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Abstract. We present a generalisation of the theory of quantitative algebras of Mardare,
Panangaden and Plotkin where (i) the carriers of quantitative algebras are not restricted
to be metric spaces and can be arbitrary fuzzy relations or generalised metric spaces, and
(ii) the interpretations of the algebraic operations are not required to be nonexpansive.
Our main results include: a novel sound and complete proof system, the proof that free
quantitative algebras always exist, the proof of strict monadicity of the induced Free-
Forgetful adjunction, the result that all monads (on fuzzy relations) that lift finitary
monads (on sets) admit a quantitative equational presentation.

1. Introduction

Equational reasoning and algebraic methods are widespread in all areas of computer science,
and in particular in program semantics. Indeed, initial algebra semantics and monads are
cornerstones of the modern theory of functional programming and are used to reason about
inductive definitions, computational effects and specifications in a formal way (see, e.g.,
[PP03, RT93, Mog91, HP07]).

In the last few decades, with the growth of quantitative methods in computing (e.g.,
from artificial intelligence, probabilistic programming, cyber-physical systems, etc.) it has
become evident that traditional program equations

P = Q ⇔ the programs P and Q have the same behavior

are not always adequate to reason about the behaviour of programs that are similar, in a
certain quantitative sense, but that, strictly speaking, have different behavior. Examples
include programs that differ only by small perturbations in some of their numeric constants
such as probabilities, values measured from noisy sensors, scalars in a neural network, etc.
The intuitive notion of “similar in a quantitative sense”, has been formally captured in many
works by means of program distances d(P,Q) ∈ [0,∞] expressing numerically the divergence
in behavior. See [GJS90, DGJP99, DJGP02, DEP02, vBW01b, vBW01a, vBW05] for a
selection of influential papers.
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In a recent work [MPP16], Mardare, Panangaden and Plotkin introduced a novel abstract
mathematical “framework”, called Quantitative Algebra, which extends ordinary Universal
Algebra (see, e.g., [BS81, Wec92]) and is designed to reason about distances that are metrics.1

The standard equality judgment (s = t) of Universal Algebra is replaced by quantitative
equations (s =ϵ t), intuitively expressing that d(s, t) ≤ ϵ. In the program semantics context,
we thus have

P =ϵ Q ⇔ the difference in behavior between P and Q is at most ϵ.

The usual notion from Universal Algebra of algebra (A, {opA}op∈Σ) for a signature Σ,

that is a carrier set A together with interpretations opA for all function symbols in Σ, is
replaced by that of quantitative algebra:(

(A, dA) , {opA}op∈Σ

)
,

where the carrier is a metric space (A, dA) and the interpretations opA, for all op ∈ Σ, are
nonexpansive maps.2

A number of recent works have built on top of the results of the seminal [MPP16]. For a
non-exhaustive list, see, e.g., [MPP17, BMPP18, MV20, MSV22, MSV21, MPP21, FMS21,
BMPP21, MSV22, Adá22, DLHLP22, ADV23, GF23, JMU24, R2́4]. Key theoretical results
in quantitative algebra include: sound and complete deductive systems, existence of free
quantitative algebras generated by metric spaces, monads and composition techniques for
monads on the category Met of metric spaces and nonexpansive maps, completion results,
variety “HSP-type” theorems, etc. Applications of this framework can be found in the
identification of useful monads on Met as “free quantitative algebra” monads (see, e.g.,
[MPP16, MV20, MSV21, MSV22]) and in the quantitative axiomatisation of behavioral
metrics [BMPP18, BBLM18b, BBLM18a, MSV21, R2́4].

Furthermore, some works have proposed extensions or modifications of the framework of
[MPP16]. For instance, [MSV22] has considered quantitative algebras

(
(A, dA) , {opA}op∈Σ

)
where (A, dA) is not necessarily a metric space but, more generally, a generalised metric space3

(e.g., pseudometrics, quasimetrics [Wil31a], ultrametrics [BvBR98], semimetrics [Wil31b],
diffuse metrics [HS00, CKPR21]). In [FMS21] this type of generalisation is pushed even
further, allowing the carrier to be an arbitrary relational structure. In a different direction,
in the already mentioned [MSV22] (see also [BBLM18b] and, in the different context of
ordered algebras, [AFMS21]) the authors have considered quantitative algebras where the
interpretations opA, of all op ∈ Σ, are not required to be nonexpansive maps. This extends
considerably the applicability of the theory, as witnessed by interesting examples (e.g., from
concurrency theory in [BBLM18b] and artificial intelligence in [MSV22]).

1.1. Contributions. The main contribution of this paper is to present a generalisation of
the framework of [MPP16] in a self-contained and coherent way and to prove in full details
some fundamental results. This is partially based on the previous conference paper [MSV22]
by the authors, which is here significantly simplified and generalised. A precise comparison
between the present work and [MSV22] is discussed in Section 9.3.

1Precisely, they consider extended metrics, which are distances d : X2 → [0,∞] satisfying the following
constraints for all x, y, z ∈ X: d(x, y) = 0 ⇔ x = y, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z).

2More precisely, the interpretation opA : (An, dnA) → (A, dA) of op ∈ Σ is nonexpansive, where dnA is the
(categorical) product metric on An. See [MPP16] and Section 9 for a detailed discussion.

3The terminology “generalised metric space” has already appeared in the literature (see, e.g., [BvBR98],
[Bra00]) with slightly different meanings.
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We extend [MPP16] along two orthogonal lines, by considering quantitative algebras(
(A, dA) , {opA}op∈Σ

)
where

(1st line): the carrier (A, dA) is an arbitrary fuzzy relation space [Zad71], that is, a set
A together with an arbitrary map dA : A2 → [0, 1], and
(2nd line): the interpretations opA, for op ∈ Σ, are arbitrary functions, and not required
to be nonexpansive.

Regarding the first line of extension, considering fuzzy relation spaces dA : A2 → [0, 1]
is a somewhat arbitrary choice between the full generality of arbitrary relational structures
(as in [FMS21] and Section 9.2) and the simplicity of working with a concrete notion of
numerical distance, in the style of the original [MPP16], which is still general enough to
include, e.g., all the generalised metric spaces considered in [MSV22]. We expect that our
results can be generalised to arbitrary relational structures.

Regarding the second line of extension, allowing opA to be an arbitrary function results
in greater generality in the definition. This is a novelty with respect to both [MPP16] and
[FMS21], and it also constitutes a simplification of [MSV22], as we detail in Section 9.3.

From a logical point of view, since we work with arbitrary fuzzy relations (for which the
property x = y ⇔ d(x, y) = 0 might not hold), we have to decouple the notion of equality
from that of distance. As a result, our theory of quantitative algebras deals with two types
of formal judgments: equations and quantitative equations, respectively of the form

∀(X, dX).s = t ∀(X, dX).s =ϵ t,

where ϵ ∈ [0, 1] and s, t ∈ TermsΣ(X) are terms built from a set of variables X which is
endowed with a fuzzy relation dX : X2 → [0, 1]. We have followed the Universal Algebra
textbook [Wec92] in using the “∀” symbol, in the formal judgments, to explicitly remind that
the stated equality (equation) or bound on distance (quantitative equation) is universally
quantified over all interpretations of the variables in X.

Crucially, as the set of variables is endowed with a fuzzy relation dX , an interpretation
is required to be nonexpansive. The idea of restricting attention to interpretations that
“preserve structure” has already appeared in the literature in, e.g., [AFMS21] in the study of
ordered algebras, and [FMS21] in the context of algebras over arbitrary relational structures.
This has important consequences. Consider for example the following “gap” property:

For all x, y, if the distance between x and y is ≤ 1
2 , then the distance is in fact ≤ 1

4 .

In [MPP16] and most subsequent works, including our conference paper [MSV22], to express
the above property one needs to consider implications4 between quantitative equations:

x = 1
2
y ⇒ x = 1

4
y.

The syntactic deductive apparatus presented in [MPP16] is designed to manipulate this
type of judgments, and not just quantitative equations. In our setting, instead, the “gap”
property is directly expressed by the quantitative equation,

∀({x, y}, dX).x = 1
4
y,

where the fuzzy relation dX on the set {x, y} of variables assigns value 1
2 to (x, y):

dX(x, x) = 1, dX(x, y) = 1
2 , dX(y, x) = 1, dX(y, y) = 1.

4In [MPP16] such implications are referred to as “quantitative inferences” and denoted by x = 1
2
y ⊢ x = 1

4
y.
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Requiring interpretations to be nonexpansive then corresponds precisely to requiring that
the premise of the implication is satisfied. As a consequence, we are able to work just with
equations and quantitative equations, thus avoiding higher-level logical concepts such as
implications. This is a novelty with respect to both [MPP16] and [MSV22].

In this new setting, we can recover the framework of Mardare, Panangaden and Plotkin
as a specific “quantitative equationally” defined subclass of quantitative algebras. For
instance, we can now define, by means of equations and quantitative equations, the subclass
of quantitative algebras whose dA satisfy the constraints of a chosen generalised metric
(including, e.g., the standard conditions of metrics, as in Footnote 1), in the same way that,
in Universal Algebra, the subclass of abelian groups can be defined equationally from groups.
At the same time, it is possible to define by means of equations and quantitative equations
the subclass of quantitative algebras whose opA is nonexpansive or, more generally, Lipschitz
with constant α > 1, or other useful notions.

The following is a list of our main results (I)–(V) concerning the generalised quantitative
algebra theory presented in this work:

(I) We present a sound and complete “Birkhoff-style” deductive system to derive valid
equations and quantitative equations. The novelty of such proof system is that it
only manipulates equations and quantitative equations, rather than implications.5

(II) We show that, for any class of quantitative algebras defined by equations and
quantitative equations, the free quantitative algebra generated by a fuzzy relation
space (A, dA) always exists in the class, and we give an explicit construction.

(III) We prove that the adjunction induced by the free construction above is strictly
monadic. Strict monadicity is a key property in the context of Universal Algebra,
and the fact that it holds in our theory of quantitative algebras suggests that we
have indeed identified an “equational” (in a categorical sense) quantitative setting.

(IV) We show that all monads on FRel which are liftings of finitary Set monads, i.e., Set
monads with an equational presentation, can be presented by a given set of equations
and quantitative equations. This includes most examples from the literature on
quantitative algebras, e.g, the finite powerset monad with the Hausdorff metric and
the probability distributions monad with the Kantorovich metric [MPP16], among
others (see, e.g., [MV20, MSV21, MSV22]).

(V) We prove that all the results above, stated for the category FRel of fuzzy relation
spaces, can be restricted to any chosen category GMet of generalised metric spaces
(including, for example, the familiar category Met of metric spaces).

1.2. Organisation of the Paper. The rest of the paper is organised as follows.
In Section 2 we provide the necessary technical background regarding Universal Algebra,

Category Theory and some basic notions regarding fuzzy relations. This section is relatively
lengthy as we have included all notions required to make this article self-contained. In
Section 3 we formally introduce our theory of quantitative algebras with all its key definitions:
quantitative algebras, equations and quantitative equations, their semantics, quantitative
theories, and so on. In Subsection 3.1 we enumerate our key results, which will be proved in
the subsequent sections. Our main results (I)–(V) are formally stated and proved in Sections
4, 5, 6, 7 and 8, respectively.

5We expand the discussion on the novelties of our system with full technical details in Section 9.
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After having developed all our technical results, in Section 9 we give a formal comparison
of our theory of quantitative algebras, in three separate subsections, with

• the original framework introduced in [MPP16] by Mardare, Panangaden and Plotkin,
• the framework introduced in [FMS21] by Ford, Milius and Schröder, and
• the framework introduced in our earlier conference paper [MSV22].

Finally, we conclude in Section 10 suggesting possible future lines of work.

2. Technical Background

In this section we provide the mathematical background needed to formally state our results
and to verify the proofs. In Section 2.1 we cover material from Universal Algebra. In Section
2.2 from category theory. And in Section 2.3 we give the necessary definitions regarding
fuzzy relations and generalised metric spaces.

2.1. Universal Algebra. We recall in this section some basic definitions of Universal
Algebra. We refer the reader to [BS81] and [Wec92] as standard references, the latter is
specifically intended for computer scientists.

A signature Σ is a (possibly infinite) set of function symbols op ∈ Σ each having a finite
arity ar(op) ∈ N. Operations of arity 0 are referred to as constants.

Definition 2.1 (Σ-algebra). Given a signature Σ, a Σ-algebra A is a pair of the form
A = (A, {opA}op∈Σ), where

(1) A is a (possibly empty) set, and
(2) {opA}op∈Σ is a collection of interpretations of the operations containing, for each function

symbol in Σ, a function of type opA : Aar(op) → A.

A homomorphism between Σ-algebras (A, {opA}op∈Σ) and (B, {opB}op∈Σ) is a function
f : A→ B satisfying, for all a1, . . . , an ∈ A and n-ary op ∈ Σ,

f(opA(a1, . . . , an)) = opB(f(a1), . . . , f(an)).

We denote with Alg(Σ) both the collection (a proper class) of all Σ-algebras and the category
of Σ-algebras and their homomorphisms.

Definition 2.2 (Terms over Σ). Given a signature Σ and a set A, we denote with TermsΣ(A)
the collection of all Σ-terms built from A, i.e., the set inductively defined as follows:

a ∈ TermsΣ(A) t1, . . . , tn ∈ TermsΣ(A) =⇒ op(t1, . . . , tn) ∈ TermsΣ(A)

for all a ∈ A and n-ary op ∈ Σ.

The following definition follows the notational approach of [Wec92], denoting equations
by “∀A.s = t”, where “∀A.” explicitly indicates the set A of variables involved.

Definition 2.3 (Equations). Given a signature Σ, a Σ-equation is a triple (A, s, t) where A
is a set, such that A ∩ Σ = ∅, and s, t ∈ TermsΣ(A). We write such triple as

∀A.s = t,

and we denote with Eq(Σ) the class of all Σ-equations.
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Remark 2.4. In [Wec92] and many other accounts of Universal Algebra, the set A is
assumed to be a finite subset of some fixed infinite set of variables. Our definition, instead,
allows for a potentially infinite set A. This choice has no effect on the technical development
and on expressiveness, in the context of Universal Algebra. However, as we discuss in
Remark 3.7 later on, infinite sets of variables are used to develop our theory of quantitative
algebras. Thus, our choice here is motivated by uniformity reasons.

In the rest of the paper, the signature Σ will often be clear from the context and we
will just talk about “equations” rather than Σ-equations. We use the letters ϕ, ψ to range
over equations, and Φ,Ψ to range over classes of equations.

Definition 2.5 (Interpretation). Given a Σ-algebra A = (A, {opA}op∈Σ) and a set B, an
interpretation of B in A is a function τ : B → A. The interpretation τ extends to a function
of type J KAτ : TermsΣ(B) → A defined inductively by

JbKAτ = τ(b) Jop(t1, . . . , tn)KAτ = opA(Jt1KAτ , . . . , JtnKAτ ).

The following definition gives semantics to equations and motivates the notation “∀( ).”
we adopted, which hints at the universal quantification over interpretations of the variables.

Definition 2.6 (Semantics of equations). Given a Σ-algebra A and an equation ϕ of the
form ∀B.s = t, we say that A satisfies ϕ (written A |= ϕ) if, for all interpretations τ : B → A,
it holds that JsKAτ = JtKAτ .

Definition 2.7 (Equational theory of a class of models). Let K ⊆ Alg(Σ) be a class of
Σ-algebras. The equational theory of K is defined as the class of equations satisfied by all
Σ-algebras in K, formally

ThΣ(K) = {ϕ ∈ Eq(Σ) | ∀A ∈ K.A |= ϕ}.

Definition 2.8 (Models and equationally defined classes). Let Φ ⊆ Eq(Σ) be a class of
Σ-equations. The models of Φ are the Σ-algebras that satisfy all equations in Φ, formally

ModΣ(Φ) = {A ∈ Alg(Σ) | ∀ϕ ∈ Φ.A |= ϕ}.
If K ⊆ Alg(Σ) is such that K = ModΣ(Φ) for some Φ ⊆ Eq(Σ), we say that K is an
equationally defined (by Φ) class.

Definition 2.9 (Model theoretic entailment relation). We define a binary relation6 ⊪Set ⊆
P(Eq(Σ)) × Eq(Σ) that describes how an equation ϕ can be a consequence of a class of
equations Φ ⊆ Eq(Σ). It is defined by

Φ ⊪Set ϕ ⇐⇒ ϕ ∈ ThΣ(ModΣ(Φ)).

Therefore, the meaning of Φ ⊪Set ϕ is that any Σ-algebra that satisfies Φ (i.e., all the
equations in Φ) necessarily also satisfies the equation ϕ.

A fundamental result of Birkhoff establishes that ⊪Set coincides with the derivability
relation Φ ⊢Set ϕ of the deductive system of “equational logic” (the relation ⊢Set is inductively
defined, see, e.g., [Wec92, §3.2.4, Definition 8]). Thus, this celebrated result is a logical
axiomatisation of the entailment relation ⊪Set.

6P(Eq(Σ)) denotes the collection of all classes of Σ-equations, i.e. all subclasses of Eq(Σ). Therefore, it is
a conglomerate in the sense of [AHS06, 2.3], and so is ⊪Set.
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2.2. Category Theory. We assume basic knowledge on category theory and we recall here
only some crucial definitions and results used in the rest of the paper. We refer to [Mac71]
and [Awo10] as standard references.

Let ModΣ(Φ) denote both the class of Σ-algebras satisfying Φ and the full subcategory
of Alg(Σ) whose objects are in ModΣ(Φ). In other words, ModΣ(Φ) is the category
having as objects Σ-algebras A such that A |= ϕ, for all ϕ ∈ Φ, and as morphisms all their
homomorphisms of Σ-algebras. There is a forgetful functor UModΣ(Φ)→Set : ModΣ(Φ) → Set
mapping an algebra in ModΣ(Φ) to its carrier. We often write U when no confusion arises.

2.2.1. Monads and Adjunctions.

Definition 2.10 (Monad). Given a category C, a monad on C is a triple (M,η, µ) composed
of a functor M : C → C together with two natural transformations: a unit η : idC ⇒ M ,
where idC is the identity functor on C, and a multiplication µ : M2 ⇒M , satisfying µ ◦ ηM =
µ ◦Mη = idM and µ ◦Mµ = µ ◦ µM .

We often refer to a monad (M,η, µ) simply with its underlying functor M .

Example 2.11. For any class Φ ⊆ Eq(Σ) of Σ-equations, we have an associated monad
(TSet

Σ,Φ , η, µ) on Set, defined as follows:

• The functor TSet
Σ,Φ maps a set A to the set TermsΣ(A)/≡ of terms over A quotiented by

the relation ≡ defined as follows, for all s, t ∈ TermsΣ(A)/≡,

s ≡ t ⇐⇒ Φ ⊪Set ∀A.s = t,

and maps a function f : A→ B to TSet
Σ,Φ(f) defined by induction on terms:

TSet
Σ,Φ(f)([a]≡) = [f(a)]≡

TSet
Σ,Φ(f)([op(t1, ..., tn)]≡) = opF (A)(TSet

Σ,Φ(f)([t1]≡), ..., TSet
Σ,Φ(f)([tn]≡)),

where opF (A) is defined as opF (A)([t1]≡, ..., [tn]≡) = [op(t1, ..., tn)]≡ (the reason why we

denote the interpretation of operations by opF (A) will become clear in Example 2.17).
• For each set A, the unit ηA : A→ TermsΣ(A)/≡ sends a to [a]≡.
• For each set A, the multiplication

µA : TermsΣ(TermsΣ(A)/≡)/≡ → TermsΣ(A)/≡

is defined by the following “flattening” operation:

[s([t1]≡, . . . , [tn]≡)]≡ 7→ [s{t1/[t1]≡, . . . , tn/[tn]≡}]≡,

where s([t1]≡, . . . , [tn]≡) denotes that [t1]≡, . . . , [tn]≡ are all and only the elements of
TermsΣ(A)/≡ appearing in the term s, and s{t1/[t1]≡, . . . , tn/[tn]≡} denotes the simulta-
neous substitution in s of each of these equivalence classes with one representative.

It can be shown that, indeed, the above definitions do not depend on specific choices of
representatives of the ≡-equivalence classes.

A monad M has an associated category of M -algebras.

Definition 2.12 (Eilenberg–Moore algebra for a monad). Let (M,η, µ) be a monad on C.
An algebra for M (or M -algebra) is a pair (A,α) where A ∈ C is an object and α : M(A) → A
is a morphism such that (1) α ◦ ηA = idA and (2) α ◦Mα = α ◦ µA hold. An M-algebra
morphism between two M -algebras (A,α) and (A′, α′) is a morphism f : A → A′ in C
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such that f ◦ α = α′ ◦M(f). The category of M -algebras and their morphisms, denoted
by EM(M), is called the Eilenberg–Moore category for M . There is a forgetful functor
EM(M) → C that forgets the algebra structures.

Definition 2.13 (Monad morphism). Let (M,η, µ) and (M ′, η′, µ′) be two monads on C.
A monad morphism from M to M ′ is a natural transformation λ : M ⇒M ′ such that (1)

λ ◦ ηM = ηM
′

and (2) λ ◦ µM = µM
′ ◦ λM ′ ◦Mλ. It is a monad isomorphism whenever each

component λX : MX →M ′X is an isomorphism in C.

Proposition 2.14 [BW05, Corollary of Theorem 6.3 in Chapter 3]. Let (M,η, µ) and
(M ′, η′, µ′) be two monads on C. There is a monad isomorphism M ∼= M ′ if and only if
there is an isomorphism of categories EM(M ′) ∼= EM(M) that commutes with the forgetful
functors to C.

Monads can be defined as arising from adjunctions.7

Proposition 2.15 [Awo10, Proposition 10.3]. Every adjunction F : C → D ⊣ U : D → C
defines a monad (M,η, µ) where

• M is the functor U ◦ F ,
• the unit η : idC ⇒M of the monad is the unit of the adjunction, and
• the multiplication µ : M2 ⇒M is given by µX = U(εF (X)), where ε : F ◦ U → idD is the
counit of the adjunction.

As we discuss in the following section, the monad of quotiented terms from Example 2.11
arises from the adjunction between the forgetful functor U : ModΣ(Φ) → Set and the
functor mapping sets to free objects in ModΣ(Φ).

2.2.2. Free Objects.

Definition 2.16 (Free object). Let U : D → C be a functor, X ∈ C, Y ∈ D and α :
X → U(Y ). We say that Y is a U -free object generated by X with respect to α if the
following UMP (Universal Mapping Property) holds: for every B ∈ D and every C-morphism
f : X → U(B), there exists a unique D-morphism g : Y → B such that f = U(g) ◦ α, as
indicated in the following diagram.

Y X U(Y )

B U(B)

U(g)g

α

f

We say that the category D has U -free objects if for every X ∈ C there exist an object
DX ∈ D and a function αX : X → U(DX) such that DX is a U -free object generated by X
with respect to αX . When they exist, U -free objects are unique up to isomorphism.

If the functor U and the map αX are clear from the context, we just refer to “the free
object in D generated by X” instead of “U -free object generated by X with respect to αX”.

Example 2.17. It is a standard result in Universal Algebra that the forgetful functor
U : ModΣ(Φ) → Set has U -free objects. Concretely, for any set A, take the algebra

F (A) = (TermsΣ(A)/≡, {opF (A)}op∈Σ), where TermsΣ(A)/≡ and opF (A) are defined as in
Example 2.11. Then F (A) is the U -free object generated by A with respect to the function
α : A→ F (A) that sends every a ∈ A to α(a) = [a]≡.

7See, e.g., [Awo10, Chapter 9] for several equivalent definitions.
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The following proposition states that if U : D → C is a functor such that D has U -free
objects, then there is a functor F , called the free functor, which assigns to objects of C the
U -free object they generate, and which gives an adjunction F ⊣ U .

Proposition 2.18 [Mac71, §IV.1, Theorem 2.(ii)]. Let U : D → C be a functor such that
free U -objects exist in D, i.e., such that for every X ∈ C there exist an object DX ∈ D and
a function αX : X → U(DX) such that DX is the U -free object generated by X with respect
to αX . Then U : D → C has a left adjoint F : C → D (F ⊣ U) with F the functor mapping
an object X to the U-free object DX and mapping a morphism f : X → Y to the unique
D-morphism F (f) : F (X) → F (Y ) that makes the following diagram commute:

F (X) X U(F (X))

F (Y ) U(F (Y ))

U(F (f))F (f)

αX

αY ◦f

From this adjunction, we can build the monad of U -free objects using Proposition 2.15.

Example 2.19. In Example 2.17 we have identified U -free objects, for U : ModΣ(Φ) → Set.
As explained in Proposition 2.18, we can then define a functor F such that we obtain an
adjunction F ⊣ U . By Proposition 2.15, we have a monad with underlying functor U ◦ F ,
which is exactly the monad of quotiented terms TSet

Σ,Φ from Example 2.11.

2.2.3. Strict Monadicity.

Proposition 2.20 (Comparison functor). Let F : C → D ⊣ U : D → C be an adjunction,
and let UF be the induced monad. Then there exists a functor K : D → EM(UF ) called the
(canonical) comparison functor (see, e.g., [Mac71, §VI.3, Theorem 1] for its construction).

There are interesting cases in which this comparison functor is an isomorphism. In such
cases, we say that the functor is strictly monadic.

Definition 2.21 (Strict monadicity). Let F : C → D ⊣ U : D → C be an adjunction. We
say that the adjunction is strictly monadic if the comparison functor is an isomorphism.
Given a functor U : D → C, we say that U is strictly monadic if it has a left adjoint F such
that the adjunction is strictly monadic.

The next theorem, due to Beck, gives useful equivalent characterisations of strict
monadicity relying on coequalizers.

Proposition 2.22 (Beck’s monadicity theorem). Let F : C → D ⊣ U : D → C be an
adjunction. The following are equivalent:

(1) U is strictly monadic.
(2) U : D → C strictly creates coequalizers for all D-arrows f, g such that U(f), U(g) has

an absolute coequalizer (in C).
(3) U : D → C strictly creates coequalizers for all D-arrows f, g such that U(f), U(g) has a

split coequalizer (in C).
where

• an absolute coequalizer (in C) of C-arrows f, g : A→ B is a C-arrow e : B → C such that
for all functors F , F (e) is a coequalizer of F (f), F (g).
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• a split coequalizer (in C) of C-arrows f, g : A → B is a C-arrow e : B → C such that
e◦f = e◦g and such that there exist arrows s : C → B and t : B → A such that e◦s = idC ,
f ◦ t = idB and g ◦ t = s ◦ e.

• U : D → C strictly creates coequalizers for the D-arrows f, g if for any coequalizer
e : U(B) → C of U(f), U(g) (in C), there are unique D and u : B → D (in D) such that
U(D) = C, U(u) = e and u is a coequalizer of f, g.

For a proof of Proposition 2.22, see, e.g., [Mac71, §VI.7, Theorem 1].8

The following result is well known and its proof, which indeed relies on the characteri-
sations of strict monadicity given by Beck’s theorem (Proposition 2.22), can be found in
[Mac71, §VI.8, Theorem 1].

Proposition 2.23. For any signature Σ and class Φ of equations over Σ, the functor
U : ModΣ(Φ) → Set is strictly monadic.

We need one last result on strict monadicity due to Bourn [Bou92, Proposition 5] and
sometimes called “cancellability of monadicity” (see also [AM23, Corollary 5.6]).

Proposition 2.24. In the diagram of adjunctions below, if U and U ◦U ′ are strictly monadic,
then so is U ′.

C D E
U ′

F ′

U

F

⊣ ⊣

As recalled in Example 2.19, the monad TSet
Σ,Φ arises from the adjunction F ⊣ U ,

where U : ModΣ(Φ) → Set and F is the functor mapping sets to U -free objects. Hence,
Proposition 2.23 allows us to conclude that the category EM(TSet

Σ,Φ) of Eilenberg-Moore

algebras for TSet
Σ,Φ is isomorphic to the category ModΣ(Φ) of models of Φ. Moreover, thanks

to Proposition 2.14, if TSet
Σ,Φ is isomorphic to a monad M , then there is an isomorphism

EM(M) ∼= EM(TSet
Σ,Φ) ∼= ModΣ(Φ), and we can view M -algebras as the models of Φ. This

leads us to define monad presentations.

Definition 2.25 (Set presentation). A presentation of a monad (M,η, µ) on Set is a class
of equations Φ ⊆ Eq(Σ) along with a monad isomorphism TSet

Σ,Φ
∼= M .

Example 2.26. We give two main examples of monads on Set with a presentation.

(1) The finite non-empty powerset monad P : Set → Set (see, e.g., [Jac16, Example 5.1.3])
is presented by the theory of semilattices (see, e.g., [BSV22, p. 13]) comprising a binary
operation ⊕ and the following equations stating that ⊕ is idempotent, commutative,
and associative:

∀x.x⊕ x = x, ∀x, y.x⊕ y = y ⊕ x, and ∀x, y, z.(x⊕ y) ⊕ z = x⊕ (y ⊕ z). (2.1)

(2) The finitely supported distributions monad D : Set → Set (see, e.g., [Jac10, Eq. 4]) is
presented by the theory of convex algebras (see, e.g., [Jac10, Theorem 4]) comprising a
binary operation +p for every p ∈ (0, 1) and the following equations for every p, q ∈ (0, 1):

∀x.x+p x = x, ∀x, y.x+p y = y+1−p x, and ∀x, y, z.(x+q y)+p z = x+pq (y+ p(1−q)
1−pq

z). (2.2)

8Our Definition 2.21 of strict monadicity coincides with that used in [Mac71, p. 143], where however it is
just called monadicity. We chose to use the adjective strict as it has become standard terminology in recent
literature, where monadicity has a different meaning (see e.g. [Rie17, p. 167]).
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2.3. Fuzzy Relations and Generalised Metric Spaces. We define here fuzzy relation
spaces, which are sets equipped with a [0, 1]-valued function (see, e.g., [Zad71]).

Definition 2.27. A fuzzy relation on a set A is a map d : A×A→ [0, 1]. The pair (A, dA)
is called a fuzzy relation space (often, we directly call (A, dA) a fuzzy relation or FRel
space as well). A morphism between two fuzzy relation spaces (A, dA) and (B, dB) is a map
f : A→ B which is nonexpansive, namely, for all a, a′ ∈ A,

dB(f(a), f(a′)) ≤ dA(a, a′).

We denote by FRel the category of fuzzy relation spaces and nonexpansive maps.

We denote with UFRel→Set : FRel → Set the forgetful functor defined as expected,
and with U when no confusion arises. We denote with D the discrete functor mapping a
set A ∈ Set to the discrete fuzzy relation (A, dA⊥) defined by letting dA⊥(a, a′) = 1 for all
a, a′ ∈ A, and acting as identity on morphisms f : A → B ∈ Set. We indeed note that
D(f) : (A, dA⊥) → (B, dB⊥) is always nonexpansive, given the definition of dA⊥.

Proposition 2.28. The functor D is left adjoint to U , that is, D ⊣ U .

This yields an isomorphism FRel(DA, (B, dB)) ∼= Set(A,U(B, dB)), so every function
between a set A and U(B, dB) is nonexpansive when A is endowed with the discrete fuzzy
relation.

We will also be interested in full subcategories of FRel obtained by restricting to fuzzy
relations that satisfy certain constraints, expressed by means of universally quantified logical
implications in the language of first-order logic. These are often referred to as Horn sentences.
We call them L -implications to avoid any confusion or overloading with similar (but distinct)
concepts appeared in the literature around quantitative algebras (see, e.g., discussion in
Section 9.2).

Definition 2.29 (L -implications). Let L be the language of first-order logic with the
equality binary predicate ( = ) and with, for each ϵ ∈ [0, 1], a binary predicate (d( , ) ≤ ϵ).
We call L -implications all closed formulas H of this language that have the following shape:

H = ∀x1, . . . , xn.
(( ∧

1≤i≤k

Gi

)
⇒ F

)
,

where the subformulas Gi and F are atomic, i.e., Gi and F are either of the form (x = x′)
or (d(x, x′) ≤ ϵ), for some ϵ ∈ [0, 1] and for x, x′ ∈ {x1, ..., xn}.

Such formulas are interpreted on fuzzy relations (A, dA) as in standard first-order logic,
with equality ( = ) being the identity relation on A, and the binary predicate d( , ) ≤ ϵ
holding true whenever dA assigns distance less than or equal to ϵ.

Definition 2.30 (Semantics of L -implications). Given a fuzzy relation (A, dA) and an
L -implication H of the form described in Definition 2.29, we say that (A, dA) satisfies H
(notation: (A, dA) |=L H) if for all functions ι : {x1, ..., xn} → A,

if (A, dA) |=L
ι Gi for all 1 ≤ i ≤ k, then (A, dA) |=L

ι F ,

where (A, dA) |=L
ι x = x′ holds if ι(x) = ι(x′), and (A, dA) |=L

ι d(x, x′) ≤ ϵ holds if
dA(ι(x), ι(x′)) ≤ ϵ.

Given a (possibly infinite) set H of L -implications, we say that (A, dA) satisfies H,
written (A, dA) |=L H, if for all H ∈ H, (A, dA) satisfies H.
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Consider, for example, the following useful L -implications H:

∀x. x = x =⇒ d(x, x) ≤ 0 (2.3)

∀x, y. d(x, y) ≤ 0 =⇒ x = y (2.4)

∀x, y. d(x, y) ≤ ϵ =⇒ d(y, x) ≤ ϵ (2.5)

∀x, y, z. d(x, y) ≤ ϵ ∧ d(y, z) ≤ δ =⇒ d(x, z) ≤ γ (where γ = ϵ+ δ) (2.6)

and the set HMet consisting of all instances (for all ϵ, δ ∈ [0, 1]) of these L -implications:

HMet = {2.3, 2.4, 2.5, 2.6}.

It is easy to see that (A, dA) |=L HMet if and only if the fuzzy relation dA is a metric. Indeed
(1) expresses that each point is at distance zero from itself, (2) states that points at distance
zero must be equal, (3) expresses symmetry (dA(a, b) = dA(b, a)) of the fuzzy relation and (4)
expresses the triangular inequality property. Similarly, the subset HPMet = {2.3, 2.5, 2.6} is
satisfied exactly by the fuzzy relations (A, dA) such that dA is a pseudo-metric [BvBR98]. In
the literature, many other generalisations of metrics are defined as fuzzy relations satisfying
a list of axioms expressible with L -implications. Important examples include: quasimetrics
[Wil31a], ultrametrics [BvBR98], semimetrics [Wil31b], dislocated metrics [HS00] also called
diffuse metrics in [CKPR21], rectangular metrics [Bra00], and b-metrics [Cze93].

Definition 2.31 (GMet categories). Given a collection H of L -implications, we denote
with GMetH (or just GMet if H is clear from the context or abstracted away) the full
subcategory of FRel whose objects are fuzzy relations (A, dA) such that (A, dA) |=L H and
whose morphisms are all the nonexpansive maps between them. We call objects of GMet
generalised metric spaces or GMet spaces.

Note that, in accordance with the above definition, we have that FRel = GMet∅, i.e.,
FRel is the special case of H being empty. Given its importance, we reserve the symbol
Met for the category of metric spaces and nonexpansive maps, i.e., Met = GMetHMet

.
Given any GMet category, we denote with UGMet→Set : GMet → Set the forgetful

functor defined as the restriction of UFRel→Set to GMet, which we simply denote by U
when no confusion arises.

Remark 2.32. The terminology “generalised metric space” has appeared in the literature
with different meanings. For instance, in [BvBR98], generalised metric spaces are fuzzy
relations satisfying reflexivity (2.3) and triangular inequality (2.6). Our definition is thereby
a further generalisation, which also covers as special cases the spaces considered in [BvBR98].

Example 2.33. Here are several examples of monads on GMet categories.

(1) On FRel, we can define a monad P ′ : FRel → FRel inspired by the powerset monad
P from Example 2.26. Given an FRel space (X, d), we define P ′(X, d) to have the
carrier PX and the fuzzy relation

d′ : PX × PX → [0, 1], d′(S, T ) =

{
d(x, y) if S = {x} and T = {y}
1 otherwise

,

and for any nonexpansive map f : (X, dX) → (Y, dY ), we let the underlying function of
P ′f be Pf , which is nonexpansive whenever f is. The unit and multiplication are also
defined as those of P which makes it easy to verify their naturality and the other monad
laws (they hold in Set, so they must hold in FRel because UFRel→Set is faithful).
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(2) On Met, there is a similar monad sending a metric (X, d) to PX with the Hausdorff
metric lifting of d (see, e.g., [MV20, Definition 18]). There is also an analog to the
distributions monad D , which sends (X, d) to DX equipped with the Kantorovich metric
lifting of d (see, e.g., [MV20, Definition 20]).

(3) In [MSV22, §5.3], we studied D LK, another variant of D on the category of diffuse metric
spaces [CKPR21, Definition 4.9], namely, fuzzy relations satisfying the L -implications
for symmetry (2.5) and triangle inequality (2.6). It sends a diffuse metric space (X, d)
to D LK(X, d) = (DX, d LK), which is DX equipped with the  Lukaszyk–Karmowski ( LK
for short) distance d LK defined on all ∆1,∆2 ∈ DX by

d LK(∆1,∆2) =
∑

x,x′∈X∆1(x)∆2(x′)d(x, x′). (2.7)

It is a consequence of [MSV22, Theorem 5.6] that D LK is a monad with the action on
functions, the unit, and the multiplication all defined as those of D .

3. Presentation of the Framework and Results

In this section we present our framework of Universal Quantitative Algebra. We will introduce
it following the same pattern as in the background Section 2.1 on Universal Algebra. We
begin with the central notion of this section, the concept of quantitative algebra.

Definition 3.1 (Quantitative Algebra). Given a signature Σ, an FRel quantitative Σ-algebra
A, or just a quantitative algebra for short, is a triple A = (A, dA, {opA}op∈Σ) where

• (A, dA) is an FRel space (Definition 2.27), and
• (A, {opA}op∈Σ) is a Σ-algebra (Definition 2.1).

Remark 3.2. Note that, in contrast with the definition in [MPP16] (and with much subse-
quent literature [MPP17, MV20, BMPP21, MPP21]), under our definition the distance dA
is not required to satisfy the axioms of metric spaces, as it can be an arbitrary fuzzy relation,
and the interpretations opA of the operations in Σ are not required to be nonexpansive and
can be arbitrary functions. See Section 9.1 for a more detailed comparison.

Definition 3.3 (Homomorphisms). Given a signature Σ and quantitative algebras

A = (A, dA, {opA}op∈Σ) B = (B, dB, {opB}op∈Σ),

a homomorphism (of quantitative algebras) is a function f : A→ B such that

• f : (A, dA) → (B, dB) is nonexpansive (Definition 2.27), and
• f is a homomorphism between (A, {opA}op∈Σ) and (B, {opB}op∈Σ) (see Definition 2.1).

An isomorphism of quantitative algebras is, as usual, a homomorphism that has an inverse
homomorphism. It can equivalently be defined as a bijective homomorphism that is an
isometry (i.e., that preserves distances: dB(f(a), f(a′)) = dA(a, a′)).

We denote with QAlgFRel(Σ), or often just QAlg(Σ), the category of FRel quantitative
Σ-algebras and their homomorphisms. We denote with UQAlg(Σ)→FRel and UQAlg(Σ)→Alg(Σ)

the forgetful functors defined as expected.

Definition 3.4 (Equations and quantitative equations). An FRel Σ-equation, or just an
equation for short, is a judgment of the form

∀(A, dA).s = t,
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where (A, dA) is an FRel space, with A∩Σ = ∅, and s, t ∈ TermsΣ(A). An FRel quantitative
Σ-equation, or just a quantitative equation for short, is a judgment of the form

∀(A, dA).s =ϵ t,

where (A, dA) is an FRel space, with A ∩ Σ = ∅, s, t ∈ TermsΣ(A), and ϵ ∈ [0, 1].
We use the letters ϕ, ψ to range over equations and quantitative equations, and we

denote with QEq(Σ), the proper class of all FRel Σ-equations and quantitative Σ-equations.

Definition 3.5 (Interpretations). Given an FRel quantitative Σ-algebra A with underlying
fuzzy relation (A, dA) and an FRel space (B, dB), an interpretation of (B, dB) in A is a
nonexpansive function τ : (B, dB) → (A, dA). The interpretation τ extends uniquely to a
function of type J KAτ : TermsΣ(B) → A specified as in Definition 2.5.

In accordance with the above definition, all interpretations in a quantitative algebra are
nonexpansive. While this prevents any confusion, we will sometimes stress that fact as this
is often crucial in some statements and proofs.

Definition 3.6 (Semantics of equations and quantitative equations). Let A = (A, dA, {opA})
be an FRel quantitative Σ-algebra. Let ϕ1 and ϕ2 be the following FRel Σ-equation and
quantitative Σ-equation:

ϕ1 = ∀(B, dB).s = t ϕ2 = ∀(B, dB).s =ϵ t.

We say that A satisfies ϕ1, written A |= ϕ1, if for all nonexpansive interpretations τ :
(B, dB) → (A, dA) of (B, dB) in A, JsKAτ = JtKAτ holds. Similarly, we say that A satisfies ϕ2,
written A |= ϕ2, if for all nonexpansive interpretations τ : (B, dB) → (A, dA) of (B, dB) in
A, dA(JsKAτ , JtKAτ ) ≤ ϵ holds.

Remark 3.7. We highlight (cf. Remark 2.4) that the FRel space (A, dA), in FRel equations
and quantitative equations, is not required to be finite and can have any cardinality.

This flexibility is not necessary in Universal Algebra because an equation ∀A.s = t is
always equivalent (i.e., satisfied by the same algebras) to the equation ∀V.s = t, where V
is the set of variables occurring in s and t, which is finite. In contrast, an FRel equation
∀(A, dA).s = t is in general not equivalent to ∀(V, dV ).s = t, where V is the set of variables
occurring in s and t, and dV is dA restricted to V × V .

For instance, take A = {xr | r ∈ [0, 1]} with the Euclidean metric (dA(xr, xs) = |r − s|),
and the FRel equation ∀(A, dA).x0 = x1. Then, take the FRel equation ∀(V, dV ).x0 = x1

where V contains two variables x0 and x1, at distance 1 from each other and 0 from
themselves. These two FRel equations are not equivalent. To see this, take the empty
signature Σ = ∅ and consider the quantitative Σ-algebra V = (V, dV , ∅). We have that V does
not satisfy ∀(V, dV ).x0 = x1, since the identity map idV is a nonexpansive interpretation of
(V, dV ) in V with idV (x0) ̸= idV (x1). In contrast, V satisfies ∀(A, dA).x0 = x1 because any
nonexpansive map τ : (A, dA) → (V, dV ) must be constant, yielding τ(x0) = τ(x1). Indeed,
for any two r, s ∈ (0, 1), dA(xr, xs) < 1 means that τ must send xr and xs to the same point
x ∈ V in order to be nonexpansive, and, since dA(x0, x1/2) = dA(x1/2, x1) < 1, τ must send
x0 and x1 to τ(x1/2) = x as well.

We do not know whether taking equations and quantitative equations with finitely
many variables is enough to express everything which can be expressed with infinitely many
variables. We formally state this open problem in Section 10.

Definition 3.8 (Quantitative equational theory of a class of models). Let K ⊆ QAlg(Σ) be
a class of FRel quantitative Σ-algebras. The quantitative equational theory of K is defined
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as the class of FRel Σ-equations and quantitative Σ-equations satisfied by all quantitative
algebras in K, formally

QThΣ(K) = {ϕ ∈ QEq(Σ) | ∀A ∈ K. A |= ϕ}.

Definition 3.9 (Models and quantitative equationally defined classes). Let Φ ⊆ QEq(Σ)
be a class of FRel Σ-equations and quantitative Σ-equations. The models of Φ are the
quantitative algebras that satisfy all equations and quantitative equations in Φ, formally

QModΣ(Φ) = {A ∈ QAlg(Σ) | ∀ϕ ∈ Φ. A |= ϕ}.

If K ⊆ QAlg(Σ) is such that K = QModΣ(Φ) for some Φ ⊆ QEq(Σ), we say that K is a
quantitative equationally defined (by Φ) class.

Note that, following the above definition, we simply have QAlg(Σ) = QModΣ(∅). With
some abuse of notation, we also denote with QModΣ(Φ) the full subcategory of QAlg(Σ)
whose objects are in QModΣ(Φ). In other words, QModΣ(Φ) is the category having as
objects quantitative Σ-algebras A such that A |= ϕ, for all ϕ ∈ Φ, and as morphisms all their
homomorphisms of quantitative algebras.

We denote with UQModΣ(Φ)→FRel the forgetful functor defined as the restriction of

UQAlg(Σ)→FRel, or, equivalently, the composite QModΣ(Φ) ↪→ QAlg(Σ)
U−→ FRel. As

usual, this is most often just denoted by U when no confusion arises.

Example 3.10. To give a quantitative equationally defined class of models, we can convert
the equations defining semilattices from Example 2.26 to FRel equations by putting the
discrete fuzzy relation d⊥ (defined before Proposition 2.28) on the set of variables. We have

Φ =

{
∀({x}, d⊥).x⊕ x = x, ∀({x, y}, d⊥).x⊕ y = y ⊕ x, and

∀({x, y, z}, d⊥).(x⊕ y) ⊕ z = x⊕ (y ⊕ z)

}
. (3.1)

Since any function from a discrete space into a quantitative algebra A is nonexpansive, A
satisfies each of these equations if and only if the underlying (non-quantitative) algebra
UQAlg(Σ)→Alg(Σ)A satisfies those of (2.1). Therefore, QModΣ(Φ) is the category of semi-
lattices equipped with a fuzzy relation, with morphisms being nonexpansive semilattice
homomorphisms. Note that the equations in Φ do not impose any relationship between the
semilattice structure and the fuzzy relation. As an example of such a relationship, following
[MPP16], we consider the requirement that the join operation ⊕ is nonexpansive. This can
be expressed by the following set of quantitative equations, one for each pair ϵ, ϵ′ ∈ [0, 1],
where X = {x, y, x′, y′}, d(x, y) = ϵ, d(x′, y′) = ϵ′, and all other distances are 1:

∀(X, d).x⊕ x′ =max{ϵ,ϵ′} y ⊕ y′. (3.2)

Example 3.11. For the signature of convex algebras Σ = {+p | p ∈ (0, 1)} in Example 2.26,
the nonexpansiveness requirement is imposed by quantitative equations like those of (3.2),
replacing ⊕ with +p for each p ∈ (0, 1) and ϵ, ϵ′ ∈ [0, 1]:

∀(X, d).x+p x
′ =max{ϵ,ϵ′} y +p y

′. (3.3)

The construction of the monad D LK in Example 2.33.(3) relies on [MSV22, Theorem 5.6]
which characterises the quantitative algebra on D LK(X, d) where +p is interpreted as the
convex combination (∆1,∆2) 7→ p∆1 + p̄∆2, where p̄ = (1 − p). This operation is not
nonexpansive in the sense of [MPP16], so this quantitative algebra does not satisfy the
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quantitative equations in (3.3). For instance, taking ∆1 and ∆2 to be Dirac distributions at
x and y respectively, and letting d(x, x) = d(y, y) = 0 and d(x, y) = d(y, x) = 1, we have

d LK(p∆1 + p̄∆2, p∆1 + p̄∆2)
(2.7)
= 2p(1 − p) ̸≤ 0

(2.7)
= max{d LK(∆1,∆1), d LK(∆2,∆2)}.

This illustrative example shows that sometimes useful operations, acting on spaces
equipped with distances, fail to be nonexpansive. Our framework can handle such situations,
unlike the original framework of [MPP16] where nonexpansiveness is required.

Definition 3.12 (Model theoretic entailment relation). Let Φ ⊆ QEq(Σ) be a class of
FRel Σ-equations and quantitative Σ-equations. We define a binary (consequence) relation9

⊪FRel ⊆ P(QEq(Σ)) × QEq(Σ) (or just ⊪ for short) as follows:

Φ ⊪FRel ϕ ⇐⇒ ϕ ∈ QThΣ(QModΣ(Φ)).

Thus, the meaning of Φ ⊪FRel ϕ is that any FRel quantitative Σ-algebra that satisfies Φ
(i.e., all the FRel equations and quantitative equations in Φ) necessarily also satisfies ϕ.

We summarize here the introduced notions with their analogs from Universal Algebra:

Universal Algebra Universal Quantitative Algebra

Σ-algebra (A, {opA}op∈Σ) Quantitative Σ-algebra (A, dA, {opA}op∈Σ)

Homomorphism of Σ-algebras
(Nonexpansive) homomorphism of
quantitative Σ-algebras

Category Alg(Σ) of Σ-algebras Category QAlg(Σ) of quantitative Σ-algebras

Σ-equation ∀A.s = t
Σ-equation ∀(A, dA).s = t and
quantitative Σ-equation ∀(A, dA).s =ϵ t

Interpretation of Σ-equations
(Nonexpansive) interpretation of Σ-equations
and of quantitative Σ-equations

Category ModΣ(Φ) of
models of Φ ⊆ Eq(Σ)

Category QModΣ(Φ) of
models of Φ ⊆ QEq(Σ)

Equational theory ThΣ(K) Quantitative equational theory QThΣ(K)

Equationally defined class of
Σ-algebras K = ModΣ(Φ)

Quantitative equationally defined class of
quantitative Σ-algebras K = QModΣ(Φ)

Entailment relation ⊪Set Entailment relation ⊪FRel

3.1. Summary of Contributions. We now give an overview of the main results that we
will prove in the following sections.

(I) The entailment relation ⊪FRel can be axiomatised by means of a deductive system
analogous to the deductive system of Birkhoff’s equational logic. More formally,
there is an inductively defined relation ⊢FRel ⊆ P(QEq(Σ)) × QEq(Σ), specified as
the smallest relation containing a given set of pairs and closed under a given set of
deductive rules (see Section 4 for details), which is sound and complete with respect
to ⊪FRel, i.e., for all Φ ⊆ QEq(Σ) and ϕ ∈ QEq(Σ),

Φ ⊢FRel ϕ⇐⇒ Φ ⊪FRel ϕ.

9As in Definition 2.9, both P(QEq(Σ)) and ⊪FRel are conglomerates in the sense of [AHS06, 2.3].
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The soundness of the deductive system (i.e., the implication Φ ⊢FRel ϕ⇒ Φ ⊪FRel ϕ)
is proved in Section 4. The completeness (i.e., the implication Φ ⊪FRel ϕ⇒ Φ ⊢FRel

ϕ) is proved in Section 5.4, as a consequence of our second result below (II).
We recall, from the introduction, that our deductive system ⊢FRel has significant

differences with the one presented in [MPP16]. We give more details in Section 9.1.
(II) For every signature Σ and collection Φ ⊆ QEq(Σ), the category QModΣ(Φ) has

U -free objects. The U -free object F (A, dA) generated by (A, dA) ∈ FRel can be
identified (up to isomorphism of quantitative algebras) as follows:

F (A, dA) = (TermsΣ(A)/≡,∆
F (A,dA), {opF (A,dA)}op∈Σ),where

(a) the equivalence relation ≡ ⊆ TermsΣ(A) × TermsΣ(A) is defined as

s ≡ t⇐⇒ Φ ⊢FRel ∀(A, dA).s = t,

(b) the fuzzy relation ∆F (A,dA) : (TermsΣ(A)/≡)2 → [0, 1] is defined as

∆F (A,dA)([s]≡, [t]≡) ≤ ϵ⇐⇒ Φ ⊢FRel ∀(A, dA).s =ϵ t, and

(c) the interpretation opF (A,dA) : (TermsΣ(A)/≡)n → (TermsΣ(A)/≡) of any n-ary
operation op ∈ Σ, is defined as

opF (A,dA)([s1]≡, . . . , [sn]≡) = [op(s1, . . . , sn)]≡ .

It can be shown that the definitions of ∆F (A,dA) and opF (A,dA) are well specified
regardless of the choice of representatives s, t for the classes [s]≡, [t]≡, and that indeed
the quantitative algebra F (A, dA) belongs to QModΣ(Φ).

These results are formally stated and proved in Section 5, and they give us an
analog to the result mentioned in Example 2.17 for Universal Algebra.

(III) As a corollary of the two results above and of Proposition 2.18, there is a functor F :
FRel → QModΣ(Φ) which associates to each FRel space (A, dA) the corresponding
free object F (A, dA). The functor F is a left adjoint of UQModΣ(Φ)→FRel:

FRel QModΣ(Φ)
U

F⊣

This adjunction gives us a monad TFRel
Σ,Φ on FRel, which is defined similarly to

the Set monad TSet
Σ,Φ of quotiented terms discussed in Examples 2.11 and 2.19. In

Section 6 we concretely identify this adjunction and monad, and we prove that the
functor U : QModΣ(Φ) → FRel is strictly monadic, i.e., there is an isomorphism

EM(TFRel
Σ,Φ ) ∼= QModΣ(Φ),

where EM(TFRel
Σ,Φ ) is the category of Eilenberg–Moore algebras for the monad TFRel

Σ,Φ .

(IV) We identify two relevant collections of FRel monads and of classes of equations and
quantitative equations Φ ⊆ QEq(Σ), respectively. On one side, we consider monads
M on FRel that are monad liftings of a monad N on Set having an equational
presentation Ψ ⊆ Eq(Σ). On the other, classes of FRel equations and quantitative
equations Φ that are quantitative extensions of Ψ. In Section 7, after having defined
the above notions and that of quantitative equational presentation of a monad on
FRel, we establish (Theorem 7.7) the following correspondence:
(1) If M is a monad lifting of N , then a quantitative extension of Ψ presents M .
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(2) If Φ is a quantitative extension of Ψ, then Φ is a quantitative equational presen-
tation of an FRel monad that lifts N .

(V) All the results (I)–(IV) above, stated and proved for the category FRel, can be
specialised and hold true for generalised metric spaces, i.e., for all full subcategories
GMet of FRel defined as in Section 2.3. We show this in Section 8.

For example, it is possible to consider the category QAlgMet(Σ) of quantitative
algebras whose underlying fuzzy relation space is a metric space (A, dA) ∈ Met.
Accordingly, it is possible to define the entailment relation ⊪Met restricted to
QAlgMet(Σ) and have a sound and complete proof system ⊢Met. Furthermore, free
quantitative algebras generated by metric spaces exist in QModMet

Σ (Φ) and the

forgetful functor U : QModMet
Σ (Φ) → Met is strictly monadic. Finally, we also

obtain the analogs of points (1) and (2) above, relating Met monads liftings and
quantitative extensions.

4. The Deductive System

In this section, we fix a signature Σ, and we introduce a deductive system which can be used
to derive judgments of the form: Φ ⊢FRel ϕ, for Φ ∈ P(QEq(Σ)) and ϕ ∈ QEq(Σ). Thus,
formally, we define by induction a relation ⊢FRel ⊆ P(QEq(Σ)) × QEq(Σ). As standard, we
often use ⊢FRel in infix notation, i.e., we write Φ ⊢FRel ϕ for (Φ, ϕ) ∈ ⊢FRel.

We often write ⊢ instead of ⊢FRel, and Φ,Ψ ⊢ ϕ in place of Φ ∪ Ψ ⊢ ϕ.

Definition 4.1 (Deductive System). The relation ⊢FRel ⊆ P(QEq(Σ))×QEq(Σ) is defined
as the smallest relation satisfying the following properties:

(1) Closure under the INIT rule: given any Φ ∈ P(QEq(Σ)) and ϕ ∈ QEq(Σ), if ϕ ∈ Φ then
Φ ⊢ ϕ holds. That is:

INIT (proviso: ϕ ∈ Φ)
Φ ⊢ ϕ

(2) Closure under the CUT rule: given any Φ,Φ′ ∈ P(QEq(Σ)) and ψ ∈ QEq(Σ), if we have
that Φ ⊢ ϕ holds for all ϕ ∈ Φ′ and that Φ,Φ′ ⊢ ψ holds, then Φ ⊢ ψ holds. That is:

{Φ ⊢ ϕ}ϕ∈Φ′ Φ,Φ′ ⊢ ψ
CUT

Φ ⊢ ψ
(3) Closure under the WEAKENING rule: given any Φ,Φ′ ∈ P(QEq(Σ)) and ϕ ∈ QEq(Σ),

if Φ ⊢ ϕ holds, then Φ,Φ′ ⊢ ϕ holds. That is:

Φ ⊢ ϕ
WEAKENING

Φ,Φ′ ⊢ ϕ
(4) The relation ⊢ contains all the pairs Φ ⊢ ϕ listed below (a)–(j). These are “axiom

schemes”, meaning that pairs are obtained from (a)–(j) by instantiating the involved
fuzzy relation (A, dA), terms s, t ∈ TermsΣ(A), substitutions σ, etc., to concrete ones.
(a) (REFL of =):

∅ ⊢ ∀(A, dA).s = s

expressing that equality is reflexive.
(b) (SYMM of =):

∀(A, dA).s = t ⊢ ∀(A, dA).t = s

expressing that equality is symmetric.
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(c) (TRANS of =):

∀(A, dA).s = t,∀(A, dA).t = u ⊢ ∀(A, dA).s = u

expressing that equality is transitive.
(d) (CONG of =): For all op ∈ Σ of arity n,

∀(A, dA).s1 = t1, . . . ,∀(A, dA).sn = tn ⊢ ∀(A, dA).op(s1, . . . , sn) = op(t1, . . . , tn)

expressing that equality is a congruence relation with respect to all op ∈ Σ.
(e) (SUBSTITUTION for = and =ϵ):

Given FRel spaces (A, dA) and (B, dB), and a substitution σ : A → TermsΣ(B),
we have two similar axiom schemes: one allowing substitution on FRel equations
(=) and the other on FRel quantitative equations (=ϵ):

Ψσ, ∀(A, dA).s = t ⊢ ∀(B, dB).σ(s) = σ(t), and

Ψσ,∀(A, dA).s =ϵ t ⊢ ∀(B, dB).σ(s) =ϵ σ(t),

where in both axiom schemes, the set Ψσ is defined as:

Ψσ =
{
∀(B, dB).σ(ai) =ϵi,j σ(aj) | ai, aj ∈ A, ϵi,j = dA(ai, aj)

}
,

and where the function σ : A → TermsΣ(B) is extended to a function of type
σ : TermsΣ(A) → TermsΣ(B) (which we denote with the same symbol) as expected
by induction on terms, by letting σ(op(s1, ..., sn)) = op(σ(s1), ...σ(sn)).
Note that Ψσ expresses that the substitution σ is (provably) nonexpansive. The
restriction to nonexpansive substitutions, implemented by this rule, constitutes
a main difference with respect to the original proof system of [MPP16], where
arbitrary substitutions can be applied.

(f) (USE VARIABLES): For an FRel space (A, dA) and a, a′ ∈ A and ϵ = dA(a, a′):

∅ ⊢ ∀(A, dA).a =ϵ a
′.

This axiom scheme allows us to derive information from the distance (dA) be-
tween variables (A) and is justified by the fact that interpretations of variables in
quantitative algebras are nonexpansive.

(g) (UP-CLOSURE): For all ϵ ≤ δ ∈ [0, 1]:

∀(A, dA).s =ϵ t ⊢ ∀(A, dA).s =δ t.

This axiom scheme reflects the semantics (Definition 3.6) of the judgment s =ϵ t as
an inequality.

(h) (1-MAX):

∅ ⊢ ∀(A, dA).s =1 t

This axiom scheme reflects that the maximal possible distance is 1.
(i) (ORDER COMPLETENESS): For an index set I,{

∀(A, dA).s =ϵi t
}
i∈I ⊢ ∀(A, dA).s =inf{ϵi}i∈I

t.

This axiom scheme reflects the fact that the distance bounds ϵi are values in the
complete lattice [0, 1].

(j) (Left and Right CONGRUENCE) of = with respect to =ϵ:

∀(A, dA).s = t,∀(A, dA).t =ϵ u ⊢ ∀(A, dA).s =ϵ u, and

∀(A, dA).s = t,∀(A, dA).u =ϵ s ⊢ ∀(A, dA).u =ϵ t.
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Finally, this axiom scheme reflects the fact that equality is a congruence, both on
the left and right components, with respect to the binary =ϵ relation.

Remark 4.2. The axiom schemes (a)–(j) of Item (4) can alternatively be presented as
inference rules. Both versions are mutually admissible, in the proof system, by applications
of the CUT and INIT rules. For example, from the axiom scheme (SYMM of =) (b) we can
show that the corresponding inference rule

Φ ⊢ ∀(A, dA).s = t
Symm Rule

Φ ⊢ ∀(A, dA).t = s

is admissible as follows:

(SYMM of =) (b)

∀(A, dA).s = t ⊢ ∀(A, dA).t = s Φ ⊢ ∀(A, dA).s = t
CUT

Φ ⊢ ∀(A, dA).t = s

Similarly, from the inference rule, it is possible to derive the axiom scheme as follows:

INIT∀(A, dA).s = t ⊢ ∀(A, dA).s = t
Symm Rule

∀(A, dA).s = t ⊢ ∀(A, dA).t = s

Remark 4.3. One can consider the following variant of the (ORDER COMPLETENESS)
axiom scheme (i): for each ϵ ∈ [0, 1],{

∀(A, dA).s =δ t | δ > ϵ
}
⊢ ∀(A, dA).s =ϵ t. (Arch)

This version of the axiom scheme more directly corresponds to the deduction rule called
“Arch” in [MPP16, Definition 2.1]. The two axioms are equivalent and each can be derived
from the other, in presence of the other axioms. In one direction, (Arch) is simply a special
instance of (ORDER COMPLETENESS), by taking the index set I = {δ ∈ [0, 1] | δ > ϵ}
with inf(I) = ϵ. In the other direction, the (ORDER COMPLETENESS) axiom can be
derived from the (Arch) axiom as follows: first, turn the left-side

{
∀(A, dA).s =ϵi t

}
i∈I ,

which has ϵ = inf{ϵi} as infimum, into an upward-closed set of quantitative equations by
applications of the (UP-CLOSURE) axiom scheme and the (CUT) rule. Secondly, since the
resulting set of quantitative equations is the form

{
∀(A, dA).s =δ t

}
δ>ϵ

we can apply the

(Arch) axiom scheme to derive the right-hand side ∀(A, dA).s =ϵ t.
It is worth observing that the (1-MAX) axiom scheme (h) is admissible in the proof

system, by instantiating (ORDER COMPLETENESS) with an empty index set I, because
inf ∅ = 1 in the complete lattice [0, 1]. Similarly, (1-MAX) is derivable from (Arch) with
ϵ = 1, because the set {δ > ϵ} is empty. Even if admissible, we have opted to keep the
(1-MAX) axiom in the list of Definition 4.1 since it clearly expresses that the distance
function is total and there is always a distance assigned to terms.

The first basic result regarding the deductive system is the soundness theorem.

Theorem 4.4 (Soundness). The inclusion ⊢FRel ⊆ ⊪FRel holds.

Proof. We write ⊢ for ⊢FRel, as already done above, and also ⊪ for ⊪FRel. Assume Φ ⊢ ϕ.
We prove that Φ ⊪ ϕ holds by induction of the derivation tree used to derive Φ ⊢ ϕ.

Most cases are straightforward, including the occurrences of INIT, CUT and WEAKEN-
ING rules and most axiom schemes, so we only detail some of those. The only non-obvious
case is the (SUBSTITUTION) axiom scheme (e), which we will prove in full details.

For an instance of an easy to prove axiom scheme, consider the (USE VARIABLES)
axiom scheme (f). We need to show that for any quantitative algebra C = (C, dC , {opC}op∈Σ),
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C |= ∀(A, dA).a =ϵ a
′

for any FRel space (A, dA) and a, a′ ∈ A with ϵ = dA(a, a′). This means that, for any
nonexpansive interpretation τ : (A, dA) → (C, dC), we want to prove

dC(JaKCτ , Ja′KCτ ) ≤ ϵ,

which, by the definition of J−K, is equivalent to

dC(τ(a), τ(a′)) ≤ ϵ.

This holds since τ is nonexpansive, so we have proven that the axiom scheme is sound.
For another simple example, consider the (Left CONGRUENCE) axiom scheme (j). We

need to show that a quantitative algebra C = (C, dC , {opC}op∈Σ) satisfying all the premises,
i.e. (1) C |= ∀(A, dA).s = t and (2) C |= ∀(A, dA).t =ϵ u, must also satisfy the conclusion:

C |= ∀(A, dA).s =ϵ u.

Take an interpretation τ : (A, dA) → (C, dC). Then by the two premises we obtain (1)
JsKCτ = JtKCτ and (2) dC(JtKCτ , JuKCτ ) ≤ ϵ, which immediately imply the desired conclusion:

dC(JsKCτ , JuK
C
τ ) ≤ ϵ.

We now prove soundness of the (SUBSTITUTION) axiom scheme (e), the non-obvious
case. Let σ : A → TermsΣ(B) be an arbitrary substitution. We need to show that a
quantitative algebra C = (C, dC , {opC}op∈Σ) satisfying all the premises of (e), i.e.,

(1) C |= ∀(A, dA).s =ϵ t, and
(2) C |=

{
∀(B, dB).σ(ai) =ϵi,j σ(aj) | ai, aj ∈ A, ϵi,j = dA(ai, aj)

}
,

necessarily also satisfies the equation or quantitative equation of the conclusion (we just
consider the quantitative equation case as the two are similar), i.e.,

C |= ∀(B, dB).σ(s) =ϵ σ(t).

Towards this end, take an arbitrary nonexpansive interpretation τ : (B, dB) → (C, dC). From
the interpretation τ and the substitution σ, we define a new interpretation σ̂ as follows:

σ̂ : (A, dA) → (C, dC) σ̂(a) = Jσ(a)KCτ . (4.1)

Before proceeding further, we need to show that σ̂ is nonexpansive. So, take any a, a′ ∈ A
and assume dA(a, a′) = δ. Since (from (2)) C satisfies ∀(B, dB).σ(a) =δ σ(a′),

dC(σ̂(a), σ̂(a′))
(4.1)
= dC(Jσ(a)KCτ , Jσ(a′)KCτ )

(2)

≤ δ,

which concludes the proof that σ̂ is nonexpansive.
Next, from (1), and taking as interpretation σ̂, we know that dC

(
JsKCσ̂ , JtK

C
σ̂

)
≤ ϵ. Since

σ̂ satisfies Jσ(s)KCτ = JsKCσ̂ and Jσ(t)KCτ = JtKCσ̂ (recall from (e) how σ is extended to terms),

we get dC
(
Jσ(s)KCτ , Jσ(t)KCτ

)
≤ ϵ. We conclude that C |= ∀(A, dA).σ(s) =ϵ σ(t).

The above proof of soundness is rather direct and simple. Proving the opposite direction,
i.e., the completeness theorem, requires more work. Indeed, we will use the proof system
⊢FRel to construct free objects in QModΣ(Φ), prove some results about such free objects
and finally derive the completeness result.

Our results regarding free objects in QModΣ(Φ) are presented in Section 5. The
completeness Theorem 5.13 is also established in that section, as a corollary.
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5. Free Quantitative Algebras

In the following, we fix a class of FRel (quantitative) Σ-equations Φ ⊆ QEq(Σ), and we
write U for the forgetful functor QModΣ(Φ) → FRel previously defined.

We are going to prove the following statement using (the soundness of) the deductive
system ⊢FRel as a main tool. Recall that free objects are defined as in Definition 2.16.

Theorem 5.1. For all (A, dA) ∈ FRel, the U -free object generated by (A, dA) exists.

The proof of this statement occupies the rest of this section.
Let us fix (A, dA) ∈ FRel. We are going to explicitly construct the U -free object in

QModΣ(Φ), denoted by F (A, dA), with respect to a nonexpansive map

α : (A, dA) → U(F (A, dA))

defined later on in Lemma 5.9. As we will see, the carrier of the free object will be a set of
equivalence classes of terms over A, and α : a 7→ [a]≡ the function mapping an element of A
to its equivalence class in the set of quotiented terms. We proceed as follows:

(1) (Subsection 5.1) Formally define the quantitative algebra F (A, dA) ∈ QAlgFRel(Σ).
(2) (Subsection 5.2) Prove that, indeed, F (A, dA) belongs to QModΣ(Φ). In other words,

we show that F (A, dA) satisfies all the FRel equations and quantitative equations in Φ.
(3) (Subsection 5.3) Finally, define the map α : (A, dA) → U(F (A, dA)) and show that

F (A, dA) satisfies the universal property (from Definition 2.16) defining the (unique, up
to isomorphism) free algebra generated by (A, dA).

5.1. Definition of F (A, dA). We recall that, by the soundness (Theorem 4.4) of the
deductive system, whenever Φ ⊢FRel ϕ holds, also Φ ⊪FRel ϕ holds. We start by defining a
binary relation ≡ and a fuzzy relation d on the set of terms TermsΣ(A) built from A.

Definition 5.2. We define ≡ as follows, for all s, t ∈ TermsΣ(A):

s ≡ t ⇔ Φ ⊢ ∀(A, dA).s = t.

We define d as follows, for all s, t ∈ TermsΣ(A):

d(s, t) = infϵ
{

Φ ⊢ ∀(A, dA).s =ϵ t
}

.

The axiom schemes (a)–(d) ensure that ≡ is an equivalence relation and a congruence
with respect to the operations in Σ. Moreover, it follows from (h) that d is a fuzzy relation
(bounded by 1), and from (j) that ≡ is a congruence with respect to d (i.e. d(s, t) = d(s′, t′)
whenever s ≡ s′ and t ≡ t′).

The following technical lemma relates the proof system (⊢) with the definition of the
fuzzy relation d.

Lemma 5.3. For any ϵ, Φ ⊢ ∀(A, dA).s =ϵ t ⇐⇒ d(s, t) ≤ ϵ.

Proof. The (⇒) direction follows immediately from the definition of d as an infimum. For
the (⇐) direction, assume d(s, t) ≤ ϵ. As an instance of the (ORDER COMPLETENESS)
axiom scheme (i) we have

{∀(A, dA).s =δ t | Φ ⊢ ∀(A, dA).s =δ t} ⊢ ∀(A, dA).s =d(s,t) t.

By the CUT rule we then derive Φ ⊢ ∀(A, dA).s =d(s,t) t. By our hypothesis that d(s, t) ≤ ϵ,
the (UP-CLOSURE) axiom scheme (g) yields ∀(A, dA).s =d(s,t) t ⊢ ∀(A, dA).s =ϵ t. By the
CUT rule, we then conclude Φ ⊢ ∀(A, dA).s =ϵ t as desired.
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Since we have established that ≡ is an equivalence relation, the quotient TermsΣ(A)/≡,
consisting of ≡-equivalence classes, is well-defined. Furthermore, the equivalence ≡ being a
congruence for the fuzzy relation d implies that the following is a good definition, regardless
of the choice of representatives.

Definition 5.4. The fuzzy relation ∆ : (TermsΣ(A)/≡ × TermsΣ(A)/≡) → [0, 1] is given by

∆([s]≡, [t]≡) = d(s, t).

Moreover, since we have already established that ≡ is a congruence on TermsΣ(A), the

interpretation opF (A,dA) of each operation op ∈ Σ specified as

opF (A,dA)
(
[s1]≡, . . . , [sn]≡

)
= [op(s1, . . . , sn)]≡

is well-defined and does not depend on a specific choice of representatives.
We can collect the results of this subsection as follows:

Corollary 5.5. The triple (TermsΣ(A)/≡,∆, {opF (A,dA)}op∈Σ) is a quantitative Σ-algebra.

The quantitative algebra identified above is our definition of F (A, dA).

Definition 5.6. The quantitative Σ-algebra F (A, dA) is defined as

F (A, dA) = (TermsΣ(A)/≡,∆, {opF (A,dA)}op∈Σ).

5.2. Proof that F (A, dA) ∈ QModΣ(Φ). We show in Lemma 5.8 below that the quan-
titative algebra F (A, dA) constructed from (A, dA), in Subsection 5.1, satisfies all FRel
equations and quantitative equations in Φ. The proof exploits the following lemma.

Lemma 5.7. Let τ : X → TermsΣ(A)/≡ be a function. Let c : TermsΣ(A)/≡ → TermsΣ(A)
be a choice function, i.e., such that c([s]≡) ∈ [s]≡.

10 Define στ : X → TermsΣ(A) as:
στ (x) = c(τ(x)). Then, for all s ∈ TermsΣ(A), it holds that

JsKF (A,dA)
τ = [στ (s)]≡,

where στ (s) is the term obtained by applying the substitution στ to s.

Proof. The proof is by induction on s. For s = x, the result is immediate by definition of στ :

JxKF (A,dA)
τ = τ(x) = [στ (x)]≡.

For s = op(s1, ...sn), we have

JsKF (A,dA)
τ = opF (A,dA)(Js1KF (A,dA)

τ , ..., JsnKF (A,dA)
τ ) (by definition of J K)

= opF (A,dA)([στ (s1)]≡, ..., [στ (sn)]≡) (by inductive hypothesis)

= [op(στ (s1), ..., στ (sn)]≡ (by definition of opF (A,dA))

= [στ (op(s1, ..., sn))]≡. (by definition of στ on terms)

Lemma 5.8. It holds that F (A, dA) ∈ QModΣ(Φ).

10Equivalently, c chooses an element s ∈ TermsΣ(A) for each ≡-equivalence class [s]≡ ∈ TermsΣ(A)/≡.
Note that one such c exists by the axiom of choice.
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Proof. We need to show that if ϕ ∈ Φ then F (A, dA) |= ϕ. Suppose that ϕ is an FRel
quantitative equation of the form (the case of ϕ being an equation is similar)

ϕ = ∀(X, dX).s =ϵ t

for some FRel space (X, dX), terms s, t ∈ TermsΣ(X) and ϵ ∈ [0, 1]. Therefore, we need to
show that for every nonexpansive interpretation τ : (X, dX) → (TermsΣ(A)/≡,∆),

∆
(
JsKF (A,dA)

τ , JtKF (A,dA)
τ

)
≤ ϵ,

or equivalently, by applying Lemma 5.7 where we take στ defined as in the lemma, that

∆
(

[στ (s)]≡, [στ (t)]≡

)
≤ ϵ,

which in turn, by the definition of ∆ (Definition 5.4) and Lemma 5.3 is equivalent to showing

Φ ⊢ ∀(A, dA).στ (s) =ϵ στ (t).

The assumption that τ is nonexpansive means that for all xi, xj ∈ X,

dX(xi, xj) ≤ ϵij =⇒ ∆(JxiKF (A,dA)
τ , JxjKF (A,dA)

τ ) ≤ ϵij

which by Lemma 5.7 is equivalent to

dX(xi, xj) ≤ ϵij =⇒ ∆([στ (xi)]≡, [στ (xj)]≡) ≤ ϵij

Since ∆([στ (xi)]≡, [στ (xj)]≡) = d(στ (xi), στ (xj)), it follows from Lemma 5.3 that

dX(xi, xj) ≤ ϵij =⇒ Φ ⊢ ∀(A, dA).στ (xi) =ϵij στ (xj). (5.1)

Now, we know that:

(I) Since ∀(X, dX).s =ϵ t belongs to Φ, by the INIT rule we have Φ ⊢ ∀(X, dX).s =ϵ t.
(II) By (5.1) we have all the following judgments:{

Φ ⊢ ∀(A, dA).στ (xi) =ϵij στ (xj) | xi, xj ∈ X, ϵij = dX(xi, xj)
}
.

Note that, using στ as substitution, the conclusions of (I) and (II) are the premises of the
(SUBSTITUTION) axiom scheme (e) for quantitative equations, namely, we have

Ψ ⊢ ∀(A, dA).στ (s) =ϵ στ (t),

where Ψ =
{
∀(A, dA).στ (xi) =ϵij στ (xj) | xi, xj ∈ X, ϵij = dX(xi, xj)

}
∪ {∀(X, dX).s =ϵ t}.

Then, by (I) and (II), Φ entails all of Ψ, so we can use CUT to get the desired

Φ ⊢ ∀(A, dA).στ (s) =ϵ στ (t).

5.3. Proof of freeness of F (A, dA). We now show that the quantitative algebra F (A, dA)
described in Definition 5.6 is indeed the free object (see Definition 2.16) in QModΣ(Φ)
generated by (A, dA) with respect to the universal map α : (A, dA) → UF (A, dA) given by
the assignment a 7→ [a]≡, which is nonexpansive by the following:

Lemma 5.9. The map α : (A, dA) → (TermsΣ(A)/≡,∆) is nonexpansive.

Proof. Let dA(a1, a2) = ϵ. We want to prove that ∆(α(a1), α(a2)) ≤ ϵ. By the (USE VARI-
ABLES) axiom scheme (f), dA(a1, a2) = ϵ implies ∅ ⊢ ∀(A, dA).a1 =ϵ a2. By WEAKENING
we derive Φ ⊢ ∀(A, dA).a1 =ϵ a2. Therefore α is nonexpansive because, by definition,

∆(α(a1), α(a2)) = ∆([a1]≡, [a2]≡) = d(a1, a2) = inf
ϵ

{
Φ ⊢ ∀(A, dA).a1 =ϵ a2

}
.
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Remark 5.10. We note that the map α is generally not an isometry (i.e., distance preserving)
nor an injection, although it is in many interesting cases. For example, consider the case
when the generating fuzzy relation space (A, dA) is defined as follows:

A = {a1, a2} dA(a1, a2) = dA(a2, a1) = 1
2 dA(a1, a1) = dA(a2, a2) = 0,

i.e., it is a metric space consisting of two points at distance 1
2 , the signature Σ is empty,

and the set Φ = {∀(A, dA).a1 = a2} consists of just one FRel equation. In this case it
is easy to check that TermsΣ(A)/≡ has a single element (i.e., all terms in TermsΣ(A) are
≡-equivalent), and thus the map α is neither an injection nor an isometry.

Theorem 5.11. Let U : QModΣ(Φ) → FRel. The quantitative algebra F (A, dA) is the
U -free object generated by (A, dA) relative to the map α : (A, dA) → (TermsΣ(A)/≡,∆).

Proof. We need to show that for every quantitative algebra B = (B, dB, op
B) ∈ QModΣ(Φ)

and nonexpansive map f : (A, dA) → (B, dB), there is a unique homomorphism of quantita-

tive algebras f̂ : F (A, dA) → B which extends f , i.e., which satisfies f = U(f̂)◦α. In the rest
of the proof we will generally omit the explicit use of the forgetful functors on morphisms.

We define f̂ for all terms s ∈ TermsΣ(A) by f̂([s]≡) = JsKBf . To see this is well-defined,

observe that if s ≡ t then, by definition of the relation (≡), it holds that Φ ⊢ ∀(A, dA).s = t.
By the soundness (Theorem 4.4) of the deductive system, we have that

∀(A, dA).s = t ∈ QThΣ(QModΣ(Φ)).

Since B ∈ QModΣ(Φ) by hypothesis, this means that

B |= ∀(A, dA).s = t,

and in particular, by viewing f : (A, dA) → (B, dB) as a (nonexpansive) interpretation, it

holds that JsKBf = JtKBf . Hence f̂ is well-defined as a function.

It remains to show that f̂ is a homomorphism and nonexpansive. The first follows from
the interpretation opF (A,dA) of the operations in F (A, dA) as follows:

f̂(opF (A,dA)([s1]≡, ..., [sn]≡)) = f̂([op(s1, ..., sn)]≡)

= Jop(s1, ..., sn)KBf
= opB(Js1KBf , ..., JsnKBf )

= opB(f̂([s1]≡), ..., f̂([sn]≡)).

Regarding the second point (nonexpansiveness), take two arbitrary [s]≡, [t]≡ ∈ TermsΣ(A)/≡
and let ∆([s]≡, [t]≡) = ϵ be their distance in F (A, dA). We need to show that

dB
(
f̂([s]≡), f̂([t]≡)

)
≤ ϵ.

As established in Lemma 5.3, the hypothesis ∆([s]≡, [t]≡) = ϵ implies Φ ⊢ ∀(A, dA).s =ϵ

t. From the soundness of the deductive system (Theorem 4.4), we therefore know that
∀(A, dA).s =ϵ t ∈ QThΣ(QModΣ(Φ)), and since B ∈ QModΣ(Φ) by hypothesis, we find

B |= ∀(A, dA).s =ϵ t.

Taking as nonexpansive interpretation f : (A, dA) → (B, dB), we therefore obtain that

dB(JsKBf , JtK
B
f ) ≤ ϵ. By the definition of f̂ we have f̂([s]≡) = JsKBf and f̂([t]≡) = JtKBf , so we

conclude as desired that
dB(f̂([s]≡), f̂([t]≡)) ≤ ϵ.
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It follows by unrolling definitions that f̂ extends f :

f̂(α(a)) = f̂([a]≡) = JaKBf = f(a),

and a simple induction shows any homomorphism that extends f must be equal to f̂ .

5.4. Completeness of the Deductive System. By exploiting the existence of free objects,
we can now establish the completeness of the deductive system ⊢FRel, Theorem 5.13 below.

The proof relies on the following property of F (A, dA), which, as we have seen, is the
U -free object (here U is U : QModΣ(Φ) → FRel) generated by the FRel space (A, dA)
relative to the nonexpansive map α : (A, dA) → F (A, dA).

Lemma 5.12. For all s, t ∈ TermsΣ(A),

(i) if JsKF (A,dA)
α = JtKF (A,dA)

α then Φ ⊢FRel ∀(A, dA).s = t.

(ii) if ∆(JsKF (A,dA)
α , JtKF (A,dA)

α ) ≤ ϵ, then Φ ⊢FRel ∀(A, dA).s =ϵ t.

Proof. For (i), suppose that JsKF (A,dA)
α = JtKF (A,dA)

α .

Note that by Lemma 5.7, where we instantiate τ with α, we have JsKF (A,dA)
α = [σα(s)]≡,

where σα : A→ TermsΣ(A) is a choice function for α as required in the lemma.
Since σα substitutes occurrences of elements of A with terms in the ≡-equivalence class,

we will prove that Φ ⊢ ∀(A, dA).σα(s) = s by induction on the structure of s, and it then
follows, by the definition of ≡ (Definition 5.2), that

JsKF (A,dA)
α = [σα(s)]≡ = [s]≡.

If s is an element of A, we already know that σα(a) will be in its equivalence class, so
Φ ⊢ ∀(A, dA).σα(s) = s by the definition of ≡. Suppose now that s = op(s1, . . . , sn) and
that for each i, Φ ⊢ ∀(A, dA).σα(si) = si. Since

σα(s) = σα(op(s1, . . . , sn)) = op(σα(s1), . . . , σα(sn)),

we can apply the (CONG of =) axiom scheme (d) and the CUT rule to derive that
Φ ⊢ ∀(A, dA).σα(s) = s.

Analogously, we derive that JtKF (A,dA)
α = [t]≡. Hence, [s]≡ = [t]≡, which by definition of

≡ means Φ ⊢ ∀(A, dA).s = t.

For (ii), we analogously have that ∆(JsKF (A,dA)
α , JtKF (A,dA)

α ) ≤ ϵ implies (by Lemma 5.7, as
above) ∆([s]≡, [t]≡) ≤ ϵ. Then, by the definition of ∆ as d (Definition 5.4 and Definition 5.2)
and by Lemma 5.3, we conclude Φ ⊢ ∀(A, dA).s =ϵ t.

We can now prove the completeness theorem.

Theorem 5.13 (Completeness of the deductive system). Fix a signature Σ and a class
Φ ⊆ QEq(Σ) of equations and quantitative equations. For all ϕ ∈ QEq(Σ),

if Φ ⊪FRel ϕ then Φ ⊢FRel ϕ.

Proof. Let us consider first the case of ϕ being an equation of the form ∀(A, dA).s = t, for
some FRel space (A, dA) and terms s, t ∈ TermsΣ(A).

By definition of the entailment relation (⊪FRel), the hypothesis Φ ⊪FRel ϕ implies
that for all B ∈ QModΣ(Φ) and for all nonexpansive interpretations τ : (A, dA) → (B, dB),
it holds that JsKBτ = JtKBτ . Hence, since F (A, dA) ∈ QModΣ(Φ) (Lemma 5.8) and α is
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nonexpansive (Lemma 5.9), we have JsKF (A,dA)
α = JtKF (A,dA)

α . Then by Lemma 5.12 we
conclude that Φ ⊢FRel ∀(A, dA).s = t.

Analogously, for quantitative equations, if ϕ is of the form ∀(A, dA).s =ϵ t then we

derive from Φ ⊪FRel ϕ that ∆(JsKF (A,dA)
α , JtKF (A,dA)

α ) ≤ ϵ. By Lemma 5.12 we conclude
Φ ⊢FRel ∀(A, dA).s =ϵ t.

Corollary 5.14 (Soundness and Completeness). Fix a signature Σ and a class Φ ⊆ QEq(Σ).
For all equations and quantitative equations ϕ ∈ QEq(Σ),

Φ ⊪FRel ϕ ⇐⇒ Φ ⊢FRel ϕ.

6. The Free-Forgetful Adjunction and Strict Monadicity

By relying on the construction of free objects shown in Section 5, we identify in this section
the free-forgetful adjunction arising from it, together with the associated monad. We then
proceed to prove the strict monadicity of the adjunction.

Recall from Proposition 2.18 that, given a functor U : D → C such that D has U -free
objects, there is a functor F : C → D which assigns to each element of C its corresponding
U -free object, and which gives an adjunction F ⊣ U and a monad with functor U ◦ F .

We have seen in Section 5 that the forgetful functor U : QModΣ(Φ) → FRel has U -free
objects, identified (up to isomorphism) as the quantitative algebras of quotiented terms.
Hence, using the recipe from Proposition 2.18, we obtain the adjunction F ⊣ U , where F is the
functor mapping each FRel space (A, dA) to the free quantitative algebra of quotiented terms

F (A, dA) = (TermsΣ(A)/≡A ,∆
F (A,dA), {opF (A,dA)}op∈Σ).11 For a nonexpansive function

f : (A, dA) → (B, dB), the functor F gives the nonexpansive homomorphism of quantitative
algebras F (f) : F (A, dA) → F (B, dB) which is the unique homomorphic extension of f . It
can be defined inductively as follows:

F (f)[a]≡A = [f(a)]≡B F (f)[op(t1, . . . , tn)]≡A = opF (B,dB)(F (f)[t1]≡A , . . . , F (f)[tn]≡A).

We denote the resulting FRel monad on UF (by Proposition 2.15) by TFRel
Σ,Φ , and we

can describe it concretely as follows.

• The functor TFRel
Σ,Φ = U ◦ F maps an object (A, dA) to

TFRel
Σ,Φ (A, dA) = (TermsΣ(A)/≡A ,∆

F (A,dA)),

and a morphism f : (A, dA) → (B, dB) to

TFRel
Σ,Φ (f) : (TermsΣ(A)/≡A ,∆

F (A,dA)) → (TermsΣ(B)/≡B ,∆
F (B,dB)),

where TFRel
Σ,Φ (f)([t]≡A) = UF (f)([t]≡A) is the nonexpansive homomorphism which can be

specified by induction on terms t as above.
• The unit η is given by the unit of the adjunction, i.e., for every (A, dA) ∈ FRel we have

that η(A,dA) is the function α(A,dA) proven nonexpansive in Lemma 5.9. Concretely, this is
the function assigning to a ∈ A the equivalence class [a]≡A .

11We sometimes use superscripts to specify which FRel space generates the free algebra.
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• The multiplication of TFRel
Σ,Φ is given by µ(A,dA) = U(εF (A,dA)), where ε is the counit of the

adjunction. Concretely, this is the function substituting each occurrence of an equivalence
class of terms with a representative of the class, thus “flattening” the term as follows:

µ(A,dA)

([
t
(
[t1]≡A , . . . , [tn]≡A

)]
≡F (A,dA)

)
= [t(t1, . . . , tn)]≡A .

We now proceed to prove that the forgetful functor U : QModΣ(Φ) → FRel is strictly
monadic (see Definition 2.21), i.e., that there is an isomorphism of categories

EM(TFRel
Σ,Φ ) ∼= QModΣ(Φ),

where EM(TFRel
Σ,Φ ) is the Eilenberg–Moore category of TFRel

Σ,Φ (see Definition 2.12).

We will prove in Theorem 6.3 that U : QModΣ(Φ) → FRel satisfies condition (3) of
Beck’s theorem (Proposition 2.22), from which we conclude that it is strictly monadic. In
order to do so, we first consider the special case when Φ = ∅. In this case, we recall that
QModΣ(∅) = QAlg(Σ) consists of the category of all quantitative Σ-algebras.

Theorem 6.1. The forgetful functor U∅ : QAlg(Σ) → FRel is strictly monadic.

Proof. Instantiating the results of the previous sections to the case Φ = ∅, we get that U∅
has a left adjoint (U∅-free objects exist by Theorem 5.11). Therefore, by Beck’s theorem
(condition (2) in Proposition 2.22), it is enough to show that U∅ strictly creates coequalizers
for all QAlg(Σ)-arrows f, g such that U∅(f), U∅(g) has an absolute coequalizer (in FRel).
We follow the structure of the proof of [Mac71, §VI.8, Theorem 1], i.e., of the analogous
result for Set. To ease notation, in this proof we write U instead of U∅.

Let f, g : A → B be QAlg(Σ)-arrows such that U(f), U(g) : (A, dA) → (B, dB) have an
absolute coequalizer e : (B, dB) → (C, dC). We show that there exists a quantitative algebra
C in QAlg(Σ) and a homomorphism u : B → C such that i) U(C) = (C, dC), ii) e = U(u),
iii) C and u are unique satisfying the previous two items, and iv) u is a coequalizer of f, g.

QAlg(Σ) A B C

FRel (A, dA) (B, dB) (C, dC)

u

g

f

e=U(u)
U(f)

U(g)

U

i) The carrier of C is (C, dC), we just need to define the interpretations {opC}op∈Σ of the
operations in Σ. Fix an n-ary op ∈ Σ, and let Ln : FRel → FRel be the discrete n-ary
product functor on FRel defined as

Ln = FRel
UFRel→Set−−−−−−−→ Set

( )n−−→ Set
D−→ FRel, (6.1)

where ( )n is the n-ary product functor in Set and D is the discrete functor defined above
Proposition 2.28. Concretely, Ln sends (A, dA) to (An, Ln(dA)), where Ln(dA) = dA

n

⊥
is the discrete fuzzy relation that assigns distance 1 to all pairs of elements of An, and
f : (A, dA) → (B, dB) to fn : (An, Ln(dA)) → (Bn, Ln(dB)).

By Proposition 2.28, any function out of a discrete space is nonexpansive since
FRel(DX, (Y, dY )) ≃ Set(X,Y ). Therefore, there are nonexpansive functions

ôpA : (An, Ln(dA)) → (A, dA) and ôpB : (Bn, Ln(dB)) → (B, dB)
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whose underlying functions are opA and opB respectively. We then have

e ◦ ôpB ◦ LnU(f) = e ◦ U(f) ◦ ôpA (by f a homomorphism: opB ◦ fn = f ◦ opA)

= e ◦ U(g) ◦ ôpA (by e a coequalizer)

= e ◦ ôpB ◦ LnU(g). (by g a homomorphism: opB ◦ gn = g ◦ opA)

Note that, since the arrow e is an absolute coequalizer of the parallel pair U(f), U(g)
in FRel, Ln(e) : (Bn, Ln(dB)) → (Cn, Ln(dC)) is a coequalizer of LnU(f), LnU(g) in
FRel. Hence we have the following diagram in FRel:

(An, Ln(dA)) (Bn, Ln(dB)) (Cn, Ln(dC))

(B, dB) (C, dC)

LnU(g)

LnU(f)
Ln(e)

ôpB

e

(6.2)

The universal property of the coequalizer means there exists a unique morphism
h : (Cn, Ln(dC)) → (C, dC) that completes the square in (6.2), namely, such that

h ◦ Ln(e) = e ◦ ôpB. (6.3)

Let the interpretation of op in C be the function underlying h, i.e. opC = UFRel→Set(h).
ii) Our construction of C (carrier and operations) ensures that e is a homomorphism

B → C. Indeed, e is a nonexpansive function (B, dB) → (C, dC), and we can show
it satisfies the homomorphism property by applying UFRel→Set to (6.3) to obtain
opC ◦ (UFRel→Sete)

n = UFRel→Sete ◦ opB.
iii) Let C′ be an algebra and u′ : B → C′ be a homomorphism satisfying the previous

two items. We show that C = C′ and u = u′. By i), the carrier of C′ is (C, dC),

so opC
′

has type Cn → C for each n-ary op ∈ Σ. We can construct (as we did

ôpA and ôpB) the nonexpansive function ôpC
′

: (Cn, Ln(dC)) → (C, dC) that satisfies

UFRel→Setôp
C′

= opC
′
.

Now, since u′ is a homomorphism and U(u′) = e, we have, for all op ∈ Σ,

opC
′ ◦ (UFRel→Sete)

n = UFRel→Sete ◦ opB.

By applying the definitions and by functoriality, we can rewrite the left hand side:

opC
′ ◦ (UFRel→Sete)

n = opC
′ ◦ UFRel→SetD((UFRel→Sete)

n)

= opC
′ ◦ UFRel→Set(L

n(e))

= UFRel→Set(ôp
C′

) ◦ UFRel→Set(L
n(e))

= UFRel→Set(ôp
C′ ◦ Ln(e)).

Analogously, we can rewrite the right hand side:

UFRel→Sete ◦ opB = UFRel→Sete ◦ UFRel→Set(ôp
B) = UFRel→Set(e ◦ ôpB),

and since UFRel→Set is faithful, we conclude that ôpC
′ ◦ Ln(e) = e ◦ ôpB. Namely, ôpC

′

also completes the square in (6.2). By uniqueness, we get ôpC
′

= h, hence opC
′

= opC

and C = C′. The equality u = u′ follows from faithfulness of U as U(u) = e = U(u′).
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iv) It remains to prove that u is a coequalizer of f, g in QAlg(Σ), i.e., that for any
quantitative algebra D in QAlg(Σ) and for any homomorphism k : B → D, if k◦f = k◦g
then k factorises uniquely through u (i.e. ∃!l.k = l ◦ u).

Given such a k : B → D, since e = U(u) is the coequalizer of U(f) and U(g), U(k)
factorises uniquely through e, say via U(k) = m◦e for m : (C, dC) → (D, dD). It remains
to prove that m is a homomorphism from C to D (uniqueness as a homomorphism
follows because U is faithful). This amounts to showing the following identity in FRel:

m ◦ ôpC = ôpD ◦ Ln(m),

where ôpC : (Cn, Ln(dC)) → (C, dC) and ôpD : (Dn, Ln(dD)) → (D, dD) are constructed
as above. That follows from the derivation below, after noting that, since e is an absolute
coequalizer, Ln(e) is a coequalizer for LnU(f), LnU(g), and thus it is an epimorphism.

m ◦ ôpC ◦ Ln(e) = m ◦ e ◦ ôpB (by e a homomorphism, see point (ii))

= U(k) ◦ ôpB (by construction of m)

= ôpD ◦ Ln(U(k)) (by k a homomorphism)

= ôpD ◦ Ln(m) ◦ Ln(e) (by Ln a functor and U(k) = m ◦ e)

We are now going to use the above result, which deals with the special case Φ = ∅, to
prove Theorem 6.3 in its full generality, showing that the functor U : QModΣ(Φ) → FRel
is strictly monadic for arbitrary Φ. The proof is a generalisation of the analogous result in
[Adá22, Theorem 2.17], which proves strict monadicity in the framework of [MPP16].

In particular, we prove that U satisfies condition (3) of Beck’s theorem, i.e., in contrast
with Theorem 6.1, we use split coequalizers instead of absolute coequalizers. We do so
since split coequalizers guarantee the existence of a right inverse of the coequalizer, which
allows us to apply the following fact (Lemma 6.2): QModΣ(Φ) is closed under the images
of homomorphisms that have a right inverse in FRel.

Lemma 6.2. Let A = (A, dA, {opA}op∈Σ) ∈ QModΣ(Φ), for some class of FRel equations

and quantitative equations Φ ⊆ QEq(Σ), and let B = (B, dB, {opB}op∈Σ) ∈ QAlg(Σ). If there
is a homomorphism of quantitative algebras f : A → B such that U(f) has a nonexpansive
right inverse g : (B, dB) → (A, dA) then B is in QModΣ(Φ).

Proof. We show that, under the hypothesis of the statement, for every ϕ ∈ Φ, B |= ϕ holds.
We first consider the case of ϕ being an FRel equation

ϕ = ∀(X, dX).s = t

for some FRel space (X, dX) and terms s, t ∈ TermsΣ(X). By definition (of B |= ϕ), we
need to show that JsKBτ = JtKBτ , for all nonexpansive interpretations τ : (X, dX) → (B, dB).

Let τ : (X, dX) → (B, dB) be such an interpretation. Then g ◦ τ : (X, dX) → (A, dA) is
an interpretation in A (which is nonexpansive as the composition of nonexpansive functions
is nonexpansive). Moreover, one can show by induction that for any term r ∈ TermsΣ(X)
(and so, in particular, s and t),

U(f)(JrKAg◦τ ) = JrKBτ . (6.4)

Then, since, by hypothesis, A is a model of Φ, we know that A |= ϕ and therefore

JsKAg◦τ = JtKAg◦τ . (6.5)
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We conclude that B satisfies the equation ϕ under the interpretation τ :

JsKBτ
(6.4)
= U(f)(JsKAg◦τ )

(6.5)
= U(f)(JtKAg◦τ )

(6.4)
= JtKBτ .

We now consider the case of FRel quantitative equations ϕ ∈ Φ of the form

ϕ = ∀(X, dX).s =ϵ t.

Since, by hypothesis, A |= ϕ, we have dA(JsKAg◦τ , JtKAg◦τ ) ≤ ϵ, from which we derive

dB(JsKBτ , JtK
B
τ ) = dB(U(f)(JsKBg◦τ ), U(f)(JtKBg◦τ )) (by (6.4))

≤ dA(JsKAg◦τ , JtK
A
g◦τ ) (by U(f) nonexpansive)

≤ ϵ. (by A a model of Φ)

Theorem 6.3. The forgetful functor U : QModΣ(Φ) → FRel is strictly monadic.

Proof. As discussed at the beginning of Section 6 (see also result (III) in Section 3.1),
we know that there is an adjunction F ⊣ U . We now prove that the forgetful functor
U : QModΣ(Φ) → FRel strictly creates coequalizers of U -split pairs, i.e., of all QModΣ(Φ)-
arrows f, g such that U(f), U(g) has a split coequalizer (in FRel). From this, it immediately
follows by Beck’s theorem (Proposition 2.22) that U is strictly monadic.

Let f, g : A → B be QModΣ(Φ)-arrows such that U(f), U(g) : (A, dA) → (B, dB) have
a split coequalizer e : (B, dB) → (C, dC). We show that there exists a unique algebra C
in QModΣ(Φ) such that U(C) = (C, dC), such that e = U(u) for u : B → C an arrow in
QModΣ(Φ), and such that u is a coequalizer of f, g in QModΣ(Φ).

Recall that U∅ is the forgetful functor U∅ : QAlg(Σ) → FRel from Theorem 6.1. Since
U∅ is strictly monadic (by Theorem 6.1), it satisfies condition (3) of Proposition 2.22. Since
QAlg(Σ)-arrows between objects in QModΣ(Φ) coincide with QModΣ(Φ)-arrows, i.e.,
they are both defined as nonexpansive homomorphisms of quantitative Σ-algebras, condition
(3) of Proposition 2.22 implies that there is a unique algebra C in QAlg(Σ) such that
U∅(C) = C, such that e = U∅(u) for u : B → C an arrow in QAlg(Σ), and such that u is a
coequalizer of f, g in QAlg(Σ).

Now, e = U∅(u) is a split coequalizer, so it has a right inverse r : (C, dC) → (B, dB).
Therefore the quantitative algebra homomorphism u satisfies the requirements of Lemma 6.2
and thus we know that C satisfies all the equations and quantitative equations satisfied by B.
In particular, C is a model of Φ because B is a model of Φ, i.e., C and u are in QModΣ(Φ).

We conclude by noting that the uniqueness and universal property (being a coequalizer
of f, g) of u that were true in QAlg(Σ) are also true in QModΣ(Φ) because the latter is a
full subcategory of the former.

7. Lifting Presentations from Set to FRel

We recall, from Definition 2.25, that a Set monad M has an equational presentation if
there exists a class of equations Φ ⊆ Eq(Σ) over some signature Σ such that TSet

Σ,Φ
∼= M .

A well known result, dating back to the seminal works of Lawvere [Law63] connecting the
theory of monads with Universal Algebra, states that a Set monad M has an equational
presentation if and only if it is finitary (see, e.g., [AR94, Chapter 3]). This result provides a
useful correspondence between a logical notion (definability by equations) and a categorical
one (finitary monad).
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In the context of our theory of quantitative algebras, it is natural to give the following
definition of FRel monads having a quantitative equational presentation.

Definition 7.1 (Quantitative Equational Presentation). An FRel monad M has a quan-
titative equational presentation if there is a class of equations and quantitative equations
Φ ⊆ QEq(Σ) over some signature Σ such that TFRel

Σ,Φ
∼= M .

Lemma 7.2. An FRel monad M is presented by Φ ⊆ QEq(Σ) if and only if there is an
isomorphism QModΣ(Φ) ∼= EM(M) that commutes with the forgetful functors to FRel.

Proof. By Proposition 2.14, a presentation is equivalent to an isomorphism EM(M) ∼=
EM(TFRel

Σ,Φ̂
) commuting with the forgetful functors. Since we can compose that with the

isomorphism EM(TFRel
Σ,Φ̂

) ∼= QModΣ(Φ) resulting from Theorem 6.3, which also commutes

with the forgetful functors, we get the desired equivalence.

Example 7.3. The FRel monad P ′ of Example 2.33 is presented by the quantitative
equational theory of semilattices Φ in (3.1). Indeed, we already noted that QModΣ(Φ) is the
category of semilattices equipped with a fuzzy relation, and one can show that EM(P ′) is
the category of P-algebras equipped with a fuzzy relation. Then, since P is presented by the
theory of semilattices (Example 2.26.(1)), i.e., there is an isomorphism between semilattices
and P-algebras, it follows that QModΣ(Φ) ∼= EM(P ′). Therefore, by Lemma 7.2 we
conclude that P ′ is presented by Φ.

The problem of characterising which FRel monads have a quantitative equational
presentation in terms of categorical properties seems to be hard. For instance, Adámek
provides in [Adá22, Example 4.1] an example of a class Φ ⊆ QEq(Σ) such that TFRel

Σ,Φ is not
finitary. This example is formulated in the context of the framework of Mardare, Panangaden
and Plotkin [MPP16], but can be reformulated in our setting (see Section 9.1).

In this section we establish (Theorem 7.7) a correspondence between FRel monads that
are liftings of Set monads (Definition 7.4) having an equational presentation Ψ ⊆ Eq(Σ)
(i.e., finitary Set monads) and quantitative equational presentations Φ ⊆ QEq(Σ) that are
extensions of Ψ ⊆ Eq(Σ) (Definition 7.6).

Before proceeding with the formal definitions, since we have to deal with both Set
and FRel monads, and with both classes of equations in P(Eq(Σ)) and classes of FRel
equations and quantitative equations in P(QEq(Σ)), in the rest of this section we adopt the
following notational convention:

(1) We reserve the letters M for Set monads and Φ for classes of equations in Eq(Σ).

(2) We use the letters M̂ and Φ̂, with the “hat” notation, for FRel monads M̂ and classes

of FRel equations and quantitative equations Φ̂ ⊆ QEq(Σ), respectively.

We first give the standard (see, e.g., [Bec69, p. 121]) definition of lifting of a monad.

Definition 7.4 (Lifting). An FRel monad (M̂, η̂, µ̂) is a lifting of a Set monad (M,η, µ) if

FRel FRel

Set Set

M̂

U U

M

, Uη̂ = ηU, and Uµ̂ = µU.

More explicitly,
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(i) the action of M̂ on objects is an assignment (A, dA) 7→ (MA, d̂A) that lifts every fuzzy

relation dA on A to a fuzzy relation d̂A on MA,

(ii) the actions of M and M̂ on morphisms coincide set-theoretically,
(iii) the units η and η̂ coincide set-theoretically. This means that for any (A, dA) ∈ FRel,

the function ηA : A→MA is a nonexpansive map η̂(A,dA) : (A, dA) → (MA, d̂A).
(iv) the multiplications µ and µ̂ coincide set-theoretically, i.e., for any (A, dA) ∈ FRel, the

function µA : MMA→MA is a nonexpansive map µ̂(A,dA) : (MMA, ̂̂dA) → (MA, d̂A).

Example 7.5. It is clear from the definition that the FRel monad P ′ (Example 2.33) and
the Set powerset monad P satisfy the four items above, and hence P ′ is a lifting of P.

We now formally define when a class Φ̂ ⊆ QEq(Σ) is an extension of a class Φ ⊆ Eq(Σ).

Definition 7.6 (Quantitative Extension). Let Σ be a signature. A class Φ̂ ⊆ QEq(Σ) is a
quantitative extension of a class Φ ⊆ Eq(Σ) if

for all (A, dA) ∈ FRel and s, t ∈ TermsΣ(A),

Φ ⊪Set ∀A.s = t⇐⇒ Φ̂ ⊪FRel ∀(A, dA).s = t.
(7.1)

This guarantees that the equations entailed by Φ̂ “coincide” with those of Φ, in the sense

that ∀A.s = t follows from Φ if and only if ∀(A, dA).s = t follows from Φ̂, for all possible
fuzzy relations dA on A.

We are now ready to state our main result of this section.

Theorem 7.7. Let (M,η, µ) be a monad on Set presented by Φ ⊆ Eq(Σ).

(1) For any quantitative extension Φ̂ of Φ, there is a monad lifting M̂ of M presented by Φ̂.

(2) For any monad lifting M̂ of M , there is a quantitative extension Φ̂ of Φ presenting M̂ .

The goal of the rest of this section is to prove the above theorem. We first give a proof
sketch illustrating the main ideas. All technical details are delayed to Subsection 7.1.

For (1), we are a given a class Φ̂ ⊆ QEq(Σ) extending Φ ⊆ Eq(Σ), and a Set monad M
presented by Φ (with a given monad isomorphism ρ : TSet

Σ,Φ
∼= M). Our goal is to exhibit an

FRel monad M̂ that lifts M and is presented by Φ̂.

As a first step, we establish that, from the assumption that Φ̂ extends Φ, it follows that
TFRel

Σ,Φ̂
is a monad lifting of TSet

Σ,Φ (Lemma 7.9). Hence, diagrammatically, the assumptions

can be depicted as below (left) and our goal is to complete the diagram as in the (right):

TFRel
Σ,Φ̂

M̂ TFRel
Σ,Φ̂

M TSet
Σ,Φ M TSet

Σ,Φ

ρ∼=

ρ̂∼=

U UU
ρ∼=

We thus need to define an FRel monad M̂ lifting M . We remark that, from Definition 7.4

of monad lifting, the unit, the multiplication and the action on morphisms on any such M̂

are fully determined by M . We therefore just need to specify the action of M̂ on objects
(A, dA) ∈ FRel, respecting the constraint of Definition 7.4:

(A, dA) 7→ (MA, d̂A).
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To define the fuzzy relation d̂A : (MA)2 → [0, 1], we use the monad isomorphism ρ : TSet
Σ,Φ

∼=
M to get a bijection

ρ−1
A : MA→ TermsΣ(A)/≡A

Φ

between MA and the set TermsΣ(A)/≡A
Φ

underlying TSet
Σ,Φ and, as we have already established,

also TFRel
Σ,Φ̂

. We can now define d̂A as follows:

∀m,m′ ∈MA. d̂A(m,m′) = ∆F (A,dA)(ρ−1
A (m), ρ−1

A (m′)),

where ∆F (A,dA) is the distance on quotiented terms obtained in Definition 5.4.

This completes the definition of the FRel monad M̂ . The verification that all these
definitions are valid in FRel (i.e., that the unit, the multiplication and the action of

morphisms yield nonexpansive maps) is straightforward. The fact that M̂ is a lifting of M
follows directly from its construction.

Finally, we define the components of the monad isomorphism ρ̂

ρ̂(A,dA) : TFRel
Σ,Φ̂

(A, dA) → M̂(A, dA)

to coincide with ρA : TSet
Σ,ΦA → MA, for every (A, dA) ∈ FRel. Checking that ρ̂(A,dA) is

indeed a map in FRel (i.e., it is nonexpansive) and that ρ̂ satisfies the constraints of a
monad isomorphism is also straightforward.

For (2), we are given an FRel monad M̂ which is a lifting of a Set monad M presented
by some class of equations Φ ⊆ Eq(Σ) (with a given monad isomorphism ρ : TSet

Σ,Φ
∼= M).

Our goal is to find a class of FRel equations and quantitative equations Φ̂ ⊆ QEq(Σ) such

that: (i) Φ̂ extends Φ and (ii) there is a monad isomorphism TFRel
Σ,Φ̂

∼= M̂ .

We define Φ̂ to be the union of a class of FRel equations Φ̂EQ and a class of FRel

quantitative equations Φ̂QEQ, given as follows.

The class Φ̂EQ consists of all equations ∀X.s = t entailed by Φ, transformed to FRel
equations ∀(X, d).s = t, for all possible fuzzy relations d on X:

Φ̂EQ = {∀(X, d).s = t | Φ ⊪Set ∀X.s = t and (X, d) ∈ FRel} . (7.2)

The class Φ̂QEQ contains quantitative equations of the form ∀(X, d).s =ϵ t, for all possible
FRel spaces (X, d) and s, t ∈ TermsΣ(X). The ϵ ∈ [0, 1], expressing the distance between s
and t, is obtained by:

(a) using the monad isomorphism ρ : TSet
Σ,Φ

∼= M to get a bijection

ρX : TermsΣ(X)/≡Φ →MX,

where the equivalence ≡Φ is defined as: s ≡Φ t⇔ Φ ⊪Set ∀X.s = t (see Example 2.11),

(b) using the distance provided by the given FRel monad M̂ , M̂(X, d) =
(
MX, d̂

)
, to

obtain the required value for ϵ:

ϵ = d̂(ρX
(
[s]≡Φ

)
, ρX

(
[t]≡Φ

)
).

Thus, formally,

Φ̂QEQ =

{
∀(X, d).s =ϵ t

∣∣∣∣ (X, d) ∈ FRel, s, t ∈ TermsΣ(X),

and ϵ = d̂ (ρX([s]≡Φ), ρX([t]≡Φ))

}
. (7.3)
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The rest of the proof consists in verifying that the defined Φ̂ = Φ̂EQ ∪ Φ̂QEQ satisfies the

desired properties: (i) Φ̂ extends Φ (Lemma 7.12) and (ii) ρ̂, defined set-theoretically as ρ,

is a monad isomorphism ρ̂ : TFRel
Σ,Φ̂

∼= M̂ (Lemma 7.13).

Remark 7.8. In Example 7.3, we provided a presentation of P ′. Theorem 7.7 automatically
tells us that there is a quantitative equational presentation for this monad that extends the
theory of semilattices, simply based on the fact that P ′ is a lifting of P (Example 7.5).

We stress that Theorem 7.7 does not imply that all FRel monads with a presentation
are liftings of finitary Set monads. See Remark 8.14 for a simple example based on the
theory of metric spaces Met.

This proof sketch of Theorem 7.7 is expanded in full details in the following subsection.

7.1. Detailed Proof of Theorem 7.7 Following the Proof Sketch. In this section, we
consider a fixed a monad (M,η, µ) on Set, a class of equations Φ ⊆ Eq(Σ) and a monad
isomorphism ρ : TSet

Σ,Φ
∼= M witnessing the fact that Φ presents M . We start by showing

statement (1) of Theorem 7.7.

Given a class of FRel equations and quantitative equations Φ̂ ⊆ QEq(Σ) extending Φ,

we construct a monad (M̂, η̂, µ̂) on FRel that lifts M and is presented by Φ̂. As explained

in the sketch, the lifting properties (i)–(iv) from Definition 7.4 enforce the action of M̂ on
morphisms, its unit, its multiplication and the fact that its action on objects must be an

assignment (A, dA) 7→ (MA, d̂A). Hence, we only need to define the fuzzy relation d̂A on MA
and prove that the other (determined) parts of the monad are valid, i.e. it sends nonexpansive
maps to nonexpansive maps and the units and multiplications are nonexpansive.

We first prove that, from the assumption that Φ̂ is a quantitative extension of Φ, we
can derive that TFRel

Σ,Φ̂
is a monad lifting of TSet

Σ,Φ .

Lemma 7.9. If Φ̂ ⊆ QEq(Σ) be a quantitative extension of Φ ⊆ Eq(Σ), then TFRel
Σ,Φ̂

is a

monad lifting of TSet
Σ,Φ .

Proof. Recall (from Example 2.17) that, for any A ∈ Set, TSet
Σ,ΦA is the set of terms

TermsΣ(A) quotiented by the relation ≡Φ defined by

s ≡Φ t⇔ Φ ⊪Set ∀A.s = t,

and (from Subsection 5.1) that, for any (A, dA) ∈ FRel, the underlying set of TFRel
Σ,Φ̂

(A, dA)

is the set of terms TermsΣ(A) quotiented by the relation ≡
Φ̂

defined by

s ≡
Φ̂
t⇔ Φ̂ ⊢FRel ∀(A, dA).s = t

∗⇔ Φ̂ ⊪FRel ∀(A, dA).s = t,

where the (
∗⇔) implication follows from the soundness and completeness of ⊢FRel (Corol-

lary 5.14). It thus follows form the assumption that Φ̂ is a quantitative extension of
Φ (see Equation 7.1) that ≡Φ coincides with ≡

Φ̂
, for any (A, dA), and this implies that

UTFRel
Σ,Φ̂

(A, dA) = TSet
Σ,ΦU(A, dA). Moreover, the action on morphisms, the units, and the

multiplications of both monads are defined set-theoretically in the same way. This implies
that all properties (i)–(iv) from Definition 7.4 of monad lifting are satisfied. We conclude
that TFRel

Σ,Φ̂
is a monad lifting of TSet

Σ,Φ .
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In what follows, we just write [t] in place of [t]≡Φ (or equivalently [t]≡
Φ̂

, as shown above)

for the equivalence class of a term t ∈ TermsΣ(A) in TSet
Σ,ΦA defined as in Example 2.11.

As explained in the proof sketch, this allows us to define a distance d̂A(m,m′) between
any two elements m,m′ ∈ MA by viewing them as elements of TSet

Σ,ΦA (i.e., equivalence

classes [t] of terms) via the monad isomorphism ρ−1
A , and using the distance on those elements

given by ∆F (A,dA), the distance on TFRel
Σ,Φ̂

(A, dA) as specified in Definition 5.4. We prove

that this indeed defines a monad lifting of M .

Lemma 7.10. Let M̂ be defined on objects by

M̂(A, dA) = (MA, d̂A) where d̂A(m,m′) = ∆F (A,dA)(ρ−1
A (m), ρ−1

A (m′)).

This assignment becomes an FRel monad M̂ when the action on morphisms, unit, and mul-
tiplication are specified as in M (see properties (ii)–(iv) of monad liftings in Definition 7.4).

Furthermore, it is presented by Φ̂.

Proof. It follows from the definition of d̂A, that for any fuzzy relation (A, dA), the function

ρ̂(A,dA) defined set-theoretically like ρA is an isomorphism ρ̂(A,dA) : TFRel
Σ,Φ̂

(A, dA) ∼= M̂(A, dA).

Indeed, we know that ρA is bijective, and for any [s], [t] ∈ TFRel
Σ,Φ̂

(A, dA),

d̂A(ρA[s], ρA[t]) = ∆F (A,dA)(ρ−1
A (ρA[s]), ρ−1

A (ρA[t])) = ∆F (A,dA)([s], [t]),

so ρ̂(A,dA) is a bijective isometry, i.e. an isomorphism in FRel.

Moreover, by Lemma 7.9, we know that TFRel
Σ,Φ̂

is a monad lifting of TSet
Σ,Φ , hence by (ii)–(iv)

in Definition 7.4, we know that for any (A, dA) and nonexpansive map f̂ : (A, dA) → (B, dB),

(a) the function TFRel
Σ,Φ̂

f̂ is set-theoretically defined like TSet
Σ,ΦUf̂ and it is nonexpansive

from TFRel
Σ,Φ̂

(A, dA) to TFRel
Σ,Φ̂

(B, dB),

(b) the component ηΦ̂
(A,dA) of the unit of TFRel

Σ,Φ̂
is defined set-theoretically like the component

ηΦ
A of the unit of TSet

Σ,Φ , and ηΦ̂
(A,dA) : (A, dA) → TFRel

Σ,Φ̂
(A, dA) is nonexpansive, and

(c) the component µΦ̂
(A,dA) of the multiplication of TFRel

Σ,Φ̂
is defined set-theoretically like

the component µΦ
A of the multiplication of TSet

Σ,Φ , and µΦ̂
(A,dA) : TFRel

Σ,Φ̂
TFRel

Σ,Φ̂
(A, dA) →

TFRel
Σ,Φ̂

(A, dA) is nonexpansive.

Since ρ is a monad isomorphism from TSet
Σ,Φ to M (Definition 2.13), we have the following

equations for any f̂ : (A, dA) → (B, dB),

MUf̂ = ρB ◦ TSet
Σ,ΦUf̂ ◦ ρ−1

A (by naturality of ρ)

ηA = ρA ◦ ηΦ
A (by (1) in Definition 2.13)

µA = ρA ◦ µΦ
A ◦ ρ−1

TSet
Σ,ΦA

◦Mρ−1
A . (by (2) in Definition 2.13)

Combining these equations with the information on nonexpansiveness we have derived in (a)-

(b)-(c) above, we find that for any (A, dA) and nonexpansive function f̂ : (A, dA) → (B, dB),

• M̂f̂ defined set-theoretically like MUf̂ is nonexpansive from M̂(A, dA) to M̂(A, dB),

• η̂(A,dA) defined set-theoretically like ηA is nonexpansive from (A, dA) to M̂(A, dA), and
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• µ̂(A,dA) defined set-theoretically like µA is nonexpansive from M̂M̂(A, dA) to M̂(A, dA).

We conclude that (M̂, η̂, µ̂) is a monad lifting of (M,η, µ), and it is presented by Φ̂ via

the monad isomorphism ρ̂ : TFRel
Σ,Φ̂

⇒ M̂ . All the conditions that need to be checked (e.g.

naturality, preservation of composition, monad laws, etc.) hold because they hold in Set
after applying U : FRel → Set and U is faithful.

Next, we give the details for the proof sketch we gave for statement (2) of Theorem 7.7.

Consider a monad lifting (M̂, η̂, µ̂) of (M,η, µ), and the class Φ̂ ⊆ QEq(Σ) comprising the

FRel equations in Φ̂EQ from (7.2) and the FRel quantitative equations in Φ̂QEQ from (7.3).

We need to show that Φ̂ is a quantitative extension of Φ, and that it presents M̂ via an
isomorphism ρ̂ defined set-theoretically like ρ.

Given a set A, the free model of Φ generated by A can be seen, thanks to Theorem 6.3
and the fact that monad isomorphisms correspond to isomorphisms between their Eilenberg–
Moore categories (by Proposition 2.14), as the image of the free M -algebra (MA,µA) under
the composite isomorphism EM(M) ∼= EM(TSet

Σ,Φ) ∼= ModΣ(Φ). Denote the resulting

Σ-algebra by (MA, {opMA}op∈Σ). Given a fuzzy relation (A, dA), the lifting M̂ yields a fuzzy

relation d̂A on MA, so we obtain a quantitative Σ-algebra M(A,dA) = (MA, d̂A, {opMA}op∈Σ).

We can show that M(A,dA) is a model of Φ̂.

Lemma 7.11. The quantitative Σ-algebra M(A,dA) = (MA, d̂A, {opMA}op∈Σ) constructed

above belongs to QModΣ(Φ̂).

Proof. We first want to identify the extended interpretation J−KMA
τ in M(A,dA). Starting with

the M -algebra (MA,µA), we apply the isomorphism EM(M) ∼= EM(TSet
Σ,Φ) obtained from ρ

by Proposition 2.14, which is given by post-composition by ρ (see [BW05, Theorem 6.3]) and
yields the TSet

Σ,Φ -algebra (MA,µA ◦ ρMA). Next, the isomorphism EM(TSet
Σ,Φ) ∼= ModΣ(Φ)

mentioned after Proposition 2.24 is applied, and gives the following operations on MA:

opMA(x1, . . . , xn) = µA(ρMA([op(x1, . . . , xn)]≡)).

Finally, after a simple induction using the fact that µA ◦ ρMA is a TSet
Σ,Φ -algebra, we find that

for any interpretation τ : (X, dX) → (MA, d̂A), the extended interpretation J−KMA
τ is

TermsΣ(X)
[−]≡−−−→ TSet

Σ,ΦX
TSet
Σ,Φτ

−−−−→ TSet
Σ,ΦMA

ρMA−−−→MMA
µA−−→MA.

For later use, we apply the naturality of ρ to rewrite the composite as

J−KMA
τ = TermsΣ(X)

[−]≡Φ−−−−→ TSet
Σ,ΦX

ρX−−→MX
Mτ−−→MMA

µA−−→MA. (7.4)

Now, we show M(A,dA) satisfies the FRel equations in (7.2). If Φ ⊪Set ∀X.s = t, then
the Σ-algebra underlying M satisfies ∀X.s = t because it is a model of Φ, hence for any

nonexpansive interpretation τ : (X, d) → (MA, d̂A), we have JsKMA
τ = JtKMA

τ . We conclude

M(A,dA) |= ∀(X, d).s = t for all those equations in Φ̂EQ.
Next, we show that M(A,dA) satisfies the FRel quantitative equations in (7.3). Let

∀(X, d).s =ϵ t ∈ Φ̂QEQ with ϵ = d̂(ρX [s]≡Φ , ρX [t]≡Φ), and let τ : (X, d) → (MA, d̂A) be
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nonexpansive. We have the following derivation:

d̂A
(
JsKMA

τ , JtKMA
τ

)
= d̂A(µA(Mτ(ρX([s]≡Φ))), µA(Mτ(ρX([t]≡Φ)))) (using (7.4))

≤ ̂̂dA(Mτ(ρX([s]≡Φ)),Mτ(ρX([t]≡Φ))) (by Definition 7.4(iv))

≤ d̂(ρX([s]≡Φ), ρX([t]≡Φ)) (by Definition 7.4(ii))

= ϵ.

We conclude that M(A,dA) |= ∀(X, d).s =ϵ t. Since ∀(X, d).s =ϵ t has been chosen arbitrarily

in Φ̂QEQ, we get that M(A,dA) |= Φ̂QEQ. Hence we conclude that M(A,dA) ∈ QModΣ(Φ̂).

By exploiting Lemma 7.11 can now show that Φ̂ is a quantitative extension of Φ.

Lemma 7.12. The class Φ̂ = Φ̂EQ ∪ Φ̂QEQ is a quantitative extension of Φ.

Proof. Fix (A, dA) ∈ FRel and s, t ∈ TermsΣ(A). We only need to show that Φ̂ ⊪FRel

∀(A, dA).s = t implies Φ ⊪Set ∀A.s = t. The converse implication holds because Φ̂ ⊇ Φ̂EQ.

By definition of ⊪FRel, and since M(A,dA) is a model of Φ̂, we know that M(A,dA) |=
∀(A, dA).s = t. Then, taking the assignment η̂(A,dA) : (A, dA) → (MA, d̂A) which is

nonexpansive since it is the unit of the monad M̂ , and recalling that η̂(A,dA) is defined as
the unit ηA of M , we find using (7.4) and the monad law µA ◦MηA = idMA that

ρA([s]≡Φ) = JsKMA
ηA

= JtKMA
ηA

= ρA([t]≡Φ).

Since ρA is a bijection, we find [s]≡Φ = [t]≡Φ . This means, by definition of the equivalence
relation (see Example 2.11), that Φ ⊪Set ∀A.s = t.

By Lemma 7.9, this means that TFRel
Σ,Φ̂

is a monad lifting of TSet
Σ,Φ . In particular, the

equivalence class of any term t ∈ TermsΣ(A) in TSet
Σ,ΦA and TFRel

Σ,Φ̂
(A, dA) coincide, and we

can just write [t] for both [t]≡Φ and [t]≡
Φ̂

. Moreover, it means that for any fuzzy relation

(A, dA), the function ρA goes from the carrier of TFRel
Σ,Φ̂

(A, dA) to the carrier of M̂(A, dA).

We show this assembles into a monad isomorphism.

Lemma 7.13. For any (A, dA) ∈ FRel, ρ̂(A,dA) : TFRel
Σ,Φ̂

(A, dA) → M̂(A, dA), defined set-

theoretically like ρA, is an isomorphism in FRel. Hence, there is a monad isomorphism

ρ̂ : TFRel
Σ,Φ̂

∼= M̂ defined by Uρ̂(A,dA) = ρA.

Proof. To prove the first part, we need to show that ρ̂(A,dA) is a bijective isometry. We know

it is bijective because ρA is a Set isomorphism between the carriers of TFRel
Σ,Φ̂

(A, dA) and

M̂(A, dA). To prove it is an isometry, we need to show that for any s, t ∈ TermsΣ(A),

∆F (A,dA)([s], [t]) = d̂(ρA[s], ρA[t]),

where ∆F (A,dA) is the distance between classes of terms in TFRel
Σ,Φ̂

obtained in Definition 5.4.

By Lemma 5.3, Theorem 4.4, and Theorem 5.13, it is equivalent to show

Φ̂ ⊪FRel ∀(A, dA).s =ϵ t⇐⇒ d̂A(ρA[s], ρA[t]) ≤ ϵ.
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(⇒) Lemma 7.11 says that M(A,dA) satisfies ∀(A, dA).s =ϵ t because it is a model of

Φ̂. As for Lemma 7.12, we take the assignment η̂(A,dA) : (A, dA) → M̂(A, dA) which is
nonexpansive by (iii), and we obtain

d̂A (ρA[s], ρA[t]) = d̂A
(
JsKMA

ηA
, JtKMA

ηA

)
≤ ϵ.

(⇐) By definition of Φ̂, writing ϵ0 = d̂A(ρA[s], ρA[t]), we know ∀(A, dA).s =ϵ0 t ∈ Φ̂,

which means Φ̂ ⊪FRel ∀(A, dA).s =ϵ0 t. Now, if ϵ0 ≤ ϵ, then by the (UP-CLOSURE) axiom

scheme (g), Φ̂ ⊪FRel ∀(A, dA).s =ϵ t.
We conclude that ρ̂(A,dA) is a bijective isometry, thus an isomorphism in FRel. In order

to prove that ρ̂ is a monad isomorphism, we need to show the equations required by monad
morphisms hold. We note that applying the forgetful functor U : FRel → Set to those
equations yields equations that hold because ρ is a monad morphism between TSet

Σ,Φ and M .

This is because applying U to ρ̂ yields ρ, and TFRel
Σ,Φ̂

and M̂ are monad liftings of TSet
Σ,Φ and

M , respectively. Since U is faithful, the original equations in FRel must also hold, and we

get that ρ̂ is a monad isomorphism TFRel
Σ,Φ̂

∼= M̂ .

8. From Fuzzy Relations to Generalised Metric Spaces

Most of the literature on quantitative algebras follows [MPP16] (see, e.g., [BMPP18,
BMPP21, MSV21, Adá22]) and considers quantitative algebras whose carriers are met-
ric spaces. Up to this point, our results have been stated for quantitative algebras (in the
sense of Definition 3.1) whose carriers are arbitrary fuzzy relations.

In this section, we show that all the results proved so far also hold when, instead of
FRel, we take as base category an arbitrary category GMet of generalised metric spaces
(see Section 2.3), such as the category Met of metric spaces.

In what follows, we fix a category of generalised metric spaces GMet defined by a set H
of L -implications (see Definition 2.29) and a signature Σ. We denote by QAlgGMet(Σ) the

full subcategory of QAlgFRel(Σ) comprising only quantitative algebras whose underlying
fuzzy relations satisfy the L -implications defining GMet

QAlgGMet(Σ) = {(A, dA, {opA}op∈Σ) | (A, dA) |=L H} ⊆ QAlgFRel(Σ). (8.1)

Given a class of FRel equations and quantitative equations Φ ⊆ QEq(Σ), we define

QModGMet
Σ (Φ) as the full subcategory of QModFRel

Σ (Φ) comprising only quantitative

algebras that belong to QAlgGMet(Σ):

QModGMet
Σ (Φ) = QAlgGMet(Σ) ∩QModFRel

Σ (Φ). (8.2)

Note that since we are taking full subcategories, homomorphisms of GMet quantitative
Σ-algebras are still nonexpansive homomorphisms of the underlying Σ-algebras.

We first show that QAlgGMet(Σ) is a quantitative equationally definable class of
quantitative Σ-algebras in the sense of Definition 3.9. In other words, we show (Corollary 8.6)
that there is a class ΦH ⊆ QEq(Σ) of FRel equations and quantitative equations such that

QAlgGMet(Σ) = QModFRel
Σ (ΦH).
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We will prove this fact by giving an explicit procedure to translate any L -implication H ∈ H
to an FRel equation or quantitative equation ϕH ∈ QEq(Σ) such that, for any quantitative

algebra (A, dA, {opA}op∈Σ) ∈ QAlgFRel(Σ),

(A, dA) |=L H ⇐⇒ A |= ϕH .

In fact, the terms in ϕH will not be built using any of the operations op ∈ Σ, so this
translation is independent of the signature Σ.

Definition 8.1 (Translation). Let

H = ∀x1, . . . , xn.
( (

G1 ∧ · · · ∧Gm ∧G′
1 · · · ∧G′

k

)
⇒ F

)
be an L -implication, where

• We denote with X = {x1, . . . , xn} the set of variables occurring in H. Note that this set
cannot be empty as the atomic formulas in H (not empty because F is one of them) are
predicates (x = y or d(x, y) ≤ ϵ) which must use variables.

• All atomic formulas Gi, 1 ≤ i ≤ m (possibly an empty set when m = 0), are of the form

x = y

for some x, y ∈ X.
• All atomic formulas G′

j , 1 ≤ j ≤ k (possibly an empty set when k = 0), are of the form

d(x, y) ≤ ϵ

for some x, y ∈ X and ϵ ∈ [0, 1].

We are going to define an FRel (quantitative) equation ϕH ∈ QEq(Σ) constructed from H.
We first use the premises (G1, . . . , Gm, G

′
1 . . . , G

′
k) of H to construct a fuzzy relation space

(XH , dH). Let ∼ ⊆ X ×X be the smallest equivalence relation on X containing{
(x, x′) | there is a formula Gi in H of the form: x = x′

}
.

Hence, ∼ consists of exactly all pairs (x, y) of variables in X such that x = y is logically
implied by the conjunction of all formulas Gi. Let us denote with XH the quotient X/∼,
i.e., the set of all ∼-equivalence classes. Finally, let dH : XH ×XH → [0, 1] be the following
fuzzy relation on XH :

dH([x]∼, [x
′]∼) = min

{
ϵ ∈ [0, 1]

∣∣∣∣ there is a formula G′
j in H of the form d(y, y′) ≤ ϵ

with y ∈ [x]∼ and y′ ∈ [x′]∼

}
,

with the convention min(∅) = 1. We have thereby defined the fuzzy relation space (XH , dH).
Now we use the conclusion F of H to construct ϕH which can be either an FRel

equation or an FRel quantitative equation depending on F :

• If F is of the form x = y, for some x, y ∈ X, then

ϕH is defined as ∀(XH , dH).[x]∼ = [y]∼.

• If F is of the form d(x, y) ≤ ϵ, for some x, y ∈ X and ϵ ∈ [0, 1], then

ϕH is defined as ∀(XH , dH).[x]∼ =ϵ [y]∼.

We note that the two terms ([x]∼ and [y]∼) appearing in ϕH belong to TermsΣ(XH) for any
signature because they both belong to XH . Hence the translation is well-defined for all Σ.

Before proving the main result regarding this translation (Lemma 8.4) we provide some
illustrative examples.
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Example 8.2. Consider the L -implication H (a logically equivalent variant of (2.3))

∀x1, x2.
(
x1 = x2 ⇒ d(x1, x2) ≤ 0

)
. (8.3)

We are in the case where X = {x1, x2}, n = 2 (two variables), m = 1 (one atomic equation
among the premises), and k = 0 (no atomic formula of the form d(x, y) ≤ ϵ among the
premises). Since the only premise (G1) of the formula is x1 = x2, we have that x1 ∼ x2, and
thus XH consists of only one element XH = { [x1]∼}. By the definition of dH we have that
dH([x1]∼, [x1]∼) = 1. Finally, since the conclusion is of the form d(x1, x2) ≤ 0, we have that

ϕH is defined as ∀
(
{[x1]∼}, dH

)
. [x1]∼ =0 [x1]∼.

Now, we note that a nonexpansive interpretation τ : (XH , dH) → (A, dA) is simply a choice
of an element a = τ([x1]∼) ∈ A, and ϕH holds under τ if and only if dA(a, a) = 0. Therefore,
an algebra satisfies ϕH if and only if all its elements have self-distance 0. This is indeed also
the meaning of the L -implication (8.3) and of the logically equivalent variant (2.3).

Example 8.3. Consider the L -implication H (cf. (2.5) in Section 2.3)

∀x1, x2.
(
d(x1, x2) ≤ ϵ ⇒ d(x2, x1) ≤ ϵ

)
. (8.4)

We are in the case where X = {x1, x2}, n = 2, m = 0, and k = 1. The equivalence ∼ is the
identity relation on X, hence XH = X, and the fuzzy relation dH is given by

dH(x1, x1) = 1 dH(x1, x2) = ϵ dH(x2, x1) = 1 dH(x2, x2) = 1.

Finally, since the conclusion is of the form d(x2, x1) ≤ ϵ, we have that

ϕH is defined as ∀
(
{x1, x2}, dH

)
. x2 =ϵ x1.

One can check that a quantitative Σ-algebra satisfies ϕH if and only if the underlying fuzzy
relation is symmetric, which is exactly what satisfaction of (8.4) means.

Lemma 8.4. If A = (A, dA, {opA}op∈Σ) ∈ QAlgFRel(Σ), H is an L -implication, and ϕH
is the corresponding FRel (quantitative) equation constructed in Definition 8.1, then

(A, dA) |=L H ⇐⇒ A |= ϕH .

Proof. Let H be of the form described in Definition 8.1

∀x1, . . . , xn.
( (

G1 ∧ · · · ∧Gm ∧G′
1 · · · ∧G′

k

)
⇒ F

)
,

and let X = {x1, . . . , xn}. We consider in parallel the two cases when the conclusion F is

x = y or d(x, y) ≤ ϵ

for some x, y ∈ X. Let ϕH be defined as in Definition 8.1 and be of the form

∀(XH , dH). [x]∼ = [y]∼ or ∀(XH , dH). [x]∼ =ϵ [y]∼.

Assuming (A, dA) |=L H and given an interpretation of the fuzzy relation (XH , dH) in
A, i.e., a nonexpansive map τ : (XH , dH) → (A, dA), we need to show

J[x]∼KAτ = J[y]∼KAτ or dA
(
J[x]∼KAτ , J[y]∼KAτ

)
≤ ϵ (8.5)

We define an interpretation ιτ : X → A of the variables X as ιτ (x) = τ([x]∼). We can show
ιτ satisfies the premises of H, and, by (A, dA) |=L H, it satisfies the conclusion too, namely,

ιτ (x) = ιτ (y) or dA(ιτ (x), ιτ (y)) ≤ ϵ.

By definition of ιτ , this is equivalent to
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τ([x]∼) = τ([y]∼) or dA
(
τ([x]∼), τ([y]∼)

)
≤ ϵ,

and by definition of J−KAτ this is equivalent to (8.5). Hence, we conclude that A |= ϕH .
Assuming A |= ϕH and given an interpretation ι : X → A that satisfies all premises Gi

and G′
j of H, we need to show that ι satisfies the conclusion F , i.e.:

ι(x) = ι(y) or dA(ι(x), ι(y)) ≤ ϵ. (8.6)

Let τι : (XH , dH) → (A, dA) be the interpretation of (XH , dH) in A defined by τι([x]∼) = ι(x).
After checking that it is well-defined and nonexpansive, we can apply our hypothesis (A |= ϕH)
and obtain that the following holds:

τι([x]∼) = τι([y]∼) or dA
(
τι([x]∼), τι([y]∼)

)
≤ ϵ.

By definition of τι, this is equivalent to (8.6), hence we established that (A, dA) |=L H.

We can obtain a few useful corollaries from Lemma 8.4. The first extends the result of
Lemma 8.4 from one L -implication H to a set H of L -implications. In what follows, we
define the set ΦH as the set of FRel (quantitative) equations

ΦH = {ϕH | H ∈ H and ϕH is a (quantitative) equation translating H} ⊆ QEq(Σ),

where the translation is the one specified in Definition 8.1.

Corollary 8.5. If A = (A, dA, {opA}op∈Σ) ∈ QAlgFRel(Σ) and H is a set of L -implications,
then

(A, dA) |=L H ⇐⇒ A ∈ QModFRel
Σ (ΦH).

Hence, the class of quantitative algebras QAlgGMet(Σ), which contains exactly those
algebras satisfying the L -implications in H, is quantitative equationally definable.

Corollary 8.6. For any signature Σ and any GMet category defined by a set H of L -
implications,

QModFRel
Σ (ΦH) = QAlgGMet(Σ).

Remark 8.7. When Σ is empty, the category QAlgGMet(Σ) is simply the category of fuzzy
relations that satisfy H, i.e., it is GMet. Thus, we have shown that GMet is a quantitative
equationally definable class of fuzzy relations, namely, GMet = QModFRel

∅ (ΦH).

The next corollary is a further generalisation of the previous one, showing that for
any class of FRel equations and quantitative equations Φ ⊆ QEq(Σ), QModGMet

Σ (Φ) is a
quantitative equationally definable class of quantitative Σ-algebras. Namely, we show the
full subcategories QModFRel

Σ (ΦH ∪ Φ) and QModGMet
Σ (Φ) of QAlgFRel(Σ) coincide.

Corollary 8.8. For any signature Σ, for any GMet category defined by a set H of L -
implications, and for any class Φ ⊆ QEq(Σ) of FRel equations and quantitative equations,

QModFRel
Σ (ΦH ∪ Φ) = QModGMet

Σ (Φ).

Proof. For any quantitative algebra A ∈ QAlgFRel(Σ), we have

A ∈ QModFRel
Σ (ΦH ∪ Φ)

⇔ A ∈ QModFRel
Σ (Φ) and A ∈ QModFRel

Σ (ΦH)

⇔ A ∈ QModFRel
Σ (Φ) and A ∈ QAlgGMet(Σ) (by Corollary 8.6)

⇔ A ∈ QModGMet
Σ (Φ). (by (8.2))
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Hence, QModFRel
Σ (ΦH ∪ Φ) and QModGMet

Σ (Φ) have the same objects, and, since they

are full subcategories of QAlgFRel(Σ), they also have the same morphisms.

We can now show that all the results proved for FRel in Sections 4,5,6,7 also hold when
specialised for a category GMet defined by a set H of L -implications.

Starting from the relation ⊢FRel for FRel defined in Definition 4.1, we define a relation
⊢GMet for GMet as follows:

Φ ⊢GMet ϕ⇐⇒ ΦH,Φ ⊢FRel ϕ.

Theorem 8.9 shows that the relation ⊢GMet is sound and complete for the relation
⊪GMet, which is the restriction of ⊪FRel to GMet defined as follows:

Φ ⊪GMet ϕ⇐⇒ ∀A ∈ QModGMet
Σ (Φ). A |= ϕ.

Theorem 8.9 (Soundness and Completeness for GMet). Φ ⊢GMet ϕ⇐⇒ Φ ⊪GMet ϕ.

Proof. We have

Φ ⊢GMet ϕ⇔ ΦH,Φ ⊢FRel ϕ (definition of ⊢GMet)

⇔ ΦH,Φ ⊪FRel ϕ (by Corollary 5.14)

⇔ ∀A ∈ QModFRel
Σ (ΦH ∪ Φ). A |= ϕ (definition of ⊪FRel)

⇔ ∀A ∈ QModGMet
Σ (Φ). A |= ϕ (by Corollary 8.8)

⇔ Φ ⊪GMet ϕ. (definition of ⊪GMet)

Now fix a class of equations and quantitative equations Φ ⊆ QEq(Σ). We have

QModGMet
Σ (Φ)

GMet FRel
E

UGMet

F

U

⊣

(8.7)

where

• E is the (full and faithful) functor embedding GMet into FRel, equivalently thanks to
Remark 8.7, it is the forgetful functor QMod∅(ΦH) → FRel;

• UGMet is the forgetful functor of type UGMet : QModGMet
Σ (Φ) → GMet;

• U is the forgetful functor of type U : QModFRel
Σ (ΦH ∪ Φ) → FRel, which indeed also

has type U : QModGMet
Σ (Φ) → FRel by Corollary 8.8, and such that U = E ◦ UGMet;

• F is the left adjoint of the forgetful functor U , as given in Section 6.

Since the image of U is contained in the full subcategory GMet, we can restrict the
adjunction to GMet by defining the functor FGMet := F ◦ E : GMet → QModGMet

Σ (Φ).

Theorem 8.10. The functor FGMet : GMet → QModGMet
Σ (Φ) is a left adjoint of UGMet.

Proof. Let η : idFRel ⇒ U ◦ F be the unit of the adjunction F ⊣ U , and define

for all GMet spaces (A, dA), η′(A,dA) = ηE(A,dA) : E(A, dA) → UFE(A, dA).

By (8.7) we have UFE(A, dA) = EUGMetFE(A, dA) = EUGMetFGMet(A, dA), and since
E(A, dA) is the GMet space (A, dA) seen as an FRel space, we can see η′(A,dA) as a morphism

η′(A,dA) : (A, dA) → UGMetFGMet(A, dA).
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Since η is a natural transformation and E acts like identity on morphisms, we also obtain a
natural transformation

η′ : idGMet ⇒ UGMetFGMet.

Now take a GMet space (A, dA), a quantitative algebra

B = (B, dB, {opB}op∈Σ) ∈ QModGMet
Σ (Φ),

and a nonexpansive map f : (A, dA) → (B, dB). Since F ⊣ U is an adjunction with unit
η, by seeing f as the FRel morphism E(f) we obtain that there is a unique quantitative
algebra homomorphism g : F (E(A, dA)) → B such that E(f) = U(g) ◦ ηE(A,dA).

By definition of E and η′(A,dA), this implies that there is a unique quantitative algebra

homomorphism g : FGMet(A, dA) → B such that f = UGMet(g) ◦ η′(A,dA). Hence, FGMet ⊣
UGMet.

Note that, by definition, the functor FGMet acts as the functor F on GMet spaces, and
thus the free UGMet-object generated by a generalised metric space (A, dA) is the quantitative
algebra of quotiented terms built as in Section 5. The monad on GMet obtained from
the composite UGMet ◦ FGMet will be denoted TGMet

Σ,Φ . Using Proposition 2.24, and strict
monadicity of U and E, we obtain strict monadicity of UGMet.

Theorem 8.11. The functor UGMet : QModGMet
Σ (Φ) → GMet is strictly monadic.

Proof. We observed in Remark 8.7 and Corollary 8.8 that both GMet and QModGMet
Σ (Φ)

are categories of FRel quantitative algebras, hence their forgetful functors E and U are
strictly monadic by Theorem 6.3. Moreover, since the composite of the right adjoints in (8.8)
is U = E ◦ UGMet, we can conclude by Proposition 2.24 that UGMet is strictly monadic.

QModGMet
Σ (Φ) GMet FRel

UGMet

FGMet

E

⊣ ⊣ (8.8)

Finally, we adapt the results of Section 7 to GMet. The three central notions of
quantitative equational presentations (Definition 7.1), monad liftings (Definition 7.4) and
quantitative extensions (Definition 7.6) just need to be modified in a straightforward way by
replacing all instances of FRel to GMet.12

First, a quantitative equational presentation of a monad M on GMet is a class of

FRel equations and quantitative equations Φ̂ ⊆ QEq(Σ) along with a monad isomorphism
TGMet

Σ,Φ̂
∼= M , where TGMet

Σ,Φ̂
is the monad obtained from going around the triangle in (8.7).

Second, a GMet monad (M̂, η̂, µ̂) is a GMet lifting of a Set monad (M,η, µ) if

UM̂ = MU , Uη̂ = ηU , and Uµ̂ = µU ,

where U is now the forgetful functor U : GMet → Set. The explicit description of what it
means to be a monad lifting (after Definition 7.4) is still valid after replacing fuzzy relations
with generalised metric spaces.

Example 8.12. All the monads in Example 2.33 are liftings of the powerset monad or
the distributions monad. Furthermore, the Hausdorff, Kantorovich, and  LK liftings were
axiomatised in [MPP16, Theorem 9.3], [MPP16, Theorem 10.5], and [MSV22, Theorem 5.6]
respectively, which yields a quantitative equational presentation for these monads (we will

12Note that the notion of equation and quantitative equation remains as in Definition 3.4, i.e., (A, dA) in
∀(A, dA).s = t and ∀(A, dA).s =ϵ t is an arbitrary FRel space.
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detail in Section 9 how the results from these different frameworks can be translated in our
framework). For instance, for the  LK lifting of the distributions monad D LK, we can adapt
the proof in [MSV22, §5.3] to show that it is presented by the set of quantitative equations

Φ̂ containing both the equations of convex algebras in (2.2) converted to FRel equations as
in Example 7.3, and the following FRel quantitative equations, one for each p ∈ (0, 1) and
fuzzy relation d : X2 → [0, 1]:

∀({x, y, x′, y′}, d).x+p y =ϵ x
′ +p y

′,

with ϵ = p2d(x, x′) + p(1 − p)d(x, y′) + (1 − p)pd(y, x′) + (1 − p)2d(y, y′).

Third, a class of FRel equations and quantitative equations Φ̂ ⊆ QEq(Σ) is a GMet
quantitative extension of Φ ⊆ Eq(Σ) if:

for all (A, dA) ∈ GMet and s, t ∈ TermsΣ(A),

Φ ⊪Set ∀A.s = t⇐⇒ Φ̂ ⊪GMet ∀(A, dA).s = t.
(8.9)

Once these definitions are in place, it is immediate to adapt the proofs of the previous
section and obtain the following theorem:

Theorem 8.13. Let (M,η, µ) be a monad on Set presented by Φ ⊆ Eq(Σ).

(1) For any GMet quantitative extension Φ̂ of Φ, there is a GMet monad lifting M̂ of M

presented by Φ̂.

(2) For any GMet monad lifting M̂ of M , there is a GMet quantitative extension Φ̂ of Φ

that presents M̂ .

Remark 8.14. While the proof of Theorem 8.13 above is essentially identical to that of
Theorem 7.7, the results that the two theorems state may present some subtle differences.

For instance, there are classes of equations and quantitative equations Φ̂ ⊆ QEq(Σ) such
that TGMet

Σ,Φ̂
is a GMet monad lifting (of some monad M on Set) but TFRel

Σ,Φ̂
is not. For

a concrete example, let Σ = ∅ and Φ̂ be the class ΦHMet
resulting from the translation

(as in Definition 8.1) of the set of L -implications HMet defining the category Met (see
Definition 2.31). It is readily seen that the monad TGMet

Σ,Φ̂
on Met is a lifting of the identity

monad on Set. However, the monad TFRel
Σ,Φ̂

on FRel is not a lifting of any monad on Set.

It sends (A, dA) to (A, dA) when dA is a metric, but when e.g. dA(a, b) = 0 for a ̸= b ∈ A,
the carrier set of TFRel

Σ,Φ̂
(A, dA) will be a quotient of A where a and b are identified. This

means TFRel
∅,Φ̂

cannot lift a monad on Set because it sends two fuzzy relations with identical

carrier set to fuzzy relations with different carriers.

9. Comparison with Relevant Literature

In Section 3 we have formally introduced our theory of quantitative algebras and in Sections
4, 5, 6, 7 and 8 we have stated and proved the main results.

In this section we compare our work with other frameworks of quantitative algebras in
the literature. We first consider, in Section 9.1, the original paper on quantitative algebras
[MPP16]. We then consider, in Section 9.2, the generalised framework proposed in [FMS21]
dealing with arbitrary relational structures. Finally, in Section 9.3, we compare the present
work with an earlier conference paper [MSV22] by the authors.
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9.1. Comparison with [MPP16] by Mardare et al. The original work by [MPP16]
presented a theory of quantitative algebras different from ours in three key ways: the carriers
are required to be metric spaces, interpretations of operations are nonexpansive (with respect
to the product metric) and the logical judgments are not just quantitative equations (s =ϵ t)
but implications between quantitative equations. In what follows, we refer to our theory as
“MSV theory” and to that of [MPP16] as “MPP theory”.

The MPP theory deals with algebras over metric spaces formally specified as follows:13

Definition 9.1 (MPP Quantitative Algebra). [MPP16, Definition 3.1] Given a signature
Σ, an MPP quantitative Σ-algebra is a triple (A, dA, {opA}op∈Σ) such that (A, dA) ∈ Met
is a metric space and such that all interpretations of operation symbols in the signature
opA : An → A (where ar(op) = n) are nonexpansive functions

opA : (An, dnA) → (A, dA),

where dnA is the product metric defined as: dnA((a1, . . . , an), (a′1, . . . , a
′
n)) = max

i=1...n
{dA(ai, a

′
i)}.

As a result, it only makes sense to compare the MPP theory to the MSV theory restricted
to the category Met of metric spaces. This restriction is done by first seeing Met as the
category of fuzzy relations satisfying the L -implications in HMet as explained in Section
2.3, and then instantiating the results of Section 8 with GMet = Met.

Note that an MPP quantitative Σ-algebra is an MSV quantititative Σ-algebra A ∈
QAlgMet(Σ) such that all the interpretations opA are nonexpansive in the sense of Defini-
tion 9.1. It is straightforward to see that, for a given op ∈ Σ of arity n, the interpretation
opA of a quantitative algebra A ∈ QAlgMet(Σ) is nonexpansive if and only if A satis-
fies all the following FRel quantitative equations ϕopd , one for each fuzzy relation d on
X = {x1, . . . , xn, x

′
1, . . . , x

′
n}:

ϕopd = ∀(X, d).op(x1, . . . , xn) =ϵ op(x
′
1, . . . , x

′
n) where ϵ = max

i=1...n
{d(xi, x

′
i)}. (9.1)

In other words, opA is nonexpansive in the sense of Definition 9.1 if and only if A belongs to
QModMet

Σ (Φop
NE), where Φop

NE is the class of quantitative equations containing ϕopd for all
d : X2 → [0, 1].

Therefore the class of MPP quantitative Σ-algebras is a quantitative equationally
definable class of MSV quantitative algebras in QAlgMet(Σ), and its theory is generated by
the quantitative equations in Φop

NE for all op ∈ Σ.
Furthermore, it is an immediate consequence of Corollary 8.8 that the class of MPP

quantitative algebras can be quantitative equationally defined in QAlgFRel(Σ) as the class

QModFRel
Σ (ΦNE ∪ ΦHMet

), where ΦNE is the union of all Φop
NE .

Remark 9.2. Note that the MSV theory allows for other interesting properties of opA to
be defined by quantitative equations. For example, by using

ϵ = α · max
i=1...n

{d(xi, xi)} for some α > 0

in the definition of ϕopd one expresses the property of being Lipschitz with constant α
(nonexpansiveness being the case α = 1). We further discuss this in Section 9.3.

13A technical difference between Definition 9.1 and [MPP16, Definition 3.1] is that the metrics of the
latter are actually extended metrics, i.e. dA(a, b) ranges in [0,∞] instead of [0, 1].
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We now proceed to compare the logical expressiveness of the MPP and MSV frameworks.
First, we observe that in the MSV theory restricted to Met, equations of the form

∀(X, d).s = t and quantitative equations ∀(X, d).s =0 t are semantically equivalent, and
in fact mutually derivable in the deductive system ⊢Met. This just reflects the fact that
metric spaces satisfy the property x = y ⇔ d(x, y) = 0 (cf. the set HMet of L -implications
defining the category Met in Section 2.3). Hence in the MSV theory for Met, as far as
expressiveness is concerned, we can just restrict our attention to quantitative equations.

Secondly, a logical judgment in the MPP framework is a form of implication (possibly
with infinitely many premises), called quantitative inference, of the form14

{si =ϵi ti}i∈I ⇒ s =ϵ t,

where si, ti, s, t ∈ TermsΣ(X), for some set X, and ϵi, ϵ ∈ [0, 1]. An MPP quantitative algebra
A = (A, dA, {opA}op∈Σ) (or, alternatively, an MSV quantitative algebra in QModMet

Σ (ΦNE),
as noted above) satisfies such a judgment J , written A |=MPP J , if for all functions j : X → A,

if, for all i ∈ I, dA(JsiKAj , JtiK
A
j ) ≤ ϵi holds, then dA(JsKAj , JtK

A
j ) ≤ ϵ.

A judgment J is called a basic quantitative inference if all the terms si, ti appearing on the
left-side of the implication are variables in X, i.e., J is of the form

{xi =ϵi x
′
i}i∈I ⇒ s =ϵ t.

One can verify that for every basic quantitative inference J of the above shape and for
any MSV quantitative algebra A = (A, dA, {opA}op∈Σ) in QModGMet

Σ (ΦNE),

A |=MPP J ⇐⇒ A |= ϕJ with ϕJ defined as ∀(X, dX).s =ϵ t,

where, in the definition of ϕJ , X is the set of variables appearing in the premises of J , and
dX : X2 → [0, 1] is defined as follows:

dX(x, x′) = inf{ϵi | (x =ϵi x
′) is among the premises of J},

where the infimum of the empty set is 1. Note that, in ϕJ , the fuzzy relation (X, dX) is
constructed (in a similar fashion to the translation of Definition 8.1) to ensure that non-
expansive interpretations τ : (X, dX) → (A, dA) correspond to set-theoretic interpretations
j : X → A satisfying the premises of J (i.e. ∀i ∈ I.dX(j(xi), j(x

′
i)) ≤ ϵi).

In the opposite direction, for any FRel quantitative equation ϕ = ∀(X, dX).s =ϵ t,

A |=MPP Jϕ ⇐⇒ A |= ϕ,

where Jϕ = {x =dX(x,x′) x
′}x,x′∈X ⇒ s =ϵ t is a basic quantitative inference.

We can therefore conclude that the expressive power of MPP basic inferences J and
MSV quantitative equations ϕ is the same. This means that our MSV theory, restricted
to Met, coincides with the MPP theory where only basic quantitative inferences are used.
We note that this is a mild restriction, as most interesting results and application instances
of the MPP framework only use basic quantitative inferences [MPP16, MPP17, BMPP18,
BMPP21, MV20, MSV21, MSV22].

As a further point of comparison, we now discuss the proof systems. Note that our
MSV proof system ⊢Met, which we have proved to be sound and complete, is not obtained
by simply “restricting” the MPP proof system of [MPP16] to basic quantitative inferences
(via the translation J 7→ ϕJ). Indeed the MPP proof system is not “closed under basic

14The notation used in [MPP16, Definition 2.1] is {si =ϵi ti}i∈I ⊢ s =ϵ t, but it clashes with our use of
the turnstile ⊢, so we write ⇒ instead. They also require I to be finite, we will not.
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quantitative inferences”. The reason is the presence in the MPP proof system of the following
substitution rule (see [MPP16, Definition 2.1]):{

si =ϵi ti
}
i∈I ⇒ s =ϵ t

Substitution by σ{
σ(si) =ϵi σ(ti)

}
i∈I ⇒ σ(s) =ϵ σ(t)

where all terms have variables ranging over a set X and σ : X → TermsΣ(X) is a substitution,
which is homomorphically extended to a function of type σ : TermsΣ(X) → TermsΣ(X).
Note that even in the case where the premise of the substitution rule is a basic quantitative
inference (i.e., all the terms si and ti are variables), the conclusion of the rule is generally not
a basic quantitative inference, because the substitution is also applied to the premises. This
highlights the novelty in the design of our MSV proof system ⊢Met (the new substitution
rule), which in turn also proves a novel result applicable to the MPP theory: a sound and
complete proof system for basic quantitative inferences exists (via the translation ϕ 7→ Jϕ).

To conclude, we now compare the expressiveness of the MPP theory and of the MSV
theory in terms of which Met monads can be presented, respectively, by a class of basic
quantitative inferences and by a class of FRel (quantitative) equations. By exploiting the
correspondence between monad liftings and quantitative extensions proved in Section 7,
instantiated to the category Met via Theorem 8.13, we show the following result:

There exist monads on Met which can be presented by a class of quantitative
equations in the MSV theory, but which cannot be presented by a class of
basic quantitative inferences in the MPP theory.

To see this, consider the finite, non-empty powerset monad (P, η, µ) on Set, which is

presented by the equations Φ of semilattices (Example 2.26.(1)). Define the monad (P̂, η̂, µ̂)

on Met where the functor P̂ : Met → Met is such that

P̂(X, d) = (PX, d̂) with d̂(S, S′) =


0 S = S′

d(x, y) S = {x} and S′ = {y}
1 otherwise

,

and where the unit η̂ and multiplication µ̂ coincide, as Set functions, with the unit η and

multiplication µ of the monad P. The Met monad P̂ is a monad lifting of the Set monad

P, and this implies by Theorem 8.13 that there is a Met quantitative extension Φ̂ of the

equations of semilattices Φ which is a presentation of P̂ in the MSV theory.

In contrast, there is no class of basic quantitative inferences presenting the monad P̂ in
the MPP theory. This is a consequence of the fact that all monads which can be presented
by a class of basic quantitative inferences in the MPP theory are enriched (see [ADV23, Full

version, after Corollary 4.19]), and that the monad P̂ is not enriched. Following [ADV23,

Example 7.(1)], P̂ being enriched is equivalent to satisfying, for all nonexpansive maps
f, g : (X, dX) → (Y, dY ),

sup
x∈X

dY (f(x), g(x)) ≥ sup
S∈PX

d̂Y (f(S), g(S)).

To see that this does not hold, let f be the identity function on [0, 1
2 ] with the Euclidean

distance, and g be the squaring function (both are nonexpansive). Then the left hand side
is at most 1

2 (dY is bounded by 1
2), and the right hand side is 1 as witnessed by S = {0, 1

2}:

f(S) = S and g(S) = {0, 1
4}, so d̂Y (f(S), g(S)) = 1.

https://arxiv.org/abs/2210.01565
https://arxiv.org/abs/2210.01565
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9.2. Comparison with [FMS21] by Ford et al. The class of metric spaces (X, dX : X2 →
[0, 1]) can be defined, in the standard language of first order logic, as the relational structures
over the signature {Rϵ | ϵ ∈ [0, 1]}, containing a binary relation Rϵ for each ϵ ∈ [0, 1], that
satisfy a set of Horn sentences analogous to our notion of L -implications (see Definition
2.29, where we denoted Rϵ with d( , ) ≤ ϵ). The Horn sentences enforce the correspondence

dX(x, y) ≤ ϵ ⇔ (x, y) ∈ Rϵ. (9.2)

Under this correspondence, a nonexpansive function f : (X, dX) → (Y, dY ) acting on a
metric space corresponds to a relation preserving function acting on a relational structure:

f : (X, {RX
ϵ }ϵ∈[0,1]) → (Y, {RY

ϵ }ϵ∈[0,1]) if (x, x′) ∈ RX
ϵ then (f(x), f(x′)) ∈ RY

ϵ .

In [FMS21], based on this observation, a framework of quantitative algebras over
arbitrary relational signatures (rather than using the specific signature {Rϵ | ϵ ∈ [0, 1]}) and
an arbitrary Horn theory (rather than the specific set of Horn sentences needed to obtain
(9.2)) has been proposed. A Σ-algebra in [FMS21] is a structure

(A, {RA
i }i∈I , {opA}op∈Σ),

where (A, {RA
i }i∈I) is a relational structure modelling a certain Horn theory (e.g., a metric

space), and equipped with relation preserving (e.g., nonexpansive) interpretations of all
operation symbols op ∈ Σ.15

On the one hand, it is possible to define FRel as a class of relational structures over the
signature {Rϵ | ϵ ∈ [0, 1]} axiomatised by the following (infinitary) Horn sentences (cf. the
axiom schemes UP-CLOSURE, 1-MAX, and ORDER COMPLETENESS).

∀x, y. (x, y) ∈ Rϵ ⇒ (x, y) ∈ Rδ for all ϵ < δ

∀x, y. (x, y) ∈ R1

∀x, y.
( ∧

ϵ∈S
{(x, y) ∈ Rϵ}ϵ∈S

)
⇒ (x, y) ∈ Rinf(S) for all S ⊆ [0, 1]

Hence, our framework is strictly less expressive than that of [FMS21]. On the other hand,
since the framework [FMS21] restricts interpretations of operations to be relation preserving
(cf. nonexpansive), our framework is more general in this regard.

At the logical level, there are strong similarities between [FMS21] and this work. While
we consider quantitative equations of the form ∀(A, dA).s =ϵ t, in [FMS21] the authors use
judgments of the form

M ⊢ Ri(s, t) with M a model of the Horn theory,

with the same intended meaning of expressing that the relation Ri holds for all relation
preserving interpretations of the elements in M (cf. nonexpansive interpretations of the
elements in A). The substitution rule we adopt in our proof system (see Definition 4.1)
finds an analogous rule Ax in [FMS21, p. 14]: they both require that the substitution to be
applied is relation preserving (cf. nonexpansive).

One element of novelty in our logical framework, besides the fact that we drop the
requirement that operations are relation preserving (cf. nonexpansive), is that we have
described in Section 8 how to translate Horn sentences defining GMet spaces (which we
have called L -implications, see Definition 2.29) directly to quantitative equations.

15The arities in [FMS21] are more general, meaning algebras can have infinitary and partial operations.
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Another novelty of our work with respect to [FMS21] is given by our results of Section
7 on lifting monad presentations from Set to FRel (and, in Section 8, to GMet). This was
enabled by our choice of allowing operations that are not necessarily nonexpansive.

9.3. Comparison with [MSV22] by Mio et al. In an earlier paper [MSV22], we had
investigated an extension of the MPP theory of [MPP16] (see Section 9.1) along two axes:

(1) The carriers of quantitative algebras are not required to be objects in Met. They can
be FRel spaces or, more generally, GMet spaces satisfying a subset of the constraints
defining metric spaces and ultrametric spaces (see [MSV22, §2.3]).

(2) The operations do not have to be nonexpansive with respect to the categorical product
distance, but with respect to possibly different distances on the product. This is achieved
by introducing the notion of lifted signatures. In a lifted signature Σ, each operation
symbol op ∈ Σ of arity n has an associated lifting Lop of the Set product endofunctor
( )n : Set → Set, i.e., Lop is an endofunctor on GMet making the following diagram
commute, where U is the expected forgetful functor:

GMet GMet

Set Set

U

( )n

Lop

U

For technical reasons, the paper only considers liftings that satisfy a property called
preservation of isometric embeddings [MSV22, Definition 3.2]. Then, the definition of
quantitative algebras requires operations to be nonexpansive maps with respect to the
associated lifting:

Definition 9.3 (Quantitative algebra for a lifted signature). [MSV22, Definition 3.6]
Given a lifted signature Σ, a quantitative Σ-algebra is a triple (A, dA, {opA}op∈Σ) such

that all interpretations of operation symbols opA : An → A (where ar(op) = n) are
nonexpansive functions

opA : (An, Lop(dA)) → (A, dA),

where Lop is the lifting of the Set product endofunctor associated to op.

We thereby have a definition which follows the MPP theory in requiring operations to
be nonexpansive (Definition 9.1), and yet generalises the MPP theory since nonexpan-
siveness can be imposed with respect to arbitrary liftings of the product, and not just
with respect to the categorical product lifting computing the coordinatewise maximum.

Since in the present paper we also present an extension of the MPP theory along these two
axes, we can compare to the extension proposed in [MSV22] along the same axes:

(1) The present paper extends [MSV22] by allowing GMet spaces to be defined by arbitrary
sets of L -implications. Thanks to the formal translation defined in Section 8, we obtain
the results for any GMet in a modular way starting from those for FRel.

(2) We first note that the requirement that the interpretation of an n-ary operation op is
Lop-nonexpansive (Definition 9.3) can be expressed with a family of FRel quantita-
tive equations in the framework of the present paper, analogously to (9.1): for every
generalised metric dX on X = {x1, . . . , xn, x

′
1, . . . , x

′
n}, we take

∀(X, dX).op(x1, . . . , xn) =ϵ op(x
′
1, . . . , x

′
n) ϵ = Lop(dX)((x1, . . . , xn), (x′1, . . . , x

′
n)).
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To see this, note that these quantitative equations correspond to the L–NE rules
in [MSV22, Definition 3.11], which in turn express Lop-nonexpansiveness of liftings
preserving isometrics embeddings. This means that the quantitative algebras in the
present paper encompass those of [MSV22]. Conversely, if we set Lop to always be the
discrete n-ary product functor Ln (see (6.1), or its GMet variants), then any function
opA : (An, Ln(dA)) → (A, dA) is nonexpansive. Therefore, the quantitative algebras of
[MSV22] are those of Definition 3.1, for the GMet spaces considered in [MSV22, §2.3].

Hence, the definition of quantitative algebras presented in this paper subsumes that of
[MSV22] while being simpler, as operations are just Set functions with no lifting or nonex-
pansiveness conditions attached, and extends it to a larger class of GMet spaces.

Orthogonally to these two axes, a major difference between [MSV22] and the present
paper is that in [MSV22] the logical judgments are quantitative inferences like in the MPP
theory, i.e., implications between quantitative equations. In contrast, here we use quantitative
equations, and a proof system solely based on those (see Section 9.1).

Furthermore, the results in Sections 7 and 8 about monad liftings constitute a novelty
of the present paper.

10. Conclusions and Directions for Future Work

We have presented an extension of the theory of quantitative algebras of Mardare, Panan-
gaden and Plotkin [MPP16]. In our framework, the carriers of quantitative algebras are not
restricted to be metric spaces and can be arbitrary fuzzy relations (or generalised metric
spaces), and the interpretations of the algebraic operations are not required to be nonexpan-
sive. We have established some key results, including the soundness and completeness of a
novel proof system, the existence of free quantitative algebras, the strict monadicity of the
associated Free-Forgetful adjunction, and the correspondence between monad liftings of a
finitary monad on Set and quantitative extensions of an equational presentation.

A first direction for future work consists in trying to adapt and generalise to our
setting some theoretical results obtained for the framework of Mardare, Panangaden and
Plotkin [MPP16]. Examples include monad composition techniques [BMPP18, BMPP22],
fixed-points [MPP21], completion techniques [BMPP18], and variety “HSP-style” theorems
[MPP17, Adá22, JMU24].

A second direction, more oriented towards applications, consists in leveraging the
additional flexibility provided by our theory. For example, in [DLHLP22] the authors
investigate Curry’s combinatory logic (an algebraic counterpart of the λ-calculus) under the
lens of quantitative algebras, and they point out the need of considering operations that are
not nonexpansive and carriers that are partial ultra-metrics. As the latter is an example of a
GMet category, in the sense of Section 2.3, the research line of [DLHLP22] can be carried
out within the framework presented in this work. Similarly, in [MSV22] the authors have
investigated the  Lukaszyk–Karmowski distance on diffuse metric spaces [HS00, CKPR21] of
probability distributions. This is yet another type of GMet category that can be formalised
within our framework. As a last example, in [GF23] the authors investigate “quantitative
rewriting systems” and need to go beyond nonexpansive operations, by admitting (in what
they call “graded rewriting systems”) Lipschitz operations with constant α > 1. As noted in
Remark 9.2, it is possible in our theory to express, by means of quantitative equations, that
operations are Lipschitz for any α > 1.
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A third direction for future work consists in exploring further generalisations of our
framework. For example, our choice of considering fuzzy relations dA : A2 → [0, 1] has
been made, somewhat arbitrarily, as a compromise between maximal generality and the
convenience of dealing with a concrete notion of numeric distance. One could alternatively
work with distances dA : A2 → [0,∞] (valued in the extended real line) as in [MPP16] or,
more generally, dA : A2 → Q where Q is an abstract quantale [PC96]. In this direction, it
has been shown in the PhD thesis of the second author [Sar24] that all the results of this
work can be extended to the setting where distances dA : A2 → L are valued in a complete
lattice L. The cases L = [0, 1], L = [0,∞], and L = Q (the complete lattice underlying a
quantale) are instances of this generalization. In another direction, it could be interesting to
follow the work of [FMS21] and move beyond “distances” and towards arbitrary relational
structures (see also [JMU24]).

A fourth direction consists in using our deductive apparatus to reason quantitatively
about program distances as, e.g., suggested in the preliminary examples given in [MSV21,
§VI] in the context of process algebras. In particular, adapting the well-known framework of
(equational) “up-to techniques” (see, e.g., [BPPR17]) to the quantitative setting (see, e.g.,
[BKP18]) appears to be a promising endeavour.

A fifth direction consists in exploring the connections between our line of work and the
vast literature on fuzzy logic(see, e.g., [Háj98]), where the logical apparatus of classical first
order logic (quantifiers, conjunctions, implications, etc.) is replaced with a quantitative
counterpart dealing with truth values in [0, 1] or other sets of truth values. For example,
in fuzzy equational logic and fuzzy Horn logic [BV05, Chapters 3 and 4], equalities and
implications between equalities have degrees of truth. The recent work [BMPP23] constitutes
a step in this direction and is based on taking truth values in the Lawvere Quantale [0,∞].
A related work is the recent [DP22] which uses Lawvere hyperdoctrines to study quantitative
equality in the linear logic setting.

Finally, we conclude with a technical question which we leave here as an open problem.
As discussed in Remark 3.7, the FRel space (A, dA) in our Definition 3.4 of equations
(∀(A, dA).s = t) and quantitative equations (∀(A, dA).s =ϵ t) is not restricted in any way,
and can therefore have arbitrary cardinality. Can we find a cardinal κ such that any
quantitative equational theory can be generated by a set of equations and quantitative
equations such that |A| < κ ? For example, in the case of standard Universal algebra, it is
well known that one can always restrict to equations ∀A.s = t (see Definition 2.3) where |A|
is finite, and thus κ = ℵ0. Formally, is there a cardinal κ such that, for any Φ ⊆ QEq(Σ)
there is a set Ψ ⊆ QEq(Σ) such that:

(1) for all equations ∀(A, dA).s = t ∈ Ψ, it holds that |A| < κ,
(2) for all quantitative equations ∀(A, dA).s =ϵ t ∈ Ψ, it holds that |A| < κ, and
(3) QModΣ(Φ) = QModΣ(Ψ)?

We mention a relevant technical fact: the category FRel is locally ω1-presentable by [AR94,
Example 5.27.(3)] since FRel is a category of models of a Horn theory whose sentences have
less than ω1 premises.
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[ADV23] Jiŕı Adámek, Matej Dostál, and Jiŕı Velebil. Strongly finitary monads for varieties of quantitative
algebras. In Paolo Baldan and Valeria de Paiva, editors, 10th Conference on Algebra and Coalgebra
in Computer Science, CALCO 2023, June 19-21, 2023, Indiana University Bloomington, IN,
USA, volume 270 of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2023. Full version available at https://arxiv.org/pdf/2210.01565v4. doi:10.4230/LIPICS.
CALCO.2023.10.

[AFMS21] Jiŕı Adámek, Chase Ford, Stefan Milius, and Lutz Schröder. Finitary monads on the category of
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