
Logical Methods in Computer Science
Volume 20, Issue 4, 2024, pp. 14:1–14:45
https://lmcs.episciences.org/

Submitted Sep. 29, 2022
Published Nov. 14, 2024

ON THE SEMANTIC EXPRESSIVENESS
OF ISO- AND EQUI-RECURSIVE TYPES

DOMINIQUE DEVRIESE a, ERIC M. MARTIN b, AND MARCO PATRIGNANI c

a DistriNet, KU Leuven, Belgium
e-mail address: dominique.devriese@kuleuven.be

b Jane Street Capital
e-mail address: emartin@janestreet.com

c University of Trento
e-mail address: marco.patrignani@unitn.it

Abstract. Recursive types extend the simply-typed lambda calculus (STLC) with the
additional expressive power to enable diverging computation and to encode recursive
data-types (e.g., lists). Two formulations of recursive types exist: iso-recursive and equi-
recursive. The relative advantages of iso- and equi-recursion are well-studied when it comes
to their impact on type-inference. However, the relative semantic expressiveness of the two
formulations remains unclear so far.

This paper studies the semantic expressiveness of STLC with iso- and equi-recursive
types, proving that these formulations are equally expressive. In fact, we prove that they
are both as expressive as STLC with only term-level recursion. We phrase these equi-
expressiveness results in terms of full abstraction of three canonical compilers between these
three languages (STLC with iso-, with equi-recursive types and with term-level recursion).
Our choice of languages allows us to study expressiveness when interacting over both a
simply-typed and a recursively-typed interface. The three proofs all rely on a typed version
of a proof technique called approximate backtranslation.

Together, our results show that there is no difference in semantic expressiveness between
STLCs with iso- and equi-recursive types. In this paper, we focus on a simply-typed setting
but we believe our results scale to more powerful type systems like System F.

To present notions more clearly, this paper uses syntax highlighting accessible to both colourblind and
black & white readers [Pat20]. For a better experience, please print or view this in colour.

Specifically, we use a blue, sans-serif font for STLC with the fix operator, a red, bold font for
STLC with iso-recursive types, and pink , italics font for STLC with coinductive equi-recursive
types. Elements common to all languages are typeset in a black , italic font (to avoid repetition).

2012 ACM CCS: [Theory of computation Lambda calculus]: 300; [Theory of computation Type
theory]: 300; [Software and its engineering Recursion]: 300.

Key words and phrases: Fully abstract compilation, cross-language logical relation, modular compilation.
∗ extended version of the paper in POPL’21, now including a fixed and mechanized proof. More details are

in Section 1.3.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(4:14)2024
© D. Devriese, E. Martin, and M. Patrignani
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-3862-6856
https://orcid.org/0000-0002-5739-2186
https://orcid.org/0000-0003-3411-9678
http://creativecommons.org/about/licenses

14:2 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

1. Introduction

Recursive types were first proposed by Morris [Mor68] as a way to recover divergence from the
untyped lambda calculus in a simply-typed lambda calculus. They also enable the definition
of recursive data-types such as lists, trees, and Lisp S-expressions in typed languages.

Morris’ original formulation was equi-recursive: a type µα. τ was regarded as an infinite
type and considered equal to its unfolding τ [µα. τ/α]. Subsequent formulations (e.g., Abadi
and Fiore [AF96]) use different type equality relations. In this paper we will work with λµ

E : a
standard simply-typed lambda calculus with coinductive equi-recursive types (e.g. [CGO16]).

Years after Morris’ formulation of recursive types, a different one appeared (e.g. [HM93,
GMW79]), where the two types are not considered equal, but isomorphic: values can
be converted from µα. τ to τ [µα. τ/α] and back using explicit fold and unfold an-
notations in terms. These annotations are used to guide typechecking, but they also
have a significance at runtime: an explicit reduction step is needed to cancel them out:
unfoldµα.τ (foldµα.τ v) ↪→ v. In this paper, we work with a standard iso-recursive calculus
λµ
I .

The relation between these two formulations has been studied by Abadi and Fiore [AF96]
and Urzyczyn [Urz95] (the latter focusing on positive recursive types). Specifically, they
show that any term typable in one formulation can also be typed in the other, possibly by
adding extra unfold or fold annotations. Additionally, Abadi and Fiore prove that for
types considered equal in the equi-recursive system, there exist coercion functions in the
iso-recursive formulation that are mutually inverse in the (axiomatised) program logic. The
isomorphism properties are proved in a logic for the iso-recursive language (which is only
conjectured to be sound), and the authors do not consider an operational semantics.

The relative semantic expressiveness of the two formulations, however, has remained
yet unexplored. In principle, executions that are converging in the equi-recursive language
may become diverging in the iso-recursive setting because of the extra fold-unfold reductions.
Because of this, it is unclear whether the two formulations of recursive types produce equally
expressive languages.

Concretely, in this paper, we study the expressive power of λµ
I and λµ

E when interacting
over two kinds of language interfaces. The first is characterized by simply-typed lambda
calculus types, which do not mention recursive types themselves. We consider implementations
of this interface in λfx, a simply typed lambda calculus with term-level recursion in the form
of a primitive fixpoint operator. We embed these implementations into both λµ

I and λµ
E

using two so-called canonical compilers, i.e., compilers that map any construct of the source
language into the same – or the closest – construct of the target. We show that if two λfx

terms cannot be distinguished by λfx contexts, then the same is true for both λµ
I and λµ

E
contexts, i.e., the compiler is fully abstract. Additionally, we consider STLC types that
contain recursive types themselves as interfaces. We take implementations of them in λµ

I
and a canonical compiler for them into λµ

E . We show that this compiler is also fully abstract.
These three fully-abstract compilation results establish the equi-expressiveness of λµ

I , λµ
E ,

and λfx contexts, interacting over simply-typed interfaces with and without recursive types.
Moreover, these three fully-abstract compilation results have been completely formalised in
the Coq proof assistant.

Proving full abstraction for a compiler is notoriously hard, particularly in the preservation
direction, i.e., showing that equivalent source terms get compiled to equivalent target terms.
Informally, it requires showing that any behaviour (e.g., termination) of target program

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:3

contexts can be replicated by source program contexts. Demonstrating such a claim is
particularly complicated in our setting since λµ

E contexts have coinductive (and thus infinite)
type equality derivations. To be able to prove fully-abstract compilation, we adopt the
approximate backtranslation proof technique of Devriese et al. [DPPK17]. This technique
relies on two key components: a cross-language approximation relation between source and
target terms (and source and target program contexts) and a backtranslation function from
target to source program contexts. Intuitively, the approximation relation is used to tell
when a source and a target term (or program context) equi-terminate; we use step-indexed
logical relations to define this and rely on the step as the measure for the approximation.
The backtranslation is a function that takes a target program context and produces a source
program context that approximates the target one. This is particularly appropriate for
backtranslating λµ

E program contexts, since we show that it is sufficient to approximate their
coinductive derivations instead of replicating them precisely.

We construct three backtranslations: from λµ
I and λµ

E contexts respectively into λfx ones
and from λµ

E contexts into λµ
I ones. We do so by defining a family of types for backtranslated

terms that is not just indexed by the approximation level but also by the target type of
the backtranslated term. To the best of our knowledge, this is a novel approach, since all
existing work relies on a single type for backtranslated terms [DPPK17, NBA16].

For proving the correctness of these backtranslations, we define a step-indexed logical
relation to express when compiled and backtranslated terms approximate each other. While
the logical relation is largely the same for the different compilers and backtranslations,
differences in the language semantics impose that we treat backtranslated λµ

I terms differently
from λµ

E .
Like previous work [DPPK17, NBA16], we use a step-indexed logical relation that relates

terms (and values) across languages so long as they equi-terminate. In previous work, the
step-indexed logical relation approximates (or, relates) terms (and values) up to an index that
is related to the amount of steps that are required for termination. In this work, we change
that approximation to also consider an additional bound on the size of terms encountered
during termination. To provide this new bound, we introduce a novel notion of termination,
called size-bound termination, and state that terms are related when size-bound termination
of one term implies termination of the other. The need for an additional bound (and thus for
size-bound termination) arose while mechanising these proofs in the Coq proof assistant, as
this led to the discovery of a bug in the previous proofs (as we describe in Section 1.3). The
additional bound lets us reason explicitly about the finiteness of values encountered during
reductions, and it lets us go through those cases that broke certain proofs (as we describe in
detail in Example 4.20 in Section 4.2.2).

1.1. Using Fully Abstract Compilation to Compare Language Expressiveness. To
study language expressiveness meaningfully, it is important to phrase the question properly.
If we just consider programs that receive a natural number and return a boolean, then
both languages will allow expressing the same set of algorithms, simply by their Turing
completeness [Mit93].

The question of comparing language expressiveness is more interesting if we consider
programs that interact over a richer interface. Consider, for example, a term t from the simply-
typed lambda calculus embedded into either the λµ

I or λµ
E calculus. An interesting question

is whether there are ways in which λµ
E contexts (i.e., larger programs) can interact with t that

contexts in λµ
I cannot. The use of contexts in different languages interacting with a common

14:4 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

term as a way of measuring language expressiveness has a long history [Fel91, Mit93], mostly
in the study of process calculi [Par08]. In this setting, equal expressiveness of programming
languages is sometimes argued for by proving the existence of a fully-abstract compiler from
one language to the other [GN16]. Such a compiler translates contextually-equivalent terms
in a source language (indicated as Lsrc) to contextually-equivalent terms in a target language
(indicated as Ltrg) [Aba98, PAC19]. That is, if contexts cannot distinguish two terms in Lsrc ,
they will also not be able to distinguish them after the compilation to Ltrg .

Let us now argue why the choice of fully-abstract compilation as a measure of the
relative expressiveness of programming languages is the right one in our setting. After all,
several researchers have pointed out that the mere existence of a fully-abstract compilation
is not in itself meaningful and only compilers that are sufficiently well-behaved should
be considered [Par08, GN16]. The reason for this is that one can build a degenerate
fully-abstract compiler that shows both languages having an equal amount (cardinality) of
equivalence classes for terms. This would indicate that the languages are equally-expressive,
but unfortunately this is also trivial to satisfy [Par08]. These degenerate examples, as such,
clarify the necessity for well-behavedness of the compiler. However, we have not found a clear
argument explaining why well-behaved fully-abstract compilation implies equi-expressiveness
of languages, so here it is.

In our opinion (and we believe this point has not yet been made in the literature),
the issue is that fully-abstract compilation results measure language expressiveness not by
verifying that they can express the same terms, but that they can express the same contexts.
Defining when a context in Lsrc is the same as a context in Ltrg is hard, and therefore
fully-abstract compilation simply requires that Ltrg contexts can express the interaction
of Lsrc contexts with any term that is shared between both languages. The role of the
compiler, the translation from Lsrc to Ltrg , is simply to obtain this common term against
which expressiveness of contexts in both languages can be measured.

In other words, expressiveness of a programming language is only meaningful with respect
to a certain interface and the role of the compiler is to map Lsrc implementations of this
interface to Ltrg implementations. In a sense, the Lsrc implementation of the interface should
be seen as an expressiveness challenge for Lsrc contexts and the compiler translates it to
the corresponding challenge in Ltrg . As such, the compiler should be seen as part of the
definition of equi-expressiveness and the well-behavedness requirement is there to make sure
the Lsrc challenge is translated to “the same” challenge in Ltrg . Fortunately, in this work we
only rely on canonical compilers that provide the most intuitive translation for a term in our
source languages into “the same” term in our target ones. Thus, we believe that in our setting
using fully-abstract compilation is the right tool to measure the relative expressiveness of
programming languages.

1.2. Contributions and Outline. To summarize, the key contribution of this paper is the
proof that iso- and coinductive equi-recursive typing are equally expressive. This result is
achieved via the following contributions (depicted in Figure 1).

• An adaptation of the approximate backtranslation proof technique to operate on families
of backtranslation types that are type-indexed on target types

• An adaptation of the proof technique to be more precise when relating terms cross-language
by relying on the notion of size-bound termination;

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:5

• A proof that the compiler from λfx to λµ
I is fully abstract with an approximate backtrans-

lation;
• A proof that the compiler from λµ

I to λµ
E is fully abstract with an approximate backtrans-

lation;
• A proof that the compiler from λfx to λµ

E is fully abstract with an approximate backtrans-
lation;

• The mechanisation of these three proofs in the Coq proof assistant.

λfx

λµ
I λµ

E

J·Kλ
µ
I

λ
µ
E

⟨⟨·⟩⟩λ
µ
E

λ
µ
I

J·K
λ
fx

λ
µ
I

⟨⟨·⟩
⟩
λ
µ
I

λ
fx

J·K λ fx
λ µ
E

⟨⟨·⟩⟩ λ µ
Eλ fx

Figure 1: Our contributions, visually. Full arrows indicate canonical embeddings J·K while
dotted ones are (approximate) backtranslations ⟨⟨·⟩⟩. Translations’ superscripts
indicate input languages while their subscripts indicate output languages.

Note that technically, we can derive the compiler and backtranslation between λfx and
λµ
E by composing the compilers and backtranslations through λµ

I . We present this result
as a stand-alone one because it offers insights on proofs of fully-abstract compilation for
languages with coinductive notions.

The remainder of this paper is organised as follows. We first formalise the languages
we use (λfx, λµ

I and λµ
E) as well as the cross-language logical relations which express when

two terms in those languages are semantically equivalent (Section 2). Next, we present
fully-abstract compilation and describe our approximate backtranslation proof technique
in detail (Section 3). Then we define the three compilers (from λfx to λµ

I , from λfx to
λµ
E and from λµ

I to λµ
E) and prove that they are fully abstract using three approximate

backtranslations (Section 4). These compilers and their fully-abstract compilation proofs
are all formalised in Coq, so we also present the most useful insights into this formalisation
(Section 5). After a discussion of the presented results (Section 6), we present related work
(Section 7) and conclude (Section 8).

For the sake of simplicity we omit some elements of the formalisation such as auxiliary
lemmas and proofs. The Coq mechanisation of this work is available at:

https://github.com/dominiquedevriese/fixismu-coq

1.3. Comparison with the Previous Version. This work extends the work of Patrignani
et al. [PMD21] presented at POPL’21 in the following way:
• We fix a bug in the original proof that broke Lemma 4.19. The bug is addressed by

making the approximate logical relation rely on an additional bound on the size of terms
encountered during reductions, as mentioned before. This, in turn changes the observation
relation of the logical relation, i.e., the part that tells when two terms are related. Previously

https://github.com/dominiquedevriese/fixismu-coq

14:6 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

(as well as in related work [DPP16]), a term t was related to another one t at level n if
termination of t in at most n steps implied termination of t in some steps (and vice versa).
Here, we introduce a new notion of bounded termination (called size-bound termination)
that a term fulfils for some steps m if the term terminates in at most m steps and (roughly)
terms encountered during this reduction have at most size m (in terms of the depth of
the AST of the term). We rely on size-bound termination in the observation relation and
state that a term t is related to another t at level j if size-bound termination of t in at
most j steps implies termination of t in some steps (and vice versa). Intuitively, in the
previous formulation the step index n imposes a bound on the amount of steps required for
termination. Here instead, the step index j imposes a bound both on the steps required
for termination and on the size of terms encountered during such termination.

We explain in more detail the problem with the old formulation and how this new idea
lets Lemma 4.19 go through in Section 4.2.2, where we discuss Example 4.20.

• We mechanise the three fully-abstract compilation proofs in the Coq proof assistant and
report on the formalisation in Section 5.

2. Languages and Cross-Language Logical Relations

This section presents the simply-typed lambda calculus (λ) and its extensions with a typed
fixpoint operator (λfx), with iso-recursive types (λµ

I) and with coinductive equi-recursive
types (λµ

E). We first define the syntax (Section 2.1), then the static semantics (Section 2.2)
and then the operational semantics of these languages (Section 2.3). Finally, this section
presents the cross-language logical relations used to reason about the expressiveness of terms
in different languages (Section 2.5). Note that these logical relations are partial, the key
addition needed to attain fully-abstract compilation is presented in Section 3.3 only after
said addition is justified.

2.1. Syntax. All languages include standard terms (t) and values (v) from the simply-typed
lambda calculus: lambda abstractions, applications, pairs, projections, tagged unions, case
destructors, booleans, branching, unit and sequencing. Additionally, λfx has a fix operator
providing general recursion, while λµ

I has fold and unfold annotations; λµ
E requires no

additional syntactic construct.
Regarding types, both λµ

I and λµ
E add recursive types according to the same syntax. In

λµ
I and λµ

E , recursive types are syntactically constrained to be contractive. Note however that
for simplicity of presentation we will indicate a type as τ and simply report the contractiveness
constraints when meaningful. A recursive type µα. τ is contractive if, the use of the recursion
variable α in τ occurs under a type constructor such as → or × [MPS84]. Non-contractive
types (e.g., µα. α) are not inhabited by any value, so it is reasonable to elide them. Moreover,
they do not have an infinite unfolding and (without restrictions on the type equality relation)
can be proven equivalent to any other type [INP13], which is undesirable.

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:7

All languages have evaluation contexts (E), which indicate where the next reduction will
happen, and program contexts (C), which are larger programs to link terms with.

τ , σ ::= Unit | Bool | τ s → τ s | τ s × τ s | τ s ⊎ τ s | µα. τ | µα. τ
τ s ::= α | α | τ
Γ ::= ∅ | Γ , x : τ

v ::= unit | true | false | λx : τ. t | ⟨v , v⟩ | inl v | inr v | foldµα.τ v

t ::= unit | true | false | λx : τ. t | x | t t | t .1 | t .2 | ⟨t , t⟩
| case t of inl x1 7→ t | inr x2 7→ t | inl t | inr t | if t then t else t | t ; t
| fixτ→τ t | foldµα.τ t | unfoldµα.τ t

E ::= [·] | E t | v E | E.1 | E.2 | ⟨E, t⟩ | ⟨v ,E⟩ | case E of inl x1 7→ t1 | inr x2 7→ t2

| inl E | inr E | E; t | if E then t else t | fixτ→τ E | foldµα.τ E | unfoldµα.τ E
C ::= [·] | λx : τ.C | C t | t C | C.1 | C.2 | ⟨C, t⟩ | ⟨t ,C⟩ | case C of inl x1 7→ t | inr x2 7→ t

| case t of inl x1 7→ C | inr x2 7→ t | case t of inl x1 7→ t | inr x2 7→ C

| inl C | inr C | C; t | t ;C | if C then t else t | if t then C else t

| if t then t else C | fixτ→τ C | foldµα.τ C | unfoldµα.τ C

As mentioned in Section 1, we need a measure to define size-bound termination as the
new logical relation requires. The measure we rely on is the size of a term t , which we
calculate via function size (·) : t → n ∈ N. Intuitively, the size of a measure counts the
number of nodes in the term’s AST, ignoring the bodies of lambdas. As a result, apart from
bodies of lambdas, any sub-term t ′ has size smaller than the super-term t that contains t ′.

size (unit) = 1 size (true) = 1 size (false) = 1

size (x) = 1 size (λx : τ. t) = 1

size
(
t t′
)
= size (t) + size

(
t′
)
+ 1 size (t.1) = size (t) + 1

size (t.2) = size (t) + 1 size
(〈
t, t′
〉)

= size (t) + size
(
t′
)
+1

size (inl t) = size (t) + 1 size (inr t) = size (t) + 1

size
(
t; t′
)
= size (t) + size

(
t′
)
+ 1 size (fixτ→τ t) = size (t) + 1

size (foldµα.τ t) = size (t) + 1 size (unfoldµα.τ t) = size (t) + 1

size
(
case t of inl x1 7→ t ′ | inr x2 7→ t ′′

)
= size (t) + size

(
t′
)
+ size

(
t′′
)
+ 1

size
(
if t then t′ else t′′

)
= size (t) + size

(
t′
)
+ size

(
t′′
)
+ 1

2.2. Static Semantics. This section presents the (fairly standard) static semantics of our
languages, we delay discussing alternative formulations of equi-recursive types to Section 7.
The static semantics for terms follows the canonical judgement Γ ⊢ t : τ , which attributes type
τ to term t under environment Γ and occasionally relies on function ftv (τ), which returns
the free type variables of τ . The only difference in the typing rules regards fold/unfold
terms (Rules λµ

I -Type-fold and λµ
I -Type-unfold) and the introduction of the type equality

(⊜ in Rule λµ
E -Type-eq).

14:8 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

Γ ⊢ t : τ

(Type-var)
x : τ ∈ Γ
Γ ⊢ x : τ

(Type-unit)

Γ ⊢ unit : Unit

(Type-true)

Γ ⊢ true : Bool

(Type-false)

Γ ⊢ false : Bool

(Type-p1)
Γ ⊢ t : τ × τ ′

Γ ⊢ t .1 : τ

(Type-p2)
Γ ⊢ t : τ ′ × τ
Γ ⊢ t .2 : τ

(Type-inl)
Γ ⊢ t : τ

Γ ⊢ inl t : τ ⊎ τ ′

(Type-inr)
Γ ⊢ t : τ ′

Γ ⊢ inr t : τ ⊎ τ ′

(Type-case)
Γ ⊢ t : τ ′ ⊎ τ ′′

Γ , x1 : τ ′ ⊢ t ′ : τ Γ , x2 : τ ′′ ⊢ t ′′ : τ

Γ ⊢ case t of inl x1 7→ t ′ | inr x2 7→ t ′′ : τ

(Type-if)
Γ ⊢ t : Bool

Γ ⊢ t ′ : τ Γ ⊢ t ′′ : τ
Γ ⊢ if t then t ′ else t ′′ : τ

(Type-seq)
Γ ⊢ t : Unit
Γ ⊢ t ′ : τ
Γ ⊢ t ; t ′ : τ

(Type-lam)
Γ , x : τ ⊢ t : τ ′

ftv (τ) = ∅
Γ ⊢ λx : τ. t : τ → τ ′

(Type-app)
Γ ⊢ t : τ ′ → τ
Γ ⊢ t ′ : τ ′

Γ ⊢ t t ′ : τ

(Type-pair)
Γ ⊢ t : τ
Γ ⊢ t ′ : τ ′

Γ ⊢ ⟨t , t ′⟩ : τ × τ ′

(λfx-Type-fix)
Γ ⊢ t : (τ1 → τ2) → τ1 → τ2

Γ ⊢ fixτ1→τ2 t : τ1 → τ2

(λµ
I -Type-fold)

Γ ⊢ t : τ [µα. τ/α]

Γ ⊢ foldµα.τ t : µα. τ

(λµ
I -Type-unfold)

Γ ⊢ t : µα. τ

Γ ⊢ unfoldµα.τ t : τ [µα. τ/α]
(λµ

E -Type-eq)
Γ ⊢ t : τ τ ⊜σ

Γ ⊢ t : σ

Program contexts have an important role in fully-abstract compilation. They follow the
usual typing judgement (C ⊢ Γ , τ → Γ ′, τ ′), i.e., program context C is well typed with a
hole of type τ that use free variables in Γ , and overall C returns a term of type τ ′ and uses
variables in Γ ′.

C ⊢ Γ , τ → Γ ′, τ ′

(Type-Ctx-Hole)

⊢ · : Γ , τ → Γ , τ

(Type-Ctx-Lam)
⊢ C : Γ ′′, τ ′′ → (Γ , x : τ ′), τ

⊢ λx : τ ′.C : Γ ′′, τ ′′ → Γ , τ ′ → τ

(Type-Ctx-Pair1)
⊢ C : Γ ′, τ ′ → Γ , τ1

Γ ⊢ t2 : τ2
⊢ ⟨C, t2 ⟩ : Γ ′, τ ′ → Γ , τ1 × τ2

(Type-Ctx-Pair2)
Γ ⊢ t1 : τ1

⊢ C : Γ ′, τ ′ → Γ , τ2

⊢ ⟨t1 ,C⟩ : Γ ′, τ ′ → Γ , τ1 × τ2

(Type-Ctx-Inl)
⊢ C : Γ ′′, τ ′′ → Γ , τ

⊢ inl C : Γ ′′, τ ′′ → Γ , τ ⊎ τ ′

(Type-Ctx-Inr)
⊢ C : Γ ′′, τ ′′ → Γ , τ ′

⊢ inr C : Γ ′′, τ ′′ → Γ , τ ⊎ τ ′

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:9

(Type-Ctx-App1)
⊢ C : Γ ′, τ ′ → Γ , τ1 → τ2

Γ ⊢ t2 : τ1
⊢ C t2 : Γ ′, τ ′ → Γ , τ2

(Type-Ctx-App2)
Γ ⊢ t1 : τ1 → τ2

⊢ C : Γ ′, τ ′ → Γ , τ1

⊢ t1 C : Γ ′, τ ′ → Γ , τ2

(Type-Ctx-Proj1)
⊢ C : Γ ′, τ ′ → Γ , τ1 ⊎ τ2

⊢ C.1 : Γ ′, τ ′ → Γ , τ1

(Type-Ctx-Proj2)
⊢ C : Γ ′, τ ′ → Γ , τ1 ⊎ τ2

⊢ C.2 : Γ ′, τ ′ → Γ , τ2

(Type-Ctx-Case1)
⊢ C : Γ ′, τ ′ → Γ , τ1 ⊎ τ2

Γ , x1 : τ1 ⊢ t1 : τ3 Γ , x2 : τ2 ⊢ t2 : τ3

⊢ case C of inl x1 7→ t1 | inr x2 7→ t2 : Γ ′, τ ′ → Γ , τ3

(Type-Ctx-Case2)
Γ ⊢ t : τ1 ⊎ τ2 ⊢ C : Γ ′, τ ′ → (Γ , x1 : τ1), τ3 Γ , x2 : τ2 ⊢ t2 : τ3

⊢ case t of inl x1 7→ C | inr x2 7→ t2 : Γ ′, τ ′ → Γ , τ3

(Type-Ctx-Case3)
Γ ⊢ t : τ1 ⊎ τ2 Γ , x1 : τ1 ⊢ t1 : τ3 ⊢ C : Γ ′, τ ′ → (Γ , x2 : τ2), τ3

⊢ case t of inl x1 7→ t1 | inr x2 7→ C : Γ ′, τ ′ → Γ , τ3

(Type-Ctx-If1)
⊢ C : Γ , τ → Γ ′,Bool

Γ ′ ⊢ t1 : τ ′ Γ ′ ⊢ t2 : τ ′

⊢ if C then t1 else t2 : Γ , τ → Γ ′, τ ′

(Type-Ctx-If2)
Γ ⊢ t : Bool

⊢ C : Γ , τ → Γ ′, τ ′ Γ ⊢ t2 : τ ′

⊢ if t then C else t2 : Γ , τ → Γ ′, τ ′

(Type-Ctx-If3)
Γ ⊢ t : Bool Γ ⊢ t1 : τ ′ ⊢ C : Γ , τ → Γ ′, τ ′

⊢ if t then t1 else C : Γ , τ → Γ ′, τ ′

(Type-Ctx-Seq1)
C : Γ , τ → Γ ′,Unit

Γ ′ ⊢ t : τ ′′

⊢ C; t : Γ , τ → Γ ′, τ ′′

(Type-Ctx-Seq2)
Γ ⊢ t : Unit

⊢ C : Γ , τ → Γ ′, τ ′

⊢ t ;C : Γ , τ → Γ ′, τ ′

(λfx-Type-Ctx-Fix)
C : Γ′, τ ′ → Γ, τ → τ

⊢ fixτ→τ C : Γ′, τ ′ → Γ, τ

(λµ
I -Type-Ctx-Fold)

⊢ C : Γ′, τ ′ → Γ, τ [µα. τ/α]

⊢ foldµα.τ C : Γ′, τ ′ → Γ,µα. τ

(λµ
I -Type-Ctx-Unfold)

⊢ C : Γ′, τ ′ → Γ,µα. τ

⊢ unfoldµα.τC : Γ′, τ ′ → Γ, τ [µα. τ/α]

(λµ
E -Type-Eq)

⊢ C : Γ ′, τ ′ → Γ , τ τ ⊜σ

⊢ C : Γ ′, τ ′ → Γ , σ

We use the same coinductive type equality relation of Cai et al. [CGO16], with a cosmetic
difference only. Two types are equal if they are the same base type ι or variable (Rules ⊜-prim
and ⊜-var). If the types are composed of two types, the connectors must be the same and
each sub-type must be equivalent (Rule ⊜-bin). If the left type starts with a µ (or if that does
not but the right one does), then we unfold the type for checking the equality (Rules ⊜-µl

and ⊜-µr). Note that these last two rules are defined in an asymmetric fashion to make
equality derivation deterministic. Finally, we make explicit the rules for reflexivity, symmetry

14:10 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

and transitivity (Rule ⊜-refl, Rules ⊜-symm and ⊜-trans) whose derivations we have proved
from the other rules.

τ ⊜ τ ′

(⊜-prim)
ι = Unit ∨ ι = Bool

ι⊜ ι

(⊜-var)

α⊜α

(⊜-bin)
⋆ ∈ {→,×,⊎} τ1 ⊜σ1 τ2 ⊜σ2

τ1 ⋆ τ2 ⊜σ1 ⋆ σ2
(⊜-µl)

τ [µα. τ/α]⊜σ

µα. τ ⊜σ

(⊜-µr)
τ ⊜σ[µα. σ/α]

τ ⊜µα. σ

(⊜-refl)

τ ⊜ τ

(⊜-symm)
σ⊜ τ

τ ⊜σ

(⊜-trans)

τ ⊜σ σ⊜ τ ′

τ ⊜ τ ′

To prove results about this equality relation, we will often induct on the “leading-mu-
count” (lmc) measure. Intuitively, that measure counts the amount of µs that a λµ

E type
has before a different connector is found. This is almost the same as the number of times a
type can be unfolded before it is no longer recursive at the top level (e.g. lmc (Unit) = 0,
lmc (µα. α ⊎Unit) = 1).

lmc (τ)
def
=

{
lmc (τ ′) + 1 τ = µα. τ ′

0 otherwise

Non-contractive types such as µα. α, however, create problems here, for they always unfold
into another top level recursive type. This motivates our restriction to contractive types
only: a contractive type τ can be unfolded exactly lmc (τ) times.

2.3. Dynamic Semantics. All our languages are given a small-step, contextual, call-by-
value, operational semantics. We highlight primitive reductions as ↪→p and non-primitive
ones as ↪→. We indicate the capture-avoiding substitution of variable (or type variable) x in
t with value (or type) v as t [v/x]. Note that since λµ

E has no peculiar syntactic construct, it
also has no specific reduction rule.

t ↪→ t ′ and t ↪→p t ′

(Eval-ctx)
t ↪→p t ′

E [t] ↪→ E [t ′]

(Eval-beta)

(λx : τ. t) v ↪→p t [v/x]

(Eval-pi)
i ∈ 1 ..2

⟨v1 , v2 ⟩ .i ↪→p vi

(Eval-seq)

unit ; t ↪→p t

(Eval-inl)

case inl v of

∣∣∣∣∣inl x1 7→t

inr x2 7→t′
↪→p t [v/x1]

(Eval-inr)

case inr v of

∣∣∣∣∣inl x1 7→t

inr x2 7→t′
↪→p t

′[v/x2]

(Eval-if)
v = true ∨ false

if v then ttrue else tfalse ↪→p tv

(λfx-Eval-fix)

fixτ→τ (λx : τ. t) ↪→p t [fixτ→τ (λx : τ. t)/x]

(λµ
I -Eval-fold)

unfoldµα.τ (foldµα.τ v) ↪→p v

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:11

2.4. Notions of Termination. For technical reasons, we need to define two notions of
termination for our languages. To define contextual equivalence (which is required for
fully-abstract compilation), we rely on the canonical definition of termination, which tells
that a term eventually reduces to a value in some number of steps.

Definition 2.1 (Termination).

t⇓def
= ∃n ∈ N, v . t⇓nv

We rely on the auxiliary judgement for bounded termination in order to say that a term
t reduces to a value v in n steps.

(Bounded termination-value)

v⇓0 v

(Bounded termination-term)
t ↪→ t ′ t ′⇓nv

t⇓n+1 v

As mentioned in Section 1, to make the logical relation more precise, we need another
notion of bounded termination that not only bounds the number of steps needed for reaching
a value but also the size of intermediate terms encountered during these steps.

(size-bound termination-value)
size (v) ≤ n

v nv

(size-bound termination-term)
t ↪→ t ′ t ′ nv size (t) ≤ n

t n+1 v

It is worth noting that this definition does not apply the same size bound to all terms
encountered during execution, but the bound decreases as execution progresses. This
approach has minor technical benefits in the definition, but we think a definition with a
single bound on all terms would work as well.

The two termination notions are related by Theorem 2.2 below. For any term t that
terminates there exists a n such that size-bound termination holds for t in n steps. Conversely,
if size-bound termination holds for a term then it also terminates.

Theorem 2.2 (Relation between Termination and Size-Bound Termination).

if t⇓ then ∃n ∈ N, v . t nv
if t _ then t⇓

Although this theorem is quite easy to prove, it does capture a non-trivial property of
the programming language, namely the fact that it only contains finite values. If we would
define a variant of the language with infinite values (e.g. if we had interpreted µ as producing
a coinductive fixpoint rather than an inductive one, perhaps with a call-by-need semantics),
then the property would no longer hold.

2.5. Logical Relations Between Our Languages. As mentioned in Section 1, we need
cross-language relations that indicate when related source and target terms approximate
each other. Intuitively, one such relation is needed by each one of the compilers we define
later. Thus, we need to define three logical relations:
A one between λfx and λµ

I , which we dub LRfx
µI;

B one between λµ
I and λµ

E , which we dub LRµI
µE ;

C one between λfx and λµ
E , which we dub LRfx

µE .

14:12 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

These relations are all indexed by a step and then by the source type, so logical relations (A)
and (C) look the same. For brevity we present only one of them. Additionally, given that
λµ
I has the same types of λfx plus recursive types, we only show that case for logical relation

(B). Ours are Kripke, step-indexed logical relations that are based on those of Devriese et al.
[DPPK17]; Hur and Dreyer [HD11]. The step-indexing is not inherently needed for relations
(A) and (C), which could be defined just by induction on λfx types (since they do not include
recursive types). However, all of our relations are step-indexed anyway because the steps
also determine for how many steps one term should approximate the other and this detail is
key for the backtranslation proof technique.

Before presenting the details, note that the relations we show here are not complete.
Specifically they only talk about the terms needed to conclude reflection of fully-abstract
compilation but not preservation (admittedly, the most interesting part). Completing the
logical relations relies on technical insights regarding the backtranslations, so we do this later
in Section 3.3. The goal of this section is to provide an understanding of what it means for
two terms to approximate each other.

W
def
= n ∈ N lev (n) = n ▷(0) = 0 ▷(n+ 1) = n

W ⊒W ′ = lev (W) ≤ lev (W ′) W =▷ W
′ = lev (W) < lev (W ′)

O (W)≲
def
= {(t, t) | if lev (W) > n and t nv then ∃k,v. t⇓kv}

O (W)≳
def
= {(t, t) | if lev (W) > n and t nv then ∃k, v. t⇓kv}

O (W)≈
def
= O (W)≲ ∩O (W)≳

Figure 2: Worlds, observations and related technicalities. These are typeset for the relation
between λfx and λµ

I but the other ones do not change.

All three relations rely on the same notion of very simple Kripke worlds W (Fig. 2).
Worlds consist of just a step-index k that is accessed via function lev (W). The use of this
function is intended to facilitate future extensions of the Kripke worlds with additional
information, but we do not currently make use of this extra generality. The ▷ modality and
future world relation ⊒ express that future worlds allow programs to take fewer reduction steps.
We define two different observation relations, one for each direction of the approximations
we are interested in: O (W)≲ and O (W)≳ while O (W)≈ indicates the intersection of those
approximations. The former defines that a source term approximates a target term if
shrinking of the first in lev (W) steps or less implies termination of the second (in any number
of steps). The latter requires the reverse. All of our logical relations will be defined in terms
of either O (W)≲ or O (W)≳. For definitions and lemmas or theorems that apply for both
instantiations, we use the symbol ▽ as a metavariable that can be instantiated to either ≲
or ≳.

Note that our logical relations are not indexed by source types, but by pseudo-types
τ̂ . Pseudo-types contain all the constructs of source types, plus an additional type which
we indicate for now as EmulT . This type is not a source type; it is needed because of the
approximate backtranslation, so we defer explaining its details until Section 3.3. Function
repEmulfI (·) converts a pseudo-type to an actual source type by replacing all occurrences of

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:13

EmulT with a concrete source type.1 We will sometimes silently use a normal source type
where a pseudo-type is expected; this makes sense since the syntax for the latter is a superset
of the former. Function fxToIs (·) converts a λfx pseudo-type into its λµ

I correspondent;
this is needed because unlike the previous work of Devriese et al. [DPPK17], all of our
target languages are typed. The formal details of both these functions are deferred until
EmulT is defined (Section 3.3) but we report their types below for clarity. Finally, function
oftypefI (·) checks that terms have the correct form according to the rules of syntactic
typing (Section 2.2).

τ̂ ::= Unit | Bool | τ̂ → τ̂ | τ̂ × τ̂ | τ̂ ⊎ τ̂ | EmulT (to be defined in Section 3.3)

oftypefI (τ̂)
def
=
{
(v,v)

∣∣ v ∈ oftype
(
repEmulfI (τ̂)

)
and v ∈ oftype (fxToIs (τ̂))

}
oftype (τ)

def
= {v | ∅ ⊢ v : τ} oftype (τ)

def
= {v | ∅ ⊢ v : τ}

repEmulfI (·) : τ̂ → τ (see Section 3.3) fxToIs (·) : τ̂ → τ (see Section 3.3)

These definitions are used in the LRfx
µI relation and similar ones are used in the other ones,

so we report their definitions and signatures below. Function oftypeIE (·) does the analogous
syntactic typecheck but for terms of λµ

I and λµ
E and oftypefE (·) does it for terms of λfx

and λµ
E . Functions repEmulfE (·) and repEmulIE (·) do the analogous conversion from pseudo

types to actual types. Function fxToEq (·) and isToEq (·) do the analogous conversion from
source pseudo types to target actual types. As we clarify later, EmulT is indexed by target
types, so essentially we have a set of pseudo types for the λfx to λµ

I compilation and a different
set for the λfx to λµ

E compilation, and thus we need two different conversion functions (whose
signatures look the same for now).

oftypeIE (τ̂)
def
=
{
(v, v)

∣∣ v ∈ oftype
(
repEmulIE (τ̂)

)
and v ∈ oftype (isToEq (τ̂))

}
oftypefE (τ̂)

def
=
{
(v, v)

∣∣ v ∈ oftype
(
repEmulfI (τ̂)

)
and v ∈ oftype (fxToEq (τ̂))

}
oftype (τ)

def
= {v | ∅ ⊢ v : τ}

repEmulfE (·) : τ̂ → τ repEmulIE (·) : τ̂ → τ (see Section 3.3)
fxToEq (·) : τ̂ → τ isToEq (·) : τ̂ → τ (see Section 3.3)

The value relation V Jτ̂K▽ (Figure 3) is defined inductively on source pseudo-types and
it is quite standard save for an additional premise in the value relation for function types.
Unit and Bool values are related in any world so long as they are the same value. Function
values are related if they are well-typed, if both are lambdas, and if substituting related
values in the bodies yields related terms in any strictly-future world. Additionally, when the
approximation direction is ≳, we require that the world W ′ contains enough steps to bound
the size of the target argument v′. This is a technicality that is required to complete the proof
of Lemma 4.19, as we explain at the end of Section 4.2.2. Pair values are related if both are
pairs and each projection is related in strictly-future worlds and sum values are related if they
have the same tag (inl or inr) and the tagged values are related in strictly-future worlds.
Finally, the value relation for recursive types used by LRµI

µE is not defined on strictly-future
worlds because in an equi-recursive language, values of recursive type can be inspected
without consuming a step. However, this does not compromise well-foundedness of the

1As a convention, superscripts of these auxiliary functions indicate the initials of the two languages
involved.

14:14 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

▷ R
def
= {(W , v,v) | if lev (W) > 0 then (▷(W), v,v) ∈ R}

V JUnitK▽
def
= {(W , v,v) | v = unit and v = unit}

V JBoolK▽
def
= {(W , v,v) | (v = true and v = true) or (v = false and v = false)}

V
r
τ̂ → τ̂ ′

z

▽

def
=

(W , v,v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(v,v) ∈ oftypefI
(
τ̂ → τ̂ ′

)
and

∃t, t. v = λx : repEmulfI (τ̂). t,v = λx : fxToIs (τ̂). t and

∀W ′, v′,v′. if W ′ =▷ W and (W ′, v′,v′) ∈ V Jτ̂K▽ and

(if ▽ = ≳ then size (v′) ≤ lev (W ′)) then

(W ′, t[v′/x], t[v′/x]) ∈ E
r
τ̂ ′
z

▽

V
r
τ̂ × τ̂ ′

z

▽

def
=

(W , v,v)

∣∣∣∣∣∣∣∣∣
(v,v) ∈ oftypefI

(
τ̂ × τ̂ ′

)
and

∃v1, v2,v1,v2. v = ⟨v1, v2⟩,v = ⟨v1,v2⟩ and

(W , v1,v1) ∈ ▷ V Jτ̂K▽ and (W , v2,v2) ∈ ▷ V
r
τ̂ ′
z

▽

V
r
τ̂ ⊎ τ̂ ′

z

▽

def
=

(W , v,v)

∣∣∣∣∣∣∣∣∣
(v,v) ∈ oftypefI

(
τ̂ ⊎ τ̂ ′

)
and either

∃v′,v′. (W , v′,v′) ∈ ▷ V Jτ̂K▽ and v = inl v′,v = inl v′ or

∃v′,v′. (W , v′,v′) ∈ ▷ V
r
τ̂ ′
z

▽
and v = inr v′,v = inr v′

V JEmulT K▽

def
= to be defined in Section 3.3

K Jτ̂K▽
def
=

{
(W ,E,E)

∣∣∣∣∣ ∀W ′, v,v. if W ′ ⊒W and (W ′, v,v) ∈ V Jτ̂K▽ then

(E [v],E [v]) ∈ O (W ′)▽

}
E Jτ̂K▽

def
= {(W , t, t) | ∀E,E. if (W ,E,E) ∈ K Jτ̂K▽ then (E [t],E [t]) ∈ O (W)▽}

G J∅K▽
def
= {(W , ∅,∅)}

G
r
Γ̂, x : τ̂

z

▽

def
=
{
(W , γ[v/x],γ[v/x])

∣∣∣ (W , γ,γ) ∈ G
r
Γ̂
z

▽
and (W , v,v) ∈ V Jτ̂K▽

}

V J ˆµα. τ K▽
def
=

(W ,v, v)

∣∣∣∣∣∣
(v, v) ∈ oftypeIE (ˆµα. τ) and

∃v′. (W ,v′, v) ∈ V
r

ˆτ [µα. τ/α]
z

▽
and v = foldµα.τ v′

The rest of V Jτ̂ K▽ is analogous to the cases presented for V Jτ̂K▽
The K Jτ̂ K▽, E Jτ̂ K▽, and G

r
Γ̂
z

▽
relations are analogous to the presented ones

The V Jτ̂K▽, K Jτ̂K▽, E Jτ̂K▽, and G
r
Γ̂
z

▽
relations for LRfx

µE are

analogous to the presented ones

Figure 3: Part of the three cross-language logical relations we rely on (classical bits) and its
auxiliary functions.

relation because our recursive types µα. τ are contractive, so the recursion variable α in

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:15

τ must occur under a type constructor such as → and the relation for these constructors
recurses only at strictly-future worlds.

The value, evaluation context and term relations are defined by mutual recursion, using
a technique called biorthogonality (see, e.g., [BH09]). Evaluation contexts K Jτ̂K▽ are related
in a world if plugging in related values in any future world yields terms that are related
according to the observation relation of the world. Similarly, terms are related E Jτ̂K▽ if
plugging the terms in related evaluation contexts yields terms related according to the
observation relation of the world. Relation G

r
Γ̂
z

▽
relates substitutions; this simply requires

that substitutions for all variables in the context are for related values.
We indicate open terms to be logically related according to the three relations as follows

(Definition 2.4, Definitions 2.5 and 2.6). Those definitions rely on terms being related up
to n steps (Definition 2.3) which we present for LRfx

µI only since the other definitions are
analogous. Here, when we apply fxToIs (·) to typing contexts, we mean the application of
fxToIs (·) to all bindings in the context.

Definition 2.3 (Logical relation up to n steps for LRfx
µI).

Γ̂ ⊢ t ▽n t : τ̂
def
= repEmulfI

(
Γ̂
)
⊢ t : repEmulfI (τ̂)

and fxToIs
(
Γ̂
)
⊢ t : fxToIs (τ̂)

and ∀W .

if lev (W) ≤ n

then ∀γ,γ. (W , γ,γ) ∈ G
r
Γ̂
z

▽
,

(W , tγ, tγ) ∈ E Jτ̂K▽
Definition 2.4 (LRfx

µI Logical relation).

Γ̂ ⊢ t▽ t : τ̂
def
= ∀n ∈ N. Γ̂ ⊢ t ▽n t : τ̂

Definition 2.5 (LRµI
µE Logical relation).

Γ̂ ⊢ t▽ t : τ̂
def
= ∀n ∈ N. Γ̂ ⊢ t ▽n t : τ̂

Definition 2.6 (LRfx
µE Logical relation).

Γ̂ ⊢ t▽ t : τ̂
def
= ∀n ∈ N. Γ̂ ⊢ t ▽n t : τ̂

An open source term is related up to n steps at pseudo-type τ̂ in pseudo-context Γ̂ to a
target open term if both are well-typed and closing both terms with substitutions related in
Γ̂ produces terms related at τ̂ in any world that has at least n steps. If terms are related
for any number of steps, we simply omit the n index and write Γ̂ ⊢ t▽ t : τ̂ . Since we have
to also relate program contexts across languages, we define what it means for them to be
related as follows.

Definition 2.7 (LRfx
µI Logical relation for program contexts).

⊢ C▽C : Γ̂, τ̂ → Γ̂′, τ̂ ′
def
= ⊢ C : Γ̂, τ̂ → Γ̂′, τ̂ ′

and ⊢ C : fxToIs
(
Γ̂
)
, fxToIs (τ̂) →

14:16 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

fxToIs
(
Γ̂′
)
, fxToIs

(
τ̂ ′
)

and ∀t, t

if Γ̂ ⊢ t▽ t : τ̂

then Γ̂′ ⊢ C[t]▽C[t] : τ̂ ′

Definition 2.8 (LRµI
µE Logical relation for program contexts).

⊢ C▽C : Γ, τ → Γ′, τ ′ def
= ⊢ C : Γ, τ → Γ′, τ ′

and ⊢ C : isToEq
(
Γ̂
)
, isToEq (τ̂) →

isToEq
(
Γ̂′
)
, isToEq

(
τ̂ ′
)

and ∀t, t

if Γ̂ ⊢ t▽ t : τ̂

then Γ̂′ ⊢ C[t]▽C[t] : τ̂ ′

Definition 2.9 (LRfx
µE Logical relation for program contexts).

⊢ C▽C : Γ̂, τ̂ → Γ̂′, τ̂ ′
def
= ⊢ C : Γ̂, τ̂ → Γ̂′, τ̂ ′

and ⊢ C : fxToEq
(
Γ̂
)
, fxToEq (τ̂) →

fxToEq
(
Γ̂′
)
, fxToEq

(
τ̂ ′
)

and ∀t, t

if Γ̂ ⊢ t▽ t : τ̂

then Γ̂′ ⊢ C[t]▽C[t] : τ̂ ′

Program contexts are related if they are well-typed and if plugging terms related at the
pseudo-type of the hole (τ̂) in each of them produces terms related at the pseudo-type of the
result (τ̂ ′).

All our logical relations are constructed so that for related terms, termination of one
term implies termination of the other according to the direction of the approximation (≲ or
≳) (Lemma 2.10).

Lemma 2.10 (Adequacy for ≈ for LRfx
µI).

if ∅ ⊢ t ≲n t : τ and t mv with n ≥ m then t⇓
if ∅ ⊢ t ≳n t : τ and t mv with n ≥ m then t⇓

3. Fully-abstract compilation and Approximate Backtranslations

This section provides an overview of fully-abstract compilation and of the approximate
backtranslation proof technique that we use (Section 3.1). The approximate backtranslation
requires defining the backtranslation type, i.e., the type that represents backtranslated values
(Section 3.2). This type provides the insights needed to complete the definitions of our

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:17

logical relations and to understand how to reason about backtranslated terms cross-languages
(Section 3.3).

3.1. A Primer on Fully-Abstract Compilation and Approximate Backtranslations.
A compiler is fully abstract if it preserves and reflects contextual equivalence between
source and target language [Aba98]. Many compiler passes have been proven to satisfy this
criterion [FSC+13, AB08, AB11, NBA16, DPPK17, PAS+15, SDB19, VSPD19], we refer the
interested reader to the survey of Patrignani et al. [PAC19].

Two programs are contextually equivalent if they produce the same behaviour no matter
the larger program (i.e., program context) they interact with [Plo77]. As commonly done,
we define “producing the same behaviour” as equi-termination (one terminates iff the other
does). We use a complete formulation of contextual equivalence for typed programs, which
enforces that contexts are well-typed and their types match that of the terms considered.

Definition 3.1 (Contextual Equivalence).

Γ ⊢ t1 ≃ctx t2 : τ
def
= Γ ⊢ t1 : τ and Γ ⊢ t2 : τ and

∀C.C : Γ , τ → ∅, τ ′.C[t1]⇓ ⇐⇒ C[t2]⇓

Quantifying over all contexts in Definition 3.1 ensures that contextually-equivalent
terms do not just equi-terminate, but that any value the context can obtain from them is
indistinguishable.

For a compiler J·K from language Lsrc to Ltrg , we define full abstraction as follows:

Definition 3.2 (Fully-abstract compilation).

⊢ J·K : FA def
= ∀t1, t2 ∈ Lsrc . ∅ ⊢ t1≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K≃ctx Jt2K : JτK

For simplicity, we instantiate Definition 3.2 for closed terms only (i.e., well-typed under
empty environments). Opening the environment to a non-empty set of term variables is
straightforward and therefore omitted [DPPK17].

t1
?≃ctx t2

C [t1]⇓
?

=====⇒ C [t2]⇓

(1)
(2)

(3) C≈ JCK
t2≈ Jt2K

C≈ JCK
t1≈ Jt1K

JCK [Jt1K]⇓===⇒JCK [Jt2K]⇓
Jt1K≃ctx Jt2Kre
fle

ct
io

n
di

re
ct

io
n

t1≃ctx t2

⟨⟨C⟩⟩n [t1]⇓_
=====⇒ ⟨⟨C⟩⟩n [t2]⇓_

⟨⟨C⟩⟩n [t2] _(1)
(2)

(3)
⟨⟨C⟩⟩n ≲_ C
t2 ≲_ Jt2K

⟨⟨C⟩⟩n ≳n C
t1 ≳_ Jt1K

C [Jt1K]⇓j

C [Jt1K] n
?

=====⇒ C [Jt2K]⇓_

Jt1K
?

≃ctx Jt2K

Thm 2.2

Thm 2.2

preservation
direction

Figure 4: Diagram breakdown of the reflection (left) and preservation (right) proofs of fully-
abstract compilation.

14:18 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

3.1.1. Proving Fully-Abstract Compilation: Reflection (or, the Easy Part). The reflection
part of fully-abstract compilation requires that the compiler produces equivalent target
programs only if their source counterparts were equivalent. Contrapositively, inequivalent
source programs must be compiled to inequivalent target programs. This proof can often be
derived as a corollary of standard compiler correctness (i.e., refinement) [PAC19].

As mentioned, we prove the reflection direction by relying on the cross-language log-
ical relations. Our logical relations are compiler-agnostic—they simply state when terms
approximate each other (recall that ≈ is the intersection of both approximations ≲ and
≳). However, we use them to show that any term (and program context) is related to its
compilation. With this fact, by relying on the adequacy of logical relations (Lemma 2.10),
we know that related terms equi-terminate. Thus, we can apply the reasoning depicted in
Figure 4 (left) to conclude this part of fully-abstract compilation.

3.1.2. Proving Fully-Abstract Compilation: Preservation (or, the Hard Part). Fully-abstract
compilation proofs are notorious and their complexity resides in the preservation direction.
That is, starting from contextually-equivalent programs in the source, prove that their
compiled counterparts are contextually-equivalent in the target. For our three fully-abstract
compilation results we rely on the approximate backtranslation proof technique [DPPK17],
depicted in Figure 4 (right).

We rely on both directions of the cross-language approximation relating terms for this
proof. Recall that t ≳n t is used to know that if t shrinks in n steps in the target, then
t also terminates (in arbitrary steps) in the source. The converse, t ≲n t is used to know
that if t shrinks in n steps in the source, then t also terminates (again in arbitrary steps) in
the target. We start with source term t approximating (in both directions) its compilation
JtK. Then, to prove target contextual equivalence (the ?-decorated equivalence), we start
by assuming that a target context C linked with Jt1K terminates in some steps (⇓n). By
relying on Theorem 2.2, we know that C linked with Jt1K size-bound terminates in some
steps (n′). Eventually, we need to show that the same target context linked with Jt2K also
terminates in any steps (⇓_). This is the ?-decorated implication, the reverse direction holds
by symmetry. To progress, we construct a backtranslation ⟨⟨·⟩⟩n , i.e., a function that takes a
target context C and returns a source context that approximates C in both directions. With
the backtranslation and this direction of the approximation ≳n , we prove implication (1):
the backtranslated context ⟨⟨C⟩⟩n linked with t1 terminates in the source. At this point, the
assumption of source contextual equivalence yields implication (2): the same backtranslated
context ⟨⟨C⟩⟩n linked with t2 also terminates (⇓). Here we apply again Theorem 2.2 to
know that ⟨⟨C⟩⟩n linked with t2 size-bound terminates (_). Now we rely on the another
direction of the approximation between the target context and its backtranslation (as well as
between source terms and their compilation): ≲_. This other approximation lets us conclude
implication (3): the original target context C linked with Jt2K terminates in the target. This
is what we prove for a compiler to be fully abstract.

3.2. A Family of Backtranslation Types. Backtranslated contexts must be valid source
contexts, i.e., they need to be well typed in the source. However, λfx does not have recursive
types, so what is the source-level correspondent of µα. τ?

We adapt the same intuition of previous work [DPP16, DPPK17] in our setting too:
it is not necessary to precisely embed target types into the source language in order to

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:19

BtTfI
0;τ

def
= Unit

BtTfI
n+1;τ

def
=

Unit ⊎ Unit if τ = Unit

Bool ⊎ Unit if τ = Bool

(BtTfI
n;τ → BtTfI

n;τ ′) ⊎ Unit if τ = τ → τ ′

(BtTfI
n;τ × BtTfI

n;τ ′) ⊎ Unit if τ = τ × τ ′

(BtTfI
n;τ ⊎ BtTfI

n;τ ′) ⊎ Unit if τ = τ ⊎ τ ′

BtTfI
n;τ ′[µα.τ ′/α] ⊎ Unit if τ = µα. τ ′

BtTIE
n;τ

def
= as BtTfE

n;τ

BtTfE
n+1;τ

def
=

{
omitted cases are as above
BtTfE

n+1;τ ′[µα.τ ′/α] if τ = µα. τ ′

Figure 5: The type of backtranslated terms.

backtranslate terms. In fact, we need to reason for up to n steps, which means that we can
approximate target types n-levels deep. Thus, concretely, we do not need recursive types in
λfx. Given a target recursive type, we unfold it n times and backtranslate its unfolding to
model the n target reductions required.

According to this strategy, the backtranslation of a term of type τ should have type
unfold τ n times. During this unfolding, however, things can go wrong. Specifically, the
backtranslated code does not know at runtime the level of unfolding we are dealing with, i.e.,
it cannot inspect n at runtime. Thus, we need a way to model the term reaching more than n
unfoldings, because in that case the backtranslated code needs to diverge. Recall in fact that
one of the two terms (Jt1K and Jt2K) is guaranteed to terminate within n steps. Therefore,
if that termination does not happen, the backtranslated code to diverge; this ensures that
contextually-equivalent terms remain equivalent, i.e., they equi-terminate. Thus at each level
of unfolding, we backtranslate τ into “τ ⊎ Unit” (we will make this formal below), where the
right Unit models failure. Then any time the backtranslation code receives a value which
inhabits the ‘right Unit’ type of the backtranlation type, it will diverge, knowing that it is
not dealing with the term that had to terminate within the n unfoldings.

We make these intuitions concrete and formalise the type for λµ
I values backtranslated

into λfx as BtTfI
n;τ in Figure 5 (for Backtranslation Type; the superscript indicates the

languages involved, the subscripts are effectively parameters of this type). Type BtTfI
n;τ is

defined inductively on n and it backtranslates the structure of τ in the source type it creates.
At no steps (n=0), the backtranslation is not needed any more because intuitively we already
performed the n steps, so the only type is Unit. Otherwise, the backtranslated type maintains
the same structure of the target type. In the case for µα. τ , the backtranslated type is the
unfolding of µα. τ , but at a decremented index (n). Intuitively, this is to match the reduction
step that will happen in the target for eliminating unfoldµα.τ foldµα.τ annotations.

The type of λµ
E terms backtranslated in λfx (BtTfE

n;τ , still in Figure 5) has an important
difference. The case for µα. τ does not lose a step in the index and simply performs the
unfolding of the recursive type without an additional ⊎Unit. This difference matches the fact

14:20 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

that in λµ
E there is no additional reduction rule in the semantics. Additionally, this difference

affects the helper functions needed to deal with values of backtranslation type, as we discuss
later.

Intuitively, the fact that the backtranslation of a recursive type is its n-level deep
unfolding is possible because µα. τ is contractive in α. This is sufficient because we need
to only replicate n steps in order to differentiate terms, so a n-level deep unfolding of the
type suffices in order to reach the differentiation. For example, let us take the type of list of
booleans in λµ

E :
µα.Unit ⊎ (Bool × α) (which we dub ListB)

and its first unfolding:

Unit ⊎ (Bool × ListB) (which we dub List1B)

the backtranslation (for n = 3) for this type is:

BtTfE
3;ListB = BtTfE

3;Unit⊎(Bool×ListB)

= ((BtTfE
2;Unit) ⊎ BtTfE

2;Bool×ListB
) ⊎Unit

= ((Unit ⊎Unit) ⊎ (((BtTfE
1;Bool)× BtTfE

1;ListB) ⊎Unit)) ⊎Unit

= ((Unit ⊎Unit) ⊎ (((Bool ⊎Unit)× BtTfE
0;List1B

) ⊎Unit)) ⊎Unit

= ((Unit ⊎Unit) ⊎ (((Bool ⊎Unit)×Unit) ⊎Unit)) ⊎Unit

Formally, the measure that ensures that this type is well founded is the precision n
together with lmc (µα. τ) i.e., the number of leading µs in type τ , for reasons analogous to
those discussed in Section 2.2.

The type of λµ
E terms backtranslated in λµ

I (BtTIE
n;τ) is the same as the one just presented

(BtTfE
n;τ). Intuitively, this is because the n-level deep unfolding of τ in the backtranslation

type does not rely on recursive types in λµ
I .

3.2.1. Working with the Backtranslation Type. In order to work with values of backtranslated
type, we need a way to create and destruct them. Additionally, we need a way to increase
and decrease the approximation level (the n index), for reasons we explain below. This is
what we present now mainly for terms of type BtTfI

n;τ , though we report the most interesting
cases for the other backtranslation types too. Recall that the definitions of the other two
backtranslation types are the same, so these helpers are also the same and we report only
one.

Given a target value v of type τ , in order to create a source term of type BtTfI
n;τ it

suffices to create inl v (informally). However, in order to use a source term of type BtTfI
n;τ

at the expected type τ , we need to destroy it according to τ : this is done by the family of
source functions casefIn;τ .

casefIn;τ = λx : BtTfI
n+1;τ . case x of inl x1 7→ x1 | inr x2 7→ omegaBtTfI

n;τ

Intuitively, all these functions strip the value of type BtTfI
n+1;τ they take in input of the

inl tag and return the underlying value. Thus, at arrow type, the returned value has type
(BtTfI

n;τ → BtTfI
n;τ ′) while at recursive type it has type BtTfI

n;τ [µα.τ/α]. In case the wrong
value is passed in (i.e., it is an inr), these functions diverge via term omegaBtTfI

n;τ
, which is

easily encodable in λfx.

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:21

upgradefIn;τ :BtTfI
n;τ → BtTfI

n+1;τ

upgradefI0;d;τ = λx : BtTfI
0;τ . unkd

upgradefIn+1;d;Unit = λx : Unit ⊎ Unit. x upgradefIn+1;d;Bool = λx : Bool ⊎ Unit. x

upgradefIn+1;d;τ×τ ′ = λx : BtTfI
n+1;τ×τ ′ .

case x of

∣∣∣∣∣inl x1 7→inl
〈
upgradefIn;d;τ x1.1, upgrade

fI
n;d;τ ′ x1.2

〉
inr x2 7→inr x2

upgradefIn+1;d;τ⊎τ ′ = λx : BtTfI
n+1;τ⊎τ ′ .

case x of

∣∣∣∣∣∣∣
inl x1 7→inl case x1 of

∣∣∣∣∣inl x1 7→inl (upgradefIn;d;τ x1)

inr x2 7→inr (upgradefIn;d;τ ′ x2)

inr x2 7→inr x2

upgradefIn+1;d;τ→τ ′ = λx : BtTfI
n+1;τ→τ ′ .

case x of

∣∣∣∣∣inl x1 7→inl λz : BtTfI
n+1;τ . upgrade

fI
n;d;τ ′

(
x1 (downgradefIn;d;τ z)

)
inr x2 7→inr x2

upgradefIn+1;dµα.τ ′ = λx : BtTfI
n+1;µα.τ ′ . case x of

∣∣∣∣∣inl x1 7→inl (upgradefI
n;d;τ ′[µα.τ ′/α] x1)

inr x2 7→inr x2

upgradeIEn;τ = as upgradefEn;τ

upgradefEn+1;µα.τ = upgradefEn+1;τ [µα.τ/α] upgradefEn;τ = as above

Figure 6: Definition of the upgrade function.

Recall that the BtTfE
n;τ for τ = µα. τ is different: it is just BtTfE

n;τ [µα.τ/α] so the type
is unfolded and the index is the same. The destructor used for this backtranslation type
(casefEn;µα.τ) is therefore different than the one above. Specifically, we do not need to destruct
a backtranslated type indexed with µα. τ because that never arises (i.e., the type is unfolded).
Consider type BtTfE

3;ListB
from before: at index 3 the backtranslation does not handle values

of recursive type but of type BtTfE
3;List1B

. That is, it handles values whose top-level connector

is the ⊎ of ListB . Finally, the destructor used for BtTIE
n;µα.τ (caseIEn;µα.τ) is analogous to

this last one (casefEn;µα.τ).

casefEn;τ = λx : BtTfE
n+1;τ . case x of inl x1 7→ x1 | inr x2 7→ omegaBtTfE

n;τ
τ ̸= µα. τ

caseIEn;τ = λx : BtTIE
n+1;τ . case x of inl x1 7→ x1 | inr x2 7→ omegaBtTIE

n;τ
τ ̸= µα. τ

The second piece of formalism that we need is functions to increase or decrease the
approximation level of backtranslated terms. We exemplify their necessity with an example
from Devriese et al. [DPP16].

Example 3.3 (The need for downgrade). Consider λµ
I term λx : τ . inr x, intuitively its

backtranslation (for a sufficiently-large n) is: inl λx : BtTfI
n−1;τ . inl inr x If we try to typecheck

14:22 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

downgradefIn;τ :BtTfI
n+1;τ → BtTfI

n;τ

downgradefI0;d;τ = λx : BtTfI
d;τ . unit

downgradefIn+1;d;Unit = λx : Unit ⊎ Unit. x downgradefIn+1;d;Bool = λx : Bool ⊎ Unit. x

downgradefIn+1;d;τ×τ ′ = λx : BtTfI
n+1+d;τ×τ ′ .

case x of

∣∣∣∣∣inl x1 7→inl
〈
downgradefIn;d;τ x1.1, downgrade

fI
n;d;τ ′ x1.2

〉
inr x2 7→inr x2

downgradefIn+1;d;τ⊎τ ′ = λx : BtTfI
n+1+d;τ⊎τ ′ .

case x of

∣∣∣∣∣∣∣
inl x1 7→inl case x1 of

∣∣∣∣∣inl x1 7→inl (downgradefIn;d;τ x1)

inr x2 7→inr (downgradefIn;d;τ ′ x2)

inr x2 7→inr x2

downgradefIn+1;d;τ→τ ′ = λx : BtTfI
n+1+d;τ→τ ′ .

case x of

∣∣∣∣∣inl x1 7→inl λz : BtTfI
n;τ . downgrade

fI
n;d;τ ′

(
x1 (upgradefIn;d;τ z)

)
inr x2 7→inr x2

downgradefIn+1;d;µα.τ ′ = λx : BtTfI
n+1+d;µα.τ ′ . case x of

∣∣∣∣∣inl x1 7→inl (downgradefI
n;d;τ ′[µα.τ ′/α] x1)

inr x2 7→inr x2

downgradeIEn;τ = as downgradefEn;τ

downgradefEn+1;µα.τ = downgradefEn+1;τ [µα.τ/α] downgradefEn;τ = as above

Figure 7: Definition of the downgrade function.

this, though, we see that x has type BtTfI
n−1;τ while it is expected to have type BtTfI

n−2;τ ,
i.e., its index should be lower. This concern is about well-typedness, not precision of the
backtranslation. Since x is inside an inr , inspecting it for any number of steps requires
at least an additional step, to ‘case’ x out of the inr . In other words, for the inr to be
a precise approximation up to n − 1 steps, x needs to only be precise up to n − 2 steps.
Thus, it is safe to throw away one level of precision and downgrade x from type BtTfI

n−1;τ to
BtTfI

n−2;τ . �

However, downgrading is not sufficient, as demonstrated by the next example regarding
function types.

Example 3.4 (The need for upgrade). Consider how we can downgrade a value of type
BtTfI

n+1;τ→τ ′ to one of type BtTfI
n;τ→τ ′ . We need to convert a function of type BtTfI

n+1;τ →
BtTfI

n+1;τ ′ into one of type BtTfI
n;τ → BtTfI

n;τ ′ . To do this, we need to upgrade the argument
value of type BtTfI

n;τ into one of type BtTfI
n+1;τ . Fortunately, this does not mean we need

to magically improve the approximation precision of the value concerned. Type BtTfI
n;τ has

an “error box” (· · · ⊎ Unit) at every level so we can simply construct the value such that it
simply does not use the additional level of precision in BtTfI

n;τ . �

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:23

Finally, another reason we need to upgrade and downgrade a value is that type BtTfI
n;τ

must be sufficiently large to contain approximations of target values up to less than n steps.
In fact, for a term to be well-typed the accuracy of the approximation can be less than n.
In these cases (i.e, for m < n), values of type BtTfI

n;τ will be downgraded to type BtTfI
m;τ .

Dually, there will be cases where some values need to be upgraded.
Functions upgradefI· and downgradefI· perform what we just discussed; their types and

formalisation is presented in Figures 6 and 7. Their definition closely follows the structure of
the type approximations BtTfI

n;τ and essentially just transfers an approximated value to the
corresponding value in a deeper or shallower approximation of type τ . The cases for Unit
and Bool are optimised based on the fact that BtTfI

n;Unit = BtTfI
m;Unit (resp. BtTfI

n;Bool =

BtTfI
m;Bool) so long as n,m > 0. As mentioned, downgrade ‘forgets’ information about

the approximation, effectively dropping 1 level of precision in the backtranslation. Dually,
upgrade adds 1 level of information in the approximation. Adding this information is,
however, not precise, because those additional levels are unknown (unk). Effectively, while
downgradefIn;τ (upgradefIn;τ t) reduces to t, term upgradefIn;τ (downgradefIn;τ t) does not reduce
to t because information was lost (Example 3.5).

Example 3.5 (Upgrading after downgrading forgets information). Consider the following
term: downgradefI0;Bool inl true, which reduces to unit. If we apply upgradefI0;Bool to it,
we do not obtain back inl true but unk, which is inr unit. That is because downgrade
forgets the shape of the value it received (inl true) and upgrade cannot possibly recover that
information. �

Finally, we need to define these functions for the other backtranslations that rely on the
other backtranslation types BtTfE and BtTIE. As mentioned, the main difference between
these last two backtranslation types and BtTfI is the case for target recursive types. Recall
that these last two backtranslation types for recursive types perform the unfolding of the type
without decrementing the index. This affects these functions too: upgrading or downgrading
a term at a recursive type is like upgrading or downgrading at the unfolding of that type but
at the same index.

In the backtranslation, we generally use creation of a backtranslated value together with
a downgradefI , while we use destruction of backtranslated values together with an upgradefI .
Thus, we provide compacted functions that do exactly this, in-dnfIn;τ and case-upfIn;τ (Figure 8).
Note that the arguments to the first function is not ill-typeset: they indeed take a parameter
whose type is the inl projection of type BtTfI

n;Unit. As for the previous helpers, the compacted
versions that operate on terms of type BtTfE

n;µα.τ (and BtTIE
n;µα.τ) are different. Since there

is no destructor for BtTfE
n;µα.τ , there also is no need for a compacted version.

At this point we may ask ourselves: how can we reason about these functions, as well as
about backtranslated terms? This is what we explain next.

3.3. Relating Backtranslated Terms. If we were to use the logical relations of Figure 3
to relate a term and its backtranslation, this would simply not work. Consider λµ

I type Unit,
that is backtranslated (at any approximation n > 0) into BtTfI

n;Unit, i.e., Unit ⊎ Unit. Value
unit should normally be backtranslated to inl unit. Following the value relation in LRfx

µI

for ⊎ types, both terms need to have an inl tag, so this does not work. More importantly,
it should not work: we are not relating terms of ⊎ type, we are relating backtranslated

14:24 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

in-dnfIn;τ and case-upfIn;τ

in-dnfIn;Unit = λx : Unit. downgradefIn;Unit (inl x) in-dnfIn;Bool = λx : Bool. downgradefIn;Bool (inl x)

in-dnfIn;τ→τ ′ =
λx : BtTfI

n;τ → BtTfI
n;τ ′ .

downgradefIn;τ→τ ′ (inl x)
in-dnfIn;τ×τ ′ =

λx : BtTfI
n;τ × BtTfI

n;τ ′ .

downgradefIn;τ×τ ′ (inl x)

in-dnfIn;τ⊎τ ′ =
λx : BtTfI

n;τ ⊎ BtTfI
n;τ ′ .

downgradefIn;τ⊎τ ′ (inl x)
in-dnfIn;µα.τ =

λx : BtTfI
n;τ [µα.τ/α].

downgradefIn;µα.τ (inl x)

case-upfIn;τ = λx : BtTfI
n;τ . case

fI
n;τ

(
upgradefIn;τ (x)

)
in-dnIE

n;τ and case-upIE
n;τ = as above, without a case for τ = µα. τ

in-dnfEn;τ and case-upfEn;τ = as above, without a case for τ = µα. τ

Figure 8: Compacted functions used to manipulate backtranslated values.

terms, where the backtranslation performs a modification on the type (and thus the term)
by inserting the inl .

This is the reason we have pseudotypes and, in particular, the reason we have EmulT . We
have three EmulT s—one per backtranslation—and each follows the same intuition, which we
explain starting with EmulTfI

n;p;τ , the type of backtranslated λµ
I terms into λfx (top of Figure 9).

EmulTfI
n;p;τ is indexed by a non-negative number n, a value p ::= precise | imprecise and

the original target type τ . The number tracks the depth of type that are being related,
index p tracks the precision of the approximation (as explained below) and the original type
carries precise information of the type to expect in the backtranslation. As seen, sometimes
we have unk values (i.e., inr unit) in the backtranslation, the intuition behind their meaning
is presented in Example 3.6

Example 3.6 (Approximate values unk). Consider the BtTfI
6,Bool value: inl ⟨inl (inl unk4),

unk5⟩. This value might be used by the approximate back-translation to represent the term
⟨inl ⟨unit, true⟩ ,λx : Bool.x⟩. Our V

q
EmulTfI

·
y
▽□ specification will enforce that terms of

the form inl ⟨·, ·⟩ or inl (inl ·) represent the corresponding target constructs, but terms unk4
and unk5 can represent arbitrary terms (in this case: a pair of base values and a lambda). �

Thus, V
q
EmulTfI

n;p;τ

y
▽

regulates how these unk values occur depending on the precision
index. p = imprecise will only be used in the ≲ direction of the approximation, i.e., we
have that source termination in any number of steps implies target termination. Here,
V
q
EmulTfI

n;p;τ

y
▽

allows unk values to occur anywhere in a backtranslated term, and they
can correspond to arbitrary target terms. These constraints are simple to enforce because
with ≲ we can achieve this by making backtranslated terms diverge whenever they try to use
a unk value. This is sufficient because the ≲ approximation trivially holds when the source
term diverges.

On the other hand, p = precise will be used for the other direction of approximation:
≳. Recall that for this direction, termination of target terms in less than n steps implies
termination of source terms. In this case, the requirements on backtranslated terms are

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:25

V
q
EmulTfI

0;imprecise;τ

y
▽

def
= {(W , v,v) | v = unit} V

q
EmulTfI

0;precise;τ

y
▽

def
= ∅

V
q
EmulTfI

n+1;p;τ

y
▽

def
= {(W , v,v) | v ∈ oftype

(
EmulTfI

n+1;p;τ

)
and v ∈ oftype (τ) and

either · v = inr unit and p = imprecise

or ·

· τ = Unit and ∃v′. v = inl v′ and (W , v′,v) ∈ V JUnitK▽
· τ = Bool and ∃v′. v = inl v′ and (W , v′,v) ∈ V JBoolK▽
· τ = τ1 → τ2 and ∃v′. v = inl v′ and (W , v′,v) ∈ V

q
EmulTfI

n;p;τ1
→ EmulTfI

n;p;τ2

y
▽

· τ = τ1 × τ2 and ∃v′. v = inl v′ and (W , v′,v) ∈ V
q
EmulTfI

n;p;τ1
× EmulTfI

n;p;τ2

y
▽

· τ = τ1 ⊎ τ2 and ∃v′. v = inl v′ and (W , v′,v) ∈ V
q
EmulTfI

n;p;τ1
⊎ EmulTfI

n;p;τ2

y
▽

· τ = µα. τ and ∃v′. v = inl v′ and
∃v′. v = foldµα.τ v′(W , v′,v′) ∈ ▷ V

r
EmulTfI

n;p;τ [µα.τ/α]

z

▽

V
q
EmulTIE

n;p;τ

y
▽

is defined analogously to V
q
EmulTfE

n;p;τ

y
▽

V
q
EmulTfE

0;imprecise;τ

y
▽

def
= {(W , v, v) | v = unit} V

q
EmulTfE

0;precise;τ

y
▽

def
= ∅

V
q
EmulTfE

n+1;p;τ

y
▽

def
= {(W , v, v) | v ∈ oftype

(
EmulTfE

n+1;p;τ

)
and v ∈ oftype (τ) and

either · v = inr unit and p = imprecise

or ·

{
· omitted parts are as above

· τ = µα. τ and τ contractive in α and (W , v, v) ∈ V
r
EmulTfI

n+1;p;τ [µα.τ/α]

z

▽

Figure 9: Missing bits of the logical relation: value relation for backtranslation type (excerpts).

Note that p can be either precise or imprecise in the second clause (the ’or’) of
the n+ 1 case.

stronger: unk is ruled out by the definition of V
q
EmulTfI

n;p;τ

y
▽

within depth n, i.e., we cannot
reach unk in the steps of the world.

Example 3.7 (Relatedness with imprecise). Consider the term t ≡ inl ⟨unk42, unk42⟩. This
term will be related to ⟨t1, t2⟩ at pseudo-type EmulTfI

43;imprecise;τ1×τ2
for any terms t1 and

t2 and in any world. �

Example 3.8 (Relatedness with precise). Consider again the term t
def
= inl ⟨unk42, unk42⟩.

This term will still be related by EmulTfI
43;precise;τ×τ ′ to t

def
= ⟨t1, t2⟩ for any terms t1 and

t2, but only in worlds W such that lev (W) = 0. More precisely, our specification will state
that (W , t, t) ∈ V

r
EmulTfI

43;precise;τ1×τ2

z

▽
iff

(W , ⟨unk42, unk42⟩, ⟨t1, t2⟩) ∈ V
r
EmulTfI

42;precise;τ1 × EmulTfI
42;precise;τ2

z

▽

By the definition of the logical relation, this requires in turn that (W , unk42, t1) and
(W , unk42, t2) are in ▷ V

r
EmulTfI

42;precise;τ1

z

▽
and in ▷ V

r
EmulTfI

42;precise;τ2

z

▽
respectively.

However if lev (W) = 0, then this is vacuously true by definition of the ▷ operator, independent
of the requirements of V

r
EmulTfI

42;precise;·

z

▽
. �

14:26 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

repEmulfI
(
EmulTfI

n;p;τ

)
= BtTfI

n;τ repEmulfI (τ̂1 → τ̂2) = repEmulfI (τ̂1) → repEmulfI (τ̂2)

repEmulfI (Bool) = Bool repEmulfI (τ̂1 × τ̂2) = repEmulfI (τ̂1)× repEmulfI (τ̂2)

repEmulfI (Unit) = Unit repEmulfI (τ̂1 ⊎ τ̂2) = repEmulfI (τ̂1) ⊎ repEmulfI (τ̂2)

fxToIs
(
EmulTfI

n;p;τ

)
= τ fxToIs (τ̂1 → τ̂2) = fxToIs (τ̂1)→ fxToIs (τ̂2)

fxToIs (Unit) = Unit fxToIs (τ̂1 × τ̂2) = fxToIs (τ̂1)× fxToIs (τ̂2)

fxToIs (Bool) = Bool fxToIs (τ̂1 ⊎ τ̂2) = fxToIs (τ̂1)⊎ fxToIs (τ̂2)

repEmulfE
(
EmulTfI

n;p;τ

)
= BtTfE

n;τ repEmulfE (· · ·) = as the other cases for repEmulfI (·)

repEmulIE
(
EmulTIE

n,τ

)
= BtTIE

n,τ repEmulIE (· · ·) = as the other cases for repEmulfI (·)

fxToEq
(
EmulTfI

n;p;τ

)
= τ fxToEq (· · ·) = as the other cases for fxToIs (·)

isToEq
(
EmulTIE

n;p;τ

)
= τ isToEq (· · ·) as the other cases for fxToIs (·)

Figure 10: Missing auxiliary functions of the logical relation.

The pseudotype for the λµ
E to λfx backtranslation (EmulTfE

·) follows the same pattern
as BtTfE

· : it does not lose a step in the µα. τ case (Figure 9). At a cursory glance, it
appears that a non-contractive µα. τ ruins the well-foundedness of our induction as without
decrementing our step index, a non-contractive type seems to infinitely recurse under this
definition. Fortunately, however, the condition v ∈ oftype (τ), which with the fact that
no values exist of non-contractive types prevents this concern from arising. As before, the
pseudotype for the λµ

E to λµ
I backtranslation (EmulTIE

·) follows the same approach as
EmulTfE

· .
Finally, we can define function repEmulfI (·) that translate from source pseudo-types

into plain source types and function fxToIs (·), that translates source pseudotypes into target
types (Figure 10). As expected, these functions exists for all backtranslations and they follow
the same pattern presented here; for the sake of brevity, we only report the names and types
of the omitted ones.

4. The Three Compilers and Their Backtranslations

Our compilers (Section 4.1) and backtranslations (Section 4.2) translate between languages
as depicted in Figure 1. After showing their formalisation and proving that they relate terms
cross-language, this section proves the compilers are fully abstract (Section 4.3).

4.1. Compilers and Reflection of Fully-Abstract Compilation. The compilers (Fig-
ure 11) are all mostly homomorphic apart from what we describe below. We overload the
compilation notation and express the compiler for types and terms in the same way (we
omit the compiler for types since it is the identity). Compiler J·Kλ

fx

λµ
I

translates fix· into the
Z-combinator annotated with fold and unfold for λµ

I . We cannot use the Y combinator
since it does not work in call-by-value [NBA16, DPPK17], but fortunately the Z-combinator
does [Pie02, Sec. 5]. Compiler J·Kλ

µ
I

λµ
E

erases fold and unfold annotations since λµ
E does not

have them. Compiler J·Kλ
fx

λµ
E

is just the composition of the previous two.

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:27

J·Kλ
fx

λµ
I
: t → t and J·Kλ

µ
I

λµ
E
: t → t and J·Kλ

fx

λµ
E
: t → t

JunitKλ
fx

λµ
I
= unit Jλx : τ. tKλ

fx

λµ
I
= λx : JτKλ

fx

λµ
I
. JtKλ

fx

λµ
I

Jt.1Kλ
fx

λµ
I
= JtKλ

fx

λµ
I
.1 JxKλ

fx

λµ
I
= x

JtrueKλ
fx

λµ
I
= true Jt t′Kλ

fx

λµ
I
= JtKλ

fx

λµ
I
Jt′Kλ

fx

λµ
I

Jt.2Kλ
fx

λµ
I
= JtKλ

fx

λµ
I
.2 Jinl tKλ

fx

λµ
I
= inl JtKλ

fx

λµ
I

JfalseKλ
fx

λµ
I
= false J⟨t, t′⟩Kλ

fx

λµ
I
=
〈
JtKλ

fx

λµ
I
, Jt′Kλ

fx

λµ
I

〉
Jt; t′Kλ

fx

λµ
I
= JtKλ

fx

λµ
I
; Jt′Kλ

fx

λµ
I

Jinr tKλ
fx

λµ
I
= inr JtKλ

fx

λµ
I

Jcase t of inl x1 7→ t′ | inr x2 7→ t′′Kλ
fx

λµ
I
= case JtKλ

fx

λµ
I
of inl x1 7→ Jt′Kλ

fx

λµ
I
| inr x2 7→ Jt′′Kλ

fx

λµ
I

Jif t then t′ else t′′Kλ
fx

λµ
I
= if JtKλ

fx

λµ
I
then Jt′Kλ

fx

λµ
I
else Jt′′Kλ

fx

λµ
I

Jfixτ1→τ2 tKλ
fx

λµ
I
=

λf : J(τ1 → τ2) → τ1 → τ2K
λfx

λµ
I
.(

λx : µα.α → Jτ1 → τ2K
λfx

λµ
I
. f (λy : Jτ1K

λfx

λµ
I
. ((unfold

µα.α→Jτ1→τ2K
λfx

λ
µ
I

x) x) y)
)

fold
µα.α→Jτ1→τ2K

λfx

λ
µ
I(

λx : µα.α → Jτ1 → τ2K
λfx

λµ
I
. f (λy : Jτ1K

λfx

λµ
I
. ((unfold

µα.α→Jτ1→τ2K
λfx

λ
µ
I

x) x) y)
)

JtKλ

fx

λµ
I

J· · ·Kλ
µ
I

λµ
E
=

omitted rules are
as above

Jfoldµα.τ tKλ
µ
I

λµ
E
= JtKλ

µ
I

λµ
E

Junfoldµα.τ tKλ
µ
I

λµ
E
= JtKλ

µ
I

λµ
E

JtKλ
fx

λµ
E
=
r
JtKλ

fx

λµ
I

zλµ
I

λµ
E

, i.e., as above, without fold/unfold annotations in the compilation of fix

Figure 11: Definition of our compilers.

Correctness of the compilation (Lemmas 4.2 to 4.4 below) is proven via a series of
standard compatibility lemmas (Lemma 4.1, we report just the case for lambda since the
others follow the same structure). These, in turn, rely on a series of standard results for
these kinds of logical relations such as the fact that related terms plugged in related contexts
are still related and antireduction (i.e., if two terms step to related terms, then they are
themselves related).

Lemma 4.1 (Compatibility for λ).

if Γ, x : τ ′ ⊢ t ▽n t : τ then Γ ⊢ λx : τ ′. t ▽n λx : τ ′. t : τ ′ → τ

Lemma 4.2 (J·Kλ
fx

λµ
I

is semantics preserving).

if Γ ⊢ t : τ then Γ ⊢ t ▽n JtK
λfx

λµ
I
: τ

Lemma 4.3 (J·Kλ
µ
I

λµ
E

is semantics preserving).

if Γ ⊢ t : τ then Γ ⊢ t ▽n JtK
λµ
I

λµ
E
: τ

14:28 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

Lemma 4.4 (J·Kλ
fx

λµ
E

is semantics preserving).

if Γ ⊢ t : τ then Γ ⊢ t ▽n JtK
λfx

λµ
E
: τ

Since fully-abstract compilation requires reasoning about program contexts, we extend
the compiler to operate on them too. This follows the same structure of the compilers above
and therefore we omit this definition. Correctness of the compiler scales to contexts too
(Lemmas 4.5 to 4.7).

Lemma 4.5 (J·Kλ
fx

λµ
I

is semantics preserving for contexts).

if ⊢ C : Γ, τ → Γ′, τ ′ then ⊢ C ▽n JCK
λfx

λµ
I
: Γ, τ → Γ′, τ ′

Lemma 4.6 (J·Kλ
µ
I

λµ
E

is semantics preserving for contexts).

if ⊢ C : Γ, τ → Γ′, τ ′ then ⊢ C ▽n JCK
λµ
I

λµ
E
: Γ, τ → Γ′, τ ′

Lemma 4.7 (J·Kλ
fx

λµ
E

is semantics preserving for contexts).

if ⊢ C : Γ, τ → Γ′, τ ′ then ⊢ C ▽n JCK
λfx

λµ
E
: Γ, τ → Γ′, τ ′

With these results, we can already prove the reflection direction of fully-abstract compi-
lation (Theorems 4.8 to 4.10). The proof follows the structure depicted in the left part of
Figure 4.

Theorem 4.8 (J·Kλ
fx

λµ
I

reflects equivalence).

If ∅ ⊢ Jt1K
λfx

λµ
I
≃ctx Jt2K

λfx

λµ
I
: JτKλ

fx

λµ
I

then ∅ ⊢ t1≃ctx t2 : τ

Theorem 4.9 (J·Kλ
µ
I

λµ
E

reflects equivalence).

If ∅ ⊢ Jt1K
λµ
I

λµ
E
≃ctx Jt2K

λµ
I

λµ
E
: JτKλ

µ
I

λµ
E

then ∅ ⊢ t1≃ctx t2 : τ

Theorem 4.10 (J·Kλ
fx

λµ
E

reflects equivalence).

If ∅ ⊢ Jt1Kλ
fx

λµ
E
≃ctx Jt2K

λfx

λµ
E
: JτKλ

fx

λµ
E

then ∅ ⊢ t1≃ctx t2 : τ

Since this last compiler is the composition of the other two, the proof of Theorem 4.10
trivially follows from composing the proofs of the other two compilers.

4.2. Backtranslations and Preservation of Fully-Abstract Compilation. Function
emulatefI (·) is responsible for translating a target term of type τ into a source one of type
BtTfI

n;τ (Section 4.2.1) by relying on the machinery needed for working with BtTfI terms
from Section 3.2. This function is easily extended to work with program contexts, producing
contexts with hole of type BtTfI

n;τ . However, recall that the goal of the backtranslation is
generating a source context whose hole can be filled with source terms t1 and t2 and their
type is not BtTfI

n;τ but τ . Thus, there is a mismatch between the type of the hole of the
emulated context and that of the terms to be plugged there. Since emulated contexts work

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:29

with BtTfI values, we need a function that wraps terms of an arbitrary type τ into a value
of type BtTfI

n;τ . This function is called injectfI (Section 4.2.2) and it is the last addition we
need before the backtranslations (Section 4.2.3).

4.2.1. Emulation of Terms and Contexts. Like the compiler, the emulation must not just
operate on types and terms, but also on program contexts. Unlike the compiler, the emulation
operates on type derivations for terms and contexts since all our target languages are typed.
Thus, the emulation of a lambda would look like the following (using D as a metavariable to
range over derivations and omitting functions to work with BtTfI).

emulatefI

(
D

Γ,x : τ ⊢ t : τ ′

Γ ⊢ λx : τ . t : τ → τ ′

)
= λx :BtTfI

n;τ . emulatefI
(

D
Γ,x : τ ⊢ t : τ ′

)
However, note that each judgement uniquely identifies which typing rule is being applied
and the underlying derivation. Thus, for compactness, we only write the judgement in the
emulation and implicitly apply the related typing rule to obtain the underlying judgements
for recursive calls.

Function emulatefIn (·) (Figures 12 and 13) is indexed by the approximation index n in
order to know which BtTfI-helper functions to use. There are few interesting bits in the
emulation of terms (and of contexts). When emulating constructors for terms of type τ ,
we create a value of the corresponding backtranslation type BtTfI

n;τ and, in order to be
well-typed, we downgradefI that value by 1. Dually, emulating destructors for terms of type
τ requires upgrading the term for 1 level of precision because they are then destructed to
access the underlying type. When emulating λµ

I derivations into λfx, we need to consider the
case when foldµα.τ and unfoldµα.τ annotations are encountered. There, we know that the
backtranslation will work with terms typed at the unfolding of µα. τ , so we simply perform
the recursive call and insert the appropriate helper function to ensure the resulting term is
well-typed. Concretely, Example 4.11 shows what the emulation of a simple term is.

Example 4.11 (Emulating a term). Consider the term ∅ ⊢ true : Bool, its emulation is:

in-dnfIn;Bool true

then by unfolding the definition of in-dnfI·
= (λy : Bool. downgradefIn;Bool (inl y)) true

then by unfolding the definition of downgradefI· ()
= (λy : Bool. (λz : Bool ⊎ Unit. z)inl y) true

Which eventually reduces to value inl true, as expected. �

When emulating λµ
E derivations (in the other two emulates in Figure 12), we need

to consider the case when term t is given type τ knowing it had type σ and that σ⊜ τ
(Rule λµ

E -Type-eq). Here we rely on a crucial observation: given two equivalent types, their
backtranslation types are the same (Theorem 4.12). To understand why this is the case,
consider how the definition of BtTfI

n;τ simply unfolds recursive types without losing precision,
i.e. it essentially only looks at the depth-n unfolding of type τ and these unfoldings are equal
for equal types τ ⊜σ. With this fact, we can get away with just performing the recursive
call on the sub-derivation for t at type σ.

14:30 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

emulatefIn (·) : Γ ⊢ t : τ → t

emulatefIn (Γ ⊢ unit : Unit)
def
= in-dnfIn;Unit unit emulatefIn (Γ ⊢ true : Bool)

def
= in-dnfIn;Bool true

emulatefIn (Γ ⊢ false : Bool)
def
= in-dnfIn;Bool false emulatefIn (Γ ⊢ x: τ)

def
= x

emulatefIn (Γ ⊢ λx : τ . t: τ → τ ′)
def
= in-dnfIn;τ→τ ′

(
λx : BtTfI

n;τ . emulatefIn (Γ,x : τ ⊢ t: τ ′)
)

emulatefIn (Γ ⊢ t t′: τ)
def
=
(
case-upfIn;τ ′→τ emulatefIn (Γ ⊢ t: τ ′ → τ)

) (
emulatefIn (Γ ⊢ t′ : τ ′)

)
emulatefIn (Γ ⊢ ⟨t, t′⟩: τ × τ ′)

def
= in-dnfIn;τ×τ ′

〈
emulatefIn (Γ ⊢ t : τ), emulatefIn (Γ ⊢ t′ : τ ′)

〉
emulatefIn (Γ ⊢ t.1: τ)

def
=
(
case-upfIn;τ×τ ′ emulatefIn (Γ ⊢ t : τ × τ ′)

)
.1

emulatefIn (Γ ⊢ t.2: τ)
def
=
(
case-upfIn;τ ′×τ emulatefIn (Γ ⊢ t : τ ′ × τ)

)
.2

emulatefIn

Γ ⊢ case t of∣∣∣∣∣inl x1 7→ t′

inr x2 7→ t′′
: τ

 def
=

case
(
case-upfIn;τ1⊎τ2

emulatefIn (Γ ⊢ t : τ1 ⊎ τ2)
)

of

∣∣∣∣∣inl x1 7→emulatefIn (Γ, (x1 : τ1) ⊢ t′ : τ)

inr x2 7→emulatefIn (Γ, (x2 : τ2) ⊢ t′′ : τ)

emulatefIn (Γ ⊢ inl t: τ ⊎ τ ′)
def
= in-dnfIn;τ⊎τ ′

(
inl emulatefIn (Γ ⊢ t : τ)

)
emulatefIn (Γ ⊢ inr t: τ ⊎ τ ′)

def
= in-dnfIn;τ⊎τ ′

(
inr emulatefIn (Γ ⊢ t : τ ′)

)
emulatefIn

(
Γ ⊢

if t then t1

else t2
: τ

)
def
=

if
(
case-upfIn;Bool emulatefIn (Γ ⊢ t : Bool)

)
then emulatefIn (Γ ⊢ t1 : τ) else emulatefIn (Γ ⊢ t2 : τ)

emulatefIn (Γ ⊢ t; t′: τ)
def
=
(
case-upfIn;Unit emulatefIn (Γ ⊢ t : Unit)

)
; emulatefIn (Γ ⊢ t′ : τ)

emulatefIn (Γ ⊢ foldµα.τ t: µα. τ)
def
= in-dnfIn;τ [µα.τ/α] emulatefIn (Γ ⊢ t : τ [µα. τ/α])

emulatefIn

(
Γ ⊢ unfoldµα.τ t

: τ [µα. τ/α]

)
def
= case-upfIn;µα.τ emulatefIn (Γ ⊢ t : µα. τ)

emulateIEn (· · ·) def
= as emulatefEn (· · ·)

emulatefEn

(
Γ ⊢ t : τ τ ⊜σ

Γ ⊢ t : σ

)
def
= emulatefEn (Γ ⊢ t : τ) emulatefEn (· · ·) def

=
other cases
are as above

Figure 12: Emulation of target terms into source ones.

Theorem 4.12 (Equivalent types are backtranslated to the same type).

If τ ⊜σ then BtTfE
n;τ = BtTfE

n;σ

Finally, consider emulateIE· (·), i.e., the emulation of λµ
E terms into λµ

I : there is no
construct that adds fold/unfold annotations. This is due to the same intuition presented
before regarding the unfolding of the backtranslation type BtTIE

n;µα.τ , which is BtTIE
n;τ [µα.τ/α]

i.e, the indexing type is unfolded but the step is not decreased. Intuitively, the backtranslation
performs an n-level deep unfolding of the recursive types and operates on those. Thus,
backtranslated contexts do not use recursive types but just their n-level deep unfolding, so
their annotations are not needed.

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:31

emulatefIn (·) : (⊢ C : Γ, τ → Γ′, τ ′) → C

emulatefIn ([·])
def
= [·]

emulatefIn

(
⊢λx : τ ′.C :

Γ′′, τ ′′ →Γ, τ ′ → τ

)
def
=

in-dnfIn;τ→τ ′(
λx : BtTfI

n;τ . emulatefIn (⊢C : Γ′′, τ ′′ →Γ,x : τ ′, τ)
)

emulatefIn (⊢C t2 : Γ′, τ ′ →Γ, τ2)
def
=

(
case-upfIn;τ ′→τ emulatefIn (⊢C : Γ′, τ ′ →Γ, τ1 → τ2)

)
(
emulatefIn (Γ ⊢ t2 : τ1)

)
emulatefIn

(
⊢ C.1 :

Γ′, τ ′ → Γ, τ1

)
def
=
(
case-upfIn;τ×τ ′ emulatefIn (⊢ C : Γ′, τ ′ → Γ, τ1 × τ2)

)
.2

emulatefIn

(
⊢ C.2 :

Γ′, τ ′ → Γ, τ2

)
def
=
(
case-upfIn;τ×τ ′ emulatefIn (⊢ C : Γ′, τ ′ → Γ, τ1 × τ2)

)
.1

emulatefIn

(
⊢ ⟨C, t2⟩ :
Γ′, τ ′ → Γ, τ1 × τ2

)
def
=

in-dnfIn;τ1×τ2〈
emulatefIn (⊢ C : Γ′, τ ′ → Γ, τ1), emulatefIn (Γ ⊢ t2 : τ2)

〉
emulatefIn

(
⊢ inl C :

Γ′′, τ ′′ → Γ, τ ⊎ τ ′

)
def
= in-dnfIn;τ⊎τ ′

(
inl emulatefIn (⊢ C : Γ′′, τ ′′ → Γ, τ)

)
emulatefIn

(
⊢ inr C :

Γ′′, τ ′′ → Γ, τ ⊎ τ ′

)
def
= in-dnfIn;τ⊎τ ′

(
inr emulatefIn (⊢ C : Γ′′, τ ′′ → Γ, τ ′)

)

emulatefIn

 ⊢ case C of

∣∣∣∣inl x1 7→t1

inr x2 7→t2
:

Γ′, τ ′ → Γ, τ3

 def
=

case
(
case-upfIn;τ1⊎τ2

emulatefIn (⊢ C : Γ′, τ ′ → Γ, τ1 ⊎ τ2)
)

of

∣∣∣∣∣inl x1 7→emulatefIn (Γ, (x1 : τ1) ⊢ t1 : τ3)

inr x2 7→emulatefIn (Γ, (x2 : τ2) ⊢ t2 : τ3)

emulatefIn

(
⊢ C; t :

Γ, τ → Γ′, τ ′′

)
def
=

(
case-upfIn;Unit emulatefIn (⊢ C : Γ, τ → Γ′,Unit)

)
;

emulatefIn (Γ ⊢ t′ : τ)

emulatefIn (⊢ foldµα.τC : Γ′, τ ′ →Γ,µα. τ)
def
=

in-dnfIn;τ [µα.τ/α]

emulatefIn (⊢C : Γ′, τ ′ →Γ, τ [µα. τ/α])

emulatefIn (⊢unfoldµα.τC : Γ′, τ ′ →Γ, τ [µα. τ/α])
def
= case-upfIn;µα.τ emulatefIn (⊢C : Γ′, τ ′ →Γ,µα. τ)

emulateIEn (·) : (⊢ C : Γ , τ → Γ ′, τ ′) → C

Analogous to the case above since C are a subset of C

emulatefEn (·) : (⊢ C : Γ , τ → Γ ′, τ ′) → C

Analogous to the case above since C are a subset of C

Figure 13: Emulation of target contexts into source ones (excerpts).

In order to state that emulatefI (·) is correct, we rely on compatibility lemmas akin to
those used for compiler correctness (recall Lemma 4.1). First, note that all our logical
relations relate a source and target term at a source pseudo-type. We have extended the
logical relation to express the relation between a source and target term at pseudotype
EmulTfI, so we should use this to relate a target term and its backtranslation. Second, all
logical relations require a source environment to relate terms, and in this case we are given a
target environment (the one for the typing of the backtranslated term). To create a source

14:32 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

environment starting from this target environment, we take each bound variable and give it
backtranslation type using function toEmul (·). Finally, in these lemmas we need to account
for the different directions of the approximation we have. Thus, these compatibility lemmas
require that either n < m (so that the results only hold in worlds W with lev (W) ≤ n < m)
and p = precise or ▽ =≲ and p = imprecise, for m being the approximation level of
interest.

The intuition behind these constraints is that when p = imprecise, there is no lower
bound on the emulation depth m. However, in that case, we only get a left-to-right
approximation ≲, since the emulated term may have insufficient precision to emulate the
original term accurately (as in Example 3.7) and may diverge in cases where the emulation
precision runs out. In the case where p = precise, the lemma requires that the emulation
depth m is sufficiently large. Specifically, m is required to be at least as large as the step
bound n up to which the approximation in both directions ▽n is guaranteed. Intuitively, this
covers the scenario where the depth of the approximation is larger than the amount of steps
taken by a back-translated program. In such a scenario, the back-translation is guaranteed
to accurately emulate the behaviour of the target term and we get approximations in both
directions, but only up to the amount of steps n.

Thus, a typical compatibility lemma for emulate looks like Lemma 4.13.

Lemma 4.13 (Compatibility for λ Emulation).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise)

then if toEmulm;p (Γ,x : τ) ⊢ t ▽n t : EmulTfI
m;p;τ ′

then toEmulm;p (Γ) ⊢ in-dnfIm;τ→τ ′

(
λx : BtTfI

m;τ . t
)
▽n λx : τ . t : EmulTfI

m;p;τ→τ ′

The compatibility lemma for terms typed using type equality (Lemma 4.14) is the most
interesting of these. The proof of this lemma is surprisingly simple because most of the heavy
lifting is done by a corollary of Theorem 4.12, which proves that equivalent types have not
only the same backtranslation type but also the same term relation.

Lemma 4.14 (Compatibility lemma for emulation of type equality).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise)

then if toEmulfEm;p (Γ) ⊢ t ▽n t : EmulTfE
m;p;τ and τ ⊜σ

then toEmulfEm;p (Γ) ⊢ t ▽n t : EmulTfE
m;p;σ

Corollary 4.15 (Equivalent types have the same term relation).

if τ ⊜σ then ∀n. E
r
EmulTfE

n;p;τ

z

▽
= E

r
EmulTfE

n;p;σ

z

▽

Given a series of these kinds of compatibility lemmas, we can state that emulate is
correct.

Lemma 4.16 (Emulate is semantics-preserving).

if (m > n and p = precise) or (▽ = ≲ and p = imprecise) and Γ ⊢ t : τ

then toEmulm;p (Γ) ⊢ emulatefIm (Γ ⊢ t : τ) ▽n t : EmulTfI
m;p;τ

The key property we rely on for fully-abstract compilation though, is that emulation of
contexts is correct (this relies on correctness of emulation for terms though).

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:33

Lemma 4.17 (Emulate is semantics preserving for contexts).
if (m > n and p = precise) or (▽ = ≲ and p = imprecise) and ⊢ C : Γ′, τ ′ → Γ, τ

then ⊢ emulatefIm
(
⊢ C : Γ′, τ ′ → Γ, τ

)
▽n C : toEmulm;p

(
Γ′),EmulTfI

m;p;τ ′ → toEmulm;p (Γ),EmulTfI
m;p;τ

4.2.2. Inject and Extract. As mentioned, the backtranslated target context must be a valid
source context in order to be linked with a source term. Specifically, it must have a hole
whose type is the compilation of some source type τ . Backtranslated terms, however, have
backtranslation type BtTfE

n;τ , so we need to convert values of source type into values of
backtranslation type (and back). To do this conversion we rely on functions injectfI and
extractfI whose types and definitions are in Figure 14. Function injectfI takes a source
value of type τ and converts it into “the same” value at the backtranslation type so that
backtranslated terms can use that value. Since the backtranslation type is indexed by target
types, we use function fxToIs (·) to generate the target type related to τ . Function extractfI

does the dual and takes a value of backtranslation type and converts it into a type of some
source type. These functions are defined mutually inductively in order to contravariantly
convert function arguments to the appropriate type.

injectfIn;τ : τ → BtTfI
n;fxToIs(τ) and extractfIn;τ : BtTfI

n;fxToIs(τ) → τ

injectfI0;τ = λx : τ. unit injectfIn+1;Unit = λx : Unit. inl x injectfIn+1;Bool = λx : Bool. inl x

injectfIn+1;τ→τ ′ = λx : τ → τ ′.inl λy : BtTfI
n;fxToIs(τ).inject

fI
n;τ ′

(
x (extractfIn;τ y)

)
injectfIn+1;τ×τ ′ = λx : τ × τ ′.inl

〈
injectfIn;τ (x.1), inject

fI
n;τ ′ (x.2)

〉
injectfIn+1;τ⊎τ ′ = λx : τ ⊎ τ ′.inl case x of inl x1 7→ inl (injectfIn;τ x1) | inr x2 7→ inr (injectfIn;τ ′ x2)

extractfI0;τ = λx : BtTfI
n;fxToIs(τ). omegaτ

extractfIn+1;Unit = λx : BtTfI
n+1;Unit. case

fI
n+1;Unit x extractfIn+1;Bool = λx : BtTfI

n+1;Bool. case
fI
n+1;Bool x

extractfIn+1;τ→τ ′ = λx : BtTfI
n+1;fxToIs(τ→τ ′). λy : τ. extractfIn;τ ′

(
casefIn;fxToIs(τ→τ ′) x

(
injectfIn;τ y

))
extractfIn+1;τ×τ ′ = λx : BtTfI

n+1;fxToIs(τ×τ ′).

〈
extractfIn;τ

(
casefIn;fxToIs(τ) x.1

)
,

extractfIn;τ ′

(
casefIn;fxToIs(τ ′) x.2

)〉

extractfIn+1;τ⊎τ ′ = λx : BtTfI
n+1;fxToIs(τ⊎τ ′). case

(
casefIn;fxToIs(τ⊎τ ′) x

)
of

∣∣∣∣∣inl x1 7→inl extractfIn;fxToIs(τ) x1

inr x2 7→inr extractfIn;fxToIs(τ ′) x2

injectIEn+1;µα.τ = λx : µα. τ . injectIEn+1;τ [µα.τ/α] (unfoldµα.τ x)

extractIEn+1;µα.τ = λx : BtTIE
n+1;isToEq(µα.τ). extract

IE
n+1;µα.τ foldµα.τ (caseIEn+1;isToEq(µα.τ) x)

omitted cases are as above

injectfEn;τ
def
= as above extractfEn;τ

def
= as above

Figure 14: Definition of the inject and extract functions.

For values of the base type, these functions use the already introduced constructors
and destructors for backtranslation type to perform their conversion. For pair and sum

14:34 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

types, these functions operate recursively on the structure of the values they take in input.
For arrow type, these functions convert the argument contravariantly before converting the
result after the application of the function. When the size of the type is insufficient for these
functions to behave as expected (i.e., when n is 0) it is sufficient for injectfI to return unit
and for extractfI to just diverge.

Example 4.18 (The need for extractfI). Consider the emulated term from Example 4.11:
inl true, which is the result of emulating ∅ ⊢ true : Bool. Ideally, we want to extract that
term into type Bool at index 1, in order to strip the underlying true of the outer inl ·. That
is precisely what extractfI1;Bool does:

(extractfI1;Bool) inl true =

λx : BtTfI
1;Bool. case

fI
2;Bool x inl true

which by definition of casefI· becomes

(λy : BtTfI
1;Bool. (λx : BtT

fI
2;Bool. case x of inl x1 7→ x1 | inr x2 7→ omegaBtTfI

2;Bool
)y) inl true

After two reduction steps, this term becomes the expected true, which can be used at the
expected Bool type. �

Note that these functions are indexed by source types since they convert between them
and the backtranslation type. Thus, while two of our compilers have the same source
language (and therefore the same inject/extract), the third compiler has a different source
language, with more types: µα. τ . Thus, for the third backtranslation, we have a different,
extended version of injectIE /extractIE that converts values of recursive types into values
of backtranslation type and back. Additionally, the hole of the first two backtranslations
cannot have a recursive type, since the source type for those backtranslations is λfx.

As for the emulation of terms, we prove that these functions are correct according to the
logical relations. Terms that are related at a source type are related at backtranslation type
after an injectfI while terms that are related at backtranslation type are related at source
type after an extractfI .

Lemma 4.19 (Inject and extract are semantics preserving).

If (m ≥ n and p = precise) or (▽ = ≲ and p = imprecise)

then if Γ ⊢ t ▽n t : τ then Γ ⊢ injectfIm;τ t ▽n t : EmulTfI
m;p;fxToIs(τ)

if Γ ⊢ t ▽n t : EmulTfI
m;p;fxToIs(τ) then Γ ⊢ extractfIm;τ t ▽n t : τ

As mentioned in Section 1, Lemma 4.19 broke with the logical relation that does not
define the observation relation O (W)≈ in terms of size-bound termination. Example 4.20
below argues why this technical change is needed and what the differences are in the technical
development as opposed to the old one of Devriese et al. [DPPK17].

Example 4.20 (The Need for Size-Bound Termination). In this example, assume the logical
relation does not rely on O (·), but on the equi-termination observation relation defined below
(W(·) for Wrong).

W(W)≲
def
= {(t, t) | if lev (W) > n and t⇓nv then ∃k. t⇓kv}

W(W)≳
def
= {(t, t) | if lev (W) > n and t⇓nv then ∃k. t⇓kv}

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:35

W(W)≈
def
= W(W)≲ ∩W(W)≳

Now take the following two terms (for m >= 1):

t : BtTfI
m;(Bool⊎Unit)⊎Unit t : (Bool⊎Unit)⊎Unit

t = inl (inl (inl (inl (inr unit)))) t = inl (inl true)

Intuitively, t correctly emulates t but only one level deep: it correctly emulates the outer two
inl constructors as two inl inl · but then bails out by using inr unit, i.e., the right branch of
the · · · ⊎ Unit in the definition of BtTfI

n;τ , which models approximation failure. For these two
terms, we can fulfil the premise of Lemma 4.19 for specific n and m and prove that t and t
are related, but unfortunately we cannot prove the conclusion of the lemma, which amounts
to proving that if t terminates, then extractfI· t terminates as well.

Let us first show that the premise of the lemma is satisfied for ▽=≳ and n = 1.
This amounts to proving that t and t are in the term relation for EmulTfI

m;p;τ , where
τ = (Bool⊎Unit)⊎Unit, m = 3 and p = precise. For this, we have to prove that
they are in the term relation for any world W whose level is at most n, i.e., 1. In
the case where the level is 0 the relation is trivial, since any term is related in a world
with no steps. Since the term relation includes the value relation, it suffices to show
that: (W , t, t) ∈ V

r
EmulTfI

3;p;(Bool⊎Unit)⊎Unit

z

▽
. From the definition of that value

relation (n + 1 case) it suffices to strip t of one inl · and show that the terms are in
V
r
EmulTfI

2;p;Bool⊎Unit × EmulTfI
2;p;Unit

z

▽
. From the definition of the value relation for ⊎ it

suffices to strip each term of an inl ·, decrease the level of W by 1 (which becomes 0) and
show that the resulting terms (inl inl inr unit and inl true) are in V

r
EmulTfI

2;p;Bool⊎Unit

z

▽
.

Again from the definition of the value relation for EmulTfI
· (n + 1 case) it suffices to strip t

of one inl · and show that the terms are in V
r
EmulTfI

1;p;Bool × EmulTfI
1;p;Unit

z

▽
. From the

definition of the value relation for ⊎ it suffices to strip each term of an inl · and prove that
(inr unit and true) are in ▷ V

r
EmulTfI

1;p;Bool

z

▽
. This is vacuously true from the definition of

▷ V JK▽ since the world has 0 steps. It is worth noting that if we had taken n > 1, we would
not be able to prove that t and t are related, since the premise of ▷ V J·K▽ would be true, but
the conclusion would not be (i.e., inr unit and true are not in V

r
EmulTfI

1;p;Bool

z

▽
for any

world).
We now focus on the reductions for the problematic case of extract, for which the

conclusion of Lemma 4.19 does not hold (note that τ = (Bool ⊎ Unit) ⊎ Unit).

extractfI2,τ t

↪→3 inl (extractfI2,Bool⊎Unit (inl (inl (inr unit))))

def
= inl

((
λx : BtTfI

2;τ . case
(
casefI1;τ x

)
of

∣∣∣∣∣inl x1 7→inl (extractfI1;Bool x1)

inr x2 7→inr (extractfI1;Unit x2)

)
(inl (inl (inr unit)))

)
↪→3 inl

(
inl (extractfI1;Bool (inr unit))

)
def
= inl

(
inl
((
λx : BtTfI

1;Bool. case
fI
0;Bool x

)
(inr unit)

))
↪→3 inl

(
inl omegaBtTfI

0;Bool

)
which diverges

This breaks Lemma 4.19, since our goal was to prove that extractfI2,τ t terminates.

14:36 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

Intuitively, the problem here is that applying extract to a value like t will diverge
whenever there is an approximation failure in the value, no matter how deep in the value.
This approximation failure is ruled out by the value relation, but only for worlds with a
sufficiently large step index. For smaller worlds, whose step index is not large enough to
look at the full depth of the term, the lemma simply does not hold as demonstrated by our
example.

Fortunately, the observation relation O (·)· from Figure 2 resolves this issue, so that
we can prove the conclusion of Lemma 4.19. Specifically, given that W has level 1, by the
definition of O (W)≳ , we need to show that if t 0v then t terminates. This holds vacuously
since the premise of the implication is false: it is not true that t 0v since size (t) = 2 and
2 ̸≤ 0. In other words, the new observation relation simply rules out worlds whose step index
is not large enough to look at the full depth of the term, leaving us with only larger step
indices where the problem does not exist. �

The size-bound termination hypothesis of O (·)· shows up in the technical development
in only a few places. For the interested reader, we now give a brief, very technical and
succinct overview of where the change impacts the technical development. Readers who are
not experts or not interested are encouraged to skip ahead to Section 4.2.3.

Concretely, Lemma 4.19 relies on two auxiliary lemmas, one for injectfI· and one for
extractfI· . The latter is extended with an additional hypothesis that if ▽=≳ , then size (t) ≤
lev (W), which comes in handy in all the cases for constructors. For example, when proving
relatedness of two terms, knowing size (inl t) ≤ lev (W) lets us rule out the case when
lev (W) = 0.

Dually, in the case for injectfI· for function types, extractfI· is called on the argument of
the function. In that case we need to prove that the world under consideration has enough
steps to ensure size-bound termination of the argument of the function. This fact follows
from the additional premise in the value relation for function types.

Finally, in the compatibility lemma for application, we have to fulfil this additional
premise for function types and show that the λµ

I function argument size-bound terminates.
We get this fact by unfolding a few definitions: from the definition of logical relation and
term relation, in the lemma we have to prove that for any related context, the functions
applied to the values are in the observation relation. From the observation relation for ≳
we obtain the assumption that the λµ

I function applied to its value size-bound terminates.
From this fact we obtain that just the value size-bound terminates.

4.2.3. The Backtranslations. The backtranslation of a target context based on its type
derivation is defined as follows by relying on both emulatefI (·) and injectfI . All three
backtranslations follow exactly the same pattern and enjoy the same properties. As already
shown, the only interesting changes are in the sub-parts of the backtranslation (e.g., in the
different definitions of inject/extract). Thus, we only show the backtranslation from λµ

I to
λfx and we state properties only for this one.

Definition 4.21 (Approximate backtranslation for λµ
I contexts into λfx).

⟨⟨C,n⟩⟩λ
µ
I

λfx

def
= emulatefIn

(
⊢ C : Γ, JτKλ

fx

λµ
I
→ Γ′, τ ′

) [
injectfIn;τ ·

]
(provided ⊢ C : Γ, JτKλ

fx

λµ
I
→ Γ′, τ ′)

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:37

▽n ▽n
▽n

emulatefIn (C)[injectfIn;τ (t)]

⟨⟨C,n⟩⟩λ
µ
I

λfx

C
[

JtKλ
fx

λµ
I

]
⟨⟨C,n⟩⟩λ

µ
I

λfx [t]

▽n

C
[
JtKλ

fx

λµ
I

]
Lemma 4.2 Lemma 4.19 Lemma 4.17

L
em

m
a

4.
22

is
ex

pa
nd

ed
to

th
is

Figure 15: Diagram representing the relatedness
between different bits of the backtrans-
lation and of the compiler.

As for the compiler from λfx to λµ
E ,

we can derive the backtranslation from
λµ
E to λfx by composing the backtrans-

lations through λµ
I . Thus, ⟨⟨t⟩⟩λ

µ
E

λfx =〈〈
⟨⟨t⟩⟩λ

µ
E

λµ
I

〉〉λµ
I

λfx
. Interestingly, this means

that the type of λµ
E terms backtrans-

lated into λfx is the same as the one for
λµ
E terms backtranslated into λµ

I , i.e.,
the case for BtTfE for µα. τ should not
lose precision (as shown in Figure 5).
Notice that the first backtranslation
(⟨⟨·⟩⟩λ

µ
E

λµ
I
) directs this, since BtTIE is sim-

ply a collection of τ̂ ⊎ τ̂ ′ pseudotypes,
the second backtranslation (⟨⟨·⟩⟩λ

µ
I

λfx) sim-
ply relies on the case for BtTfI

n;τ⊎τ ′ .
Using the same approach for the correctness of emulate, we can state that the backtrans-

lations are correct. For simplicity, we provide a visual representation of this proof in Figure 15
(adapted from the work of Devriese et al. [DPP16] to our setting). All of the infrastructure
used by the backtranslation (i.e., injectfI /extractfI and the BtTfI helpers) have correctness
lemmas that follow the same structure of the one for emulatefI (·). Specifically, they relate
terms at EmulTfI, they transform target environments into source ones via function toEmul (·)
and they have a condition on the different directions of the approximation (the first line in
Lemmas 4.13, 4.14, 4.16 and 4.17).

Lemma 4.22 (Correctness of ⟨⟨·⟩⟩λ
µ
I

λfx).

If (m ≥ n and p = precise) or (▽ = ≲ and p = imprecise)

then if ⊢ C : ∅, JτKλ
fx

λµ
I
→ ∅, τ and ∅ ⊢ t ▽n t : τ then ∅ ⊢ ⟨⟨C,m⟩⟩λ

µ
I

λfx [t] ▽n C[t] : EmulTfI
m;p;τ

With correctness of the backtranslation we can prove the preservation direction of
fully-abstract compilation for all compilers, following the proof structure of Figure 4.

Theorem 4.23 (J·Kλ
fx

λµ
I

preserves equivalence).

If ∅ ⊢ t1≃ctx t2 : τ then ∅ ⊢ Jt1K
λfx

λµ
I
≃ctx Jt2K

λfx

λµ
I
: JτKλ

fx

λµ
I

Proof. Take C such that ⊢ C : ∅, JτKλ
fx

λµ
I
→ ∅, τ . We need to prove that C

[
Jt1K

λfx

λµ
I

]
⇓ ⇐⇒

C
[
Jt2K

λfx

λµ
I

]
⇓. By symmetry, we prove only that if C

[
Jt1K

λfx

λµ
I

]
⇓ then C

[
Jt2K

λfx

λµ
I

]
⇓ (HPTT).

Take n strictly larger than the steps needed for C
[
Jt1K

λfx

λµ
I

]
⇓. By Lemma 4.2 (J·Kλ

fx

λµ
I

is

semantics preserving) we have ∅ ⊢ t1 ▽n Jt1K
λfx

λµ
I

: τ . Take m = n, so we have (m ≥

n and p = precise) and therefore (▽ = ≳). By Lemma 4.22 (Correctness of ⟨⟨·⟩⟩λ
µ
I

λfx) we

14:38 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

have ∅ ⊢ ⟨⟨C,m⟩⟩λ
µ
I

λfx [t1] ≳n C
[
Jt1K

λfx

λµ
I

]
: EmulTfI

m;p;τ . By Theorem 2.2 (Relation between

Termination and Size-Bound Termination) with HPTT we have: C
[
Jt2K

λfx

λµ
I

]
 _ (HPTS). By

Lemma 2.10 (Adequacy for ≈ for LRfx
µI) for ≳ and HPTS we have: ⟨⟨C,m⟩⟩λ

µ
I

λfx [t1]⇓, which

by source contextual equivalence gives us ⟨⟨C,m⟩⟩λ
µ
I

λfx [t2]⇓ (HPTS2). Given n′ the number of

steps for HPTS2, by Lemma 4.2 (J·Kλ
fx

λµ
I

is semantics preserving) we have: ∅ ⊢ t2 ▽n′ Jt2K
λfx

λµ
I
: τ .

So by definition: ∅ ⊢ t2 ≲n′ Jt2K
λfx

λµ
I
: τ . By Lemma 4.22 (Correctness of ⟨⟨·⟩⟩λ

µ
I

λfx) (with n = n′,

p = imprecise and ▽ = ≲) we can conclude ∅ ⊢ ⟨⟨C,m⟩⟩λ
µ
I

λfx [t2] ≲n C
[
Jt2K

λfx

λµ
I

]
: EmulTfI

m;p;τ .
By Theorem 2.2 (Relation between Termination and Size-Bound Termination) with HPTS2
we have: ⟨⟨C,m⟩⟩λ

µ
I

λfx [t2] _ (HPTT2). By Lemma 2.10 (Adequacy for ≈ for LRfx
µI) for ≲ with

HPTT2 we conclude the thesis.

Theorem 4.24 (J·Kλ
µ
I

λµ
E

preserves equivalence).

If ∅ ⊢ t1≃ctx t2 : τ then ∅ ⊢ Jt1K
λµ
I

λµ
E
≃ctx Jt2K

λµ
I

λµ
E
: JτKλ

µ
I

λµ
E

Theorem 4.25 (J·Kλ
fx

λµ
E

preserves equivalence).

If ∅ ⊢ t1≃ctx t2 : τ then ∅ ⊢ Jt1Kλ
fx

λµ
E
≃ctx Jt2K

λfx

λµ
E
: JτKλ

fx

λµ
E

4.3. Full Abstraction for the Three Compilers. With the two directions of fully-abstract
compilation already proved, we can easily show that all three compilers are fully abstract.
As before, full abstraction of J·Kλ

fx

λµ
E

trivially follows from composing full abstraction for the
other two compilers.

Theorem 4.26 (J·Kλ
fx

λµ
I

is fully abstract).

∅ ⊢ t1≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K
λfx

λµ
I
≃ctx Jt2K

λfx

λµ
I
: JτKλ

fx

λµ
I

Theorem 4.27 (J·Kλ
µ
I

λµ
E

ms fully abstract).

∅ ⊢ t1≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K
λµ
I

λµ
E
≃ctx Jt2K

λµ
I

λµ
E
: Jτ Kλ

µ
I

λµ
E

Theorem 4.28 (J·Kλ
fx

λµ
E

is fully abstract).

∅ ⊢ t1≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1Kλ
fx

λµ
E
≃ctx Jt2K

λfx

λµ
E
: JτKλ

fx

λµ
E

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:39

5. Mechanisation of the Results

A full mechanization of all results in this paper in the Coq proof assistant is available at the
following url:

https://github.com/dominiquedevriese/fixismu-coq
As the results of this paper are based on the earlier results of Devriese et al. [DPP16,
DPPK17], the mechanization is based on the one of Devriese et al. [DPPK17]. It was
this mechanization effort which made us notice the errors in our earlier paper-only proofs
[PMD21] and it is the mechanization which makes us confident in our current solution
based on Size-Bound Termination. In fact, Size-Bound Termination was first used in the
Coq mechanization and subsequently backtranslated - cough - to the paper proofs.

The mechanized proof corresponds quite closely to the proofs detailed in this paper,
including the addition of Size-Bound Termination. The main technical challenge is that Coq
requires us to be more specific about certain aspects that we gloss over informally on paper.
This includes specifically the fact that all types in λµ

I and λµ
E are closed and that all recursive

types must be contractive. Interestingly, this contractiveness requirement is necessary for our
backtranslation from λµ

I to λfx to work, but not essential for the meta-theory of λµ
I itself, so

we had initially not included the requirement in the definition of the language but treated it
only as a precondition of the back-translation. This broke down because the meta-theory of
λµ
E does not make sense without the contractiveness requirement and embedding potentially

uncontractive λµ
I terms into contractive λµ

E terms does not work, so we ended up including
the requirement in the definition of λµ

I as well.

6. Discussion

At this point, it is useful to take a step back, and reflect on the meaning of our results.
As we have explained, our results demonstrate that iso- and equi-recursive types do not
fundamentally alter the expressiveness of the simply typed lambda calculus with term-level
recursion. This result can appear contradictory, since recursive types certainly make it possible
to define types and programs that do not exist in the unmodified simply typed lambda
calculus. A simple example is the type of boolean lists BoolList

def
= µX.Unit ⊎ (Bool×X).

This type is inexpressible in the simply typed lambda calculus, as is, in fact, any type that
can contain values of an a priori unbounded size. Clearly, the ability to define such types
and algorithms that work with it, is useful in a programming language. But what then does
it mean that recursive types do not increase the expressiveness of the language?

To understand this well, it is important to reflect on the meaning of programming
language expressiveness. As we have explained, we use a fully abstract embedding to express
equi-expressiveness between the two languages. Let us investigate the statement of, for
example, Theorem 4.26 again, to reflect upon what it means:

∅ ⊢ t1≃ctx t2 : τ ⇐⇒ ∅ ⊢ Jt1K
λfx

λµ
I
≃ctx Jt2K

λfx

λµ
I
: JτKλ

fx

λµ
I

The property states that if two terms t1 and t2 are contextually equivalent in λµ
I , then

they remain contextually equivalent in λµ
E . To understand what this means for the relative

expressiveness of λµ
I and λµ

E , one should regard the contextual equivalence t1≃ctx t2 as
an expressiveness challenge for λµ

I contexts. The property implies that no λµ
I context is

sufficiently expressive to distinguish the two terms t1 and t2. The fully abstract embedding

https://github.com/dominiquedevriese/fixismu-coq

14:40 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

of Theorem 4.27 then, implies that if such a challenge is unsolvable by λµ
I contexts, then it

is also unsolvable by λµ
E contexts.

It is not difficult to see that other language extensions of λµ
I do change the set of

contextual equivalences. For example, adding some form of mutable state would make it easy
to distinguish λf : Unit → Unit. f (f unit) from λf : Unit → Unit. f unit. Our results imply that
no such expressiveness differences exist between λfx, λµ

I and λµ
E .

Essentially, our proof is based on considering how a λµ
E or λµ

I context solves one of the
expressiveness challenges we consider. Specifically, when a λµ

I or λµ
E context distinguishes

two terms by terminating for one but diverging for another, we cannot simply replicate its
behaviour in λfx because it may have used values of types that are unrepresentable in λfx.
However, the terminating execution will have taken only a finite amount of steps and in
this finite amount of steps, it can only have inspected λµ

I or λµ
E values up to a finite depth.

Because of this, we can replicate the context’s behaviour in λfx using only finite types by
approximating potentially infinite recursive types up to a sufficiently large but finite depth.
It is precisely this approximation of infinite types that we define in our back-translation.

The usage of contextual equivalences as a challenge of expressiveness for program contexts
allows us to (1) clarify how our fully abstract embeddings imply a form of equi-expressiveness
and (2) understand the limitations of the presented results. Particularly, the results are
crucially based on the observation that the challenge only requires accurately emulating the
behaviour of a two particular executions and only up to the point that one terminates while
the other doesn’t. We could, for example, consider expressiveness challenges that involve not
two programs, but an infinite sequence of programs, in which case, it might not be possible
to determine a finite depth of emulation for the back-translation to work.

A well-known infinitary expressiveness challenge, for example, is to take the set of
all Turing machines, encoded as integers, and require the context to terminate iff the
corresponding Turing machine terminates. Since λfx types can only represent finite data
types (note the absence of an unbounded integer type), it is not obvious that such a context
exists, as Turing machines may use unbounded amounts of memory. Then again, in the
absence of infinite types, it is also impossible to encode the infinite set of Turing machines. If
we did have a type of unbounded naturals or integers, there would automatically be ways to
represent infinite memory, for example, as functions of type N → N. As such, it is natural to
suspect that such a version of λfx would be able to semi-decide Turing machine termination,
like λµ

I and λµ
E .

The expressiveness comparison might also yield different results in versions of λfx, λµ
I

and λµ
E with external effects. In such a setting, the observable behaviour of an expression

might consist of a potentially infinite trace of events rather than termination after a finite
amount of steps. The infinite nature of observable behaviour in such a setting might also
make it impossible to determine a bound on the required back-translation depth. In such a
setting, one could imagine an expressiveness challenge that requires the context to produce
effectful behaviour that requires an unbounded amount of memory. For example, we might
consider a set of programs that invoke a function in the context, where the context needs
to respond to each invocation by printing the full list of values received so far. If there is
an infinite amount of programs without a bound on the amount of values, then the finite
memory of λfx contexts might not allow them to remember all booleans received, unlike λµ

I
or λµ

E contexts. In such an effectful setting, an infinitary expressiveness challenge might
indeed demonstrate a way that recursive types increase the expressiveness of the language.

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:41

In this paper, it is not our goal to investigate in detail such other notions of expressiveness,
defined by infinitary expressiveness challenges and/or potentially infinite external effects.
However, it is important to understand that our results naturally pertain to forms of language
expressiveness that are measured using finitary expressiveness challenges like full abstraction.
This corresponds to the intuitive understanding that recursive types allow defining potentially
infinite types like lists and algorithms that work with them. We consider it likely that the
existence of such types and such algorithms can be detected using appropriately-chosen
infinitary expressiveness challenges. As such, the equi-expressiveness of our full abstraction
results should not be taken to mean that recursive types are useless, just that they do not
increase the ability of contexts to distinguish pairs of expressions.

7. Related Work

Two alternative formulations of equi-recursive types exist: one based on an inductive type
equality (which we dub λµ

Ei in this section) and one based on a weak type equality (which
we dub λµ

Es).
2 λµ

Ei defines an equality relation on types (≏) that, unlike ours, is inductively
defined [AF96]. Types are equal if they are the same (Rules Eq-type-Base and Eq-type-Var),
when their subparts are equal (Rules Eq-type-Bi and Eq-type-Mu) or when one is the
unfolding of the other (Rule Eq-type-Unfold). To keep track of type variables, typing equality
is defined with respect to an environment ∆ ::= ∅ | ∆;α.

τ ≏σ

(Eq-type-Symmetric)
∆ ⊢ τ ′ ≏ τ

∆ ⊢ τ ≏ τ ′
and

(Eq-type-Transitive)
∆ ⊢ τ ≏ τ ′′

∆ ⊢ τ ′′ ≏ τ ′

∆ ⊢ τ ≏ τ ′

(Eq-type-Bi)
⋆ ∈ {→,×,⊎}

∆ ⊢ τ1≏ τ ′1 ∆ ⊢ τ2≏ τ ′2
∆ ⊢ τ1 ⋆ τ2≏ τ ′1 ⋆ τ

′
2

and

(Eq-type-Base)
ι = Unit ∨
ι = Bool
∆ ⊢ ι≏ ι

and
(Eq-type-Var)

α ∈ ∆

∆ ⊢ α≏α
and

(Eq-type-Mu)
∆, α ⊢ τ ≏ τ ′

∆ ⊢ µα. τ ≏µα. τ ′
and

(Eq-type-Unfold)
∆ ⊢ τ [µα. τ/α]≏ τ ′

∆ ⊢ µα. τ ≏ τ ′

Cai et al. [CGO16] explain that this notion of type equality is strictly weaker than the
coinductive one we have used. For example, they mention two type equalities that do not
hold in λµ

Ei:

∅ ⊢ µα. α → Unit ̸≏µα. (α → Unit) → Unit ∅ ⊢ µα. µβ. α → β ̸≏µα. α → α

To understand why these equalities do not hold in the inductive formulation, consider that no
amount of unfolding of a recursive type µs will ever produce recursive types with a different
body.

(Type-λµ
Es-fold)

Γ ⊢ t : τ [µα. τ/α]

Γ ⊢ t : µα. τ

(Type-λµ
Es-unfold)

Γ ⊢ t : µα. τ

Γ ⊢ t : τ [µα. τ/α]

λµ
Es instead enforces that just a re-

cursive type and its unfolding are equiva-
lent [Ahm04, AM01, Urz95, MPS84]. This
leads to more compact typing rules and it
does not require a type equivalence relation,
effectively this is like λµ

I but without fold/unfold annotations.

2We typeset these languages in a green, verbatim font, though they appear in this section only.

14:42 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

The main difference is that in this last variant, unfoldings can only happen at the
top-level of a type of a term (i.e., when terms are of a recursive type themselves). In both
λµ
Ei and in our coinductive variant λµ

E , unfoldings can also happen inside the types. For
example, types such as (µα.B ⊎ α) → B and (B ⊎ (µα.B ⊎ α)) → B are not equivalent in
this last variant, because we can unfold µα.B ⊎ α to (B ⊎ (µα.B ⊎ α)) inside the domain of
the function type. These types are however equivalent in λµ

Ei and in λµ
E .

Since terms of λµ
Ei (or λµ

Es) can be typed in λµ
E and their semantics do not vary, our

results show that all these different formulations of equi-recursive types are equally expressive.
Since the approximate backtranslation is needed to deal with the coinductive derivations
of λµ

E , we believe that a precise backtranslation akin to that of New et al. [NBA16] can be
used to prove full abstraction for the compiler from λµ

I to λµ
Ei. We leave investigating this

for future work.
As mentioned in Section 1, the closest work to ours is that of Abadi and Fiore [AF96].

Like us, they study the relation between iso- and equi-recursive types and prove that any term
typed λµ

I can be typed in λµ
Ei and vice versa. For the backward direction, they insert cast

functions which appropriately insert fold and unfold annotations to make terms typecheck.
Additionally, they use a logic to prove that the terms with the casts are equivalent to the
original, but the logic does not come with a soundness proof. Abadi and Fiore do not connect
their results to the operational semantics in any way, unlike ours, and their results cannot
be used to derive fully-abstract compilation, as they relate one term and its compilation,
not two terms and their compilation. Finally, it is not clear if Abadi and Fiore’s Theorem
6.8 can be interpreted to imply any form of equi-expressiveness of the two languages. In
fact, what Abadi and Fiore prove is that an equi-recursive term is equal to a back-translated
term under a certain equality that is (conjectured to be) almost (but not entirely) sound for
observational equivalence in equi-recursive contexts. On the other hand, in our setting, the
interaction of the same programs with arbitrary contexts provides a measure on the relative
expressiveness of those contexts when interacting with the given programs. This difference is
key to make claims about the relative expressive power of languages, as we make.

Fully-abstract compilation derived from fully-abstract semantics models [Mil77], and
it has been initially devised to study the relative expressive power of programming lan-
guages [GN16, Mit93, Fel91].3 Fully-abstract compilation has been widely used to compare
process algebras and their relative expressiveness, as surveyed by Parrow [Par08]. Addition-
ally, researchers have argued that fully-abstract compilation is a feasible criterion for secure
compilation [Aba98, Ken06], as surveyed by Patrignani et al. [PAC19].

Proofs of fully-abstract compilation are notoriously complex and thus a large amount of
work exists in devising proof techniques for it. Most of these proof techniques require a form of
backtranslation [AB08, AB11, BA15]. Precise backtranslations generate source contexts that
reproduce the behaviour of the target context faithfully, without any approximation [NBA16,
VSPD19]. Approximate backtranslations, instead, generate source contexts that reproduce
that behaviour up to a certain number of steps. The approximate backtranslation proof
technique we use was conjectured by Schmidt-Schauß et al. [SSSNS15] and was used by
Devriese et al. [DPPK17] to prove full abstraction for a compiler from λfx to the untyped
lambda calculus (λu). Unlike these works, we deal with a family of backtranslation types that
is indexed by target types. Additionally, our compilers do not perform dynamic typechecks;
they are simply the canonical translation of a term in the source language into the target.

3Not all these works use the term “fully-abstract compilation” but their intuition is the same.

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:43

Finally, we remark that our results cannot be derived from Devriese et al. [DPP16] since the
languages in that paper have no recursive types.

Interestingly, our current result can be seen as factoring out the first phase of Devriese
et al. [DPP16]’s compiler; their result could be seen as composing one of our current results
with a second fully abstract compiler from λµ

I to λu , which takes care of dynamic type
enforcement. The full abstraction proof for this second compiler could be a lot simpler
with recursive types in the source language, as it would no longer require an approximate
backtranslation. In fact, we believe that reusable sub-results could be factored out from
other full abstraction results in the literature too. For example, we conjecture that one
could separate closure conversion from purity enforcement in New et al. [NBA16]’s compiler,
or separate contract enforcement from universal contract erasure in Van Strydonck et al.
[VSPD19]’s compiler. We hope our experience can inspire other researchers to pay more
attention to such factoring opportunities and strive to minimize compiler phases. In other
words, we believe the community could benefit from using a nanopass secure compilation
mindset, in the spirit of nanopass compilation [SWD04]. Even computationally-trivial
nanopasses like ours can be useful as they enrich the power of contexts and simplify secure
compilation proofs further downstream.

8. Conclusion

This paper demonstrates that the simply typed lambda calculus with iso- and equi-recursive
types has the same expressive power. To do so, it presented three fully-abstract compilers in
order to reason about iso- and equi-recursively typed terms interacting over a simply-typed
interface and a recursively-typed one. The first compiler translates from a simply-typed
lambda calculus with a fixpoint operator (λfx) to a simply-typed lambda calculus with
iso-recursive types (λµ

I). The second compiler translates from λfx to a simply-typed lambda
calculus with coinductive equi-recursive types (λµ

E). These two compilers demonstrate the
same expressive power of iso- and equi-recursive types on a simply-typed interface. The
third compiler translates from λµ

I to λµ
E , demonstrating equal expressiveness of iso- and

equi-recursive types on a recursively-typed interface. All fully-abstract compilation proofs
rely on a novel adaptation of the approximate backtranslation proof technique that works
with families of target types-indexed backtranslation type.

Acknowledgements

The authors thank the anonymous reviewers for detailed feedback on an earlier draft as
well as Phil Wadler for interesting comments and suggestions and Steven Keuchel for Coq
hints. This work was partially supported: by the German Federal Ministry of Education
and Research (BMBF) through funding for the CISPA-Stanford Center for Cybersecurity
(FKZ: 13N1S0762), by the Italian Ministry of Education through funding for the Rita Levi
Montalcini grant (call of 2019); by the Air Force Office of Scientific Research under award
number FA9550-21-1-0054, and by the Fund for Scientific Research - Flanders (FWO).

14:44 D. Devriese, E. Martin, and M. Patrignani Vol. 20:4

References

[AB08] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational equivalence.
In International Conference on Functional Programming, pages 157–168. ACM, 2008.

[AB11] Amal Ahmed and Matthias Blume. An equivalence-preserving CPS translation via multi-language
semantics. In Proceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’11, pages 431–444. ACM, 2011.

[Aba98] Martín Abadi. Protection in programming-language translations. In ICALP’98, pages 868–883,
1998.

[AF96] Martin Abadi and Marcelo P. Fiore. Syntactic considerations on recursive types. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science, LICS ’96, pages 242–,
Washington, DC, USA, 1996. IEEE Computer Society.

[Ahm04] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University, 2004.
[AM01] Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational

proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, September 2001.
[BA15] William J. Bowman and Amal Ahmed. Noninterference for free. In ICFP. ACM, 2015.
[BH09] Nick Benton and Chung-Kil Hur. Biorthogonality, step-indexing and compiler correctness. vol-

ume 44, pages 97–108, 2009.
[CGO16] Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System f-omega with equirecursive types

for datatype-generic programming. SIGPLAN Not., 51(1):30–43, January 2016.
[DPP16] Dominique Devriese, Marco Patrignani, and Frank Piessens. Fully-abstract compilation by

approximate back-translation. In Principles of Programming Languages, pages 164–177, 2016.
[DPPK17] Dominique Devriese, Marco Patrignani, Frank Piessens, and Steven Keuchel. Modular, Fully-

abstract Compilation by Approximate Back-translation. Logical Methods in Computer Science,
Volume 13, Issue 4, October 2017.

[Fel91] Matthias Felleisen. On the expressive power of programming languages. In Selected Papers from
the Symposium on 3rd European Symposium on Programming, ESOP ’90, pages 35–75, New York,
NY, USA, 1991. Elsevier North-Holland, Inc.

[FSC+13] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Dagand, Pierre-Yves Strub, and
Benjamin Livshits. Fully abstract compilation to JavaScript. In Principles of Programming
Languages, pages 371–384. ACM, 2013.

[GMW79] M. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanized Logic of Computation.
Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg, 1979. doi:10.1007/
3-540-09724-4.

[GN16] Daniele Gorla and Uwe Nestmann. Full abstraction for expressiveness: history, myths and facts.
Mathematical Structures in Computer Science, 26(4):639–654, 2016.

[HD11] Chung-Kil Hur and Derek Dreyer. A Kripke logical relation between ML and assembly. In
Principles of Programming Languages, pages 133–146, 2011.

[HM93] Robert Harper and John C. Mitchell. On the type structure of standard ML. ACM Transactions on
Programming Languages and Systems, 15(2):211–252, April 1993. doi:10.1145/169701.169696.

[INP13] Hyeonseung Im, Keiko Nakata, and Sungwoo Park. Contractive signatures with recursive types,
type parameters, and abstract types. In Fedor V. Fomin, Rūsin, š Freivalds, Marta Kwiatkowska,
and David Peleg, editors, Automata, Languages, and Programming, pages 299–311, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[Ken06] Andrew Kennedy. Securing the .NET Programming Model. Theoretical Computer Science, 364:311–
317, 2006.

[Mil77] Robin Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science, 4(1):1 –
22, 1977.

[Mit93] John C. Mitchell. On abstraction and the expressive power of programming languages. Science of
Computer Programming, 21(2):141 – 163, 1993.

[Mor68] James H. Morris. Lambda-Calculus Models of Programming Languages. PhD thesis, Massachusetts
Institute of Technology, 1968.

[MPS84] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive polymorphic types.
In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’84, page 165–174, New York, NY, USA, 1984. Association for Computing
Machinery. doi:10.1145/800017.800528.

https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1145/169701.169696
https://doi.org/10.1145/800017.800528

Vol. 20:4 ON THE SEMANTIC EXPRESSIVENESS OF ISO- AND EQUI-RECURSIVE TYPE 14:45

[NBA16] Max S. New, William J. Bowman, and Amal Ahmed. Fully abstract compilation via universal
embedding. In International Conference on Functional Programming, pages 103–116. ACM, 2016.

[PAC19] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to secure compilation a
survey of fully abstract compilation and related work. ACM Comput. Surv., 51(6):125:1–125:36,
January 2019.

[Par08] Joachim Parrow. Expressiveness of process algebras. Elec. Not. Theo. Comp. Sci., 209(0):173 –
186, 2008.

[PAS+15] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and Frank Piessens.
Secure compilation to protected module architectures. ACM Trans. Program. Lang. Syst., 37:6:1–
6:50, April 2015.

[Pat20] Marco Patrignani. Why should anyone use colours? or, syntax highlighting beyond code snippets.
CoRR abs/2001.11334, 2020.

[Pie02] Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.
[Plo77] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer Science,

5:223–255, 1977.
[PMD21] Marco Patrignani, Eric Mark Martin, and Dominique Devriese. On the semantic expressiveness

of recursive types. Proc. ACM Program. Lang., 5(POPL), January 2021. doi:10.1145/3434302.
[SDB19] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. StkTokens: Enforcing Well-bracketed

Control Flow and Stack Encapsulation Using Linear Capabilities. Proc. ACM Program. Lang.,
3(POPL):19:1–19:28, January 2019.

[SSSNS15] Manfred Schmidt-Schauß, David Sabel, Joachim Niehren, and Jan Schwinghammer. Observational
program calculi and the correctness of translations. Theoretical Computer Science, 577:98 – 124,
2015.

[SWD04] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. A nanopass infrastructure for compiler
education. ACM SIGPLAN Notices, 39(9):201–212, September 2004. doi:10.1145/1016848.
1016878.

[Urz95] Pawel Urzyczyn. Positive recursive type assignment. In Proceedings of the 20th International
Symposium on Mathematical Foundations of Computer Science, MFCS ’95, pages 382–391, Berlin,
Heidelberg, 1995. Springer-Verlag.

[VSPD19] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear capabilities for fully
abstract compilation of separation-logic-verified code. Proc. ACM Program. Lang., ICFP, 2019.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1145/3434302
https://doi.org/10.1145/1016848.1016878
https://doi.org/10.1145/1016848.1016878

	1. Introduction
	1.1. Using Fully Abstract Compilation to Compare Language Expressiveness
	1.2. Contributions and Outline
	1.3. Comparison with the Previous Version

	2. Languages and Cross-Language Logical Relations
	2.1. Syntax
	2.2. Static Semantics
	2.3. Dynamic Semantics
	2.4. Notions of Termination
	2.5. Logical Relations Between Our Languages

	3. Fully-abstract compilation and Approximate Backtranslations
	3.1. A Primer on Fully-Abstract Compilation and Approximate Backtranslations
	3.2. A Family of Backtranslation Types
	3.3. Relating Backtranslated Terms

	4. The Three Compilers and Their Backtranslations
	4.1. Compilers and Reflection of Fully-Abstract Compilation
	4.2. Backtranslations and Preservation of Fully-Abstract Compilation
	4.3. Full Abstraction for the Three Compilers

	5. Mechanisation of the Results
	6. Discussion
	7. Related Work
	8. Conclusion
	Acknowledgements
	References

