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Abstract. We consider logics with truth values in the unit interval [0, 1]. Such logics are
used to define queries and to define probability distributions. In this context the notion of
almost sure equivalence of formulas is generalized to the notion of asymptotic equivalence.
We prove two new results about the asymptotic equivalence of formulas where each result
has a convergence law as a corollary. These results as well as several older results can be
formulated as results about the relative asymptotic expressivity of inference frameworks.
An inference framework F is a class of pairs (P, L), where P = (Pn : n = 1, 2, 3, . . .), Pn

are probability distributions on the set Wn of all σ-structures with domain {1, . . . , n}
(where σ is a first-order signature) and L is a logic with truth values in the unit interval
[0, 1]. An inference framework F′ is asymptotically at least as expressive as an inference
framework F if for every (P, L) ∈ F there is (P′, L′) ∈ F′ such that P is asymptotically
total variation equivalent to P′ and for every φ(x̄) ∈ L there is φ′(x̄) ∈ L′ such that φ′(x̄)
is asymptotically equivalent to φ(x̄) with respect to P. This relation is a preorder. If, in
addition, F is at least as expressive as F′ then we say that F and F′ are asymptotically
equally expressive. Our third contribution is to systematize the new results of this paper
and several previous results in order to get a preorder on a number of inference systems
that are of relevance in the context of machine learning and artificial intelligence.

1. Introduction

In modern artificial intelligence, logics with (truth) values in the unit inverval [0, 1] are used
not only as query languages, but also to define the probability distributions with respect to
which queries are evaluated. Such probability distributions can be defined by formalisms
called probabilistic graphical models (PGMs) which are determined by a finite graph (with
a vertex for each relation symbol) and formulas that express (conditional) probabilities of
individual relations. We can view a formula φ(x1 . . . , xn) in a probability logic L(σ) over a
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signature σ as a function taking a σ-structure A and a tuple a1, . . . , an ∈ A as input and
returning a real number in [0, 1] as output (see Definition 4.1); this number will be denoted
A(φ(a1, . . . , an)) and called the value of φ(a1, . . . , an) in A. Then for any finite relational σ
we can define an L(σ)-network as a directed acyclic graph with vertex set σ, and for every
vertex R ∈ σ of arity n, an L(σ)-formula θR(x1, . . . xn) using only relation symbols among
the parents of R in the directed acyclic graph (see Definition 5.6). For any relation R ∈ σ,
any finite domain A and tuple ā of elements from A such that its length matches the arity of
R, the conditional probabilitity of R(a1, . . . , an), given the interpretation of all the parents
of R, is specified by the value of θR(a1, . . . , an). Let σ be a finite and relational signature
and let Wn denote the set of all σ-structures with domain [n] = {1, . . . , n}. In the way
indicated above each L(σ)-network now defines a probability distribution on Wn for each n
(see Definition 5.7).

We will mostly work with a logic that we call PLA+, or PLA+(σ) if we want to
indicate the signature used, which uses aggregation functions instead of quantifiers (see
Definition 3.2). In this logic we can express all queries (on finite structures) that can be
expressed by first-order logic because the aggregation functions max and min can be used to
express existential and universal quantification. Of course, there are many more aggregation
functions, for example the average, also called arithmetic mean (of a finite sequence of reals
from [0, 1]). With such aggregation functions PLA+ can express, for example, each stage of
the definitions of PageRank and SimRank (more about this in Example 4.10). We will use
PLA+ both as a query language and as a language to specify probability distributions on
Wn via PLA+(σ)-networks.

PLA+ is a very expressive query language, and PLA+-networks can define a great variety
of probability distributions. For this reason we do not expect to be able to prove general
theorems for all PLA+-queries and all PLA+-networks. Therefore we look for sublogics, say
L and L′, of PLA+ such that (a) these logics are expressive enough to be useful, and (b) we
can prove general results for probability distributions defined by L-networks and queries
expressed by L′. These sublogics will be defined mainly by restricting PLA+ to formulas
that only use aggregation functions that have certain “nice” properties. The most extreme
case is to ban all aggregation functions, so let us call a PLA+-formula which does not use
any aggregation function aggregation-free.

Let G denote a PLA+(σ)-network and let Pn denote the probability distribution on
Wn that is determined by G. Our first main result, Theorem 5.11, is that if every formula
associated to G contains only continuous aggregation functions (in the sense of Defini-
tion 3.5), then every PLA+(σ)-formula that contains only continuous aggregation functions
is asymptotically equivalent to an aggregation-free formula with respect to the sequence
of distributions P = (Pn : n =, 1, 2, 3, . . .). The notion of “asymptotic equivalence” (Defini-
tion 5.4) is a generalization of the notion of “almost sure equivalence” that makes sense for
logics with more than two truth values. Intuitively speaking, two formulas are asymptotically
equivalent if, with high probability, their values are almost the same. Moreover, as stated
in Corollary 5.13, if φ(x̄) is a PLA+(σ) formula and G is as above then φ(x̄) satisfies a
convergence law with respect to P. In the more technical Corollary 7.21 we show how the
mentioned results can be used to approximate probabilities of queries without any reference
to the domain size.

Our second main result still considers a PLA+(σ)-network G such that all associated
formulas use only continuous aggregation functions. However, as query language, we use the
two-valued conditional probability logic (CPL) introduced in [Kop20]. CPL is an extension
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of first-order logic which allows constructions that can express statements like “the relative
frequency of x̄ that satisfy φ1(x̄) among x̄ that satisfy φ2(x̄) is at least (a constant) c, or
alternatively, is at least as large as c plus the relative frequency of x̄ that satisfy ψ1(x̄)
among x̄ that satisfy ψ2(x̄)” where c is a non-negative real. Here the conditions expressed
by φ1(x̄) et cetera may themselves be CPL-formulas, so this construction can be nested
and viewed as a kind of quantification. The second main result, Theorem 8.6, is that if the
CPL(σ)-formula φ(x̄) is safe (with respect to G) then φ(x̄) is almost surely equivalent to
a quantifier-free first-order formula. The condition that φ(x̄) is safe roughly means that
in every relative frequency statement as described above that occurs in φ(x̄), the constant
c does not belong to a certain finite set of numbers that is determined by the syntactic
structure of φ(x̄) and by G. We obtain two corollaries. The first is a convergence law for safe

CPL-formulas. The second roughly says that there is a PLA+(σ)-network G̃ such that all
associated PLA+- formulas are aggregation-free, and for every safe CPL-formula φ(x̄) and
for sufficiently large n, the probability that a sequence of parameters satisfies φ(x̄) under

the distribution P̃n determined by G̃ approximates the corresponding probability under Pn
arbitrarily closely. This implies that the first probability can be estimated, with as high
accuracy as we like for large enough n, in time which is independent from the domain size.

Our third contribution, Theorem 9.7 illustrated by Figure 1, is to systematize the new
results of this article and those in [Kop20, KW23, SS88] by means of the notions of inference
framework and relative asymptotic expressivity of inference frameworks. 1 An inference
framework (for a signature σ) is a class F of pairs (P, L) where P = (Pn : n ∈ N+), each Pn
is a probability distribution on Wn, and L is a logic (the associated query language) which
uses the signature σ (see Definition 9.1). Note that we allow L to depend on P. The reason
is that it allows us make finer distinctions between queries which are “easy” to evaluate with
respect to a given sequence P of probability distributions and queries which are “hard” to
evaluate with respect to the same P.

The asymptotic expressivity of an inference framework should now be studied on both
components of its pairs (P, L). We call an inference framework F′ asymptotically at least
as expressive as another inference framework F if for every (P, L) ∈ F there is (P′, L′) ∈ F′

such that P is asymptotically total variation equivalent to P′ (see Definition 5.3) and for
every φ(x̄) ∈ L there is φ′(x̄) ∈ L′ such that φ′(x̄) is asymptotically equivalent to φ(x̄) with
respect to P (or equivalently P′, see Definition 9.2). If in addition, F is asymptotically at
least as expressive as F′ then we say that they are asymptotically equally expressive.

In the discussion above we have already implicitly seen examples of inference frameworks
and results stating that two inference frameworks are asymptotically equally expressive. For
example, if coPLA+ is the set of all PLA+-formulas that use only continuous aggregation
functions and F is the set of all pairs (P, coPLA+) such that P is defined by a coPLA+-
network, then Theorem 5.11 implies that F is asymptotically equally expressive as the
inference framework F′ consisting of all pairs (P′, afPLA) where P′ is defined by a coPLA+-
network and afPLA is set of all aggregation-free formulas in PLA+.

Naturally one can question whether our notion of “asymptotically at least as expressive”
is the most relevant one. In particular, the asumption about asymptotic total variation
equivalence may appear to be too strong, since the logic(s) used in a particular inference
framework may not be able to “define” all subsets of the probability space Wn. But we

1We did not include the inference framework to which the main results in [Jae98] apply because we have
not determined where it belongs relative to the inference frameworks of Theorem 9.7 or Figure 1, but we
suspect that it belongs to the equivalence class in the bottom of Figure 1.
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believe that a useful notion of “asymptotically at least as expressive” should be transitive
and all other seemingly reasonable candidates that we have considered (except the one
mentioned above and in Definition 9.2 below) turned out not to be transitive.

Figure 1: The inference frameworks are defined in Definition 9.6. The symbol ≃ denotes asymptotic

equal expressivity. A path upwards means that the the upper inference framework is

asymptotically more expressive (i.e. ≺ holds). The absence of a path “upwards” between

two inference framewords means that the inference frameworks are incomparable with

respect to asymptotic expressivity.

(aPLAN+,aPLA+)

(coPLAN+, coPLA+)
≃ (coPLAN+,ffPLA)

(coPLAN+,FO)

(coPLAN+, sCPL)
≃ (coPLAN+,qfFO)

(ncLBN,aPLA)

(ncLBN,ncCPL)
≃ (qfLBN,qfFO)

≃ (ncLBN,afPLA)
≃ (afPLAN,afPLA)

≃ (afPLAN,qfFO)

Related work. Researchers in statistical relational artificial intelligence, a branch of artifi-
cial intelligence and machine learning (see e.g. [DRKNP16, GT07, KMG15, GVdBP21] for
introductions to the field), have developed several different formalisms to specify probabilistic
graphical models on an abstract relational level. They include relational Bayesian networks
[Jae97], relational logistic regression [KBK+14], Bayesian logic programs [KDR07], and lifted
Bayesian networks [Kop20]. Each of these formalisms can be viewed as a L(σ)-network for
a suitable logic L and signature σ. In fact, each of the mentioned formalisms can be viewed
as a PLA+(σ)-network. Besides notational differences, the main difference between PLA+

and the probability logic in [Jae98] is that PLA+ allows for more general connectives.
As before, let σ be a finite and relational signature, Wn the set of all σ-structures with

domain [n], and Pn a probability distribution on Wn. Jaeger’s main result in [Jae98] can now
be formulated as saying that if ecPLA+ is set of PLA+-formulas which use only exponentially
convergent aggregation functions and if Pn is defined by an ecPLA+(σ)-network, then the
probability of every first-order query converges as n → ∞. The aggregation functions
noisy-or, maximum and minimum are exponentially convergent, but not the arithmetic or
geometric means. On the other hand the arithmetic and geometric means as well as (for
α > 0) lengthα are continuous, but not exponentially convergent, where for every sequence
of reals r̄ = (r1, . . . , rm), lengthα(r̄) = m−α. Therefore Theorem 5.11 and its corollaries
apply to different sequences of probability distributions and different queries than the main
result in [Jae98].

The main results in [KW23] can be stated as follows: Suppose that Pn is defined
by a lifted Bayesian network for σ (as defined in [Kop20]) and let aPLA(σ) be the set of
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PLA+(σ)-formulas in which only admissible aggregation functions are allowed and which also
satisfies two other conditions (see Definitions 3.5 and 4.14). Then every aPLA(σ)-formula is
asymptotically equivalent to an aggregation-free formula, and every aPLA(σ)-formula satisfies
a convergence law (as n → ∞). Admissibility is a weak form of continuity (so continuity
implies admissibility) satisfied by the aggregation functions maximum and minimum. Every
sequence of distributions defined by a lifted Bayesian network is asymptotically total variation
equivalent to a sequence of distributions defined by a coPLA+-network, but not vice versa.
So Theorem 5.11 is, with respect to probability distributions, more general than the main
result in [KW23], but not with respect to queries. Moreover, Theorem 5.11 cannot be
generalized to hold for aPLA-queries, or for first-order queries. The reason is as follows.
First, the aggregation function lengthα is continuous, so if R is a binary relation symbol and
α ∈ (0, 1), then there is a coPLA+-network such that the formula R(x, y) has probability n−α

(for any pair, independently of other pairs) where n is the domain size. By results on random
graphs by Shelah and Spencer [SS88], if α is rational then there is a first-order sentence
such that its probability does not converge as n → ∞. Since every first-order formula is
equivalent to some aPLA-formula we cannot have convergence for all aPLA-formulas.

From [Kop20, Theorem 3.16] it follows that lifted Bayesian networks only can define
probability distributions Pn where for each R ∈ σ the probability of R(x̄) is either constantly
0 or tends to a constant c > 0 as n → ∞. It seems like the same is true for relational
Bayesian networks as in [Jae98] for the following reason: Suppose for a contradiction that
a sequence of probability distributions Pn is defined by a relational Bayesian network and
that the probability that a pair of parameters satisfies an atomic formula R(x, y) is n−α

(independently of other pairs) where α ∈ (0, 1) is rational and n is the size of the domain.
By[SS88] again there is a first-order sentence such that its probability does not converge as
n→ ∞, but this contradicts the main result in [Jae98].

In [Kop20] Koponen studied so-called lifted Bayesian networks, for producing probability
distributions, and a fragment of conditional probability logic (CPL) which extends first-order
logic and avoids certain “critical” parameters as a query language. Theorem 8.6 considers
another fragment of CPL and more general, up to asymptotic total variation equivalence,
probability distributions. The fragment of CPL considered in Theorem 8.6 avoids first-order
quantifiers and “unsafe” parameters in “conditional proportion statements”.

Other works than [Jae98, Kop20, KW23] about the asymptotics of logics with respect
to probability distributions defined by probabilistic graphical models are less related to the
results presented here. They include the following publications: [CM19, MBGS19, PBK+14,
Wei21, Wei24, FWF23].

Organization. This article is organized as follows. Section 2 fixes some basic notation and
terminology, and states a result that will be used later. Section 3 defines the notions of
connective and aggregation function that we will use and also defines the notion of (strongly)
admissible aggregation function. Section 4 defines the general notion of a logic that we will
use, as well as the particular logics that will be considered later. Section 5 defines the notion
of L(σ)-network and states our first main result, Theorem 5.11, and a corollary. It also
recalls the notion of lifted Bayesian network from [Kop20] and the main results from [Kop20]
and [KW23] (which are used in Theorem 9.7). Section 6 proves a key technical result about
asymptotic elimination of strongly admissible aggregation functions, Proposition 6.4, which
is used in Section 7 to prove Theorem 5.11. Section 7 completes the proof of Theorem 5.11
by, roughly speaking, proving that the preconditions of Proposition 6.4 are satisfied. In
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Section 8 we introduce the notion of a safe CPL-formula and state and prove our second
main result, Theorem 8.6. Then Section 9 defines the notions of inference framework and
asymptotically at least as expressive (inference framework) and states and proves our last
result, Theorem 9.7. Finally, Section 10 briefly recalls what we have done.

2. Preliminaries

We let N be the set of all non-negative integers and we let N+ be the set of positive integers.
Finite sequences/tuples of objects are denoted by ā, b̄, r̄, x̄, et cetera. (Typically the objects
of the sequence are numbers, elements from the domain of a structure or logical variables.)

For a finite sequence ā, |ā| denotes the length of the sequence and rng(ā) denotes the
set of elements occurring in the sequence ā. For a set A, |A| denotes its cardinality. If A is a
set and n ∈ N+, then An is the set of all finite sequences of length n of elements from A and
A<ω is the set of all finite nonempty sequences of elements from A, so A<ω =

⋃
n∈N+ An

The set {1, . . . , n} will be denoted by [n].
Structures in the sense of first-order logic will be denoted by calligraphic letters such as

A,B, . . .. Unless otherwise specified, their domains/universes are denoted by the correspond-
ing non-calligraphic letter A,B, . . . (see for example [EF99] for basics about structures in
the sense of first-order logic and (finite) model theory). We will consider different logics,
but the semantics are always based on first-order structures. If σ is a (first-order) signature,
also called vocabulary, then a σ-structure is a first-order structure in which all symbols in
σ have an interpretation (and, for counting reasons, we assume that no other symbols are
interpreted in a σ-structure). A signature σ is finite and relational if it is finite and contains
only relation symbols. If R is a relation symbol of a signature σ, its intepretation in a
σ-structure A is denoted by RA. If σ′ ⊂ σ are signatures and A is a σ-structure then the
reduct of A to σ′ is denoted by A↾σ′. For more about notation concerning logical concepts,
see Section 4.

By directed acyclic graph (DAG) we mean a directed graph without loops or directed
cycles. Let G = (V,G) be a DAG. If v ∈ V then par(v) denotes the set of parents of v, that
is, the set of all vertices w ∈ V such that (w, v) ∈ E. For v ∈ V we define the maximal path
rank of v, denoted mp(v), to be the maximal integer n > 0 such that there is a directed path
v0, . . . , vn ∈ V (meaning that (vi, vi+1) ∈ E for all i) with vn = v. We define the maximal
path rank of G, denoted mp(G), as mp(G) = max(mp(v) : v ∈ V ).

We call a random variable binary if it can only take the value 0 or 1. The following is
a direct consequence of [AS00, Corollary A.1.14] which in turn follows from the Chernoff
bound [Che52]:

Lemma 2.1. Let Z be the sum of n independent binary random variables, each one with
probability p of having the value 1. For every ε > 0 there is cε > 0, depending only on ε,
such that the probability that |Z − pn| > εpn is less than 2e−cεpn.

Corollary 2.2. Let p ∈ [0, 1] and let ε > 0. Let Z be the sum of n independent binary
random variables Z1, . . . , Zn, where for each i = 1, . . . , n the probability that Zi equals 1
belongs to the interval [p− ε, p+ ε]. Then there is cε > 0, depending only on ε, such that the
probability that Z > (1 + ε)(p+ ε)n or Z < (1− ε)(p− ε)n is less than 2e−cεpn.

Proof. Let Z ′
1, . . . , Z

′
n be independent binary random variables where each Z ′

i takes value 1
with probability (exactly) p+ε (assuming p+ε ≤ 1). Let Z ′ = Z ′

1+ . . .+Z
′
n. By Lemma 2.1,

the probability that Z ′ > (p+ ε)n+ ε(p+ ε)n = (1 + ε)(p+ ε)n is less than 2e−aεpn where
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aε > 0 depends only on ε. Since, for each i, the probability that Zi = 1 is less or equal to
the probability that Z ′

1 = 1 it follows that the probability that Z > (1 + ε)(p+ ε)n is not
larger than the probability that Z ′ > (1 + ε)(p+ ε)n which is less than 2e−aεpn. A similar
argument shows that the probability that Z < (1− ε)(p− ε)n is less than 2e−bεpn for some
bε > 0 depending only on ε.

3. Connectives and aggregation functions

The idea behind a k-ary connective is that it assigns a truth value to every k-tuple of truth
values. Recall from the previous section that [0, 1]<ω is the set of all finite sequences r̄

where each entry of r̄ belongs to [0, 1]. So
(
[0, 1]<ω

)k
is the set of all k-tuples (r̄1, . . . , r̄k)

where, for each i = 1, . . . , k, r̄i is a finite sequence of reals from [0, 1]. Note that r̄i and r̄j
are allowed to have different length if i ̸= j. The role of a k-ary aggregation function is to

assign a truth value to every k-tuple (r̄1, . . . , r̄k) ∈
(
[0, 1]<ω

)k
. In particular a unary (1-ary)

aggregation function takes only one sequence r̄ ∈ [0, 1]<ω (of arbitrary finite length) as input.
When used in a logic, in Section 4, the role of aggregation functions will be to “aggregate
over a domain”, similarly to (generalized) quantifiers in the context of 0/1-valued logics.
Alternatively (as in e.g. [Jae98]), one can view a k-ary aggregation (or “combination”)
function as a mapping from k-tuples of finite multisets (of reals in [0, 1]) into [0, 1]. However,
the “symmetry condition” in Definition 3.2 below implies that our notion of aggregation
function is exchangeable, in the context of this article, with the notion of an aggregation
function as operating on multisets.

Definition 3.1. A function C : [0, 1]k → [0, 1] where k ∈ N+ will also be called a connective.

Definition 3.2. Let F :
(
[0, 1]<ω

)k → [0, 1], so F takes k sequences (not necessarily of the
same length) as input. We call F an aggregation function if F is symmetric in the sense that
if r̄1, . . . , r̄k ∈ [0, 1]<ω and for each i = 1, . . . , k, ρ̄i is an arbitrary reordering of the entries
of r̄i, then F (ρ̄1, . . . , ρ̄k) = F (r̄1, . . . , r̄k).

Example 3.3. (a) The aggregation functions listed below are common when analyzing data.
For r̄ = (r1, . . . , rn) ∈ [0, 1]<ω, define

(1) max(r̄) to be the maximum of all ri,
(2) min(r̄) to be the minimum of all ri,
(3) am(r̄) = (r1 + . . .+ rn)/n, so ‘am’ is the arithmetic mean.

(4) gm(r̄) =
(∏n

i=1 ri
)(1/n)

, so ‘gm’ is the geometric mean.
(5) noisy-or(r̄) = 1−

∏n
i=1(1− ri).

(b) Another example of an aggregation function (now with arity 2) is the pseudometric

µu1 :
(
[0, 1]<ω

)2 → [0, 1] of Definition 3.9 which compares how similar (or close) two sequences
r̄, ρ̄ ∈ [0, 1]<ω are if we disregard the ordering of the entries in each sequence.

(c) For another example, define S(x) = (1 + e−x)−1 for all x ∈ R, let w1, . . . , wk ∈ [0, 1] be

weights such that their sum equals 1, and define G :
(
[0, 1]<ω

)k → [0, 1] by G(r̄1, . . . , r̄k) =

S
(∑k

i=1wi · am(r̄i)
)
. G is used to define Bayesian networks in the context of Domain-Size-

Aware Relational Logistic Regression models [FWF23].

(d) For α ∈ (0, 1) define lengthα : [0, 1]<ω → [0, 1] by lengthα(r̄) = 1/|r̄|α for all r̄ ∈ [0, 1]<ω

(so lengthα(r̄) depends only on the length of r̄). lengthα can, for example, be used to define
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a coPLA+(σ)-network where the signature σ contains only a binary relation symbol such
that this network induces a probability distribution on directed graphs where each directed
edge has probability 1/nα, independently of other edges, where n is the number of vertices.

(e) More examples (e.g. conditional arithmetic means) are given in Section 5 of [KW23].

Now we will isolate two classes of aggregation functions that are sufficiently benign that
we can prove results concerning the asymptotic expressivity of inference frameworks that
use only such aggregation functions. Later we will see that the two classes contain useful
aggregation functions. Before defining these two classes we need to define the notion of
convergence testing sequence of sequences from [0, 1]<ω.

Intuitively speaking, an infinite sequence (of finite sequences) r̄n ∈ [0, 1]<ω, n ∈ N, is
convergence testing if there are k and c1, . . . , ck, α1, . . . αk ∈ [0, 1] such that, as n→ ∞, all
entries in r̄n congregate ever closer to the “convergence points” c1, . . . , ck and, for each i,
the proportion of entries in r̄n that are close to ci tends ever closer to αi.

Definition 3.4 (Convergence testing sequence). A sequence r̄n ∈ [0, 1]<ω, n ∈ N, is called
convergence testing for parameters c1, . . . , ck ∈ [0, 1] and α1, . . . αk ∈ [0, 1] if the following
hold, where rn,i denotes the ith entry of r̄n:

(1) |r̄n| < |r̄n+1| for all n ∈ N.
(2) For every disjoint family of open (with respect to the induced topology on [0, 1]) intervals

I1, . . . Ik ⊆ [0, 1] such that ci ∈ Ii for each i, there is an N ∈ N such that rng(r̄n) ⊆
k⋃
j=1

Ij

for all n ≥ N , and for every j ∈ {1, . . . , k},

lim
n→∞

|{i ≤ |r̄n| : rn,i ∈ Ij}|
|r̄n|

= αj .

More generally, a sequence of m-tuples of sequences (r̄1,n, . . . , r̄m,n) ∈
(
[0, 1]<ω

)m
, n ∈ N,

is called convergence testing for parameters ci,j ∈ [0, 1] and αi,j ∈ [0, 1], where i ∈ {1, . . . ,m},
j ∈ {1, . . . , ki} and k1, . . . km ∈ N+, if for every fixed i ∈ {1, . . . ,m} the sequence r̄i,n, n ∈ N,
is convergence testing for ci,1, . . . , ci,ki , and αi,1, . . . , αi,ki .

Next we define the notion of (strongly) admissible aggregation function. The intuition
behind admissibility and strong admissibility is that they are “(partial) continuity conditions”
suitable for aggregation functions. We would argue that strong admissibility is a more
“continuity-like” condition than admissibility because the aggregation functions max and
min are admissible but not strongly admissible and one could argue that max and min,
as aggregation functions, should not be considered to be continuous: If n is large then it
is reasonable to view the sequences (r1, . . . , rn) and (ρ1, . . . , ρn) as very similar (or “close”
to each other) if ri = 0 for all i = 1, . . . , n, ρi = 0 for i = 1, . . . , n − 1 and ρn = 1, but
max(r̄) = 0 and max(ρ̄) = 1.

Definition 3.5 (Admissibility and continuity). (i) An aggregation function F :
(
[0, 1]<ω

)m →
[0, 1] is called strongly admissible, or continuous, if the following two conditions hold:

(1) For all n1, . . . , nm ∈ N+, F is continuous on the set [0, 1]n1 × · · · × [0, 1]nm .
(2) For all convergence testing sequences of tuples (r̄1,n, . . . , r̄m,n) ∈

(
[0, 1]<ω

)m
, n ∈ N,

and (ρ̄1,n, . . . , ρ̄m,n) ∈
(
[0, 1]<ω

)m
, n ∈ N, with the same parameters ci,j , αi,j ∈ [0, 1],

lim
n→∞

|F (r̄1,n, . . . , r̄m,n)− F (ρ̄1,n, . . . , ρ̄m,n)| = 0.
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(ii) An aggregation function F :
(
[0, 1]<ω

)m → [0, 1] is called admissible if condition (1)
above holds and condition (2) above holds whenever the parameters αi,j are positive for all i
and j.

The next proposition and example show that a number of useful aggregation functions are
indeed (strongly) admissible. Proposition 3.6 below was proved in [KW23], because the
proof in [KW23] that the arithmetic and geometric means are admissible still works if one
allows the parameters αi,j to be 0, thus showing that the functions are strongly admissible.

Proposition 3.6. (i) The functions am (arithmetic mean) and gm (geometric mean) are
strongly admissible (in other words, continuous).
(ii) The functions max and min are admissible.

Example 3.7 (More (strongly) admissible aggregation functions). The aggregation functions
in parts (b), (c) and (d) in Example 3.3 are strongly admissible. In the case of (c) and
(d) this follows easily from their definitions and the fact that arithmetic mean is strongly
admissible. In the case of (b) it follows from the characterization of strong admissibility given
below by Definition 3.11 and Proposition 3.12. In Sections 5 and 6 of [KW23] more examples
of admissible aggregation functions are given, for example a “conditional arithmetic mean”.

It is not hard to see that max and min are not strongly admissible and that noisy-or is not
even admissible.

The above given definition of (strong) admissibility is fairly straightforward and natural,
as well as useful for proving that some functions are (strongly) admissible. But we do not
see how it can be used directly in the proof of Proposition 6.4 which is used to prove one of
our main results, Theorem 5.11. Therefore we give a different characterization of (strong)
admissibility (Definition 3.11) below. For this we need to consider functional representations
of sequences in [0, 1]<ω and two pseudometrics on [0, 1]<ω.

Definition 3.8 (Functional representations of sequences). Let n ∈ N+ and let r̄ =
(r1, . . . , rn) ∈ [0, 1]n. We will associate a function from [0, 1] to [0, 1] with r̄ in two dif-
ferent ways, one way where the order of the entries in r̄ matters and one in which the order
does not influence the associated function.

(1) Define fr̄, which we call the ordered functional representation of r̄, as follows: For every
a ∈ [0, 1/n), let fr̄(a) = r1, for every i = 1, . . . , n− 1 and every a ∈ [i/n, (i+ 1)/n), let
f(a) = ri+1 and finally let f(1) = rn.

(2) Define gr̄, which we call the unordered functional representation of r̄, as follows: Let
ρ̄ = (ρ1, . . . , ρn) be a reordering of r̄ such that, for all i = 1, . . . , n− 1, ρi ≤ ρi+1 and let
gr̄ = fρ̄.

Definition 3.9 (Pseudometrics on sequences). (1) First we recall the L1 and L∞ norms:
for every (bounded and integrable) f : [0, 1] → R they are defined as

∥f∥1 =
∫
[0,1]

|f(x)|dx and ∥f∥∞ = sup{|f(a)| : a ∈ [0, 1]}.

(2) For r̄, ρ̄ ∈ [0, 1]<ω we define

µu1(r̄, ρ̄) = ∥gr̄ − gρ̄∥1,
µo∞(r̄, ρ̄) = ∥fr̄ − fρ̄∥∞.
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(3) For arbitrary k > 1 we can define a function on
(
[0, 1]<ω

)k
, also denoted µu1 and µo∞ (to

avoid making notation more complicated), as follows: For all (r̄1, . . . , r̄k), (r̄
′
1, . . . , r̄

′
k) ∈(

[0, 1]<ω
)k

let

µu1
(
(r̄1, . . . , r̄k), (r̄

′
1, . . . , r̄

′
k)
)
= max

(
µu∞(r̄1, r̄

′
1), . . . , µ

u
1(r̄k, r̄

′
k)
)

and similarly for µo∞.

From well-known results in analysis it follows that µu1 and µo∞ are symmetric and satisfy
the triangle inequality so they are pseudometrics on [0, 1]<ω. It is easy to see that none
of them is a metric since it can happen that µu1(r̄, ρ̄) = 0 and r̄ ̸= ρ̄. For example, if
r̄ = (0, 1/2, 1) and ρ̄ = (0, 0, 1/2, 1/2, 1, 1) then µu1(r̄, ρ̄) = 0. Note that for all r̄, ρ̄ ∈ [0, 1]<ω,
µu1(r̄, ρ̄), µ

o
∞(r̄, ρ̄) ≤ 1.

Definition 3.10. Let F :
(
[0, 1]<ω

)k → [0, 1] be an aggregation function and let µ be any of

the the pseudometrics defined in Definition 3.9. Also let X ⊆
(
[0, 1]<ω

)k
. We say that F is

asymptotically uniformly continuous on X if for every ε > 0 there are n and δ > 0 such that
if (r̄1, . . . , r̄k), (ρ̄1, . . . , ρ̄k) ∈ X, |r̄i|, |ρ̄i| ≥ n for all i and µu1

(
(r̄1, . . . , r̄k), (ρ̄1, . . . , ρ̄k)

)
< δ,

then
∣∣F (r̄1, . . . , r̄k)− F (ρ̄1, . . . , ρ̄k)

∣∣ < ε.

Definition 3.11 (Alternative characterization of (strong) admissibility). An aggregation
function F :

(
[0, 1]<ω

)m → [0, 1] is called strongly admissible sensu novo if the following two
conditions hold:

(1) For all k1, . . . , km ∈ N+ and all ci,j , αi,j ∈ [0, 1], for i = 1, . . . ,m and j = 1, . . . , ki, and
all sufficiently small δ > 0, F is asymptotically uniformly continuous on X1 × . . .×Xm

where, for each i = 1, . . . ,m,

Xi =
{
r̄ ∈ [0, 1]<ω : rng(r̄) ⊆ {ci,1, . . . , ci,ki} and, for each j = 1, . . . , ki,

there are between (αi,j − δ)|r̄| and (αi,j + δ)|r̄| coordinates in r̄
which equal ci,j

}
.

(2) For all k1, . . . , km ∈ N+ and all ci,j , αi,j ∈ [0, 1], for i = 1, . . . ,m and j = 1, . . . , ki, and
every ε > 0, there is δ > 0 such that if, for i = 1, . . . ,m, r̄i, ρ̄i ∈ [0, 1]<ω and
(a) |ρ̄i| = |r̄i|,
(b) µo∞(r̄i, ρ̄i) < δ,
(c) rng(r̄i) ⊆ {ci,1, . . . , ci,ki}, and
(d) for each j = 1, . . . , ki, there are between (αi,j − δ)|r̄i| and (αi,j + δ)|r̄i| coordinates

in r̄i which equal ci,j ,
then |F (r̄1, . . . , r̄m)− F (ρ̄1, . . . , ρ̄m)| < ε.

An aggregation function F :
(
[0, 1]<ω

)m → [0, 1] is called admissible sensu novo if the above
conditions hold under the restriction that αi,j is positive for all i and j.

Proposition 3.12. (i) An aggregation function is strongly admissible sensu novo if and
only if it is strongly admissible.
(ii) An aggregation function is admissible sensu novo if and only if it is admissible.

Proposition 3.12 is proved just like Proposition 6.5 in [KW23], because the only difference
between strong admissibility (sensu novo) and admissibility (sensu novo) is that in the
former notions (but not the latter) we allow the parameters αi,j to be zero. This does not
affect the proof of Proposition 6.5 in [KW23].



Vol. 20:4 ASYMPTOTIC EXPRESSIVITY OF INFERENCE FRAMEWORKS 13:11

4. Logics

In this section we define the general notion of logic that we will use as well as the various
concrete logics that will be studied. We are pragmatic and minimalistic and will define
a logic (with values in the unit interval) to be something that has a few key properties
necessary for making sense of definitions and results that follow. (We are not aware of any
commonly accepted notion of a many-valued logic in general.) In the context of 0/1-valued
logics a commonly used definition of a logic appears in [Ebb85, Definition 1.1.1, p. 27] and
this definition is stronger than the one we give below, i.e. every logic in that sense is a logic
in our sense. A difference between [Ebb85, Definition 1.1.1, p. 27] and our notion of a logic
is (even when restricting to 0/1-valued logics) that we allow formulas of a logic to have
free variables. In the rest of this section (as in the whole article) let σ be a finite relational
signature.

Definition 4.1. (i) By a logic (for σ) we mean a set L of objects, called formulas, such
that the following hold:

(1) For every φ ∈ L a finite set Fv(φ) of so-called free variables of φ is associated to φ.
If we write φ(x̄) where φ ∈ L then we mean that Fv(φ) ⊆ rng(x̄) and when using
this notation we assume that there are no repetitions in the sequence x̄ (although we
occasionally repeat this assumption).

(2) To every triple (φ(x̄),A, ā) such that φ(x̄) ∈ L, A is a finite σ-structure and ā ∈ A|x̄| a
number α ∈ [0, 1] is associated. We write A(φ(ā)) = α to express that α is the number,
or value, associated to the triple (φ(x̄),A, ā). (We allow x̄ and ā to be empty which is
the case if the formula has no free variables.)

(ii) We let the expressions ‘A |= φ(ā)’ and ‘A ̸|= φ(ā)’ mean the same as A(φ(ā)) = 1 and
A(φ(ā)) = 0, respectively.
(iii) Suppose that L is a logic, φ(x̄, ȳ) ∈ L (where rng(x̄) ∩ rng(ȳ) = ∅), A is a finite

σ-structure and ā ∈ A|x̄|. Then φ(ā,A) = {b̄ ∈ A|ȳ| : A(φ(ā, b̄) = 1}.
(iv) Let L and L′ be logics. Then let us write L ≤ L′ if for every φ(x̄) ∈ L there is φ′(x̄) ∈ L′

such that for every finite σ-structure A and every ā ∈ A|x̄|, A(φ(ā)) = A(φ′(ā)).

Definition 4.2. Suppose that L is a logic for σ. We say that φ(x̄) ∈ L and ψ(x̄) ∈ L are

equivalent if, for every finite σ-structure A and every ā ∈ A|x̄|, A(φ(ā)) = A(ψ(ā)).

4.1. Some notation and concepts concerning first-order logic. Some basic concepts
and notation regarding first-order logic will be used in the sequel and are defined below.

Definition 4.3. (i) We let FO(σ), respectively qfFO(σ), denote the set of all first-order
formulas, respectively quantifier-free first-order formulas, that can be constructed by using
the signature σ.
(ii) Constructions of the form ‘x = y’ and ‘R(x1, . . . , xr)’, where x, y, x1, . . . , xr are variables,
and R ∈ σ has arity r, are called atomic first-order formulas (over σ). By a first-order literal
(over σ) we mean a first-order atomic formula (over σ) or a negation of such one.

(iii) If φ(x̄) ∈ L, A is a σ-structure and ā ∈ A|x̄|, then the notation ‘A |= φ(ā)’ has the usual
meaning of first-order logic, and we let ‘A(φ(ā)) = 1’ have the same meaning as ‘A |= φ(ā)’.

Definition 4.4 (Atomic σ-types). (i) A consistent set p of first-order literals over σ is called
an atomic σ-type. If an atomic σ-type is denoted by p(x̄) it is understood that every variable
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that occurs in a formula in p(x̄) occurs in the sequence x̄.
(ii) An atomic σ-type p(x̄) is called complete if for every first-order atomic formula φ(x̄) over
σ, either φ(x̄) or ¬φ(x̄) belongs to p(x̄).
(iii) If p(x̄) is an atomic σ-type and rng(ȳ) ⊆ rng(x̄), then p(x̄)↾ȳ (or p↾ȳ) denotes the set of
all formulas φ ∈ p(x̄) such that every variable of φ occurs in ȳ.
(iv) If p(x̄) is an atomic σ-type and σ′ ⊂ σ, then p(x̄)↾σ′ = p(x̄) ∩ FO(σ′).
(v) If p(x̄) is an atomic σ-type, where x̄ = (x1, . . . , xk), then the identity fragment of p is
the set of all formulas in p(x̄) of the form xi = xj or ¬(xi = xj) (abbreviated xi ̸= xj).

When convenient we will identify, notationally, an atomic σ-type p(x̄) with the formula
obtained by taking the conjunction of all formulas in p(x̄). With this convention, if A is

a σ-structure and ā ∈ A|x̄| the notation A |= p(ā) makes sense and means, with model
theoretic language, that ā realizes p(x̄) (in the structure A). Note that if σ = ∅, then an
atomic σ-type p(x̄) will only contain literals of the form z = y or z ̸= y where z, y ∈ rng(x̄).

4.2. Probabilistic logics with aggregation functions. We now define a quite general
logic, PLA+ (where PLA stands for probability logic with aggregation functions), with truth
values in [0, 1]. Most of the logics that we will study more closely will be sublogics of PLA+.
It follows directly from the definitions that the probability logic of Jaeger in [Jae98] is a
sublogic of PLA+.

Definition 4.5 (Syntax of PLA+(σ)). The formulas of the logic PLA+(σ) are constructed
as follows.2

(1) For each c ∈ [0, 1], c ∈ PLA+(σ) (i.e. c is a formula) and Fv(c) = ∅. We also let ⊥ and
⊤ denote 0 and 1, respectively.

(2) For all variables x and y, ‘x = y’ belongs to PLA+(σ) and Fv(x = y) = {x, y}.
(3) For every R ∈ σ, say of arity r, and any choice of variables x1, . . . , xr, R(x1, . . . , xr)

belongs to PLA+(σ) and Fv(R(x1, . . . , xr)) = {x1, . . . , xr}.
(4) If n ∈ N+, φ1(x̄), . . . , φn(x̄)n ∈ PLA+(σ) and C : [0, 1]n → [0, 1] is a continuous

connective, then C(φ1, . . . , φn) is a formula of PLA+(σ) and its set of free variables is
Fv(φ1) ∪ . . . ∪ Fv(φn).

(5) If k ∈ N+, φ1(x̄, ȳ), . . . , φk(x̄, ȳ) ∈ PLA+(σ), p=(x̄, ȳ) is an atomic ∅-type (i.e. a possibly
empty description of the equalities and nonequalities between the variables in the sequence
x̄ȳ), where x̄ and ȳ are sequences of distinct variables such that rng(x̄)∩ rng(ȳ) = ∅ and

F :
(
[0, 1]<ω

)k → [0, 1] is an aggregation function, then

F (φ1(x̄, ȳ), . . . , φk(x̄, ȳ) : ȳ : p=(x̄, ȳ))

is a formula of PLA+(σ) and its set of free variables is

( k⋃
i=1

Fv(φi)
)
\ rng(ȳ),

so this construction binds the variables in ȳ.

2The ‘+’ in PLA+ is there because the syntax of PLA+(σ) allows, unlike PLA(σ) defined in [KW23],
that p= in item (5) is not complete, and because item (4) is more general than the corresponding part (about
connectives) for PLA(σ) in [KW23].
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Definition 4.6 (Semantics of PLA+(σ)). For each σ-structure A, each formula φ(x̄) ∈
PLA+(σ) and every ā ∈ A|x̄|, we define a real number, denoted A(φ(ā)), in the interval
[0, 1], called the value of φ(ā) in A, as follows (where if φ has no free variable we just omit
x̄ and ā):

(1) For every c ∈ [0, 1] and every σ-structure A, A(c) = c.
(2) For every σ-structure A and all a, b ∈ A, A(a = b) = 1 if A |= a = b and otherwise

A(a = b) = 0.
(3) For every R ∈ σ, of arity r say, every finite σ-structure A and all ā ∈ Ar, A(R(ā)) = 1

if A |= R(ā) and otherwise A(R(ā)) = 0.
(4) If n ∈ N+, φ1(x̄), . . . , φn(x̄) ∈ PLA+(σ) and C : [0, 1]n → [0, 1] is a continuous connec-

tive, then for every finite σ-structure A and every ā ∈ A|x̄|,

A
(
C(φ1(ā), . . . , φn(ā))

)
= C

(
A(φ1(ā)), . . . ,A(φn(ā))

)
.

(5) If k ∈ N+, x̄ and ȳ are sequences of distinct variables such that rng(x̄) ∩ rng(ȳ) = ∅,
φ1(x̄, ȳ), . . . , φk(x̄, ȳ) ∈ PLA+(σ), p=(x̄, ȳ) is an atomic ∅-type, F :

(
[0, 1]<ω

)k → [0, 1]

is an aggregation function, A is a finite σ-structure and ā ∈ A|x̄|, then

A
(
F (φ1(ā, ȳ), . . . , φk(ā, ȳ) : ȳ : p=(ā, ȳ))

)
= F (r̄1, . . . , r̄k)

if there is some b̄ ∈ A|ȳ| such that p=(ā, b̄) holds and, for i = 1, . . . , k,

r̄i =
(
A(φi(ā, b̄)) : b̄ ∈ A|ȳ| and p=(ā, b̄) holds

)
,

and otherwise A
(
F (φ1(ā, ȳ), . . . , φk(ā, ȳ) : ȳ : p=(ā, ȳ))

)
= 0.

With Definition 3.1 of a connective we can, by using the semantics of Lukasiewicz logic (see
for example [Ber08, Section 11.2]), define continuous connectives which, when restricted to
{0, 1}, have the usual meanings of ¬, ∧, ∨, and →.

Definition 4.7 (Some special continuous connectives). (1) Let ¬ : [0, 1] → [0, 1] be defined
by ¬(x) = 1− x.

(2) Let ∧ : [0, 1]2 → [0, 1] be defined by ∧(x, y) = min(x, y).
(3) Let ∨ : [0, 1]2 → [0, 1] be defined by ∨(x, y) = max(x, y).
(4) Let →: [0, 1]2 → [0, 1] be defined by → (x, y) = min(1, 1− x+ y).
(5) Let wm : [0, 1]3 → [0, 1] (where wm stands for weighted mean) be defined by wm(x, y, z) =

x · y + (1− x) · z.

We now give examples of the expressivity of PLA+(σ). Note that in Examples 4.8 and 4.9
only strongly admissible aggregation functions are used. In Example 4.10 only admissible
aggregation functions are used (but the details are in [KW23]).

Example 4.8 (Similarity measure). Let E1, . . . , Ek ∈ σ be binary relation symbols. A
measure of the similarity of two elements x and y, with respect to E1, . . . , Ek, is given by
considering the fraction of elements which have the same connections to x and y. This can
be expressed in PLA(σ) by the formula

am

( k∧
i=1

(
(Ei(z, x) ↔ Ei(z, y)) ∧ (Ei(x, z) ↔ Ei(y, z))

)
: z : y ̸= z ∧ x ̸= z

)
which we call ψ(x, y). By nesting aggregation functions we can express other relations,
properties and statements. “The similarity to x of the most similar other element” is given
by the formula max(ψ(x, y) : y : x ̸= y). “The average similarity of x to other elements” is
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given by am(ψ(x, y) : y : x ̸= y). “The lowest similarity score between any two elements” is
expressed by min((min(ψ(x, y) : y : x ̸= y)) : x : ). In this example we considered atomic
reations Ei, but it is possible to replace Ei with an arbitrary PLA+(σ)-formula with two
free variables.

Example 4.9 (Similarity profile). Suppose that E1, . . . , Ek ∈ σ, ψ(x, y) is the formula from
Example 4.8, A is a finite σ-structure and a ∈ A. Then p̄ = (A(ψ(a, c)) : c ∈ A, c ̸= a)
is a sequence containing the similarity scores of (a, c) as c ranges over all other elements
in A. Let us call p̄ the “similarity profile” of a to other elements. Let now b ∈ A and
q̄ = (A(ψ(b, c)) : c ∈ A). Recall the pseudometric µu1 on [0, 1]<ω from Definition 3.9, which

is a strongly admissible aggregation function µu1 :
(
[0, 1]<ω

)2 → [0, 1], and µu1(p̄, q̄) measures
how close the similarity profile of a is to the similarity profile of b; the smaller µu1(p̄, q̄) is,
the closer are the similarity profiles of a and b. So the formula ¬µu1(ψ(x, z), ψ(y, z) : z) gives
a higher value, or “similarity profile score”, if the similarity profiles of x and y are closer.
Intuitively speaking, if the similarity profile score is close to 1 then x and y are two possibly
quite unrelated entities with “nearly isomorphic” connections (with respect to E1, . . . , Ek)
to the rest of the world.

Example 4.10 (SimRank and PageRank). In [KW23] it is demonstrated that every stage of
SimRank [JW02] can be expressed by a PLA(σ)-formula (defined in Definition 4.14 below)
that uses only admissible aggregation functions. One can also show (which is simpler) that
every stage of PageRank [BP98] can be expressed by a PLA(σ)-formula with only admissible
aggregation functions.

Definition 4.11 (Aggregation-free and basic probability formulas).
(i) A formula of PLA+(σ) in which no aggregation function appears is called aggregation-free.
(ii) If n ∈ N+, α1, . . . , αn ∈ [0, 1] and ψ1(x̄), . . . , ψn(x̄) ∈ PLA(σ) are such that each ψi is
a conjunction of first-order literals, then the formula

∧n
i=1

(
ψi(x̄) → αi

)
is called a basic

probability formula.

Remark 4.12. A basic probability formula which is also a sentence, that is, a formula
without free variables, has the form

∧n
i=1(⊤ → ci) where ci ∈ [0, 1] (and recall that ⊤ = 1).

The formula
∧n
i=1(⊤ → ci) is equivalent to c where c = min{c1, . . . , cn}, so every basic

probability sentence is equivalent to a sentence of the form c for some c ∈ [0, 1].

The next lemma is proved in the same way as the corresponding result in [KW23, Lemma 3.10]
where PLA(σ)-formulas are considered.

Lemma 4.13. If φ(x̄) ∈ PLA+(σ) is aggregation-free then φ(x̄) is equivalent to a basic
probability formula.

We now define different sublogics of PLA+(σ) which we will study, both as query languages
and as languages for defining networks that induce probability distributions. These sublog-
ics will be obtained from PLA+(σ) by restricting the kind of aggregation functions, or
connectives, that are allowed in formulas to such ones considered in Section 3.

Definition 4.14 (Sublogics of PLA+(σ)). (1) PLA(σ) is defined like PLA+(σ) except
that in (5) in Definition 4.5 we require that p=(x̄, ȳ) is a complete atomic ∅-type
and (4) in Definition 4.5 is restricted to only apply to the continuous connectives ¬, ∧,
∨, → and wm.

(2) aPLA+(σ), respectively aPLA(σ), is the subset of PLA+(σ), respectively PLA(σ),
where only admissible aggregation functions F are allowed in part (5) of Definition 4.5.
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(3) coPLA+(σ), respectively coPLA(σ), is the subset of PLA+(σ), respectively PLA(σ),
where only strongly admissible (or continuous) aggregation functions F are allowed in
parts (5) of Definition 4.5.

(4) afPLA(σ) is the set of all aggregation-free formulas in PLA+(σ).

Note that every aggregation-free formula in PLA+(σ) is, by Lemma 4.13, equivalent to
a basic probability formula, which is a PLA(σ) formula. Observe also that afPLA(σ) ⊆
coPLA(σ) ⊆ coPLA+(σ) ⊆ PLA+(σ), coPLA(σ) ⊆ aPLA(σ) ⊆ PLA(σ) and coPLA(σ+)
⊆ aPLA+(σ) ⊆ PLA+(σ).

The following was proved in [KW23, Lemma 3.11] for PLA(σ) and the (simple) proof is
easily generalized to PLA+(σ).

Lemma 4.15 (Truth value invariance under isomorphisms). Let A and B be isomorphic

σ-structures and let f denote an isomorphism from A to B. If φ(x̄) ∈ PLA+(σ) and ā ∈ A|x̄|,
then A(φ(ā)) = B(φ(f(ā))).

4.3. Conditional probability logic. Besides PLA+ and its sublogics we will also consider
conditional probability logic (CPL) [Kop20] as a logic for queries and for defining networks.
CPL is a two-valued logic which extends first-order logic and with which one can express
that the relative frequency of tuples that satisfy (some condition) φ1(x̄), conditioned on
tuples satisfying φ2(x̄) at least as large as the relative frequency of tuples that satisfy φ3(x̄),
conditioned on tuples satisfying φ4(x̄). If a probability distribution is given on the set of
structures with a given finite domain, then we can use CPL to ask what the probability
is that the frequency of one event (possibly conditioned on another event) is larger than
the frequency of another event (possibly conditioned on yet another event). When CPL
is used in the definition of a lifted Bayesian network in the sense of [Kop20], it expresses
“threshold conditions” when the probability of a relation changes from one value to another.
Concrete examples of its expressive power are found in Example 3.5 and remarks 3.4 and 3.6
in [Kop20].

Definition 4.16 (Syntax of CPL(σ)). Suppose that σ is a finite relational signature. Then
the set of conditional probability formulas over σ, denoted CPL(σ), is defined inductively as
follows:

(1) Every atomic σ-formula belongs to CPL(σ) (where ‘atomic’ has the same meaning as in
first-order logic with equality).

(2) If φ,ψ ∈ CPL(σ) then (¬φ), (φ∧ψ), (φ∨ψ), (φ→ ψ), (φ↔ ψ), (∃xφ) ∈ CPL(σ) where
x is a variable. (As usual, in practice we do not necessarily write out all parentheses.)
We consider ∀xφ to be an abbreviation of ¬∃x¬φ.

(3) If r ≥ 0 is a real number, φ,ψ, θ, τ ∈ CPL(σ) and ȳ is a sequence of distinct variables,
then (

r + ∥φ | ψ∥ȳ ≥ ∥θ | τ∥ȳ
)
∈ CPL(σ) and(

∥φ | ψ∥ȳ ≥ ∥θ | τ∥ȳ + r
)
∈ CPL(σ).

In both these new formulas all variables of φ,ψ, θ and τ that appear in the sequence ȳ
become bound. So this construction can be seen as a sort of quantification, which may
become more clear by the provided semantics below.
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A formula φ ∈ CPL(σ) is called quantifier-free if it contains no quantifier, that is, if it is
constructed from atomic formulas using only the connectives ¬,∧,∨,→,↔.

Definition 4.17 (Semantics of CPL(σ)). (1) The interpretations of ¬,∧,∨,→,↔ and ∃
are as in first-order logic.

(2) Suppose that A is a finite σ-structure and let φ(x̄, ȳ), ψ(x̄, ȳ), θ(x̄, ȳ), τ(x̄, ȳ) ∈ CPL(σ).

Let ā ∈ A|x̄|.
(a) We define φ(ā,A) =

{
b̄ ∈ A|ȳ| : A |= φ(ā, b̄)

}
.

(b) The expression

A |=
(
r + ∥φ(ā, ȳ) | ψ(ā, ȳ)∥ȳ ≥ ∥θ(ā, ȳ) | τ(ā, ȳ)∥ȳ

)
means that ψ(ā,A) ̸= ∅, τ(ā,A) ̸= ∅ and

r +

∣∣φ(ā,A) ∩ ψ(ā,A)
∣∣∣∣ψ(ā,A)

∣∣ ≥
∣∣θ(ā,A) ∩ τ(ā,A)

∣∣∣∣τ(ā,A)
∣∣

and in this case we say that
(
r + ∥φ(ā, ȳ) | ψ(ā, ȳ)∥ȳ ≥ ∥θ(ā, ȳ) | τ(ā, ȳ)∥ȳ

)
is

true (or holds) in A. If ψ(ā,A) = ∅ or τ(ā,A) = ∅ or

r +

∣∣φ(ā,A) ∩ ψ(ā,A)
∣∣∣∣ψ(ā,A)

∣∣ <

∣∣θ(ā,A) ∩ τ(ā,A)
∣∣∣∣τ(ā,A)

∣∣
then we write

A ̸|=
(
r + ∥φ(ā, ȳ) | ψ(ā, ȳ)∥ȳ ≥ ∥θ(ā, ȳ) | τ(ā, ȳ)∥ȳ

)
and say that

(
r + ∥φ(ā, ȳ) | ψ(ā, ȳ)∥ȳ ≥ ∥θ(ā, ȳ) | τ(ā, ȳ)∥ȳ

)
is false in A.

(c) The meaning of

A |=
(
∥φ(ā, ȳ) | ψ(ā, ȳ)∥ȳ ≥ ∥θ(ā, ȳ) | τ(ā, ȳ)∥ȳ + r

)
is defined similarly.

5. Probabilistic graphical models, sequences of probability distributions,
and asymptotic elimination of aggregation functions

In this section we define the (parametrized) probabilistic graphical models that will be used
for defining probability distributions on Wn, the set of σ-strutures, for some finite relational
signature σ, with domain [n]. In particular we define the notion of L(σ)-network where
L(σ) is an arbitrary logic for σ. The notion of L(σ)-network is general enough to encompass
all directed probabilistic graphical models that we are aware of (e.g. relational Bayesian
networks, [Jae98], lifted Bayesian networks [Kop20], relational logistic regression models
[MBGS19, PBK+14]) by choosing an appropriate logic L(σ)). In most results mentioned in
this article we consider L(σ)-networks where L(σ) is a sublogic of PLA+(σ) obtained by
putting restrictions on the kind of aggregation functions that may be used. This is because
we want to understand the role of aggregation functions in the interplay between those logics
used to define probability distributions and (possibly other) logics used to define queries. It
follows immediately from the definitions that every relational Bayesian network (for σ) in
[Jae98] is a PLA+(σ)-network, modulo some notational and terminological differences.
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In Section 5.2 we state our first main result, Theorem 5.11, which is about PLA+(σ)-
networks and queries that use only strongly admissible (or continuous) aggregation functions,
and its corollaries. As discussed in Section 1, Theorem 5.11 and Corollary 5.13 differ
from other results with similar general aims in the field of statistical relational AI, e.g.
[Jae98, MBGS19, PBK+14, Kop20, KW23], because they apply to different sequences of
probability distributions or to different queries.

Throughout this section (as in the rest of the article) we assume that σ is a finite
relational signature and that Wn denotes the set of all σ-structures with domain [n]. We
begin by defining some notions that are relevant to all probabilistic graphical models and
logics that we consider. Then we define L(σ)-networks, lifted Bayesian networks and then
state the main results of [Kop20, KW23] which will be used later.

5.1. Sequences of probability distributions and asymptotic equivalence. Let L be
a logic for σ.

Definition 5.1. By a sequence of probability distributions we mean a sequence (Pn : n ∈ N+)
such that for every n, Pn is a probability distribution on Wn.

Definition 5.2. Let Pn is a probability distribution on Wn, let φ(x̄) ∈ L, and let ā ∈ [n]|x̄|.
Then

Pn(φ(ā)) = Pn
(
{A ∈ Wn : A(φ(ā)) = 1}

)
.

If p(x̄) is a finite set of formulas (e.g. an atomic σ-type) then we let Pn(p(ā)) = Pn(φ(ā))
where φ(x̄) is the conjunction of all formulas in p(x̄).

Definition 5.3 (Asymptotic total variation equivalence). Two sequences of probability
distributions (Pn : n ∈ N+) and (P′

n : n ∈ N+) are called asymptotically total variation
equivalent, denoted (Pn : n ∈ N+) ∼tv (P′

n : n ∈ N+), if there is a function δ : N+ → R such
that limn→∞ δ(n) = 0 and for all sufficiently large n and every X ⊆ Wn, |Pn(X)−P′

n(X)| ≤
δ(n).

Definition 5.4 (Asymptotic equivalence of formulas). Let φ(x̄), ψ(x̄) ∈ L.
(i) Let P = (Pn : n ∈ N+) be a sequence of probability distributions. We say that φ(x̄) and
ψ(x̄) are asymptotically equivalent with respect to P if for all ε > 0

Pn
({

A ∈ Wn : there is ā ∈ A|x̄| such that |A(φ(ā))−A(ψ(ā))| > ε
})

→ 0

as n→ ∞.
(ii) Suppose in addition that L is a logic such that for every φ(x̄) ∈ L, every finite σ-structure

A and every ā ∈ A|ā|, the value A(φ(ā)) is either 0 or 1. Then we say that φ(x̄) ∈ L and
ψ(x̄) ∈ L are almost surely equivalent with respect to P if

lim
n→∞

Pn
({

A ∈ Wn : for all ā ∈ [n]|x̄|,A(φ(ā)) = A(ψ(ā))}
)

= 1.

For logics with only the truth values 0 and 1, the notions of asymptotic equivalence and
almost sure equivalence are equivalent as stated by the following lemma, the straightforward
proof of which is left to the reader.

Lemma 5.5. Let P = (Pn : n ∈ N+) be a sequence of probability distributions and suppose

that L is a logic such that for every φ(x̄) ∈ L, every finite σ-structure A and every ā ∈ A|ā|,
the value A(φ(ā)) is either 0 or 1. Let φ(x̄), ψ(x̄) ∈ L. Then φ(x̄) and ψ(x̄) are asymptotically
equivalent with respect to P if and only if they are almost surely equivalent with respect to P.
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5.2. L(σ)-Networks. Now we define the notion of L(σ)-network, where L(σ) is a logic for
σ, and how it induces a probability distribution on Wn.

Definition 5.6 (L(σ)-network). Suppose that L(σ) is a logic for σ and suppose that, for
every σ′ ⊂ σ, L(σ′) is a logic for σ′ and whenever σ′′ ⊂ σ′ ⊂ σ, then L(σ′′) ⊂ L(σ′) ⊂ L(σ).
(i) A L(σ)-network is determined by the following two components:

(1) A DAG G with vertex set σ.
(2) To each relation symbol R ∈ σ a formula θR(x̄) ∈ L(par(R)) (where par(R) is the set of

parents of R in the DAG) is associated where |x̄| equals the arity of R. We call θR the
probability formula associated to R by the network.

(ii) For technical reasons it will be convenient to consider, for the empty signature σ = ∅, a
(unique) L(σ)-network, denoted G∅, such that its underlying DAG has empty vertex set and
consequently no probability formula.
(iii) LetG denote an L(σ)-network, let σ′ ⊆ σ, and suppose that for every R ∈ σ′, par(R) ⊆ σ′.
Then the L(σ′)-network specified by the induced subgraph of the underlying DAG of G with
vertex set σ′ and the probability formulas θR for all R ∈ σ′ will be called the L(σ′)-subnetwork
of G induced by σ′.

We use the convention to denote an L(σ)-network by the same symbol (e.g. G) as its
underlying DAG.

It follows immediately from its definition that PLA+(σ) and all sublogics of it described
in Definition 4.14 satisfy the conditions in the beginning of the above definition, so it
makes sense to talk about for example a PLA+(σ)-network, a PLA(σ)-network, a aPLA(σ)-
network, a coPLA+(σ)-network, and an afPLA(σ)-network.

Now we define how an L(σ)-network defines a probability distribution on Wn.

Definition 5.7 (The sequence of probability distributions induced by an L(σ)-network).
Let L(σ) be a logic for σ which satisfies the conditions in the beginning of Definition 5.6
and let G be an L(σ)-network.
(i) If σ is empty then Pn, the probability distribution on Wn induced by G, is the unique
probability distribution on (the singleton set) Wn.
(ii) Now suppose that σ is nonempty and suppose tat for each R ∈ σ, its arity is denoted
by kR and the probability formula corresponding to R is denoted by θR(x̄) where |x̄| = kR.
Suppose that the underlying DAG of G has mp-rank ρ. For each 0 ≤ r ≤ ρ let Gr be the
subnetwork which is induced by σr = {R ∈ σ : mp(R) ≤ r} and note that Gρ = G. Also let

G−1 = G∅ and let P−1
n be the unique probability distribution on W−1

n = W∅
n. By induction

on r we define, for every r = 0, 1, . . . , ρ, a probability distribution Prn on the set Wr
n of all

σr-structures with domain [n] as follows: For every A ∈ Wr
n, let A′ = A↾σr−1 and

Prn(A) = Pr−1
n (A′)

∏
R∈σr\σr−1

∏
ā∈RA

A′(θR(ā)) ∏
ā∈[n]kR \ RA

(
1−A′(θR(ā))).

Finally we let Pn = Pρn and note that Wn = Wρ
n, so Pn is a probability distribution on Wn

and we call (Pn : n ∈ N+) the sequence of probability distributions induced by G.

From the above definition it follows immediately that if a probability distribution on Wn

can be induced by a relational Bayesian network (for σ) in the sense of [Jae98] then it can
be induced by a PLA+(σ)-network. The following lemma is a straightforward consequence
of Definition 5.6 and it uses the notation and assumptions of this definition.
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Lemma 5.8. If 0 ≤ r ≤ ρ, R ∈ σr has arity k, θR(x̄) ∈ L(par(R)) is the formula associated
to R according to Definition 5.6, n ∈ N+, ā ∈ [n]k and A ∈ Wr−1

n , then

Prn
(
{B ∈ Wr

n : B |= R(ā)} | {B ∈ Wn : B↾σr−1 = A}
)

= A(θR(ā)).

Definition 5.9. Let G be an L(σ)-network. We say that φ(x̄) and ψ(x̄) are asymptotically
equivalent with respect to to G, denoted φ(x̄) ∼G ψ(x̄), if φ(x̄) and ψ(x̄) are asymptotically
equivalent with respect to the sequence of probability distributions induced by G.

Example 5.10. We give examples of (conditional) probabilities that can be modelled with
a PLA+(σ)-network. Let σ be a finite relational signature and suppose that G is a DAG
with vertex set σ. Let R ∈ σ. We show how the probability of R, conditioned on par(R),
may be expressed. In all examples, we need to define a formula θR(x̄) ∈ PLA+(σ) as in
Definition 5.6 which assigns the probability that R(x̄) holds, conditioned on the values of
the relations in par(R).

If R par(R) = ∅ (i.e. if R has no parents in the DAG) then we can let θR(x̄) be some
constant c ∈ [0, 1], meaning that the probability of R(x̄) is c. Or we can (for example) let
α ∈ (0, 1) and then let θR(x̄) be lengthα(y = y : y :) (where y /∈ rng(x̄)). This expresses
that the probability of R(x̄) is n−α where n is the cardinality of the domain.

For all remaining examples suppose that par(R) ̸= ∅. If we want to express that the
probability of R(x̄) depends (only) on the complete atomic par(R)-type that x̄ satisifies, then
we can let θR(x̄) be

∧
i(pi(x̄) → γi) where pi(x̄) ranges over all complete atomic par(R)-types

in the variables x̄. This expresses that if pi(x̄) holds then the probability of R(x̄) is the
value of the formula γi (without free variables). Here γi may (for example) be a constant
ci ∈ [0, 1] expressing that if pi(x̄) holds, then the probability of R(x̄) is ci, or it may (for
example) be a PLA+(σ)-formula of the form lengthα(y = y : y :), expressing that if pi(x̄)
holds, then the probability of R(x̄) is n−α where n is the cardinality of the domain.

Let φ1(x, y), . . . , φk(x, y) ∈ PLA+(par(R)). If R is binary then we can let θR(x, y) be
the formula ψ(x, y) from Example 4.8 with Ei replaced by φi, which expresses that the
probability of R(x, y) equals the similarity of x and y with respect to this similarity measure.

If R is unary then we can instead let θR(x) be the formula am(ψ(x, y) : y : x ̸= y) which
expresses that the probability of R(x) equals the average similiarity of x to other elements
with respect to φ1(x, y), . . . , φk(x, y).

Suppose again that R is binary. Then we can let θR(x, y) be

1− µu1
(
ψ(x, z), ψ(y, z) : z : x ̸= z, y ̸= z

)
which (recalling Example 4.9) expresses that the probability of R(x, y) equals the “proximity”
of the similarity profiles of x and y. Alternatively, if E ∈ par(R) then θR(x, y) can, for any
l ∈ N, be the PLA+(par(R))-formula which expresses the lth stage (or approximation) of
SimRank with respect to E. This means that the probability of R(x, y) equals the lth stage
of the approximation of SimRank of x and y.

Now we have the concepts that allow us to state our first main result. Recall Definition 4.14
of coPLA(σ).

Theorem 5.11 (Asymptotic elimination of continuous aggregation functions). Let σ be
a finite relational signature, let G be a coPLA+(σ)-network and let (Pn : n ∈ N+) be the
sequence of probability distributions induced by G.

(i) If φ(x̄) ∈ coPLA+(σ) then φ(x̄) is asymptotically equivalent to a basic probability formula
with respect to G.
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(ii) For every atomic σ-type p(x̄), every m ∈ N+ and every ā ∈ [m]|x̄|, limn→∞ Pn(p(ā))
exists and depends only on p and G.

Remark 5.12 (Expressivity of coPLA+). Recall that coPLA+ may only use continuous
aggregation functions. The aggregation functions am and µu1 are continuous, as stated before.
Therefore the formulas from examples 4.8 and 4.9 that express “the similarity of x and y”,
respectively “the similarity profile score och x and y” are in coPLA+.

But max and min are not continuous and cannot be expressed in some indirect way by
coPLA+, for otherwise Corollary 5.13 would contradict a nonconvergence result in [SS88] as
discussed in the introduction. It follows that the first-order quantifiers cannot be expressed
by coPLA+, so it does not subsume first-order logic.

However in some contexts one may be more interested in the proportion (rather than
existence) of elements that satisfy some (two-valued) formula. For this we can use the
continuous aggregation function am which returns this proportion. If we want to express
that the proportion of elements that satisfy a formula is at least as large as the proportion
that satisfies another formula, then we could, tentatively, use the connective ≤ (x, y) which
returns 1 if x ≤ y and 0 otherwise. But since this connective is not continuous it cannot be
used in PLA+, so instead we consider a continuous approximation of ≤, say ≤ε (x, y) = 1 if
x ≤ y, 0 if x ≥ y + ε, and (y + ε− x)/ε if y < x < y + ε, where ε > 0 is small. With ≤ε and
am we can, within coPLA+, express approximations of statements about proportions. The
idea of considering continuous approximations of connectives or aggregation functions can of
course be used more generally to get coPLA+-formulas that estimate discrete/discontinuous
properties.

The proof of Theorem 5.11 consists of two parts. One part is to show that if, with high
probability, structures in Wn satisfy certain saturation conditions (defined in Section 6)
then strongly admissible aggregation functions can be asymptotically eliminated. This is
stated by Proposition 6.4 and proved in Section 6. The other part is to prove that with
probability tending to 1 as the domain size tends to infinity, a random structure from Wn

satisfies these saturation conditions. This is proved in Section 7. The following corollary is
quickly derived from Theorem 5.11.

Corollary 5.13 (Convergence of probability). Let σ be a finite relational signature, let G
be a coPLA+(σ)-network, and let (Pn : n ∈ N+) be the sequence of probability distributions
induced by G. If φ(x̄) ∈ coPLA+(σ) then there are c1, . . . , ck ∈ [0, 1], depending only on φ

and G, such that for every m ∈ N+, every ā ∈ [m]|x̄| and every ε > 0,

lim
n→∞

Pn
({

A ∈ Wn : A(φ(ā)) ∈
k⋃
i=1

[ci − ε, ci + ε]
})

= 1

and for all i = 1, . . . , k

Pn
({

A ∈ Wn : |A(φ(ā))− ci| < ε
})

converges as n→ ∞
to a number which depends only on φ, ci and G.

Proof. Let G and φ(x̄) be as assumed. By Part (i) of Theorem 5.11, there is a basic
probability formula ψ(x̄) which is asymptotically equivalent to φ(x̄) with respect to G. Then

ψ(x̄) has the form
∧k
i=1(ψi(x̄) → ci) where, for each i, ci ∈ [0, 1] and ψi(x̄) is a conjunction of

first-order literals. Without loss of generality we can assume that each ψi is the conjunction
of all formulas in a complete atomic σ-type and that every complete atomic σ-type in the
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variables x̄ is represented by some ψi. Note that for every A ∈ Wn and every ā ∈ [n]|x̄|

we have A(ψ(ā)) ∈ {c1, . . . , ck} and A(ψ(ā)) = ci if A |= ψi(ā). Let c ∈ {c1, . . . , ck} and
suppose that i1, . . . , it enumerates all i such that ci = c. Then

Pn
(
{A ∈ Wn : A(ψ(ā)) = c}

)
= Pn

( t∨
j=1

ψij (ā)
)
=

t∑
j=1

Pn
(
ψij (ā)

)
.

By Part (ii) of Theorem 5.11, it follows that the above probability converges, as n → ∞,
to a number which depends only on ψ and G. Since φ(x̄) ∼G ψ(x̄) the conclusions of the
corollary follow.

5.3. Lifted Bayesian networks. The notions and results of this subsection are not
needed until Section 9, but we introduce them here since Section 5 has introduced the other
probabilistic graphical model considered here, the L(σ)-network (e.g. PLA+(σ)-network). In
one of our main results, Theorem 9.7, we will consider (sequences of) probability distributions
induced by lifted Bayesian networks in the sense of [Kop20]. It is not hard (by combining
CPL, constants in [0, 1], and the “weighted mean” connective in Definition 4.7) to construct
a logic, say CPL∗(σ), such that every lifted Bayesian network for σ corresponds to an
CPL∗(σ)-network. In order to avoid the somewhat cumbersome translation of results in
[Kop20] about lifted Bayesian networks to results about CPL∗(σ)-networks we do not
however do this, but instead we formulate the results in this section in their original form
which uses the notion of a lifted Bayesian network. The intuition behind the next definition
is that if R ∈ σ and the condition expressed by the CPL-formula χR,i(x̄) holds, then the
probability of R(x̄) is (the number) µ(R | χR,i).

Definition 5.14 (Lifted Bayesian network). Let σ be a finite relational signature. A lifted
Bayesian network for σ is determined by the following components:

(a) An acyclic directed graph (DAG) G with vertex set σ.
(b) For each R ∈ σ, a number νR ∈ N+, formulas χR,i(x̄) ∈ CPL(par(R)), for i = 1, . . . , νR,

where |x̄| equals the arity of R, such that ∀x̄
(∨νR

i=1 χR,i(x̄)
)
is valid (i.e. true in all

par(R)-structures) and if i ̸= j then ∃x̄
(
χR,i(x̄) ∧ χR,j(x̄)

)
is unsatisfiable. Each χR,i

will be called an aggregation formula (of G).
(c) For each R ∈ σ and each 1 ≤ i ≤ νR, a number denoted µ(R | χR,i) (or µ(R(x̄) | χR,i(x̄)))

in the interval [0, 1].

Observe that Definition 5.14 makes sense if σ is empty. In this case the underlying DAG
has empty vertex set (and edge set) and no numbers or formulas as in parts (b) and (c) of
the definition need to be specified. A lifted Bayesian network G for σ induces a probability
distribution on Wn in a way explained in [Kop20, Definition 3.11], but as we will not need
the details we omit the definition here. We refer to [KW23, Example 5.3] for an example of
a lifted Bayesian network.

Now we state previous results about lifted Bayesian networks, CPL and PLA in [Kop20]
and [KW23] that will be used in proving Theorem 9.7 which describes the relative asymptotic
expressivity of the inference frameworks considered in this article. These results use the
notion of a (non)critical CPL-formula. The intuition behind this notion is that a CPL(σ)-
formula is critical with respect to a lifted Bayesian network G for σ if it contains a subformula
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of the form (
r + ∥φ | ψ∥ȳ ≥ ∥θ | τ∥ȳ

)
or

(
∥φ | ψ∥ȳ ≥ ∥θ | τ∥ȳ + r

)
.

where r = α − β, α = limn→∞
Pn(φ1(ā))
Pn(φ2(ā))

, β = limn→∞
Pn(ψ1(ā))
Pn(ψ2(ā))

and φ(x̄) and ψ(x̄) are

quantifier-free first-order formulas, the length of x̄ is bounded in terms of the length of the
subformula, φ1(x̄) implies φ2(x̄), and ψ1(x̄) implies ψ2(x̄). Otherwise the CPL(σ)-formula
is noncritical with respect to G. Observe that every first-order formula is noncritical with
respect to every lifted Bayesian network, since a first-order formula does not contain a
subformula of the form considered above The numbers α and β above depend only on the
underlying DAG of G and the numbers µ(R | χR,i) in the definition of a lifted Bayesian
network. Therefore it makes sense to say that an aggregation formula of G is (or is not)
noncritical with respect to G. The exact definition of noncritical formula in [Kop20] is
quite technical and appears in [Kop20, Definitions 4.29 and 4.30]. A simplified and stronger
definition of noncritical CPL(σ)-formula is given in [KW23, Definition 6.7].

Theorem 5.15 [Kop20, Theorems 3.14 – 3.16]. Let G be a lifted Bayesian network for
σ, suppose that all aggregation functions of G are noncritical with respect to G, and let
P = (Pn : n ∈ N+) be the sequence of probability distributions induced by G.

(i) If φ(x̄) ∈ CPL(σ) is noncritical with respect to G, then φ(x̄) is almost surely equivalent

to a quantifier-free formula (with respect to P). Moreover, if m ∈ N+ and ā ∈ [m]|x̄|,
then limn→∞ Pn(φ(ā)) exists. In particular, if φ has no free variable (i.e. is a sentence),
then limn→∞ Pn(φ) is either 0 or 1.

(ii) For every aggregation formula χR,i of G there is a quantifier-free formula χ′
R,i ∈ CPL(σ)

such that every relation symbol of χ′
R,i occurs in χR,i and such that if G′ is the lifted

Bayesian network for σ
(a) with the same underlying DAG as G, and
(b) where, for every R ∈ σ, the aggregation formula χR,i is replaced by χ′

R,i and

µ(R | χ′
R,i) = µ(R | χR,i),

then (P′
n : n ∈ N+) ∼tv (Pn : n ∈ N+) where (P′

n : n ∈ N+) is the sequence of probability
distributions induced by G′.

Remark 5.16. The conclusion of Theorem 3.16 in [Kop20] is somewhat weaker than
part (ii) of Theorem 5.15 above since the former does not refer to asymptotic total variation
equivalence, but the proof of [Kop20, Theorem 3.16] shows, using the notation above, that
(P′
n : n ∈ N+) ∼tv (Pn : n ∈ N+) (as seen from the proof of [Kop20, Corollary 4.42 (c)]).

Theorem 5.17 [KW23, Theorem 6.8]. Let G be a lifted Bayesian network for σ and suppose
that all aggregation functions of G are noncritical with respect to G. If φ(x̄) ∈ PLA(σ) and
all aggregation functions in φ are admissible, then φ(x̄) is asymptotically equivalent to a
basic probability formula with respect to G.

6. Asymptotic elimination of strongly admissible aggregation functions

In this section we prove a result, Proposition 6.4, which is one component of the proof
of Theorem 5.11 and of independent interest since it shows that if a saturation condition
(given by Definition 6.2 and Assumption 6.3) holds almost surely, then strongly admissible
aggregation functions can be eliminated from PLA+(σ)-formulas.



Vol. 20:4 ASYMPTOTIC EXPRESSIVITY OF INFERENCE FRAMEWORKS 13:23

Throughout this section, for each n ∈ N+, Pn is a probability distribution on Wn, the
set of all σ-structures with domain [n], where σ is a finite relational signature. When saying
that two formulas are asymptotically equivalent then it is with respect to P = (Pn : n ∈ N+).
When denoting an atomic σ-type by notation like p(x̄, ȳ), or a formula by φ(x̄, ȳ), we assume
that x̄ and ȳ are sequences of different variables and rng(x̄) ∩ rng(ȳ) = ∅ although this
assumption may be repeated.

Let p(x̄, ȳ) be an atomic ∅-type, let A be a finite σ-structure and let ā ∈ A|x̄|. The
equalities and inequalities in p(x̄, ȳ) specifies how many “degrees of freedom” we have for

choosing b̄ ∈ A|ȳ| such that p(ā, b̄) holds. Since the “degrees of freedom” for ȳ when x̄ has
been assigned some fixed values will play a role in the proof that will follow we now define
the ȳ-dimension of p(x̄, ȳ) which captures this idea.

Definition 6.1. Let p(x̄, ȳ) be an atomic σ-type. The ȳ-dimension of p(x̄, ȳ), denoted

dimȳ(p), is the maximal d ∈ N such that there are a σ-structure A, ā ∈ A|x̄| and b̄ ∈ A|ȳ|

such that A |= p(ā, b̄) and |rng(b̄) \ rng(ā)| ≥ d.

Observe that if p=(x̄, ȳ) is an atomic ∅-type, d = dimȳ(p), A ∈ Wn, and ā ∈ [n]|x̄| satisfies

p=↾x̄, then (for large enough n) |p=(ā,A)| = (n− |rng(ā)|)d ∼ nd. The intuitive content of
Assumption 6.3 below is that for every complete atomic σ-type p(x̄, ȳ) and q(x̄) = p↾x̄, there
is α ∈ [0, 1] such that with high probability (for large n), if q(ā) holds then the proportion
of b̄ such that p(ā, b̄) holds is close to α. The next definition will be used to make this idea
more precise.

Definition 6.2 (Saturation and unsaturation). Let x̄ and ȳ be sequences of different
variables such that rng(x̄)∩ rng(ȳ) = ∅ and let p(x̄, ȳ) and q(x̄) be atomic σ-types such that
q ⊆ p. Let also 0 ≤ α ≤ 1 and d = dimȳ(p).

(1) A finite σ-structure A is called (p, q, α)-saturated if, whenever ā ∈ A|x̄| and A |= q(ā),

then
∣∣{b̄ ∈ A|ȳ| : A |= p(ā, b̄)}

∣∣ ≥ α|A|d.
(2) A finite σ-structure A is called (p, q, α)-unsaturated if, whenever ā ∈ A|x̄| and A |= q(ā),

then
∣∣{b̄ ∈ A|ȳ| : A |= p(ā, b̄)}

∣∣ ≤ α|A|d.

Assumption 6.3. For all m,n ∈ N+ and δ > 0 there is Ym,δ
n ⊆ Wn such that

(1) limn→∞ Pn(Ym,δ
n ) = 1, and

(2) for every complete atomic σ-type p(x̄, ȳ) such that |x̄| + |ȳ| ≤ m, if q(x̄) = p↾x̄ and
dimȳ(p) > 0, then there is αp,q ∈ [0, 1] depending only on p, q and P, such that every

A ∈ Ym,δ
n is (p, q, αp,q − δ)-saturated and (p, q, αp,q + δ)-unsaturated.

Proposition 6.4. If Assumption 6.3 holds and φ(x̄) ∈ PLA+(σ) contains only strongly
admissible aggregation functions, then φ(x̄) is asymptotically equivalent to a basic probability
formula.

The rest of this section is devoted to proving Proposition 6.4 and its proof is concluded
by Corollary 6.11. The proofs follow the pattern of the proofs in [KW23, Section 7], but
there are subtle differences throughout. The reason is partly that, unlike PLA(σ), PLA+(σ)
allows constructions as in part (5) of Definition 4.5 where p= is not necessarity a complete
atomic σ-type, and partly that we allow the numbers αp,q in Assumption 6.3 to be 0 and we
did not need to bother with this “convergence to 0 case” in [KW23].

Remark 6.5 (Eliminating aggregation functions of higher arities). The results below
up to Proposition 6.10 are stated and proved only for (unary) admissible aggregations
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functions F : [0, 1]<ω → [0, 1] but the results hold also for admissible aggregation functions

F :
(
[0, 1]<ω

)k → [0, 1], where k > 1, and basic probability formulas ψi(x̄, ȳ), i = 1, . . . , k (in
place of ψ(x̄, ȳ)). The proofs in the general case work out in the same way but the notation
becomes messier since the assumptions and notation introduced in Assumption 6.7 below
for ψ(x̄, ȳ) need to be considered for all ψi(x̄, ȳ).

Lemma 6.6. Suppose that ψ(x̄, ȳ) =
∧t
i=1(ψi(x̄, ȳ) → ci) is a basic formula where each ψi

is a conjunction of literals. Let be p=(x̄, ȳ) be an atomic ∅-type and let F : [0, 1]<ω → [0, 1]
be an aggregation function.

(i) Suppose that, for some 1 ≤ s ≤ t, ψi(x̄, ȳ) ∧ p=(x̄, ȳ) is consistent if 1 ≤ i ≤ s and

inconsistent if i > s. Then for every finite σ-structure A and every ā ∈ A|x̄| that satisfies
p=↾x̄,

A
(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
= A

(
F
( s∧
i=1

(ψi(ā, ȳ) → ci) : ȳ : p=(ā, ȳ)
))
.

(ii) If F is admissible and ψi(x̄, ȳ) ∧ p=(x̄, ȳ) is inconsistent for all i = 1, . . . , t, then for all

finite σ-structures A and all ā ∈ A|x̄| that satisfy p=↾x̄,

A
(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
= F (r̄)

where r̄ is the sequence of length 1 the unique entry of which is 1.

Proof. (i) Suppose that the assumptions of (i) hold. If i > s then ψi(x̄, ȳ) ∧ p=(x̄, ȳ)

is inconsistent, so for every finite σ-structure A, every ā ∈ A|x̄| and every b̄ ∈ A|ȳ|, if
A |= p=(ā, b̄) then A(ψi(ā, b̄)) = 0 and hence A(ψi(ā, b̄) → ci) = 1. Now we get

A
( t∧
i=1

(ψi(ā, b̄) → ci)
)
= min{A(ψi(ā, b̄) → ci) : i = 1, . . . , t} =

min{A(ψi(ā, b̄) → ci) : i = 1, . . . , s} = A
( s∧
i=1

(ψi(ā, b̄) → ci)
)
.

(ii) Suppose that ψi(x̄, ȳ) ∧ p=(x̄, ȳ) is inconsistent for all i = 1, . . . , t. Then, for every

finite σ-structure A, every ā ∈ A|x̄| and every b̄ ∈ A|ȳ|, if A |= p=(ā, b̄) then we have
A(ψi(ā, b̄) → ci) = 1 for all i, so A(ψ(ā, b̄)) = 1. Hence, the sequence r̄ = (A(ψ(ā, ȳ)) :
ȳ : p=(ā, ȳ)) is constantly 1. Let r̄′ be the sequence of length 1 the only entry of which is
1. Then µu1(r̄, r̄

′) = 0. Since F is strongly admissible it is strongly admissible sensu novo
(according to Proposition 3.12) and by condition (1) in the definition of admissibility sensu
novo (Definition 3.11) we get F (r̄) = F (r̄′).

Assumption 6.7. Until Proposition 6.10 we make, without loss of generality, the following
assumptions: Let κ ∈ N+ and let x̄ and ȳ be sequences of distinct variables such that
rng(x̄) ∩ rng(ȳ) = ∅ and |x̄| + |ȳ| ≤ κ ∈ N+. Let ψ(x̄, ȳ) be a basic probability formula.
Then ψ(x̄, ȳ) is equivalent to a basic probability formula of the form

s∧
i=1

ti∧
j=1

(
pi,j(x̄, ȳ) → ci,j

)
,

where each pi,j(x̄, ȳ) is a complete atomic σ-type and (since ci,j may be zero) every complete
atomic σ-type in the variables x̄ȳ equals pi,j for some 1 ≤ i ≤ s and 1 ≤ j ≤ ti. Furthermore,
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we may assume (by reordering if necessary) that for all i = 1, . . . , s and all 1 ≤ j, j′ ≤ ti,
pi,j↾x̄ = pi,j′↾x̄. Let qi(x̄) = pi,1↾x̄ for each i. Without loss of generality we may therefore
assume that ψ(x̄, ȳ) has the above described form.

Lemma 6.8. Suppose that F : [0, 1]<ω → [0, 1] is a strongly admissible aggregation function
and let p=(x̄, ȳ) be an atomic ∅-type. Fix an index 1 ≤ i ≤ s. There is di ∈ [0, 1], depending
only on ψ, p= and F , such that for every ε > 0 there is δ > 0 such that for all sufficiently

large n, all A ∈ Yκ,δ
n , and all ā ∈ [n]|x̄|, if A |= qi(ā), then∣∣A(

F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
− di

∣∣ < ε.

Proof. Fix 1 ≤ i ≤ s. If pi,j(x̄, ȳ) ∧ p=(x̄, ȳ) is inconsistent for all j = 1, . . . , ti, then, by
Lemma 6.6 (ii), the conclusion is immediate.

So now suppose that there is at least one j such that pi,j(x̄, ȳ)∧p=(x̄, ȳ) is consistent. By
Lemma 6.6 (i), we may without loss of generality modify ψ and assume that pi,j(x̄, ȳ)∧p=(x̄, ȳ)
is consistent, hence p= ⊆ pi,j , for all j = 1, . . . , ti, and that pi,j , j = 1, . . . , ti, enumerates all
complete atomic σ-types in the variables x̄ȳ which extend qi and p

=.
Let l = dimȳ(p

=) and, for j = 1, . . . , ti, let lj = dimȳ(pi,j). Suppose first that l = 0.
Then p= ∧ qi(x̄) has a unique extension to a complete atomic σ-type with variables x̄, ȳ,
so ti = 1. Also, if A |= pi,j(ā, b̄), then rng(b̄) ⊆ rng(ā). It follows that for every finite

σ-structure A and ā ∈ A|ā| such that qi(ā) holds there is a unique b̄ ∈ A|ȳ| such that
A |= pi,j(ā, b̄) and hence the sequence (A(ψ(ā, ȳ) : ȳ : p=(ā, ȳ)) has a single coordinate which
is ci,1. Therefore we can let di = F (r̄) where r̄ is the sequence of length 1 where the only
coordinate is ci,1.

Now suppose that l > 0. If lj < l then let αj = 0. If lj = l then let αj ∈ [0, 1] be the
number associated to pi,j and qi by Assumption 6.3.

Let δ > 0, A1 ∈ Yκ,δ
n1 , A2 ∈ Yκ,δ

n2 , ā1 ∈ [n1]
|x̄|, ā2 ∈ [n2]

|x̄|, A1 |= qi(ā1), A2 |= qi(ā2),
and, for k = 1, 2, let

r̄k =
(
Ak

(
ψ(āk, b̄)

)
: b̄ ∈ [nk]

|ȳ| and A |= p=(ā, b̄)
)
. (6.1)

It follows directly from the definition of r̄k and assumptions about ψ that rng(r̄1), rng(r̄2) ⊆
{ci,1, . . . , ci,ti}. To prove the lemma it now suffices to show that for any ε > 0 and all large
enough n1 and n2, |F (r̄1) − F (r̄2)| < ε. Since we assume that F is strongly admissible it
follows from Proposition 3.12 that F is strongly admissible sensu novo. From Condition (1)
of the definition of strong admissibility sensu novo (Definition 3.11) it follows that it now
suffices to show that there is a constant C > 0 which depends only on ψ and p= such that if
n1 and n2 are sufficiently large, then µu1(r̄1, r̄2) < δC.

Let k ∈ {1, 2} and note that |r̄k| ∼ (nk)
l. By Assumption 6.3, if nk is large enough the

following holds for each j = 1, . . . , ti:

• If lj < l then |pi,j(āk,Ak)| ≤ (nk)
lj where (nk)

lj

(nk)l
→ 0 as nk → ∞, so |pi,j(āk,Ak)| ≤

δ(nk)
l = (αj + δ)(nk)

l, as αj = 0 in this case.

• If lj = l then (αj − δ)(nk)
l ≤ |pi,j(āk,Ak)| ≤ (αj + δ)(nk)

l.

Let c ∈ [0, 1] and suppose that there are exactly m indices j = j1, . . . , jm such that ci,j = c.
Every b̄ ∈ pi,j(āk,Ak) contributes to a coordinate ci,j in the sequence r̄k. Therefore the
number c will occur between

(αj1 + . . .+ αjm −mδ)(nk)
l and (αj1 + . . .+ αjm +mδ)(nk)

l
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times in r̄k. This implies that µu1(r̄1, r̄2) ≤ δC for a constant C that depends only on ti
which in turn depends only on ψ and p=. This concludes the proof.

Corollary 6.9. Let F : [0, 1]<ω → [0, 1] be a strongly admissible aggregation function and
let p=(x̄, ȳ) be an atomic ∅-type. Then there is a basic probability formula θ(x̄) such that

for every ε > 0 there is δ > 0 such that for all sufficiently large n, all A ∈ Yκ,δ
n , and all

ā ∈ [n]|x̄|, ∣∣A(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
−A

(
θ(ā)

)∣∣ < ε.

Proof. Recall that from Assumption 6.7 qi(x̄) = pi,j↾x̄ for all i (and all j = 1, . . . , ti). By
Lemma 6.6 (i), we may without loss of generality modify ψ and assume that pi,j(x̄, ȳ)∧p=(x̄, ȳ)
is consistent for all j = 1, . . . , ti, and that pi,j , j = 1, . . . , ti, enumerates all complete atomic
σ-types in the variables x̄ȳ which extend qi and p

=.
For every i = 1, . . . , s, let di ∈ [0, 1] be as in Lemma 6.8. Let q′1(x̄), . . . , q

′
m(x̄) enumerate

all complete atomic ∅-types in the variables x̄ which are different from p=↾x̄. We show that
if θ(x̄) is the formula

∧s
i=1(qi(x̄) → di) ∧

∧m
j=1(q

′
j(x̄) → 0) then the lemma holds. Let ε > 0.

Let A ∈ Yκ,δ
n and ā ∈ [n]|x̄|. If ā does not satisfy p=↾x̄, then it satisfies q′j(x̄) for some j and

(no matter what δ is)

A
(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
= 0 = A

( s∧
i=1

(qi(ā) → di) ∧
m∧
j=1

(q′j(ā) → 0)
)
.

Now suppose that ā satisfies p=↾x̄ and hence it satisfies qi(x̄) for some i. Then

A
( s∧
i=1

(qi(ā) → di) ∧
m∧
j=1

(q′j(ā) → 0)
)

= di. (6.2)

From Lemma 6.8 we have that if δ > 0 is small enough, then for every i = 1, . . . , s, all

sufficiently large n, all A ∈ Yκ,δ
n , and all ā ∈ [n]|x̄|, if A |= qi(ā), then∣∣A(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
− di

∣∣ < ε. (6.3)

The corollary now follows from (6.2) and (6.3).

Proposition 6.10. Suppose that φ(x̄, ȳ), ψ(x̄, ȳ) ∈ PLA+(σ) are asymptotically equivalent
and that ψ(x̄, ȳ) is a basic probability formula. Let p=(x̄, ȳ) be an atomic ∅-type. If F :
[0, 1]<ω → [0, 1] is a strongly admissible aggregation function, then F

(
φ(x̄, ȳ) : ȳ : p=(x̄, ȳ)

)
is asymptotically equivalent to a basic probability formula.

Proof. Suppose that φ(x̄, ȳ), ψ(x̄, ȳ) ∈ PLA(σ) are asymptotically equivalent and that
ψ(x̄, ȳ) is a basic probability formula. Without loss of generality we may assume that ψ has
the form described in Assumption 6.7. Let κ = |x̄|+ |ȳ| and ε > 0. By Corollary 6.9 there is
a basic probability formula θ(x̄) such that for all small enough δ > 0 and large enough n, if

A ∈ Yκ,δ
n and ā ∈ [n]|x̄|, then∣∣A(

F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
− A

(
θ(ā)

)∣∣ < ε/2. (6.4)

For δ > 0 and n ∈ N+ let

Xδ
n =

{
A ∈ Wn : for all ā ∈ [n]|x̄| and all b̄ ∈ [n]|ȳ| such that p=(ā, b̄) holds,∣∣A(φ(ā, b̄))−A(ψ(ā, b̄))

∣∣ < δ
}
.
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Since φ(x̄, ȳ) and ψ(x̄, ȳ) are asymptotically equivalent we have limn→∞ Pn(Xδ
n) = 1. By

Assumption 6.3 we have limn→∞ Pn(Yκ,δ
n ) = 1 and hence limn→∞ Pn(Xδ

n ∩Yκ,δ
n ) = 1.

It now suffices to prove that if δ > 0 is small enough, then for all sufficiently large n, all

A ∈ Xδ
n ∩Yκ,δ

n and all ā ∈ [n]|x̄|,∣∣A(
F
(
φ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
−A

(
θ(ā)

)∣∣ < ε. (6.5)

The statement (6.5) follows from (6.4) and the following (to be proved)∣∣A(
F
(
φ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
−A

(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
< ε/2. (6.6)

Hence it remains to prove that if δ > 0 is small enough then (6.6) holds for all sufficiently

large n, all A ∈ Xδ
n ∩Yκ,δ

n and all ā ∈ [n]|x̄|.

Let A ∈ Xδ
n ∩Yκ,δ

n and ā ∈ [n]|x̄|. If ā does not satisfy p=↾x̄ then

A
(
F
(
φ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
= 0 = A

(
F
(
ψ(ā, ȳ) : ȳ : p=(ā, ȳ)

))
.

Now suppose that ā satisfies p=↾x̄ and hence ā satisfies qi(x̄) (as in Assumption 6.7) for
some i. Then the following two sequences are nonempty:

r̄ =
(
A
(
φ(ā, b̄)

)
: b̄ ∈ [n]|ȳ| and p=(ā, b̄) holds

)
,

ρ̄ =
(
A
(
ψ(ā, b̄)

)
: b̄ ∈ [n]|ȳ| and p=(ā, b̄) holds

)
.

First suppose that every pi,j(x̄, ȳ) (as in Assumption 6.7) is inconsistent with p=. Then all

entries in ρ̄ are equal to 1. Since A ∈ Xδ
n we get µo∞(r̄, ρ̄) < δ. Since F is strongly admissible,

hence strongly admissible sensu novo, if follows from Condition (2) of the definition of strong
admissibility sensu novo, that if δ is small enough, then |F (r̄)−F (ρ̄)| < ε/2 and (6.6) follows
immediately from this.

Now suppose that at least one pi,j is consistent with p
=. By Lemma 6.6 we may, without

loss of generality, assume that every pi,j is consistent with p
=. Then we can argue in the

same way as we argued in the proof of Lemma 6.8 and conclude that there are αj , ci,j ∈ [0, 1],
corresponding to pi,j , for j = 1, . . . , ti, such that if c ∈ [0, 1] and j1, . . . , jm enumerates all
ci,j such that ci,j = c, then c appears between

(αj1 + . . .+ αjm −mδ)nl and (αj1 + . . .+ αjm +mδ)nl

times in ρ̄. As A ∈ Xδ
n we get µo∞(r̄, ρ̄) < δ. Since F is strongly admissible, hence strongly

admissible sensu novo, it follows from Condition (2) of the definition of admissibility sensu
novo, that if δ is small enough, then |F (r̄)− F (ρ̄)| < ε/2 which implies that (6.6) holds.

Corollary 6.11. Let φ(x̄) ∈ PLA+(σ) and suppose that all aggregation functions in φ are
strongly admissible. Then φ(x̄) is asymptotically equivalent to a basic probability formula.

Proof. We use induction on the complexity of formulas. If φ(x̄) is of one of the forms
described in parts (1) and (2) of the definition of PLA+(σ) (Definition 4.5), then φ(x̄) is
aggregation-free and then φ(x̄) is asymptotically equivalent to a basic probability formula
by virtue of Lemma 4.13, since equivalence implies asymptotic equivalence.

Now suppose that C : [0, 1]k → [0, 1] is a continuous connective and φ1(x̄), . . . , φk(x̄) ∈
PLA+(σ), so C(φ1(x̄), . . . , φk(x̄)) ∈ PLA+(σ)) ∈ PLA+(σ). If each φi(x̄) is asymptoti-
cally equivalent to a basic probability formula φ′

i(x̄), then it follows from the continuity
of C that C(φ1(x̄), . . . , φk(x̄)) is asymptotically equivalent to C(φ′

1(x̄), . . . , φ
′
k(x̄)). Since

C(φ′
1(x̄), . . . , φ

′
k(x̄)) is aggregation-free it follows from Lemma 4.13 that it is equivalent to a
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basic probability formula ψ(x̄). But then C(φ1(x̄), . . . , φk(x̄)) is asymptotically equivalent
to ψ(x̄).

Now suppose that F :
(
[0, 1]<ω

)k → [0, 1] is a strongly admissible aggregation function,
p=(x̄, ȳ) is an atomic σ-type, φ1(x̄, ȳ), . . . , φk(x̄, ȳ) ∈ PLA+(σ) and that each φi(x̄, ȳ) is
asymptotically equivalent to a basic probability formula φ′

i(x̄, ȳ). Then Proposition 6.10 com-
bined with Remark 6.5 implies that F (φ1(x̄, ȳ), . . . , φk(x̄, ȳ) : ȳ : p=(x̄, ȳ)) is asymptotically
equivalent to a basic probability formula.

7. Saturation and convergence of atomic types: finishing the proof of
Theorem 5.11

Theorem 5.11 follows from Proposition 6.4 and the proofs in this section. We consider a
finite relational signature σ and a PLA+(σ)-network G whose every probability formula uses
only strongly admissible aggregation functions (if it uses any at all). We want to prove that
the claims of Theorem 5.11 hold. For this we will use induction on the maximal path rank,
or mp-rank, of the underlying DAG of G, also denoted G. In order to make the inductive
step work out we have to prove (in the base case and in the inductive step) a few claims
none of which explicitly states that the claims of Theorem 5.11 hold. But these few claims
(labelled (1)–(5) in Assumption 7.2) in conjunction with Proposition 6.4 imply Theorem 5.11.
Perhaps a bit counter-intuitively the base case of the induction will not be the case when
G has mp-rank 0 (i.e. when G has no edges). Instead the base case will be when σ = ∅,
in other words when the DAG has no vertices (and hence no edges) and in this case we
have the convention that the empty DAG has mp-rank ‘−1’. The base case, for an empty
signature, is stated by Lemma 7.1. To make the notation consistent with the notation used
in the inductive step formulated in Assumption 7.2, we denote the empty signature of the
base case (Lemma 7.1) by σ′.

Lemma 7.1 (The base case). Suppose that σ′ = ∅ and, for all n ∈ N+, let W′
n be the set

of all σ′-structures with domain [n] (so W′
n is a singleton set), and let P′

n be the unique
probability distribution on W′

n.

(a) Let k ∈ N+, ε′ > 0, and let δ′ : N+ → R≥0 be any function such that limn→∞ δ′(n) = 0,
Then there are Y′

n ⊆ W′
n, for n ∈ N+, such that the following hold:

(1) limn→∞ δ′(n) = 0.
(2) P′

n(Y
′
n) ≥ 1− δ′(n) for all sufficiently large n.

(3) For every complete atomic σ′-type p′(x̄) with |x̄| ≤ k there is a number which we
denote P′(p′(x̄)), or just P′(p′), such that for all sufficiently large n and all ā ∈ [n]
which realize the identity fragment of p′,∣∣P′

n

(
{A′ ∈ W′

n : A′ |= p′(ā)}
)

− P′(p′(x̄))
∣∣ ≤ ε′.

(4) For every complete atomic σ′-type p′(x̄, ȳ) with |x̄ȳ| ≤ k and 0 < dimȳ(p
′(x̄, y)) = d,

if q′(x̄) = p′↾x̄, then there is α ∈ [0, 1] such that, for all sufficiently large n, every
A′ ∈ Y′

n is (p′, q′, α− ε′)-saturated and (p′, q′, α+ ε′)-unsaturated.
(b) If φ(x̄) ∈ PLA+(∅) and every aggregation function in φ is strongly admissible, then φ(x̄)

is asymptotically equivalent, with respect to (P′
n : n ∈ N+), to a basic probability formula.

Proof. (a) Suppose that σ′ = ∅ and let k ∈ N+ and ε′ > 0 be given. Also let δ′ : N+ → R≥0

be any function such that limn→∞ δ′(n) = 0, so (1) holds. For every complete atomic σ′-type
p′(x̄) let P′(p′(x̄)) = 1. Observe that, for every n, if ā ∈ [n] and ā realizes the identity
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fragment of p′(x̄), then ā realizes p′(x̄) in the unique A′ of W′
n. Hence, for trivial reasons

we have (3).
For every n let Y′

n be the set of all A′ ∈ W′
n such that for every complete atomic

σ′-type p′(x̄, ȳ) with |x̄ȳ| ≤ k and 0 < dimȳ(p
′(x̄, ȳ)) = |ȳ|, if q(x̄) = p↾x̄, then for all

sufficiently large n, every A′ ∈ Y′
n is (p′, q′, 1− ε′)-saturated and (p′, q′, 1 + ε′)-unsaturated.

Suppose that p′(x̄, ȳ) is a complete atomic σ′-type with |x̄ȳ| ≤ k and 0 < dimȳ(p
′(x̄, ȳ)) = |ȳ|.

Let q′(x̄) = p′↾x̄ and suppose that A′ |= q′(ā) where A′ ∈ W′
n. Then A′ |= p′(ā, b̄) for

every b̄ ∈ [n]|ȳ| consisting of different elements no one of which occurs in ā. There are

n|ȳ| − Cn|ȳ|−1 such b̄ for some constant C. So if n|ȳ| − Cn|ȳ|−1 ≥ (1 − ε′)n|ȳ| then A′ is
(p′, q′, 1− ε′)-saturated. For trivial reasons, A′ is also (p′, q′, 1 + ε′)-unsaturated. Hence we
have proved (4). The above argument shows that for all large enough n the unique member
of W′

n belongs to Y′
n, so it follows that (2) holds.

(b) Note that we have proved that (1) – (4) hold for all choices of k ∈ N+ and ε′ > 0.
Therefore Assumption 6.3 holds and consequently, by Proposition 6.4, if φ(x̄) ∈ PLA+(∅)
and every aggregation function in φ is strongly admissible, then φ(x̄) is asymptotically
equivalent to a basic probability formula.

Note that Lemma 7.1 implies the statement of Theorem 5.11 in the case when σ = ∅. For
the rest of this section we make the following assumptions: σ is a nonempty finite relational
signature. G is a PLA+(σ)-network with mp-rank ρ ≥ 0. For every R ∈ σ, the corresponding
probability formula θR contains only strongly admissible aggregation functions. σ′ is the
set of R ∈ σ such that the mp-rank of R is less than ρ and G′ is the PLA+(σ′)-subnetwork
induced by σ′. W′

n be the set of all σ′-structures with domain [n] and Wn is the set of
σ-structures with domain [n]. P′

n and Pn are the probability distributions induced by G′

and G on W′
n and Wn, respectively. Now we assume the following (which, by Lemma 7.1,

holds if σ′ = ∅):

Assumption 7.2 (Induction hypothesis). For all k ∈ N+ and all ε′ > 0 there are δ′ : N+ →
R≥0 and Y′

n ⊆ W′
n, for n ∈ N+, such that the following hold:

(1) limn→∞ δ′(n) = 0.
(2) P′

n(Y
′
n) ≥ 1− δ′(n) for all sufficiently large n.

(3) For every complete atomic σ′-type p′(x̄) with |x̄| ≤ k there is a number which we denote
P′(p′(x̄)), or just P′(p′), such that for all sufficiently large n and all ā ∈ [n] which realize
the identity fragment of p′,∣∣P′

n

(
{A′ ∈ W′

n : A′ |= p′(ā)}
)

− P′(p′(x̄))
∣∣ ≤ ε′.

(4) For every complete atomic σ′-type p′(x̄, ȳ) with |x̄ȳ| ≤ k and 0 < dimȳ(p
′(x̄, ȳ)) = d, if

q′(x̄) = p′↾x̄, then there is α ∈ [0, 1] such that, for all sufficiently large n, every A′ ∈ Y′
n

is (p′, q′, α− ε′)-saturated and (p′, q′, α+ ε′)-unsaturated.
(5) For every R ∈ σ \ σ′ there is a basic probability formula χR(x̄) ∈ PLA+(σ′) such that
χR(x̄) ∼G′ θR(x̄), where θR ∈ PLA+(σ′) is the probability formula corresponding to R in

G, and for all sufficiently large n, all A′ ∈ Y′
n and all ā ∈ [n]|x̄|,∣∣A′(θR(ā))−A′(χR(ā))

∣∣ ≤ ε′.

Outline of the inductive step and how conditions (1) – (5) imply Theorem 5.11.
We fix some arbitrary k ∈ N+ and ε′ > 0. The we carry out an argument, finished in
Proposition 7.18, which shows that we can find ε > 0, which can be made as small as we
like if ε′ is chosen small enough, δ : N+ → R≥0, and Yn ⊆ Wn, for n ∈ N+, such that if σ′,
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ε′, δ′, W′
n, Y

′
n and P′

n are replaced by σ, ε, δ, Wn, Yn and Pn, respectively, then parts (1)
– (4) of Assumption 7.2 hold. It follows, as stated in Corollary 7.19, that for every k and
every ε > 0, there are δ : N+ → R≥0 and Yn ⊆ Wn, for n ∈ N+, such that if σ′, ε′, δ′n, W

′
n,

Y′
n and P′

n are replaced by σ, ε, δn, Wn, Yn and Pn, respectively, then parts (1) – (4) of
Assumption 7.2 hold. Hence Assumption 6.3 holds and therefore Proposition 6.4 implies that
if φ(x̄) ∈ PLA+(σ) and all aggregation functions in φ are strongly admissible, then φ(x̄) is
asymptotically equivalent to a basic probability formula. This is stated in Corollary 7.20.

It remains to show that Part (5) of Assumption 7.2 holds for every R ∈ σ∗ \ σ if σ ⊂ σ∗

and the corresponding probability formula θR ∈ PLA+(σ) (of a PLA(σ∗)-network G∗ having
G as a subnetwork) contains only strongly admissible aggregation functions. So suppose
that σ∗ ⊃ σ and G∗ is a PLA+(σ∗)-network such that G is a subnetwork of G∗ and for every
R ∈ σ∗ \ σ the corresponding probability formula θR ∈ PLA+(σ) contains only strongly
admissible aggregation functions. Then, by Corollary 7.20, for every R ∈ σ∗ \ σ there is a
basic probability formula χR such that θR ∼G χR. Since σ

∗ is finite, it follows that for any
ε > 0 there are Y∗

n ⊆ Wn for all n ∈ N+ such that limn→∞ Pn(Y∗
n) = 1 and the following

holds for all n: If R ∈ σ∗ \ σ, A ∈ Y∗
n and ā ∈ [n]r, where r is the arity of R, then

|A(θR(ā))−A(χR(ā))| ≤ ε. (7.1)

We can now replace Yn by Yn ∩Y∗
n, but in order to not introduce new notation we still call

this new set Yn. By modifying δn slightly if necessary the conditions (1) – (4) still hold
if σ′, ε′, δ′n, W

′
n, Y

′
n and P′

n are replaced by σ, ε, δn, Wn, Yn and Pn, respectively. In
addition, condition (5) now holds if σ′, σ, G′, G and Y′

n are replaced by σ, σ∗, G, G∗ and
Yn, respectively.

This reduces the proof of the inductive step to Proposition 7.18, Corollary 7.19 and
Corollary 7.20. Thus it remains to prove these results. But before doing this, we explain how
Theorem 5.11 follows from the conditions (1) – (5) of Assumption 6.3 with σ′, ε′, δ′n, W

′
n,

Y′
n and P′

n replaced by σ, ε, δn, Wn, Yn and Pn, respectively. Part (ii) of Theorem 5.11
follows from condition (3) with the mentioned replacements as stated by Corollary 7.19.
Condition (4) (with the mentioned replacements) implies that Assumption 6.3 holds and
therefore Proposition 6.4 implies Part (i) of Theorem 5.11. The statement which is relevant
for Part (i) of Theorem 5.11 appears clearly in Corollary 7.20.

From now until Proposition 7.18 we fix k ∈ N+ and ε′ > 0. In the proofs that follow we
will consider relativizations of Pn to some subsets of Wn according to the next definition.

Definition 7.3. (i) If Y′ ⊆ W′
n then we define

WY′
= {A ∈ Wn : A↾σ′ ∈ Y′} and if A ∈ WY′

and A↾σ′ = A′, then

PY′
(A) =

P′
n(A′)

P′
n(Y

′)

∏
R∈σ\σ′

∏
ā∈RA

A′(θR(ā)) ∏
ā∈[n]kR \ RA

(
1−A′(θR(ā)))

where kR is the arity of R.
(ii) If A′ ∈ W′

n, then we let

WA′
= W{A′} and, for every A ∈ WA′

,

PA′
(A) = P{A′}(A) =

∏
R∈σ\σ′

∏
ā∈RA

A′(θR(ā)) ∏
ā∈[n]kR \ RA

(
1−A′(θR(ā)))
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Then PY′
and PA′

are probability distributions on WY′
and WA′

, respectively. Note also
that if Y′ ⊆ W′

n, A′ ∈ Y′ and A ∈ WA′
, then

PY′
(A) =

P′
n(A′)

P′
n(Y

′)
PA′

(A), (7.2)

and in particular, taking Y′ = W′
n, we have, for every A ∈ Wn,

Pn(A) = P′
n(A↾σ′)PA↾σ′

(A). (7.3)

We now state a few basic lemmas which will be useful.

Lemma 7.4. For every n, if Y′ ⊆ W′
n then Pn(WY′

) = P′
n(Y

′).

Proof. By using (7.3) in the first line below we get

Pn(WY′
) =

∑
A′∈Y′

∑
A∈WA′

Pn(A) =
∑

A′∈Y′

∑
A∈WA′

P′
n(A′)PA′

(A) =

∑
A′∈Y′

P′
n(A′)

∑
A∈WA′

PA′
(A) =

∑
A′∈Y′

P′
n(A′) = P′

n(Y
′).

Lemma 7.5. For every n,
(i) if X ⊆ Wn and A′ ∈ W′

n, then Pn(X | WA′
) = PA′

(X ∩WA′
), and

(ii) if X ⊆ Wn and Y′ ⊆ W′
n, then Pn(X | WY′

) = PY′
(X ∩WY′

).

Proof. Let X ⊆ Wn.
(i) Let A′ ∈ W′

n. Using Lemma 7.4 in the first line below and (7.3) in the second line
below, we get

Pn(X | WA′
) =

Pn(X ∩WA′
)

Pn(WA′)
=

Pn(X ∩WA′
)

P′
n(A′)

=

P′
n(A′)

∑
A∈X∩WA′ PA′

(A)

P′
n(A′)

= PA′
(X ∩WA′

).

(ii) Let Y′ ⊆ W′
n. Using that X ∩WY′

is the disjoint union of all X ∩WA′
such that

A′ ∈ Y′, Lemma 7.4, Part (i) of this lemma and (7.2), we get

Pn(X | WY′
) =

Pn(X ∩WY′
)

Pn(WY′)
=

∑
A′∈Y′

Pn(X ∩WA′
)

Pn(WY′)
=

∑
A′∈Y′

Pn(WA′
)

Pn(WY′)
Pn(X | WA′

) =
∑

A′∈Y′

P′
n(A′)

P′
n(Y

′)
PA′

(X ∩WA′
) =∑

A′∈Y′

PY′
(X ∩WA′

) = PY′
(X ∩WY′

).

Remark 7.6 (Properties of PA′
). Fix any n and any A′ ∈ W′

n.

(i) If A ∈ WA′
then (by the definitions of Pn and PA′

)

PA′
(A) = Pn

(
A | A↾σ′ = A′).

It follows that if p′(x̄) is a complete atomic σ′-type, A′ |= p′(ā) and p(x̄) ⊃ p′(x̄) is an atomic
σ-type, then

PA′({A ∈WA′
: A |= p(ā)}

)
= Pn

(
{A ∈ Wn : A |= p(ā) | {A ∈ Wn : A↾σ′ = A′}

)
.
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(ii) For every α ∈ {0, 1}, every R ∈ σ \ σ′ and every ā ∈ [n]r, where r is the arity of R,

let Eα
R,ā = {A ∈ WA′

: A |= Rα(ā)} where R0 and R1 denote ¬R and R, respectively. It

follows from the definition of PA′
that

(a) for every R ∈ σ \σ′ and every ā ∈ [n]r, where r is the arity of R, PA′
(E1

R,ā) = A′(θR(ā)),

PA′
(E0

R,ā) = 1−A′(θR(ā)), and

(b) if α1, . . . , αm ∈ {0, 1}, R1, . . . , Rm ∈ σ \ σ′ and ā1, . . . , ām are tuples where |āi| equals
the arity of Ri for each i, and for all 1 ≤ i < j ≤ m, Ri ̸= Rj or āi ̸= āj , then the events
Eα1
R1,ā1

, . . . ,Eαm
Rm,ām

are independent.

Lemma 7.7. Suppose that p′(x̄) is a complete atomic σ′-type and that p(x̄) ⊇ p′(x̄) is a
(possibly partial) atomic σ-type. There is a number which we denote P(p(x̄) | p′(x̄)), or
just P(p | p′), such that for all sufficiently large n, all ā ∈ [n]|x̄| and all A′ ∈ Y′

n such that
A′ |= p′(ā), ∣∣PA′({A ∈ WA′

: A |= p(ā)}
)

− P(p(x̄) | p′(x̄))
∣∣ ≤ εp

where εp > 0 depends only on ε and on p and εp can be made arbitrarily small by taking ε′

sufficiently small.

Proof. Let A′ ∈ Y′
n. Suppose that x̄ = (x1, . . . , xm) and ā = (a1, . . . , am) ∈ [n]m. It follows

from Remark 7.6 and Lemma 5.8 that

PA′({A ∈WA′
: A |= p(ā)}

)
=

Pn
(
{A ∈ Wn : A |= p(ā) | {A ∈ Wn : A↾σ′ = A′}

)
=∏

R∈σ\σ′ and
R(xi1 ,...,xir )∈p(x̄)

A′(θR(ai1 , . . . , air))
∏

R∈σ\σ′ and
¬R(xi1 ,...,xir )∈p(x̄)

(
1−A′(θR(ai1 , . . . , air))

)
.

Assumption 7.2 (5) now says that for every R ∈ σ \ σ′ there is a basic probability formula
χR which is asymptotically equivalent to θR, with respect to G′ (where θR is the probability
formula associated to R by G), and if r is the arity of R then the following holds for all
b1, . . . , br ∈ [n] (assuming that n is large enough):∣∣A′(θR(b1, . . . , br))−A′(χR(b1, . . . , br))

∣∣ ≤ ε′.

Hence∣∣∣PA′({A ∈WA′
: A |= p(ā)}

)
−∏

R∈σ\σ′

R(xi1 ,...,xir )∈p(x̄)

A′(χR(ai1 , . . . , air))
∏

R∈σ\σ′

¬R(xi1 ,...,xir )∈p(x̄)

(
1−A′(χR(ai1 , . . . , air))

)∣∣∣ ≤ εp

where εp > 0 depends only on p and ε′. Now we note that every number A′(χR(ai1 , . . . , air))
in the above expression depends only on p′. The reason is that since χR is a basic probability
formula the value A′(χR(ai1 , . . . , air)) depends only on the complete atomic σ′-type which is
realized by (ai1 , . . . , air) in A′ and we are assuming that A′ |= p′(ā). In other words, there
is a constant, which we denote by P(p(x̄) | p′(x̄)) such that for all sufficiently large n, all
ā ∈ [n] and all A′ ∈ Y′

n such that A′ |= p′(ā),∣∣PA′({A ∈ WA′
: A |= p(ā)}

)
− P(p(x̄) | p′(x̄))

∣∣ ≤ εp.
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Definition 7.8. Let ε∗ be the maximum of ε′ and of all εp as in Lemma 7.7 where the
atomic σ-type p(x̄, ȳ) is subject to the constraint that |x̄ȳ| ≤ k.

Lemma 7.9. Suppose that p′(x̄) is a complete atomic σ′-type and that p(x̄) ⊇ p′(x̄) is a

(possibly partial) atomic σ-type. Then for all sufficiently large n and all ā ∈ [n]|x̄| which
realize the identity fragment of p′(x̄) (and hence of p) we have∣∣Pn({A ∈ Wn : A |= p(ā)} | WY′

n
)

− P(p(x̄) | p′(x̄)) · P′(p′(x̄))
∣∣ ≤ 7ε∗.

Proof. Let ā ∈ [n]|x̄| realize the identity fragment of p′(x̄). Furthermore,

let Xn be the set of all A ∈ Wn such that A |= p(ā),
let X′

n be the set of all A′ ∈ W′
n such that A′ |= p′(ā), and

let Z′
n be the set of all A′ ∈ Y′

n such that A′ |= p′(ā).

From parts (2) and (3) of Assumption 7.2 it easily follows that (for large enough n)

P′
n(Z

′
n)/P′

n(Y
′
n) differs from P′

n(Z
′
n) by at most ε∗,

P′
n(Z

′
n) differs from P′

n(X
′
n) by at most ε∗ and

P′
n(X

′
n) differs from P′(p′(x̄)) by at most ε∗.

Consequently,

P′(p′(x̄))− 3ε∗ ≤ P′
n(Z

′
n)

P′
n(Y

′
n)

≤ P′(p′(x̄)) + 3ε∗. (7.4)

By Lemma 7.5, Pn(Xn | WY′
n) = PY′

n(X ∩WY′
n). Then, using (7.2), we have

PY′
n
(
Xn ∩WY′

n
)
=

∑
A′∈Y′

n

PY′
n
(
Xn ∩WA′)

=
∑

A′∈Z′
n

PY′
n
(
Xn ∩WA′)

=

∑
A′∈Z′

n

∑
A∈Xn∩WA′

PY′
n(A) =

∑
A′∈Z′

n

∑
A∈Xn∩WA′

P′
n(A′)

P′
n(Y

′
n)

PA′
(A) =

∑
A′∈Z′

n

P′
n(A′)

P′
n(Y

′
n)

∑
A∈Xn∩WA′

PA′
(A) =

∑
A′∈Z′

n

P′
n(A′)

P′
n(Y

′
n)

PA′(
Xn ∩WA′)

.

By Lemma 7.7 and (7.4),∑
A′∈Z′

n

P′
n(A′)

P′
n(Y

′
n)

PA′(
Xn ∩WA′) ≤ ∑

A′∈Z′
n

P′
n(A′)

P′
n(Y

′
n)

(
P(p(x̄) | p′(x̄)) + ε∗

)
=

P′
n(Z

′
n)

P′
n(Y

′
n)

(
P(p(x̄) | p′(x̄)) + ε∗

)
≤

(
P′(p′(x̄)) + 3ε∗

)(
P(p(x̄) | p′(x̄)) + ε∗

)
≤

P′(p′(x̄)) · P(p(x̄) | p′(x̄)) + 7ε∗

and in a similar way∑
A′∈Z′

n

P′
n(A′)

P′
n(Y

′
n)

PA′(
Xn ∩WA′) ≥ P′(p′(x̄)) · P(p(x̄) | p′(x̄))− 7ε∗.

Lemma 7.10. Suppose that p′(x̄) is a complete atomic σ′-type and that p(x̄) ⊇ p′(x̄) is an

(possibly partial) atomic σ-type. Then for all sufficiently large n and all ā ∈ [n]|x̄| which
realize the identity fragment of p′(x̄) we have∣∣Pn({A ∈ Wn : A |= p(ā)}

)
− P(p(x̄) | p′(x̄)) · P′(p′(x̄))

∣∣ < 9ε∗.
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Proof. Let ā ∈ [n]|x̄| realize the identity fragment of p′(x̄) and we can assume that n is large
enough that δ′(n) ≤ ε∗. Let Xn be the set of all A ∈ Wn such that A |= p(ā). We have

Pn
(
Xn

)
= Pn

(
Xn | WY′

n
)
Pn

(
WY′

n
)
+ Pn

(
Xn | Wn \WY′

n
)
Pn

(
Wn \WY′

n
)
.

By the use of Lemma 7.4 and by Part (2) of Assumption 7.2, we also have

Pn
(
Wn \WY′

n
)
= 1− Pn

(
WY′

n
)
= 1− P′

n(Y
′
n) ≤ δ′(n).

It follows that Pn
(
Xn | Wn \WY′

n
)
Pn

(
Wn \WY′

n
)
≤ δ′(n). By Lemma 7.4 and Part (2)

of Assumption 7.2, Pn
(
WY′

n
)
= P′

n

(
Y′
n

)
≥ 1− δ′(n). It now follows from Lemma 7.9 that

Pn
(
Xn

)
differs from P(p(x̄) | p′(x̄)) · P′(p′(x̄)) by at most 7ε∗ + 2δ′(n) ≤ 9ε∗.

Definition 7.11. For every (possibly partial) σ-type p(x̄) such that p′(x̄) = p↾σ′ is a
complete atomic σ′-type, we define P(p(x̄)) = P′(p′(x̄)) · P(p(x̄) | p′(x̄)).

With this definition we can reformulate Lemma 7.10 as follows:

Corollary 7.12. If p(x̄) is an (possibly partial) atomic σ-type such that p↾σ′ is a complete

atomic σ′-type, then, for all sufficiently large n and all ā ∈ [n]|x̄| which realize the identity
fragment of p(x̄) we have∣∣Pn({A ∈ Wn : A |= p(ā)}

)
− P(p(x̄))

∣∣ < 9ε∗.

Lemma 7.13. Suppose that p(x̄, y) and q(x̄) are complete atomic σ-types such that |x̄y| ≤ k,
dimy(p) = 1 and q ⊆ p. Then there are γ ∈ [0, 1] and c > 0 such that for all sufficiently
large n and all A′ ∈ Y′

n,

PA′({A ∈ WA′
: A is (p, q, (γ − 5ε∗)-saturated

and (p, q, (γ + 5ε∗)-unsaturated}
)

≥ 1 − e−cn.

Proof. Let n be large enough that Part (4) of Assumption 7.2 holds. Suppose that p(x̄, y)
and q(x̄) are complete atomic σ-types such that |x̄y| ≤ k, dimy(p) = 1 and q ⊆ p. Let
p′ = p↾σ and q′ = q↾σ′. Moreover, let py(x̄, y) include p′(x̄, y) and all (σ \ σ′)-formulas in
p(x̄, y) which contain the variable y.

Let A′ ∈ Y′
n. By Part (4) of Assumption 7.2 there is α ∈ [0, 1] such that A′ is

(p′, q′, α− ε′)-saturated and (p′, q′, α+ ε′)-unsaturated. By the same assumption, α does not
depend on the particular choice of A′ ∈ Y′

n. Let

β = P(py(x̄, y) | p′(x̄, y)),
where P(py(x̄, y) | p′(x̄, y)) is like in Lemma 7.7, and let

γ = αβ.

For every ā ∈ [n]|x̄| let
B′
ā =

{
b ∈ [n] : A′ |= p′(ā, b)

}
.

Since A′ is (p′, q′, α− ε′)-saturated and (p′, q′, α+ ε′)-unsaturated we have

(α− ε′)n ≤ |B′
ā| ≤ (α+ ε′)n.

For every ā ∈ [n]|x̄| and every A ∈ WA′
let

Bā,A =
{
b ∈ [n] : A |= py(ā, b)

}
and note that Bā,A ⊆ B′

ā for every ā and every A ∈ WA′
. It follows that if α = 0 then the

conclusion of the lemma follows with γ = 0 because ε′ ≤ ε∗. So for the rest of the proof we
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assume that α > 0. By starting with a sufficiently small ε′ we can assume that ε∗ is small
enough so that α, β > ε∗. Let

Xā =
{
A ∈ WA′

: either A ̸|= q(ā) or

(1− ε∗)(γ − 2ε∗)n ≤ |Bā,A| ≤ (1 + ε∗)(γ + 2ε∗)n
}
.

Observe that if A ∈ WA′
, A |= q(ā) and A |= py(ā, b), then A |= p(ā, b). Hence every

A ∈
⋂
ā∈[n]|x̄| Xā is (p, q, (1− ε∗)(γ−2ε∗))-saturated and (p, q, (1+ ε∗)(γ+2ε∗))-unsaturated.

Fix any ā such that A′ |= q′(ā) (and note that A |= q(ā) implies A′ |= q′(ā)). By
Remark 7.6, for all distinct b, c ∈ B′

ā, the events

Eb = {A ∈ WA′
: A |= py(ā, b)} and Ec = {A ∈ WA′

: A |= py(ā, c)}
are independent. Moreover, by the choice of β and the definition of ε∗ (Definition 7.8), for
each b ∈ B′

ā,

β − ε∗ ≤ PA′
n (Eb) ≤ β + ε∗.

Let Z : WA′ → N be the random variable defined by

Z(A) =
∣∣{b ∈ B′

ā : A |= py(ā, b)}
∣∣.

It follows from Corollary 2.2 that

PA′
n

(
Z > (1 + ε∗)(β + ε∗)|B′

ā|
)
< 2 exp

(
− cε∗(β + ε∗)|B′

ā|
)

and
PA′
n

(
Z < (1− ε∗)(β − ε∗)|B′

ā|
)
< 2 exp

(
− cε∗(β − ε∗)|B′

ā|
)

where the constant cε∗ > 0 depends only on ε∗. By using that αn ≥ |B′
ā| − ε′n ≥ |B′

ā| − ε∗n
we see that

(γ + 2ε∗)n ≥ (αβ + 2ε∗)n ≥ βαn+ 2ε∗n ≥ β(|B′
ā| − ε∗n) + 2ε∗n ≥

β|B′
ā| − βε∗n+ 2ε∗n ≥ β|B′

ā|+ ε∗n ≥ β|B′
ā|+ ε∗|B′

ā| = (β + ε∗)|B′
ā|

and by similar reasoning we get

(γ − 2ε∗)n ≤ (β − ε∗)|B′
Ā|.

It follows that if Z > (1 + ε∗)(γ + 2ε∗)n then Z > (1 + ε∗)(β + ε∗)|B′
ā|, and if Z <

(1− ε∗)(γ − 2ε∗)n then Z < (1− ε∗)(β − ε∗)|B′
ā|. Hence we have

PA′(
WA′ \Xā

)
< 2 exp

(
− cε∗(β + ε∗)|B′

ā|
)
+ 2 exp

(
− cε∗(β − ε∗)|B′

ā|
)

≤

2 exp
(
− cε∗(β + ε∗)(α− ε∗)n

)
+ 2 exp

(
− cε∗(β − ε∗)(α− ε∗)n

)
≤ e−dn

for some constant d > 0 that depends only on ε∗, p and q. Since the argument works for all
ā ∈ [n]|x̄| it follows that

PA′
( ⋂
ā∈[n]|x̄|

Xā

)
≥ 1− n|x̄|e−dn ≥ 1− e−cn

for some constant c > 0. Since

(1± ε∗)(γ ± 2ε∗) = γ ± 2ε∗ ± ε∗γ ± 2(ε∗)2

and (if 0 < ε∗ < 1) |2ε∗ ± ε∗γ ± 2(ε∗)2| ≤ 5ε∗ we get the conclusion of the lemma.

The next lemma generalizes the previous one to types p(x̄, ȳ) where the length of ȳ is greater
than one.



13:36 V. Koponen and F. Weitkämper Vol. 20:4

Lemma 7.14. Suppose that p(x̄, ȳ) and q(x̄) are complete atomic σ-types such that |x̄ȳ| ≤ k,
dimȳ(p) = |ȳ| and q ⊆ p. Then there are γ ∈ [0, 1] and c > 0 such that for all large enough
n and all A′ ∈ Y′

n,

PA′({A ∈ WA′
: A is (p, q, α− 11|ȳ|−1 · 5ε∗)-saturated

and (p, q, α+ 11|ȳ|+1 · 5ε∗)-unsaturated}
)

≥ 1− e−cn.

Proof. We prove the lemma by induction on m = |ȳ|. The base case m = 1 is given by
Lemma 7.13 (since then 11m−1 · 5ε∗ = 5ε∗). Let p(x̄, ȳ) and q(x̄) be as assumed in the
lemma where ȳ = (y1, . . . , ym+1). Let pm(x̄, y1, . . . , ym) be the restriction of p to formulas
with variables among x̄, y1, . . . , ym. By induction hypothesis, there are α ∈ [0, 1] and a > 0
such that for all sufficiently large n and all A′ ∈ Y′

n,

PA′({A ∈ WA′
: A is (pm, q, α− 11m−1 · 5ε∗)-saturated
and (pm, q, α+ 11m−1 · 5ε∗)-unsaturated}

)
≥ 1− e−an.

By Lemma 7.13, there are β ∈ [0, 1] and b > 0 such that for all sufficiently large n and all
A′ ∈ Y′

n,

PA′({A ∈ WA′
: A is (p, pm, (β − 5ε∗)-saturated

and (p, pm, (β + 5ε∗)-unsaturated}
)

≥ 1 − e−bn.

Suppose that A ∈ WA′
is (pm, q, α− 11m−1 · 5ε∗)-saturated and (p, pm, β − 5ε∗)-saturated.

Then one straightforwardly finds that A is

(p, q, (α− 11m−1 · 5ε∗)(β − 5ε∗))-saturated

and by calculations we get the following quite crude estimate

(α− 11m−1 · 5ε∗)(β − 5ε∗) ≥ αβ − 11m · 5ε∗.

Hence A is (p, q, αβ − 11m · 5ε∗)-saturated. In a similar way it follows that if A ∈ WA′
is

(pm, q, α+ 11m−1 · 5ε∗)-unsaturated and (p, pm, β + 5ε∗)-unsaturated, then A is (p, q, αβ +
11m · 5ε∗)-unsaturated. Let γ = αβ. Since there is c > 0 such that e−an + e−bn ≤ e−cn for
all large enough n we get the desired estimate of the probability in the statement of the
lemma.

Corollary 7.15. Let p(x̄, ȳ) and q(x̄) are complete atomic σ-types such that |x̄ȳ| ≤ k,
d = dimȳ(p) > 0, q ⊆ p. Then there are γ ∈ [0, 1], depending only on p, q and G, and c > 0
such that for all sufficiently large n and all A′ ∈ Y′

n,

PA′({A ∈ WA′
: A is (p, q, α− 11d−1 · 5ε∗)-saturated

and (p, q, α+ 11d+1 · 5ε∗)-unsaturated}
)

≥ 1− e−cn.

Proof. Suppose that p(x̄, ȳ), where ȳ = (y1, . . . , ym) is a complete σ-type and let q(x̄) = p↾x̄.
Let d = dimȳ(p). Then there is a subsequence yi1 , . . . , yid (of distinct variables) such that if
j ∈ [m] \ {i1, . . . , id} then there is i ∈ {i1, . . . , id} such that the formula yj = yi belongs to p.
By reordering the sequence ȳ we can assume that i1 = 1, . . . , id = d (and hence, if d < j ≤ m
then yj = yi belongs to p for some i ≤ d). Let p∗(x̄, y1, . . . , yd) be the set of all formulas
φ ∈ p(x̄, ȳ) such that all variables in φ belong to rng(x̄) ∪ {y1, . . . , yd}. It follows that

dim(y1,...,yd)(p
∗) = d and for every σ-structure A and every ā ∈ A|x̄| then number of b̄ ∈ A|ȳ|
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such that A |= p(ā, b̄) equals the number of b̄ ∈ Ad such that A |= p∗(ā, b̄). Lemma 7.14
implies that there are γ ∈ [0, 1] and c > 0 such that for all large enough n,

PA′({A ∈ WA′
: A is (p∗, q, γ − 11d−1 · 5ε∗)-saturated

and (p∗, q, γ + 11d+1 · 5ε∗)-unsaturated}
)

≥ 1− e−cn.

By the construction of p∗ the above lower bound on the probability also holds if p∗ is replaced
by p.

Definition 7.16. For every n, let Yn be the set of all A ∈ WY′
n such that whenever p(x̄, ȳ)

and q(x̄) are complete atomic σ-types with |x̄ȳ| ≤ k, 0 < dimȳ(p) = d, q ⊆ p and γ is the

number associated to p and q as in Corollary 7.15, then A is (p, q, γ− 11|ȳ|−1 · 5ε∗)-saturated
and (p, q, γ + 11|ȳ|−1 · 5ε∗)-unsaturated.
Lemma 7.17. There is a constant c > 0 such that for all sufficiently large n, Pn

(
Yn

)
≥(

1− e−cn
)(
1− δ′(n)

)
.

Proof. There are, up to changing variables, only finitely many atomic σ-types p(x̄) such that
|x̄| ≤ k. It follows from Corollary 7.15 that there is a constant c > 0 such that for all large
enough n and all A′ ∈ Y′

n,

PA′
n

(
Yn ∩WA′) ≥ 1− e−cn.

Since Yn ⊆ WY′
n we have Pn(Yn) = Pn

(
Yn | WY′

n
)
Pn

(
WY′

n
)
. By Lemma 7.4, Pn(WY′

n) =

P′
n(Y

′
n) and by Lemma 7.5 we have Pn(Yn | WY′

n) = PY′
n(Yn ∩WY′

n). Hence Pn(Yn) =

PY′
n(Yn∩WY′

n)P′
n

(
Y′
n

)
. Then, reasoning similarly as in the proof of Lemma 7.9 (using (7.2)),

we get

PY′
n
(
Yn ∩WY′

n
)

=
∑

A′∈Y′
n

PY′
n
(
Yn ∩WA′)

=
∑

A′∈Y′
n

∑
A∈Yn∩WA′

PY′
n(A) =

∑
A′∈Y′

n

∑
A∈Yn∩WA′

P′
n(A′)

P′
n(Y

′
n)

PA′
(A) =

∑
A′∈Y′

n

P′
n(A′)

P′
n(Y

′
n)

∑
A∈Yn∩WA′

PA′
(A) =

∑
A′∈Y′

n

P′
n(A′)

P′
n(Y

′
n)

PA′(
Yn ∩WA′) ≥

∑
A′∈Y′

n

P′
n(A′)

P′
n(Y

′
n)

(
1− e−cn

)
=

(
1− e−cn

)
.

Using Part (2) of Assumption 7.2 we get

Pn(Yn) = PY′
n
(
Yn ∩WY′

n
)
P′
n(Y

′
n) ≥

(
1− e−cn

)(
1− δ′(n)

)
.

Proposition 7.18. Let ε = 11k−1 · 5ε∗. Then there is a function δ : N → R≥0 such that
if σ′, ε′, δ′, W′

n, Y
′
n and P′

n are replaced by σ, ε, δ, Wn, Yn and Pn, respectively, then
parts (1) – (4) of Assumption 7.2 hold.

Proof. From Lemma 7.17 it follows that there is a function δ : N → R≥0 such that
limn→∞ δ(n) = 0 and Pn(Yn) ≥ 1 − δ(n) for all sufficiently large n. Hence parts (1)
and (2) of Assumption 7.2 hold if P′

n, Y
′
n and δ′ are replaced by Pn, Yn and δ, respectively.

Let ε = 11k−1 · 5ε∗. By Corollary 7.12, Part (3) of Assumption 7.2 holds if σ′, P′
n, W

′
n

and ε′ are replaced by σ, Pn, Wn and ε, respectively. By Corollary 7.15 and Definition 7.16,
Part (4) of Assumption 7.2 holds if σ′, Y′

n and ε′ are replaced by σ, Yn and ε, respectively.

Corollary 7.19. For all k ∈ N+ and all ε > 0 there are δ : N+ → R≥0 and Yn ⊆ Wn, for
n ∈ N+, such that the following hold:
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(1) limn→∞ δ(n) = 0.
(2) Pn(Yn) ≥ 1− δ(n) for all sufficiently large n.
(3) For every complete atomic σ-type p(x̄) with |x̄| ≤ k there is a number which we denote

P(p(x̄)), or just P(p), such that for all sufficiently large n and all ā ∈ [n]|x̄| which realize
the identity fragment of p,∣∣Pn({A ∈ Wn : A |= p(ā)}

)
− P(p(x̄))

∣∣ ≤ ε.

(4) For every complete atomic σ-type p(x̄, ȳ) with |x̄ȳ| ≤ k and 0 < dimȳ(p(x̄, y)) = d, if
q(x̄) = p↾x̄, then there is α ∈ [0, 1] such that, for all sufficiently large n, every A ∈ Yn

is (p, q, α− ε)-saturated and (p, q, α+ ε)-unsaturated.

Proof. This follows from Proposition 7.18 because k ∈ N+ and ε′ > 0 in the argument until
Proposition 7.18 are arbitrary and (for any fixed k) the choice of ε in Proposition 7.18 tends
to zero as ε′ tends to zero.

Corollary 7.20. If all aggregation functions in φ(x̄) ∈ PLA+(σ) are strongly admissible,
then φ(x̄) is asymptotically equivalent (with respect to G) to a basic probability formula.

Proof. According to Corollary 7.19, for every k ∈ N+ and every ε > 0 there are δ : N+ → R≥0

and Yn ⊆ Wn, for n ∈ N+, such that (1), (2) and (4) of that corollary hold. This means
that Assumption 6.3 holds. Hence Proposition 6.4 implies that if all aggregation functions
in φ(x̄) ∈ PLA+(σ) are strongly admissible, then φ(x̄) is asymptotically equivalent to a
basic probability formula.

With corollaries 7.19 and 7.20 we have completed the proof of Theorem 5.11. Informally
speaking, the next corollary tells that for every PLA+(σ)-network G that uses only strongly

admissible aggregation functions there is a PLA+(σ)-network G̃ which uses no aggregation
functions at all and is such that every query defined by a PLA+(σ)-formula with only
strongly admissible aggregation functions has the same asymtotic probability whether we
compute it with G or with G′.

Corollary 7.21 (aggregation-free networks). Let σ be a finite relational signature and let
G be a PLA+(σ)-network such that every probability formula of G contains only strongly
admissible aggregation functions. Let (Pn : n ∈ N+) be the sequence of probability distributions
induced by G.

By Part (i) of Theorem 5.11, for every R ∈ σ, the probability formula θR which is
associated to R by G is asymptotically equivalent to a basic probability formula χR with
respect to G. Let G̃ be the PLA+(σ)-network with the same underlying directed acyclic graph

as G and where, for each R ∈ σ, χR is the probability formula associated to R by G̃. Let
(P̃n : n ∈ N+) be the sequence of probability distributions induced by G̃. Then the following
hold:

(i) For every atomic σ-type p(x̄), every m ∈ N+ and every ā ∈ [m]|x̄|,

lim
n→∞

P̃n(p(ā)) = lim
n→∞

Pn(p(ā)).

The common limit depends only on the probability formulas of G̃ and the common directed
acyclic graph of G and G̃.

(ii) Let p(x̄, ȳ) and q(x̄) be complete atomic σ-types such that q ⊆ p. Then there is α ∈ [0, 1],

depending only on p, q, the common directed acyclic graph of G and G̃ and the probability
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formulas of G̃ such that

lim
n→∞

P̃n
(
{A ∈ Wn : A is (p, q, α− ε)-saturated and (p, q, α+ ε)-unsaturated}

)
=

lim
n→∞

Pn
(
{A ∈ Wn : A is (p, q, α− ε)-saturated and (p, q, α+ ε)-unsaturated}

)
= 1.

(iii) Let φ(x̄) ∈ PLA+(σ) be such that every aggregation function in φ is strongly admissible.
Then there is a basic probability formula ψ(x̄) such that φ(x̄) and ψ(x̄) are asymptotically

equivalent with respect to G and with respect to G̃. Without loss of generality we may

assume that ψ(x̄) has the form
∧k
i=1(ψi(x̄) → ci) where each ψi(x̄) is the conjuction

of all formulas in a complete atomic σ-type pi(x̄) and that all complete atomic σ-types
in the variables x̄ are enumerated without repetition by p1, . . . , pk. If I ⊆ [0, 1] is an

interval such that no ci is an endpoint of I, then for every m ∈ N+ and every ā ∈ [m]|x̄|,

lim
n→∞

∣∣P̃n({A ∈ Wn : A(ψ(ā)) ∈ I}
)
− Pn

(
{A ∈ Wn : A(φ(ā)) ∈ I}

)∣∣ = 0,

where P̃n
(
{A ∈ Wn : A(ψ(ā))

)
can be computed by only using G̃ and ψ, hence in

constant time with respect to the domain size.

Proof sketch. (i) It suffices to consider complete atomic σ-types. Let p(x̄) be a complete
atomic σ-type. An analysis of the proof leading to Corollary 7.19 shows that the limit
limn→∞ Pn(p(ā)) depends only on the basic probability formulas χR first mentioned in
Part (5) of Assumption 7.2; the crucial step where χR is used is Lemma 7.7. If a probability
formula θR, as in Part (5) of Assumption 7.2, is a basic probability formula then we can
simply let χR be the same formula as θR to make sure that Part (5) of Assumption 7.2

holds. Let G and G̃ be as assumed. By the construction of G̃ it follows from what has been
said that both limits limn→∞ Pn(p(ā)) and limn→∞ P̃n(p(ā)) depend only on the probability

formulas χR of G̃, so the limits are equal.
(ii) If we analyze the proofs above, in particular the proof of Lemma 7.13, we see that

the “saturation number” α depends only on limits of the form limn→∞ Pn(p(ā)) where p(x̄)
is an atomic σ-type. By Part (i) we get the same limit if Pn is replaced by P̃n and therefore
the conclusion follows.

(iii) Part (ii) implies that the saturation conditions stated by Assumption 6.3 are

satisfied by both (Pn : n ∈ N+) and (P̃n : n ∈ N+). Therefore Proposition 6.4 applies to

both (Pn : n ∈ N+) and (P̃n : n ∈ N+). So if φ(x̄) ∈ PLA+(σ) has only strongly admissible

aggregation functions then there are basic probability formulas ψ(x̄) and ψ̃(x̄) such that

φ(x̄) ∼G ψ(x̄) and φ(x̄) ∼G̃ ψ̃(x̄). An analysis of the proof of Proposition 6.4 shows that the

constructions of ψ and ψ̃ depend only on the “saturation numbers” α mentioned in Part (ii)
of this corollary. Since these saturation numbers are the same (as stated in Part (ii)) for

(Pn : n ∈ N+) and (P̃n : n ∈ N+) it follows that the constructed ψ and ψ̃ are the same. So
φ(x̄) ∼G ψ(x̄) and φ(x̄) ∼G̃ ψ(x̄).

Suppose, without loss of generality, that ψ(x̄) is
∧k
i=1(ψi(x̄) → ci) where each ψi(x̄) is a

conjunction of the formulas in a complete atomic σ-type pi(x̄) and that all complete atomic
σ-types are enumerated without repetition by p1, . . . , pk. By reordering if necessary we may
assume that c1, . . . , cl ∈ I and ci /∈ I if i > l. Then

Pn
(
{A ∈ Wn : A(ψ(ā)) ∈ I}

)
= Pn

( l∨
i=1

ψi(ā)

)
=

l∑
i=1

Pn
(
ψi(ā)

)
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and by Part (i) the same holds if ‘Pn’ is replaced by ‘P̃n’. Since φ(x̄) ∼G ψ(x̄) we get

lim
n→∞

∣∣P̃n({A ∈ Wn : A(ψ(ā)) ∈ I}
)
− Pn

(
{A ∈ Wn : A(φ(ā)) ∈ I}

)∣∣ = 0.

8. Almost sure elimination of safe CPL-formulas when the distribution is
induced by a coPLA+-network

In this section we prove a quantifier elimination result, Theorem 8.6, for the class of
“safe” CPL-formulas with respect to a sequence of probability distributions P induced by a
coPLA+(σ)-network G, that is a PLA+(σ)-network that (in its probability formulas) uses
only strongly admissible, or continuous, aggregation functions. Unlike the lifted Bayesian
networks considered in Section 5.3, such G can induce P for which with high likelihood
some (or all) relations in σ are sparse. For example, as explained in Example 5.10, if σ
contains a binary relation R then, for any fixed α ∈ (0, 1), a coPLA+(σ)-network can express
that the probability that R(x, y) holds is n−α (independently of other edges) where n is
the cardinality of the domain. Therefore coPLA+(σ)-networks can induce the probability
distributions studied by Shelah and Spencer in [SS88] in relation to first-order logic.

CPL (see Definition 4.16) is a natural query language since it can express queries about
relative frequencies. For example it can express the condition that the relative frequency of
φ1(x̄) among tuples x̄ that satisfy φ2(x̄) is at least r, or alternatively, at least as large as
the relative frequency of ψ1(x̄) among tuples x̄ that satisfy ψ2(x̄).

Theorem 8.6 below provides a quantifier elimination result for such queries. For reasons
that become clear below, its scope is restricted to formulas φ(x̄) ∈ CPL(σ) which are “safe”
with respect to G. We begin with a discussion which motivates the definition of “safe”
CPL-formulas further down. As usual let σ be a finite relational signature and Wn the set
of all σ-structures with domain [n]. Let G be a coPLA+(σ)-network and let (Pn : n ∈ N+)
be the sequence of probability distributions induced by G. Let p(x̄, ȳ) and q(x̄) be complete
atomic σ-types such that q ⊆ p. By Corollary 7.19 (4), there is α ∈ [0, 1], depending only on
p, q and G, such that for every ε > 0,

lim
n→∞

Pn
(
{A ∈ Wn : A is (p, q, α− ε)-saturated and (p, q, α+ ε)-unsaturated}

)
= 1.

We can call α the scaled saturation number of the pair (p, q), where “scaled” refers to the
fact that the ȳ-dimension of p(x̄, ȳ) is taken into account in the definition of (un)saturation.

We can extend the idea of scaled saturation numbers to pairs (φ(x̄, ȳ), q(x̄)) where
φ(x̄, ȳ) ∈ CPL(σ) is quantifier-free and q(x̄) is a complete atomic σ-type such that
∀x̄, ȳ

(
φ(x̄, ȳ) → q(x̄)

)
is true in every finite σ-structure. Then there are complete atomic σ-

types pi(x̄, ȳ), i = 1, . . . , s, such that q ⊆ pi for all i and φ(x̄, ȳ) is equivalent to
∨s
i=1 pi(x̄, ȳ)

(where pi is identified with the conjunction of formulas in pi). Let d = max{dimȳ(pi) : i =
1, . . . , s}. Without loss of generality, suppose that p1, . . . , pt, t ≤ s, enumerates, without
repetition, all pi such that dimȳ(pi) = d. Let αi be the scaled saturation number of (pi, q)
for each i. If d < |ȳ| then let α = 0. Otherwise (i.e. if d = |ȳ|) let α = α1 + . . .+ αt. Call α
the saturation number of the pair (φ, q). It now follows that if ε > 0 and

Xε
n =

{
A ∈ Wn : if ā ∈ q(A) then (α− ε)n|ȳ| ≤ |φ(ā,A)| ≤ (α+ ε)n|ȳ|

}
then limn→∞ Pn(Xε

n) = 1.
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However, if ψ(x̄, ȳ), θ(x̄, ȳ) ∈ CPL(σ) then we can, in general, not guarantee that there

is α ∈ [0, 1] such that for all ā ∈ [n]|x̄| and ε > 0, the following probability converges to 1 as
n→ ∞:

Pn
({

A ∈ Wn : if θ(ā,A) ̸= ∅, then
∣∣|ψ(ā,A) ∩ θ(ā,A)|

/
|θ(ā,A)| − α

∣∣ < ε
})
.

Therefore we cannot in general be sure that limn→∞ Pn(φ(ā)) exists if φ(x̄) has the form(
∥ψ1(x̄, ȳ) | θ1(x̄, ȳ)∥ȳ ≥ ∥ψ2(x̄, ȳ) | θ2(x̄, ȳ)∥ȳ + r

)
.

This motivates considering CPL-formulas in which the value of terms of the form
∥ψ(x̄, ȳ) | θ(x̄, ȳ)∥ȳ almost surely converges. This is made precise by the next two definitions.

Definition 8.1. Let ψ(x̄, ȳ), θ(x̄, ȳ) ∈ CPL(σ).
(i) We say that θ(x̄, ȳ) is atomically x̄-complete if there is a complete atomic σ-type q(x̄)
such that ∀x̄, ȳ(θ(x̄, ȳ) → q(x̄)) is true in every finite σ-structure.
(ii) We call ∥ψ(x̄, ȳ) | θ(x̄, ȳ)∥ȳ a conditional probability term of CPL(σ).
(iii) Suppose that θ(x̄, ȳ) is atomically x̄-complete and that, for some complete atomic σ-type
q(x̄), ∀x̄, ȳ(θ(x̄, ȳ) → q(x̄)) is true in every finite σ-structure. Let α ∈ [0, 1]. The saturation
number of the conditional probability term ∥ψ(x̄, ȳ) | θ(x̄, ȳ)∥ȳ exists and is α if, for every
ε > 0,

lim
n→∞

Pn
({

A ∈ Wn : there is ā ∈ [n]|x̄| such that A |= q(ā) and∣∣∣∣α− |ψ(ā,A) ∩ θ(ā,A)|
|θ(ā,A)|

∣∣∣∣ > ε

})
= 0.

Definition 8.2 (Safe formula). A formula φ(x̄) ∈ CPL(σ) is safe with respect to G if the
following hold:

(1) φ(x̄) does not contain ∀ or ∃.
(2) For every subformula of φ(x̄) of the form(

∥ψ1(ȳ, z̄) | θ1(ȳ, z̄)∥z̄ ≥ ∥ψ2(ȳ, z̄) | θ2(ȳ, z̄)∥z̄ + r
)

or (
r + ∥ψ1(ȳ, z̄) | θ1(ȳ, z̄)∥z̄ ≥ ∥ψ2(ȳ, z̄) | θ2(ȳ, z̄)∥z̄

)
and every complete atomic σ-type q(ȳ) such that ∃ȳ, z̄, z̄′(θ1(ȳ, z̄) ∧ θ2(ȳ, z̄′) ∧ q(ȳ)) has
a finite model, the saturation number of ∥ψi(ȳ, z̄) | θi(ȳ, z̄) ∧ q(ȳ))∥ȳ exists for i = 1, 2
and if it is denoted by αi, then r ̸= |α1 − α2|.

Observe that if a formula is safe then every subformula of it is also safe.

Remark 8.3 (Why first-order quantifiers are omitted in safe formulas). As mentioned in
Example 3.7 the aggregation function lengthα, where α ∈ (0, 1), is strongly admissible, or
in other words, continuous. Let σ = {R} where R is binary and let Wn be the set of all
σ-structures with domain [n]. We define a coPLA+(σ)-network G by letting the probability
formula θR(x, y) of R be lengthα(ψ(x, y, z) : z) where ψ(x, y, z) is the formula z = z. Let
(Pn : n ∈ N+) be the sequence of probability distributions induced by G. Then for every n,
every A ∈ Wn and all a, b ∈ [n], Pn(R(a, b)) = A(θR(a, b)) = 1/nα, where A is the unique
∅-structure with domain [n]. By a seminal result of Shelah and Spencer [SS88, Theorem 2], if
α is rational then there is a first-order sentence φ ∈ FO(σ) such that limn→∞ Pn(φ) does not



13:42 V. Koponen and F. Weitkämper Vol. 20:4

exist (and recall that FO(σ) ⊆ CPL(σ)). So if we want that “safeness” implies convergence
we must omit the first-order quantifiers from safe formulas.

Strictly speaking, the result of Shelah and Spencer referred to is about undirected
graphs. But each A ∈ Wn gives rise to an undirected graph by, for different a, b ∈ [n]
considering {a, b} as an undirected edge of the undirected graph induced by A if A |= a ̸=
b∧R(a, b) ∧R(b, a). In the sentence φ constructed by Shelah and Spencer one then changes
every subformula like R(x, y) to ‘x ̸= y ∧R(x, y) ∧R(y, x)’. Then this modified sentence φ′

will have the same probability with respect to Pn as φ has with respect to the probability
distribution on undirected graphs with vertex set [n] which gives every edge probability
1/n2α independently of the existence of other edges (and 2α is rational if α is).

The following technical lemma will be used in the proof of Theorem 8.6 in combination with
Lemma 8.5 below.

Lemma 8.4. Let ψi(x̄, ȳ), θi(x̄, ȳ)) ∈ CPL(σ) for i = 1, 2. Let q1(x̄), . . . , qm(x̄) enumerate
all complete atomic σ-types q(x̄) such that ∃x̄, ȳ, z̄

(
θ1(x̄, ȳ) ∧ θ2(x̄, z̄) ∧ q(x̄)

)
has a finite

model. For every finite σ-structure A and every ā ∈ [n]|x̄|,

A |=
(
∥ψ1(ā, ȳ) | θ1(ā, ȳ)∥ȳ ≥ ∥ψ2(ā, ȳ) | θ2(ā, ȳ)∥ȳ + r

)
(8.1)

if and only if

A |=
m∨
i=1

(
∥ψ1(ā, ȳ) | θ1(ā, ȳ) ∧ qi(ā)∥ȳ ≥ ∥ψ2(ā, ȳ) | θ2(ā, ȳ) ∧ qi(ā)∥ȳ + r

)
(8.2)

and similarly if ‘+ r’ is moved to the left hand side of ‘≥’.

Proof. Let ψi(x̄, ȳ), θi(x̄, ȳ)) ∈ CPL(σ) for i = 1, 2 and let q1(x̄), . . . , qm(x̄) enumerate all
complete atomic σ-types q(x̄) such that ∃x̄, ȳ, z̄

(
θ1(x̄, ȳ)∧ θ2(x̄, ȳ)∧ q(x̄)

)
has a finite model.

Let A be a finite σ-structure and let ā ∈ A|x̄|.
First suppose that (8.1) holds. By the semantics of CPL, θ1(ā,A) ̸= ∅ and θ2(ā,A) ̸= ∅,

so A |= ∃ȳ, z̄(θ1(ā, ȳ) ∧ θ2(ā, z̄)) and therefore there is k such that A |= qk(ā). By (8.1) and
the semantics of CPL we also have

|ψ1(ā,A) ∩ θ1(ā,A)|
|θ1(ā,A)|

≥ |ψ2(ā,A) ∩ θ2(ā,A)|
|θ2(ā,A)|

+ r.

As A |= qk(ā) the above implies that

|ψ1(ā,A) ∩ (θ1 ∧ qk)(ā,A)|
|(θ1 ∧ qk)(ā,A)|

≥ |ψ2(ā,A) ∩ (θ2 ∧ qk)(ā,A)|
|(θ2 ∧ qk)(ā,A)|

+ r.

and hence (by the semantics of CPL) we get

A |=
(
∥ψ1(ā, ȳ) | θ1(ā, ȳ) ∧ qk(ā)∥ȳ ≥ ∥ψ2(ā, ȳ) | θ2(ā, ȳ) ∧ qk(ā)∥ȳ + r

)
(8.3)

which implies (8.2).
Now suppose that (8.2) holds. Then there is k such that (8.3) holds. Hence

A |= ∃ȳ, z̄((θ1 ∧ qk)(ā, ȳ) ∧ (θ2 ∧ qk)(ā, z̄))

and
|ψ1(ā,A) ∩ (θ1 ∧ qk)(ā,A)|

|(θ1 ∧ qk)(ā,A)|
≥ |ψ2(ā,A) ∩ (θ2 ∧ qk)(ā,A)|

|(θ2 ∧ qk)(ā,A)|
+ r.
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Since (θi ∧ qk)(ā,A) = θi(ā,A), for i = 1, 2, it follows that

|ψ1(ā,A) ∩ θ1(ā,A)|
|θ1(ā,A)|

≥ |ψ2(ā,A) ∩ θ2(ā,A)|
|θ2(ā,A)|

+ r.

so (8.1) holds.
The case when ‘+ r’ is to the left of ‘≥’ is proved similarly.

Lemma 8.5. Suppose that φ(x̄) has the form(
∥ψ1(x̄, ȳ) | θ1(x̄, ȳ)∥ȳ ≥ ∥ψ2(x̄, ȳ) | θ2(x̄, ȳ)∥ȳ + r

)
Also suppose that, for some complete atomic σ-type q(x̄), the sentences ∀x̄, ȳ(θ1(x̄, ȳ) → q(x̄))
and ∀x̄, ȳ(θ2(x̄, ȳ) → q(x̄)) hold in all finite σ-structures. Furthermore, suppose that for
i = 1, 2 the saturation number of ∥ψi(x̄, ȳ) | θi(x̄, ȳ)∥ȳ exists and is αi. Then:

(1) If α1 < α2 + r then φ(x̄) is almost surely equivalent to ⊥.
(2) If α1 > α2 + r then φ(x̄) is almost surely equivalent to q(x̄).

If φ(x̄) is as above except that ‘+r’ is moved to the left of ‘≥’, then φ(x̄) is almost surely
equivalent to ⊥ if r + α1 < α2, and φ(x̄) is almost surely equivalent to q(x̄) if r + α1 > α2.

Proof. The numbers α1 and α2 depend only on θ1, θ2, ψ1, ψ2, q and G. Thus we can make a
case distinction. First suppose that

α1 < α2 + r.

Let δ > 0 be such that if α′
1 and α′

2 are within distance δ from α1 and α2, respectively, then

α′
1 < α′

2 + r. Let Xδ
n be the set of all A ∈ Wn such that for every ā ∈ [n]|x̄|, if A |= q(ā),

then, for i = 1, 2, ∣∣∣∣αi − |ψi(ā,A) ∩ θi(ā,A)|
|θi(ā,A)|

∣∣∣∣ < δ. (8.4)

Then limn→∞ Pn(Xδ
n) = 1 .

It now suffices to show that for all A ∈ Xδ
n and all ā ∈ [n]|x̄|, A ̸|= φ(ā), because it then

follows that φ(x̄) is almost surely equivalent to ⊥. So let A ∈ Xδ
n and ā ∈ [n]|x̄|.

If A ̸|= q(ā) then θ1(ā,A) = ∅, so by the semantics of CPL, A ̸|= φ(ā). Now suppose
that A |= q(ā). By the choice of δ, the definition of Xδ

n and (8.4) we get

|θ1(ā,A) ∩ ψ1(ā,A)|
|θ1(ā,A)|

<
|θ2(ā,A) ∩ ψ2(ā,A)|

|θ2(ā,A)|
+ r.

Hence A ̸|= φ(ā) according to the semantics of CPL. Now suppose that

α1 > α2 + r.

Let δ > 0 be such that if α′
1 and α′

2 are within distance δ from α1 and α2, respectively, then
α′
1 > α′

2 + r. Let Xδ
n be defined in the same way as in the previous case, so in particular

limn→∞ Pn(Xδ
n) = 1. We will show that φ(x̄) is almost surely equivalent to q(x̄). It suffices

that prove that for all A ∈ Xδ
n and ā ∈ [n]|x̄|, A |= φ(ā) if and only if A |= q(x̄). Let A ∈ Xδ

n

and ā ∈ [n]|x̄|.
If A |= φ(ā) then, by the semantics of CPL, θ1(ā,A) ̸= ∅ which (by the assumptions of

the lemma) implies that A |= q(ā). Now suppose that A |= q(ā). By the choice of δ and
definition of Xδ

n it follows that, for i = 1, 2,

|θ1(ā,A) ∩ ψ1(ā,A)|
|θ1(ā,A)|

>
|θ2(ā,A) ∩ ψ2(ā,A)|

|θ2(ā,A)|
+ r.
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Hence A |= φ(ā) according to the semantics of CPL. The last statement, concerning the
variant of φ(x̄) where ‘+r’ is to the left of ‘≤’, is proved by straightforward modifications of
the given arguments.

Theorem 8.6. Let G be a coPLA+(σ)-network. If φ(x̄) ∈ CPL(σ) is safe with respect to
G, then φ(x̄) is almost surely equivalent to a quantifier-free formula.

Proof. Let φ(x̄) ∈ CPL(σ) be safe. We use induction on the quantifier rank of formulas. If
φ is quantifier-free we are done. So suppose that φ(x̄) is not quantifier-free and that every
safe formula of lower quantifier rank than φ is almost surely equivalent to a quantifier-free
formula. If φ(x̄) has any of the forms ¬ψ(x̄), ψ(x̄) ∧ θ(x̄), ψ(x̄) ∨ θ(x̄), ψ(x̄) → θ(x̄) or
ψ(x̄) ↔ θ(x̄) and both ψ(x̄) and θ(x̄) are almost surely equivalent to quantifier-free formulas,
then it clearly follows that φ(x̄) is almost surely equivalent to a quantifier-free formula.

Suppose that φ(x̄) has the form(
∥ψ1(x̄, ȳ) | θ1(x̄, ȳ)∥ȳ ≥ ∥ψ2(x̄, ȳ) | θ2(x̄, ȳ)∥ȳ + r

)
.

Let q1(x̄), . . . , qm(x̄) enumerate all complete atomic σ-types q(x̄) such that

∃x̄, ȳ, z̄
(
θ1(x̄, ȳ) ∧ θ2(x̄, z̄) ∧ q(x̄)

)
has a finite model. By Lemma 8.4, φ(x̄) is equivalent, in all finite σ-structures, to

φ′(x̄) :=

m∨
k=1

(
∥ψ1(x̄, ȳ) | θ1(x̄, ȳ) ∧ qk(x̄)∥ȳ ≥ ∥ψ2(x̄, ȳ) | θ2(x̄, ȳ) ∧ qk(x̄)∥ȳ + r

)
.

Hence it suffices to prove that, for every k = 1, . . . ,m,

φk(x̄) :=
(
∥ψ1(x̄, ȳ) | θ1(x̄, ȳ) ∧ qk(x̄)∥ȳ ≥ ∥ψ2(x̄, ȳ) | θ2(x̄, ȳ) ∧ qk(x̄)∥ȳ + r

)
.

is almost surely equivalent to a quantifier-free formula. Since φ(x̄) is assumed to be safe it
follows that, for i = 1, 2, the saturation number of ∥ψ1(x̄, ȳ) | θ1(x̄, ȳ)∧ qk(x̄)∥ȳ exists and if
it is denoted by αi, then α1 ≠ α2 + r. Now it follows from Lemma 8.5 that φk(x̄) is almost
surely equivalent to a quantifier-free formula. The case when φ(x̄) has the form(

r + ∥ψ1(x̄, ȳ) | θ1(x̄, ȳ)∥ȳ ≥ ∥ψ2(x̄, ȳ) | θ2(x̄, ȳ)∥ȳ
)

is treated similarly.

Corollary 8.7. Let G be a coPLA+(σ)-network. If φ(x̄) ∈ CPL(σ) is safe with respect to

G, then, for every m ∈ N+ and ā ∈ [m]|x̄|, limn→∞ Pn(φ(ā)) exists.

Proof. Let G be a coPLA+(σ)-network and suppose that φ(x̄) ∈ CPL(σ) is safe with
respect to G. By Theorem 8.6 there is a quantifier-free φ′(x̄) ∈ CPL(σ) which is almost
surely equivalent to φ(x̄) with respect to G. But then φ′(x̄) is also an aggregation-free
PLA+(σ)-formula which only takes the values 0 or 1. Now Corollary 5.13 says that if

ā ∈ [m]|x̄| then limn→∞ Pn(φ′(ā)) exists. As φ and φ′ are almost surely equivalent also
limn→∞ Pn(φ(ā)) exists.

Corollary 8.8. Let σ be a finite relational signature and let G be a PLA+(σ)-network such
that every probability formula of G contains only strongly admissible aggregation functions.
Let G̃ be the aggregation-free network from Corollary 7.21 and let (P̃n : n ∈ N+) be the

sequence of probability distributions induced by G̃. Let φ(x̄) be an arbitrary CPL-formula.
Then the following holds:
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(i) φ(x̄) is safe with respect to G if and only if it is safe with respect to G̃.
(ii) If φ(x̄) is safe with respect to G, it is almost surely equivalent to a quantifier-free φ′(x⃗)

with respect to G if and only if it is almost surely equivalent to φ′(x̄) with respect to G̃.

(iii) If φ(x̄) is safe with respect to G, then for every m ∈ N+ and ā ∈ [m]|x̄|,

lim
n→∞

Pn(φ(ā)) = lim
n→∞

P̃n(φ(ā)).

Proof. By Corollary 7.21(ii) saturation numbers are the same whether they are calculated

with respect to G or G̃. Since safety of a CPL-formula depends only on the saturation
numbers, this immediately implies Point (i). Similarly, the formulas φ′ and φk and their
quantifier-free equivalents in the proof of Theorem 8.6 depend only on φ and the saturation
numbers, which coincide for G and G̃. Since the limit computed in Corollary 8.7 depends
only on the quantifier-free formula, this in turn implies that the limits coincide, whether
they are computed in Pn or in P̃n.

9. Relative asymptotic expressivity of inference frameworks

In this section we tie together results of this article and in [Kop20, KW23, SS88] about
sequences of probability distributions defined by different formalisms and queries defined
by different logics. We do this by introducing the notion of “inference framework” and by
comparing inference frameworks with the notion of “asymptotically at least as expressive”.
Informally, an inference framework is a set of pairs (P, L) where P is a sequence of probability
distributions and L is a logic (which may depend on P). In all concrete cases considered
here, an inference framework F will be defined by a particular formalism (and usually with
particular restrictions on it) for defining sequences of probability distributions and a logic L
such that for each pair (P, L) ∈ F, L is a sublogic of L determined by P (although often
L = L). Theorem 9.7, illustrated by Figure 1, describes the relationships, with respect to the
notion “asymptotically at least as expressive”, between a number of inference frameworks
which have implicitly been considered in this article and in [Kop20, KW23, SS88].

As usual we let σ be a finite relational signature and, for each n ∈ N+, Wn denotes the
set of all σ-structures with domain [n]. However, for simplicity, in some notation (like Wn)
we do not explicitly show the dependence on σ. We also assume that σ is nonempty, which
is of course the interesting case. (All previous results in this article hold also for empty σ.)

Definition 9.1. An inference framework (for σ) is a class F of pairs (P, L) where L is a
logic (for σ) and P = (Pn : n ∈ N+) where each Pn is a probability distribution on Wn.

Definition 9.2. Let F and F′ be inference frameworks for σ.
(i) We write F ≼ F′ and say that F′ is asymptotically at least as expressive as F if for every
(P, L) ∈ F there is (P′, L′) ∈ F′ such that P ∼tv P′ and for every φ(x̄) ∈ L there is φ′(x̄) ∈ L′

such that φ′(x̄) is asymptotically equivalent to φ(x̄) with respect to P.
(ii) By F ≃ F′ we mean that F ≼ F′ and F′ ≼ F and if this is the case we may say that F
and F′ are asymptotically equally expressive.
(iii) By F ≺ F′ we mean that F ≼ F′ and F′ ̸≃ F

As we discussed in Section 1 one can ask whether our notion of “asymptotically at least as
expressive” is the most appropriate one. Especially, one can question why we require that
P and P′ in the definition above are total variation equivalent although the logics L and
L′ involved may not be able to “define” all subsets of Wn. An important reason for our
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choice is that we think that “asymptotically at least as expressive” should be a transitive
notion (as shown in Lemma 9.4 below) and all other candidates of such a notion that we
have considered, for example by weakening the assumption about total variation equivalence,
are not transitive.

Remark 9.3. According to the definition of ‘≼’, if F ≼ F′, (P, L) ∈ F, and φ(x̄) ∈ L,
then there are (P′, L′) ∈ F′ and φ′(x̄) ∈ L′ such that P ∼tv P′ and φ′(x̄) and φ(x̄) are
asymptotically equivalent with respect to P. It follows straightforwardly from the definitions
of ‘∼tv’ and ‘asymptotic equivalence’ that φ′(x̄) is also asymptotically equivalent to φ(x̄)
with respect to P′, thus establishing a “symmetry” between P and P′.

Lemma 9.4 (Transitivity of ≼). Suppose that F, F′ and F′′ are inference frameworks. If
F ≼ F′ and F′ ≼ F′′, then F ≼ F′′.

Proof. Suppose that F ≼ F′ and F′ ≼ F′′. Let (P, L) ∈ F and let φ(x̄) ∈ L. By assumption
there are (P′, L′) ∈ F′ and φ′(x̄) ∈ L′ such that P ∼tv P′ and φ′(x̄) ∈ L′ is asymptotically
equivalent to φ(x̄) with respect to P. By Remark 9.3, φ(x̄) and φ′(x̄) are asymptotically
equivalent with respect to P′. By assumption there are (P′′, L′′) ∈ F′′ and φ′′ ∈ L′′ such
that P′ ∼tv P′′ and φ′(x̄) ∈ L′ is asymptotically equivalent to φ′(x̄) with respect to P′. From
P ∼tv P′ ∼tv P′′ it straightforwardly follows (from the defintion of ∼tv) that P ∼tv P′′. Since
φ(x̄) and φ′(x̄) are asymptotically equivalent with respect to P′ and φ′(x̄) and φ′′(x̄) are
asymptotically equivalent with respect to P′ it follows (straightforwardly from the definition
of “asymptotic equivalence”) that φ(x̄) and φ′′(x̄) are asymptotically equivalent with respect
to P′. Since P ∼tv P′ it follows that φ(x̄) and φ′′(x̄) are asymptotically equivalent with
respect to P. This proves that F ≼ F′′.

The following lemma will be used in the proof of Theorem 9.7:

Lemma 9.5. (i) There is a sequence of probability distributions P which is induced by
a coPLA-network and such that for every sequence of probability distributions P′ that is
induced by a noncritial lifted Bayesian network P ̸∼tv P′.
(ii) There are a sentence φ ∈ FO, a sentence ψ ∈ aPLA and a sequence of probabil-
ity distributions (Pn : n ∈ N+) induced by a coPLA-network such that limn→∞ Pn(φ) =
limn→∞ Pn({A ∈ Wn : A(ψ) = 1}) exist and is neither 0 nor 1.

Proof. Let R ∈ σ have arity k. Let G be a PLA(σ)-network such that the underlying DAG
has no edges at all and if Q ∈ σ and Q ̸= R, then θQ (the probability formula associated to
Q) is ‘0’, so the probability of Q(b̄) (for b̄ with length matching the arity of Q) is zero. Also
let F : [0, 1]<ω → [0, 1] be defined by F (r̄) = 1/|r̄|k and let θR(x̄), where x̄ = (x1, . . . , xk)
and ȳ = (y1, . . . , yk), be the formula

F (
k∧
i=1

(xi = xi) ∧
k∧
i=1

(yi = yi) : ȳ :
∧
i ̸=j

(xi ̸= xj)
k∧
i=1

k∧
j=1

(xi ̸= yj) ∧
∧
i ̸=j

(yi ̸= yj)).

It is straightforward to see that F is strongly admissible so G is a coPLA-network. Let
(Pn : n ∈ N+) be the sequence of probability distributions induced by G. By the definition
of Pn it follows that if ā ∈ [n]k is a sequence of different elements, then

Pn(R(ā)) =
1

(n− k)(n− k − 1) . . . (n− 2k + 1)
∼ 1

nk
.
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Define the random variable Xn : Wn → R by letting Xn(A) be the number of ā ∈ [n]k such
that A |= R(ā). Then Xn is the sum of (n − k)(n − k − 1) . . . (n − 2k + 1) independent
{0, 1}-valued random variables where each one has probability

1

(n− k)(n− k − 1) . . . (n− 2k + 1)

of being 1. By a rough version of the Poisson approximation [Nov19, Equation (1)] we get

∣∣Pn(Xn ≥ 1)− (1− e−1)
∣∣ ≤ C/nk

where C > 0 is a constant. It follows that limn→∞ Pn(Xn ≥ 1) = 1− e−1. Let φ denote the
first-order sentence ∃x̄

(∧
i ̸=j(xi ̸= xj) ∧R(x̄)

)
and let ψ denote the sentence

max
(
R(x̄) : x̄ :

∧
i ̸=j

(xi ̸= xj)
)

which belongs to aPLA (because max is admissible). Observe that for every finite structure
A, A(ψ) is either 0 or 1, and A(ψ) = 1 if and only if A |= φ. Now let

Xn = {A ∈ Wn : A |= φ}.

Then limn→∞ Pn(Xn) = 1 − e−1 so Part (ii) is proved. Let (P′
n : n ∈ N+) be induced

by a noncritical lifted Bayesian network. Since φ is noncritical (because every first-order
formula is noncritical), Theorem 5.15 implies that P′

n(Xn) converges to either 0 or 1. As
limn→∞ Pn(Xn) = 1− e−1 we get (Pn : n ∈ N+) ̸∼tv (P′

n : n ∈ N+) so Part (i) is proved.

In the next definition we use notation for logics that was introduced in Definitions 4.3
and 4.14. Also recall the informal discussion about (non)critical CPL-formulas just before
Theorem 5.15 and Definition 8.2 of safe CPL-formulas. If G is a lifted Bayesian network
and every aggregation formula of G is noncritical with respect to G then we say that G is a
noncritical lifted Bayesian network. If all aggregation formulas of G are quantifier-free then
we say that G is a quantifier-free lifted Bayesian network.

Definition 9.6 (Concrete inference frameworks). We define notation for some concrete
inference frameworks via the table below which should be understood as follows. The first
column gives the name of the inference framework and the second column describes the
pairs (P, L) that belong to the inference framework named on the same row. For notational
simplicity the (arbitrary nonempty finite relational) signature σ is suppressed in the notation.
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name contains all (P, L) such that P is induced by

(qfLBN,qfFO) a quantifier-free lifted Bayesian network and L = qfFO

(ncLBN,FO) a noncritical lifted Bayesian network and L = FO

(ncLBN,CPL) a noncritical lifted Bayesian network and L = CPL

(ncLBN,ncCPL) a noncritical lifted Bayesian network G and L is the set of all
noncritical CPL-formulas with respect to G

(afPLAN,qfFO) a afPLA-network and L = qfFO

(ncLBN,afPLA) a noncritical lifted Bayesian network and L = afPLA

(ncLBN,aPLA) a noncritical lifted Bayesian network and L = aPLA

(aPLAN,aPLA) an aPLA-network and L = aPLA

(aPLAN+,aPLA+) an aPLA+-network and L = aPLA+

(coPLAN+,qfFO) a coPLA+-network and L = qfFO

(coPLAN+,FO) a coPLA+-network and L = FO

(coPLAN+, sCPL) a coPLA+-network G and L is the set of all safe CPL-formulas
with respect to G

(coPLAN+,afPLA) a coPLA+-network and L = afPLA

(coPLAN+, coPLA+) a coPLA+-network and L = coPLA+

Theorem 9.7 (Relative asymptotic expressivity of inference frameworks).

(1) (afPLAN,qfFO) ≃ (qfLBN,qfFO) ≃ (ncLBN,FO)
≃ (ncLBN,ncCPL) ≺ (ncLBN,CPL).

(2) (ncLBN,ncCPL) ≺ (ncLBN,afPLA) ≃ (ncLBN,aPLA).
(3) (afPLAN,afPLA) ≃ (ncLBN,afPLA) ≃ (ncLBN,aPLA)

≺ (aPLAN,aPLA) ≼ (aPLAN+,aPLA+).
(4) (coPLAN+,FO) ≺ (aPLAN+,aPLA+).
(5) (ncLBN,ncCPL) ≺ (coPLAN+,qfFO) ≃ (coPLAN+, sCPL)

≺ (coPLAN+,FO).
(6) (coPLAN+, sCPL) ≺ (coPLAN+,afPLA) ≃ (coPLAN+, coPLA+)

≺ (aPLAN+,aPLA+).
(7) (afPLAN,afPLA) ≺ (coPLAN+, coPLA+).
(8) (ncLBN,aPLA) and (coPLAN+,FO) are incomparable with respect to ≼.

(coPLAN+, coPLA+) and (coPLAN+,FO) are incomparable with respect to ≼.
(ncLBN,aPLA) and (coPLAN+, sCPL) are incomparable with respect to ≼.

The main contents of this theorem are illustrated by Figure 1 (in the introduction).

Proof. (1) It follows easily from the definitions that for every afPLA-network there is a
quantifier-free lifted Bayesian network which induces the same distributions, and vice versa.
Therefore (afPLAN,qfFO) ≃ (qfLBN,qfFO). Since every first-order formula is noncritical
with respect to every CPL-network we have (ncLBN,FO) ≼ (ncLBN,ncCPL). Hence, to
show the two remaining statements about ‘≃’ it suffices to show that (ncLBN,ncCPL) ≼
(qfLBN,qfFO). But this follows from theorem 5.15.
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Clearly, (ncLBN,ncCPL) ≼ (ncLBN,CPL). In [Kop20, Remark 3.18] (which gener-
alizes and example of Keisler and Lotfallah [KL09, Proposition 3.1]) it is shown that a lifted
Bayesian network G and CPL-sentence φ (which is critical with respect to G) exist such
that if (Pn : n ∈ N+) is induced by G, then Pn(φ) does not converge as n→ ∞. It follows
from Theorem 5.15 that (ncLBN,ncCPL) ≺ (ncLBN,CPL).

(2) We clearly have qfFO ≤ afPLA so (ncLBN,qfFO) ≼ (ncLBN,afPLA). Since
for example ‘1/2’ is an afPLA-formula such that A(1/2) = 1/2 for every finite struc-
ture A, it follows that (ncLBN,qfFO) ≺ (ncLBN,afPLA). By Part (1) we now get
(ncLBN,ncCPL) ≺ (ncLBN,afPLA). By Theorem 5.17 we also get (ncLBN,afPLA) ≃
(ncLBN,aPLA).

(3) From Part (2) we have (ncLBN,afPLA) ≃ (ncLBN,aPLA). Theorem 5.15 (ii)
states that if G is a noncritical lifted Bayesian network, then there is a quantifier-free
lifted Bayesian network G′ such that the sequences of distributions induced by G and
G′ are asymptotically total variation equivalent. Since for every quantifier-free lifted
Bayesian network there is an afPLA-network which induces the same sequence of dis-
tributions we get (ncLBN,afPLA) ≃ (afPLAN,afPLA) and thus (afPLAN,afPLA) ≃
(ncLBN,aPLA). It follows that in order to show that (ncLBN,aPLA) ≺ (aPLAN,
aPLA) it suffices to show that (afPLAN,afPLA) ≺ (aPLAN,aPLA).

Clearly (afPLAN,afPLA) ≼ (aPLAN,aPLA). Suppose towards a contradiction that
(aPLAN,aPLA) ≼ (afPLAN,afPLA). By Lemma 9.5, there are a sentence ψ ∈ aPLA
and (Pn : n ∈ N+) induced by an aPLA-network such that limn→∞ Pn({A ∈ Wn : A(ψ) =
1}) exists and is neither 0 nor 1. According to the assumption there is a aggregation-free
PLA-sentence ψ′ which is asymptotically equivalent to ψ with respect to (Pn : n ∈ N+). As
ψ′ is aggregation-free it follows that there is c ∈ [0, 1] such that A(ψ′) = c for every finite
structure A. But this contradicts that ψ and ψ′ are asymptotically equivalent. Finally, we
clearly have (aPLAN,aPLA) ≼ (aPLAN+,aPLA+).

(4) The first-order quantifiers ∃ and ∀ can be expressed in aPLA+ by using the aggre-
gation functions max and min. Therefore FO ≤ aPLA+. We also have coPLA+ ≤ aPLA+,
so (coPLAN+,FO) ≼ (aPLAN+,aPLA+). It remains to prove that

(aPLAN+,aPLA+) ̸≼ (coPLAN+,FO).

But this follows because, for example, ‘1/2’ is a sentence of aPLA which takes the value
1/2 in every finite structure while first-order sentences can only take the values 0 and 1.

(5) We get (coPLAN+,qfFO) ≃ (coPLAN+, sCPL) from Theorem 8.6. From (1) we
get (ncLBN,ncCPL) ≃ (qfLBN,qfFO). Since for every quantifier-free lifted Bayesian
network there is a coPLA+-network which induces the same sequence of distributions we
get (qfLBN,qfFO) ≼ (coPLAN+,qfFO). So to prove that (ncLBN,ncCPL) ≺
(coPLAN+,qfFO) it suffices to show that

(qfLBN,qfFO) ≺ (coPLAN+,qfFO).

But since every quantifier-free lifted Bayesian network is a noncritical lifted Bayesian
network this follows from Lemma 9.5. It remains to prove that (coPLAN+, sCPL) ≺
(coPLAN+,FO). As (coPLAN+,qfFO) ≃ (coPLAN+, sCPL) it suffices to prove that
(coPLAN+,qfFO) ≺ (coPLAN+,FO).
Clearly (coPLAN+,qfFO) ≼ (coPLAN+,FO) so it remains to show that

(coPLAN+,FO) ̸≼ (coPLAN+,qfFO).
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By Lemma 9.5 there is a first-order sentence φ and (Pn : n ∈ N+) induced by a coPLA-
network such that limn→∞ Pn(φ) exists and is neither 0 nor 1. If (coPLAN+,FO) ≼
(coPLAN+,qfFO) then there is a quantifier-free first-order sentence φ′ which is asymptoti-
cally equivalent to φ with respect to (Pn : n ∈ N+), which (as the sentences are {0, 1}-valued)
means that they are almost surely equivalent with respect to (Pn : n ∈ N+). But φ′ can only
be ⊥ or ⊤ so it means that limn→∞ Pn(φ) is either 0 or 1, a contradiction.

(6) From Theorem 8.6 we get (coPLAN+, sCPL) ≃ (coPLAN+,qfFO). Since every
quantifier-free first-order formula is equivalent to an aggregation-free PLA-formula we get
(coPLAN+,qfFO) ≼ (coPLAN+,afPLA). If φ ∈ afPLA is the formula ‘1/2’, then for
every (Pn : n ∈ N+) induced by a coPLA-network there is no quantifier-free first-order
sentence φ′ which is asymptotically equivalent to φ, because first-order formulas only
take the values 0 or 1. It follows that (coPLAN+,qfFO) ≺ (coPLAN+,afPLA). This
together with (coPLAN+, sCPL) ≃ (coPLAN+,qfFO) gives (coPLAN+, sCPL) ≺
(coPLAN+,afPLA). From Theorem 5.11 we get

(coPLAN+,afPLA) ≃ (coPLAN+, coPLA+).

It remains to prove that (coPLAN+, coPLA+) ≺ (aPLAN+,aPLA+). Since

(coPLAN+,afPLA) ≃ (coPLAN+, coPLA+)

it suffices to prove that (coPLAN+,afPLA) ≺ (aPLAN+,aPLA+). But this follows
from Part (ii) of Lemma 9.5 because every aggregation-free PLA-sentence has the same
value in every structure.

(7) We clearly have (afPLAN,afPLA) ≼ (coPLAN+, coPLA+) so we only show that
(coPLAN+, coPLA+) ̸≼ (afPLAN,afPLA).
But since (afPLAN,afPLA) ≃ (ncLBN,afPLA) by Part (2) this follows from Lemma 9.5.

(8) The statements

(ncLBN,aPLA) ̸≼ (coPLAN+,FO),

(coPLAN+, coPLA+) ̸≼ (coPLAN+,FO), and

(ncLBN,aPLA) ̸≼ (coPLAN+, sCPL)

follow since aPLA and coPLA+ contain for example the sentence ‘1/2’, the value of which
is always 1/2, while sentences in FO and in CPL can only take the values 0 and 1. The
statements

(coPLAN+,FO) ̸≼ (ncLBN,aPLA),

(coPLAN+,FO) ̸≼ (coPLAN+, coPLA+), and

(coPLAN+, sCPL) ̸≼ (ncLBN,aPLA)

follow from Lemma 9.5 and the above proved fact that (coPLAN+,afPLA) ≃
(coPLAN+, coPLA+).

10. Conclusion

We introduced the probability logic coPLA+ which allows for probability formulas built using
strongly admissible aggregation functions, which satisfy stronger continuity requirements
than the admissible aggregation functions used in the aPLA-formulas studied by [KW23].
The stricter requirements reduce expressivity, ruling out the classical existential and universal
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quantifiers and their multivalued counterparts, maximum and minimum. However, coPLA+

covers for example the arithmetic and geometric mean as aggregation functions, which
can model a dependence of one relation on the relative frequency of another, and can also
model (directed versions of) the sparse random graphs studied by Shelah and Spencer
[SS88]. We showed that queries expressible in coPLA+ are asymptotically equivalent to
aggregation-free queries with respect to a given coPLA+-network. An analogous quantifier
elimination result with respect to coPLA+-networks was shown to hold for safe formulas of
conditional probability logic, which may include conditional relative frequency quantifiers
but not classical universal or existential quantification. As a special case we obtained
convergence results for expressive probability logics even over such random graphs where
first-order formulas can have divergent probabilities, such as those studied by Shelah and
Spencer [SS88]. Finally, we integrated the new results obtained here and previous results in
[Kop20, KW23, SS88] by introducing the notion of an inference framework. We classified
several inference frameworks related to the present work and to [Kop20, KW23, SS88] by
means of their “relative asymptotic expressivity” which is defined using the transitive notion
of one inference framework being asymptotically at least as expressive as another.
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