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Abstract. We introduce a termination method for the algebraic graph transformation
framework PBPO+, in which we weigh objects by summing a class of weighted morphisms
targeting them. The method is well-defined in rm-adhesive quasitoposes (which include
toposes and therefore many graph categories of interest), and is applicable to non-linear
rules. The method is also defined for other frameworks, including SqPO and left-linear
DPO, because we have previously shown that they are naturally encodable into PBPO+

in the quasitopos setting. We have implemented our method, and the implementation
includes a REPL that can be used for guiding relative termination proofs.

1. Introduction

Many fields of study related to computation have mature termination theories. See, for
example, the corpus for (first-order) term rewriting systems [Ter03, Chapter 6] (for a more
recent (but less systematic) discussion, see, e.g., [Yam22]).

For the study of graph transformation, by contrast, not many termination methods
exist, and the ones that do exist are usually defined for rather specific notions of graphs.
Although the techniques themselves can be interesting, the latter observation fits somewhat
uneasily with the general philosophy of the algebraic graph transformation tradition, in
which graph transformations are defined and studied in a graph-agnostic manner.

In this chapter, we introduce a termination method for PBPO+. We weigh objects G by
summing a class of weighted elements (i.e., morphisms of the form T → G), and construct a
decreasing measure. Our method enjoys generality across two dimensions:

(1) The method is formulated completely in categorical terms, and is well-defined in (locally
finite) rm-adhesive quasitoposes.

(2) The method is also defined for SqPO [CHHK06], AGREE [CDE+20], PBPO [CDE+19],
and left-linear DPO [EPS73]. This is because we have recently shown that, in the
quasitopos setting, each rule of these formalisms can be straightforwardly encoded as a
PBPO+ rule that generates the same rewrite relation [OER23, Theorem 73].
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To the best of our knowledge, this is the first termination method applicable in such a
broad setting; and the first method that is automatically defined for a variety of well-known
algebraic graph transformation frameworks. In addition, the termination method can be
applied to non-linear (duplicating) rules.

This paper is structured as follows. We summarize some basic categorical and termination
preliminaries (Section 2). We then provide some useful background on quasitoposes, and
required background on PBPO+ (Section 3). Next, we explain and prove our termination
method (Section 4). After, we illustrate our method with a variety of examples (Section 5),
and compare our approach to related work (Section 6). We then present an implementation
of our method, which includes a REPL (read-eval print loop) that can be used for guiding
relative termination proofs (Section 7). We close with some concluding remarks and pointers
for future work (Section 8).

Remark 1.1. This paper extends and improves the identically titled conference pa-
per [OE23b]. The most noteworthy differences are as follows:

(1) All previously elided proofs, Example 5.8, and Example 5.9 are now included. Previously
they were available on arXiv [OE23c] only due to space restrictions.

(2) The background survey on quasitoposes (Section 3.1) is newly included, in order to make
the paper more self-contained, and to improve the motivation.

(3) Instead of requiring the existence of (essentially unique) A-factorizations [OE23b, Defi-
nition 9], we use a simpler and weaker condition (Definition 4.16), which we then relate
to standard factorization systems (Proposition 4.18).

(4) Section 7 contains completely new material (and the implementation described therein
is also new).

The new additions include previously unpublished material taken from the PhD thesis of
the first author [Ove24].

2. Preliminaries

The preliminaries for this paper include basic categorical and graph notions (Section 2.1),
and a basic understanding of termination (Section 2.2).

2.1. Basic Notions. We assume familiarity with basic categorical notions such as (regular)
monomorphisms, pullbacks and pushouts [BW90, Pie91]. We write ↣ for monos; and
Hom(C), mono(C), rm(C) and iso(C) for the classes of morphisms, monomorphisms, regular
monomorphisms and isomorphisms in C, respectively.

Notation 2.1 (Nonstandard Notation). Given a class of morphisms A(C), we write A(A,B)
to denote the collection of A-morphisms from A to B, leaving C implicit. For sets of objects
S, we overload A(S,A) to denote

⋃
X∈S A(X,A). If A(C) is a generic class in lemmas, we

use ⇝ to denote A-morphisms.

For cospans A
f→ C

g← D, we write ⟨f | g⟩ to denote the arrow B → D obtained by
pulling f back along g.

Definition 2.2 (A-Local Finiteness). Let A(C) be a class of morphisms. A category C is
A-locally finite if A(A,B) is finite for all A,B ∈ Ob(C).

Lemma 2.3 (Pullback Lemma [Bor94a, Proposition 2.5.9]). Assume the right square of
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A B C

D E F
PB

is a pullback and the left square commutes. Then the outer rectangle (obtained by composing
the horizontal morphisms) is a pullback iff the left square is a pullback.

Definition 2.4 (Split Epimorphism). An epimorphism e : A↠ B is split if it has a right
inverse, i.e., if there exists an f : B → A such that e ◦ f = 1B.

For split epimorphisms e, we let e← denote an arbitrary right inverse of e.

Observe that right inverses need not be unique. In Set, for instance, the constant
function k : {0, 1} → {0} has two right inverses.

Proposition 2.5 [AHS06, Prop. 7.59]. If e is a split epi, then e← ∈ rm(C).

Our method is defined fully in categorical terms. For examples, and to guide intuition,
we will use the category of edge-labeled multigraphs.

Definition 2.6 (Graph Notions). Let a finite label set L be fixed. An (edge-labeled)
(multi)graph G consists of a set of vertices V , a set of edges E, source and target functions
s, t : E → V , and an edge label function ℓE : E → L. A graph is unlabeled if L is a singleton.

A homomorphism between graphs G and G′ is a pair of maps ϕ = (ϕV : VG → VG′ , ϕE :
EG → EG′) satisfying (sG′ , tG′) ◦ ϕE = ϕV ◦ (sG, tG) and ℓEG′ ◦ ϕE = ℓEG.

Definition 2.7 [EEPT06]. The category Graph has graphs as objects, parameterized
over some global (and usually implicit) label set L, and homomorphisms as arrows. The
subcategory FinGraph restricts to graphs with finite V and E.

Although our termination method is defined for PBPO+ (Section 3.2), we will state a
key result (Theorem 3.14) that involves (left-linear) DPO.

Definition 2.8 (DPO Rewriting [EPS73]). In its most general formulation, a DPO rewrite

rule ρ is a span L
l← K

r→ R, and a diagram

L K R

GL GK GR

m

l r

PO PO

defines a DPO rewrite step GL ⇒ρ,m
DPO GR, i.e., a step from GL to GR using rule ρ and

match m : L→ GL.
In some versions of DPO, morphism l is required to belong to some class of monomor-

phismsM, to ensure that pushout complements exist uniquely. We will refer to this restricted
version of DPO as left-linear DPO, and denote it by DPOM. Additionally, morphism m is
often required to be inM because it increases expressivity [HMP01].

2.2. Termination. The topic of termination dates back at least to Turing, and is studied
in many different settings. For a systematic overview for term rewriting systems (not
yet existent for graph transformation systems), see [Ter03, Chapter 6] (for a more recent
discussion, see, e.g., [Yam22]). Plump has shown that termination of graph rewriting is
undecidable [Plu98].
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Definition 2.9. Define In = {m ∈ N | m < n} for n ∈ N∪{ω}, where ω extends the natural
ordering of N with k < ω for all k ∈ N.

Let R ⊆ A × A be given. An R-sequence (of length n) is a function f : In → A such
that for all i < n, (f(i), f(i+ 1)) ∈ R. The pair (f(i), f(i+ 1)) is said to be the (i+ 1)-th
step in this sequence. The sequence is infinite if n = ω.

Definition 2.10. A binary relation R is terminating if there does not exist an infinite
R-sequence.

Definition 2.11 [BD86,Klo87]. Let R,S ⊆ A×A be binary relations. Then R is terminating
relative to S if every infinite R ∪ S-sequence contains a finite number of R steps.

For our purposes, it suffices to measure objects as natural numbers (instead of a general
well-founded order).

Definition 2.12 (Measure). A measure is a function wt : A → N. The measure wt is
decreasing for a binary relation R ⊆ A × A if for all (x, y) ∈ R, wt(x) > wt(y), and it is
non-increasing for R if for all (x, y) ∈ R, wt(x) ≥ wt(y).

Proposition 2.13 [BD86, Klo87]. Let R,S ⊆ A × A be binary relations. Assume that
there exists a measure wt that is decreasing for R and non-increasing for S. Then R is
terminating relative to S. Consequently R ∪ S is terminating iff S is.

In a framework agnostic setting, a rule ρ is a mathematical object that induces a binary
relation ⇒ρ ⊆ A×A. We say that a rule (or a system of rules) is terminating, decreasing or
non-increasing if the induced rewrite relations have the respective property (and analogously
for relative termination). Note that also Proposition 2.13 can then be applied to systems of
rules in place of relations.

3. Background

3.1. Quasitoposes. Our termination method makes a number of assumptions about the
underlying category and about certain morphism classes. One natural and relevant setting
in which these assumptions are satisfied is an rm-adhesive quasitopos. For motivational
reasons, we therefore provide a brief background on quasitoposes.

Definition 3.1 (Quasitopos [Wyl91,AHS06,Joh02]). A category C is a quasitopos if it has
all finite limits and colimits, it is locally cartesian closed, and it has a regular-subobject
classifier.

The definition of a quasitopos itself need not be understood: we are interested in specific
properties of quasitoposes, and in examples. Quasitoposes can also be understood in terms
of the more familiar toposes.

Proposition 3.2 ([Wyl91, Proposition 19.6], [AHS06, Proposition 28.6(2)]). C is a topos
iff C is a quasitopos and rm(C) = mono(C).

In the graph transformation literature there is a variety of adhesivity properties, which
depend on the notion of a Van Kampen square.

Definition 3.3 (Van Kampen Square [LS04]). A pushout square is Van Kampen (VK ) if,
whenever it lies at the bottom of a commutative cube
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F G

E H

B C

A D
of which the back faces FBAE and FBCG are pullbacks, this implies that

the top face is a pushout ⇐⇒ the front faces EHDA and GHDC are pullbacks.

Definition 3.4 (Rm-Adhesive Category [LS05]). A category is rm-adhesive (a.k.a. quasiad-
hesive) if pushouts along regular monomorphisms exist and are VK.

Figure 1 situates quasitoposes among toposes and various adhesivity properties. Observe
in particular that not all quasitoposes are rm-adhesive. A counterexample is found in the
category of simple graphs [JLS07, Corollary 20].

The following properties of quasitoposes are relevant for this paper (either as requirements
for the termination method or for exposition). Extended (and overlapping) summaries
relevant for graph transformation are provided by Behr et al. [BHK23, Corollary 5.15] and
by the authors [OER23, Proposition 36].

Proposition 3.5 (Relevant Quasitopos Properties). A quasitopos C

(1) has (by definition) all pushouts and pullbacks;
(2) satisfies

(a) g, f ∈ rm(C) =⇒ g ◦ f ∈ rm(C); and
(b) g ◦ f ∈ rm(C) =⇒ f ∈ rm(C);
for all morphisms g : B → C and f : A→ B [AHS06, Proposition 7.62(2), Corollary
28.6(2-3)];

(3) pushouts along regular monomorphisms are pullbacks [Joh02, Lemma A2.6.2];
(4) regular monomorphisms are stable under pushout [Joh02, Lemma A.2.6.2];
(5) has essentially unique (epi, regular mono) factorizations for every morphism [AHS06,

Proposition 28.10], i.e., every morphism f : A → B factors uniquely as A
e
↠ C

m
↪→ B

(up to isomorphism in C), where e is epic and m regular monic;
(6) has essentially unique (regular epi, mono) factorizations for every morphism [JLS07,

Proposition 11], i.e., every morphism f : A→ B factors uniquely as A
e
↠ C

m
↣ B (up

to isomorphism in C), where e is regular epic and m is monic; and
(7) is stable under slicing, i.e., every slice category C/X (for X ∈ Ob(C)) is a quasito-

pos [Wyl91, Theorem 19.4].

Many structures of interest are (quasi)toposes. We give some motivating examples of
rm-adhesive quasitoposes.

Example 3.6 ((Co)presheaf Toposes). If C is small, then the functor category [C,Set]
is a topos [Wyl91, Theorem 26.2], and hence an rm-adhesive quasitopos. Such categories
are known as copresheaf toposes, C-sets [BPHF23], or graph structures [Löw93] (and
[Cop,Set] is known as a presheaf category). Many structures that are of interest to the
graph transformation community can be defined in this manner. For example, if the label
set L is a singleton (i.e., graphs are unlabeled), then Graph ∼= [ ,Set]).

The following proposition assures us that such toposes are closed under finite restrictions.
We are not aware of a similar principle for quasitoposes.
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topos adhesive

rm-adhesive
(a.k.a. quasiadhesive)

quasitopos rm-quasiadhesive

pushouts along regular
monos are pullbacks

M-adhesive (forM = rm(C))
(a.k.a. vertical weak adhesive HLR)

[LS06]

if rm(C) = mono(C)
[Wyl91]

[GL12]

[Hei10,EGH10]

if regular subobjects are closed
under binary union [JLS07]

[GL12]

[EGH10]

Figure 1. Implications between (quasi)toposes and adhesivity properties.

Proposition 3.7. If I is finite and C ∼= [I,FinSet], then C is a Hom-locally finite topos,
and so an rm-adhesive quasitopos that is A-locally finite for any A(C).

Proof. C is a topos [Bor94b, Example 5.2.7], and it is locally finite because FinSet is
Hom-locally finite. And any topos is an rm-adhesive quasitopos (Figure 1).

Example 3.8 (Typed Graphs). Given the category of unlabeled graphs Graph, a category
of graphs typed over X ∈ Ob(Graph) can be constructed through a slice construction
Graph/X, which yields a quasitopos (Proposition 3.5). Typed graphs are subsumed by
C-sets [BPHF23, Section 2.3].

The following is an example of an rm-adhesive quasitopos that is not a topos.

Example 3.9 (Fuzzy Presheaves). If (L,≤) is a complete Heyting algebra, then the
category of (L,≤)-fuzzy presheaves is an rm-adhesive quasitopos [ROE23, Theorems 15
and 41]. This includes the category of fuzzy graphs over a complete Heyting algebra
(L,≤) [OER23, Definition 76]. We have proposed fuzzy graphs as a mechanism for relabeling
labeled graphs [OER23, Section 6]. In such a category, mono(C) contains all injective graph
homomorphisms such that labels are non-decreasing (≤) w.r.t. the given order, and rm(C)
contains only the injective graph homomorphisms that preserve labels (=).

3.2. PBPO+. PBPO+ is short for Pullback-Pushout with strong matching. It is obtained
by strengthening the matching mechanism of PBPO [CDE+19] by Corradini et al.

We provide the necessary definitions and results on PBPO+. See Section 5 for many
examples of rules. For a gentler introduction to PBPO+, with examples of rewrite steps, see
the tutorial [OE23a] or the PhD thesis of the first author [Ove24].
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Definition 3.10 (PBPO+ Rewriting [CDE+19,OER23]). A PBPO+ rule ρ is a diagram as
shown on the left of:

L K R

L′ K ′

tL tK

l r

PB

l′

K R

L GL GK GR

L L′ K ′

!u

r

PO w

m

PB α

gL gR

u′PB

tL

tK

l′

L is the lhs pattern of the rule, L′ its (context) type and tL the (context) typing of L. Likewise
for the interface K. R is the rhs pattern or replacement for L.

Rule ρ, match morphism m : L→ GL and adherence morphism α : GL → L′ induce a
rewrite step GL ⇒α

ρ GR on arbitrary objects GL and GR if the properties indicated by the
commuting diagram on the right hold, where u : K → GK is the unique morphism satisfying
tK = u′ ◦ u [OER23, Lemma 15].

Lemma 7.2 suggests how to compute a rewrite step: a search for u is in fact not required.

Assumption 3.11. We assume that for any rule ρ analyzed for termination, the pushout of
tK along r exists.

Remark 3.12. If Assumption 3.11 holds for a rule ρ, then any ρ step defines (up to
isomorphism) a diagram

L K R

GL GK GR

L′ K′ R′

m u

rl

w

tRα u′

gL gR

w′
tL

l′ r′

tK

PB

PB

PO

PO

where the bold diagram is ρ (tL ◦ l = l′ ◦tK a pullback and tR ◦r = r′ ◦tK a pushout) [OER23,
Section 3]. Our method uses the extra pushout to analyze how rewritten objects (the middle
span) relate to the context types (the bottom span).

Remark 3.13. This assumption is not restrictive. All colimits (and thus all pushouts)
exist in quasitoposes, our main setting. Moreover, pushouts are guaranteed to exist along
M-morphisms inM-adhesive categories, and morphism tK is usually inM.

Theorem 3.14 [OER23, Theorem 73]. Let C be a quasitopos, and let matches m ∈ rm(C).
For rewriting formalisms F and G, let F ≺ G express that in C, for any F rule ρ, there
exists a G rule τ such that ⇒ρ

F =⇒τ
G. We have:

PBPO+

SqPO ≺ AGREE DPOrm(C)

PBPO

≺ ≺

≺

Observe that ≺ is transitive. As the constructive proofs in [OER23] show, the procedures
to encode the mentioned formalisms into PBPO+ are straightforward.1 We moreover
conjecture SPO ≺ PBPO+ [OER23, Remark 26].

1More precise statements and proofs can be found in the first author’s PhD thesis [Ove24, Section 4.5].



12:8 R. Overbeek and J. Endrullis Vol. 20:4

4. Decreasingness by Counting Weighted Elements

We start with an explanation of the general idea behind our termination approach. Given a
set of rules T , we seek to construct a measure wt such that for all PBPO+ steps GL ⇒ρ GR

generated by a rule ρ ∈ T , wt(GL) > wt(GR). Then wt is a decreasing measure for the
rewrite relation generated by T , such that T is terminating. We construct such a measure
wt by weighing objects as follows.

Definition 4.1 (Weight Functions). Given a set of objects T, weight function wt : T→ N,
and class of morphisms A(C), we define the tiling weight function

wtAT (X) =
∑

t∈A(T,X)

wt(dom(t))

for objects X ∈ Ob(C). In this context, we refer to the objects of T as tiles.

Assumption 4.2. We assume that T is finite and C is A-locally finite, such that wtAT is
well defined.

Example 4.3. Let C = FinGraph with singleton label set L, and G an arbitrary graph.
Some basic examples of tile sets and parameters are as follows.

• Let represent the graph consisting of a single node. If T = { }, wt( ) = 1, and
A(C) ∈ {Hom(C),mono(C), rm(C)}, then wtAT (G) = |VG|.
• Let represent the graph consisting of a single edge with distinct endpoints. If
T = { }, wt( ) = 1 and A(C) = Hom(C), then wtAT (G) = |EG|. If instead

A(C) = mono(C), then wtAT (G) counts the number of subgraph occurrences isomorphic
to in G (loops are not counted). (See also Example 5.3.)
• If T = { , }, wt( ) = 2, wt( ) = 1 and A(C) = Hom(C), then wtAT (G) =
2 · |VG|+ |EG|.

Our goal is to use wtAT (·) as a decreasing measure. This gives rise to two main challenges:

finding a suitable T (if it exists), and determining whether wtAT (·) is decreasing. In this
paper, we focus exclusively on the second problem, and show that the matter can be decided
through a finite rule analysis.

Certain assumptions on A(C) will be needed. To prevent clutter and to help intuition,
we state them now, valid for the remainder of this paper. In the individual proofs, we clarify
which assumptions on A(C) are used.

Assumption 4.4. We assume the following about A(C):

• rm(C) ⊆ A(C); and
• A(C) is stable under:
– pullback;
– composition (g, f ∈ A(C) =⇒ g ◦ f ∈ A(C)); and
– decomposition (g ◦ f ∈ A(C) =⇒ f ∈ A(C)).2

Note that iso(C) ⊆ A(C), because iso(C) ⊆ rm(C) (see, e.g., [Ove24, Proposition 4.29]).

2More precisely, the notion used here is stability under decomposition for a right class M of morphisms of
some factorization system (E ,M). Stability under decomposition for the left class would mean g ◦ f ∈ E =⇒
g ∈ E . This would hold, for instance, for E the class of epimorphisms. We will only use stability under
decomposition in the sense defined here, and so we do not make the distinction in the definition.
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Proposition 4.5. In any category, the classes Hom(C) and mono(C) satisfy Assumption 4.4.
Likewise for rm(C) if C is a quasitopos.

Proof. The statement is vacuously true in any category for Hom(C).
The properties for mono(C) are well known. Some references are [Awo10, Proposi-

tion 3.16] for rm(C) ⊆ mono(C), [Bor94a, Proposition 2.5.2] for pullback stability, and
[Awo10, Exercise 2.8.4(a,b)] for stability under composition and decomposition.

Class rm(C) is stable under pullback in any category [Bor94a, Proposition 4.3.8(2)]. See
the provided summary (Proposition 3.5) for the remaining properties if C is a quasitopos.

Now suppose that a rule ρ generates a rewrite step diagram. This defines a factorization

tR = R
w→ GR

w′→ R′ (Remark 3.12). Any tiling of GR can be partitioned into two using the
following definition.

Definition 4.6. For arrows f : A → B and sets S of arrows with codomain B we define

the partitioning S = Sf
∼= ⊎ Sf

̸∼= where Sf
∼= = {g ∈ S | ⟨f | g⟩ ∈ iso(C)} and Sf

̸∼= = {g ∈ S | ⟨f |
g⟩ ̸∈ iso(C)}.

Intuitively,
A(T, GR)

w
∼= = {t ∈ A(T, GR) | ⟨w | t⟩ ∈ iso(C)}

contains all tilings that lie isomorphically in the pattern w(R), and

A(T, GR)
w
̸∼= = {t ∈ A(T, GR) | ⟨w | t⟩ ̸∈ iso(C)}

the remaining tilings, which overlap partially or fully with the context. The remainder of
this section is structured as follows.

We will start by centrally identifying some key assumptions and properties that we need
in order to reason on the level of the rule (Section 4.1).

We then prove that there exists a domain-preserving bijection between A(T, GR)
w
∼= and

A(T, R′)tR∼= , allowing us to determine wt(A(T, GR)
w
∼=) on the level of the rule (Section 4.2).

Determining wt(A(T, GR)
w
̸∼=) on the level of the rule is in general impossible, because

usually GR can have an arbitrary size. Instead, we give precise conditions, formulated on the
level of the rule, that ensure that there exists a domain-preserving injection ξ : A(T, GR)

w
̸∼=↣

A(T, GL) across the rewrite step diagram, such that wt(ξ ◦ A(T, GR)
w
̸∼=) = wt(A(T, GR)

w
̸∼=)

(Section 4.3). Such injections often exist in the usual categories of interest, in which the
context of GR is roughly inherited from the left.

The two results are then combined as follows. If we additionally find a tiling ∆ ⊆ A(T, L)
such that for the given match m : L→ GL,

(1) m ◦∆ ⊆ A(T, GL);
(2) wt(m ◦∆) > wt(A(T, GR)

w
∼=); and

(3) (m ◦∆) ∩ (ξ ◦ A(T, GR)
w
̸∼=) = ∅;

then

wtAT (GL) ≥ wt(m ◦∆) +wt(ξ ◦ A(T, GR)
w
̸∼=)

> wt(A(T, GR)
w
∼=) +wt(A(T, GR)

w
̸∼=)

= wtAT (GR)

and we will have successfully proven that wtAT (·) is a decreasing measure. This is the main
result of this section (Section 4.4).
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4.1. Relating Rule and Step. In order to reason about steps on the level of rules, the
following variant of adhesivity is needed. It does not yet occur in the literature.

Definition 4.7 (PBPO+-Adhesive). A pushout square r′ ◦ tK = tR ◦ r is PBPO+-adhesive
if, whenever it lies at the bottom of a commutative cube

K

GK R

K GR

K ′ R

R′

u
r

u′

w

tK
r

gR

r′ tR

w′

where the top face is a pushout and the back faces are pullbacks, we have that the front
faces are pullbacks.

Corollary 4.8. If C is rm-adhesive, pushouts r′ ◦ tK = tR ◦ r with tK ∈ rm(C) are
PBPO+-adhesive.

Remark 4.9. Not all quasitoposes are PBPO+-adhesive: the counterexample by Johnstone
et al. [JLS07, Fig. 1], which shows that the category of simple graphs is not rm-adhesive,
is also a counterexample for PBPO+-adhesivity. An open question is whether there are
categories (of interest to the graph transformation community) that are PBPO+-adhesive,
but not rm-adhesive.

The following equalities will prove crucial. Recall Notation 2.1.

Lemma 4.10. Assume C has pullbacks. Let a rewrite step for a PBPO+ rule ρ be given. If
square r′ ◦ tK = tR ◦ r is PBPO+-adhesive, then for any ρ-rewrite step and any t : T → GR

(1) ⟨gR | t⟩ = ⟨r′ | w′ ◦ t⟩;
(2) u′ ◦ ⟨t | gR⟩ = ⟨w′ ◦ t | r′⟩;
(3) ⟨w | t⟩ = ⟨tR | w′ ◦ t⟩; and
(4) ⟨t | w⟩ = ⟨w′ ◦ t | tR⟩.

S Y

K T

GK R

K GR

K ′ R

R′

⟨gR|t⟩

⟨t|gR⟩
⟨w|t⟩
⟨t|w⟩

u r

u′

w

tK
r

gR
t

r′ tR

w′

Proof. In the diagram on the right, the bottom face of the
bottom cube is PBPO+-adhesive by assumption, its top face
is a pushout, and its back faces are pullbacks in any cate-
gory [OER23, Lemma 15]. Hence its front faces are pullbacks
by PBPO+-adhesivity. Then all claims follow by composing
pullback squares, using the pullback lemma.

Remark 4.11. Because every t ∈ A(T,GR) defines an arrow w′ ◦ t ∈ Hom(T,R′), we can
overapproximate A(T,GR) using Hom(T,R′). The equalities of Lemma 4.10 will then be
used as follows.

(1) We will slide morphisms t ∈ A(T, GR)
w
̸∼= to the left. If ⟨gR | t⟩ is invertible, then

gL ◦ ⟨t | gR⟩ ◦ ⟨gR | t⟩← : T → GL is an arrow towards the left. Lemma 4.10.1 implies
that invertibility of ⟨gR | t⟩ can be verified on the level of the rule.

(2) Although we cannot deduce ⟨t | gR⟩, Lemma 4.10.2 implies that we can at least deduce
how it is mapped into K ′.
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(3) Lemma 4.10.3 implies that it suffices to restrict the overapproximation of A(T, GR)
w
̸∼= to

Hom(T, R′)tR̸∼= .

(4) If t ∈ A(C), then ⟨t | w⟩ ∈ A(C) by the pullback stability assumption. Thus,
Lemma 4.10.4 implies that it suffices to restrict the overapproximation even further to
{f ∈ Hom(T, R′)tR̸∼= | ⟨f | tR⟩ ∈ A(C)}.

4.2. Determining wt(A(T, GR)
w
∼=). In this section we show that the weight of A(T, GR)

w
∼=

can be determined under minimal assumptions.

Proposition 4.12. If f and g have a pullback of the form on the left of:

C A′ C A

B A B A

g

f ′

iPB g

f ′i−1

PB

f f

where i ∈ iso(C), then the square on the right is also a pullback. Moreover, f ′i−1 is a unique
solution for h in f = g ◦ h.

Proof. First, gf ′ = fi =⇒ gf ′i−1 = fii−1 =⇒ gf ′i−1 = f . So the right square commutes.

For the pullback property, let gx = fy commute for a span C
x← X

y→ A. Then using
the pullback property of the left square, there exists a unique z such that

C A A′ X

B A

g

f ′i−1

=

i

f ′

i

z

x

y

f

commutes. Then iz is a solution for w in f ′i−1w = x and 1Aw = y, and it is in fact a unique
solution by the second equation. So the commuting square is indeed a pullback.

Finally, that f ′i−1 is a unique solution for h in f = g ◦ h follows easily from the
established pullback property [OER23, Proposition 13].

Definition 4.13. For cospans A
f→ B

g← C with ⟨g | f⟩ ∈ iso(C) iso, we let ⟨f | g⟩= denote
the unique h satisfying f = g ◦ h (well-defined by Proposition 4.12).

Lemma 4.14. Let the pullback

R R

R′ GR

tR wPB

w′

be given with tR ∈ A(C). Let C be A-locally finite and T a set of objects. Then χ :

A(T, GR)
w
∼= → A(T, R

′)tR∼= defined by χ(t) = w′ ◦ t is a domain-preserving bijection.
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Proof. That χ is domain-preserving is immediate from the definition.
We show that χ is well-typed. Let t ∈ A(T, GR)

w
∼= and let dom(t) = T ∈ T. We have

R R T

R′ GR T

tR wPB

⟨t|w⟩=

PB

w′ t

(4.1)

using Proposition 4.12. By the pullback lemma, the outer square is a pullback, and so
⟨tR | w′ ◦ t⟩ ∈ iso(C). Moreover, w′ ◦ t ∈ A(T,R′), because w′ ◦ t = tR ◦ ⟨t | w⟩=, and
tR ◦ ⟨t | w⟩= ∈ A(T,R′) by stability under composition (Assumption 4.4). Thus, the image

of χ lies in A(T, R′)tR∼= , and so A(T, R′)tR∼= is a valid codomain.
For injectivity of χ, assume w′ ◦ s = w′ ◦ t. We then have the diagram

R R T T

R′ GR T

tR wPB

⟨s|w⟩=

PB

⟨t|w⟩=

!x

w′ s

(4.2)

where the outer diagram commutes by w′ ◦ s = w′ ◦ t and Diagram (4.1). Hence there exists
a unique x : T → T such that ⟨t | w⟩= = 1R ◦ ⟨s | w⟩= ◦ x and 1T = 1T ◦ x. Hence x = 1T ,
and by canceling identities, ⟨t | w⟩= = ⟨s | w⟩=. Thus s = w ◦ ⟨s | w⟩= = w ◦ ⟨t | w⟩= = t.

For surjectivity of χ, let f ∈ A(T, R′)tR∼= . We have the diagram

R R T

R′ GR T

tR wPB

⟨f |tR⟩=

⟨f |tR⟩=

=

w′

f

w◦⟨f |tR⟩=

(4.3)

where the outer square is a pullback. We have tR ◦ ⟨f | tR⟩= ∈ A(C) by stability under
composition, and hence w ◦ ⟨f | tR⟩= ∈ A(C) by stability under decomposition, using
tR = w′ ◦ w. The right square is moreover a pullback by the pullback lemma. Hence
w ◦ ⟨f | tR⟩= ∈ A(T, GR)

w
∼=. It then follows that f = w′ ◦ w ◦ ⟨f | tR⟩= = χ(w ◦ ⟨f | tR⟩=)

lies in the image of χ.

Corollary 4.15. If the conditions of Lemma 4.14 are met, then

wt(A(T, GR)
w
∼=) = wt(A(T, R′)tR∼= ).

4.3. Sliding Tiles Injectively. In this section we establish conditions for the existence of
a domain-preserving injection ξ : A(T, GR)

w
̸∼=↣ A(T, GL). Intuitively, one can think of ξ as

sliding tiles from right to left across the rewrite step diagram.
If l′ ∈ rm(C), then ξ will be seen to exist rather straightforwardly. However, in general

it suffices to require more weakly that l′ preserves any tiles to be slid (and distinctly so).
Definitions 4.16 and 4.20 help capture such a weaker requirement. With these definitions, ξ
can be shown to exist even for non-trivial rules with non-monic l′.
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Definition 4.16. A morphism g : B → C preserves an A-factorization of f : A → B if
there exists a factorization f = f ′′ ◦ f ′ of f satisfying

• f ′′ ∈ A(C); and
• g ◦ f ′′ ∈ A(C).

Lemma 4.17. Assume C has pullbacks. Let the diagram

A B X

C D

g g′

f ′

PB

x

f

be given, with x ∈ A(C). If f preserves an A-factorization of g′ ◦ x, then f ′ ◦ x ∈ A(C).

Proof. By assumption, there exists an A-factorization k′ ◦ k of g′ ◦x with k′, (f ◦ k′) ∈ A(C).

Construct the pullback of B
g′→ D

k′
⇝K as depicted in diagram

A B E X

C D K

g g′

f ′

PB

k′′

g′′PB

x

k

y

f k′

f◦k′

where k′′ ∈ A(C) by pullback stability. By the pullback property, there exists a morphism
y : X → E such that x = k′′ ◦ y and k = g′′ ◦ y. By x ∈ A(C) and the decomposition
property, y ∈ A(C). By the pullback lemma, the two squares compose to form a larger
pullback square so that f ′ ◦ k′′ ∈ A(C) by pullback stability. Finally, by stability under
composition, f ′ ◦ x = (f ′ ◦ k′′) ◦ y ∈ A(C).

Proposition 4.18. If C has (up to isomorphism) unique (E ,A)-factorizations (for some
class of morphisms E), then the following statements are equivalent:

(1) g : B → C preserves an A-factorization of f : A→ B.
(2) g ◦ a ∈ A(C) for f = a ◦ e an (E ,A)-factorization of f , i.e., a ∈ A and e ∈ E.

Proof. 1 =⇒ 2: let f = f ′′ ◦ f ′ be given with f ′′, (g ◦ f ′′) ∈ A(C). (E ,A)-factorize both f ′

and f as in the following diagram:

A D B C

Y

X

e′

f ′

e

f ′′

g◦f ′′

g

f

a′

ai

The dashed arrows are in E . Then (e′, f ′′ ◦ a′) is an (E ,A)-factorization of f (using that
A(C) is stable under composition), so that by essential uniqueness of such factorizations,
there exists an (i : X → Y ) ∈ iso(C) ⊆ A(C) with a = (f ′′ ◦ a′) ◦ i. Then g ◦ a ∈ A(C) by
g ◦ a = (g ◦ f ′′) ◦ a′ ◦ i and the assumption that A(C) is stable under composition.

2 =⇒ 1: immediate by definition.
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Remark 4.19. In any category C, morphisms f : A→ B trivially admit a unique (identity,
morphism)-factorization, namely (1dom(f), f). So if A(C) = Hom(C), verifying whether g :
B → C preserves an A-factorization of f reduces to verifying whether g◦f ∈ Hom(C), which
is immediate. Moreover, a quasitopos admits both (essentially) unique (epi, regular mono)-
factorizations and (essentially) unique (regular epi, mono)-factorizations (Proposition 3.5).
Thus, if C is a quasitopos and A(C) = rm(C) or A(C) = mono(C), verifying whether any
morphism g : B → C preserves an A-factorization of f reduces to verifying a property for
the respective factorizations.

Definition 4.20 (Monic For). Morphism h : B → C is monic for morphisms f, g : A→ B
if h ◦ f = h ◦ g implies f = g.

Lemma 4.21. Let the diagram

A B X

C D

g g′

f ′

PB

y
x

f

be given. If f is monic for g′ ◦ x and g′ ◦ y, then f ′ is monic for x and y.

Proof. Assume (†1) f ′ ◦ x = f ′ ◦ y. We must show x = y. We have:

f ′ ◦ x = f ′ ◦ y
g ◦ f ′ ◦ x = g ◦ f ′ ◦ y
f ◦ g′ ◦ x = f ◦ g′ ◦ y

g′ ◦ x = g′ ◦ y (†2)

using g ◦ f ′ = f ◦ g′ and the assumption that f is monic for g′ ◦x and g′ ◦y. By g ◦ (f ′ ◦ x) =
f ◦ (g′ ◦ x) and the pullback property, there exists a unique z such that in diagram

A B X

C D

g g′

f ′

PB

f ′◦x

g′◦x

!z

f

f ′ ◦ x = f ′ ◦ z and g′ ◦ x = g′ ◦ z. Solution z = x is trivial, and z = y is a solution by (†1)
and (†2). Hence x = y.

The morphism gR : GK → GR of the rewrite step may identify elements. So for the
injection ξ from right to left to exist, we must be able to go into the inverse direction,
without identifying tiles. To this end, the following lemma will prove useful.

Lemma 4.22. If epimorphisms e and e′ in diagram

A′ B′ C ′

A B C

f ′

e = h

g′

e′=

f g

are split, then for right inverses e← and e′←, f ′e← = g′e′← =⇒ f = g.

Proof. f ′e← = g′e′← =⇒ hf ′e← = hg′e′← =⇒ fee← = ge′e′← =⇒ f = g.
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We are now ready for the main theorem of this subsection. We recommend keeping the
diagram for Lemma 4.10 alongside it.

Theorem 4.23. Assume C has pullbacks. Let a rewrite rule ρ be given with square
r′ ◦ tK = tR ◦ r PBPO+-adhesive. Fix a class A(C) and a set of objects T. Define

Φ = {f ∈ Hom(T, R′)tR̸∼= | ⟨f | tR⟩ ∈ A(C)}.

If

(1) for all f ∈ Φ, ⟨r′ | f⟩ is a split epimorphism; and
(2) for some right inverse choice function (·)← and for all f, g ∈ Φ,

(a) l′ preserves an A-factorization of ⟨f | r′⟩ ◦ ⟨r′ | f⟩←; and
(b) l′ is monic for ⟨f | r′⟩ ◦ ⟨r′ | f⟩← and ⟨g | r′⟩ ◦ ⟨r′ | g⟩←;

then for any rewrite step diagram induced by ρ, the function

ξ(t) = gL ◦ ⟨t | gR⟩ ◦ ⟨gR | t⟩←

defines an injection A(T, GR)
w
̸∼=↣ A(T, GL).

Proof. We first argue that the use of (·)← in ξ(t) is well-defined. Because t ∈ A(C), we have
⟨t | w⟩ ∈ A(C) by pullback stability. And ⟨t | w⟩ = ⟨w′ ◦ t | tR⟩ by Lemma 4.10.4. Moreover,
⟨w | t⟩ /∈ iso(C), and ⟨w | t⟩ = ⟨tR | w′ ◦ t⟩ by Lemma 4.10.3. So ⟨w′ ◦ t | tR⟩ ∈ Φ. Then
by local assumption 1, ⟨r′ | w′ ◦ t⟩ is a split epimorphism. And ⟨r′ | w′ ◦ t⟩ = ⟨gR | t⟩ by
Lemma 4.10.1. So ⟨gR | t⟩← is well-defined.

We next argue that ξ(t) ∈ A(T, GL). As established, ⟨r′ | w′ ◦ t⟩ = ⟨gR | t⟩, and by
Lemma 4.10.2, u′ ◦ ⟨t | gR⟩ = ⟨w′ ◦ t | r′⟩. So the diagram

GL GK T

L′ K ′

α u′

gL

PB

⟨t|gR⟩◦⟨gR|t⟩←

⟨w′◦t|r′⟩◦⟨r′|w′◦t⟩←

l′

commutes, where the pullback square is given by the rewrite step. Moreover, ⟨t | gR⟩ ◦
⟨gR | t⟩← ∈ A(C) (as indicated in the diagram) by stability under composition, using
⟨t | gR⟩ ∈ A(C) (by pullback stability and t ∈ A(C)) and ⟨gR | t⟩← ∈ rm(C) ⊆ A(C) (using
Proposition 2.5 and Assumption 4.4). By local assumption 2a and the commuting triangle
of the diagram, l′ preserves an A-factorization of u′ ◦ ⟨t | gR⟩ ◦ ⟨gR | t⟩←. So by Lemma 4.17,
ξ(t) ∈ A(C) and consequently ξ(t) ∈ A(T, GL).

For injectivity of ξ, assume ξ(t) = ξ(s) for t, s ∈ A(T, GR)
w
̸∼=. By local assumption 2b,

Lemma 4.10.1, and Lemma 4.10.2, l′ is monic for

⟨w′ ◦ t | r′⟩ ◦ ⟨r′ | w′ ◦ t⟩← = u′ ◦ ⟨t | gR⟩ ◦ ⟨gR | t⟩←

and

⟨w′ ◦ s | r′⟩ ◦ ⟨r′ | w′ ◦ s⟩← = u′ ◦ ⟨s | gR⟩ ◦ ⟨gR | s⟩←.

So by Lemma 4.21, gL is monic for ⟨t | gR⟩ ◦ ⟨gR | t⟩← and ⟨s | gR⟩ ◦ ⟨gR | s⟩←. Then because
ξ(t) = ξ(s), ⟨t | gR⟩◦ ⟨gR | t⟩← = ⟨s | gR⟩◦ ⟨gR | s⟩←. Then finally, t = s by Lemma 4.22.
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4.4. The Main Result. We are now ready to prove the main result of this paper (Theo-
rem 4.24) and its corollary (Corollary 4.26). We also show that in rather common settings,
many technical conditions of the theorem are met automatically (Lemma 4.28 and Proposi-
tions 4.29 and 3.7). We close with a complementary lemma that establishes decreasingness
for deleting rules (Lemma 4.30). Examples of applications will be given in Section 5.

Theorem 4.24 (Decreasingness by Element Counting). Let T and T ′ be disjoint sets of
PBPO+ rules. Assume C has pullbacks and let A(C) be a class such that C is A-locally
finite. Let T be a set of objects and wt : T → N a weight function such that, for every
ρ ∈ T ⊎ T ′, the following conditions hold:

• ρ’s pushout square r′ ◦ tK = tR ◦ r is PBPO+-adhesive; and
• tR ∈ A(C); and

• set Φρ = {f ∈ Hom(T, R′)tR̸∼= | ⟨f | tR⟩ ∈ A(C)} meets the conditions of Theorem 4.23 for

some right inverse choice function (·)←; and
• there exists a set ∆ρ ⊆ A(T, L) such that
– for all f ∈ Φρ and t ∈ ∆ρ, l

′ ◦ ⟨f | r′⟩ ◦ ⟨r′ | f⟩← ̸= tL ◦ t;
– tL is monic for all t, t′ ∈ ∆ρ; and

– wt(∆ρ) > wt(A(T, R′)tR∼= ) if ρ ∈ T and wt(∆ρ) ≥ wt(A(T, R′)tR∼= ) if ρ ∈ T ′.
Then for any rewrite step with match m ∈ A(C), induced by a rule ρ ∈ T ⊎ T ′, we have
wtAT (GL) > wtAT (GR) if ρ ∈ T and wtAT (GL) ≥ wtAT (GR) if ρ ∈ T ′.

Proof. Let a step induced by a ρ ∈ T ⊎ T ′ be given.
By Corollary 4.15, wt(A(T, GR)

w
∼=) = wt(A(T, R′)tR∼= ).

By Theorem 4.23, we obtain an injection ξ : A(T, GR)
w
̸∼=↣ A(T, GL) with dom(ξ(t)) =

dom(t), using the assumption on Φρ. So wt(ξ ◦ A(T, GR)
w
̸∼=) = wt(A(T, GR)

w
̸∼=).

Moreover, by m ∈ A(C) and stability under composition, we have (m ◦ ∆ρ) ⊆
A(T, GL). And by tL monic for all t, t′ ∈ ∆ρ, we have m monic for all t, t′ ∈ ∆ρ, and
so wt(m◦∆ρ) = wt(∆ρ). It remains to show that (m◦∆ρ) and (ξ ◦A(T, GR)

w
̸∼=) are disjoint.

If for a t′ ∈ ∆ρ and t ∈ A(T, GR)
w
̸∼=, m ◦ t

′ = ξ(t), then tL ◦ t′ = α ◦m ◦ t′ = α ◦ ξ(t) =

α ◦ gL ◦ ⟨t | gR⟩ ◦ ⟨gR | t⟩← = l′ ◦ u′ ◦ ⟨t | gR⟩ ◦ ⟨gR | t⟩← = l′ ◦ ⟨w′ ◦ t | r′⟩ ◦ ⟨r′ | w′ ◦ t⟩←, us-
ing Lemma 4.10.(1–2) and α ◦ gL = l′ ◦ u, which contradictingly implies t′ /∈ ∆ρ by the
definition of ∆ρ and w′ ◦ t ∈ Φ. Thus ξ(t) ̸= m ◦ t′.

In summary,

wtAT (GL) ≥ wt(m ◦∆ρ) +wt(ξ ◦ A(T, GR)
w
̸∼=)

= wt(∆ρ) +wt(A(T, GR)
w
̸∼=)

≻ wt(A(T, R′)tR∼= ) +wt(A(T, GR)
w
̸∼=)

= wt(A(T, GR)
w
∼=) +wt(A(T, GR)

w
̸∼=)

= wtAT (GR)

for ≻ = > if ρ ∈ T and ≻ = ≥ if ρ ∈ T ′, completing the proof.

Remark 4.25. The requirement m ∈ A(C) puts a lower bound on what one can choose
for A(C) in a termination proof. Usually two factors are relevant: the class of tL, and
match restrictions imposed by the setting. More precisely, let X(C) and Y (C) be classes
of morphisms. If tL ∈ X(C), where X(C) satisfies the decomposition property (meaning
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m ∈ X(C) by tL = α ◦m), and the setting imposes m ∈ Y (C), then the choice of A(C)
must satisfy X(C) ∩ Y (C) ⊆ A(C).

From Theorem 4.24 and Remark 4.25 the following is immediate.

Corollary 4.26 (Termination by Element Counting). Let T and T ′ be disjoint sets of
PBPO+ rules. Let A(C) be a class such that for all rules ρ ∈ (T ⊎ T ′), tL(ρ) ∈ A(C) or
matching of ρ is restricted to a class X ⊆ A(C). If the conditions of Theorem 4.24 are met,
then T terminates relative to T ′. Hence T ⊎ T ′ is terminating iff T ′ is.

Remark 4.27 (Choosing A(C) Per Tile). Theorem 4.24 and the results it depends on still
hold if in instead of having A(C) globally fixed, a class A(C) is fixed for each individual
T ∈ T, and match morphism m is in the intersection of every class. This for instance allows
counting some tiles monically, and others non-monically.

The following lemma implies that in many categories of interest, tilings of L and slid tiles
never collide, in which case one condition on ∆ρ from Theorem 4.24 is vacuously satisfied.
For instance, in quasitoposes, pushouts along tK are pullbacks if tK ∈ rm(C) [Joh02,
Lemma A2.6.2].

Lemma 4.28. Let C have pullbacks, and let a rule ρ be given. If tK ∈ mono(C) and pushout

r′ ◦ tK = tR ◦ r is a pullback, then for all t ∈ Hom(T,R′)tR̸∼= with ⟨r′ | t⟩ a split epi, we have

l′ ◦ ⟨t | r′⟩ ◦ ⟨r′ | t⟩← ̸= tL ◦ t′

for all T ′ ∈ Ob(C) and t′ ∈ Hom(T ′, L).

Proof. By contradiction. Assume that for some t ∈ Hom(T,R′)tR̸∼= with ⟨r′ | t⟩ a split epi and

some t′ ∈ Hom(T ′, L), l′ ◦ ⟨t | r′⟩ ◦ ⟨r′ | t⟩← = tL ◦ t′. Then we have the commuting diagram

T ′ S′

L K R

L′ K ′ R′

T ′ S′ S T

T

t′ ⟨t′|l⟩

⟨l|t′⟩

PB(1)

tL

l r

tKPB(2) PO + PB tR

l′ r′

tL◦t′ tK◦⟨t′|l⟩

⟨l|t′⟩

PB(3) ⟨t|r′⟩

⟨r′|t⟩

PB(4) t

⟨r′|t⟩←x

where

• squares PB(2) and PO + PB are given by ρ;
• squares PB(1) and PB(4) are constructed;
• square PB(3) follows from PB(1) and PB(2), using the pullback lemma;
• morphism x exists by the hypothesis and the pullback property; and
• ⟨r′ | t⟩ ◦ ⟨r′ | t⟩← = 1T by the right inverse property.

By a diagram chase we thus have t = r′ ◦ tK ◦ ⟨t′ | l⟩ ◦ x. Then from
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R K K T

R′ K ′ K T

tR tK

r

PB PB

⟨t′|l⟩◦x

PB

r′ tK ⟨t′|l⟩◦x

t

and two applications of the pullback lemma, we have ⟨tR | t⟩ ∈ iso(C), contradicting

t ∈ Hom(T,R′)tR̸∼= .

The proposition below states a strong sufficient condition for satisfying the termination
method’s preconditions. Many graph categories of interest meet these conditions.

Proposition 4.29. If C is an rm-locally finite, rm-adhesive quasitopos, then rm(C) satisfies
Assumption 4.4. C also has all pullbacks and all pushouts, and so in particular the required
pushouts described in Assumption 3.11. If moreover tL(ρ) ∈ rm(C), then m, tK , tR ∈ rm(C),
ρ’s pushout square is PBPO+-adhesive, and tL is monic for A(T, L(ρ)).

Proof. See Proposition 3.5 for a summary of quasitopos properties. That rm(C) satisfies
Assumption 4.4 was stated in Proposition 4.5. If tL ∈ rm(C), and m, tK ∈ rm(C) by stability
under decomposition and pullback, respectively. That tR ∈ rm(C) subsequently follows
from pushout stability in quasitoposes [Joh02, Lemma A.2.6.2]. Because of the assumed
rm-adhesivity and tK ∈ rm(C), ρ’s pushout square is PBPO+-adhesive (Corollary 4.8).
Finally, that tL is monic for A(T, L(ρ)) follows trivially from the fact that tL is monic.

Finally, we have the following general principle, which does not require any assumptions
on tK and tR, nor any adhesivity assumptions.

Lemma 4.30 (Deleting Rules Are Decreasing). Assume C has pullbacks and is mono-locally
finite. Suppose that for a PBPO+ rule ρ, l′ is monic, l is not epic, and r is iso; and that for
any matches m for ρ, m is monic. Then ρ is decreasing for T = {L}, wt(L) > 0, ∆ρ = {1L}
and A(C) = mono(C).

Proof. Let a rewrite step diagram be given. By stability properties, morphism gL is monic
because l′ is monic, and gR is iso because r is iso. Then

ξ : mono(L,GR)↣ mono(L,GL)

defined by ξ(t) = gL ◦ gR−1 ◦ t is an injection because gL ◦ gR−1 is monic. But ξ is not
surjective. Because if m = ξ(t) for some t ∈ mono(L,GR), then in diagram

L K L

GL GK GR L

m u

l

PB

!x

gL g−1
R t

ξ(t)

a unique x : L→ K is obtained that makes the diagram commute, using the pullback square
on the left. Thus l ◦ x is an isomorphism, and hence l an epimorphism, which contradicts
our assumption about l. So m ∈ mono(L,GL) does not lie in the image of ξ. It follows that
wtAT (GL) > wtAT (GR).
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5. Examples

We give a number of examples of applying Theorem 4.24 in category C = FinGraph
(Definition 2.7), each demonstrating new features. For each example, we will fix T, wt, and
A(C), and usually some properties of the relevant morphism sets (such as cardinalities) or
related comments. The remaining details of the proofs are routine. Note that in FinGraph
(and more generally in any topos), rm(C) = mono(C), and because the rules in examples
satisfy tL ∈ mono(C), we are in each case free to choose mono(C) or Hom(C) for A(C)
(Remark 4.25).

Notation 5.1 (Visual Notation). In our examples of rules, the morphisms tX : X ↪→ X ′

(X ∈ {L,K,R}) of rules are regular monos (embeddings). We depict tX by depicting the
graph X ′, and then let solid, colored vertices and solid edges denote tX(X), with dotted
blank vertices and dotted edges the remainder of X ′. For example, in Example 5.2 below,

subgraph L of tL : L ↪→ L′ is x y .

The vertices of graphs are non-empty sets {x1, . . . , xn} depicted by boxes x1 · · · xn .
When depicting the homomorphism (r′ = (r′V , r

′
E)) : K

′ → R′ we will choose the vertices
of K ′ and R′ in such a way that component r′V is fully determined by S ⊆ r′V (S) for all
S ∈ VK′ . For example, for nodes {x}, {y} ∈ VK′ of Example 5.2 below (in which morphism
r′ is implicit), r′({x}) = r′({y}) = {x, y} ∈ VR′ . If component r′E is not uniquely determined
by r′V , then let r′E preserve the relative positioning of the edges (although normally, this
choice will be inconsequential). Morphism l′ : K ′ → L′ is depicted similarly.

Example 5.2 (Folding an Edge). The rule

ρ =

tL
x y

c

tK
x y

c

tR
x y

c

x y

folds a non-loop edge into a loop (in any context). Define tile set T = { } with
wt( ) = 1 and fix A(C) = mono(C). Then |Φρ| = 5 (every non-loop dotted edge in R′,
and the loop on c). For every f ∈ Φρ, ⟨r′ | f⟩ is iso and hence a regular epi with a unique right
inverse. Because l′ is monic (even iso), the remaining details of Theorem 4.23 are immediate.

Finally, for the only choice of ∆ρ, wt(∆ρ) = 1 > wt(mono(T, R′)tR∼= ) = wt(∅) = 0. So ρ is
terminating.

Example 5.3. Let the rewrite system T consist of rules

ρ =

tL x

c

tK x

c

tR x y

c

and

τ =

tL
x y

c

tK
x y

c

tR
x y z

c

Rule ρ deletes a loop in any context, and adds a node; and rule τ deletes a non-loop edge in
any context, and adds a node.
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Because the r morphisms of ρ and τ are not iso, Lemma 4.30 cannot be applied. But
for T = , T = {T}, wt(T ) = 1, A(C) = Hom(C), and ∆ρ1 and ∆ρ2 the singleton
sets containing the unique morphisms T → L(ρ) and T → L(τ), respectively, T is proven
decreasing and thus terminating by Theorem 4.24. This argument captures the natural
argument: “the number of edges is decreasing”.

An alternative argument lets T = {T, T ′}, with T ′ = , wt(T ) = wt(T ′) = 1, and
A(C) = mono(C). Then ∆ρ contains the unique mono T ′↣ L(ρ) and ∆τ the unique mono
T ↣ L(τ). This captures the argument: “the sum of loop and non-loop edges is decreasing”.

Remark 5.4 (Element Counting in Fuzzy Presheaves). In a fuzzy graph category (Exam-
ple 3.9), rules that change labels (but leave the structure of the graph unchanged) can be
proven terminating by using A(C) = rm(C), but not always by using A(C) = mono(C).
For instance, a rule that increases a loop edge label a into label b > a, is shown terminating
by T = { a} and A(C) = rm(C), but no proof exists for A(C) = mono(C), because b

has strictly more monic elements than a .

Example 5.5. The rule

ρ =

tL

x y

z

c

tK

x y

c

tR

x y

w

c

is proven terminating by T = { }, wt( ) = 1, and A(C) = mono(C).
This example can be used to show that applicability of our technique is not invariant

under rule equivalence. Let ρ′ be obtained from ρ by dropping the solid edge from x to y in
K and K ′. The rules ρ and ρ′ are equivalent: they induce the same rewrite relation. However,
our termination technique fails for ρ′, because not all tiles can be intactly transferred. We
therefore pose the following open question. Does there exist a procedure that maps a rule τ
onto an equivalent “standard” representative standard(τ), such that the termination method
fails on standard(τ) iff it fails on all rules in the equivalence class? And if it exists, can it
be formulated on the level of (rm-adhesive) quasitoposes?

Example 5.6. Consider the rules ρ and τ , respectively:

ρ =
tL

x y

a a

c

a
b tK

c

a
b tR

u v w

b b b

c

a
b

τ =
tL

x y

b b

c

a
b tK

c

a
b tR

u

a

c

a
b

Intuitively, these rules model replacements in multisets over {a, b}. The elements of the
multiset are modeled by nodes with loops that carry the label a or b, respectively. Rule ρ
replaces two a’s by three b’s, and τ replaces two b’s by one a.

These rules are terminating. To prove this, we use tiles T = { a , b } together with
the weight assignment wt( a ) = 5 and wt( b ) = 3, and let A(C) = mono(C). The
context is isomorphically preserved along l′ and r′, and partial overlaps with the pattern are
not possible. So Theorem 4.23 is easily verified for Φρ and Φτ . Then for the obvious largest
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choices of ∆ρ and ∆τ , we have wt(∆ρ) = 2 · 5 = 10 > wt(mono(T, ρ(R′))ρ(tR)
∼= ) = 3 · 3 = 9

for ρ and wt(∆τ ) = 2 · 3 = 6 > wt(mono(T, τ(R′))τ(tR)
∼= ) = 5 for τ , completing the proof.

The above termination proof works also for vast generalizations of the rules. For instance,
rule ρ can be generalized to rule ρ′ as follows:

tL x y za a

ca, b

a, b a, ba, b
a, b

tK x y

zca, b

a, b a, ba, b
a, b

a, b

a, b
a, b

tR x y

zca, b

a, b a, ba, b
a, b

a, b

a, bb b

b

a, b

Observe that L′ now allows an unbounded number of additional loops on the nodes, and an
unbounded number of edges between the nodes and the context. The morphism l′ preserves
the loops, duplicates a node (including its incident edges from and to the context), and
unfolds loops between the duplicated nodes. The system {ρ′, τ} is still proven terminating
using the argument above.

More generally, as long as l′ and r′ of a rule do not create new loops other than those
specified by l and r, the rule can be proven terminating using the argument above.

Example 5.7. Consider the following rules:

ρ =
tL n

c

w x

y z

tK n

c

w x

y z

tR n

c

w x

y z

τ = tL x c tK c tR c

Rule ρ deletes an arbitrary loop, and in doing so, allows arbitrarily many bipartite graph
components in the context to duplicate (such components can either be mapped onto node
c or onto the right subgraph component). Note that this makes the rule non-deterministic.
Rule τ deletes an arbitrary node including incident edges.

Termination of the system can be proven as follows. Let A(C) = mono(C). Use the
tile set T = { } with the weight assignment wt( ) = 1. Then ρ is decreasing and τ is
non-increasing, and so it suffices to prove τ terminating, whose termination is immediate
from Lemma 4.30.

The derivational complexity3 of this system is O(2mn) where m = |EG| and n = |VG| of
the starting graph G. This can be seen as follows. In the worst case, G consists of

• one distinguished node x with m loops; and
• the remaining n− 1 nodes without any incident edges.

In this case, each of the m edges gives rise to an application of rule ρ, and each node forms
a bipartite graph component, with the exception of node x. Assuming in the worst case that

• all ρ-steps precede τ -steps; and
• all of the nodes except x are duplicated at every ρ-step;

this scenario gives rise to the following recurrence relation max len(m,n) for computing the
derivation length:

• max len(0, n) = n; and
• max len(m+ 1, n) = 1 +max len(m, 2n− 1).

3The derivational complexity of a terminating term rewrite system is a function f : N → N such that f(n)
is the length of the longest rewrite sequence for any starting term of size n.
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Using a routine inductive proof it can be shown that

max len(m,n) = 2m(n− 1) +m+ 1

which is in O(2mn).

Example 5.8. We consider a system consisting of two DPO rules, given by Plump [Plu18,
Example 3], [Plu95, Example 3.8]. The equivalent PBPO+ rules (using the standard
encoding [OER23, Definition 71]) are as follows:

ρ =

tL

x y z
a b

c

tK

x z

c

tR

x y z
a c

c

τ =

tL

x y z
c d

c

tK

x z

c

tR

x y z
d b

c

These are graph transformation versions of the string rewrite rules ab→ ac and cd→ db,
respectively. Note that both rules specify that node y is not allowed to have any incident
edges other than those shown in L.

We can use T = {L(ρ)} for our tile set, with wt(L(ρ)) = 1 and A(C) = mono(C).
Then rule ρ is clearly decreasing. Rule τ is non-increasing, because the creation of the
b-edge cannot create new L(ρ) subobjects, due to y not having any incoming a-edges. So
τ is non-increasing and we can remove ρ by relative termination. Next, we can prove τ

terminating using tile x yc
with weight 1 and A(C) = mono(C), i.e., by counting

non-loop c-edges.

We give one example in a hypergraph category that was originally considered by
Plump [Plu18, Example 6].

Example 5.9 (Hypergraphs). Let I be the category freely generated by:

s

+ V 0

a1srs

a1+

a2+

r+
r0

We view V as the type of expression roots. There are three types of hyperedges: +, s, and
0, each associated with a root (r+, rS , and r0, respectively). Moreover, + is associated with
two (ordered) arguments a1+ and a2+, and s with one argument a1s (s should be thought of as
representing the successor function). The functor category [I,FinSet] has hypergraphs as
objects and hypergraph homomorphisms as arrows. Moreover, it is a topos (Proposition 3.7).

Not all objects of [I,Set] would be considered well-formed under our suggested interpre-
tation of these hypergraphs as expressions (in particular, there could be cycles and parallel
hyperedges), but our termination argument below is valid even in the presence of such
non-well-formed hypergraphs.

The DPO rules considered by Plump [Plu18, Example 6] in this category are as follows:
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ρ =

L
x

y z

+

0

K
x

y z

0

R
x y

z

0

τ =

L
x y

z

s s

0

K
x y

z

s

0

R
x y

z

s

0

s

0

They can be encoded into PBPO+ using the standard encoding [OER23, Definition 71].
That is, tX = (ηX : X ↪→ T (X)) for X ∈ {L,K} (with (η, T ) the partial map classifier of
the category), and R′ is obtained by pushing out tK along r. Note that because vertex w is
fresh in R, it does not have any connections in R′ other than those shown in R.

To prove termination, we first use tile

x

y z

+

with weight 1 and A(C) = mono(C). This proves ρ decreasing and τ non-increasing, so that
we can remove rule ρ.

We then remove the second rule using tile

x y

z

s s

with weight 1 and A(C) = mono(C). Observe that a node in the host graph with n incoming
s-edges allows for n · (n− 1) embeddings of this tile: this observation relates our argument
to that of Plump [Plu18, Example 6].

6. Related Work

We consider two closely related approaches by Bruggink et al. [BKZ14,BKNZ15] and the
approach by Endrullis and Overbeek [EO24] to be the most relevant to our method.4 These
approaches use weighted type graphs T to measure graphs G by means of counting weighted
morphisms G → T (instead of weighted morphisms T ′ → G for tiles T ′). So the general
idea is dual to the one in this paper. Moreover, to our knowledge, these approaches are
the only systematic termination methods in the algebraic tradition based on decreasing
interpretations.

4The recently updated arXiv version [BKNZ23] of [BKNZ15] corrects some errors in the theory.
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The methods by Bruggink et al. are defined for DPO in the category of edge-labeled

multigraphs. The first approach [BKZ14] requires that l and r of DPO rules L
l
↢ K

r
↣ R,

and matches m : L ↣ GL, are monic. The second approach [BKNZ15] has no such
restrictions.

Because our method is applicable in a much broader setting, our method will prove
rules terminating that are outside the scope of the methods by Bruggink et al. Nonetheless,
it is interesting to ask how the approaches relate in settings where they are all defined.

On the one hand, although Examples 5 and 6 of [BKNZ15] are within the scope of
our method, our method cannot prove them terminating. The intuitive reason is that the
examples terminate because of global properties, rather than local ones. On the other hand,
Example 6.1 below defines a DPO rule that falls inside the scope of all three methods, and
only our method can prove it terminating. In conclusion, within the restricted setting, the
methods are incomparable.

Example 6.1. Consider the following DPO rule ρ in category FinGraph:

L

x y

z
K

x y

R

x y

w
l r

and assume matching is required to be monic. This requirement is often used in practice,
because monic matching increases the expressiveness of DPO [HMP01].

The approach in [BKZ14] cannot prove ρ terminating. For establishing termination
(on all graphs), the weighted type graph T has to contain a node with a loop (called a
flower node). The flower node ensures that every graph G can be mapped into T . Then,
in particular, the technique requires a weight decrease (from L to R) for the case that the
interface K is mapped onto the flower node. However, this makes L and R indistinguishable
for the technique in [BKZ14].

Although matches are required to be monic, the method of [BKNZ15] overapproximates
for unrestricted matches by design. Observe that if matching is not monic, then graph L
of ρ, but with x and y identified, rewrites to itself, meaning ρ is not terminating. As a
consequence, the overapproximation of [BKNZ15] causes it to fail in proving ρ terminating
for the monic matching setting. (For the same reason, the method of [BKNZ15] fails on the
simpler top span of Example 5.2, which is a DPO rule, for the monic matching setting.)

Rule ρ can be proven terminating with our method as follows. Encode ρ into PBPO+

using the standard encoding [OER23, Definition 71].). The resulting rule and a termination
proof were given in Example 5.5 above.

Additional examples by Bruggink et al. that our method can prove are Example 4 of
[BKZ14] (= Example 2 of [BKNZ15]), and Example 4 of [BKNZ15]. Additional examples
that our method cannot prove are Example 1 and the example of Section 3.5 of [BKZ14].
However, unlike the earlier referenced Examples 5 and 6 of [BKNZ15], these examples are in
reach if our morphism counting technique can take into account antipatterns (Remark 6.2
below), because they terminate because of local properties.

Remark 6.2 (Antipatterns). A rule that matches an isolated node, and adds a loop, cannot
be proven terminating with our method. For this, one must be able to count nodes without
loops (an antipattern), which is currently unsupported. We believe that extending our method
with support for such antipatterns is a natural first step for significantly strengthening it.
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In [EO24], we generalize and strengthen the approach of [BKNZ15] to (a) be applicable
in a wider range of categories and (b) be applicable when termination depends on matching
restrictions. This enhanced weighted type graph technique can prove termination of Exam-
ple 6.1. However, it still fails for other systems which can be proven terminating by the
approach presented in the current paper (for instance Example 6 of [Plu18]). Thus, even in
settings where both methods are defined, the methods are strictly incomparable.

We discuss some additional related work. An early systematic termination criterion
for hypergraph rewriting with DPO, due to Plump, is based on the concept of forward
closures [Plu95]. Both of the examples proven terminating with forward closures, Example 3.8
(Example 5.8 above) and Example 4.1 of [Plu95], can be handled with our method.

More recently, Plump formulated a modularity criterion for hypergraph rewriting using
DPO [Plu18]: the union of two terminating systems is terminating if there are no sequential
critical pairs. Of this paper, our method can prove three out of four examples: Examples 3
(= Example 3.8 of [Plu95]), 5 and 6. The modeling of Example 6 is Example 5.9 above. Our
method cannot prove Example 4 (= the already discussed Example 5 of [BKZ14]). It would
be interesting to assess the strength of the modularity criterion (especially if generalized to
PBPO+) combined with our method.

Bruggink et al. have shown that string rewriting rules are terminating on graphs iff
they are terminating on cycles [BKZ14], making cycle rewriting techniques [ZKB14,SZ17]
applicable to graph transformation systems consisting of string rewrite rules. Similarly,
in another paper [OE21] we have shown that particular PBPO+ encodings of linear term
rewrite rules are terminating on graphs iff they are terminating on terms.

There also exist a variety of approaches that generalize TRS methods (such as simplifi-
cation orderings) to acyclic term graphs [Plu99,Plu97,MS16] and drags [DJ19,DJO23] (that
possibly contain cycles) [DJ18].

Remark 6.3 (Relating Subgraph Counting with TRS Termination Methods). An interesting
question is how the technique presented in this chapter relates to the many techniques
available for term rewriting systems. Zantema [Ter03, Chapter 6] has roughly categorized
the available termination techniques for TRSs as follows:

• syntactical methods, which inductively define a well-founded order directly on the terms;
• transformational methods, which define non-termination preserving transformations Φ on
rewrite systems (Σ, R), such that termination of (Σ, R) can be proven by applying other
techniques to Φ((Σ, R)); and
• semantical methods, which interpret terms into some well-founded order using weight
functions.

One of the most well-known syntactical methods for TRSs is the recursive path order (RPO)
by Dershowitz [Der82]. RPO has been adapted for acyclic term graphs and [Plu99,Plu97,
MS16] and drags [DJ18].

Well-known transformational methods for TRSs include dependency pairs [AG00] and
semantic labeling [Zan95]. As far as we know, no versions for graphs have been proposed.

For the semantical methods, finally, a fundamental result is that a TRS is terminating iff
it admits a compatible well-founded monotone algebra [Ter03, Theorem 6.2.2.]. This of course
also implies that finding such an algebra is hard. For TRSs, there exist well-known heuristics
for finding polynomial interpretations [CL87] and matrix interpretations [HW06,EWZ06].
The weighted type graph approach by Bruggink et al. [BKZ14,BKNZ15], discussed above,
essentially corresponds to the matrix interpretation method.
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Our weighted subgraph counting approach is distinctly semantical, but as far as we
can see, it does not correspond directly to an existing method for term rewriting systems.
Because an analogous approach would not exploit the inductive term structure, we also do
not believe that it would be very powerful in the TRS setting.

7. Implementation

We have implemented our termination method using Scala 3 [OSVS21]. The software package
is called graphTT [OE24], and it includes a REPL (read-eval print loop) for exploring relative
termination proofs iteratively, where in each step detailed feedback about the proof process
is provided (Section 7.1). Our algorithm is implemented generically for general categories,
and one category is included (together with parsing methods for input files): FinGraph,
the category of finite edge- and vertex-labeled directed multigraphs. After describing the
REPL, we give a brief description of the implementation (Section 7.2), which can be viewed
as an example of computational (applied) category theory (see Remark 7.1 below).

Remark 7.1 (Related Work). Computational (applied) category theory, initiated by Ry-
deheard and Burstall [RB88] in 1988, bridges the gap between programming and category
theory. More specifically, Rydeheard and Burstall implemented a large body of category
theory in ML. For algebraic graph transformation in particular, Minas and Schneider [MS10]
proposed a Java implementation in 2010. In more recent years, Brown et al. [BPHF23]
have implemented algebraic graph rewriting in Julia, as part of the broader AlgebraicJu-
lia5 [HPBF20,PLF21] applied category theory project. The work by Brown et al. is especially
interesting because the code is both general and performant.

7.1. REPL. We describe the REPL used for exploring relative termination proofs by running
through a simple example session.

When the REPL is invoked, it starts in system selection mode. One of the available
commands is help, which shows the available commands. The output is as follows:

=== GraphTT REPL ===

>> You are in system selection mode.

>> Type 'help' to view the available commands.

graphTT> help

>> Available commands:

select [n] : select system n for termination proving

inspect [n] : inspect option (system/tile) n in detail

systems : list the available systems

help : print all available commands

exit : exit the program

The list of available systems at the time of writing is as follows:

graphTT> systems

>> The following systems were loaded:

(0) multiset_as_graph

(1) delete_loop_and_nonloop

5https://www.algebraicjulia.org

https://www.algebraicjulia.org
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(2) unfold_to_triangle

(3) folding_an_edge

(4) duplicating_bipartite_components

(5) generalized_multiset_as_graph

When the REPL is started, the available systems are read from relative directory ./

src/main/resources/labeled/systems. The included systems correspond to examples
provided in this paper. The correspondences are indicated in the included files using
comments (/*...*/). For example, the contents of file folding an edge.pbpop are as
follows:

graphTT> inspect 2

SYSTEM: folding_an_edge

/* Example 5.2 of

Termination of Graph Transformation Systems

Using Weighted Subgraph Counting

*/

=== rho ===

L { x:0 -P:0-> y:0 }

L' { x:0 -P:0-> y:0

x:0 -XX:0-> x:0

y:0 -YY:0-> y:0

x:0 -XY:0-> <-YX:0- y:0

x:0 -XC:0-> <-CX:0- c:0

c:0 -CY:0-> <-YC:0- y:0

c:0 -CC:0-> c:0 }

K { x:0 -P:0-> y:0 }

K' { x:0 -P:0-> y:0

x:0 -XX:0-> x:0

y:0 -YY:0-> y:0

x:0 -XY:0-> <-YX:0- y:0

x:0 -XC:0-> <-CX:0- c:0

c:0 -CY:0-> <-YC:0- y:0

c:0 -CC:0-> c:0 }

R { x.y:0 -P:0-> x.y:0 }

The file contains the system of Example 5.2, which consists of a single PBPO+ rule ρ over
unlabeled graphs. Elements and their labels are written as id:label. By convention, we
use lowercase for vertex identities, uppercase for edge identities, and we label unlabeled
elements with 0. Edges require two endpoints and an indication of direction, and vertices
without incident edges can be listed separately. The rule morphisms are implicitly defined
and follow the convention described in Notation 5.1. For instance, vertices x and y of K are
mapped onto vertex x.y of R: so . is used to compose identities.

Let us prove system folding an edge terminating. We do this by selecting it, after
which the REPL enters into proof mode:

graphTT> select 3

>> Entering proof mode for system folding_an_edge.

>> The system consists of 1 rule.
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>> The system is as follows:

[... printed system as above ...]

In proof mode, the available commands are as follows:

graphTT> help

>> Available commands:

use [i w c]+ :

use tile i with weight w, and count morphisms of class c, where:

- i and w are integers (and w is positive), and

- c is a character (r: regular monos, m: monos, h: homomorphisms)

multiple tiles can be specified.

for example, 'use 3 4 h 5 9 r' uses:

- tile 3 with weight 4 (counting homomorphisms), and

- tile 5 with weight 9 (counting regular monos)

inspect [n] : inspect option (system/tile) n in detail

back : return to system selection mode

help : print all available commands

tiles : list the available tiles

exit : exit the program

Tiles are loaded from relative directory ./src/main/resources/labeled/tiles. At the
time of writing, these tiles are available:

>> The following tiles were loaded:

(0) two_opposing_edges

(1) single_loop

(2) single_node

(3) single_nonloop_edge

(4) a_loop

(5) b_loop

As Example 5.2 suggests, we just need a single unlabeled non-loop edge, which is provided:

graphTT> inspect 3

TILE: single_nonloop_edge

x:0 -XY:0-> y:0

Example 5.2 also suggests that a weight assignment of 1 is sufficient, and that we should
count (regular) monos. Note that our implementation allows choosing a class A(C) on a
tile-by-tile basis (see Remark 4.27). As the description for use suggests in the help output
above, we can use tile 3 with weight 1 (and counting monos) by writing use 3 1 m.

Using tile 3 with weight 1 produces the following output (commentary on the output
follows afterwards):

graphTT> use 3 1 m

=============== SYSTEM TERMINATION REPORT ===============

--------------- SUMMARY ---------------

The system has 1 rules, named: rho

Was the sliding successful for every rule? yes
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Provably decreasing rules: rho

Provably nonincreasing (but not provably decreasing) rules:

Possibly increasing rules:

The pruned system contains rules:

The pruned system is empty, so the system is TERMINATING.

--------------- DETAILED RULE REPORTS ---------------

>>>>>>>>>>>>>>> rule rho <<<<<<<<<<<<<<<

Summary:

- The sliding is SUCCESSFUL.

- The weight of Delta is 1.

- The weight of R is 0.

- Conclusion: the rule is PROVABLY DECREASING.

The details per tile for this rule now follow.

~~~ Tile single_nonloop_edge with weight 1, counting MONOS only

x:0 -XY:0-> y:0

- The tiling of R has size: 0

- Giving a weight of: 0 * 1 = 0

- A largest valid tiling of L has size: 1

- Giving a weight of: 1 * 1 = 1

Slide data:

# morphisms into R': 10

# of which valid: 5

# iso in R: 0

# noniso in R: 5

# number of ways to slide: 1

>> The pruned system is empty!

>> You have proven system folding_an_edge terminating.

>> Returning to system selection mode.

As can be seen:

(1) a summary is given on the system level, indicating whether the sliding was successful
for every rule, and partitioning the rules according to whether they are provably
decreasing, provably nonincreasing (but not provably decreasing), or neither (i.e., possibly
increasing);

(2) a summary is given for every rule ρ of the system, indicating, among others, the largest
possible weight for ∆ρ (Theorem 4.24), and the weight of R;

(3) for every rule ρ and tile T , detailed data is given for the slide analysis. Here,
• morphisms into R’ indicates |Hom(T,R′)|;
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• of which valid indicates |S| for S = {t ∈ Hom(T,R′) | ⟨t | tR⟩ ∈ A(C)};
• iso in R indicates Hom(T,R′)tR∼= ∩ S;

• noniso in R indicates Hom(T,R′)tR̸∼= ∩ S; and

• ways to slide indicates the number of possible slid tile sets into L′. The number of
choices for right inverses do not matter here: it is the number of outcomes.

Moreover, the system is automatically pruned if possible. In this example the pruned system
is empty, meaning the system is terminating. If the system is not empty, the process repeats,
and the user can select a new set of tiles for the pruned system.

7.2. Implementation Details. The implementation consists of seven packages, named
categorytheory, labeledgraph, parsing, repl, rewriting, termination, and util. We
comment on packages categorytheory, labeledgraph, rewriting, and termination.

7.2.1. Package categorytheory. Package categorytheory contains general purpose cat-
egorical definitions, organized in a highly modular fashion. The library is designed to be
reusable for other purposes. Some of the more complex definitions include the notions of a
presheaf category and a topos.

Most of the definitions in package categorytheory are defined as traits. A Scala trait
can be described as a more powerful version of Java’s interface. A trait can take type
parameters and define (abstract or implemented) members. It can also mix in other traits,
which is Scala’s way of implementing multiple inheritance. The definition of a topos is given
in Listing 1, for instance, where type parameters O and A represent the collections of objects
and arrows, respectively. All members of Topos are inherited from the Quasitopos trait,
and three default implementations are provided. The RmAdhesive trait is empty: mixing it
in constitutes a promise that the category is rm-adhesive.

Listing 1. Topos.scala

trait Topos[O, A] extends Quasitopos[O, A] with RmAdhesive:

final def isRegularEpic(f: A): Boolean = isEpic(f)

final def isRegularMonic(f: A): Boolean = isMonic(f)

final def regularEpiMonoFactorization(f: A): (A, A) =

epiRegularMonoFactorization(f)

We have also defined a shorthand type name TerminationCategory for the intersection
of the types listed in Listing 2. Our termination method implementation expects that the
ambient category is a TerminationCategory. Note that this intersection is strictly stronger
than the requirements listed in the paper: it could be generalized in the future, and the
algorithm made more fine-grained, if the use case arises.

Listing 2. TerminationCategory.scala

type TerminationCategory[O, A] = Quasitopos[O, A] & RmAdhesive

7.3. Package labeledgraph. Package labeledgraph defines labeled graphs and graph
homomorphisms as defined in Definition 2.6. It also defines LabeledGraphCategory as an
instance of the Topos trait. Enumerations of homomorphisms are not naively implemented,
but also not fully optimized. For our present purposes, this is sufficient.
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7.4. Package rewriting. Package rewriting contains, among others, the definitions of a
PBPO+ rule and step. For computing the step, an immediate question is how morphism
u : K → GK is to obtained (Definition 3.10). The lemma below demonstrates a few things
of interest:

(1) the pullback square tL ◦ l = l′ ◦ tK of the rewrite rule does not need to be used in the
construction;

(2) the explicit construction of u can be bypassed; and
(3) no search is needed (for universal morphisms or factorizations): (a) composition of

morphisms, (b) construction of pullbacks, (c) construction of pushouts, and (d) verifying
that a morphism is an isomorphism are the only required operations.

Lemma 7.2 (Computing a PBPO+ Rewrite Step). Let a rule ρ and morphism α : GL → L′

be given. By using the constructions outlined in the diagram:

X GL GK Y GK

L L′ K ′ K

R GR

n

PB(1)j α

gL

PB(2) u′

v

iPB(3)

v

PO(4) gRtL l′ tK

r

w

(7.1)

and by additionally verifying that j is an isomorphism, the result of the PBPO+ rewrite
step induced by α is computed. Moreover, a PBPO+ rewrite step diagram as given in
Definition 3.10 can be reconstructed by defining the missing morphisms m : L → GL and
u : K → GK as follows:

• m = n ◦ j−1; and
• u = v ◦ i−1.

Proof. If j is an isomorphism, it is easy to verify that α defines a strong match for match
morphism m = n ◦ j−1 : L → GL. Moreover, morphism i is known to be an isomor-
phism [OER23, Lemma 15]. That the correct pushout is computed in the last step can then
be observed as follows. First, using PB(3) we have tK = tK ◦ i ◦ i−1 = u′ ◦ v ◦ i−1, which
means that v ◦ i−1 is the unique u : K → GK for which tK = u′ ◦ u [OER23, Lemma 15].
Then in diagram

K Y GK

K

R R GR

i−1

u

r PO

v

i

PO gR

r

w

it is easy to verify that the left square is a pushout. By the dual of the pullback lemma, the
pushout of the right square is also the pushout of the outer square.

The implementation of the construction described in Lemma 7.2, utilizing the library of
categorytheory library, is given in Listing 3. Given an adherence α : GL → L′, it computes
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the match m : L→ GL and the result of the rewrite step GR. Functions maybePullback and
maybePushout are Option types: they can return None in categories where not all pullbacks
and pushouts are defined.

Listing 3. PbpoPlusRule.scala

def adherenceInducedStep(alpha: A): Option[(O, A)] =

require(codomain(alpha) == L1,

"the codomain of alpha needs to be L'")

for {

pb0 <- maybePullback(Cospan(tL, alpha))

if isIso(pb0.left)

m = pb0.right o inverseOf(pb0.left).get

pb1 <- maybePullback(Cospan(alpha, l1))

u1 = pb1.right

pb2 <- maybePullback(Cospan(u1, tK))

u = pb2.left

iso = pb2.right

po <- maybePushout(Span(r o iso, u))

gR = po.sink

} yield (gR, m)

Remark 7.3 (Decidability of the Rewrite Relation). Given a PBPO+ rule ρ in an arbitrary
category C, from Lemma 7.2 it follows that the following conditions are sufficient for deciding
whether A⇒ρ

PBPO+ B for objects A,B ∈ Ob(C):

(1) for all X,Y ∈ Ob(C), the hom-set Hom(X,Y ) is finite; and
(2) pushouts, pullbacks, and morphism compositions are computable.

More specifically, one can use the construction given in Lemma 7.2, where the conditions
ensure that

• all adherence morphism candidates α ∈ Hom(A,L′) can be exhaustively considered;
• verifying whether a morphism f : X → Y is an isomorphism reduces to a finite search for
a morphism f ′ ∈ Hom(Y,X) that satisfies f ◦ f ′ = 1Y and f ′ ◦ f = 1X ;
• verifying whether B qualifies as a pushout object in PO(4) of Diagram (7.1) reduces to a
finite search for an isomorphism in Hom(GR, B).

For the category of finite sets FinSet, the sufficient conditions hold. The same is true
for functor categories [I,FinSet] for which the index category I is finite, which includes
many graph categories of interest. This is because here the constructions are computed
pointwise in FinSet.

7.5. Package termination. Package termination, finally, contains the implementation of
the termination method, currently implemented at the level of rm-adhesive quasitoposes.
Listing 4 contains a code fragment that illustrates how the implementation utilizes the
categorytheory library. When given a morphism f : T → R′ (parameter tiling) rule ρ
(parameter rule), it computes set {l′ ◦ ⟨f | r′⟩ ◦ g | g is a right inverse for ⟨r′ | f⟩}. Then,
based on the selected counting class (either Hom(C), mono(C), or rm(C), represented by
parameter countingClass), it verifies part of the conditions of Theorem 4.23, also utilizing
Proposition 4.18.
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Listing 4. Termination.scala

def slideOptions[O, A](tiling: A, rho: PbpoPlusRule[O, A],

countingClass: CountingClass)

(implicit category: TerminationCategory[O, A]): Set[A] =

import category.{codomain, pullback, rightInversesFor, image, ArrowOps}

require(codomain(tiling) == rho.R1.get)

/**

* L1 <-l1- K1 -r1-> R1

* ^ ^

* | |

* | PB tiling

* | |

* X -----> T

*/

val `K1 <- X -> T` = pullback(Cospan(rho.r1.get, tiling))

val `K1 <- X`: A = `K1 <- X -> T`.left

val `X -> T`: A = `K1 <- X -> T`.right

val `{K1 <- X <- T}`: Set[A] =

rightInversesFor(`X -> T`).map(`K1 <- X` o _)

val inClass = countingClass.predicate

val secondFactor = countingClass.secondFactor

`{K1 <- X <- T}`.view.filter(f => inClass(rho.l1 o secondFactor(f)))

.map(rho.l1 o _).toSet

8. Conclusion and Future Work

We have introduced a termination method for graph transformation systems that can be
utilized across frameworks, and which is defined in a broad array of categories. Our examples
and comparisons with related work show that the method adds considerable value to the
study of termination for graph transformation. We have also implemented the method
in Scala, together with a REPL with which one can explore relative termination proofs
iteratively.

Future work for strengthening the method includes solving the issues raised related to
rule equivalence (Example 5.5) and antipatterns (Remark 6.2). Methods for finding T, if it
exists, and identifying useful sufficient conditions for the non-existence of T, would also be
very useful. A possible metatheoretical direction for future research includes the question
posed regarding PBPO+-adhesivity (Remark 4.9).
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