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ABSTRACT. A characteristic sample for a language L and a learning algorithm L is a finite
sample of words 77, labeled by their membership in L such that for any sample T' O T7,
consistent with L, on input 7' the learning algorithm L returns a hypothesis equivalent to
L. Which omega automata have characteristic sets of polynomial size, and can these sets
be constructed in polynomial time? We address these questions here.

In brief, non-deterministic omega automata of any of the common types, in particular
Biichi, do not have characteristic samples of polynomial size. For deterministic omega
automata that are isomorphic to their right congruence automata, the fully informative
languages, polynomial time algorithms for constructing characteristic samples and learning
from them are given.

The algorithms for constructing characteristic sets in polynomial time for the different
omega automata (of types Biichi, coBiichi, parity, Rabin, Street, or Muller), require
deterministic polynomial time algorithms for (1) equivalence of the respective omega
automata, and (2) testing membership of the language of the automaton in the informative
classes, which we provide.
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1. INTRODUCTION

With the growing success of machine learning in efficiently solving a wide spectrum of
problems, we are witnessing an increased use of machine learning techniques in formal
methods for system design. One thread in recent literature uses general purpose machine
learning techniques for obtaining more efficient verification/synthesis algorithms. Another
thread, following the automata theoretic approach to verification [Var95, KVWO00] works
on developing grammatical inference algorithms for verification and synthesis purposes.
Grammatical inference (aka automata learning) refers to the problem of automatically
inferring from examples a finite representation (e.g. an automaton, a grammar, or a formula)
for an unknown language [dIH10]. The term model learning [Vaal7] was coined for the task of
learning an automaton model for an unknown system. A large body of works has developed
learning techniques for different automata types (e.g. visibly-pushdown automata [KMV06],
I/O automata [AV10], register automata [HSJC12], symbolic automata [DD17], program
automata [MS18], probabilistic grammars [NFZ21], lattice automata [FS22]) and has shown
its usability in a diverse range of tasks.'

In grammatical inference, the learning algorithm does not learn a language, but rather
a finite representation of it. The complexity of learning algorithms may vary greatly by
switching representations. For instance, if one wishes to learn regular languages, she may
consider representations using deterministic finite automata (DFAs), non-deterministic finite
automata (NFAs), regular expressions, linear grammars, etc. Since the translation results
between two such formalisms are not necessarily polynomial, a polynomial learnability
result for one representation does not necessarily imply a polynomial learnability result for
another representation. Let C be a class of representations C with a size measure size(C)
(e.g. for DFAs the size measure can be the number of states in the minimal DFA). We
extend size(+) to the languages recognized by representations in C by defining size(L) to
be the minimum of size(C) over all C representing L. In this paper we restrict attention to
automata representations, namely, acceptors.

There are various learning paradigms considered in the grammatical inference literature,
roughly classified into passive and active. We mention here the two central ones. In passive
learning the model of learning from finite data refers to the following problem: given a finite
sample 7' C ¥* x {0, 1} of labeled words, a learning algorithm L should return an acceptor
C that agrees with the sample T'. That is, for every (w,l) € T the following holds: w € [C]
iff { =1 (where [C] is the language accepted by C). The class C is identifiable in the limit
using polynomial time and data if and only if there exists a polynomial time algorithm L
that takes as input a labeled sample T and outputs an acceptor C € C that is consistent
with T, and L also satisfies the following condition. If L is any language recognized by
an automaton from class C, then there exists a labeled sample T}, consistent with L of
length bounded by a polynomial in size(L), and for any labeled sample T' consistent with
L such that T, C T, on input T' the algorithm L produces an acceptor C that recognizes
L. In this case, T, is termed a characteristic sample for the algorithm L. The definition
of identifiability in the limit using polynomial time and data relates to learning paradigms
considering a teacher-learner pair [GM96]. While identification in the limit using polynomial

IE.g. | tasks such as black-box checking [PVY99], specification mining [ABL02], assume-guarantee
reasoning [CGPO03], regular model checking [HV05], learning verification fixed-points [VSVAO05], learning
interfaces [NAO6], analyzing botnet protocols [CBSS10] or smart card readers [CPPdR14], finding security
bugs [CPPdR14], error localization [CCK™"15], and code refactoring [MNRS04, SHV16].
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time and data does not require that the characteristic set can be computed in polynomial
time, if one is interested in devising a teacher that can train a learner, having a teacher
that can compute a characteristic set in polynomial time is also desired. The definition of
efficiently teachable adds this requirement. In Section 3 we define several notions related to
efficient teachability and learnability, the stronger one is efficiently teachable. The question
which representations of regular w-languages are efficiently teachable is the focus of this
paper.

In active learning the model of query learning [Ang87] assumes the learner communicates
with an oracle that can answer certain types of queries about the language. The most
common types of queries are membership queries (is w € L where L is the unknown language)
and equivalence queries (is [A] = L where A is the current hypothesis for an acceptor
recognizing L). Equivalence queries are typically assumed to return a counterexample, i.e. a
word in [JA]\ L or in L\ [A].

With regard to w-automata (automata on infinite words) most of the works consider
query learning using membership queries and equivalence quertes. The representations
learned so far include: (L)g [FCCT08], a non-polynomial reduction to finite words; families
of DFAs (FDFA) [AF14, AF16, ABF16, LCZL21]; strongly unambiguous Biichi automata
(SUBA) [AAF20]; mod-2-multiplicity automata (M2MA) [AAFG22]; and deterministic weak
parity automata (DWPA) [MP95]. Among these only the latter two are known to be
learnable in polynomial time using membership queries and proper equivalence queries.? We
show in Section 4.3 that the classes M2MA, SUBA and DWPA are efficiently teachable.

One of the main obstacles in obtaining a polynomial learning algorithm for regular
w-languages is that they do not in general have a Myhill-Nerode characterization; that is,
there is no theorem correlating the states of a minimal automaton of some of the common
automata types (Biichi, parity, Muller, etc.) to the equivalence classes of the right congruence
of the language. The right congruence relation for an w-language L relates two finite words
x and y iff there is no infinite suffix z differentiating them, that is x ~ y (for z,y € ¥¥)
iff V2 € ¥¥. 2z € L <= yz € L. The quest for finding a polynomial query learning
algorithm for a subclass of the regular w-languages, led to studying subclasses of languages
for which such a relation holds. These languages are termed fully informative [AF18]. We use
IBA, ICA, IIPA, TRA, ISA, IMA to denote the classes of languages that are fully informative
of type Biichi, coBiichi, parity, Rabin, Streett and Muller, respectively. A language L is said
to be fully informative of type X for X € {B,C,P, R, S, M} if there exists a deterministic
automaton of type X that recognizes L and is isomorphic to the automaton derived from
~. While many properties of these classes are now known, in particular that they span the
entire hierarchy of regular w-languages [Wag75|, a polynomial learning algorithm for them
is not known.

We show (in Sections 5-9) that the classes IBA, ICA, IPA, IRA, ISA, IMA can be identified
in the limit using polynomial time and data. We further show (in Section 10) that there
is a polynomial time algorithm to compute a characteristic sample given an acceptor
C € IXA. To show that these classes are also efficiently teachable we need polynomial time
algorithms for inclusion and equivalence of automata of these types, that also return shortlex
counterexamples in case of inequivalence.® Such an algorithm is known to exist for the
classes NBA, NCA, NPA, since these classes have inclusion algorithms in NL [Sch10]. For

2Query learning with an additional type of query, loop-index queries, was studied for deterministic Biichi
automata [MO20].
3The formal definition of shortlex is deferred to Section 2.
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the other classes a polynomial-time algorithm can be obtained following a reduction to
model checking a certain fragment of CTL* formulas [CDK93]. However this reduction does
not yield shortlex counterexamples. We provide such algorithms in Sections 11-14.

The last part of this paper (Sections 15-16) is devoted to the question of deciding
whether a given automaton A of type X is isomorphic to its right congruence, or if this is not
the case whether there exists an automaton A’ of the same type that recognizes the same
language and is isomorphic to its right congruence, namely whether the given automaton
recognizes a language in the class IXA. Using this result we can show that a teacher can
construct a characteristic sample not only given an acceptor which is isomorphic to the right
congruence of the language, but also given an acceptor which is not, but is equivalent to
such an acceptor. We conclude in Section 17 with a short discussion.

2. PRELIMINARIES

Automata. An automaton is a tuple M = (3,Q,q,,d) consisting of a finite alphabet
Y of symbols, a finite set () of states, an initial state ¢, € @, and a transition function
§:Q x Y — 29 We extend 0 to domain Q x X* in the usual way: 6(q,e) = ¢ and 6(q, 0x) =
Uges(q,0)0(q', ) for all g € Q and o € 3.

We define the size of an automaton to be |X| - |Q|. A state ¢ € Q is reachable iff there
exists z € ¥* such that ¢ € §(q,, z). For g € Q, M? is the automaton M with its initial state
replaced by gq. We say that A is deterministic if |0(q,0)| < 1 and complete if |6(q,0)| > 1,
for every ¢ € Q and o € X. For deterministic automata we abbreviate d(¢q,0) = {¢'} as
d(q,0) = ¢. Two automata M and M’ with the same alphabet ¥ are isomorphic if there
exists a bijection f from the states @ of M to the states Q' of M’ such that f(g,) = ¢ and
for every g € Q and o € X, {f(r) | r € §(¢q,0)} =6 (f(q),0).

We assume a fixed total ordering on ¥, which induces the shortlex total ordering on
*, defined as follows. For x,y € ¥*, x precedes y in the shortlex ordering if |z| < |y| or

|x| = |y| and x precedes y in the lexicographic ordering induced by the ordering on X.

A run of an automaton on a finite word v = ajas . . . a, is a sequence of states qg, g1, . . ., gn
such that gy = q,, and for each i > 1, ¢; € 6(gi—1,a;). A run on an infinite word is defined
similarly and consists of an infinite sequence of states. For an infinite run p = qo, q1, ..., we

define the set of states visited infinitely often, denoted infaq(p), as the set of ¢ € @ such that
q = ¢; for infinitely many indices ¢ € N. This is abbreviated to inf(p) if M is understood.

The product of two automata. Let M and M5 be two deterministic complete automata
with the same alphabet X, where for ¢ = 1,2, M; = (X,Qi,(q.)i, ;). Their product
automaton, denoted M; X Ma, is the deterministic complete automaton M = (X, @, q,,0)
such that Q = Q1 X Q2 is the set of ordered pairs of states of M7 and Ms; the initial state
¢, = ((q.)1, (¢.)2) is the pair of initial states of the two automata; and for all (¢1,q2) € Q
and o € 3, §((q1,42),0) = (01(q1,0),92(q2,0)). For i = 1,2, let m; be projection onto the
i-th coordinate, so that for a subset S of @, m1(S) = {q1 € Q1 | g2 € Q2. (q1,42) € S}, and
analogously for .
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Acceptors. By augmenting an automaton M = (X, @, q,, ) with an acceptance condition
«, obtaining a tuple A = (X, Q, q,, J, @), we get an acceptor, a machine that accepts some
words and rejects others. We may also denote A by (M, «). An acceptor accepts a word if
at least one of the runs on that word is accepting. If the automaton is not complete, a given
word w may not have any run in the automaton, in which case w is rejected.

For finite words the acceptance condition is a set F' C () and a run on a word v is
accepting if it ends in an accepting state, i.e., if §(g,,v) contains an element of F. For
infinite words, there are various acceptance conditions in the literature, and we consider six
of them: Biichi, coBiichi, parity, Rabin, Streett and Muller, all based on the set of states
visited infinitely often in a given run. For each model we define the related quantity of the
size of the acceptor, taking into account the acceptance condition.

A Biichi or coBiichi acceptance condition is a set of states F' C (). A run p of a Biichi
acceptor is accepting if it visits F' infinitely often, that is, inf([p) N F' # 0. A run p of a
coBiichi acceptor is accepting if it visits F' only finitely many times, that is, inf(p) N F' = ().
The size of a Biichi or coBiichi acceptor is the size of its automaton.

A parity acceptance condition is a map x : Q — N assigning to each state a natural
number termed a color (or priority). A run of a parity acceptor is accepting if the minimum
color visited infinitely often is odd. The size of a parity acceptor is the size of its automaton.

A Rabin or Streett acceptance condition consists of a finite set of pairs of sets of states
a={(Gy,B1),...,(Gk,By)} for some k € Nand G; C Q and B; C Q for i € [1..k]. A run
of a Rabin acceptor is accepting if there exists an ¢ € [1..k] such that G; is visited infinitely
often and B; is visited finitely often. A run of a Streett acceptor is accepting if for all
i € [1..k], G; is visited finitely often or B; is visited infinitely often. The size of a Rabin or
Streett acceptor is the sum of the size of its automaton and k& — 1.

A Muller acceptance condition is a set of sets of states a« = {F}, Fy, ..., F}} for some
ke Nand F; C Q for i € [1..k]. A run of a Muller acceptor is accepting if the set S of states
visited infinitely often in the run is a member of .. The size of a Muller acceptor is the sum
of the size of its automaton and k£ — 1.

The set of words accepted by an acceptor A is denoted by [A]. L1 @ Lo is the symmetric
difference of sets Ly and Lo: (L1 \ L2) U (L2 \ L1). Two acceptors A and B are equivalent if
they accept the same language, that is, [.A] = [B]. For a state g, the acceptor A7 is the
acceptor A with its automaton initial state replaced by q. We say that the w-word w is
accepted from state q iff w € [A9].

We use three-letter acronyms for automata and classes concerning the common w-
automata discussed above. The first letter is in {N, D, I} and stands for non-deterministic,
deterministic and isomorphic (or fully informative) which will be explained in the sequel. The
second letter describes the acceptance condition, and the third letter A stands for acceptor.
That is, we use NBA, NCA, NPA, NRA, NSA, NMA (resp., DBA, DCA, DPA, DRA, DSA,
DMA) for non-deterministic (resp., deterministic) Biichi, coBiichi, parity, Rabin, Street
and Muller acceptors. We use blackboard font for the respective classes of representations.
That is, we use NBA, NCA, NPA, NMA, NRA and NSA (resp., DBA, DCA, DPA, DRA,
DSA and DMA) for the corresponding class of representations. It is known that NCA
and DCA recognize the same languages and that the classes DCA and DBA are distinct
proper subclasses of the regular w-languages. The other classes are the full class of regular
w-languages.
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Some relationships between the models. We observe the following known relation-
ships [GTWO02, Chapter 1].

Claim 2.1. Let A be an acceptor of one of the types NBA, NCA, NPA, NRA, NSA, or
NMA with n states over the alphabet X. There is an equivalent complete acceptor A’ of
the same type whose size is at most |X| larger. A’ may be taken to be deterministic if A is
deterministic.

Claim 2.2. (1) Let B = (%,Q,q,,0, F), where B is an NBA. Define the NPA P = (¥, Q, q,,
J, k) where k(q) = 1if ¢ € F and k(q) = 2 otherwise. Then B and P are equivalent and
have the same size. P is deterministic if B is.

(2) Let B=(3,Q,q,,0, F), where B is an NBA. Define the NRA R = (3, Q, q,, 0, {(F,0)}).
Then B and R are equivalent and have the same size. R is deterministic if B is.

(3) Let C = (X2,Q,q,,0, F), where C is an NCA. Define the NSA § = (X, Q, q,, 9, {(F,0)}).
Then S and C are equivalent and have the same size. S is deterministic if C is.

(4) Let B=C = (3,Q,q,,0,F), where B is a complete DBA and C is a complete DCA.
Then B and C are the same size and the languages they recognize are complements of
each other, that is, [B] = ¢ \ [C].

(5) Let R=8 = (%,Q,q,0,{(G1, B1),...,(Gg, Br)}), where R is a complete DRA and S
is a complete DSA. Then R and S have the same size and the languages they recognize
are complements of each other, that is, [R] = £“ \ [S].

Right congruence. An equivalence relation ~ on X* is a right congruence if x ~ y implies
xo ~ yo for all z,y € ¥* and ¢ € X. The indexr of ~, denoted |~| is the number of
equivalence classes of ~. For a word x € ¥* the notation [z]. denotes the equivalence class
of ~ that contains x.

With a right congruence ~ of finite index one can naturally associate a complete
deterministic automaton M., = (3,Q, q,, ) as follows: the set of states ) consists of the
equivalence classes of ~. The initial state ¢, is the equivalence class [¢].. The transition
function ¢ is defined by d([u]~, o) = [uo]~ for all o € ¥. Also, given a complete deterministic
automaton M = (X, @, q,,0), we can naturally associate with it a right congruence as follows:
x ~p y iff M reaches the same state of M when reading x or y, that is, §(q,, z) = §(q.,y).

Given a language L C X* its canonical right congruence ~, is defined as follows: x ~r y
iff Vz € ¥*. xz € L <= yz € L. The Myhill-Nerode theorem states that a language L C ¥*
is regular iff ~ is of finite index. Moreover, if L is accepted by a complete DFA A, then
~pm refines ~p, where M is the automaton of A. Finally, any complete DFA of minimum
size that accepts L has an automaton that is isomorphic to M., .

For an w-language L C X%, its canonical right congruence ~jp, is defined similarly, by
quantifying over w-words. That is, ¢ ~p y if Vz€X¥. 2z€ L < yze L. If Lisa
regular w-language then ~ is of finite index, and for any complete DBA (resp., DCA, DPA,
DRA, DSA, DMA) A that accepts L, ~xq refines ~, where M is the automaton of the
acceptor.

However, for regular w-languages, the relation ~p does not suffice to obtain a “Myhill-
Nerode” characterization. In particular, for a regular w-language L there may be no way
to define an acceptance condition for M., that yields a DBA (resp., DCA, DPA, DRA,
DSA, DMA) that accepts L. As an example consider the language L = (a + b)*(bba)®. Then
~p, consists of just one equivalence class, because for any z € ¥* and w € 3“ we have that
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Table 1. Summary of the definitions for teachability and learnability

| Samples Learner Teacher [[ Definition

arb arb arb characteristic samples

poly arb arb concise characteristic samples

arb poly arb efficiently learnable

arb arb poly efficiently teachable (samples will be poly)

poly poly arb identifiable in the limit using polynomial time and data
arb poly poly efficiently teachable/learnable (samples will be poly)

zw € L iff w has (bba)“ as a suffix. But a DBA (resp., DCA, DPA, DRA, DSA, DMA) that
accepts L clearly needs more than a single state.

The fully informative classes. In light of the lack of a Myhill-Nerode result for regular
w-languages, we define a restricted type of deterministic Biichi (resp., coBiichi, parity,
Rabin, Streett, Muller) acceptors. Following the three-letter acronym notation introduced
in the Acceptors subsection, for X € {B,C, P, R, S, M} we say that a DXA A recognizing a
language L is fully informative if it is complete and its automaton is isomorphic to M.,
(the automaton that corresponds to the canonical right congruence ~j, for the language, as
defined above). A DXA is an IXA if it is fully informative. A DXA B is in IXA if there
exists an IXA A such that [B] = [.A]. We note that every state of an IXA is reachable
because every state of M., is reachable. Since every state of a minimal automaton for a
language L in IXA for X € {B,C,P,R,S, M} corresponds to an equivalence class of ~, we
refer to the IXA classes as the fully informative classes.

Despite the fact that each of these classes is a proper subset of its corresponding
deterministic class (e.g., IBA is a proper subset of DBA), these classes are more expressive
than one might first conjecture. It was shown in [AF18] that in every class of the infinite
Wagner hierarchy [Wag75] there are languages in IMA and IPA. Moreover, in a small
experiment reported in [AF18], among randomly generated Muller automata, the vast
majority turned out to be in IMA.

3. NOTIONS OF LEARNABILITY AND TEACHABILITY

In this section we define and compare general notions of learnability and teachability, and
some computable and polynomial time variants of them. A summary of the definitions is
provided in Table 1.

3.1. Teachers, learners, and characteristic samples. We are concerned with examples
and concepts that can be represented by finite binary strings as follows. X = {0,1}* is the
domain of representations of examples. (In the next section we describe how we use finite
strings as representations of w-words.) A concept is any subset of X. A class of concepts C
consists of the set {0, 1}* of representations of concepts, together with a mapping [ - ] from
{0,1}* to concepts such that [C] is the subset of X that C represents. Thus every finite
binary string represents an example and also a concept. The length of the representation of



Vol. 20:4 CONSTRUCTING CONCISE CHARACTERISTIC SAMPLES FOR OMEGA ACCEPTORS 10:9

an example x or concept C is its length as a string, that is, |z| or |C|. The size of a concept
C, denoted size(C), is the minimum |C’| of any representation C’ such that [C'] = [C].*

A sample S is a finite set of elements (z,b) where z € X and b € {0,1}. The length of
S is the sum of the lengths of the examples x that appear in it. A sample S is consistent
with a concept C iff for every (z,b) € S we have b =1 iff z € [C].

A learner for C is a function L that maps a sample T to the representation of a concept
L(T) in C with the property that if T is consistent with at least one element of C, then
L(T) and T are consistent. A teacher for C is a function T that maps the representation of
a concept C in C to a sample T(C) such that T(C) and C are consistent. Note that learners
and teachers need not be computable.

A sample T is a characteristic sample for C and a learner L if T is consistent with C
and for every sample 7" O T consistent with C we have [L(7”)] = [C]. The intuition is that
additional information consistent with C beyond 1" will not cause the learner to change its
mind about the correct concept.

A class C has characteristic samples for a learner L if there exists a teacher T such
that for every C in C, T(C) is a characteristic sample for C and L. A class C has charac-
teristic samples if it has characteristic samples for some learner. A well known property of
characteristic samples is the following.

Lemma 3.1 (Key Property of Characteristic Samples). Assume C is a class of concepts, T
1 a teacher, and L is a learner such that T gives a characteristic sample for C and L for
every C in C. If C; and C; are any concepts from C such that [C;] # [C;] then there exists
some (x,b) € T(C;) UT(C;) such that x € [C;] & [C)].

Proof. Assume to the contrary. Let T' = T(C;) UT(C;) and consider L with input 7". Because
the characteristic sample for C; is contained in 1" and 7' is consistent with C;, L must output
a concept denoting [C;]. The same is true of C;, but because [C;] # [C;] it is impossible for
L to output a concept whose denotation is equal to both of them. []

3.2. Computable teachers and learners. To discuss computability of teaching and
learning, we consider the following three possible properties of a class of concepts.

(C1) There is an algorithm to decide membership of z in [C], given example representation
x and concept representation C.

(C2) There is an algorithm to decide whether there exists a concept representation C
consistent with T, given a sample T

(C3) There is an algorithm to decide whether [C;] = [C;], given two concept representations
C; and C;.
The assumptions (C1) and (C2) are sufficient to guarantee the existence of characteristic

samples for C with a computable learner and a possibly non-computable teacher. The learner

uses the algorithm of identification by enumeration [Gol67].

Theorem 3.2 (Identification by Enumeration). Under the assumptions (C1) and (C2),
there is a computable learner L such that class C has characteristic samples for L.

4The notions of size defined for acceptors in Section 2 polynomially relate to the notion of size defined
here.
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Proof. The learner L enumerates the finite binary strings representing concepts in shortlex
order as C1,Co, . ... Given a sample T, the learner first uses (C2) to check whether there is
any concept in C consistent with 7'. If not, it outputs an arbitrary concept. Otherwise, the
output of L is C, for the least n such that C, is consistent with 7. This is possible because
by (C1), whether C is consistent with 7" is decidable.

The teacher T with input C finds the least n such that [C,] = [C], and for each m < n
determines an example x,, that distinguishes [C,,] from [C,]. The sample output by T
consists of all x,, with m < n, labeled to be consistent with C. ]

We cannot necessarily take the teacher T in this construction to be computable; in
particular, it must test the equivalence of two concepts. In fact, Fisman et al. [FFZ23] show
that there exists a class C that satisfies assumptions (C1) and (C2) and has characteristic
samples such that there is no computable function T to construct a characteristic sample
for every language in the class.?

However, under the further assumption (C3) that equivalence of concepts is computable,
the teacher T in the proof may be made computable, since if two concepts C; and C; are
determined to be inequivalent, it is safe to do an unbounded search for an example that
distinguishes them. Thus we have the following.

Corollary 3.3. Under the assumptions (C1), (C2) and (C3), there is are a computable
teacher T and a computable learner L such that T computes characteristic samples for C
and L.

For a concept C, the cardinality of the characteristic sample constructed for C in the
proof of Theorem 3.2 may be as large as the number of distinct concepts preceding it in
the enumeration Cy,Co, ..., which can be exponential in |C|. Barzdin and Freivalds [BF72]
proved that the majority vote algorithm could be used in a prediction setting to bound the
number of mistakes of prediction linearly in the size of the target concept, which implies a
corresponding bound for characteristic samples. (See also the surveys [FBP91] and [ZZ08].)
For completeness, we describe their construction in the context of characteristic samples.

First we prove a lemma on using the majority vote algorithm with a finite set of concepts
to construct a sample. If D is a finite nonempty set of concepts, we define the majority vote
concept of D, denoted Cpqi(ID), to consist of all x € & such that the cardinality of the set of
concepts in D containing x is at least as large as the cardinality of the set of concepts in D
not containing x. The concept Cp,q;(ID) may or may not belong to D or C. Given a finite
nonempty set of concepts D and another concept C, we define a sample, denoted sample(ID,C)
by executing the halving algorithm with ID as the concept set and C as the target concept.
In detail, initialize Dy =D, ¢ = 0 and Sy = (. While D; is nonempty, compare Cy,q;(ID;) and
C. If these are the same concept, then S; is output as the value of sample(D,C). Otherwise,
let = be the least element of X on which they differ, and add the pair (z,b) to S; to get
Si+1, where b =1 if z is in [C] and b = 0 otherwise. ID;;1 is set to those concepts in I; that
are consistent with (z,b), 7 is set to ¢ + 1, and the while loop continues. If I; is empty, then
S; is the value of sample(D,C).

Lemma 3.4. If D is a finite nonempty set of concepts and C any concept, sample(D,C) has
at most 1 + log,(|D|) elements. For any concept C' in D, we have that C and C' are both
consistent with sample(D,C) U sample(D,C") iff [C] = [C'].

5The characteristic samples for the class are of cardinality 2, but have no computable bound on their
length.
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Proof. Because each D; 11 contains at most half as many concepts as D;, termination must
occur with ¢ < log,(|D|), and therefore |sample(D,C)| < 1 + logy(|D)|).

If [C] = [C'], the same sample will be returned for each concept, and they will both
be consistent with that sample. Conversely, if both are consistent with the union of their
final samples, the sets ID; and S; will be the same for each 7. Because C’ is in D, termination
cannot occur because D; becomes empty. Thus, termination must occur because both are
equal to Cpqj(D;) for some ¢, which means that they are the same concept. L]

Note in particular that if C is not equivalent to any concept in D, then for all C’ in D the
fact that [C] # [C'] will be witnessed by some example (z,b) in sample(D,C) U sample(D,C’).

Theorem 3.5. Let C be a concept class. There exist a teacher T and a learner L such that

for every concept representation C in C, T(C) is a characteristic sample for C and L, and
the cardinality of T(C) is bounded by O(|C|).

Proof. The approach is to use the method of Lemma 3.4 on successive finite blocks of
concepts of double exponential cardinality. Let By contain concepts C1; and Co. For i > 0,
let B; contain those concepts Ci such that 2270 < | < 2%,

Then the teacher T on input C finds the least ¢ such that for some k with C; in B;,
[C] = [Ck]. The sample output for C is the union of sample(B;,C) for j =0,1,...,1.

The cardinality of the sample output is at most the sum of the cardinalities of the
samples sample(B;,C). We have |Byg| = 2 and for ¢ > 0

IB;| =22 — 2% < 2%,

For all j, the sample sample(B;,C) thus has at most 1 + logy(B;) = 1 + 27 elements. The
sum of these bounds through ¢ is

A+29+ @ +2H +. .+ (1 +2) =i+20H! (3.1)

The least ¢ such that B; contains Cj is at most logylogy(k) for £ > 1. So for k£ > 1 by
instantiating ¢ with log, log, (k) in Equation (3.1) we get that the cardinality of T(C) is at
most 2log, (k) + loglog(k). In the shortlex ordering of finite binary strings, the string C
has length at least log, k, so the cardinality of T(C) is bounded by O(|C|).

The learner L on input T finds the least C, if any, such that C is consistent with 7" and
the sample T(C) is a subset of T'. If such a C is found, it is output. Otherwise, if there is
some concept C in C consistent with T', L outputs the least such, and otherwise outputs an
arbitrary element of C.

To see that T(C) is a characteristic sample for C and L, suppose T' contains T(C) and
is consistent with C. Then L outputs C unless there is some earlier concept C’ that occurs
in an example string of 7" and is consistent with 7" and is such that T(C’) is contained in
T. Consider the computation of the sample for C, and the block B; that contains the least
concept equivalent to C’. Because C and C’ are consistent with T(C), they are both consistent
with sample(B;,C) and because they are consistent with T(C’), they are consistent with
sample(B;,C’), so by Lemma 3.4 applied to the block B, they denote the same concept. []

We turn to the question of the computability of the teacher and the learner.

Corollary 3.6. Let C be a concept class satisfying (C1), (C2) and (C3). There exist a
computable teacher T and a computable learner L such that for every concept representation
C in C, T(C) is a characteristic sample for C and L, and the cardinality of T(C) is bounded
by O([C]).
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Proof. To allow the construction of sample(B;,C) to be computable, using (C3), the teacher
may test the equivalence of pairs of concepts in B;, and pairs consisting of a concept from
B; and C, and for each inequivalent pair, may search for the least example x on which they
disagree. Then the same computation as in Lemma 3.4 is done, using just these finitely
many disagreement strings as the domain.

On input C, to allow the learner to limit its search to a finite set of candidates, the
teacher also adds to the sample some example (z,b), where |x| > |C| and b =1 iff z is in
[C].% On input T, the learner searches among C such that |C| is bounded by the length of
the longest string in 7" to find the least C consistent with 7" such that T(C) is a subset of T
If none is found, then (C2) allows the learner to output some concept consistent with 7', if
there is one. []

3.3. Polynomial time learners and teachers. Moving from this general setting, we
consider polynomial bounds on the length of characteristic samples and the running times
of the teacher and learner. We consider the following possible properties of C.

(P1) Polynomial time example membership. There is a polynomial time algorithm to decide
whether x € [C] given z and C.

(P2) Polynomial time default hypothesis construction. There is a polynomial time algorithm
that returns Cp in C consistent with a given sample T', or determines that no concept in
C is consistent with 7.

(P3) Polynomial time equivalence with least counterezamples. There is a polynomial time
algorithm that determines whether [C;] = [C;] given concept representations C; and C;.
In the case the concepts are not equal, the algorithm also returns the shortlex least
string = € [C;] @ [C;]-
A class C is concisely distinguishable if there exists a polynomial p(n) such that for

every pair C; and C; such that [C;] # [C;], there exists a string « € [C;] ® [C;] such that

|z| < p(size(Cy) + size(Ca)).

Concise characteristic samples. A class C has concise characteristic samples if there
exist a polynomial p(n), a teacher T, and a learner L such that for every C € C, T(C) is
a characteristic sample for C and L, and |T(C)| < p(size(C)). Recall that the length of a
sample is the sum of length of the strings in it. In Corollary 3.6 we considered just the
cardinality of T(C) and not the length of the words in the sample, but in |T(C)| the length
of the words in the sample matters. Note also that the polynomial bound is in terms of the
size of the smallest representation of [C]. If C has concise characteristic samples then C is
concisely distinguishable, by Lemma 3.1. In the converse direction, we have the following
consequence of Corollary 3.6.

Corollary 3.7. Assume the class C satisfies (C1), (C2) and (C3) and is concisely distin-
guishable. Then it has concise characteristic samples for a computable teacher T and a
computable learner L.

Proof. Because C is concisely distinguishable, two concepts C; and C; can be tested for
equivalence by checking agreement on all strings of length at most a fixed polynomial in
size(C;) + size(C;). If they are inequivalent, this process will yield a distinguishing example

6See the discussion following Theorem 3.10.
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of at most that length. If this method is used in the algorithm for constructing characteristic
samples in the proof of Corollary 3.6, the resulting characteristic samples will be concise. []

Efficient teachability. We say that C is efficiently teachable if there exist a polynomial
time teacher T and a learner L such that T(C) is a characteristic sample for C and L for
every C € C.

Lemma 3.8. If class C is efficiently teachable, then C has concise characteristic samples.

Proof. Let T be a polynomial time teacher and L a learner witnessing the fact that C is
efficiently teachable. To see that C has concise characteristic samples, we define the (not
necessarily polynomial time) teacher T’ as follows. On input C, let ¢’ minimize size(C’)
subject to [C'] = [C]. Then T' outputs T(C’), which is a characteristic sample for C and L
and is of size bounded by a polynomial in size(C). (]

Efficient learnability. We say that C is efficiently learnable if there exist a teacher T and
a polynomial time learner L such that T(C) is a characteristic sample for C and L for every
cecC

As has been observed before [Pit89], if (P1) and (P2) are satisfied, this definition
is superfluous because the learning algorithm of identification by enumeration used in
the proof of Theorem 3.2 can be modified to run in polynomial time and the teacher
adjusted appropriately to create a (potentially ridiculously large) characteristic sample. This
observation motivates the introduction of the criterion of identification in the limit with
polynomial time and data (described in Section 3.4). The argument for this observation
follows.

Lemma 3.9. If class C satisfies (P1) and (P2) then C is efficiently learnable.

Proof. The learner L on input T of length n simulates the algorithm of identification by
enumeration for n? steps. It checks whether the last hypothesis C output by the simulation
is consistent with 7" and outputs C if so, using (P1). Otherwise, it returns the default
hypothesis consistent with 7', if any, using (P2). Given C in C, the teacher T takes the
characteristic sample T from Theorem 3.2 and adds enough additional examples of C that
there is time for L’s simulation of identification by enumeration to converge to its final
answer. Note that since the domain X is infinite it is always possible to add more labeled
words to the sample. []

Requiring both teacher and learner to be efficient. We say that C is efficiently
teachable/learnable if there exist a polynomial time teacher T and a polynomial time learner
L such that T(C) is a characteristic sample for C and L for every C € C. This corresponds
to the definition of polynomially T/L teachable of Goldman and Mathias [GM96].

It turns out that if (P1) and (P2) are satisfied, efficiently teachable/learnable is no
stronger than requiring a polynomial time teacher.

Theorem 3.10. Assume that class C satisfies (P1) and (P2) and is efficiently teachable.
Then C is efficiently teachable/learnable.
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Proof. Let T be polynomial time teacher witnessing the efficient teachability of C. We
define another polynomial time teacher TV that on input C outputs T(C) together with one
pair (z,b) such that z is the string C and (z, b) is consistent with C. Note that the teacher
directly provides the text of the target concept.

We define a learner L as follows. On input 7', L finds the least x (if any) such that
(z,b) is in T, the concept representation C = x is such that C is consistent with 7" (using
(P1)), and the sample T(C) is a subset of T (using the polynomial time algorithm T'). If
such a C is found, L outputs it. Otherwise (using (P2)) it either outputs a default concept C
consistent with 7" or an arbitrary concept. Then L runs in time polynomial in |T'|.

The argument that for every C in C, T’(C) is a characteristic sample for C and L is the
same as that in the proof of Corollary 3.6. ]

In this proof, the teacher provides the text of the target concept itself in the sample and
the learner depends on this fact and considers as potential candidates only those concepts
whose strings are in the sample. This may seem like a kind of unacceptable “collusion’
between the teacher and the learner. In the proof of Corollary 3.6, the teacher provides the
learner with less specific syntactic information about the target concept in the form of a
bound on its length. Gold’s founding positive result in the area of characteristic samples
may be stated as follows.

Theorem 3.11 [Gol78, Theorem 4|. DFAs are efficiently teachable.

?

In Gold’s original proof, we see a high degree of coordination between the teacher and
the learner to enable the teacher to provide all the examples that the learner will consult in
constructing its hypothesis, even when additional correct examples may be present.

The issue of what kinds of coordination and communication should be permitted in a
model of teaching and learning is complex, and has been considered by a number of researchers.
One paradigm requires the teacher to be able to teach any learner (or more precisely, any
consistent learner, i.e., any learner that never hypothesizes a concept inconsistent with the
information it has). Goldman and Mathias, in their seminal paper [GM96], show that this
requirement is too strong in the sense that it makes even rather simple classes of concepts
very hard to teach. Moreover, some applications call for a learning paradigm in which a
teacher is required to teach a particular learner rather than an arbitrary one.

The paradigm introduced by Goldman and Mathias [GM96], which is the one we follow
here, addresses the problem of collusion by allowing an adversary to add an arbitrary set of
correctly labeled examples to the sample generated by the teacher before it is given to the
learner. For a class C and a deterministic teacher T and a deterministic learner L, they
define T and L to be a colluding pair if there exist C; and C; such that [C;] = [C;] and for all
samples T; O T(C;) and T; 2 T(C;) consistent with C; and C;, we have L(T;) # L(Tj). That
is, in a colluding pair, the teacher is able to communicate some distinguishing information
about which of the two concepts, C; or Cj, was its input. They prove that under their
paradigm there is no colluding pair. Of course, one could consider other notions of collusion.

To see that the possibility of including the text of the target concept among the examples
does not trivialize the problem of creating a characteristic sample, note that the learner
cannot a priori know which examples in the sample correspond to information from the
teacher and which were added by the adversary. Hence, to determine the true concept
the learner must rule out possibly spurious examples that the adversary has added. The
only information available to the learner, other than the strings in the sample, are their
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associated labels, indicating their membership in the target concept. Hence, the learner
must use semantic information about the target concept to eliminate spurious candidates,
which is what we would like from such a learning paradigm.

The efficient teachability results we prove starting in Section 5 in fact include descriptions
of algorithms for both the teacher and the learner, and do not include the text of the target
concept in the sample. Like Gold’s founding result, they do exhibit a high degree of
coordination between the teacher and learner.

3.4. Identification in the limit with polynomial time and data. We relate the
definitions above to the definition of identification in the limit using polynomial time and
data introduced by Gold [Gol78] and refined by de la Higuera [dIH97], who also showed that
it is closely related to the definition of semi-poly T/L teachable introduced by Goldman and
Mathias [GM96].

Using the terminology of this paper, a class C is identifiable in the limit using polynomial
time and data if there exist a polynomial p(n), a teacher T, and a polynomial time learner
L such that for every C € C, the sample T(C) is a characteristic sample for C and L, and
|T(C)| < p(size([C])). This definition can be viewed as correcting the deficiency of the
concept of efficiently learnable (indicated by Lemma 3.9) by requiring a polynomial bound
on the size of the characteristic sample. In this terminology, “polynomial time” refers to the
polynomial running time of L, and “polynomial data” refers to the polynomial bound on
the size of the sample T(C). Of course, the latter is not a worst-case measure; there could
be arbitrarily large finite samples for which L outputs an incorrect hypothesis.

Because the definition of C being identifiable in the limit using polynomial time and
data simply adds the requirement that the learner be computable in polynomial time to the
definition of C having concise characteristic samples, we immediately have the following.

Lemma 3.12. If C is identifiable in the limit using polynomial time and data then C has
concise characteristic samples.

Comparing with the concept of being efficiently teachable, we note the following differ-
ences. Identifiability in the limit using polynomial time and data only requires the existence
of a characteristic sample, and the bound on the length of the characteristic sample is
in terms of the size of the smallest representation of [C]. For the definition of efficiently
teachable, the characteristic sample must not only exist, but be computable in polynomial
time, and the bound on the length of the characteristic sample is in terms of the length of C.

Lemma 3.13. If C satisfies (P1) and (P2) and is efficiently teachable, then C is identifiable
in the limit using polynomial time and data.

Proof. By Theorem 3.10, there are a polynomial time teacher T and a polynomial time
learner L witnessing that C is efficiently teachable/learnable. Let C € C be given. Let
C’' € C minimize |C'| subject to [C'] = [C]. Then T(C’) is a characteristic sample for C and
L of length polynomial in size(C). Thus C is identifiable in the limit using polynomial time
and data. []

To see that identifiability in the limit using polynomial time and data may not imply
efficient teachability, we consider the following example.

Theorem 3.14. Assume that there is no polynomial time algorithm for integer factorization.
Then there exists a concept class that satisfies (P1) and (P2) and is identifiable in the limit
using polynomial time and data but is not efficiently teachable.
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Proof. We assume a standard decimal representation of positive integers. For any positive
integer n, let F'(n) be the list of primes in its prime factorization in non-decreasing order,
for example, F'(54) = (2,3,3,3). Let N; denote the set of positive integers, and let
F(Ni) ={F(n) | n € N4}, the set of all prime factorization lists. If £ is a prime factorization
list (p1,p2,...,px) then let M (¢) denote the product of the primes in ¢, that is, M ({) =
p1- P2 pr. M is computable in polynomial time.

We define a class of concepts as follows. Cy,.; has domain F(N,) and consists of all
finite subsets of F(Ny). We represent a finite set {¢1,¢2,...,¢,} C F(Ny) as a finite list
(n1,n2,...,ny) such that n; = M (¢;). Thus, {(2,3,3,3)} is represented by the string (54),
and {(3),(2,3),(3,5,5)} is represented by the string (3,6, 75).

Because primality can be decided in polynomial time [AKS04], there is a polynomial
time algorithm to test whether F(n) = (p1,p2,...,px) given n and (p1,p2,...,px) as inputs.
Therefore (P1) holds for Cy,e.

Consider the learner L that on input a finite sample T first checks that every example
is a prime factorization list and that no list is given two different labels. (If this check
fails, the output is arbitrary.) Let 77 denote the set of examples in 7' with label 1. L
outputs a representation of the concept 11 = {{1, 0, ..., by} as (M (€1), M (L2),. .., M(Cyn)).
Thus property (P2) holds and Cy,; is learnable in polynomial time and has characteristic
samples of polynomial length, consisting of exactly the finitely many positive examples of
each concept. Thus, Cy,. is identifiable in the limit using polynomial time and data.

Now suppose for the sake of contradiction that there is a polynomial time teacher T
for Cfaet. Consider the sample produced by T for the concept (), which denotes the empty
set. This consists of a finite number of negative examples, say (1, o, ..., ¥¢,,, where each ¢;
is a prime factorization list. Let S = {M(¢;) | 1 < i < m}. Consider any positive integer
n ¢ S, and let F(n) = (p1,p2,...,pk). If the sample T((n)) does not contain F'(n) as a
positive example, it must consist exclusively of negative examples, and both the empty
set and {F'(n)} are consistent with the union of the samples produced by T for the two
concepts, contradicting Lemma 3.1. Thus, for all but finitely many positive integers n, T
must produce the prime factorization of n. This implies that there is a polynomial time
algorithm for prime factorization, contradicting our assumption. []

3.5. Relation to learning with equivalence and membership queries. In the paradigm
of learning with membership and equivalence queries, a learning algorithm can access an
oracle that truthfully answers two types of queries about the target concept C, and its goal
is to halt and output a representation of [C]. In a membership query, or MQ, the learning
algorithm provides a string = and the answer is 1 or 0 depending on whether x € [C] or not.
In an equivalence query, or EQ, the learning algorithm provides a representation C’ € C,
and the answer from the oracle is either “yes”, if [C'] = [C], and otherwise is an arbitrarily
chosen element of [C'] @ [C] (a counterezample to the conjecture that C’ is correct). If the
learning algorithm successfully learns every C € C and at every point its running time is
bounded by a polynomial in size([C]) and the length of the longest counterexample seen
to that point, we say that C is polynomially learnable using membership and equivalence
queries.

Goldman and Mathias [GM96] prove that any class that can be learned by a deterministic
polynomial time algorithm using any of a large set of example-based queries is teachable by
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Figure 1. Summary of main general results about efficient teachability

a computationally unbounded teacher and a polynomial time learner. A corollary of their
Theorem 2 is the following.

Theorem 3.15. Suppose the class C satisfies properties (P1) and (P2) and is concisely
distinguishable. If C is polynomially learnable using membership and equivalence queries, it
is also identifiable in the limit using polynomial time and data.

(This result is also proved by Bohn and Loding [BL21].) Can this result be strengthened
to conclude that C is polynomially teachable? To answer this question, we examine the proof
in more detail. Let A be a learning algorithm using membership and equivalence queries
that learns C in polynomial time. Given C, T constructs a sample Ty by simulating A and
answering its queries according to C as follows. A membership query with x is answered
by determining whether = € [C]. For an equivalence query with C’, if [C'] # [C], then x is
chosen to be the shortlex least element of [C'] @ [C] and returned as the counterexample to
the simulation of A.

The counterexample x is of length polynomial in the sum of the sizes of C’ and C by
the assumption of concise distinguishability. If instead [C'] = [C], then the sample T¢ is
constructed of all the strings x that appeared in membership queries or as counterexamples
returned to equivalence queries during the simulation, labeled to be consistent with C.
Because of the polynomial running time of A and the choice of shortest counterexamples,
the length of T¢ is bounded by a polynomial in size([C]).

The corresponding learning algorithm L takes a sample 7" as input and simulates the
learning algorithm A, attempting to answer its queries using 71" as follows. For a membership
query with z, if = is an example in 7', the answer is its label in T". If = is not an example in
T, then L outputs a default Cr consistent with 7" and halts (using property (P2)). For an
equivalence query with C, L checks whether C is consistent with T (using property (P1)).
If it is consistent, then it outputs C and halts. If it is not consistent, it finds the shortlex
least x that is an example in T whose label is not consistent with C and returns = as the
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counterexample to A’s equivalence query. The running time of L is polynomial in the length
of T'. It is because of the choice of the shortlex counterexample by both T and L that T
can anticipate exactly the queries that will be made in the simulation of A by L, even when
the sample T is a superset of the characteristic sample T¢.

What must we assume in order that the function T in this construction can be computed
in polynomial time? Property (P1) allows T to answer membership queries in polynomial
time, and property (P3) ensures that C is concisely distinguishable, and allows T to find
shortlex least counterexamples in polynomial time, so we have the following,.

Corollary 3.16. Suppose the class C satisfies properties (P1), (P2) and (P3). If C is
polynomially learnable using membership and equivalence queries, then it is also efficiently
teachable.

Figure 1 provides a summary of the main general results about efficient teachability.

4. FOCUSING ON REGULAR w-LANGUAGES

The rest of the paper concerns efficient teachability of regular w-languages. This section
starts by describing examples and samples for w-languages, and continues by describing
some known or immediate results on the subject.

4.1. Examples and samples for w-languages. Because we require finite representations
of examples, w-words in our case, we work with ultimately periodic words, that is, words
of the form u(v)¥ where u € ¥* and v € X*. Tt is known that two regular w-languages are
equivalent iff they agree on the set of ultimately periodic words [Biic62, CNP93], so this
choice is not limiting.

The example u(v)*“ is concretely represented by the pair (u,v) of finite strings, and its
length is |u| + |v|. A labeled example is a pair (u(v)“,l), where the label [ is either 0 or 1.
A sample is a finite set of labeled examples such that no example is assigned two different
labels. The length of a sample is the sum of the lengths of the examples that appear in it.
A sample T and a language L are consistent with each other if and only if for every labeled
example (u(v)¥,1) € T, I =1 iff u(v)” € L. A sample T and an acceptor A are consistent
with each other if and only if 7" is consistent with [A]. The following results give two useful
procedures on examples that are computable in polynomial time.

Proposition 4.1. Let uj,us € ¥* and vi,vo € X7, If ug(v1)® # ua(ve)® then they differ in
at least one of the first £ symbols, for £ = max(|u1l, |uzl) + |vi| - |vel.

Let suffizes(u(v)”) denote the set of all w-words that are suffixes of u(v)®.

Proposition 4.2. The set suffizes(u(v)®) consists of at most |u| + |v| different examples:
one of the form u'(v)¥ for every nonempty suffix u' of u, and one of the form (vovy)* for
every division of v = viva into a non-empty prefix vi and suffix vs.
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4.2. Negative results for nondeterministic classes. The classes NBA, NPA, NMA,
NCA do not have concise characteristic sets [AFS20]. The proof is by constructing a family
of languages { Ly, }nen with an acceptor of size quadratic in n for which at least one word
of length at least exponential in n must be included in any characteristic sample for L,,.”
Since an NBA (resp. NCA) is a special case of NRA (resp. NSA) the same is true for NRA
and NSA.

Theorem 4.3. The classes NBA, NPA, NMA, NCA, NRA and NSA do not have concise
characteristic sets, and therefore are neither identifiable in the limit using polynomial time
and data nor efficiently teachable.

4.3. Consequences of membership and equivalence algorithms. In the domain of
w-automata, researchers have so far found very few polynomial time learning algorithms
using membership and equivalence queries. We consider the cases of Mod 2 multiplicity
automata, strongly unambiguous Biichi automata, and deterministic weak parity automata.

A Biichi automaton is unambiguous if no word has more than one run starting in the
initial state and visiting an accepting state infinitely often. It is strongly unambiguous
if no word has more than one run visiting an accepting state infinitely often, whether it
starts at the initial state or not. For instance, consider the deterministic Biichi automaton
B = ({a,b},{¢a, %}, 4a: 6, {ap}) with 6(¢a,a) = 6(qp;a) = ga and 6(¢a,b) = 6(q, ) = qv.
Since B is deterministic there is a unique run on every word, and thus it is also unambiguous.
However, since the word (b)* is accepted from both ¢, and ¢, B is not strongly unambiguous.

Angluin et al. [AAF20] give a polynomial time mapping r of a strongly unambiguous
Biichi automata (SUBA) C to a representation r(C) as a Modulo-2 multiplicity automaton
(M2MA), and observe that there is a polynomial time algorithm for learning M2MAs
using membership and equivalence queries [BBBT00]. (Please see [AAF20] for precise
definitions.) We note that a shortlex least counterexample can be returned in case of
inequivalence [DKV09, Sak09]. It follows from Corollary 3.16 that M2MAs are efficiently
teachable. We then also have the following.

Corollary 4.4. The class SUBA is efficiently teachable.

Proof. Let T be a teacher witnessing the efficient teachability of M2MAs. The teacher T’
with input a SUBA C generates the characteristic sample T(7(C)), to which it adds one
example (x,b) such that x = C and b = 1 iff x € [C]. The learner L with input 7" searches
for the least = (if any) such that (z,b) € T, r(x) is consistent with T, and T(r(z)) C T. If
such an z is found, it is output; otherwise, L constructs and outputs a SUBA consistent
with T. A procedure constructing a default SUBA acceptor that agrees with a given sample
T is given in the proof of Proposition 5.2. []

Maler and Pnueli [MP95] give an algorithm that learns the class DWPA of deterministic
weak parity automata in polynomial time using membership and equivalence queries. The
weak parity condition is obtained from the parity condition using occ(p) instead of inf(p)
where occ(p) is the set of states visited somewhere during the run p. It is known that
DWPA = DBA NIDCA. Membership and equivalence of DWIPA are decidable in polynomial
time, thus by Theorem 3.15, DWPA is identifiable in the limit using polynomial time and

N negative result regarding query learning of NBA, NPA and NMA was obtained by Angluin et al. [AAF20].
That result makes a plausible assumption of cryptographic hardness, which is not required here.
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data. It is not known whether there is a polynomial time algorithm for equivalence with
shortlex counterexamples, so we are unable to apply Corollary 3.16 to deduce they are also
efficiently teachable. However, DWPAs are a special case of DPAs and the following is a
corollary of Theorem 16.8 for DPAs.

Corollary 4.5. The class DWPA is efficiently teachable.

The learning algorithm of Maler and Pnueli for DWIPA exploits the fact that DWPA =
DBA NIDCA =IBA NICA, that is, this class is fully informative and does have a one-to-one
relationship between states of the minimal DWPA for a language L and the equivalence
classes of the right congruence ~p. The class DWPA is a small sub-class of the class of the
fully informative regular w-languages — there are fully informative languages in every level
of the Wagner hierarchy [AF18], whereas DWIPA is one of the lowest levels in the hierarchy.
The rest of the paper is dedicated to showing that fully informative languages of any of
the considered w-automata types (Biichi, coBiichi, parity, Muller, Rabin and Streett) are
efficiently teachable.

5. THE INFORMATIVE CLASSES ARE EFFICIENTLY TEACHABLE

This section covers some preliminary issues and gives an overview of the milestones needed
to prove that the informative classes are efficiently teachable.

5.1. Duality. There are reductions of the problem of efficient teachability between IBA
and ICA and between TRA and ISA, using the duality between these types of acceptors.
Consequently we focus on the classes IBA, IPA, IRA and IMA in what follows.®

Proposition 5.1. IBA (resp., IRA) is efficiently teachable if and only if ICA (resp., ISA)
18.

Proof. Let A be an ICA. Because A is deterministic and complete, if we let A’ denote the
IBA with the same components as A, then A" accepts the complement of the language A,
by Claim 2.2 (4).

We modify the characteristic sample for A" by complementing all its labels to get a
characteristic sample for A. The algorithm to learn an ICA from a sample T is obtained
by complementing all the labels in the sample T" and calling the algorithm to learn an IBA
from a sample. The resulting IBA, now considered to be an ICA, is returned as the answer.

The same conversion may be done with acceptors of types TRA and ISA, by
Claim 2.2 (5). []

8The results regarding the classes IBA (and ICA), IPA and IMA were obtained in [AFS20]; here we extend
them to the classes IRA (and ISA). Results for identifiability in the limit using polynomial time and data
(but not efficient teachability) of the classes IRA (and ISA) have also been provided in [BL21] using a different
algorithm.
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T = {((a)*,0), (a(b)¥,1), ((ab)*,0), (ab(baa)®,1), (bab(aab)¥, 1), ((aab)®, 1), (bb(aba)*,1)}

| |
f\bA b (a)¥ aaalaaaa..
) b o% a(b)” abbb|bbb. .
ab g f\ za a,b (ab)¥ aba]baba. .. %?
S=0) a b (@== ab(baa)¥ abbalaba. .. O\‘
a,b E a,b A bab(aab)” ba|baaba. .. b (/ ¢
<0 20 ey (aab)¥ aablaaba. . . @
a,b a,b bb(aba)® bblabaab. . . b
=0 o< V = {bbaa} O«
={a
U = { aaa, abbb, aba, Xpua i {}ab} b
abba, ba, aab, bb } X = {€} ~

Xapa = {b,bb}

Figure 2. Top: a sample T. Middle: The distinguishing prefixes U of words in the
sample T'. Left: Default acceptor of type DBA for sample T' (the dead state and the
transitions to it are omitted). Right: Default acceptor of type SUBA for sample T

5.2. The default acceptor. One condition of the definition of being efficiently teachable
is that the learning algorithm must run in polynomial time and return an acceptor of the
required type that is consistent with the input sample T, even if the sample T' does not
subsume a characteristic sample. To meet this condition, we use the strategy of Gold’s
construction, that is, the learning algorithm optimistically assumes that the sample includes
a characteristic sample, and if that assumption fails to produce an acceptor consistent
with the sample, the algorithm instead produces a default acceptor to ensure that its
hypothesis is consistent with the sample. Alternatively, one can use Bohn and Loding’s
generalization of the RPNI algorithm to learning w-automata, which has a more complex
default strategy [BL21].

The construction of the default acceptor is given in the proof of the following proposition,
and is accompanied by an example illustrated in Figure 2.

Proposition 5.2. There is a polynomial time algorithm that takes a sample T and returns
a DBA (resp., DCA, DPA, DRA, DSA, DMA, SUBA) consistent with T'.

Proof. Given a sample T', we initialize U to be the empty set, and for every word w; in the
sample, we find the shortest prefix u; of w; that distinguishes it from all other examples in
T and add it to U (see Figure 2, middle). We arrange the finite words in U in a trie in the
usual manner. We add self-loops on each o € ¥ to the leaves of the trie (see Figure 2, left).
This deterministic automaton is termed the prefix-tree automaton [OG92]. If the automaton
is incomplete, we add a new dead state with self-transitions on each ¢ € ¥, and define all
undefined transitions to go to the dead state. Recall that by Proposition 4.1 the length of
a prefix distinguishing two examples ui(v1)* and uz(v2)® is polynomially bounded by the
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length of the examples. It follows that the prefix-tree automaton can be constructed in time
polynomial in the length of the sample T'.

For a DBA, the acceptance condition F' consists of all the trie-leaf states that are prefixes
of positive examples in T' (see Figure 2, left). For a DMA, the acceptance condition consists
of {{q} | ¢ € F'}. For a DCA, the acceptance condition consists of the dead state (if one
was added) and all the trie-leaf states that are not prefixes of positive examples in 7". The
DBA thus constructed may be transformed to a DPA or a DRA using Claim 2.2 (1) or
Claim 2.2 (2), respectively, and the DCA may be transformed to a DSA using Claim 2.2 (3).

For a SUBA the construction is different. We first construct a set V' of shortest periods of
positively labeled examples, by going iteratively over the examples wi, wo, ... and proceeding
as follows. For w; = u(v)® if v; is a shortest period of w;, and none of the rotations of
v; is in V we add v; to V. Then for every period v = 0102...0% in V we construct an
automaton with k states so, s1,...,Sx—1 and transitions (s;, 041, s¢) for 0 < i < k where
i’ = (i+1) mod k. We designate sy as an accepting state. Finally, for each positively
labeled word w we look for the shortest prefix = of w such that w = z(y)“ for some rotation
Yy =0;...0,01...0;—1 of a period v = o102 ...0;, € V. For a rotation y of v € V, let X, be
the set of such shortest prefixes. The prefixes in X, are arranged in a suffix-sharing trie
and the trie is connected to the automata constructed for the periods by landing in the
state reading o; in the automaton of v. Kach node of this trie corresponding to a start of a
prefix in X, is added to the set of initial states (see Figure 2, right). It is easy to see that
the constructed NBA is consistent with the sample. To see that it is a SUBA, consider a
word w € X¥ and assume w = xy* for y a shortest period of w and z the shortest prefix
reaching such y. Note that there is only one such representation of w. By the construction
of the SUBA, w can only be accepted via a cycle reading y and there is only one such
cycle, moreover the cycle can be entered only at the position after reading x, and by the
suffix-sharing trie there is only one state from which reading x gets to this position. []

5.3. Strongly connected components. The acceptance conditions that we consider are
all based on the set of states visited infinitely often in a run of the automaton on an input
w € X¥. We consider only acceptors whose automata are deterministic and complete, so
for any w € X there is exactly one run, which we denote p(w), of the automaton on input
w. Thus we may define inf(w) = inf(p(w)), the set of states visited infinitely often in this
unique run. In the run p(w), there is some point after which none of the states visited
finitely often is visited. Because each state in inf(w) is visited infinitely often, for any states
q1,q2 € inf(w), there exists a non-empty word xz € ¥* such that d(q1,z) = ¢2 and for each
prefix 2’ of z, §(q1,2") € inf(w), that is, the path from ¢; to g2 on = does not visit any state
outside the set inflw).

These properties motivate the following definition. Given an automaton M, a strongly
connected component (SCC) of M is a nonempty set of states C' such that for every q1,qs € C,
there exists a nonempty string € ¥* such that §(¢q1,x) = ¢2 and for any prefix 2’ of x,
dq,2") e C.

Note that an SCC need not be maximal, and that a singleton state set {¢} is an SCC if
and only if the state ¢ has a self-loop, that is, §(¢,0) = ¢ for some o € 3. There is a close
relationship between SCCs and the set of states visited infinitely often in a run.
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Proposition 5.3. Let M be a complete deterministic automaton and w € £¥. Then infw)
is an SCC of M. If w is the ultimately periodic word u(v)“, then inflw) may be computed
in time polynomial in the size of M and the length of u(v)“.

Proposition 5.4. For any deterministic automaton M = (3,Q,q,,9) and any reachable
SCC C of M, there exists an ultimately periodic word w = u(v)* of length at most |Q|+|C|?
such that C = inflw). Such a word may be found in time polynomial in |Q| and |X|.

Proof. Because C' is reachable, a word u € ¥* of minimum length such that §(q,,u) € C
may be found by breadth first search. The length of w is at most |Q|. If C' = {q}, then there
is at least one symbol o € ¥ such that d(q,0) = ¢q. Then the w-word w = u(o)® is such that
C = inflw). The length of this ultimately periodic word is at most |Q| + 1.

If C' contains at least two states, let ¢, ..., gr be the states in C that are not q. Then
for each %, there exist two nonempty finite words z; and y; each of length at most n such
that 0(q, z;) = ¢; and 6(q;, y;) = ¢, and the path on z; from ¢ to ¢; and the path on y; from
¢; to ¢ do not visit any states outside of C. The words x; and y; may be found in polynomial
time by breadth-first search. Then the word w = u(z1y; - - - xxyg)® is such that inflw) = C.
The length of this ultimately periodic word is at most |Q| + |C|?. ]

We let Witness(C, M) denote the ultimately periodic word u(v)* returned by the
algorithm described in the proof above for the reachable SCC C' of automaton M.

Proposition 5.5. If Cy and Cy are SCCs of automaton M and C1 N Cq # (), then Cy U Cy
is also an SCC of M.

If M is an automaton and S is any set of its states, define SCCs(S) to be the set of all
C such that C C S and C' is an SCC of M. Also define mazSCCs(S) to be the maximal
elements of SCCs(S) with respect to the subset ordering. The following is a consequence of
Proposition 5.5.

Proposition 5.6. If M is an automaton and S is any set of its states, then the elements
of mazSCCs(S) are pairwise disjoint, and every set C € SCCs(S) is a subset of exactly one
element of maxSCCs(S).

There are some differences in the terminology related to strong connectivity between
graph theory and omega automata, which we resolve as follows. In graph theory, a path of
length k from u to v in a directed graph (V, E) is a finite sequence of vertices vg, v1, ..., Uk
such that u = vy, v = vy and for each i with ¢ € [1..k], (vi—1,v;) € E. Thus, for every vertex
v, there is a path of length 0 from v to v. A set of vertices S is strongly connected if and
only if for all u,v € S, there is a path of some nonnegative length from u to v and all the
vertices in the path are elements of S. Thus, for every vertex v, the singleton set {v} is a
strongly connected set of vertices. A strongly connected component of a directed graph is a
maximal strongly connected set of vertices. There is a linear time algorithm to find the set
of strong components of a directed graph [Tar72].

In this paper, we use the terminology SCC and maximal SCC to refer to the definitions
from the theory of omega automata, and the terminology graph theoretic strongly connected
components to refer to the definitions from graph theory. We use the term trivial strong
component to refer to a graph theoretic strongly connected component that is a singleton
vertex {v} such that there is no edge (v,v).

If M is an automaton, we may define a related directed graph G(M) whose vertices are
the states of M and whose edges (q1, g2) are the pairs of states such that g2 € §(q1,0) for
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some o € Y. Then for any set S of states of M, the maximal SCCs in S, mazSCCs(S), are
the graph theoretic strongly connected components of the subgraph of G(M) induced by S,
with any trivial strong components removed.

Proposition 5.7. For automaton M and any subset S of its states, maxSCCs(S) can be
computed in time linear in the size of M.

5.4. Proving efficient teachability of the informative classes — overview. We can
show that a class is efficiently teachable by first showing that it is identifiable in the limit
using polynomial time and data, and then giving a polynomial time teacher to construct
the required characteristic samples. To show that a class is identifiable in the limit using
polynomial time and data there are two parts: (i) defining a sample 77, of size polynomial in
the size of the given acceptor A for the language L at hand, and (ii) providing a polynomial
time learning algorithm L that for every given sample T returns an acceptor consistent with
T, and, moreover, for any sample T" consistent with L that subsumes 77, returns an acceptor
that accepts L.

The definition of an acceptor has two parts: (a) the definition of the automaton and
(b) the definition of the acceptance condition. Correspondingly, we view the characteristic
sample as a union of two parts: T4yt (to specify the automaton) and Ty (to specify the
acceptance condition). In Section 6 we discuss the construction of T'4,¢, which is common to
all the classes we consider, as they all are isomorphic to M., where L = [A] for the target
automaton A. We also describe a polynomial time algorithm to construct M., using the
sample T'gyz.

Because the acceptance conditions differ, Ty, is different for each type of acceptor we
consider. In Section 7 we describe the construction of T'4.. for acceptors of types IMA and
IBA and learning algorithms for acceptors of these types, showing that IMA, IBA and ICA
are identifiable in the limit using polynomial time and data. In Section 8 we describe the
construction of T'4.. for acceptors of type IPA and a learning algorithm for acceptors of
this type, showing that IPPA is identifiable in the limit using polynomial time and data. In
Section 9 we describe the construction of T4.. for acceptors of type IRA and a learning
algorithm for acceptors of this type, showing that IRA and ISA are identifiable in the limit
using polynomial time and data.

In Section 10 we show that the characteristic samples we have defined can be computed
in polynomial time in the size of the acceptor. These results rely on polynomial time
algorithms for the inclusion and equivalence problems for the acceptors. These are described
in Sections 11, 12, 13, and 14.

This does not yet entail that the class IXA from {IBA,ICA,IPA, IMA, IRA,ISA} is
efficiently teachable. This is because IBA (for instance) includes also DBAs that are not
IBAs but have equivalent IBAs. In Section 15 we show the right congruence automaton
M., can be computed in polynomial time, given a DBA, DCA, DPA, DRA, DSA, or DMA
accepting L, which yields a polynomial time algorithm to test whether a DBA is an IBA,
and similarly for the other acceptor types. In Section 16, we consider the harder problem of
deciding whether a DBA accepts a language in IBA, and give polynomial time algorithms
for DBAs, DCAs, DPAs, DRAs, DSAs and DMAs. With these results we can finally claim
that the IXA classes are efficiently teachable.
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6. THE SAMPLE T4yt FOR THE AUTOMATON

In this section we describe the construction of the T'4,; part of the sample. We first show
that if two states of the automaton are distinguishable, they are distinguishable by words of
length polynomial in the number of states of the automaton.

6.1. Existence of short distinguishing words. Let A be an acceptor of one of the types
DBA, DCA, DPA, DRA, DSA, or DMA over alphabet ¥. We say that states ¢; and ¢s of
M are distinguishable if there exists a word w € ¥ that is accepted from one state but not

the other, that is, w € [A?] \ [A%] or w € [A®] \ [A?]. In this case we say that w is a
distinguishing word.

Proposition 6.1. If two states of a complete DBA, DCA, DPA, DRA, DSA, or DMA of n
states are distinguishable, then they are distinguishable by an ultimately periodic w-word of

length bounded by O(n*).

Proof. We prove the result for a DMA. Because any DBA, DCA, DPA, DRA, or DSA
is equivalent to a DMA with the same automaton, this result holds for these types of
acceptors as well. Let A be a complete DMA of n states such that the states ¢; and ¢o are
distinguishable. Then there exists an w-word w that is accepted from exactly one of the two
states, that is, w is accepted by exactly one of A% and A%.

Let M, denote the automaton of A with its initial state replaced by ¢; for i = 1,2.
Let M denote the product automaton M; x Ms. The number of states of M is n?. By
Proposition 5.3, infy;(w) is a reachable SCC C of M, and by Proposition 5.4 there exists
an ultimately periodic word u(v)“ of length bounded by O(n*) such that infy(u(v)~) = C.
Then for i = 1,2, infyq, (u(v)¥) = m(C) = infay, (w), so u(v)® is also accepted by exactly
one of AT and A%, and u(v)* distinguishes g1 and gs. L]

6.2. Defining the sample T4,; for the automaton. We now define the T4, part of
the characteristic sample, given an acceptor A = (X, @, q,,J, ) that is an IBA, ICA, IPA,
IRA, ISA, or IMA. This construction is analogous to that of the corresponding part of a
characteristic sample for a DFA, with distinguishing experiments that are ultimately periodic
w-words instead of finite strings.

Let M be the automaton of A and let n be the number of states of M. Because A is
an IBA, ICA, IPA, IRA, ISA, or IMA, every state is reachable and every pair of states is
distinguishable. We define a distinguished set of n access strings for the states of M as
follows. For each state ¢, access(q) is the least string = in the shortlex ordering such that
d(q.,x) = q. Given A, the access strings may be computed in polynomial time by breadth
first search.

Because every pair of states is distinguishable, by Proposition 6.1, there exists a set F
of at most n distinguishing experiments, each of length at most n? + n?, that distinguish
every pair of states. The issue of computing F is addressed in Section 10. The sample T4+
consists of all the examples in (S F)U (S -X - E), labeled to be consistent with 4. There
are at most (1 + |X|)n? labeled examples in T, each of length bounded by a polynomial
in n. A learner using T4+ is described next.
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6.3. Learning the automaton from 7'4,;,. We now describe a learning algorithm L 4,
and prove the following.

Theorem 6.2. The algorithm L g, with a sample T as input runs in polynomial time and
returns a deterministic complete automaton M. Let A be an acceptor of type IBA, ICA,
IPA, IRA, ISA, or IMA. If T is consistent with A and subsumes Tay: then the returned

automaton M is isomorphic to the automaton of A.

Algorithm L 4,; on input T constructs a set E of words that serve as experiments used
to distinguish candidate states. For each (u(v)¥,1) in 7', all of the elements of suffizes(u(v)®)
are placed in F. Two strings x,y € X* are consistent with respect to T" if and only if there
does not exist any u(v)¥ € E such that the examples zu(v)* and yu(v)¥ are oppositely
labeled in 7T'.

Starting with the empty string ¢, the algorithm builds up a prefix-closed set .S of finite
strings as follows. Initially, S; = {e}. After Sy has been constructed, the algorithm considers
each s € Sy in shortlex order, and each symbol ¢ € ¥ in the ordering defined on ¥. If there
exists no s’ € Sy such that so is consistent with s’ with respect to T', then Si, is set to
Sk U{so} and k is set to k + 1. If no such pair s and o is found, then the final set S is Sk.

In the second phase, the algorithm uses the strings in .S as names for states and constructs
a transition function ¢ using S and E. For each s € S and o € X, there is at least one
s’ € S such that so and s’ are consistent with respect to T'. The algorithm selects any such
s and defines d(s,0) = s’. Once S and § are defined, the algorithm returns the automaton

M= (%,5,¢,0).

Proof of Theorem 6.2. EE may be computed in time polynomial in the length of T, by
Proposition 4.2. Because the default acceptor for T has a polynomial number of states
and is consistent with 7', the number of distinguishable states, and the number of strings
added to S, is bounded by a polynomial in the length of 7. The returned automaton M is
deterministic and complete by construction.

Assume the sample T is consistent with A and subsumes T'4,¢. For any pair of states of
A, the set E includes an experiment to distinguish them. Also, if  and y reach the same
state of A, there is no experiment in F that distinguishes them. Then the set S is precisely
the access strings of A. The choice of s’ for §(s, o) is unique in each case, and the returned
automaton M is isomorphic to the automaton of A. ]

Although the processes of constructing 7T'4,; and learning an automaton from it are the
same for acceptors of types IBA, ICA, TPA, IRA, ISA, or IMA, different types of acceptance
condition require different kinds of characteristic samples and learning algorithms.

In the following sections we describe for each type of acceptor the corresponding sample
Tscc and learning algorithm. Each learning algorithm takes as input an automaton M and
a sample T and returns in polynomial time an acceptor of the appropriate type consistent
with T. We show that for each type of acceptor A, if the input automaton M is isomorphic
to the automaton of A and the sample T is consistent with A and subsumes the T'4.. for
A, then the learning algorithm returns an acceptor that is equivalent to A. This learning
algorithm is then combined with L 4.+ to prove the relevant class of languages are identifiable
in the limit using polynomial time and data.
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7. THE SAMPLES T 4. AND LEARNING ALGORITHMS FOR IMA AND IBA

The straightforward cases of Muller, Biichi and coBiichi acceptance conditions are covered
in this section. Subsequent sections cover the cases of parity, Rabin and Street acceptance
conditions, which are somewhat more involved.

7.1. Muller acceptors. Let A be an IMA with acceptance condition o = {F7,..., Fi}.
By Proposition 5.3, we may assume that each F; is a reachable SCC of A. The sample
T X\C/ICA consists of k positive examples, one for each set F;. The example for F; is (u(v)“,1)
where inf(u(v)®) = F;. These examples may be found in polynomial time in the size of A by
Proposition 5.4.

The learning algorithm Lﬂ\/c{? takes as input a deterministic complete automaton M and
a sample T'. It constructs an acceptance condition o’ as follows. For each positive labeled
example (u(v)¥,1) € T, it computes the set C = infy(u(v)*) and makes C' a member of o’
Once the set o/ is complete, the algorithm checks whether the DMA (M, ) is consistent
with 7. If so, it returns (M, &); if not, it returns the default acceptor of type DMA for T.

Theorem 7.1. Algorithm Lﬁf‘ch runs in time polynomial in the sizes of the inputs M and
T. Let A be an IMA. If the input automaton M is isomorphic to the automaton of A, and
the sample T is consistent with A and subsumes T I{X%A, then algorithm Lﬁ‘ff returns an IMA

(M, ) equivalent to A.

Proof. The construction of o’ can be done in time polynomial in the sizes of M and T by
Proposition 5.3. The returned acceptor is consistent with 7' by construction.

Assume M is isomorphic to the automaton of A and that T is consistent with A. For
ease of notation, assume the isomorphism is the identity. Then for each positive example
(u(v)¥,1) in T, the set F = inf(u(v)*) must be in «, so o’ is a subset of «.

If T subsumes TMA | then for every set F' € a there is a positive example (u(v)“, 1)
in T with F = inf(u(v)®¥). Thus the set F is added to ¢/, and « is a subset of o/. Thus,
(M, ') is equivalent to A, and because T is consistent with A, the IMA (M, ') is returned
by LIMA, ]

Theorem 7.2. The class IMA 1is identifiable in the limit using polynomial time and data.

Proof. Let A be an IMA accepting a language L. The characteristic sample 17, = T AutUlel\c/IcA

is of size polynomial in the size of A.

The combined learner L™ takes a sample T as input and runs L, on T to produce
an automaton M and then runs L%VC[? on M and T and returns the resulting acceptor. It
runs in polynomial time in the size of T because it is the composition of two polynomial
time algorithms, and the acceptor it returns is guaranteed to be consistent with 7.

If the sample T is consistent with A and subsumes 77, then by Theorem 6.2 the
automaton M returned by L ¢ is isomorphic to the automaton of A. Then by Theorem 7.1

the acceptor returned by L%? with inputs M and T is an IMA equivalent to A. ]

7.2. Buichi acceptors. The case of Biichi acceptors is nearly as straightforward as that
of Muller acceptors. Let A be an IBA with n states and acceptance condition F. For
every state g of A, if there is an w-word w such that A rejects w and ¢ € inflw), then
there is an example u(v)* of length O(n?) such that A rejects u(v)* and ¢ € infu(v)*), by

Proposition 5.4. The negative labeled example (u(v)“,0) is included in 724,
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The learning algorithm Lffc? takes as input a deterministic complete automaton M and
a sample T'. The acceptance condition F” consists of all the states ¢ of M such that for no
negative example (u(v)¥,0) in T do we have ¢ € infy(u(v)®). Once F’ has been computed,
the algorithm checks whether the DBA (M, F”) is consistent with the sample T'. If so, it
returns (M, F’); if not, it returns the default acceptor of type DBA for T.

Theorem 7.3. Algorithm Lfachf runs in time polynomial in the sizes of the inputs M and
T. Let A be an IBA. If the input automaton M is isomorphic to the automaton of A, and
the sample T is consistent with A and subsumes T,ﬁf’ then algorithm Lfﬁf returns an IBA

(M, F') equivalent to A.

Proof. The construction of F” can be done in time polynomial in the sizes of M and T' by
Proposition 5.3. The returned acceptor is consistent with 7" by construction.

Assume the input M is isomorphic to the automaton of A, and that T is consistent
with A and subsumes T}E?. For ease of notation, assume the isomorphism is the identity.
We show that the DBA (M, F’) is equivalent to A.

If A rejects the word u(v)® then let C' = infy(u(v)®). Because T subsumes TEA, for
each ¢ € C, there is a negative example (v'(v")¥,0) in T such that ¢ € infyq(v'(v)*). Thus
no g € C'isin F’ and (M, F’) also rejects u(v)“.

Conversely, if A accepts the word u(v)“, then there is at least one state ¢ € F' such that
q € infapq(u(v)®). Because T is consistent with A, there is no negative example (u(v)*,0) in
T such that ¢ € infaq(u(v)¥), so ¢ € F' and (M, F') also accepts u(v)”. Thus (M, F') is
equivalent to A. Because T is consistent with A, the IBA (M, F’) is returned by L'PA. [

Theorem 7.4. The classes IBA and ICA are identifiable in the limit using polynomial time
and data.

Proof. The result for ICA follows from that for IBA by Proposition 5.1. Let A be an IBA

accepting language L. The characteristic sample T, = Ty U T}E’? is of size polynomial in

size(A).

The combined learning algorithm LBA takes a sample T' as input and runs L4, to get
a deterministic complete automaton M. It then runs Llfﬁ‘:‘ on inputs M and T, and returns
the resulting acceptor. LA runs in polynomial time in the length of 7" and returns a DBA
consistent with T

If the sample T is consistent with A and subsumes T}, then L 4,; returns an automaton
M isomorphic to the automaton of A by Theorem 6.2. Then the acceptor returned by Lfﬁé

on inputs M and T is an IBA equivalent to A by Theorem 7.3. L]

8. THE SAMPLE T4 AND THE LEARNING ALGORITHM FOR IPA

The construction of TE;? for an IPA P builds on the construction of the canonical forest

of SCCs for P, whose construction and properties are described next. Roughly speaking,
the purpose of the canonical forest for a given parity automaton P is to expose a set of
words that if placed in the sample will lead a smart learner to correctly determine a coloring
function for the constructed automaton. It is thus not surprising, that while developed for a
different motivation, it has similarities with Carton and Maceiras’s algorithm to compute
the minimal number of colors for a given parity automaton [CM99]. We begin with the
definition and properties of a decreasing forest of SCCs of an w-automaton.
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8.1. A decreasing forest of SCCs of an automaton. Let M be a deterministic au-
tomaton, and let S be a subset of its states. A decreasing forest of SCCs of M rooted in S
is a finite rooted forest F in which every node C' is an SCC of M that is contained in 5,
and the following properties are satisfied.

(1) The roots of F are the elements of maxSCCs(S).

(2) Whenever Dy, ..., Dy are the children of node C, we have D; U...U Dy C C. Also,
letting A(C) = C'\ (D1 U...U Dy), the children Dy, ..., Dy are exactly the elements of
maxSCCs(C'\ A(C)).

Proposition 8.1. Let M be a deterministic automaton, S a subset of its states, and F a
decreasing forest of SCCs of M rooted in S. Then the following are true.

(1) The roots of F are pairwise disjoint.

(2) The children of any node are pairwise disjoint.

(3) F has at most |S| nodes.

(4) For any D C S that is an SCC of M, there is a unique node C' in F such that D C C
and D is not a subset of any of the children of C'.

Proof. The roots of F are the elements of mazSCCs(S), which are pairwise disjoint. The
children of a node C are the elements of mazSCCs(C \ A(C)), which are pairwise disjoint.
The sets A(C') for nodes C' in F are contained in S, nonempty, and pairwise disjoint, so the
number of nodes is at most |S|. If D C S is an SCC of M, then D is a subset of exactly
one of the roots of F, say C1. If DN A(Cy) # 0, then D is not a subset of any of the
children of Cy. Otherwise, D must be a subset of exactly one of the children of C7, say Cb.
If DN A(Cy) # 0, then D is not a subset of any of the children of Cy. Continuing in this
way, we eventually arrive at the required node C. L]

Given a decreasing forest F of SCCs of automaton M rooted in S, and an SCC D C S,
we denote by Node(D, F) the unique node C of F such that D C C and D is not a subset
of any of the children of C'. We note that if C' = Node(D,F) then DNA(C) #0. If D is a
child of some C' in F, we define merging D into C' as the operation of removing D from F
and making the children of D (if any) direct children of C.

Proposition 8.2. Let M be a deterministic automaton and S a subset of its states. Let F
be a decreasing forest of SCCs of M rooted in S. Let D be a child of C' in F and let F’ be

obtained from F by merging D into C. Then F’ is also a decreasing forest of SCCS of M
rooted in S.

Proof. After the merge, the roots of F remain the elements of mazSCCs(S). Let Dy, ..., Dy
be the children of C' in F', where D = Dy, and let E1,..., Ey be the children of D in F.
Because the union of F1, ..., E; is a proper subset of D = D}, and the union of Dq,..., Dy
is a proper subset of C', the union of D1, ..., Dy_; with the union of E1,..., Ey is a proper
subset of C, therefore the union of the children of C' in F is a proper subset of C. Also, the
children of C' in F are the maximum SCCs of C'\ Az (C), and no other nodes are affected,
so F is a decreasing forest of SCCs of M rooted in S. ]

8.2. Constructing the Canonical Forest and Coloring of a DPA. Let P = (3, Q, q,, 0,
k) be a complete DPA. We extend the coloring function x to nonempty sets of states by
k(S) = min{k(q) | ¢ € S}, the minimum color of any state in S. We define the k-parity of
S to be 1 if k(S) is odd, and 0 if k(S) is even. A word w € ¥¥ is accepted by P iff the
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r-parity of inf(w) is 1. Note that the union of two sets of k-parity b is also of k-parity b.
For any nonempty S C @, we define minStates(S) = {q € S | k(q) = k(S5)}, the states of §
that are assigned the minimum color among all states of S.

8.2.1. The minStates-Forest. We describe an algorithm to construct the minStates-forest
of P. The roots of the minStates-forest are the elements of mazSCCs(Q), each marked as
unprocessed. The following procedure is repeated until all elements are marked as processed.
If C is unprocessed, then D = mazSCCs(C \ minStates(C)) is computed. If D is empty,
C becomes a leaf in the forest, and is marked as processed. Otherwise, C' is marked as
processed and the elements of D are made the children of C' and are marked as unprocessed.

Proposition 8.3. Let P = (£,Q, q,, 9, k) be a complete DPA with automaton M. Let F be
the minStates-forest of P. Then F is a decreasing forest of SCCs of M rooted in @, and
can be computed in polynomial time. For any SCC D, k(D) = k(Node(D, F)).

Proof. Referring to the construction of the minStates-forest F, its roots are the elements
of mazSCCs(Q)). When a node C is processed, the nonempty set minStates(C') is removed
and the maximum SCCs (if any) of the result become the children of C, so the union of the
children of C' is a proper subset of C', and the children are the maximum SCCs of C'\ A(C).
Let D be an SCC. Then D C @ and for the node C' = Node(D, F), we have that D C C
and D is not a subset of any child of C. Thus D N minStates(C) # (), because otherwise D
would be a subset of some child of C. This implies that k(D) = k(C'). The minStates-forest
of P can be computed in polynomial time because it has at most |Q| nodes, and each set
mazSCCs(S) can be computed in polynomial time by Proposition 5.7. L]

8.2.2. The Canonical Forest and Coloring. The canonical forest of P is constructed as
follows, starting with the minStates-forest of P. While there exist in the forest a node D
and its parent C' of the same k-parity, one such pair D and C is selected, and the child
node D is merged into the parent node C. When no such pair remains, the result is the
canonical forest of P, denoted F*(P). The canonical forest F*(P) can be computed from P
in polynomial time.

From the canonical forest F*(P), we define the canonical coloring k*. The states in
(Q \ UmazSCCs(Q)) are not contained in any SCC of P and do not affect the acceptance
or rejection of any w-word. For definiteness, we assign them x*(q) = 0. For a root node C
of k-parity b, we define £*(q) = b for all ¢ € A(C). Let C be an arbitrary node of F*(P). If
the states of A(C') have been assigned color k£ by «* and D is a child of C, then the states
of A(D) are assigned color k + 1 by x*. Clearly x* can be computed from P in polynomial
time.

Example 8.4. Figure 3 (a) shows the graph G(P) of a DPA P with states a through m,
labeled by the colors assigned by k. Figure 3 (b) shows the minStates-forest of P, with the
nodes labeled by their k-parities. Figure 3 (¢) shows the canonical forest F*(P) of P, with
the nodes labeled by their k-parities. Figure 3 (d) shows the graph G(P) re-colored using
the canonical coloring x*.

Theorem 8.5. Let P = (X,Q,q,,d, k) be a complete DPA with automaton M. The canonical
forest F*(P) is a decreasing forest of SCCs of M rooted in Q and has the following properties.

(1) For any SCC D, both D and Node(D, F*(P)) have the same k-parity.
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Figure 3. (a) Graph G(P) with states colored by . (b) The minStates-forest of
P, with k-parities of nodes. (¢) Canonical forest F*(P), with s-parities of nodes.
(d) Graph G(P) with the canonical coloring x*.

(2) For every node C of F*(P), the k-parity of C is the same as the k*-parity of C.
(3) The children in F*(P) of a node C of k-parity b are the maximal SCCs D C C of
k-parity 1 —b.

Proof. Because F*(P) is obtained from the minStates-forest of P by a sequence of merges,
F*(P) is a decreasing forest of SCCs of M rooted in ) by Proposition 8.2. Let Fy denote
the minStates-forest of P, and let F; denote the forest after ¢ merges have been performed
in the computation to produce the canonical acceptor F*(P).

By Proposition 8.3, for any SCC D, k(D) = k(Node(D, Fy)), so property (1) holds for
Fo. We show by induction that it holds for each F; and therefore for F*(P). Assume that
property (1) holds of F;, and Fi4 is obtained from F; by merging child node D into parent
node C. Let D' be any SCC. If Node(D’, F;) = Node(D’, F;11), then because property (1)
holds in F;, we have that the x-parity of D’ is the same as the s-parity of Node(D’, F;11).
Otherwise, it must be that D = Node(D’, ;) and C = Node(D', F;11). Because D is only
merged to C' if they are of the same x-parity, this implies that the s-parity of D’ is the same
as the k-parity of C'. Thus, property (1) holds also in F; ;.

For property (2), we note that the k-parity and the x*-parity of each root node of F*(P)
is the same. Suppose C is a node of F*(P) whose k-parity and x*-parity are equal to b, and
D is a child of C. Then by the construction of F*(P), the k-parity of D is 1 —b. And by
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the definition of k*, the x* parity of the elements of A(D) is the opposite of the x*-parity of
the elements of A(C). Because the k*-parity of C' is b, the k*-parity of D is also 1 — b.

For property (3), let D be any maximal SCC of P that is contained in C' and has
k-parity 1 —b. Then Node(D, Fp) is contained in C' and has the same k-parity as D. Since
D is maximal, we must have D = Node(D, Fy), and any nodes on the path between C' and
D must have k-parity b and must be merged into C' to form F*(P). Thus, D is a child of C
in F*(P).

Conversely, if D is a child of C' in F*(P) then D C C and the k-parity of D is 1 —b.
Assume D’ is an SCC such that D’ C C, the k-parity of D' is 1 —b and D C D’. Then
D" = Node(D', Fp) is a descendant of C' in Fy that has k-parity 1 — b, and D C D", so
because there is another node of parity 1 — b on the path between D and C in Fy, D cannot
be a child of C'in F*(P), a contradiction. ]

Replacing the coloring function of P by the canonical coloring does not change the
w-language accepted.

Theorem 8.6. Let P = (X,Q, q,,0, k) be a complete DPA, and P* be P with the canonical
coloring k* for P in place of k. Then P and P* recognize the same w-language.

Proof. Let w be an w-word and let D = inf{w). This is an SCC of the (common) automaton
of P and P*. Let C = Node(D, F*(P)). Then DN A(C) # 0, and «*(D) = x*(C), by
the definition of k*, The k* parity of C' is the same as the k-parity of C, by property (2)
of Theorem 8.5. The k-parity of C' is the same as the k-parity of D, by property (1) of
Theorem 8.5. Thus, the k*-parity of D is the same as the x-parity of D, and w € [P] iff

w € [P*]. []
8.3. Constructing TE;A. We now describe the construction of TEZ?, the second part of
the characteristic sample for an IPA P with the automaton M of n states. The sample TAPC?

consists of one example u(v)* = Witness(C, M) of length O(n?) for each reachable SCC C
in the canonical forest F*(P). The example u(v)® is labeled 1 if it is accepted by P and 0
otherwise. Thus TEZ? contains at most n labeled examples, each of length O(n?).

8.4. The learning algorithm L}L‘I;?. Given a complete deterministic automaton M =

(3,Q,q.,9) and a sample T as input, the learning algorithm Lffclz attempts to construct a
coloring of the states of M consistent with T

The algorithm first constructs the set Z of all C' C @ such that for some labeled example
(u(v)¥,1) in T we have C' = infy(u(v)®). If two examples with different labels are found to
yield the same set C| this is evidence that the automaton M is not correct, and the learning
algorithm returns the default acceptor of type DPA for T

Otherwise, each set C' in Z is associated with the label of the one or more examples that
yield C'. The set Z is partially ordered by the subset relation. The learning algorithm then
attempts to construct a rooted forest F’ with nodes that are elements of Z, corresponding
to the canonical forest of the target acceptor. Initially, 7' contains as roots all the maximal
elements of Z. If these are not pairwise disjoint, it returns the default acceptor of type DPA
for T'. Otherwise, the root nodes are all marked as unprocessed.

For each unprocessed node C in F’, it computes the set of all D € Z such that D C C,
D has the opposite label to C, and D is maximal with these properties, and makes D a child
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of C' and marks D as unprocessed. When all the children of a node C have been determined,
the algorithm checks two conditions: (1) that the children of C' are pairwise disjoint, and
(2) there is at least one ¢ € C that is not in any child of C. If either of these conditions
fail, then it returns the default acceptor of type DPA for T'. If both conditions are satisfied,
then the node C' is marked as processed. When there are no more unprocessed nodes, the
construction of F’ is complete. Note that F' has at most |Q| nodes.

When the construction of F' is complete, for each node C' in F’ let A(C) denote the
elements of C that do not appear in any of its children. Then the learning algorithm assigns
colors to the elements of ) starting from the roots of F’, as follows. If C is a root with label
[, then k'(q) =1 for all ¢ € A(C). If the elements of A(C) have been assigned color k and
D is a child of C, then k'(q) = k + 1 for all s € A(D). When this process is complete, any
uncolored states g are assigned '(¢q) = 0.

If the resulting DPA (M, k') is consistent with the sample T, the algorithm Lffc/z returns
(M, k'). If not, it returns the default acceptor of type DPA for T.

Theorem 8.7. Algorithm L%Z‘g runs in time polynomial in the sizes of the inputs M and
T. Let P be an IPA. If the input automaton M is isomorphic to the automaton of P, and

the sample T is consistent with P and subsumes ijf, then algorithm LXZ‘? returns an IPA
(M, k) equivalent to P.

Proof. The construction of k' can be done in time polynomial in the sizes of M and T. The
returned acceptor is consistent with 7' by construction.

Assume the input M = (X, @, q,,0) is isomorphic to the automaton of P, and that 7" is
consistent with P and subsumes TEZ?. For ease of notation, assume the isomorphism is the
identity. We show that the forest F’ constructed by the learning algorithm is equal to the
canonical forest of F*(P), the coloring ' is equal to the canonical coloring x*, and therefore
the acceptor (M, «') is equivalent to P.

The roots of F*(P) are the maximal SCCs contained in @, and for each such root C,
TPA contains an example (u(v)*,l) such that C' = inf(u(v)*). Thus, the set of maximal
elements of Z is equal to the set of roots of F*(P).

Let C be any node of F*(P), and let D be a child of C' in F*(P). Then D is an SCC,
D C (C, the parity of D is opposite to the parity of C, and D is maximal in the subset
ordering with these properties, by property (3) of Theorem 8.5. In the sample T 1142? there is
an example (u(v)“,l) with D = inf(u(v)“), so D is an element of Z, and will be made a child
of C' in F' because D C C, the label [ is the opposite of the label of C, and D is maximal
in Z with these properties. Conversely, if D is made a child of C' in F’, then D C C, the
label of D is opposite to the label of C' (that is, they are of opposite k-parity), and D is
maximal in Z with these properties. This implies D is a child of C' in F*(P), by property
(3) of Theorem 8.5.

By induction, F’ is equal to F*(P), and therefore ’ is equal to the canonical coloring
k*. Then the IPA (M, ') is equivalent to P, by Theorem 8.6. Because T is consistent with

P, the IPA (M, «') is returned by LIPA. L]

Theorem 8.8. The class IIPA is identifiable in the limit using polynomial time and data.

Proof. Let P be an IPA accepting the language L. The characteristic sample T7, = TAutUTXZ?

for P is of size polynomial in the size of P.
The combined learning algorithm LPA with a sample T as input first runs L 4, on T
IPA

to get a complete deterministic automaton M and then runs L} on inputs M and T and
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returns the resulting acceptor. The running time of L™ is polynomial in the length of T
and the returned acceptor is consistent with 7.

Assume the sample T is consistent with P and subsumes 7. By Theorem 6.2, the
automaton M is isomorphic to the automaton of P. By Theorem 8.7, the acceptor (M, k')
is equivalent to P. Because it is consistent with T, the IPA (M, «’) is the acceptor returned
by LIPA. D

9. THE SAMPLE T4.c AND LEARNING ALGORITHM FOR IRA

In this section we introduce some terminology, establish a normal form for Rabin acceptors,
define an ordering on sets of states of an automaton, and then describe the learning algorithm
LIA%? and sample T ng for IRAs. We then prove that the classes IRA and ISA are identifiable
in the limit using polynomial time and data.

Let R = (3,Q,¢,9,«) be a Rabin acceptor, where the acceptance condition o =
{(G1,B1),...,(Gk, Bx)} is a set of ordered pairs of states. We say that an w-word w satisfies
a pair of state sets (G, B) iff inflw) NG # 0 and inflw) N B = 0. Also, w satisfies the
acceptance condition o iff there exists i € [1..k] such that w satisfies (G;, B;). Then an
w-word w is accepted by R iff w satisfies the acceptance condition « of R.

9.1. Singleton normal form for a Rabin acceptor. We say that a Rabin acceptor R
is in singleton normal form iff for every pair (G;, B;) in its acceptance condition we have
|G;| = 1, that is, every G; is a singleton set. To avoid extra braces, we abbreviate the
pair ({¢}, B) by (¢, B). Every Rabin acceptor may be put into singleton normal form by a
polynomial time algorithm.

Proposition 9.1. Let R = (3,Q, q,,0,«) be a Rabin acceptor where « = {(G1, B1), ...,
(Gg, Br)}. Define the acceptance condition o' to contain (q, B;) for every i € [1..k] and
q € G;, and let R' be R with o replaced by o/. Then R’ is in singleton normal form and
accepts the same language as R. Also, R is of size at most |Q| times the size of R.

Proof. If an w-word w satisfies a pair (¢, B) of o/, then there exists a pair (G;, B;) of a with
q € G; and B; = B, so w also satisfies the pair (G;, B;) in a. Conversely, if w satisfies a pair
(G;, B;) in a, then there exists ¢ € G; such that ¢ € inflw), so w also satisfies (¢, B;) in .
Each pair (G, B;) in « is replaced by at most |Q| pairs in /. ]

9.2. An ordering on sets of states. Given an automaton, we define an ordering < on sets
of its states that is used to coordinate between the characteristic sample and the learning
algorithm for an TRA.

Let M = (¥,Q,q,,0) be a deterministic complete automaton in which every state is
reachable from the initial state g,. Recall from Section 6.2 that access(q) is the shortlex
least string s € ¥* such that §(q,, s) = q.

For a set of states S, we define access(S) to be the sequence of values access(q) for g € S,
sorted into increasing shortlex order. We define the total ordering < on sets of states of M
as follows. If S1,S5y C @, then S; <X Sy iff either |Sy| < |S2| or |S1| = |S2| and the sequence
access(S1) is less than or equal to the sequence access(S2) in the lexicographic ordering,
using the shortlex ordering on %* to compare the component entries. For example, if
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access(S1) = (€, a,baa), access(S2) = (a,ba), and access(S3) = (€, ab, ba) then Sy < S} < Ss.

9.3. The learning algorithm LEC{CA. We begin with the description of the learning algo-

rithm LTC?, which is used in the definition of the sample TEC{? in the next section. The
inputs to Llﬁﬁ are a deterministic complete automaton M and a sample T'. The algorithm
attempts to construct a singleton normal form Rabin acceptance condition S to produce an
acceptor (M, ) consistent with 7.

The processing of an example w from T depends only on infy(w). The algorithm
first computes the set {infy((w) | (w,1) € T}, sorts its elements into decreasing order
C1,Co,...,Cp using =, and for each i € [1..£] chooses a positive example (z;,1) € T with
C; = infap(2).

At each stage k of the learning algorithm, S is a singleton normal form acceptance
condition. Initially, Sp = () (which is satisfied by no words) and k = 0.

The main loop processes the positive examples z; for i = 1,2,...,¢. If z; is accepted by
(M, Bk), then the algorithm goes on to the next positive example. Otherwise, we say that
the example z; causes the update of Bj. Let G = infyq(z;) and B = Q \ G and let Sy, be the
set of pairs (¢, B) such that ¢ € G and there is no negative example (w,0) in T such that w
satisfies (¢, B). Then Bi41 is set to S U Sk and k is set to k + 1.

When the positive examples z1, 22, . . ., z¢ have been processed, let 5 = [, for the final
value of k. If the Rabin acceptor (M, [3) is consistent with 7', then it is returned. If not, the
learning algorithm returns the default acceptor of type DRA for T'.

Proposition 9.2. Let R be an IRA in singleton normal form with acceptance condition o
and assume that the input M is an automaton isomorphic to the automaton of R. Assume
the sample T is consistent with R. For each k, if z; is the example that causes the update of
Bk, then (M, By) accepts z; for all j < i. Moreover, (M, ) is consistent with T

Proof. No pair (¢, B) is added to the acceptance condition if there is a negative example in
T that satisfies it, so (M, ) is consistent with all the negative examples in T

Consider any positive example (w, 1) from T'. There exists ¢ with infyq(w) = infu(z;).
When z; is processed by the algorithm, if it is already accepted by the current (M, Bx),
then it (and the word w) is also accepted by every subsequent hypothesis, including (M, ),
because pairs are not removed from Jy.

Otherwise, z; causes the update to Bi, and among the pairs in S that are added to (G
there is at least one that z; satisfies. To see this, note that z; must satisfy some pair in «,
say (¢, Bj). Thus, ¢ € inf(z;) and B; N inf(z;) = (). The pair (¢, B) where B = Q \ inf(z;)
has B; C B. Thus any w-word that satisfies (¢, B) will also satisfy (¢, B;). Because T is
consistent with R, there can be no negative example in T" satisfying (¢, B), so pair (g, B) is
part of S and is added to . The word z; (and the word w) satisfies (¢, B) and is therefore
accepted by (M, Bi+1) and every subsequent hypothesis, including (M, j3). L]

9.4. Constructing T E}CA. In this section we describe the construction of the sample TEC{?,

which conveys the acceptance condition of an IRA. Let R = (X, @, q,, J, &) be a deterministic
complete IRA of n states in singleton normal form, and let M be its automaton. The

construction of the sample T/I&CA proceeds in stages, simulating the learning algorithm Lg({:‘é



10:36 D. ANGLUIN AND D. FISMAN Vol. 20:4

on the portion of the sample constructed so far to determine what examples still need to be
added.

Initially, 7o = () and k = 0. The acceptance condition 7 tracks the learning algorithm’s
Bk The set of words accepted by (M, ;) is always a subset of the set of words accepted by
(M, @). The main loop is as follows. If (M, ) is equivalent to (M, «r) then the construction
of T}&? is complete.

Otherwise, let Dy, be the set of w-words that satisfy a but not ;. Let C be the <-largest
set in {inflw) | w € Dy}, and let wy; = Witness(C, M), an ultimately periodic word of
length O(n?). Then w41 is added as a positive example to T2

Let B = Q \ inf(wgy1). Define Py to be the set of all (¢, B) such that ¢ € inf(wyy1) and
there is no w-word w’ that satisfies (¢, B) but not a. Set yxy+1 = Y% U Pg.

For each ¢ € inf(wg41) such that there is some w-word w’ that satisfies (¢, B) but not
a, let u(v)¥ = Witness(inf(w'), M) for some such w’ and include (u(v)¥,0) as a negative
example in Tae.. The example u(v)* is of length O(n?). Then set k to k + 1 and continue
with the main loop.

We prove a polynomial bound on the number of examples added to the sample TE}?,
thus showing that its length is bounded by a polynomial in the size of R.

Proposition 9.3. If the acceptance condition « is in singleton normal form and has m
pairs, then at most m positive ezamples and at most m|Q| negative examples are added to
Tace-

Proof. We say an acceptance condition =y covers a pair (g, B) iff every w-word w that satisfies
(g, B) also satisfies v. We will show that after each positive example wyy1 is added to Tcc,
the condition v;41 covers at least one pair in o that was not covered by k.

Suppose not, and let k£ + 1 be the least index for which ;41 does not cover a pair of o
that was not covered by 7. Because wy1 is an example that satisfies « but not ~y, there
must be a pair (¢, B;) of « that is satisfied by wy;. Note that v, does not cover the pair
(¢, Bj). Then ¢ € inflwy41) and letting B = Q \ inflwy1), B; € B. The pair (¢, B) will
be added to 7y, in constructing ;11 because every word that satisfies (¢, B) also satisfies
(g, B )-

If 4411 does not cover (g, Bj), there must be a word w’ that satisfies (¢, B;) but not
(g,B). So q € inf{w') and Bj N inflw') = 0 but BN inf{w') # 0. Let B’ = Q \ inf(w'), so
B; C B'. We have BN B’ C B. Because inf(wyy1) and inf(w’) are SCCs that overlap in
¢, their union is an SCC as well. Let w” be an w-word such that inf(w”) is the union of
inf(wy+1) and inf{w’). Then @ \ inf{w”) = BN B’. Note that w” satisfies (¢, Bj) because
B; C BN B’ and thus is a positive example of a.

Because BN B’ is a proper subset of B, inf{w”) is a proper superset of inf{wy1) and
the positive example w” would have been considered before w1 in the construction of Tac..
(We can imagine all the positive examples of « being considered in order to find a maximum
positive counterexample at each stage.) At that time, it was either passed over because (1)
the current ~, already covered it, or (2) it contributed a new pair to the current ~, to yield
Yr41-

In case (1), there is some pair (¢”, B”) in ~, that is satisfied by w”. Then ¢" €
inf(w”) and B” N inf{lw”) = 0. Recall inf(w”) is the union of inflwg41) and inf(w’). Thus,
B’ ninflwg11) = 0 and B” N inflw') = (. Note that ¢” € inf(wg41) or ¢” € inflw’). If
¢" € inflwy41), w41 satisfies the pair (¢”, B”) in +;, a contradiction, because wy; is not
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accepted by v, and r < k. And if ¢” € inf(w') then w' satisfies the pair (¢”, B”) in 7., a
contradiction, because w’ is not accepted by Y41 and r < k.

In case (2), the positive example w” contributes at least one term (¢”, B”) to v,41. In
this case B” = BN B and ¢” € inf(w"). Thus, ¢" € inflwi11) or ¢ € inf{w’), so wg41 or
w' satisfies the term (¢”, B”) of 4,41, a contradiction because r + 1 < k and neither w1
nor w’ is covered by 7.

Thus, each positive example added to Ty.. covers a new pair of «, and at most m
positive examples can be added. Each positive example added requires at most |@Q| negative
examples to avoid adding incorrect pairs, so at most m|Q)| negative examples are added. []

9.5. Correctness of LEECA. We prove the correctness of the learning algorithm Lffc? and

show that the classes IRA and ISA are identifiable in the limit using polynomial time and
data.

Theorem 9.4. Algorithm Lﬁﬁf runs in time polynomial in the sizes of the inputs M and
T. Let R be an IRA. If the input automaton M is isomorphic to the automaton of R, and
the sample T is consistent with R and subsumes ngf, then algorithm Lﬁﬁf returns an IRA

(M, B) equivalent to R.

Proof. By Proposition 5.3, Lgﬁ? can construct the sequence z1, 29, ..., z; and the successive
acceptance conditions (8 in time polynomial in the size of M and the length of T

Assume R is an IRA, that M is isomorphic to the automaton of R, and that the sample
T is consistent with R and subsumes TEC{?. For ease of notation, we assume that the
isomorphism is the identity.

We show by induction that for each k, the acceptance condition f; in the learning
algorithm Lfﬁﬁ‘ is the same as the acceptance condition -, in the construction of T}&f‘. This
is true for k = 0 because By = v9 = 0.

Assume that 8y = 7y for some k > 0. If (M, ;) is equivalent to R = (M, «), then also
(M, Bg) is equivalent to R, and none of the remaining positive examples cause any additions
to Bg. Thus this is the final value of k, so f = f; and (M, ) is equivalent to R.

If (M, ) accepts a proper subset of the language accepted by (M, ), then in the
construction of sample T' A%?? Dy, is equal to the w-words accepted by (M, a) but not by
(M, 7x). This causes the positive example (wy41,1) to be added to THRA | where inf(wy1)
is <-largest in the set {infy((w) | w € Dy }.

In the learning algorithm, because (M, fi) does not accept w1, Proposition 9.2 implies
that there must be an example z; that causes the update to 8, and all of the examples
21,...,2i—1 are accepted by (M, fi). Because for every positive example (w, 1) in T there
exists j such that infy((w) = infaq(2;), there must be some 7 such that infy((wiy1) =
infpq(z,). Moreover, i < r.

If i < r, then infyq(w;) is strictly <-larger than infy((w,), which contradicts the choice
of w41 by the sample construction procedure, because z; is accepted by (M, «) but not
(M, k). Thus i = r and the example z; = w1 is the element that causes the update to
Br. The negative examples included in T}Eﬁ for the positive example w11 ensure that the
update to [ is the same as the update to v, and Sx11 = Yrt1-

Because £, and v are equal for all k, for the final value of k, 8 = B = &, and therefore
(M, B) is equivalent to R. Because the IRA (M, j3) is consistent with T, it is the acceptor

IRA
returned by L. L]
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Theorem 9.5. The classes IRA and ISA are identifiable in the limit using polynomial time
and data.

Proof. By Proposition 5.1 it suffices to prove this for IRA. Let R be an IRA in singleton

normal form accepting the language L. The characteristic sample T, = T4y U TE;? is of

size polynomial in the size of R.

The combined learning algorithm with a sample T as input first runs L4, on T
to get a deterministic complete automaton M and then runs LIE:? on inputs M and T and
returns the resulting acceptor. L'® runs in time polynomial in the length of T' and returns
a DRA consistent with T.

Now assume that the sample 7T is consistent with R and subsumes 77. Then by
Theorem 6.2, the automaton M is isomorphic to the automaton of R. By Theorem 9.4,
the acceptor returned by T'®A is an IRA (M, 3) that is equivalent to R, and this is the
acceptor also returned by LA, L]

LIRA

10. CONSTRUCTING CHARACTERISTIC SAMPLES IN POLYNOMIAL TIME

The definition of identification in the limit using polynomial time and data requires that a
characteristic sample exist and be of polynomial size, but says nothing about the cost of
computing it. An additional desirable property is that a characteristic sample be computable
in polynomial time given an acceptor A as input. Recall that when this holds, we say
that the class is efficiently teachable. We now show that given an acceptor that is fully
informative we can design efficient teachers, i.e. algorithms that run in polynomial time
and compute the characteristic samples we have defined. This is conditioned on having
polynomial time algorithms for equivalence (that are given in Sections 11-14). To claim the
class IXA is efficiently teachable we also need to show that we can construct such sets when
starting with an acceptor that is not, say an IBA, but has an equivalent IBA acceptor (and
similarly for the other classes). This is done in Sections 15-16.

10.1. Computing Ta,:. For Ta,:, we need to be able to decide for two states ¢; and ¢o of
an acceptor A whether there exists an w-word that distinguishes them, and if so, to return
one such word. We are thus led to consider the problems of inclusion and equivalence.

The problems of inclusion and equivalence. The inclusion problem is the following.
Given as input two w-acceptors A; and As over the same alphabet, determine whether
the language accepted by A; is a subset of the language accepted by Ao, that is, whether
[A1] C [Az2]. If so, the answer should be “yes”; if not, the answer should be “no” and a
witness, that is, an ultimately periodic w-word u(v)¥ accepted by A; but rejected by As.

The equivalence problem is similar: the input is two w-acceptors A; and Ay over the
same alphabet, and the problem is to determine whether they are equivalent, that is, whether
[A1] = [A2]. If so, the answer should be “yes”; if not, the answer should be “no” and a
witness, that is, an ultimately periodic w-word u(v)* that is accepted by exactly one of Ay
and .AQ.

If we have a procedure to solve the inclusion problem, at most two calls to it will solve the
equivalence problem. We describe polynomial time algorithms to solve the inclusion problem
for DBAs, DCAs and DPAs in Section 11 and 12, for DRAs and DSAs in Section 13, and
for DMAs in Section 14. Referring to those sections, we obtain polynomial time algorithms
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to solve the equivalence problem for DBAs, DCAs and DPAs from Theorem 11.1 and
Theorem 12.2, for DRAs and DSAs from Theorem 13.2, and for DMAs from Theorem 14.6.
Thus, we have the following.

Theorem 10.1. Given an acceptor A of type IBA, ICA, IPA, IRA, ISA, or IMA, the
sample Tayt for the automaton portion of A can be computed in polynomial time.

Proof. Given an acceptor A and two states ¢; and ¢z, to determine whether there is an
w-word that distinguishes them, we call the relevant polynomial time equivalence algorithm
on the acceptors A% and A%, which returns a distinguishing word u(v)“ if they are not
equivalent. []

10.2. Computing T 4... For T4, the requirements depend on the type of acceptor.

Proposition 10.2. Given an IBA B, the sample Tfff can be computed in time polynomial
in the size of B.

Proof. Given an IBA B = (3,Q, q,, 0, F') with automaton M, the sample T}Eﬁ described
in Section 7.2 is computed as follows. For each SCC C € maxSCCs(Q \ F), let u(v)¥ =
Witness(C, M) and include the negative example (u(v)?,0) in T2

To see that these examples are sufficient, suppose that g € @) and w € X are such that
B rejects w and ¢ € inflw). Then D = inflw) is an SCC of B contained in @ \ F, so it is
contained in some C' € mazSCCs(Q \ F), and there is a negative example (u(v)¥,0) in T2
such that influ(v)¥) = C. Because D C C, we have ¢ € C.

Proposition 10.3. Given an IPA P, the sample ngf can be computed in time polynomial
in the size of P.

Proof. Given an IPA P with automaton M, the computation of TAPCQ proceeds as described

in Section 8.3. That is, the canonical forest F*(P) is computed in polynomial time, and for
each node C' in the forest, u(v)* = Witness(C, M) is computed and (u(v)“,l) is added to

TEC)?, where [ is the label of node C' in the canonical forest. []

Proposition 10.4. Given an IRA R, the sample Tfjf can be computed in time polynomial
in the size of R.

Proof. Given an IRA R = (M, «), the computation of T4.. proceeds as described in
Section 9.4. At each stage of the computation, it is necessary to find an w-word u(v)¥ with
the =-largest infy(u(v)*) that is accepted by (M, a) and rejected by (M, ;). Theorem 13.2
gives a polynomial time algorithm that not only tests the inclusion of two DRAs, but returns
a witness u(v)* with the <-largest infa((u(v)*) in the case of non-inclusion, because M is
isomorphic to M x M. L]

Proposition 10.5. Given an IMA A, the sample Tfl]ggA can be computed in time polynomial
in the size of A.

Proof. Given an IMA A = (M, F), the sample TE\C/[CA described in Section 7.1 is computed as
follows. For each F' € F determine whether F' is a reachable SCC of M, and if so, compute
u(v)® = Witness(F, M) and add (u(v)¥, 1) to the sample T'MA, []

Theorem 10.6. Let A be an IBA, IPA, IRA, or IMA accepting the w-language L. Then
the characteristic sample Tr, for A can be computed in polynomial time in the size of A.
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Proof. By Theorem 10.1, the sample T4, can be computed in polynomial time in the size
of A, and by Proposition 10.2, 10.3, 10.4, or 10.5 the sample T34, TIPA TIRA " op TIMA
can also be computed in polynomial time in the size of A. []

Note that Theorem 10.6 does not imply that the class IXA for X € {B,P,R,M} is
efficiently teachable, since this class also has representations by non-isomorphic automata.

11. INCLUSION ALGORITHMS

We show that there are polynomial time algorithms for the inclusion problem for DBAs,
DCAs, DPAs, DRAs, DSAs and DMAs. Recall that two calls to an inclusion algorithm
suffice to solve the equivalence problem. By Claim 2.2 (4), the inclusion and equivalence
problems for DCAs are efficiently reducible to those for DBAs, and vice versa. Also, by
Claim 2.2 (1), the inclusion and equivalence problems for DBAs are efficiently reducible to
those for DPAs. Thus it suffices to consider the inclusion problem for DPAs, DRAs and
DMAs.

Remark. In the case of DFAs, a polynomial algorithm for the inclusion problem can be
obtained using polynomial algorithms for complementation, intersection and emptiness (since
for any two languages Ly C Lo if and only if L1 N Ly = (). However, a similar approach
does not work in the case of DPAs; although complementation and emptiness for DPAs can
be computed in polynomial time, intersection cannot [Bok18, Theorem 9].

For the inclusion problem for DBAs, DCAs and DPAs, Schewe [Sch10, Sch11] gives the
following result.

Theorem 11.1 [Sch10]. The inclusion problems for DBAs, DCAs and DPAs are in NL.

Because NL (nondeterministic logarithmic space) is contained in polynomial time, this
implies the existence of polynomial time inclusion and equivalence algorithms for DBAs,
DCAs and DPAs. For the sake of completeness, and to address the problem of returning a
witness we include a proof sketch.

Proof sketch. For i = 1,2, let P; = (X,Q;,(q,):, %, ki) be a DPA. Tt suffices to guess two
states ¢1 € Q1 and ¢2 € @2, and two words u € ¥* and v € X, and to check that for
i=1,2,0;((q.)i,u) = ¢; and &;(¢;,v) = q;, and also, that the smallest value of x1(q) in the
loop in P; from ¢ to ¢; on input v is odd, while the smallest value of k2(gq) in the loop in
Py from g2 to g2 on input v is even. If these checks succeed, then [P;] is not a subset of
[P2], and the ultimately periodic word u(v)* is a witness.

Logarithmic space is enough to record the two guessed states q; and ¢ as well as the
current minimum values of k1 and k9 as the loops on v are traversed in the two automata.
The words u and v need only be guessed symbol-by-symbol, using a pointer in each automaton
to keep track of its current state. []

This approach does not seem to work in the case of testing DRA or DMA inclusion,
because the acceptance conditions would seem to require keeping track of more information
than would fit in logarithmic space. To supplement the proof sketch for Schewe’s theorem,
in the next section (Section 12) we give an explicit polynomial time algorithm for testing
DPA inclusion.

For inclusion of DRAs and DMAs, [CDK93] provides a reduction to the problem of model
checking a formula in the temporal logic CTL*. While the complexity of model checking
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CTL* formulas is in general PSPACE-hard, for the fair-CTL fragment, [EL87] provides a
model checking algorithm that runs in polynomial time. It is further shown in [CDK93]
that the CTL* formulas they reduce to can be modified to formulas in a fragment slightly
extending fair-CTL that can still be handled by the model checking algorithm of [EL87] for
fair-CTL. Thus overall this gives a polynomial time algorithm for inclusion of DRAs and
DMAs. Since our learning algorithm relies on the sample including shortlex examples and
the algorithm above does not guarantee shortlex counterexamples, we give in Section 13 and
Section 14 polynomial time automata-theoretic algorithms for testing inclusion for DRAs
and DMAs that provide shortlex counterexamples, which are novel results.

12. INCLUSION AND EQUIVALENCE FOR DPAs, DBAs, DCAs

In this section we describe an explicit polynomial time algorithm for the inclusion problem
for two DPAs, which yields algorithms for DBAs and DCAs. If P = (£,Q,q,,0,k) is a
complete DPA and w € ¢, we let P(w) denote the minimum color visited by P infinitely
often on input w, that is, P(w) = k(inf(w)).

12.1. Searching for w with given minimum colors in two acceptors. We first describe
an algorithm that searches for an w-word that yields specified minimum colors in two different
DPASs over the same alphabet.

For i =1,2, let P; = (X, Qs, (¢.)i, 0i, ki) be a DPA, and let M; be the automaton of P;.
Given inputs of P; and Py and two nonnegative integers ki and ko, the Colors algorithm
constructs the product automaton M = My x Mz and the set Q' = {(q1,92) € Q1 x Q2 |
k1(q1) > k1 A ka(q2) > ka}.

The algorithm then computes S = mazSCCs(Q’) for the automaton M, and loops
through the SCCs C' € S checking whether C' is reachable in M, min(x1(m1(C))) = k1, and
min(ke(m2(C))) = k. If so, it returns the ultimately periodic word u(v)* = Witness(C, M).
If none of the elements C' € S satisfies this condition, then the answer “no” is returned.

Theorem 12.1. The algorithm Colors takes as input two DPAs Py and Po over the same
alphabet and two nonnegative integers k1 and ko, runs in polynomial time, and determines
whether there exists an w-word w such that P1(w) = ki1 and Pa(w) = ko. If not, it returns the
answer “no”. If so, it returns an ultimately periodic w-word w(v)® such that P1(u(v)¥) = k1
and Pa(u(v)?) = ke.

Proof. The polynomial running time of the algorithm follows from Props. 5.4 and 5.7. To
see the correctness of the algorithm, suppose first that it returns an ultimately periodic
word u(v)“. This occurs only if it finds an SCC C' of M such that C is reachable in M,
k1(m1(C)) = k1, and ka(m2(C)) = ko. Then for i = 1,2, m;(C) is the set of states visited
infinitely often by M, on the input u(v)*, which has minimum color k;.

To see that the algorithm does not incorrectly answer “no”, suppose w is an w-word
such that for i = 1,2, P;(w) = k;. Let D; = infyq, (w) be an SCC of M,. No state in D; has
a color less than k;, so if D = infyq(w), then D C @Q'. Also, D is a reachable SCC in M.

Then D is contained in some element C of mazSCCs(Q’). Because there are no states
(q1,q2) in C with k1(q1) < k1 or ka(g2) < k2, we must have x;(m;(C)) = k; for i = 1,2. Also,
C is reachable in M because D is. Thus, the algorithm will find at least one such C and
return u(v)* such that infy(u(v)*) = C. ]
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12.2. An inclusion algorithm for DPAs. The inclusion problem for DPAs P; and P»
over the same alphabet can be solved by looping over all odd k; in the range of k; and all
even ko in the range of ko, calling the Colors algorithm with inputs P1, Po, ki1, and ks. If
the Colors algorithm returns any witness u(v)¥, then u(v)* € [P1] \ [P2], and u(v)* is
returned as a witness of non-inclusion. Otherwise, by Theorem 12.1, there is no w-word w
accepted by P; and not accepted by Po, and the answer “yes” is returned for the inclusion
problem. Note that for i = 1,2, the range of x; has at most |Q;| distinct elements. Thus we
have the following.

Theorem 12.2. There are polynomial time algorithms for the inclusion and equivalence
problems for two DPAs over the same alphabet.

From Claim 2.2 (1 and 4), we have the following.

Theorem 12.3. There are polynomial time algorithms for the inclusion and equivalence
problems for two DBAs (or DCAs) over the same alphabet.

13. AN INCLUSION ALGORITHM FOR DRAS

In this section we describe a polynomial time algorithm to solve the inclusion problem for
two DRAs. The algorithm returns a <-largest witness in the case of non-inclusion.

Algorithm 1 SubInc??4

Input: Two DRAs Ry = (Mj,a;1) and Ry = (Ma,as) in singleton normal form, where a3 =
{(¢’,B")} and a2 = {(q{, BY), ..., (g, By)}, and a set S of states of M = My x M.
Output: u(v)? € [R1] \ [Rz] with infa(u(v)¥) C S if such exists, else “none”.
M= M1 X M2
W0
S+ S\ {(q1,42) €S| q1 € B'}
C + mazSCCs(S")
for each reachable C' € C such that ¢’ € m(C) do
if for no j € [1..k] is ¢} € m2(C) and B} Nmy(C) = 0 then
W« W U {Witness(C, M)} > A new candidate witness
else
J={q] |j€[l.k],B} Nmy(C) =0}
S C\ {(ql,QQ) eC ‘ g2 € J}
Call SubInc?®4 recursively with Ry, R, and S”
if the returned value is u(v)* then
W+~ WU {u(v)“}
if Wis () then
return “none”
else
Let u(v)® € W have the <-largest value of infa(u(v)*)
return u(v)*

The algorithm SubInc”?4 takes as input two DRAs Ry = (M1,aq) and Ry = (Mg, a3)
in singleton normal form, where oy consists of a single pair (¢, B'). It also takes as input
a subset S of the state set of the product automaton M = M; x Ms. The problem it
solves is to determine whether there exists an w-word u(v)¥ with infaq(u(v)¥) C S such that
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u(v)® € [R1] \ [R2]. If there is such a word, the algorithm returns one with the <-largest
value of infaq(u(v)®), and otherwise, it returns “none”.

Proposition 13.1. Fori = 1,2 let R; = (M;,a;) be a DRA in singleton normal form.
Assume ay = {(¢', B")} and a2 = {(¢{, BY), ..., (q}, B})}. Let M = My x My, and let S be
a subset of the states of M. Then with inputs R1, Ro, and S, the algorithm SubInc”f4 runs
in polynomial time and returns u(v)” € [R1] \ [Re] with the <-largest value of infuq(u(v)”)
contained in S, if such exists, else it returns “none”.

Proof. When the element u(v)* = Witness(M, C) is added to W, we have that C' is a
reachable SCC of M contained in S, ¢’ € m1(C), and B’ N 71 (C) = () (because S’ contains
no elements (q1,¢q2) with ¢ € B’), so (M1,{(¢’, B")}) accepts u(v)“. Also, we have that
for no j € [1..k] do we have ¢ € m(C) and B} N my(C) = 0, so Ry rejects u(v)”. Thus,
any returned w(v)¥ is a witness to the non-inclusion of [(M;i,{(¢’, B)})] in [R2] with
infag(u(v)?) C S.

We now show by induction on the recursive calls that if w is any w-word such that
infp(w) € S, (M1, {(¢,B’)}) accepts w, and Ry rejects w, then SubInc”?4 returns a
witness u(v)“ such that infaq(u(v)¥) is at least as large as infyq(w) in the <-ordering. Let
D = infp(w). Then D is a reachable SCC of M such that ¢’ € m1(D), B'Nm (D) = 0,
and for no j € [1..k] do we have ¢; € m2(D) and B} Nm2(D) = 0. Then D C S’ because
B'Nm(D) = (. Thus, D must be a subset of exactly one of the elements C' of mazSCCs(S").
Then C' is reachable, ¢ € m1(C), and B’ N1 (C) = 0 (because C is a subset of S').

If C' is such that for no j € [1..k] do we have ¢} € m(C) and B} Nm2(C) = 0, then a
witness u(v)¥ = Witness(C, M) is added to W, and we have that C = infy(u(v)®) is at
least as large in the <-ordering as D = infy((w), because D C C.

Otherwise, the set J = {¢] | j € [1..k], Bf Nm2(C) = 0} is non-empty, and the algorithm
removes from C all the states (q1, ¢2) such that g2 € J to form the set S”. Because D C C,
if B Nma(C) =0, then also B} Nma(D) = 0. Thus, if for any ¢; € J we have ¢} € ma(D),
this would violate the assumption that Rs rejects w. Hence, D C S”, and by the inductive
assumption on the recursive calls, the recursive call to SubInc”?4 returns a witness u(v)®
such that infaq(u(v)) is at least as large in the <-ordering as infy(w). Because the top-level
algorithm returns u(v)* to maximize infyq(u(v)*) with respect to =<, it will be at least as
large as infaq(w).

For the polynomial running time, we note that all the SCCs C' considered are distinct
elements of a decreasing forest of SCCs for the automaton M, and so there can be at most
as many as the number of states of M. ]

Theorem 13.2. There are polynomial time algorithms to solve the inclusion and equivalence
problems for two DRAs (resp. DSAs) R1 and Ro. In the case of non-inclusion or non-
equivalence, these algorithms return a witness u(v)* with the <-largest value of infaq(u(v)®),
where M s the product of the automata R1 and Ras.

Proof. Tt suffices to consider just DRAs, by Claim 2.2 (5). Given two DRAs Ry = (M1, 1)
and Ry = (Ma, az), we may assume they are in singleton normal form. Then for each pair
(¢i» B;) in a1, we call SubInc?#4 with inputs (M1, {(¢;, Bi)}), Ra, with S equal to the
whole state set of M. If all of these calls return “none”, then [R4] is a subset of [R2], and
the answer returned is “yes”. Otherwise, one or more calls return a witness, and u(v)* is
returned such that infy((u(v)®) is <-largest among the witnesses returned by the calls. The



10:44 D. ANGLUIN AND D. FISMAN Vol. 20:4

running time and correctness follow from the running time and correctness guarantees of
SubInc??4. []

14. AN INCLUSION ALGORITHM FOR DMAS

In this section we develop a polynomial time algorithm to solve the inclusion problem for
two DMAs over the same alphabet. The proof proceeds in two parts: (1) a polynomial time
reduction of the inclusion problem for two DMASs to the inclusion problem for a DBA and
a DMA, and (2) a polynomial time algorithm for the inclusion problem for a DBA and a
DMA.

14.1. Reduction of DMA inclusion to DBA/DMA inclusion. We first reduce the
problem of inclusion for two arbitrary DMAs to the inclusion problem for two DM As where the
first one has just a single final state set. For i = 1,2, define the DMA U; = (Q4, %, (q.), 6:, Fi),
where F; is the set of final state sets for U;. Let the elements of F; be {F1,..., F;}, and for
each j € [1..k], let

ul:j = <Q17 Ea (qL)l, (51, {F]}>7
that is, U1 ; is Uy with F} as its only final state set. Then by the definition of DMA
acceptance,

k
[eal = | th 4,
j=1
which implies that to test whether U] C [Us], it suffices to test for all j € [1..k] that
[t41,5] < ko]

Proposition 14.1. Suppose L is a procedure that solves the inclusion problem for two DMAs
over the same alphabet, assuming that the first DMA has a single final state set. Then there
18 an algorithm that solves the inclusion problem for two arbitrary DMAs over the same
alphabet, say Uy and Ua, which simply makes |F1| calls to L, where F is the family of final
state sets of U;.

Next we describe a procedure SCCtoDBA that takes as inputs a deterministic automa-
ton M, an SCC F of M, and a state ¢ € F, and returns a DBA B(M, F, q) that accepts
exactly L(M, F,q), where L(M, F, q) is the set of w-words w that visit only the states of F'
when processed by M starting at state ¢, and visits each of them infinitely many times.

Assume the states in F' are {qo,q1,...,¢m-1}, where go = q. The DBA B(M, F,q)
is (Q',%,q0,9",{qo}), where we define ' and ¢’ as follows. We create new states r; ; for
i,7 € [0..m — 1] such that i # j, and denote the set of these by R. We also create a new
dead state dy. Then the set of states Q" is Q U RU {dp}.

For ¢, the dead state dy behaves as expected: for all o € X, §'(dy,0) = dp. For the
other states in @', let 0 € ¥ and i € [0..m — 1]. If §(¢;, o) is not in F, then in order to deal
with runs that would visit states outside of F, we define §'(¢;,0) = dp and, for all j # i,
5/(7“1'7j, J) = do.

Otherwise, for some k € [0..m — 1] we have g = §(¢;,0). If k = (i + 1) mod m, then we
define ¢'(gi, o) = qi, and otherwise we define 0'(¢i, o) = 75, (i+1) mod m- For all j € [0.m — 1]
with j # i, if k = j, we define ¢'(r; j,0) = qx, and otherwise we define §'(r; j,0) = 7 ;.
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Figure 4. Example of the construction of B(M, F,q) with F' = {qo,q1,¢2} and
q = qo-

Intuitively, for an input from L(M, F,q), in B(M, F, q) the states ¢; are visited in a
repeating cyclic order: qo,q1,...,¢n—1, and the meaning of the state r;; is that at this
point in the input, M would be in state ¢;, and the machine B(M, F,q) is waiting for a
transition that would arrive at state ¢; in M, in order to proceed to state g; in B(M, F, q).°
An example of the construction is shown in Figure 4; the dead state and unreachable states
are omitted for clarity.

Lemma 14.2. Let M be a deterministic automaton with alphabet > and states Q, and
let F' be an SCC of M and q € F. With these inputs, the procedure SCCtoDBA runs in
polynomial time and returns the DBA B(M, F,q), which accepts the language L(M, F,q)
and has |F|? + 1 states.

Proof. Suppose w is in L(M, F,q). Let ¢ = sg, s1, S2, ... be the sequence of states in the
run of M from state ¢ on input w. This run visits only states in F' and visits each one of
them infinitely many times. We next define a particular increasing sequence iy of indices
in s, where k is a positive integer and ¢ € [0, m — 1]. These indices mark particular visits to
the states qo, q1, - .., ¢m—1 in repeating cyclic order. The initial value is i1 o = 0, marking
the initial visit to go. If i ¢ has been defined and ¢ < m — 1, then iy ¢4 is defined as the
least natural number j such that j > iy, and s; = g1, marking the next visit to gpyq1. If
¢ =m —1, then iy o is defined as the least natural number j such that j > i, and s; = qo,
marking the next visit to qp.

There is a corresponding division of w into a concatenation of finite segments wy 1,
W12, ..., W,m—1,W2,0, - - . between consecutive elements in the increasing sequence of indices.
An inductive argument shows that in B(M, F, q), the prefix of w up through wy ¢ arrives at
the state qg, so that w visits go infinitely often and is therefore accepted by B(M, F, q).

Conversely, suppose B(M, F, q) accepts the w-word w. Let s, s1, $2, ... be the run of
B(M, F,q) on w, and let tg,t1,t2,... be the run of M starting from ¢ on input w. An
inductive argument shows that if s,, = ¢; then ¢, = ¢;, and if s,, = r; ; then t,, = ¢;. Because
the only way the run sg, sy,... can visit the final state gy infinitely often is to progress
through the states qg, q1, ... gm—1 in repeating cyclic order, the run #g,t1, ... must visit only
states in F' and visit each of them infinitely often, so w € L(M, F, q).

9This construction is reminiscent of the construction transforming a generalized Biichi into a Biichi
automaton [Var08, Cho74], by considering each state in F' as a singleton set of a generalized Biichi, but here
we need to send transitions to states outside F' to a sink state.
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The DBA B(M, F\, q) has a dead state, and |F| states for each element of F', for a total
of |F|? 4+ 1 states. The running time of the procedure SCCtoDBA is linear in the size of
M and the size of the resulting DBA, which is polynomial in the size of M. ]

We now show that this construction may be used to reduce the inclusion of two DMAs
to the inclusion of a DBA and a DMA. Recall that if A is an acceptor and ¢ is a state of A,
then A? denotes the acceptor A with the initial state changed to q.

Lemma 14.3. Let Uy be a DMA with automaton My and a single final state set Fy. Let
Us be an arbitrary DMA over the same alphabet as Uy, with automaton Mo and family
of final state sets Fo. Let M denote the product automaton My x Mo with unreachable
states removed. Then [Ui] C [Us] iff for every state (qi1,q2) of M with g1 € Fy we have
[B(Mi, F1,q1)] € [Us°].

Proof. Suppose that for some state (¢1, g2) of M with ¢; € F, we have w € [B(My, F1,q1)]\
[U32]. Let Cy be the set of states visited infinitely often in B(Mj, Fi,q1) on input w, and
let C5 be the set of states visited infinitely often in U3* on input w. Then Q1 N Cy = F; and
Cy ¢ Fs. Let u be a finite word such that M(u) = (¢1,¢2). Then infoq, (uw) = Q1 NC = Fy
and infyg, (uw) = Co, so uw € U]\ [Us].

Conversely, suppose that w € U] \ [Uz]. For i = 1,2 let C; = infyq,(w). Note that
Cy = F) and Cy € Fy. Let w = xw', where z is a finite prefix of w that is sufficiently long
that the run of M7 on w does not visit any state outside C; after z has been processed,
and for i = 1,2 let ¢; = M;(x). Then (¢1,¢q2) is a (reachable) state of M, q; € F, and the
w-word w’, when processed by M, starting at state g; visits only states of Cy = F; and
visits each of them infinitely many times, that is, w’ € [B(My, F1,q1)]. Moreover, when w’
is processed by M starting at state go, the set of states visited infinitely often is C5, which
is not in Fy. Thus, w’ € [B(My, F1,q1)] \ [U3]. O

To turn this into an algorithm to test inclusion for two DMAs, U; with automaton My
and a single final state set [} that is an SCC of M; and Uy with automaton Ms, we proceed
as follows. Construct the product automaton M = M; x My with unreachable states
removed, and for each state (qi1,q2) of M, if g1 € Fy, construct the DBA B(My, F1,q1)
and the DMA U§? and test the inclusion of language accepted by the DBA in the language
accepted by the DMA. If all of these tests return “yes”, then the algorithm returns “yes” for
the inclusion question for i/, and Us. Otherwise, for the first test that returns “no” and a
witness u(v)¥, the algorithm finds by breadth-first search a minimum length finite word u’
such that M(u') = (¢1, g2), and returns the witness u'u(v)®.

Combining this with Proposition 14.1, we have the following.

Theorem 14.4. Let L be an algorithm to test inclusion for an arbitrary DBA and an
arbitrary DMA over the same alphabet. There is an algorithm to test inclusion for an
arbitrary pair of DMAs Uy and Us over the same alphabet whose running time is linear in
the sizes of Uy and Uy plus the time for at most k - |Q1] - |Q2| calls to the procedure L, where
k is the number of final state sets in Uy, and Q; is the state set of U; for i =1,2.

14.2. A DBA/DMA inclusion algorithm. In this section, we give a polynomial time
algorithm DBAinDMA to test inclusion for an arbitrary DBA and an arbitrary DMA over
the same alphabet.
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Assume the inputs are a DBA B = (M, F1) and a DMA U = (May, F). The overall
strategy of the algorithm is to seek an SCC C' of M = M; x Mj such that m (C) N Fy #
and mo(C) € F. If such a C is found, the algorithm calls Witness(C, M), which returns
u(v)¥ such that infy(u(v)®) = C. Because infa, (u(v)®) = m1(C) and 71 (C) N Fy # 0,
u(v)® € [B], and because infyg, (u(v)?) = m2(C) and ma(C) & F, u(v)? ¢ [U]. The details
are given in Algorithm 2.

Algorithm 2 DBAinDMA

Input: A DBA B = (M, F}) and a DMA U = (My, F), where Q; is the state set of M; for i = 1, 2.
Output: u(v)® € [B] \ [U] if such exists, else “yes”.
M= ./\/11 X Mz
C < mazSCCs(Q1 X Q2)
for each reachable C € C such that 7, (C) N Fy # 0 do
if m2(C) ¢ F then
return Witness(C, M)

else
for each F' € F such that F' C m5(C) and each ¢ € F do
S {(q1,02) € Q1 x Q2| 1 € m(C)ANga € F\ {q}}
D <+ mazSCCs(S)
for each D € D do
if m(D)NF; # 0 and m2(D) ¢ F then
return Witness(D, M)

return “yes”

Theorem 14.5. The DBAIinDMA algorithm runs in polynomial time and solves the
inclusion problem for an arbitrary DBA B and an arbitrary DMA U over the same alphabet.

Proof. Suppose the returned value is a witness u(v)“. Then the algorithm found an SCC
E with m(E) N Fy # () and 72(F) ¢ F and returned Witness(E, M). In this case, the
returned value is correct.

Suppose for the sake of contradiction that the algorithm incorrectly returns the answer
“yes” that is, there exists an w-word w such that w € [B] and w & [U]. Let C’ denote
infaq(w). Then because w € [B]], 71 (C") N Fy # (), and because w & [U], ma(C’) & F.

Then C is a subset of a unique SCC C' € mazSCCs(Q1 x Q2) and 71 (C)NFy # 0. It must
be that m5(C) € F, because otherwise the algorithm would have returned Witness(C, M).
Consider the collection

R={F € F|m(C') CFCm(C)}

of all the F' € F contained in m2(C') that contain mo(C”). The collection R is nonempty
because C' C C, and therefore mo(C”) C mo(C'), and m(C) € F, so at least mo(C) is in R.
Let F’ denote a minimal element of R in the subset ordering.

Then 72 (C") C F' but because mo(C’) € F, it must be that mo(C") # F’. Thus, there
exists some g € F’ that is not in m3(C”"). When the algorithm considers this F’ and ¢, then
because mo(C") C F'\ {q}, C’ is contained in R and therefore is a subset of a unique SCC
D in mazSCCs(R).

Because C' C D, and m(C') N Fy # 0, we have m1(D) N Fy # (. Also, m(C’) C
mo(D) C F’, but because ¢ ¢ m2(D), m2(D) is a proper subset of F’. When the algorithm
considers this D, because 71 (D) N Fy # (), it must find that mo(D) € F, or else it will return
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Witness(D, M). But then m2(D) is in R and is a proper subset of F’, contradicting our
choice of F’' as a minimal element of R. Thus, if the algorithm outputs “yes”, this is a
correct answer. []

Combining Theorem 14.4, Theorem 14.5, and the reduction of equivalence to inclusion,
we have the following,.

Theorem 14.6. There are polynomial time algorithms to solve the inclusion and equivalence
problems for two arbitrary DMAs over the same alphabet.

15. COMPUTING THE AUTOMATON M.,

In this section we use polynomial time algorithms to construct the automaton M., of the
right congruence relation ~j, of the language L accepted by an acceptor A of one of the
types DBA, DCA, DPA, DRA, DSA, or DMA. This gives a polynomial time algorithm to
test whether a given DBA (resp., DCA, DPA, DRA, DSA, DMA) is of type IBA (resp., ICA,
IPA, IRA, ISA, IMA).

Recall that AY is the acceptor A with the initial state changed to ¢. If ¢; and ¢o are
two states of A, testing the equivalence of A% to A% determines whether these two states
have the same right congruence class, and, if not, returns a witness u(v)“ that is accepted
from exactly one of the two states. The following is a consequence of Theorems 12.2, 13.2,
and 14.6.

Proposition 15.1. There is a polynomial time procedure to test whether two states of an
arbitrary DBA, DCA, DPA, DRA, DSA or DMA A have the same right congruence class,
returning the answer “yes” if they do, and returning “no” and a witness u(v)* accepted from
exactly one of the states if they do not.

We now describe an algorithm RightCon that takes as input a DBA (or DCA, DPA,
DRA, DSA, or DMA) A accepting a language L and returns a deterministic automaton M
isomorphic to the right congruence automaton of L, i.e., M., .

Algorithm 3 RightCon

Input: An acceptor A= (3,Q,q,, 9, ) of type DBA, DCA, DPA, DRA, DSA, or DMA.
Output: A deterministic automaton M isomorphic to M., , where L = [A].
Q'+ {e}
q ¢
¢’ is initially undefined
while there exists z € Q' and ¢ € ¥ such that §'(z, o) is undefined do
q1 < 0(q,,z0)
if there exists y € Q' such that [A?] = [A%] for g2 = d(q,,y) then
Define §'(z,0) =y
else
Q' +~ Q' U{zc}
Define ¢'(x,0) = zo
return M = (X,Q’,q., ")

Assume the input acceptor is A = (2, Q, q,, 0, «). The RightCon algorithm constructs
a deterministic automaton M = (X,Q’, ¢/, ') in which the states are elements of ¥* and
q, = €. The set @' initially contains just €, and ¢’ is completely undefined.
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While there exists a word z € @' and a symbol o € ¥ such that §'(x,0) has not yet
been defined, loop through the words y € @’ and ask whether the states d(q,, zo) and 6(q,,y)
have the same right congruence class in A. If so, then define §'(x, o) to be y. If no such y is
found, then the word zo is added as a new state to @', and the transition ¢'(z, o) is defined
to be xo.

This process must terminate because the elements of )’ represent distinct right con-
gruence classes of L, and M., cannot have more than |Q| states. When it terminates, the
automaton M = (X, Q’, ¢/, ') is isomorphic to the right congruence automaton of A, M., .

Theorem 15.2. The RightCon algorithm with input an acceptor A (a DBA, DCA, DPA,
DRA, DSA, or DMA) accepting L, runs in polynomial time and returns M, a deterministic
automaton isomorphic to M.,

To test whether a given DBA (resp., DCA, DPA, DRA, DSA, DMA) A is an IBA (resp.,
ICA, IPA, IRA, ISA, IMA), we run the RightCon algorithm on A and test the returned
automaton M for isomorphism with the automaton of A. (Note that isomorphism can be
checked in polynomial time by gradually constructing a map h between states of A to states
of M. Initially h(q,) = q,. Assume h(q) = ¢’ and 6(q,0) = p, §(¢',0) =p'. If h(p) is defined
and is different from p’ return “non-isomorphic”, otherwise set h(p) = p’. This is repeated
until all states are mapped and have been tested with respect to each letter of the alphabet.)
If they are isomorphic, then A is an IBA (resp. ICA, IPA, IRA, ISA, IMA), otherwise it is
not. This proves the following.

Theorem 15.3. There is a polynomial time algorithm to test whether a given DBA (resp.,
DCA, DPA, DRA, DSA, DMA) is an IBA (resp., ICA, IPA, IRA, ISA, IMA).

16. TESTING MEMBERSHIP IN IXA

In the previous section we showed that there is a polynomial time algorithm to test whether
a given DBA B is an IBA. However, we can also ask the following harder question. Given
a DBA B that is not an IBA, is [B] € IBA, that is, does there exist an IBA B’ such that
[B] = [B]? This section shows that there are such polynomial time algorithms for DBAs,
DCAs, DPAs, DRAs, DSAs and DMAs. The algorithms first compute the right congruence
automaton M = M., where L = [A], and then attempt to construct an acceptance
condition « of the appropriate type such that [(M, «)] = L.

16.1. Testing membership in IBA. We describe the algorithm TestInIB that takes as
input a DBA B and returns an IBA accepting [B] if [B] € IBA, and otherwise returns “no”.
By Claim 2.2 (4), the case of a DCA is reduced to that of a DBA.

Theorem 16.1. The algorithm TestInIB takes a DBA B as input, runs in polynomial
time, and returns an IBA accepting [B] if [B] € IBA, and otherwise returns “no”.

Proof. The algorithm calls the RightCon algorithm, and also the inclusion and equivalence
algorithms from Theorem 12.3, which run in polynomial time in the size of B. If the
algorithm returns an acceptor, it is an IBA accepting [B].

To see that the algorithm does not incorrectly return the answer “no”, suppose B’
is an IBA accepting [B]. Then because M is isomorphic to M., , we may assume that
B’ = (M, F’). For every state ¢ € F’, the inclusion query with (M, {q}) will answer “yes”,



10:50 D. ANGLUIN AND D. FISMAN Vol. 20:4

Algorithm 4 TestInIB

Input: A DBA B.
Output: If [B] € IBA then return an IBA accepting [B], else return “no”.
M + RightCon(B)
F+—10
for each state ¢ of M do
if [(M, {¢})] € [B] then
F <+ FU{q}
if [(M, F)] = [B] then
return (M, F)
else
return “no”

so ¢ will be added to F. Thus, F/ C F, and [(M, F)] subsumes [(M, F")]. Every state g
added to F' preserves the condition that [(M, F')] is a subset of [B], so the final equivalence
check will pass, and (M, F') will be returned. []

16.2. Testing membership in [PA. We describe the algorithm TestInIP that takes as
input a DPA P and returns an IPA accepting [P] if [P] € IPA, and otherwise returns “no”.

Algorithm 5 TestInIP

Input: A DPA P.
Output: If [P] € IPA then return an IPA accepting [P], else return “no”.
M=(%,Q,q,9) + RightCon(P)
Define k(q) = 0 for all states g € Q
for k=1 to |Q| do
if [(M, k)] = [P] then
return (M, k)
else if k is odd then
while [P] is not a subset of [(M, k)] do
Let u(v)“ be the returned witness
Define k(q) = k for all ¢ € infaq(u(v)*)

else
while [P] is not a superset of [(M, k)] do
Let u(v)“ be the returned witness
Define k(q) = k for all ¢ € infaq(u(v)®)

return “no”

Theorem 16.2. The algorithm TestInlP takes a DPA P as input, runs in polynomial
time, and returns an IPA accepting [P] if [P] € IPA, and otherwise returns “no”.

Proof. The algorithm calls the RightCon algorithm and the inclusion and equivalence
algorithms for DPAs from Theorem 12.2, which run in polynomial time in the size of P.
Below we show that each while loop terminates after at most |Q| iterations. If the algorithm
returns an acceptor, then the acceptor is an IPA accepting [P].

To see that the algorithm does not incorrectly return the answer “no”, suppose P’
is an TPA accepting [P]. We may assume that P’ = (M, k*), where £* is the canonical
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coloring of P’. We prove inductively that the final coloring « is equal to x*. To do so, we
consider the conditions after the for loop has been completed ¢ times: (1) if £ is even then
[(M, k)] C [P], and if £ is odd, then [P] C [(M, k)], and (2) for all ¢ € Q, if K*(q) < ¥
then k(q) = k*(q), and if K*(q) > ¢ then k(q) = /.

The initialization of k(q) = 0 for all ¢ € @) implies that these two conditions hold for
¢ = 0. Suppose the conditions hold for some ¢ > 0. If the equivalence check at the start
of the next iteration returns “yes” then the correct IPA (M, k) is returned. Otherwise,
k = /¢ + 1; we consider the cases of odd and even k.

If k is odd, then by condition (1), [(M,x)] € [P] and at least one witness u(v)*
accepted by P and rejected by [(M, k)] will be processed in the while loop. Consider such
a witness u(v)* and let C' = infyg(u(v)®). Then because k(q) = k*(q) if k(q) < £, it must
be that *(C') > ¢ and k(C) = £. For all g € C, k(q) is set to k = £+ 1, so at least one state
changes k-color from ¢ to ¢+1. This can happen at most |@| times, so the while loop for
this k£ must terminate after at most |Q| iterations. No state ¢ with x*(¢) < ¢ has its k-value
changed, so when the while loop is terminated, we have that £*(¢) < ¢ implies k(q) = k*(q).

Consider any state ¢ with k*(¢) > ¢+ 1. By property (2), at the start of this iteration
of the for loop, x(q) = . Referring to the canonical forest F* for P’, the state ¢ is in A(D)
for some node D of F*. The node D is a descendant (or possibly equal to) some node C' for
which the states ¢ € A(C) all have k*(q) = £+ 1. Thus, as long as the value of k(g) remains
¢, the SCC C will have k(C') even and k*(C') odd, and the while loop cannot terminate. But
we have shown that it does terminate, so after termination we must have k(q) =k = ¢+ 1.
Thus, after this iteration of the for loop, property (2) holds for £+ 1.

The case of even k is dual to the case of odd k. Because the range of x* is [0..5] for some
Jj < |Q|, the equivalence test must return “yes” before the for loop completes, at which
point the IPA (M, k) is returned. ]

16.3. Testing membership in IRA. We describe the algorithm TestInIR that takes as
input a DRA R and returns an IRA accepting [R] if [R] € IRA, and otherwise returns
“no”. By Claim 2.2 (5), the case of a DSA is reduced to that of a DRA.

We first show that given a DRA R such that [R] € IRA, there is an IRA equivalent to
R whose size is bounded by a polynomial in the size of R.

Lemma 16.3. Let R be a DRA in singleton normal form whose acceptance condition has
m pairs, and assume [R] € IRA. Let M be the right congruence automaton of [R] with
state set Q) and assume |Q| = n. Then there exists an acceptance condition o in singleton
normal form with at most mn pairs such that (M, a) accepts [R].

Proof. Let R = (M, aq), where all the states of M are reachable, and let the function f
map each state of Mj to the state of its right congruence class in M. It suffices to show
that for each (¢, B) € a7 there exists an acceptance condition o’ of M containing at most n
pairs such that [(M1,{(q, B)})] C [(M,a/)] C [R]. Taking the union of these o’ conditions
for all m pairs (q, B) € a1 yields the desired acceptance condition « for M.

Because we assume [R] € IRA, there exists an IRA (M, a2) in singleton normal
form that accepts [R]. Given any u(v)¥ in [R], let C' = infaq, (u(v)®). Then f(C) =
infpq(u(v)?) and there exists (¢/, B') € ag such that ¢ € f(C), and f(C)N B’ = (. Then
also [(M, {(¢,Q\ f(C)})] C [R]. To see this, consider any «'(v')* with D = infaq (v’ (v')¥)
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and ¢ € D and DN(Q\ f(C)) = 0. Then D is a subset of f(C), DNB' =0, v/ (v')* satisfies
(¢',B’), and u/(v")¥ € [R].

Given a pair (¢, B) € ay the construction of the initially empty acceptance condition o’
proceeds as follows. Let Cy be the maximum SCC of M; that contains ¢ and contains no
element of B. If Cy is empty, then (M, {(q, B)}) does not accept any words, and the empty
condition o' suffices. If Cj is nonempty, then there is an element u(v)* of [(M;i,{(q, B)}]
such that Cy = infy, (u(v)¥) and there is a pair (go, Bo) in ap such that ¢o € f(Cp) and
By N f(Cy) = 0. We add the pair (g, @\ f(Cp)) to o’ and note that by the argument in the
preceding paragraph, [(M,a/)] C [R].

If [(M1,{(q,B)}] C [(M, )] then o is the desired acceptance condition. If not, there
exists a word u(v)“ such that for C' = infyq, (u(v)*) we have ¢ € C' and CN B = (), but either
q & f(C)or fF(C)N(Q\ f(Cp)) # 0. Because Cj is the maximum SCC of M; containing ¢
and containing no element of B, we have C' C Cj, so f(C) C f(Cy) and therefore gy & f(C).
Let Cy be the maximum SCC C of M; such that C' C Cy, g € C, and qp € f(C). This is not
empty, so there is a word u/(v")* such that Cy = infaq, (u/(v')*), which is in [R] because it
satisfies (¢, B). Thus there exists a pair (¢1, B1) in o that is satisfied by «/(v")¥, and we add
the pair (¢1,Q \ f(C1)) to the acceptance condition o/. As above, we have [(M, )] C [R].

If now [(M1,{(q,B)})] C [(M,a/)], then ' is the desired acceptance condition. If not,
we repeat this step again. In general, after k steps of this kind, o’ consists of k pairs of the
form (g;, @\ f(C;)) for i € [0..k — 1], where all of the states ¢; are distinct and Cj11 C C;
for i € [0,k — 2]. Because @ has n states, there can only be n repetitions of this step before
o/ satisfies the required condition, and thus o’ has at most n pairs. []

The algorithm TestInIR is based on the algorithm to learn Horn sentences by Angluin,
Frazier, and Pitt [AFP92], using the analogy between singleton normal form for Rabin
automata and propositional Horn clauses. TestInIR maintains for each state g of the right
congruence automaton M an ordered sequence S, of SCCs of M, each of which corresponds
to a positive example of [R]. At each iteration, the algorithm uses these sequences and
inclusion queries with [R] to construct an acceptance condition « for a hypothesis (M, a),
which it tests for equivalence to R. In the case of non-equivalence, the witness is a positive
example of [R] that is used to update the sequences Sy.

In TestInIR the test of whether CUC; is positive is implemented by calling Witness(CU
C;) and testing the resulting word u(v)® for membership in [R].

Because pairs are only added to « that preserve inclusion in [R], it is clear that any
witness u(v)® returned in response to the test of equivalence of (M, «) and R is a positive
example of [R]. Note also that all elements of S, are SCCs of M that contain ¢q. The proof
of correctness and running time of TestInIR depends on the following two lemmas.

Lemma 16.4. Assume that R' is an IRA equivalent to the target DRA R. Consider a
positive ezample u(v)* of [R] returned in response to the test of equivalence of (M, a) and
R, and let C = infapq(u(v)¥). Let (¢, B) be a pair of R' such that ¢ € C and CN B =10. If
for some q € C and some C; in S; we have C; N B = () then for some j < i, the element C;
of Sq will be replaced by C; UC.

Proof. Assume that there is no such replacement for j < i. When ¢ is considered, we have
q € C; and g € C, so C; UC is the union of overlapping SCCs and therefore an SCC. Then
C; U C is positive because ¢ € C, so ¢ € C;UC, and CNB = () and C; N B = () by
hypothesis, so (C; UC) N B = () and the word Witness(C; U C) is a positive example of
[R] because it satisfies (¢’, B).
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Algorithm 6 TestInIR

Input: A DRA R = (M, a1) in singleton normal form with |o;| = m.
Output: If [R] € IRA then return an IRA accepting [R], else return “no”.
M + RightCon(R)
Let @ be the states of M and n = |Q)|
For each ¢ € @ initialize a sequence S, to be empty
for k =1 to mn® do
for all ¢ € Q do
ag =10
for all C' € S, do
for all ¢’ € C do
if [(M, {(¢,Q\ )]
Qq = Qq U {(qva\

[R] then
)}
@<+ Ueq
if [(M,a)] = [R] then
return (M, o)
else
Let u(v)¥ be the witness returned
Let C = infy(u(v)¥)
for all ¢ € C do
if there is some C; € S, such that C Z C; and C' U C; is positive then
Let i be the least such ¢ and replace C; by C; UC'
else
Add C to the end of the sequence S,

return “no”

To see that C' Z C;, we assume to the contrary. Then (¢’,@Q \ C;) is an element of «.
To see this, we show that [(M,{(¢,Q\ Ci)}] C [R]. Let «/(v")* with D = infy (v (v")¥)
satisfy (¢', @\ C;i). Then ¢’ € D and DN (Q\ C;) = 0, and therefore D C C; and C;NB =)
by hypothesis. Thus u/(v')* satisfies (¢/, B) and is in [R]. Because (¢/,Q \ C;) is an element
of a, u(v)* is accepted by (M, a) because ¢’ € C and C' N (Q \ C;) = 0 (because we assume
C C C;). But this means that u(v)“ cannot be a witness to the non-equivalence of (M, «)
and R, a contradiction.

Thus, the conditions for C; to be replaced by C; U C are satisfied. []

Lemma 16.5. Assume that R' = (M, ) is an IRA in singleton normal form equivalent to
the target DRA R. The following two conditions hold throughout the algorithm TestInIR.

(1) For all g € Q, elements C; of Sy, and (¢',B) € o, if C; satisfies (¢, B) then for no
J < do we have C; N B = ().

(2) For all g € Q, elements C; and C; of Sq with j < i, and (¢, B) € o/, if C; satisfies
(¢, B) then C;j does not satisfy (¢, B).

Proof. We first show that condition (1) implies condition (2). Let ¢ € @, C; and Cj be in S,
with j < i and (¢, B) € . If C; satisfies (¢, B) then by condition (1), we have C; N B # 0,
so C; does not satisfy (¢/, B).

We now prove condition (1) by induction on the number of witnesses to non-equivalence.
The condition holds of the empty sequences S,. Suppose conditions (1) and (2) hold of the
sequences S, and the witness to non-equivalence is u(v)* with C' = infy(u(v)¥). If ¢ ¢ C
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then S, is not modified, so assume ¢ € C. We consider two cases, depending on whether C'
is added to the end of S, or causes some Cy to be replaced by Cy U C.

Assume that C is added to the end of S, and property (1) fails to hold. Then it must
be that for C; = C, some Cj in S, with j < ¢ and some (¢, B) € , C; satisfies (¢/, B) and
CjN B = 0. By Lemma 16.4, because C; N B = (), C should cause C; for some £ < j to be
replaced by C' U Cy rather than being added to the end of Sy, a contradiction.

Assume that C causes Cy in S;; to be replaced by C; U C' and property (1) fails to hold.
Then it must be for some C; in S, and pair (¢/, B) in &/, either (i) ¢ > ¢ and C; satisfies
(¢, B) and (C,UC)NB =0, or (ii) ¢ < £ and CpUC satisfies (¢, B) and C; N B = (). In case
(i), it must be that C; satisfies (¢/, B) and Cy N B = (), which contradicts the assumption
that property (1) holds before C is processed, because ¢ < i. In case (ii), ¢ € C; U C and
(C,uC)NB=0. Thus CNB =0 and C,N B =1. If ¢ € Cy, then Cy satisfies (¢, B),
violating the assumption that property (2) holds before C' is processed. If ¢’ € C' then C
satisfies (¢/, B) and because C; N B = (), by Lemma 16.4, for some j < ¢ we have C; replaced
by C; UC, a contradiction because ¢ > i. Thus, in either case property (1) holds after C; is
replaced by C, U C. L]

Theorem 16.6. The algorithm TestInIR takes as input a DRA R, runs in polynomial
time, and returns an IRA accepting [R] if [R] € IRA, and otherwise returns “no”.

Proof. Assume the input is a DRA R = (M, ;) in singleton normal form with |aq| = m.
The algorithm TestInIR computes the right congruence automaton M of [R], which has
n states, at most the number of states of R. The main loop of the algorithm is executed at
most mn? times, and each execution makes calls to the inclusion and equivalence algorithms
for DRAs, and runs in time polynomial in the size of R, so the overall running time of
TestInIR is polynomial in the size of R.

Clearly, if [R] ¢ IRA, then the test of equivalence between (M, «) and R will not
succeed, and the value returned will be “no”. Assume that [R] € IRA. Then by Lemma 16.3,
there is an IRA R’ = (M, /) in singleton normal form equivalent to R such that |o/| < mn.
For every state g € (), each member of the sequence S, satisfies some pair (¢’, B) in o/, and
by Lemma 16.5, no two members of S; can satisfy the same pair, so the length of each S is
bounded by mn. Each positive counterexample must either add another member to at least
one sequence S, or cause at least one member of some sequence S; to increase in cardinality
by 1. The maximum cardinality of any member of any S, is n, and the total number of
sequences Sy is n, so no more than mn? positive counterexamples can be processed before
the test of equivalence between (M, «) and R succeeds and (M, «) is returned. ]

16.4. Testing membership in IMA. We describe the algorithm TestInIM that takes as
input a DMA U and returns an IMA accepting [U] if [U] € IMA, and otherwise returns
“nO” .

Theorem 16.7. The algorithm TestInIM takes as input a DMA U, runs in polynomial
time, and returns an IMA accepting [U] if [U] € IMA, and otherwise returns “no”.

Proof. The algorithm calls the Right Con algorithm and also the DM A equivalence algorithm
from Theorem 14.6, which run in polynomial time. When there is a witness u(v)* accepted
by U, there is a set F' € F whose image in M is added to F’, so there can be no more such
witnesses than the number of sets in F. After this, there must be a successful equivalence
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Algorithm 7 TestInIM

Input: ADMA U = (%,Q,q.,,6,F).
Output: If [U] € IMA then return an IMA accepting [U], else return “no”.
M + RightCon(U)
F' 0
while [(M, F")] # [U] do
Let u(v)¥ be the witness returned
Let C = infy(u(v)¥)
if u(v)¥ € [U] then
F'«— F U{C}
else
return “no”
return (M, F’)

test or a witness rejected by U, either of which terminates the while loop. Thus, the overall
running time is polynomial in the size of U.

If the algorithm returns an acceptor (M, F’), then the acceptor is an IBA that accepts
[U]. To see that the algorithm does not incorrectly return the answer “no”, assume that
U’ is an IBA accepting [U]. We may assume that U’ = (M, F"), where F” contains no
redundant sets. Then the first witness will be a word accepted by U that will add an element
of F" to F'. This continues until all the elements of F” have been added to F’, at which
point the while loop terminates with equivalence. []

16.5. Variants of the testing algorithms. A variant of the task considered above is
the following. Given the right congruence automaton M of a language [B] in IBA, and
access to information from certain queries about [B], learn an acceptance condition « such
that (M, «) accepts [B]. In the case of IBA, the algorithm TestInIB could be modified to
perform this task using just equivalence queries with respect to [B]. Similarly, equivalence
queries would suffice in the case of IMIA. For IIPA, subset and superset queries with respect
to the target language would suffice. And for IRA, TestInIR could be modified to use
membership and equivalence queries with respect to the target language, relying on negative
examples to remove incorrect pairs rather than using subset queries.

16.6. Efficient teachability of the informative classes. We can finally claim that the
the informative classes are efficiently teachable.

Theorem 16.8. The classes IBA, ICA, TPPA, IMA, TRA and ISA are efficiently teachable.

Proof. By Theorems 7.2, 7.4, 8.8, and 9.5 the classes IMA, IBA, ICA, TPA, IRA and ISA
are identifiable in the limit using polynomial time and data. It remains to show that the
characteristic samples can be computed in polynomial time for any acceptor in the class.
Let A be an acceptor of type DXA for X € {B,C, P,R, S, M}. By Theorems 16.1, 16.2,
16.6, 16.7, there are polynomial time algorithms that return an equivalent acceptor A’ in
IXA if such exists and “no” otherwise. By Theorem 10.6, given an acceptor A’ of type
IBA, ICA, TPA, IRA, ISA, or IMA, the characteristic sample 77, for A may be computed in
polynomial time in the size of A. It follows that the classes IMA, IBA, ICA, IPA, IRA and
ISA are efficiently teachable. []
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17. DISCUSSION

We have provided general definitions and comparisons for characteristic samples, efficient
learnability, efficient teachability, efficient teachability/learnability, and identifiability in the
limit using polynomial time and data. While efficient teachability implies identifiability in
the limit using polynomial time and data, we have shown that the converse is not true if
there is no polynomial time algorithm for integer factorization. We have shown that if a
class is efficiently teachable, then it is it efficiently teachable/learnable.

We then asked which classes of representations of regular w-languages are efficiently
teachable. The non-deterministic acceptors NBA, NCA, NPA, NRA, NSA, and NMA do
not have polynomial size characteristic sets, and thus are neither efficiently identifiable in
the limit with polynomial time and data nor efficiently teachable. We have shown that the
classes M2MA and SUBA are efficiently teachable.

Focusing on the classes of informative languages, IBA, ICA, TIPA, IRA, ISA and IMA,
we have shown that they are efficiently teachable. To obtain these results we have given
new polynomial time algorithms to test inclusion and equivalence for DBAs, DCAs, DPAs,
DRAs, DSAs and DMAs. We have given a polynomial time algorithm to compute the right
congruence automaton M., for a language L specified by a DBA, DCA, DPA, DRA, DSA,
or DMA. This yields a polynomial time algorithm to test whether an acceptor A of type
DBA is of type IBA, and similarly for acceptors of types DCA, DPA, DRA, DSA and DMA.
Moreover, we have given a polynomial time algorithm to test whether an acceptor A of type
DBA accepts a language in the class IBA, and similarly for acceptors of types DCA, DPA,
DRA, DSA and DMA.

The questions of whether the full deterministic classes DBA, DCA, DPA, DRA, DSA
and DMA are efficiently teachable or identifiable in the limit using polynomial time and
data remain open. We note that Bohn and Loding [BL22, BL23] have recently obtained
interesting results for passive learning of DBA and DIPA, but from characteristic samples of
cardinality that may be exponential in the size of the minimal representations in the worst
case. Thus these results do not settle the question of whether these classes are efficiently
teachable or identifiable in the limit using polynomial time and data. Another intriguing
open question is whether the classes IBA, ICA, IPA, TRA, ISA and IMA can be learned by
polynomial time algorithms using membership and equivalence queries. However, as shown
by Bohn and Loding [BL21], this question is not easier than whether the corresponding
deterministic classes can be learned by polynomial time algorithms using membership and
equivalence queries.
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