complete.

Appendix B. N is well-defined

In this appendix we verify that N is well-defined. This amounts to two things: first that N
is well-defined with respect to the interchange law, and second that it respects the equations
of Definition 2.1.

In the former case, sequential normal forms are only unique up to interchange, so it
must be verified that N preserves this property. This is a straightforward if tedious exercise,
which can be done by verifying each of the cases in Definition 3.5. Essentially, the only
axioms required are naturality and equations [EGNO15, 2.12, 2.13].

Finally, we need to verify the equations of 2.1. Specifically, for each of the monoidal,
adapter, and associator/unitor equations lhs = rhs, we show that N (lhs) = N (rhs). We
give derivations for these below. Using these derivations one can also tediously check that
the equations hold for cases id • lhs • id = id • rhs • id, and so N is equal under any rewrite
involving those equations; the only cases of interest are for associator and unitor equations,
which require the use of the pentagon and triangle axioms, respectively.

We begin with the functor equations (2.2)

N (idA) = idA = N (idA) N (f # g) = N (f) # N (g) = f # g = N (f # g)

Now the adapter equations (2.3):

N (Φ # (f • g) # Φ∗) = N (Φ) # N (f • g) # N (Φ∗)

= N (f • g)
= N (f • id) # N (id • g)
= (f ⊗ id) # (id⊗ g)

= f ⊗ g

= N (f ⊗ g)

N (ϕ # ϕ∗) = N (ϕ) # N (ϕ∗)

= idIC
# idIC

= idIC

= N (idIC
)

N (Φ∗ # f ⊗ g # Φ∗) = N (Φ∗) # N (f ⊗ g) # N (Φ)

= N (f ⊗ g)

= f ⊗ g

= (f ⊗ id) # (id⊗ g)

= N (f • id) # N (id • g)
= N ((f • id) # (id • g))
= N (f • g)

N (ϕ∗ # ϕ) = N (ϕ∗) # N (ϕ)

= idIC
# idIC

= idIC

= N (idIC
)

= N (idIC
)

Finally the associator/unitor equations (2.4):
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N (Φ∗ # (id • Φ∗) # (Φ • id) # Φ)
= N (Φ∗) # N (id • Φ∗) # N (Φ • id) # N (Φ)

= id # id # α # id
= α

= N (α)

N (Φ∗ # (Φ∗ • id) # (id • Φ) # Φ)
= N (Φ∗) # N (Φ∗ • id) # N (id • Φ) # N (Φ)

= id # α−1 # id # id

= α−1

= N (α−1)

N (Φ∗ # (ϕ∗ • id)) = N (Φ∗) # N (ϕ∗ • id)
= id # λ
= λ

= N (λ)

N ((ϕ • id) # Φ) = N (ϕ • id) # N (Φ)

= λ−1 # id

= λ−1

= N (λ−1)

N (Φ∗ # (id • ϕ∗)) = N (Φ∗) # N (id • ϕ∗)
= id # ρ
= ρ

= N (ρ)

N ((id # ϕ) # Φ) = N (id # ϕ) # N (Φ)

= ρ−1 # id

= ρ−1

= N (ρ−1)

Thus N is well-defined with respect to the monoidal equations.
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license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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