Logical Methods in Computer Science
Volume 20, Issue 4, 2024, pp. 21:1-21:30 Submitted Jun. 06, 2023
https://Imcs.episciences.org/ Published Dec. 04, 2024

DESIGNING EQUILIBRIA IN CONCURRENT GAMES WITH SOCIAL
WELFARE AND TEMPORAL LOGIC CONSTRAINTS*

JULIAN GUTIERREZ ©@*, MUHAMMAD NAJIB ®°, GIUSEPPE PERELLI ®°¢,
AND MICHAEL WOOLDRIDGE @ ¢

@ University of Sussex
e-mail address: J.Gutierrez@sussex.ac.uk

®School of Mathematical and Computer Sciences, Heriot-Watt University
e-mail address: m.najib@hw.ac.uk

¢ Department of Computer Science, Sapienza University of Rome
e-mail address: perelli@di.uniromal.it

4 Department of Computer Science, University of Oxford
e-mail address: mjw@Qcs.ox.ac.uk

ABSTRACT. In game theory, mechanism design is concerned with the design of incentives so
that a desirable outcome will be achieved under the assumption that players act rationally.
In this paper, we explore the concept of equilibrium design, where incentives are designed
to obtain a desirable equilibrium that satisfies a specific temporal logic property. Our study
is based on a framework where system specifications are represented as temporal logic
formulae, games as quantitative concurrent game structures, and players’ goals as mean-
payoff objectives. We consider system specifications given by LTL and GR(1) formulae, and
show that designing incentives to ensure that a given temporal logic property is satisfied on
some/every Nash equilibrium of the game can be achieved in PSPACE for LTL properties
and in NP/%§ for GR(1) specifications. We also examine the complexity of related decision
and optimisation problems, such as optimality and uniqueness of solutions, as well as
considering social welfare, and show that the complexities of these problems lie within the
polynomial hierarchy. Equilibrium design can be used as an alternative solution to rational
synthesis and verification problems for concurrent games with mean-payoff objectives when
no solution exists or as a technique to repair concurrent games with undesirable Nash
equilibria in an optimal way.

Key words and phrases: game theory; concurrency; temporal logic; verification; model checking; Nash
equilibrium; social welfare.
* Preliminary version appeared in the Proceedings of 30th International Conference on Concurrency Theory
(CONCUR 2019) [GNPW19a].

|IEE| LOGICAL METHODS © J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge
IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(4:21)2024 @ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-1091-8232
https://orcid.org/0000-0002-6289-5124
https://orcid.org/0000-0002-8687-6323
https://orcid.org/0000-0002-9329-8410
http://creativecommons.org/about/licenses

21:2 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

. 0 1 2

0 1O H

1

Figure 1: Graphical representation from Example 1.1.

1. INTRODUCTION

Over the past decade, there has been increasing interest in the use of game-theoretic equilib-
rium concepts such as Nash equilibrium in the analysis of concurrent and multi-agent systems
(see, e.g., [AKP18, AMMR16, BBMU15, FKL10, GHPW17, GHW17, KPV16]). This work
views a concurrent system as a game, with system components (agents) corresponding to
players in the game, which are assumed to be acting rationally in pursuit of their individual
preferences. Preferences may be specified by associating with each player a temporal logic
goal formula, which the player desires to see satisfied, or by assuming that players receive
rewards in each state the system visits, and seek to maximise the average reward they
receive (the mean-payoff). A further possibility is to combine goals and rewards: players
primarily seek the satisfaction of their goal, and only secondarily seek to maximise their
mean-payoff. The key decision problems in such settings relate to what temporal logic
properties hold on computations of the system that may be generated by players choosing
strategies that form a game-theoretic (e.g., Nash) equilibrium. These problems are typically
computationally complex, since they subsume temporal logic synthesis [PR89]. If players
have LTL goals, for example, then checking whether an LTL formula holds on some Nash
equilibrium path in a concurrent game is 2EXPTIME-complete [FKL10, GHW15, GHW17],
rather than only PSPACE-complete as it is the case for model checking. This represents a
major computational barrier for the practical analysis and automated verification of reactive,
concurrent, and multi-agent systems modelled as multi-player games.

A classic problem in game theory is that individually rational choices can result in
outcomes that are highly undesirable, and concurrent games also fall prey to this problem.
To illustrate this, consider the scenario in the following example.

Example 1.1. Consider a system with two robot agents operating in an environment
modelled as a 3 x 2 grid world. Initially, the robots are located at two corners, as shown in
Figure 1.1. Each robot can move one square horizontally, vertically, or diagonally (similar
to the way a king moves in chess). Each move costs the robot 1 unit of energy and incurs a
payment of —1. The task of robot (O (resp. W) is to visit square (2,1) (resp. (0,1)), for
example, to deliver parcels. To model this objective, we give the robots a payment of 3 when
they reach their target squares. We assume that at each time-step, each robot must make a
move and cannot remain in the same position for two consecutive time-steps. Furthermore,
each robot wants to maximise the sum of payments it receives.

Suppose that having two robots occupying the same grid square (i.e., having the same
coordinates) is considered undesirable from a global perspective because it increases the
likelihood of collisions. To maximise their total payoffs, the robots will choose routes that
minimise the number of steps needed to reach their target squares. Observe that the
minimum number of steps required for the robots to reach their respective target squares is
2, and there are two routes that achieve this: via (1,0) and (1,1). However, if both robots

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:3

choose the same shortest route (e.g., via (1,1)), this results in an undesirable outcome.
Moreover, since the shortest routes correspond to the best strategies for each robot, these
outcomes are considered stable from a game-theoretic perspective.

These concerns have motivated the development of techniques for modifying games, in
order to avoid undesirable equilibria, or to facilitate desirable equilibria. In game theory, the
field of mechanism design is concerned with designing a game such that, if players behave
rationally, then a desired outcome will be obtained [OR94]. Direct incentives, for example in
the form of taxation or subsidy, are probably the most important tools used in mechanism
design.

This paper explores the design of incentive schemes for concurrent games so as to achieve
a desired outcome, a concept we refer to as equilibrium design. Specifically, we use reward
schemes to incentivise players so that the Nash equilibria of the game satisfy the desired
property. In our model, agents are represented as concurrently executing processes that
operate synchronously. Each agent receives an integer payoff for every state visited by the
overall system. The total payoff an agent receives over an infinite computation path is
defined as the mean-payoff over that path. While agents naturally seek to maximise their
individual mean-payoffs, the designer of the reward scheme aims to ensure that a specific
temporal logic formula is satisfied on some or all Nash equilibria of the resulting game.

With this model, we
assume that the designer LTL Spec. GR(1) Spec.

— an external principal -~ WEAK IMPL. PSPACE-c (Thm. 4.4) NP-c¢ (Thm. 4.6)
has a finite budget that STRONG ImMPL. PSPACE-c (Cor. 5.2) ¥P-c (Thm. 5.3)

is available for designing OpT-WI FPSPACE-c (Thm. 6.4) FPNP-¢c (Thm. 6.6)
reward schemes, and this Qpr-S1 FPSPACE-c (Thm. 6.12) FP™-¢ (Thm. 6.15)
budget can be allocated ExacT-WI PSPACE-c (Cor. 6.5) DP-¢ (Cor. 6.7)
across agent/state pairs. px scp-SI PSPACE-c (Cor. 6.13) DP-c (Cor. 6.16)
By allocating this bud- yyopp_ w1 PSPACE-c (Cor. 6.8) AP (Cor. 6.9)
get appropriately, the opp gy PSPACE-c (Cor. 6.17) AP (Cor. 6.18)
principal can incentivise y_wy PSPACE-c (Thm. 7.3) NP-c (Thm. 7.5)
players away from some {;p gy PSPACE-c (Thm. 7.3) ¥5-c (Thm. 7.5)
states and towards oth- pp wyy PSPACE-c (Thm. 7.4) NP-c (Thm. 7.6)
ers. Since the principal pp g7 PSPACE-c (Thm. 7.4) $F-c (Thm. 7.6)

has some temporal logic
goal formula, it desires to
allocate rewards so that
players are rationally incentivised to choose strategies so that the principal’s temporal
logic goal formula is satisfied in the path that would result from executing the strategies.
For this general problem, following [M. 13|, we identify two variants of the principal’s
mechanism design problem, which we refer to as WEAK IMPLEMENTATION and STRONG
IMPLEMENTATION. In the WEAK variant, we ask whether the principal can allocate the
budget so that the goal is achieved on some computation path that would be generated
by Nash equilibrium strategies in the resulting system; in the STRONG variation, we ask
whether the principal can allocate the budget so that the resulting system has at least one
Nash equilibrium, and moreover the temporal logic goal is satisfied on all paths that could
be generated by Nash equilibrium strategies. For these two problems, we consider goals
specified by LTL formulae or GR(1) formulae [BJP*12], give algorithms for each case, and
classify the complexity of the problem. While LTL is a natural language for the specification

Table 1: Summary of main complexity results.

21:4 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

of properties of concurrent and multi-agent systems, GR(1) is an LTL fragment that can
be used to easily express several prefix-independent properties of computation paths of
reactive systems, such as w-regular properties often used in automated formal verification.
We then go on to study variations of these two problems, for example considering optimality
and uniqueness of solutions. We also examine a setting in which a (benevolent) principal
considers the welfare of the players in the design of a reward scheme. To capture this setting,
we introduce two concepts: wutilitarian and egalitarian social welfare measures. We show
that, while the problems associated with LTL specifications are in PSPACE (or FPSPACE),
the ones with GR(1) specifications lie within the polynomial hierarchy, thus making them
potentially amenable to more efficient practical implementations. Table 1 summarises the
main computational complexity results in the paper.

Structure of the paper. The remainder of this article is structured as follows.

e Section 2 presents the relevant background on games, logic, and Nash equilibrium.

e In Section 3 we formalise the concept of reward schemes.

e In Section 4 and 5 we describe the main problems of interest and present the proofs to
obtain tight computational complexity bounds.

e In Section 6 we study variations of the main problems, including optimality and uniqueness
of solutions, and show their respective computational complexity classes.

e In Section 7 we consider two of the most important social welfare measures, and examine
the related computational problems.

e In Section 8 we conclude, discuss related work, and propose some directions for further
research.

2. PRELIMINARIES

Complexity Classes. Here we briefly describe the different complexity classes used in this
paper. We assume that the reader is familiar with the classes NP, PSPACE and the notation
for complexities relative to an oracle within the polynomial hierarchy [Pap94|. In particular,
we assume the following

o XP =T = AP =P = AP

e P = NP,

HZ-PJrl = co—NPEzP;

° Af 1= =2

For instance, 5 = NPNP is the class of problems that can be solved in polynomial time by
a non-deterministic Turing machine that can invoke an oracle to solve another NP problem.

For a given decision problem in the complexity class C, FC denotes the complexity class
of the corresponding function problem. Consider, for example, the class NP and a problem
P € NP. The problem of finding a solution to an instance of P is in FNP.

Finally, Df denotes the class of languages that are the intersection of a language in
¥P and a language in IIY (note that this is not the same as ¥ N1IY). Intuitively, this
corresponds to the class of problems that require two consecutive and independent calls to a
Zf procedure and a Hf procedure. This is typically used to refer to problems in which the
solution is, in a sense, unique or exact. For instance, consider the problem:

EXACT-CLIQUE = {(G, k) : the largest clique in graph G is of size k}.

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:5

This requires solving CLIQUE for k£ to decide whether a clique of size k exists, and
solving CO-CLIQUE for k£ 4 1 to decide whether a clique of size k + 1 does not exist. For
more in-depth presentation of the class DY, see [Pap94, PY84, ACHI17].

Linear Temporal Logic. LTL [Pnu77] extends classical propositional logic with two
operators, X (“next”) and U (“until”), that can be used to express properties of infinite
paths. The syntax of LTL is defined with respect to a set AP of atomic propositions by the
following grammar:

pu=T[plwleVe|Xe|pUep
where p € AP. As is conventional in the LTL literature, we introduce some further classical
and temporal operators via the following equivalences:

P1rAp2=(mp1 Vo) 1=V Fep=TUp Gp=-Fogp
We interpret formulae of LTL with respect to pairs (c, t), where a € (2AF) is an infinite
sequence of atomic proposition evaluations, indicating which propositional variables are true

in every time point, and ¢ € N is a temporal index into «. Formally, the semantics of LTL
formulae is given by the following rules:

a,t) Ep iff pe€ay
) = iff it is not the case that (a,t) = ¢
JEevVY i (at) Egor(at) Ev
JEXe O (a1 Eg
)E Uy iff forsomet' >t: ((o,t') =9 and
forallt <t <t': (a,t") o).

If (o,0) = ¢, we write o = ¢ and say that a satisfies ¢.

General Reactivity of rank 1. The language of General Reactivity of rank 1, denoted
GR(1), is the fragment of LTL given by formulae written in the following form [BJP*12]:

(GFY1 A ... NGFYp,) = (GFp1 A ... ANGFyy,),
where each subformula v; and ; is a Boolean combination of atomic propositions.
Mean-Payoff. For a sequence r € R¥, let mp(r) be the mean-payoff value of r, that is,

mp(r) = lim inf avg,(r)
n—0o0

where, for n € N\ {0}, we define avg,,(r) = %Z?:_& r;, with r; the (j+1)th element of 7.
Arenas. An arena is a tuple A = (N, Ac, St, sg, tr, A\) where N, Ac, and St are finite non-
empty sets of players (write N = |N|), actions, and states, respectively; if needed, we write
Ac;(s), to denote the set of actions available to player i at s; so € St is the initial state;
tr: St x Ac — St is a transition function mapping each pair consisting of a state s € St and
an action profile @ € Ac = AcN, one for each player, to a successor state; and A : St — 2AF
is a labelling function, mapping every state to a subset of atomic propositions.

We sometimes call an action profile & = (ay,...,a,) € Ac a decision, and denote a; the
action taken by player i. We also consider partial decisions. For a set of players C C N and
action profile &, we let &- and &_¢ be two tuples of actions, respectively, one for all players
in C' and one for all players in N\ C. We also write &; for a;; and &_; for &y ;. For two
decisions & and &, we write (d¢,a) to denote the decision where the actions for players
in C are taken from & and the actions for players in N\ C' are taken from &'

21:6 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

A path = (s9,a%), (s1,a%),. .. is an infinite sequence in (St x Ac)* such that tr(s, &%) =

sp41 for all k. In particular, & is the action of player 4 in step k. Sometimes, we call the

(3
single iteration (sg,a") a configuration.

Paths are generated in the arena by each player 7 selecting a strategy o; that will define
how to make choices over time. We model strategies as finite state machines with output.
Formally, for arena A, a strategy o; = (Qi, ¢, d;, 7;) for player i is a finite state machine
with output (a transducer), where Q; is a finite and non-empty set of internal states, q?
is the initial state, 0; : QQ; X Ac — Q; is a deterministic internal transition function, and
7; : Qi = Ac; an action function. Let Str; be the set of strategies for player i. Note that
this definition implies that strategies have perfect information and finite memory (although
we impose no bounds on memory size).

A strategy profile & = (o1,...,04) is a vector of strategies, one for each player. As with
actions, &; denotes the strategy assigned to player i in profile . Moreover, by (g, d)
we denote the combination of profiles where players in disjoint B and C' are assigned their
corresponding strategies in & and &, respectively. Once a state s and profile & are fixed, the
game has an outcome, a path in A, denoted by 7(&, s). Because strategies are deterministic,
(@, s) is the unique path induced by &, that is, the sequence s, s1, s2, ... such that

® Spiq = tr(sg, (Tl(qf), ... ,7'7~L(qfl)))7 and
o 1= 5 (5E (). - (). for all k> 0.

i
Furthermore, we simply write 7(&) for 7(&, so).

Arenas define the dynamic structure of games, but lack a feature that is essential for
game theory: preferences, which give games their strategic structure. A multi-player game
is obtained from an arena A by associating each player with a goal, which represents that
player’s preferences. We consider multi-player games with mp goals. A multi-player mp
game is a tuple G = (A, (w;)ien), where A is an arena and w; : St — Z is a function
mapping, for every player i, every state of the arena into an integer number. In any game
with arena A, a path 7 in A induces a sequence A(7) = A(so)A(s1)--- of sets of atomic
propositions; if, in addition, A is the arena of an mp game, then, for each player i, the
sequence w; () = w;(sg)w;(s1) - -+ of weights is also induced. Unless stated otherwise, for a
game G and a path 7 in it, the payoff of player i is pay,(7) = mp(w;(7)).

Nash equilibrium. Using payoff functions, we can define the game-theoretic concept
of Nash equilibrium [OR94]. For a multi-player game G, a strategy profile & is a Nash
equilibrium of G if, for every player ¢ and strategy o) for player i, we have

pay;(m(7)) = pay,(((F-i, 07))) -

Let NE(G) be the set of Nash equilibria of G. Observe that in a given game, there may be more
than one Nash equilibria, and as such, different equilibrium outcomes may behave differently—
some of which may not be desirable. This was intuitively illustrated in Example 1.1. To
frame this problem more appropriately within our framework, consider the following example
modified from Example 1.1.

Example 2.1. Consider the same setting as in Example 1.1, but with the tasks of the
robots set as follows. The task for robot O (resp. W) is to visit (0,0) and (2,1) (resp. (2,0)
and (0,1)) in an alternating fashion infinitely often. Each movement costs 1 unit of energy
and gives a payoff of -1. When a robot reaches a target corner after visiting the other one,
it gets 3. Each robot wants to maximise the mean-payoff of its infinite run.

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:7

(170)0

€9 €5

ﬁ* L] =
\\\\\\ff__ﬂ. (1,0)1 it

b

3

(1,1),

Figure 2: Transition system representing the movements and payoff function for robot (.

We can model the movements and payoff function of robot () as a transition system in
Figure 2. The vertices are marked with (z,y)s, where f € {0,1} is a flag to mark the last
corner robot () visited (0 for (0,0) and 1 for (2,1).) We set the payoff function for robot O
as follows. wo(e;) = —1 for i € {1,2,7,8,9,10} and wo(e;) = 2 for j € {3,4,5,6}'. We can
model the movements and payoff function of robot B in a similar manner. The graphical
representation of the game can be obtained by taking the cross product of the two transition
systems.

From the game we have obtained, we can see that there are many Nash equilibrium
runs. We define “bad” Nash equilibrium run as one in which the robots occupy the same
location simultaneously and infinitely often. From the set of all Nash equilibrium runs,
some are bad and some are not. For example, consider a run where robot ()’s sequence
of moves is ((0,0)0(1,0)p(2,1)1(1,0)1)* and robot W’s is ((2,0)0(1,1)0(0,1)1(1,1);)“. This
is a Nash equilibrium run since both robots get the mean-payoff of % and cannot obtain
better rewards by changing their actions. Furthermore, it is not a bad Nash equilibrium run,
since the robots never simultaneously occupy the same position. Now, consider a different
scenario where robot B plays the same strategy as in the previous run, but robot ()’s
sequence of moves is ((0,0)0(1,1)0(2,1)1(1,1)1)*. The mean-payoffs for both robots are still
%, making this a Nash equilibrium run. However, in this run, the robots will occupy (1, 1)
simultaneously and infinitely often, making it a bad Nash equilibrium run.

From a system design perspective, we want to eliminate such bad Nash equilibrium
runs. One way to achieve this is by modifying the payoff function for each robot so that
the resulting set of equilibria does not include bad runs. We can do this by providing
rewards to the robots in order to “nudge” them into taking certain paths. Consider again
the payoff function of robot () shown in Figure 2. Suppose we provide rewards for e3 and

Lror clarity in presentation, we have excluded locations (0,1) and (2,0) because they are not part of any
shortest routes. Additionally, we have placed the payoffs on the edges rather than the vertices. However, it is
easy to transform the transition system and push the payoffs to the vertices.

21:8 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

es, 1 unit of payoff each. Thus we have w(e3) = 3, wo(es) = 3. Now consider the run of
robot (O as follows: h((0,0)0(1,0)0(2,1)1(1,0)1)*, where h is a finite prefix. This run is a
Nash equilibrium that results in a mean-payoff of 1 for robot (). In fact, in every Nash
equilibrium, robot ()’s run corresponds to this type of run, since otherwise, the robot will
get a mean-payoff of < 1. Similarly, we can design a reward scheme for robot B that will
result in M always choosing the run h((2,0)0(1,1)0(0,1)1(1,1)1)“ in every Nash equilibrium.
By combining these payoff functions, we obtain a new payoff function that prevents the
system from getting stuck in bad equilibria.

In the next section, we formalise the problem of designing payoff functions using rewards
to achieve desirable Nash equilibrium runs.

3. FROM MECHANISM DESIGN TO EQUILIBRIUM DESIGN

We now describe a method for modifying the payoff functions of players in a given game to
achieve desirable Nash equilibrium runs. As discussed in the introduction, this problem is
closely related to the well-known concept of mechanism design in game theory. Consider a
system with multiple agents, represented by the set N. Each agent ¢ € N aims to maximise its
payoff pay,(-). As in a mechanism design problem, we assume there is an external principal
who has a goal ¢ that it wants the system to satisfy. To accomplish this, the principal seeks
to incentivise the agents to act collectively and rationally to bring about ¢. In our model,
incentives are given by reward schemes and goals by temporal logic formulae.

Reward Schemes: A reward scheme defines additional imposed payoff over those given by
the weight function w. While the weight function w is fixed for any given game, the principal
is assumed to be at liberty to define a reward scheme as they see fit. Since agents will seek
to maximise their overall rewards, the principal can incentivise agents to visit certain states
and avoid others. If the reward scheme is designed correctly, the agents are incentivised to
choose a strategy profile & such that 7(&) = ¢. Formally, we model a reward scheme as a
function k : (N — St) — N, where the intended interpretation is that x()(s) is the reward
in the form of a natural number k£ € N that would be imposed on player ¢ if such a player
visits state s € St. For instance, if we have w;(s) = 1 and k(i)(s) = 2, then player i gets
1+ 2 = 3 for visiting such a state. For simplicity, hereafter we write x;(s) instead of k(7)(s)
for the reward for player 1.

Notice that having an unlimited fund for a reward scheme would make some problems
trivial, as the principal can always incentivise players to satisfy ¢ (provided that there is a
path in A satisfying ¢). A natural and more interesting setting is that the principal is given
a constraint in the form of budget 5 € N. The principal then can only spend within the
budget limit. To make this clearer, we first define the cost of a reward scheme x as follows.

Definition 3.1. Given a game G and reward scheme k, we define

cost(k) = > > ki(s).

1€N seSt

We say that a reward scheme & is admissible if it does not exceed the budget 3, that is,
if cost(k) < . Let K(G, B) denote the set of admissible reward schemes over G given budget
B € N. Thus we know that for each k € K(G, 3) we have cost(k) < . We write (G, k) to
denote the resulting game after the application of reward scheme x on game G. Formally,
we define the application of some reward scheme on a game as follows.

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:9

Definition 3.2. Given a game G = (A4, (w;);en) and an admissible reward scheme &, we
define (G, k) = (A, (W})ien), where W, (s) = w;(s) + k;(s), for each i € N and s € St.

We now come to the main question(s) that we consider in the remainder of the paper.
We ask whether the principal can find a reward scheme that will incentivise players to
collectively choose a rational outcome (a Nash equilibrium) that satisfies its temporal logic
goal . We call this problem equilibrium design. Following [M. 13], we define two variants
of this problem, a weak and a strong implementation of the equilibrium design problem.
The formal definition of the problems and the analysis of their respective computational
complexity are presented in the next sections.

Remark 3.3. For the rest of the paper, we assume that weights and reward schemes are
using a binary representation for their values. This is the standard way of considering them
in the context of mean-payoff games [ZP96, UW11].

4. EQUILIBRIUM DESIGN: WEAK IMPLEMENTATION

In this section, we study the weak implementation of the equilibrium design problem, a logic-
based computational variant of the principal’s mechanism design problem in game theory.
We assume that the principal has full knowledge of the game G under consideration, that is,
the principal uses all the information available of G to find the appropriate reward scheme,
if such a scheme exists. We now formally define the weak variant of the implementation
problem, and study its respective computational complexity, first with respect to goals
(specifications) given by LTL formulae and then with respect to GR(1) formulae.

Let WI(G, ¢, 8) denote the set of reward schemes over G given budget 5 that satisfy a
formula ¢ in at least one path m generated by & € NE(G). Formally

WI(G,p,8) ={r € K(G,B): F36 € NE(G, k) s.t. 7(F) = ¢}.

Definition 4.1 (WEAK IMPLEMENTATION). Given a game G, formula ¢, and budget £:
Is it the case that WI(G, ¢,) # @7

In order to solve WEAK IMPLEMENTATION, we first characterise the Nash equilibria of a
multi-player concurrent game in terms of punishment strategies. To do this in our setting,
we recall the notion of secure values for mean-payoff games [UW11].

For a player i and a state s € St, by pun,(s) we denote the punishment value of i over
s, that is, the maximum payoff that ¢ can achieve from s, when all other players behave
adversarially. Note that the value pun,(s) corresponds to the one of a two-player zero-sum
mean-payoff game [ZP96], where the coalition —i = N\ {i} is playing adversarially against i.
Thus, computing pun,(s) amounts to computing the winning value of ¢ in such two-player
zero-sum mean-payoff game, which can then be done in NP N co-NP. Also, note that the
coalition N\ {i} can achieve the optimal value of the game using memoryless strategies.

Then, for a player ¢ and a value z € R, a pair (s,d) is z-secure for player i if
pun,(tr(s, (8_;,a}))) < z for every a; € Ac. Write pun,;(G) for the set of punishment
values for player ¢ in G.

Theorem 4.2. For every mp game G and ultimately periodic path ™ = (so,ap), (s1,a'),.. .,
the following are equivalent:

(1) There is & € NE(G) such that m = w(J, s0);

(2) There exists z € RN, where z; € pun,(G) such that, for every i € N

21:10 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

(a) for all k € N, the pair (sy,a%) is z;-secure for i, and
(b) zi < pay;().

Proof. For (1) implies (2): Let z; be the largest value player i can get by deviating from 7.
Let k € N be such that z; = pun,(tr(sg, (2_i,a}))). Suppose further that pay;(w) < z;. Thus,
player ¢ would deviate at si, which is a contradiction to 7 being a path induced by a Nash
equilibrium.

For (2) imples (1): Define strategy profile & that follows 7 as long as no-one has deviated
from 7. In such a case where player ¢ deviates on the k-th iteration, the strategy profile
0_; starts playing the z;-secure strategy for player i that guarantees the payoff of player
i to be less than z;. Therefore, we have pay;(7(d_;,0})) < z; < pay;(), for every possible
strategy o} of player i (the second inequality is due to condition 2(b)). Thus, there is no
beneficial deviation for player i and 7 is a path induced by a Nash equilibrium. Indeed,
by contradiction, assume for player i that a strategy o} is a beneficial deviation from the
strategy profile &. Then, we would have z; < pay;() < pay;(6_i,0}) < z;, the last inequality
following from the fact that &_; is z;-secure for coalition —i. Clearly, the sequence of
inequality makes it a contradiction. []

The characterisation of Nash Equilibria provided in Theorem 4.2 will allow us to turn
the WEAK IMPLEMENTATION problem into a path finding problem over (G,). On the other
hand, with respect to the budget 8 that the principal has at its disposal, the definition of
reward scheme function x implies that the size of (G, 8) is bounded, and particularly, it is
bounded by # and the number of agents and states in the game G, in the following way.

Proposition 4.3. Given a game G with |N| players and |St| states and budget 3, it holds

that 841/8
+ +m
.01 =2 (00,

with m = |N x St| being the number of pairs of possible agents and states.

Proof. For a fixed budget b, the number of reward schemes of budget exactly b corresponds
to the number of weak compositions of b in m parts, which is given by (b+";_1) [S. 09].
Therefore, the number of reward schemes of budget at most § is the sum

|lc<g,/3>\=i(b“}}‘l).

b=0

zﬂ: <b+m—1> B 6+1<ﬂ+m>
—~ b m \S+1
By induction on 3, as base case, for § = 0, we have that

<ﬁ+m—1)_1_6+1<5+m)
B T om \pB+1)

For the inductive case, let us assume that the assertion hold for some 5 and let us prove
for + 1. We have the following:

L brm—1 ’ brm—1 Bem—t+1\ B+1/B+m B+m
Z(b):Z< b)+(B4 1)Zm(6+1>+(5+1>'

b=0 b=0

We now prove that

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:11

Algorithm 1 Algorithm for WEAK IMPLEMENTATION

input: (G, ¢, f)

1: guess:

e a reward scheme k € K(G, 5)

e a state s € St for every player ¢ € N

e punishment memoryless strategies (6_1,...,5_,) for all players i € N
Compute (G, k)
Compute the vector z where z; = pun,(s) w.r.t. the punishment strategy &_;
Build (G, k)[z]
if There exists 7 in (G, k)[z] such that 7 |= ¢ and z; < pay,(7) for every player i € N
then

6: return YES
7: else
return NO
Therefore we have
SO () () ()
m \B+1 B+1 B+1 m
<ﬁ+m>ﬁ+1+m_ﬁ+l+m (B+m)!
B+1 m N m B+D(B+m—p—1)!
B+m+1)! (B+m+1)! B+2 m _ B+2 (B+m+ 1)
B+Dm! B+Dm! B+2 m m (B+2)(m-—1)
B+2 (B+m+1)! ﬂ+2<ﬁ+m+1>
m (B+)B+m+1-5-2)! m B+2
This proves the assertion. []

From Proposition 4.3 we derive that the number of possible reward schemes is polynomial
in the budget 5 and singly exponential in both the number of agents and states in the game.

At this point, solving WEAK IMPLEMENTATION can be done with the Algorithm 1. Note
that, in Line 4, the algorithm builds a game (G, k)[z], which is obtained from (G, k) by
removing the states s such that pun,(s) < z; for some player ¢, and transitions (s,a_;) that
are not z; secure for player i.

Theorem 4.4. WEAK IMPLEMENTATION with LTL specifications is PSPACE-complete.

Proof. Firstly, notice that the correctness of Algorithm 1 directly follows from the character-
isation provided in Theorem 4.2 and the definition of WEAK IMPLEMENTATION. Specifically,
the path 7 in line 5 corresponds to a NE run of (G, k). In other words, m = & € NE((G, k))
because it satisfies condition (2) in Theorem 4.2. Moreover, 7 also satisfies the property
. According to the definition of WEAK IMPLEMENTATION, this provides a witness for the
non-emptiness of WI(G, ¢,). Therefore, we can conclude that Algorithm 1 correctly solves
WEAK IMPLEMENTATION.

Regarding the complexity, observe the following. Since the set (G, 3) is finitely bounded
(Proposition 4.3), and punishment strategies only need to be memoryless, thus also finitely
bounded, clearly line 1 can be guessed non-deterministically. Moreover, each of the guessed
elements is of polynomial size, thus this step can be done (deterministically) in polynomial
space. Line 2 clearly can be done in polynomial time. Line 3 can also be done in polynomial

21:12 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

time since, given (6'_1,...,0_,), we can compute the vector z = (z1,...,z,) by solving
IN| number of one-player mean-payoff games, one for each player i—this can be done in
polynomial time for each ¢ [ZP96, Thm. 6]—then set z; = pun,(s) (see Theorem 4.2). For
line 5, we will use Theorem 4.2 and consider two cases, one for LTL specifications and one
for GR(1) specifications. We first consider the case with LTL specifications, and in the next
subsection with GR(1) specifications. For LTL specifications, consider the formula

pwi =@ A J\ (mp(i) > 2)
1EN

written in LTLY™ [BCHK14], an extension of LTL where statements about mean-payoff
values over a given weighted arena can be made.? The semantics of the temporal operators
of LTLY™ is just like the one for LTL over infinite computation paths m = sg, 51, 53..... On
the other hand, the meaning of mp(i) > z; is simply that such an atomic formula is true
if, and only if, the mean-payoff value of m with respect to player i is greater or equal to z;,
a constant real value; that is, mp(i) > z; is true in 7 if and only if pay,(7) = mp(w;(7)) is
greater or equal than constant value z;. Formula pwi corresponds exactly to 2(b) in Theorem
4.2. Furthermore, since every path in (G, k)[z] satisfies condition 2(a) of Theorem 4.2, every
computation path of (G, k)[z] that satisfies pwr is a witness to the WEAK IMPLEMENTATION
problem.

Therefore, membership follows from the algorithm and the fact that model checking for
LTLY™ is PSPACE-complete [BCHK14].

Hardness follows from the fact that LTL model checking is a special case of WEAK
IMPLEMENTATION. To see this, consider an instance of WEAK IMPLEMENTATION (G, ¢, 3)
where N = {1}, 8 = 0 and for every s € St, w;(s) = 0. Clearly, WI(G, p, 5) # @ if and only
if the LTL formula ¢ is satisfied in the underlying arena A of G, which constitutes model
checking ¢ against A. L]

Remark 4.5. Note that the formula ¢wr in the proof of the theorem is used to check
whether there is a path satisfying the formula. We refer to this as “existential” LTLN™
model checking. This notion is not directly addressed in [BCHK14], where the discussion is
centered around “universal” model checking. However, one can easily be derived from the
other by negating the formula and flipping the answer of model checking, all whilst remaining
within PSPACE. We further note that the language LTLY™ is closed under negation, and (as
such) strict inequalities are also expressible. Indeed, strict inequalities are also explicitly
used in [BCHK14].

Case with GR(1) specifications. One of the main bottlenecks of our algorithm to solve
WEAK IMPLEMENTATION lies in line 5, where we solve an LTLY™ model checking problem.
To reduce the complexity of our decision procedure, we consider WEAK IMPLEMENTATION
with the specification ¢ expressed in the GR(1) sublanguage of LTL. With this specification
language, we can avoid model checking LTLY™ in line 5. Indeed, with GR(1) specifications,
we can solve line 5 in polynomial time. This is made possible by a linear program (LP) that
we define, drawing inspiration from Kosaraju and Sullivan’s technique for detecting zero
cycles [KS88|. The LP yields a solution if and only if line 5 returns true.

Theorem 4.6. WEAK IMPLEMENTATION with GR(1) specifications is NP-complete.

2The formal semantics of LTLY™ can be found in [BCHK14]. We prefer to give only an informal description
here.

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:13

Proof. For the upper bound, observe that in Algorithm 1, line 1 can be done non-deter-
ministically in polynomial time. Furthermore, lines 2—4 can be done deterministically in
polynomial time. Then, in order to solve line 5 we define a linear program of size polynomial
in (G, k) having a solution if and only if there exists an ultimately periodic path 7 such that
z; < pay;(m) and satisfies the GR(1) specification.

To do this, first recall that ¢ has the following form

m n
@ = /\ GFy; — /\ GF9,,
=1 r=1
and let V' (¢;) and V' (6,) be the subset of states in (G, k) that satisfy the boolean combinations
i and 0,., respectively. Observe that property ¢ is satisfied over a path w if, and only if,
either 7 visits every V (6,) infinitely many times or visits some of the V(¢;) only a finite
number of times.

For the game (G, x)[z], let W = (V, E, (W});en) be the underlying multi-weighted graph,
where wW}(v) = w;(s) — z; for every i« € N, v € V, and s € St such that v corresponds
to s. Furthermore, we introduce a variable x. for every edge e € E, where the value z.
corresponds to the number of times that the edge e is used on a cycle. Let src(e) and trg(e)
be the source and target of the edge e, respectively; out(v) = {e € E : src(e) = v}; and
in(v) ={e € E : trg(e) = v}.

Consider ¢y for some 1 <[< m, and define the linear program LP(1);) with the following
inequalities and equations:

Eql: . > 0 for each edge e — an edge cannot be used a negative number of times;

Eq2: Yecpze > 1 — ensures that at least one edge is chosen;

Eq3: for each i € N, X.cpw|(trg(e))z. > 0 — this enforces that the total sum of any solution
is non-negative 3;

Eqd: Beg(e)nv(y)£0Te = 0 — this ensures that no state in V(1) is in the cycle associated
with the solution;

Eqg5: for each v € V', Yecout(v)Te = Legin(v)Te — this condition says that the number of
times one enters a vertex is equal to the number of times one leaves that vertex.

Now, by construction, it follows that LP(1;) admits a solution if and only if there exists
a path 7 in G such that z; < pay;(m) for every player ¢ and visits V(¢;) only finitely many
times. Now, consider the linear program LP (6, ..., 0,) defined with the following inequalities
and equations:

Eql: . > 0 for each edge e — an edge cannot be used a negative number of times;

Eq2: Yecpze > 1 — ensures that at least one edge is chosen;

Eq3: for each i € N, X.cpw,(trg(e))ze > 0 — this enforces that the total sum of any solution
is non-negative;

Eq4: for all 1 <7 < n, Yyge)nv(9,)20Te = 1 — this ensures that for every V(0,) at least
one state is in the cycle;

Eqg5: for each v € V', Yecout(v)Te = Xegin(v)Te — this condition says that the number of
times one enters a vertex is equal to the number of times one leaves that vertex.

In this case, LP(6y,. .., 0,) admits a solution if and only if there exists a path 7 such that
zi < pay;(m) for every player ¢ and visits every V(0,) infinitely many times. As highlighted

3Notice that by using w/(src(e)) = w;(src(e)) — 2 we ensure that a non-negative cycle corresponds to
paths where agent ¢ ensures a payoff greater or equal than z;, which is the z-secure value for them, thus
preventing deviations.

21:14 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

in [KS88], any positive multiple of a solution to the above LP problem also constitutes a
valid solution. Consequently, by appropriately scaling any given solution, we can always
obtain an integral solution.

Since the constructions above are polynomial in the size of both (G, k) and ¢, we can
conclude it is possible to check in NP the statement that there is a path 7 satisfying ¢ such
that z; < pay;(m) for every player i in the game if and only if one of the two linear programs
defined above has a solution.

For the lower bound, observe that if ¢ := T and 8 = 0, then the problem is equivalent
to checking whether the mp game has a Nash equilibrium, which is NP-hard [UW11]. [

We now turn our attention to the strong implementation of the equilibrium design
problem. As in this section, we first consider LTL specifications and then GR(1) specifications.

5. EQUILIBRIUM DESIGN: STRONG IMPLEMENTATION

While it may be good news for the principal to find that WI(G, ¢, 8) # &, it may not be
sufficient. Even if there is a desirable Nash equilibrium, it is possible that other equilibria
may be undesirable. In such cases, the principal may want to avoid the risk of the system
getting stuck in bad equilibria. This motivates us to consider the strong implementation
variant of equilibrium design. In a strong implementation, we require that every Nash
equilibrium outcome satisfies the specification ¢, for a non-empty set of outcomes. Let
SI(G, ¢, B) denote the set of reward schemes k given budget 8 over G such that:

(1) (G, k) has at least one Nash equilibrium outcome,
(2) every Nash equilibrium outcome of (G, k) satisfies .

Formally we define it as follows:

SI(G, v, B) ={rk € K(G,pB) : NE(G,k) # @ AVF € NE(G, k) s.t. 7(d) = ¢}.
This gives us the following decision problem:

Definition 5.1 (STRONG IMPLEMENTATION). Given a game G, formula ¢, and budget £:
Is it the case that SI(G, p, 5) # @7

STRONG IMPLEMENTATION can be solved with a similar procedure as in Algorithm 1
for WEAK IMPLEMENTATION where lines 1-4 are exactly the same, but with line 5 modified
as follows:

Check whether:

(a) there exists an ultimately periodic path 7 in (G, k)[z] such that z; < pay,(7) for each
1€ N;
(b) there is no ultimately periodic path 7 in (G, k)[z] such that 7 = —p and z; < pay;(7),
for each 7 € N.
Observe that a positive answer to both (a) and (b) above implies that NE(G, k) # & and
for every & € NE(G, k) we have 7(&) = ¢. Thus, k € SI(G, ¢, 8) and as such SI(G, ¢, B) # .
The complete algorithm is shown in Algorithm 2. For LTL specifications, to solve line 5
in Algorithm 2, consider the following LTLY™ formulae that correspond, respectively, to

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:15

Algorithm 2 Algorithm for STRONG IMPLEMENTATION

input: (G, ¢, f)
1: guess:
e a reward scheme k € K(G, 5)
e a state s € St for every player ¢ € N
e punishment memoryless strategies (6_1,...,5_,) for all players i € N
Compute (G, k)
Compute the vector z where z; = pun,(s) w.r.t. the punishment strategy &_;
Build (G, k)[z]
if (a) there exists 7 in (G, k)[z] such that z; < pay, () for every player i € N
and
(b) there is no 7 in (G, k)[z] such that z; < pay, () for every player i € N and 7 = —¢p
then
return YES
7: else
return NO

%

conditions (a) and (b):

p3 = N\ (mp(i) > 2);
€N
Yy =3 = p.

Notice that the expression NE(G, k) # & can be expressed as “there exists a path 7 in G
that satisfies formula ¢3”. On the other hand, the expression V& € NE(G, k) such that 7(5) =
 can be expressed as “for every path m in G, if 7 satisfies formula 3, then 7 also satisfies
formula ¢”. Thus, using these two formulae to solve line 5, we obtain the following result.

Corollary 5.2. STRONG IMPLEMENTATION with LTL specifications is PSPACE-complete.

Proof. Using an argument similar to that in Theorem 4.4, we can directly infer the correctness
of Algorithm 2 from Theorem 4.2 and the definition of STRONG IMPLEMENTATION. In
particular, in line 5, the existence of path 7 in (a), and the absence of path 7 in (b),
correspond to the non-emptiness of SI(G, ¢, 3).

Membership follows from the fact that for line 5, (a) can be solved by existential LTL-™
model checking, and (b) by universal LTLY™ model checking—both clearly in PSPACE by
Savitch’s theorem. Hardness is similar to the construction in Theorem 4.4. []

Case with GR(1) specifications. Notice that line 5 (a) in Algorithm 2 is essentially
NE(G, k) # @, that is, checking whether the set of Nash equilibrium in a mean-payoff game
is not empty—this can be solved in NP [UW11]. For the (b) part, observe that

V& € NE(G, k) such that 7(&) E ¢

is equivalent to
-3 € NE(G, k) such that 7(7) E —¢.

Thus we have

o= N\ GFy A ~(\ GFY,).
=1 r=1

21:16 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

To check the formula above, we modify the LP in Theorem 4.6. Specifically, we modify

Eq4 in LP(64,...,6,) to encode the f-part of . Thus, we have the following equation in

LP(01,...,0,):

Eq4: there exists r, 1 <7 <n, Yg(e)nv(9,)£0%Te = 0 — this condition ensures that at least
one set V(60,) does not have any state in the cycle associated with the solution.

All other equations remain the same.

In this case, LP'(6y,...,0,) has a solution if and only if there is a path 7 such that
z; < pay;(m) for every player i and, for at least one V' (0,.), its states are visited only finitely
many times. Thus, we have a procedure that checks if there is a path 7 that satisfies =
such that z; < pay;(m) for every player 4, if and only if both linear programs have a solution.
Using this new construction, we can now prove the following result.

Theorem 5.3. STRONG IMPLEMENTATION with GR(1) specifications is X.F -complete.

Proof. For membership, observe that by rearranging the problem statement, we have the
following question:
Check whether the following expression is true

dk € K(G,), (1)
36 € 01 X -+ X oy, such that ¢ € NE(G, k), (2)

and
Vo' € o1 x -+ X 0y, if @ € NE(G, k) then (&) | ¢. (3)

Statement (2) can be checked in NP (Theorem 4.2). Whereas, verifying statement (3) is
in coNP; to see this, notice that we can rephrase (3) as follows: Az € {pun,(s) : s € St}
such that both LP(3;) and LP’(6y,...,6,) have a solution in (G, x)[z]. Thus X% membership
follows.

We prove hardness by a reduction from QSAT, (satisfiability of quantified Boolean
formula with 2 alternations) [Pap94]. Let ¢ (x,y) be an n + m variable Boolean 3DNF
formula, where x = {z1,...,2,} and y = {y1,...,yn}, with ¢1,...,t; terms. Write t; for
the set of literals in j-th term and t; for the i-th literal in t;. Moreover write = and y]
for variable x; € x and y; € y that appears in j-th term, respectively. For instance, if the
fifth term is of the form of (zo A =3 A y4), then we have t5 = {23,23,93} and t} = 23. Let
T ={t;Ny:1<i<k}, that is, the set of subset of t; that contains only y-literals.

For a formula 1 (x,y) we construct an instance of STRONG IMPLEMENTATION such that

SI(G, ¢, B) # @ if and only if there is an X € {0,1}" such that 1(x,y) is true for every
¥ € {0,1}™. Let G be such a game where
o N ={1,2},
o St = {Ucp(ts x (0. 1)} U{T x {01} U {(source, {0}?),(sink, {0}%)},
e 59 = source,
o for each state s € St
— Acy(s) = {{T U {sink}} x {0}3}, Aca(s) = {e}, if s = (source, {0}3),
— Acy(s) = {t} : s[0] Ct; Ai € [1,k]}, Aca(s) = {0,1}3, if s € {T x {0}3},
— Aei(s) = {e}, Aca(s) = {e}, if 5 € Uyepp (65 % {0, 119),
e for an action profile & = (a1, az)

— tr(s,d) = aj, if s = (source, {0}?),
— tr(s,a) = (a1, as), if s € {T x {0}3},

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:17

— tr(s, @) = (¢} "V S[1)), i s = (8, s[1]) € Ujep (6 % {0,117

— tr(s, &) = s, otherwise;
o for each state s € St, A(s) = s[0],
e for each state s € St

— wi(s) = 2, if s[0] = sink?,

— wi(s) = 0, otherwise;
e the payoff of player ¢ € N for an ultimately periodic path 7 in G is

— pay;(m) = mp(wi(m)),

— paya(m) = —mp(w1 (7)),
Furthermore, let 5 = |x| and the GR(1) property to be ¢ := GF —sink. Define a (partial)
reward scheme k : x — {0,1}. The weights are updated with respect to x as follows:
for each s € St such that s[0] € t; \ y, that is, an z-literal that appears in term ¢;

1, if k(s) =1 A s[0] is not negated in ¢;
1, if k(s) = 0 A s[0] is negated in t;

0, if k(s) =1As[0] is negated in ¢;

0, otherwise;

Wl(S) =

for each s € St such that s[0] € t; \ x, that is, a y-literal that appears in term ¢;, s[0] = t;

1, if s[1][i] = 1 A s[0] is not negated in ¢;
1, if s[1][i] = 0 A s[0] is negated in t;

0, if s[1][é] =1 A s[0] is negated in ¢;

0, otherwise;

the weights of other states remain unchanged.

The construction is now complete, and polynomial to the size of formula ¥ (x,y). We
claim that SI(G, ¢, 5) # @ if and only if there is an X € {0, 1}" such that ¥ (x,y) is true for
every y € {0,1}". From left to right, consider a reward scheme x € SI(G, ¢,) which implies
that there exists no Nash equilibrium run in (G, k) that ends up in sink. This means that
for every action & € Aca(s), there exists a1 € Acy(s),s € {T x {0}3}, such that pay,(7) = 1,
where 7 is the resulting path of the joint action. Observe that this corresponds to the
existence of (at least) a term ¢;, which evaluates to true under assignment X, regardless the
value of ¥. From right to left, consider an assigment X € {0,1}" such that for all ¥ € {0,1}"™,
the formula 1 (x,y) is true. This means that for every ¥, there exists (at least one) term t¢;
in 1(x,y) that evaluates to true. By construction, specifically the weight updating rules,
for every dy corresponding to assignment ¥, there exists t; such that Vi € [1, 3], w; (t;) =1.
This means that player 1 can always get payoff equals to 1, therefore, any run that ends in
sink is not sustained by Nash equilibrium. []

6. OPTIMALITY AND UNIQUENESS OF SOLUTIONS

Having asked the questions studied in the previous sections, the principal may want to dig
deeper. Because the power of the principal is limited by its budget, and because from the
point of view of the system, it may be associated with a reward (e.g., money, savings, etc.)

4This can be implemented by a macrostate with three substates—2 substates with weight of 1, and 1 with
weight of 0—forming a simple cycle.

21:18 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

or with the inverse of the amount of a finite resource (e.g., time, energy, etc.) an obvious
question is asking about optimal solutions. This leads us to optimisation variations of the
problems we have studied. Informally, in this case, we ask what is the least budget that
the principal needs to ensure that the implementation problems have positive solutions.
The principal may also want to know whether a given reward scheme is unique, so that
there is no point in looking for any other solutions to the problem. In this section, we
investigate these kind of problems, and classify our study into two parts, one corresponding
to the WEAK IMPLEMENTATION problem and another one corresponding to the STRONG
IMPLEMENTATION problem.

6.1. Optimality and Uniqueness in the Weak Domain. We can now define formally
some of the problems that we will study in the rest of this section. To start, the optimisation
variant for WEAK IMPLEMENTATION is defined as follows.

Definition 6.1 (OpT-WI). Given a game G and a specification formula ¢:
What is the optimum budget 5 such that WI(G, , 8) # 27

Another natural problem, which is related to OpT-WI, is the “exact” variant — a
membership question. In this case, in addition to G and ¢, we are also given an integer b,
and ask whether it is indeed the smallest amount of budget that the principal has to spend
for some optimal weak implementation. This decision problem is formally defined as follows.

Definition 6.2 (ExacT-WI). Given a game G, a specification formula ¢, and an integer b:
Is b equal to the optimum budget for WI(G, , 5) # @7

To study these problems, it is useful to introduce some concepts first. More specifically,
let us introduce the concept of implementation efficiency. We say that a WEAK IMPLE-
MENTATION (resp. STRONG IMPLEMENTATION) is efficient if 3 = cost(x) and there is no '
such that cost(k’) < cost(x) and k' € WI(G, ¢, 3) (resp. k" € SI(G, ¢, 3)). In addition to the
concept of efficiency for an implementation problem, it is also useful to have the following
result.

Proposition 6.3. Let z; be the largest payoff that player i can get after deviating from a
path w. The optimum budget is an integer between 0 and) ;2 - (|St| — 1).

Proof. The lower-bound is straightforward. The upper-bound follows from the fact that the
maximum value the principal has to pay to player ¢ is when the path 7 is a simple cycle and
formed from all states in St, apart from 1 deviation state. []

Using Proposition 6.3, we can show that both OpT-WI and ExacT-WI can be solved in
PSPACE for LTL specifications. Intuitively, the reason is that we can use the upper bound
given by Proposition 6.3 to go through all possible solutions in exponential time, but using
only nondeterministic polynomial space. Formally, we have the following results.

Theorem 6.4. OpT-WI with LTL specifications is FPSPACE-complete.

Proof. Since the search space is bounded (Proposition 6.3), by using WEAK IMPLEMENTATION
an an oracle we can iterate through every instance and return the smallest 5 such that
WI(G, ¢,) # &. Moreover, each instance is of polynomial size in the size of the input. Thus
membership in PSPACE follows. Hardness is straightforward. []

Corollary 6.5. ExAcT-WI with LTL specifications is PSPACE-complete.

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:19

The fact that both OpT-WI and ExacT-WI with LTL specifications can be answered in,
respectively, FPSPACE and PSPACE does not come as a big surprise: checking an instance
can be done using polynomial space and there are only exponentially many instances to
be checked. However, for OpT-WI and ExAacT-WI with GR(1) specifications, these two
problems are more interesting.

Theorem 6.6. OpT-WI with GR(1) specifications is FPN-complete.

Proof. Membership follows from the fact that the search space, which is bounded as in
Proposition 6.3, can be fully explored using binary search and WEAK IMPLEMENTATION as
an oracle. More precisely, we can find the smallest budget 8 such that WI(G, ¢, 5) # @ by
checking every possible value for 5, which lies between 0 and 2", where n is the length of
the encoding of the instance. Since we need logarithmically many calls to the NP oracle (to
WEAK IMPLEMENTATION), in the end we have searching procedure that runs in polynomial
time.

For hardness we reduce from TSP CoST (optimal travelling salesman problem) that
is known to be FPNP_complete [Pap94]. Given a TSP CoST instance (G, ¢), G =(V, E) is
a graph, ¢: F — Z is a cost function. We assume that WI(G, ¢,) is efficient. To encode
TSP CosT instance, we construct a game G and GR(1) formula ¢, such that the optimum
budget [corresponds to the value of optimum tour. Let G be such a game where
N = {1},

St ={(v,e) ;v eV Ae€in(v)} U{(sink,e)},

sp can be chosen arbitrarily from St \ {(sink,e)},

for each state (v,e) € St and edge ¢ € EU {e}

— tr((v, e),e’) =(trg(e),€'),if v # sink and €' # ¢,

— tr((v, e),€e’) =(sink, &), otherwise;

for each state (v, e) € St

— wi((v,e)) = max{c(e’) : ¢ € E} — c(e), if v # sink,

— wi((v,e)) = max{c(e’) : ¢ € E}, otherwise;

e the payoff of player 1 for a path 7 in G is pay;(7) = mp(wy (7)),

for each state (v, e) € St, the set of actions available to player 1 is out(v) U {e},
for each state (v, e) € St, A(v,e)) = v.

Furthermore, let ¢ := A .y, GF v. The construction is now complete, and is polynomial to
the size of (G, ¢).

Now, consider the smallest cost(k),x € WI(G, ¢,). We argue that cost(x) is indeed
the lowest value such that a tour in G is attainable. Suppose for contradiction, that there
exists £’ such that cost(x') < cost(x). Let 7’ be a path in (G, ") and z; = wy((sink,e)) the
largest value player 1 can get by deviating from 7’. We have pay;(7’) < z1, and since for
every (v, e) € St there exists an edge to (sink,e), thus player 1 would deviate to (sink,)
and stay there forever. This deviation means that ¢ is not satisfied, which is a contradiction
to k' € WI(G, ¢, 8). The construction of ¢ also ensures that the path is a valid tour, i.e.,
the tour visits every city at least once. Notice that ¢ does not guarantee a Hamiltonian
cycle. However, removing the condition of visiting each city only once does not remove
the hardness, since Fuclidean TSP is NP-hard [GGJ76, Pap77]. Therefore, in the planar
case there is an optimal tour that visits each city only once, or otherwise, by the triangle
inequality, skipping a repeated visit would not increase the cost. Finally, since WI(G, p, 3)
is efficient, we have 8 to be exactly the value of the optimum tour in the corresponding
TSP CosT instance. []

21:20 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

Corollary 6.7. EXACT-WI with GR(1) specifications is DY -complete.

Proof. For membership, observe that an input is a “yes” instance of EXAcT-WI if and
only if it is a “yes” instance of WEAK IMPLEMENTATION and a “yes” instance of WEAK
IMPLEMENTATION COMPLEMENT (the problem where one asks whether WI(G, ¢, 5) = @).
Since the former problem is in NP and the latter problem is in coNP, membership in DP
follows. For the lower bound, we use the same reduction technique as in Theorem 6.6, and
reduce from ExacT TSP, a problem known to be DP-hard [Pap94, PY84].]

Following [Pap84], we may naturally ask whether the optimal solution given by OPT-WI
is unique. We call this problem UOpPT-WI. For some fixed budget 3, it may be the case
that for two reward schemes k, k' € WI(G, ¢,) — we assume the implementation is efficient
— we have r # k' and cost(k) = cost(x’). With LTL specifications, it is not difficult to see
that we can solve UOPT-WI in polynomial space. Therefore, we have the following result.

Corollary 6.8. UOrT-WI with LTL specifications is PSPACE-complete.

For GR(1) specifications, we reason about UOPT-WT using the following procedure:

(1) Find the exact budget using binary search and WEAK IMPLEMENTATION as an oracle;
(2) Use an NP oracle once to guess two distinct reward schemes with precisely this budget;
if no such reward schemes exist, return “yes”; otherwise, return “no”.

The above decision procedure clearly is in Ag (for the upper bound). Furthermore,
since Theorem 6.6 implies AP-hardness [Kre88] (for the lower bound), we have the following
corollary.

Corollary 6.9. UOPT-WI with GR(1) specifications is AL -complete.

6.2. Optimality and Uniqueness in the Strong Domain. In this subsection, we
study the same problems as in the previous subsection but with respect to the STRONG
IMPLEMENTATION variant of the equilibrium design problem. We first formally define the
problems of interest and then present the two first results.

Definition 6.10 (OpT-SI). Given a game G and a specification formula ¢:
What is the optimum budget 8 such that SI(G, ¢, 5) # @7

Definition 6.11 (ExacT-SI). Given a game G, a specification formula ¢, and an integer b:
Is b equal to the optimum budget for SI(G, p, 5) # &7

For the same reasons discussed in the weak versions of these two problems, we can prove
the following two results with respect to games with LTL specifications.

Theorem 6.12. OpT-SI with LTL specifications is FPSPACE-complete.
Proof. The proof is analogous to that of Theorem 6.4. L]
Corollary 6.13. ExAcT-SI with LTL specifications is PSPACE-complete.

For GR(1) specifications, observe that using the same arguments for the upper-bound
of OpT-WI with GR(1) specifications, we obtain the upper-bound for OpT-SI with GR(1)
specifications. Then, it follows that OpT-SI is in FP™2. For hardness, we define an FP¥:.-
complete problem, namely WEIGHTED MINQSAT,. Recall that in QSAT, we are given
a Boolean 3DNF formula ¢(x,y) and sets x = {z1,...,2,},¥ = {¥1,.-.,Ym}, with a

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:21

set of terms T = {t1,...,tx}. Define WEIGHTED MINQSAT, as follows. Given ¢ (x,y)
and a weight function c : x — ZZ, WEIGHTED MINQSAT, is the problem of finding an
assignment X € {0,1}" with the least total weight such that i (x,y) is true for every
¥y € {0,1}"™. Observe that WEIGHTED MINQSAT, generalises MINQSAT,, which is known

to be FPZ21087_hard [CHO4], i.e., MINQSAT, is an instance of WEIGHTED MINQSAT,,
where all weights are 1.

Theorem 6.14. WEIGHTED MINQSAT, is FPE;—complete.

Proof. Membership follows from the upper-bound of MINQSAT, [CHO4]: since we have an
exponentially large input with respect to that of MINQSAT,, by using binary search we
will need polynomially many calls to the X5 oracle. Hardness is immediate [CHO4]. []

Now that we have an FP¥2-hard problem in hand, we can proceed to determine the
complexity class of OPT-SI with GR(1) specifications. For the upper bound we one can use
arguments analogous to those in Theorem 6.6. For the lower bound, one can reduce from
WEIGHTED MINQSAT,. Formally, we have:

Theorem 6.15. OpT-SI with GR(1) specifications is FPZg—complete.

Proof. Membership uses arguments analogous to those in Theorem 6.6. For hardness, we
reduce WEIGHTED MINQSAT, to OpT-SI using the same techniques used in Theorem 5.3
with few modifications. Given a

WEIGHTED MINQSAT), instance ((x,y), c), we construct a game G and GR(1) formula ¢,
such that the optimum budget 8 corresponds to the value of optimal solution to (¥(x,y),c).
To this end, we may assume that SI(G, ¢,) is efficient and construct G with exactly the
same rules as in Theorem 5.3 except for the following:

e clearly the value of 8 is unknown,
e the initial weight for each state s € St
— wi(s) = 2, if s[0] = sink,

wi(s) = —c(s[0]) +1, if s[0] € t; \ y A s[0] is not negated in ¢;
ne 1, if s[0] € t; \ y A s[0] is negated in t;;

— wi(s) = 0, otherwise;
e given a reward scheme k, we update the weight for each s € St such that s[0] € t; \ y,
that is, an z-literal that appears in term ¢;

wi(s) = wi(s) + k(s), if s[0] is not negated in ¢;
e wi(s), otherwise;

the construction is complete and polynomial to the size of (¢(x,y),).

Let o be the optimal solution to WEIGHTED MINQSAT, given the input (¢ (x,y), c). We
claim that 3 is exactly o. To see this, consider the smallest cost(k), k € SI(G, ¢, §). We argue
that this is indeed the least total weight of an assignment X such that ¢ (x,y) is true for every
¥. Assume towards a contradiction that cost(k) < o. By the construction of wy(-), there
exists no 7 such that pay,(m) > % Therefore, any run 7’ that ends up in sink is sustained
by Nash equilibrium, which is a contradiction to x € SI(G, ¢,). Now, since SI(G, ¢,) is
efficient, by definition, there exists no " € SI(G, o,) such that cost(x’) < cost(x). Thus we
have (8 equals to o as required. O]

21:22 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

Corollary 6.16. Exact-SI with GR(1) specifications is DY -complete.

Proof. Membership follows from the fact that an input is a “yes” instance of ExAcT-SI (with
GR(1) specifications) if and only if it is a “yes” instance of STRONG IMPLEMENTATION and a
“yes” instance of STRONG IMPLEMENTATION COMPLEMENT, the decision problem where we
ask SI(G, ¢,) = @ instead. The lower bound follows from the hardness of STRONG IMPLE-
MENTATION and STRONG IMPLEMENTATION COMPLEMENT problems, which immediately
implies DY-hardness [ACHI17, Lemma 3.2].]

Furthermore, analogous to UOPT-WI, we also have the following corollaries.
Corollary 6.17. UOPT-SI with LTL specifications is PSPACE-complete.
Corollary 6.18. UOPT-SI with GR(1) specifications is AF-complete.

7. EQUILBRIUM DESIGN WITH SOCIAL WELFARE

Until this point, we have only considered problems that primarily concern the satisfaction of
temporal logic specifications. Indeed, this is one of the key differences between equilibrium
design and mechanism design. However, a benevolent principal may not only be concerned
with the satisfaction of specifications (and optimality of solutions) but also the well-being of
agents and the fairness of outcomes. Well-being and fairness can influence the equilibria
of a game in many ways. For example, if agents are subject to inequity aversion [FS99]
(i.e., they value fairness and are willing to forego some personal gain), then this can affect
the strategies they choose and the resulting equilibria of the game. To account for this, we
extend implementation problems to include social welfare measures.

One well-known measure of social welfare is utilitarian social welfare, which provides a
measure of overall and average benefit for society. However, this measure may be appropriate
for certain circumstances but problematic for others. For instance, it may lead to an unfair
reward scheme where the principal allocates all the budget to one player, and none to the
others. An alternative measure that takes fairness into consideration is egalitarian social
welfare. It measures the welfare of a society by the well-being of the worst-off individual
(i.e., the maximin criterion). A notable argument in defence of this system is Rawls’ veil
of ignorance [Raw99]. From the players’ perspective, this notion of welfare may be more
relevant for our setting: prior to the application of a reward scheme, the players do not know
which scheme will be chosen and implemented since the principal computes and chooses it
“behind the veil of ignorance”?.

Egalitarian welfare may not only be preferable in a philosophical sense, but also useful
in a practical way. To see this, let us revisit our previous Example 2.1 and make some
changes to the scenario as follows. For each step robot B takes, it spends 2 units of energy
and receives a payment of —2. This means that the payoff of robot B in Nash equilibria
is —%, while robot (0)’s remains % If we consider the robots’ payoffs as their energy levels,
then the Nash equilibria in such a situation are not attainable: robot M does not have
enough energy to realise Nash equilibrium runs. In this setting, the egalitarian social welfare
concept is more useful since we want to ensure that every robot has enough resources to

5Tn [EMO04] a similar argument for egalitarian system in an artifical society is presented using an example
of fair access agreement of a common resource (satellite) [LVB99].

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:23

carry out its task®. However, it is important to note that this analysis comes with some
caveats: (a) it generally works only for prefix-independent specifications, and (b) it ignores
any finite prefixes, i.e., on some finite prefixes, the payoff may (temporarily) be negative,
but is positive as the number of steps approaches infinity. These limitations are typically
not a concern for prefix-indepent specifications such as GR(1), which is used in this paper.

Formally, we represent the measure of social welfare as a function S : RNl — R mapping a
tuple of real numbers into a real number, representing a payoff aggregation. More specifically,
for a strategy profile &, the social welfare measure of & is given by S(pay;(&),..., pay,(d)).
With a slight abuse of notation, we write S(&) for the social welfare measure of &. The two
aforementioned concepts of social welfare thus can be defined as follows.

Definition 7.1. For a game G and a strategy profile &, define

(1) the utilitarian social welfare of & w.r.t. G as usw(d) = >, Pay;(7);
(2) the egalitarian social welfare of & w.r.t. G as esw(d) = min;en{pay;(d)};

We also denote the minimum utilitarian and egalitarian social welfare for a given set
NE(G) by:
MinNEs(G) = min{S(d) : ¢ € NE(G)}
where S € {usw, esw}.
We now define the decision problem of threshold social welfare. This problem involves
deciding whether there is a reward scheme with a social welfare measure of no less than a
given value. Formally, the problem is defined as follows.

Definition 7.2 (Threshold social welfare). For a given WEAK IMPLEMENTATION (resp.
STRONG IMPLEMENTATION) instance (G, ¢, 3) , a social welfare function S, and a thresh-
old value ¢, decide whether there is k € WI(G, p,3) (resp. k € SI(G,p,3)) such that
t < MinNEg((G, k)). We write UT-WI and UT-SI, for threshold problems with utilitarian
social welfare function in WEAK IMPLEMENTATION and STRONG IMPLEMENTATION domains,
respectively. Similarly, we write ET-WI and ET-SI for threshold problems with egalitar-
ian social welfare function in WEAK IMPLEMENTATION and STRONG IMPLEMENTATION,
respectively.

To solve the threshold problems, we utilise the procedures for WEAK IMPLEMENTATION
and STRONG IMPLEMENTATION presented in previous sections. We first show how to check
the threshold problem where the specification is given in LTL formulae. For the utilitarian
social welfare measure, we have the following.

Theorem 7.3. UT-WI and UT-SI are PSPACE-complete for LTL specifications.

Proof. We begin with the upper bound for UT-WI. We apply a slight modification of
the WEAK IMPLEMENTATION problem with LTL specifications. Consider the arena A’ =
(NU{n+ 1}, Ac, St, s, tr', \), with tr’ defined as

tf'(at,...,an,a001) = tr(ag, ..., a,)
for every (ay, . ..,an, ans1) € AcNF! and the game G’ = (A’ (W;)ieN, (Wi 1)) with w1 (s) =

Y ien(wi(s)) for each s € St. Player n 4 1 is a dummy player who does not affect the play

6Indeed, the relationship between limited resources and their usage by system components has been
extensively studied in the form of games in many research papers, and such games are closely related to
games with mean-payoff goals (see e.g., [CdAHS03, CDHR10, CD12, DDG'10, VCD"15]).

21:24 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

of the game. Observe that for every strategy profile & in G, it holds that

Pay;+1(5) = Z pay;(7) = Z P3Yi(5—(n+1)) = USW(E—(n—H))'
ieN ieN
We can adapt the same procedure for solving the WEAK IMPLEMENTATION problem in
order to solve UT-WI. To this end, we replace the LTLY™ formula ¢wr with

PWLusw = w1 A (mp(n +1) >).
Observe that if the formula above is satisfied in (G, k)[2], then exists k € WI(G, ¢, §) such
that ¢ < MinNEusw ((G, k)) Thus, the PSPACE upper bound follows.

The PSPACE upper bound for UT-SI case can be obtained in a similar way by adapting
the procedure for solving the STRONG IMPLEMENTATION problem. The construction is
similar to the one for UT-WT explained above, and it suffices to replace the LTLY™ formula
3 with

P usw = ¥3 A (mp(n + 1) > t)?
and @y with
PV,usw = PIusw 7 P-

The lower bounds for both cases immediately follow from the lower bound of WEAK
IMPLEMENTATION and STRONG IMPLEMENTATION problems since we can reduce those
problems to UT-WI and UT-SI, respectively, by fixing ¢ to be the smallest weight value
appeared in the arena. L]

For egalitarian social welfare measure, we obtain the following result.
Theorem 7.4. ET-WI and ET-SI are PSPACE-complete for LTL specifications.

Proof. The upper bounds for ET-WI and ET-SI follow from the adaptation of Algorithms 1
and 2 used to solve WEAK IMPLEMENTATION and STRONG IMPLEMENTATION, respectively.
For ET-WI, we begin with the fact that for a given WEAK IMPLEMENTATION instance
(G, , 5) and a threshold ¢, we can solve ET-WI as follows: check if there is a x such that
(1) v € WI(G, ¢, B), and
(2) MinNEesw((G,K)) > t.

Notice that (1) is exactly WEAK IMPLEMENTATION, and thus can be solved by Al-
gorithm 1. For (2), observe that the constraint MinNEesw ((G, k)) > t can be “embedded”
already in line 5 of the algorithm by requiring that pay,(7w) > ¢,Vi € N. This can be done by
replacing the formula @wi corresponding to line 5 with the following formula

pwiesw = owi A\ (mp(i) > t).
1EN

We can also solve ET-SI in a similar way to the above. We modify line 5 in Algorithm 2
by adding an extra requirement that the path 7 satisfies pay,;(m) > t,Vi € N. To this end,
we replace @3 with

PIesw = ¥3 A /\ (mp(i) > t)7
1€N
and ¢y with
PV.esw = PIesw 7 P-

Lower bounds follow directly from the hardness of WEAK IMPLEMENTATION and STRONG
IMPLEMENTATION by the same argument as in Theorem 7.3. []

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:25

We now address the threshold problems where the specifications are given in the GR(1)
fragment. For implementations with LTL specifications, the bottleneck comes from the LTL
model checking problem. As a result, adding an extra constraint for social welfare threshold
would not affect the overall complexity. Surprisingly, this is also true for GR(1) specifications:
adding the constraint does not incur significant computational cost.

Theorem 7.5. UT-WI and UT-SI are NP-complete and Eg—complete, respectively, for
GR(1) specifications.

Proof. Again, we use a similar construction as in the proof of Theorem 7.3 to build A" and
G’, and adapt the procedures for solving the WEAK IMPLEMENTATION and STRONG IMPLE-
MENTATION with GR(1) specifications. In both domains, we construct the corresponding
multi-weighted graph W = (V, E, (W},)aen) where w;,_;(v) = wy,41(s) — t. The query to this
procedure corresponds exactly to the threshold social welfare problem, giving us the upper
bounds. Lower bounds can be obtained by setting ¢ = min{w,1(s) : s € St}.]

Theorem 7.6. ET-WI and ET-SI are NP-complete and Eg—complete, respectively, for
GR(1) specifications.

Proof. To solve ET-WI and ET-SI, we directly adapt from the procedures for solving
the WEAK IMPLEMENTATION and STRONG IMPLEMENTATION with GR(1) specifications
(Theorems 4.6 and 5.3). For ET-WI, from the game G|z]|, we build the underlying graph
(V,E, (W))ien) where w/(v) = w;(s) — (max{z;,¢}). Then we define the linear programs
LP(¢;) and LP(#y,...,6,) in the same way. Observe that, one of the two linear programs has
a solution if and only if there is a path 7 satisfying ¢ such that for every player i, z; < pay; ()
and t < pay,; (7). For ET-SI, we also employ a similar construction. To obtain the lower
bounds, we reduce from WEAK IMPLEMENTATION and STRONG IMPLEMENTATION with
GR(1) specifications. The reduction simply follows from the fact that by fixing t = min{w;(s) :
i € N,s € St}, we can encode WEAK IMPLEMENTATION and STRONG IMPLEMENTATION
with GR(1) specifications into their corresponding social threshold problems.]

8. CONCLUSIONS & RELATED AND FUTURE WORK

Equilibrium design vs. mechanism design — connections with economic theory.
Although equilibrium design is closely related to mechanism design, as typically studied in
game theory [HRO6], the two are not exactly the same. Two key features in mechanism design
are the following. Firstly, in a mechanism design problem, the designer is not given a game
structure, but instead is asked to provide one; in that sense, a mechanism design problem is
closer to a rational synthesis problem [FKL10, GHW15]. Secondly, in a mechanism design
problem, the designer is only interested in the game’s outcome, which is given by the payoffs
of the players in the game; however, in equilibrium design, while the designer is interested
in the payoffs of the players as these may need to be perturbed by its budget, the designer
is also interested — and in fact primarily interested — in the satisfaction of a temporal
logic goal specification, which the players in the game do not take into consideration when
choosing their individual rational choices; in that sense, equilibrium design is closer to
rational verification [GHW17] than to mechanism design. Thus, equilibrium design is a new
computational problem that sits somewhere in the middle between mechanism design and
rational verification/synthesis. Technically, in equilibrium design we go beyond rational

21:26 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

synthesis and verification through the additional design of reward schemes for incentivising
behaviours in a concurrent and multi-agent system, but we do not require such reward
schemes to be incentive compatible mechanisms, as in mechanism design theory, since the
principal may want to reward only a group of players in the game so that its temporal logic
goal is satisfied, while rewarding other players in the game in an unfair way — thus, leading
to a game with a suboptimal social welfare measure. To remedy this issue, we added social
welfare constraints in the design of reward schemes, and showed that such additions do not
incur extra cost from computational complexity perspective.

Equilibrium design vs. rational verification — connections with computer science.
Typically, in rational synthesis and verification [FKL10, GHW15, GHW17, KPV16] we want
to check whether a property is satisfied on some/every Nash equilibrium computation run of
a reactive, concurrent, and multi-agent system. These verification problems are primarily
concerned with qualitative properties of a system, while assuming rationality of system
components. However, little attention is paid to quantitative properties of the system. This
drawback has been recently identified and some work has been done to cope with questions
where both qualitative and quantitative concerns are considered [AKP18, BBFR13, CD12,
CDHR10, CHJ05, GMP*17, GNPW19b, VCD"15]. Equilibrium design is new and different
approach where this is also the case. More specifically, as in a mechanism design problem,
through the introduction of an external principal — the designer in the equilibrium design
problem — we can account for overall qualitative properties of a system (the principal’s goal
given by an LTL or a GR(1) specification) as well as for quantitative concerns (optimality
of solutions constrained by the budget to allocate additional rewards/resources). Our
framework also mixes qualitative and quantitative features in a different way: while system
components are only interested in maximising a quantitative payoff, the designer is primarily
concerned about the satisfaction of a qualitative (logic) property of the system, and only
secondarily about doing it in a quantitatively optimal way.

Equilibrium design vs. repair games and normative systems — connections with
Al In recent years, there has been an interest in the analysis of rational outcomes of multi-
agent systems modelled as multi-player games. This has been done both with modelling
and with verification purposes. In those multi-agent settings, where Al agents can be
represented as players in a multi-player game, a focus of interest is on the analysis of
(Nash) equilibria in such games [BBMU15, GHW17]. However, it is often the case that
the existence of Nash equilibria in a multi-player game with temporal logic goals may not
be guaranteed [GHW15, GHW17]. For this reason, there has been already some work on
the introduction of desirable Nash equilibria in multi-player games [AAK15, Per19]. This
problem has been studied as a repair problem [AAK15] in which either the preferences of
the players (given by winning conditions) or the actions available in the game are modified;
the latter one also being achieved with the use of normative systems [Per19]. In equilibrium
design, we do not directly modify the preferences of agents in the system, since we do not
alter their goals or choices in the game, but we indirectly influence their rational behaviour
by incentivising players to visit, or to avoid, certain states of the overall system. We studied
how to do this in an (individually) optimal way with respect to the preferences of the
principal in the equilibrium design problem. However, this may not always be possible, for
instance, because the principal’s temporal logic specification goal is just not achievable, or
because of constraints given by its limited budget.

Vol. 20:4 DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:27

Future work. This paper considers games with deterministic transitions, perfect information,
and non-cooperative setting. There are different interesting directions to extend the work
done here. For instance, considering games in which players may be able to cooperate
with each other and form coalitions [GKW19, SGW21]. It would also be interesting to
investigate classes of imperfect information games in which we may still obtain decidability
for our problems [GPW18, DDG*10, BMM17, BLMR17, AMM14]. Another avenue for
future research would be to look into games with probabilistic aspects [KNPS19, GHL21].

On the other hand, the reward model proposed in this paper has a memoryless structure,
meaning that the rewards depend only on the current states and not on the history of
the play. This restricts the kinds of equilibria that we can design with this model. For
instance, we cannot always design equilibria that implement safety specifications, since
they are prefix dependent properties. One way to address this limitation is to use a model
that incorporates the history of play. For example, finite state machines can be used to
create a finite-memory reward scheme modelled by a transducer. This model is similar to a
player’s strategy, but the output is a vector of integer rewards. However, since the space of
possible schemes is unbounded, a different approach is needed for equilibrium design with
this model. Additionally, this reward model is related to the concept of reward machines in
the reinforcement learning framework [IKVM22]. Exploring this direction and incorporating
probabilistic aspects of games can establish a connection between equilibrium design and
multi-agent reinforcement learning. This is an interesting area of research.

Finally, given that the complexity of equilibrium design is much better than that of
rational synthesis/verification, we should be able to have efficient implementations, for
instance, as an extension of EVE [GNPW18].

ACKNOWLEDGEMENTS

Perelli was supported by the PNRR MUR project PE0000013-FAIR and the PRIN 2020
projects PINPOINT. He was also supported by Sapienza University of Rome under the “Pro-
getti Grandi di Ateneo” programme, grant RG123188B3F7414A (ASGARD - Autonomous
and Self-Governing Agent-Based Rule Design). Wooldridge acknowledges the support of
UKRI under a Turing AI World Leading Researcher Fellowship (grant EP/W002949/1).

REFERENCES

[AAK15] S. Almagor, G. Avni, and O. Kupferman. Repairing Multi-Player Games. In CONCUR, volume 42
of LIPIcs, pages 325-339. Schloss Dagstuhl, 2015.

[ACHI1T] Gadi Aleksandrowicz, Hana Chockler, Joseph Y. Halpern, and Alexander Ivrii. The Compu-
tational Complexity of Structure-based Causality. J. Artif. Int. Res., 58(1):431-451, January
2017. URL: http://dl.acm.org/citation.cfm?id=3176764.3176775.

[AKP18] S. Almagor, O. Kupferman, and G. Perelli. Synthesis of Controllable Nash Equilibria in
Quantitative Objective Games. In IJCAI, pages 3541, 2018.

[AMM14] Benjamin Aminof, Fabio Mogavero, and Aniello Murano. Synthesis of Hierarchical Systems.
Science of Computer Programming, 83:56-79, 2014.

[AMMRI16] B. Aminof, V. Malvone, A. Murano, and S. Rubin. Graded Strategy Logic: Reasoning about
Uniqueness of Nash Equilibria. In AAMAS, pages 698-706. ACM, 2016.

[BBFR13] A. Bohy, V. Bruyere, E. Filiot, and J. Raskin. Synthesis from LTL Specifications with Mean-
Payoff Objectives. In TACAS, pages 169-184, 2013.

[BBMU15] P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Pure Nash Equilibria in Concurrent
Deterministic Games. Logical Methods in Computer Science, 11(2), 2015.

http://dl.acm.org/citation.cfm?id=3176764.3176775

21:28

[BCHK14]

[BJPT12]

[BLMR17]

[BMM17]
[CD12]

[CAAHS03]

[CDHR10]
[CHO4]
[CHJO05]

[DDG™10]

[EMO04]

[FKL10]
[FS99]
[GGJ76]

[GHL*21]

[GHPW17]
[GHW15]
[GHW17]

[GKW19]

[GMP™17)

[GNPW18]

J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman. Temporal Specifications with
Accumulative Values. ACM Transactions on Computational Logic, 15(4):27:1-27:25, 2014.
doi:10.1145/2629686.

R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1) Designs.
Journal of Computer and System Sciences, 78(3):911-938, 2012.

Francesco Belardinelli, Alessio Lomuscio, Aniello Murano, and Sasha Rubin. Verification of
Multi-agent Systems with Imperfect Information and Public Actions. In AAMAS, pages 1268—
1276. ACM, 2017.

Raphaél Berthon, Bastien Maubert, and Aniello Murano. Decidability Results for ATL* with
Imperfect Information and Perfect Recall. In AAMAS, pages 1250-1258. ACM, 2017.

K. Chatterjee and L. Doyen. Energy Parity Games. Theoretical Computer Science, 458:49-60,
2012.

Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariélle Stoelinga. Resource
Interfaces. In Rajeev Alur and Insup Lee, editors, Embedded Software, pages 117-133, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

K. Chatterjee, L. Doyen, T. Henzinger, and J. Raskin. Generalized Mean-payoff and Energy
Games. In FSTTCS, pages 505-516, 2010. doi:10.4230/LIPIcs.FSTTCS.2010.505.

H. Chockler and J. Halpern. Responsibility and Blame: A Structural-Model Approach. Journal
of Artificial Intelligence Research, 22:93—-115, 2004.

K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Mean-Payoff Parity Games. In LICS, pages
178-187. IEEE Computer Society, 2005.

Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-Frangois Raskin, and Szymon
Torunczyk. Energy and Mean-Payoff Games with Imperfect Information. In Anuj Dawar
and Helmut Veith, editors, Computer Science Logic, pages 260-274, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

Ulle Endriss and Nicolas Maudet. Welfare Engineering in Multiagent Systems. In Andrea
Omicini, Paolo Petta, and Jeremy Pitt, editors, Engineering Societies in the Agents World 1V,
pages 93-106, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

D. Fisman, O. Kupferman, and Y. Lustig. Rational Synthesis. In TACAS, volume 6015 of
LNCS, pages 190-204. Springer, 2010.

Ernst Fehr and Klaus M Schmidt. A Theory of Fairness, Competition, and Cooperation. The
quarterly journal of economics, 114(3):817-868, 1999.

M. Garey, R. Graham, and D. Johnson. Some NP-complete Geometric Problems. In STOC,
pages 10-22. ACM, 1976.

Julian Gutierrez, Lewis Hammond, Anthony W. Lin, Muhammad Najib, and Michael Wooldridge.
Rational Verification for Probabilistic Systems. In Proceedings of the 18th International Con-
ference on Principles of Knowledge Representation and Reasoning, pages 312-322, 11 2021.
doi:10.24963/kr.2021/30.

J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge. Nash Equilibrium and Bisimulation
Invariance. In CONCUR, volume 85 of LIPIcs, pages 17:1-17:16. Schloss Dagstuhl, 2017.

J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated Boolean Games. Information and
Computation, 242:53-79, 2015.

J. Gutierrez, P. Harrenstein, and M. Wooldridge. From Model Checking to Equilibrium Checking;:
Reactive Modules for Rational Verification. Artificial Intelligence, 248:123-157, 2017.

Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. Cooperative Concurrent Games. In
Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor, editors, Proceedings of
the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
’19, Montreal, QC, Canada, May 13-17, 2019, pages 1198-1206. International Foundation for
Autonomous Agents and Multiagent Systems, 2019. URL: http://dl.acm.org/citation.cfm?
1d=3331822.

J. Gutierrez, A. Murano, G. Perelli, S. Rubin, and M. Wooldridge. Nash Equilibria in Concurrent
Games with Lexicographic Preferences. In IJCAI pages 1067-1073, 2017. doi:10.24963/ijcai.
2017/148.

J. Gutierrez, M. Najib, G. Perelli, and M. Wooldridge. EVE: A Tool for Temporal Equilibrium
Analysis. In ATVA, volume 11138 of LNCS, pages 551-557. Springer, 2018.

https://doi.org/10.1145/2629686
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.505
https://doi.org/10.24963/kr.2021/30
http://dl.acm.org/citation.cfm?id=3331822
http://dl.acm.org/citation.cfm?id=3331822
https://doi.org/10.24963/ijcai.2017/148
https://doi.org/10.24963/ijcai.2017/148

Vol. 20:4

[GNPW19a

[GNPW19b]
[GPW18]
[HRO6]
[TKVM22]

[KNPS19)

[KPV16]
[Kre88]

[KS88]

[LVB99)]

M. 13]

[OR94]
[Pap77]

[Pap84]
[Pap94]
[Per19]
[Pnu77]
[PRSY]

[PY84]

[Raw99)
[S. 09]

[SGW21]

[UW11]

DESIGNING EQUILIBRIA IN CONCURRENT GAMES 21:29

Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge. Equilibrium De-
sign for Concurrent Games. In Wan Fokkink and Rob van Glabbeek, editors, 80th International
Conference on Concurrency Theory (CONCUR 2019), volume 140 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 22:1-22:16, Dagstuhl, Germany, 2019. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2019.22.

Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge. On Computa-
tional Tractability for Rational Verification. In IJCAI-19, pages 329-335, 7 2019.

J. Gutierrez, G. Perelli, and M. Wooldridge. Imperfect Information in Reactive Modules Games.
Information and Computation, 261(Part):650-675, 2018.

L. Hurwicz and S. Reiter. Designing Economic Mechanisms. Cambridge University Press, 2006.
Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A Mcllraith. Reward
Machines: Exploiting Reward Function Structure in Reinforcement Learning. Journal of
Artificial Intelligence Research, 73:173-208, 2022.

Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. Equilibria-based
probabilistic model checking for concurrent stochastic games. In Maurice H. ter Beek, Annabelle
Meclver, and José N. Oliveira, editors, Formal Methods — The Next 30 Years, pages 298-315,
Cham, 2019. Springer International Publishing.

O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with Rational Environments. Annals of
Mathematics and Artificial Intelligence, 78(1):3-20, 2016.

M. Krentel. The Complexity of Optimization Problems. Journal of Computer and System
Sciences, 36(3):490 — 509, 1988. doi:10.1016/0022-0000(88)90039-6.

S Rao Kosaraju and Gregory Sullivan. Detecting Cycles in Dynamic Graphs in Polynomial
Time. In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages
398-406, 1988.

Michel Lemaitre, Gérard Verfaillie, and Nicolas Bataille. Exploiting a Common Property Re-
source under a Fairness Constraint: A Case Study. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI '99, page 206-211, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

M. Wooldridge and U. Endriss and S. Kraus and J. Lang. Incentive Engineering for Boolean
games. Artificial Intelligence, 195:418 — 439, 2013. doi:10.1016/j.artint.2012.11.003.

M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.

C. Papadimitriou. The Euclidean Travelling Salesman Problem is NP-complete. Theoretical
Computer Science, 4(3):237 — 244, 1977. doi:10.1016/0304-3975(77)90012-3.

C. Papadimitriou. On the Complexity of Unique Solutions. Journal of the ACM, 31(2):392-400,
1984. doi:10.1145/62.322435.

C. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts, 1994.
G. Perelli. Enforcing Equilibria in Multi-Agent Systems. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, pages 188-196, 2019.
URL: http://dl.acm.org/citation.cfm?id=3306127.3331692.

A. Pnueli. The Temporal Logic of Programs. In FOCS, pages 46-57. IEEE, 1977.

A. Pnueli and R. Rosner. On the Synthesis of a Reactive Module. In POPL, pages 179-190.
ACM Press, 1989.

C. Papadimitriou and M. Yannakakis. The Complexity of Facets (and some Facets of Complexity).
Journal of Computer and System Sciences, 28(2):244 — 259, 1984.

John Rawls. A Theory of Justice. Harvard University Press, 1999.

S. Heubach and T. Mansour. Combinatorics of Compositions and Words: Solutions Manual.
Chapman & Hall/CRC, 2009.

Thomas Steeples, Julian Gutierrez, and Michael J. Wooldridge. Mean-Payoff Games with
w-Regular Specifications. In Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé,
editors, AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent
Systems, Virtual Event, United Kingdom, May 3-7, 2021, pages 1272-1280. ACM, 2021. URL:
https://dl.acm.org/doi/10.5555/3463952.3464099.

M. Ummels and D. Wojtczak. The Complexity of Nash Equilibria in Limit-Average Games. In
CONCUR, pages 482-496, 2011. doi:10.1007/978-3-642-23217-6_32.

https://doi.org/10.4230/LIPIcs.CONCUR.2019.22
https://doi.org/10.1016/0022-0000(88)90039-6
https://doi.org/10.1016/j.artint.2012.11.003
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/62.322435
http://dl.acm.org/citation.cfm?id=3306127.3331692
https://dl.acm.org/doi/10.5555/3463952.3464099
https://doi.org/10.1007/978-3-642-23217-6_32

21:30 J. GUTIERREZ, M. NAJIB, G. PERELLI, AND M. WOOLDRIDGE Vol. 20:4

[VCD'15] Y. Velner, K. Chatterjee, L. Doyen, T. Henzinger, A. Rabinovich, and J. Raskin. The Complexity
of Multi-Mean-Payoff and Multi-Energy Games. Information and Computation, 241:177-196,
2015.

[ZP96] U. Zwick and M. Paterson. The Complexity of Mean Payoff Games on Graphs. Theoretical
Computer Science, 158(1):343 — 359, 1996. doi:10.1016/0304-3975(95)00188-3.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1016/0304-3975(95)00188-3

	1. Introduction
	2. Preliminaries
	3. From Mechanism Design to Equilibrium Design
	4. Equilibrium Design: Weak Implementation
	5. Equilibrium Design: Strong Implementation
	6. Optimality and Uniqueness of Solutions
	6.1. Optimality and Uniqueness in the Weak Domain
	6.2. Optimality and Uniqueness in the Strong Domain

	7. Equilbrium Design with Social Welfare
	8. Conclusions & Related and Future Work
	Acknowledgements
	References

