
Logical Methods in Computer Science
Volume 20, Issue 4, 2024, pp. 20:1–20:37
https://lmcs.episciences.org/

Submitted Sep. 26, 2023
Published Dec. 03, 2024

A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS

HERNÁN MELGRATTI a, CLAUDIO ANTARES MEZZINA b, AND G. MICHELE PINNA c

a ICC - Universidad de Buenos Aires - Conicet, Argentina

bDipartimento di Scienze Pure e Applicate, Università di Urbino, Italy

cUniversità di Cagliari, Italy

Abstract. Reversible CCS (RCCS) is a well-established, formal model for reversible com-
municating systems, which has been built on top of the classical Calculus of Communicating
Systems (CCS). In its original formulation, each CCS process is equipped with a memory
that records its performed actions, which is then used to reverse computations. More
recently, abstract models for RCCS have been proposed in the literature, essentialy, by
directly associating RCCS processes with (reversible versions of) event structures. In this
paper we propose a different abstract model: starting from one of the well-known encoding
of CCS into Petri nets we apply a recently proposed approach to incorporate causally-
consistent reversibility to Petri nets, obtaining as result the (reversible) net counterpart of
every RCCS term.

1. Introduction

The calculus for concurrent systems (CCS) [Mil80] serves as one of the foundational frame-
works for concurrent systems. Typically, these systems are described as the parallel compo-
sition of processes (also referred to as components), which interact by sending and receiving
messages through named channels. Processes are defined in terms of communication actions
performed over specific channels. For example, we use a and a to respectively represent a
receive and a send action over the channel a. Basic actions can be combined using prefixing
(.), choice (+), and parallel (∥) operators. Initially, the semantics of CCS were
based on the interleaved approach, which considers only executions that arise from a single
processor. Consequently, parallelism was reduced to non-deterministic choices and prefixing.
For instance, under the interleaved approach, the CCS processes a ∥ b and a.b + b.a are
considered equivalent. This means that the framework does not distinguish between a process
that can perform actions a and b concurrently and one that sequentially executes these

This work has been partially supported by the BehAPI project funded by the EU H2020 RISE under the
Marie Sklodowska-Curie action (No: 778233), by the Italian PRIN 2020 project NiRvAna – Noninterference
and Reversibility Analysis in Private Blockchains, the Italian Ministry of Education, University and Research
through the PRIN 2022 project “ Developing Kleene Logics and their Application” (DeKLA), project code:
2022SM4XC8, the INdAM-GNCS E53C22001930001 project RISICO – Reversibilità in Sistemi Concorrenti:
Analisi Quantitative e Funzionali, and the European Union - NextGenerationEU SEcurity and RIghts in the
CyberSpace (SERICS) Research and Innovation Program PE00000014, projects STRIDE and SWOP.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(4:20)2024
© H. Melgratti, C. A. Mezzina, and G. M. Pinna
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0003-0760-0618
https://orcid.org/0000-0003-1556-2623
https://orcid.org/0000-0001-8911-1580
http://creativecommons.org/about/licenses

20:2 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

a a

a

a

a

Figure 1. Encoding of R = ⟨⟩ ▷ a.0

actions in any possible order (interleaving/schedule). To address this limitation, subsequent
research aimed to equip CCS with true concurrent semantics, adopting styles similar to Petri
nets [Rei85] and Event Structures [Win88, NPW81]. It has been shown that every CCS
process can be associated with a corresponding Petri net that can mimic its computations.
Various flavors of Petri nets have been explored in the literature, including occurrence
nets [Gol90], a variant of Conditions/Events nets [DNM88], and flow nets [BC94]. The
works in [Win86] and [BC94] have additionally shown that the computation of a CCS process
can be represented by event structures.

In the last decades, many efforts were made to endow computation models with reversible
semantics [A+20, M+20]. In particular, two different models have been proposed for CCS:
reversible CCS (RCCS) [DK04, Kri13] and CCS with communication keys (CCSK) [PU07].
Both of them incorporate a logging mechanism in the operational semantics of CCS that
enables the undoing of computation steps. Moreover, it has been shown that they are
isomorphic [LMM21] since they only differ on how they log information about past compu-
tations: while RCCS relies on some form of memory/monitor, CCSK uses keys. Previous
approaches have also developed true concurrent semantics for reversible versions of CCS.
For instance, it has been shown that CCSK can be associated with reversible bundle event
structures [GPY18, GPY21]. Also configuration structures have been associated to RCCS
[AC20]. Nonetheless, we still lack a Petri net model for reversible CCS processes. We
may exploit some recent results that connect reversible occurrence nets with reversible
event structures [MMU20, MMP+20, MMP21a, MMP24] to indirectly recover a Petri net
model from the reversible bundle event structures defined in [GPY18]. However, we follow a
different approach, which is more direct:

(1) We encode CCS processes into a mild generalization of occurrence nets, namely unravel
nets, in the vein of Boudol and Castellani [BC94].

(2) We show that unravel nets can be made causally-consistent reversible by applying the
approach in [MMP+20].

(3) We finally show that the reversible unravel nets derived by our encoding are an interpre-
tation of RCCS terms.

An interesting aspect of the proposed encoding is that it highlights that all the information
needed for reversing an RCCS process is already encoded in the structure of the net
corresponding to the original CCS process, i.e., RCCS memories are represented by the
structure of the net. Concretely, if an RCCS process R is a reachable process from a CCS
process P with empty memory, then the encoding of R is retrieved from the encoding of
P , what changes is the position of the markings. Consider the CCS process P = a.0 that
executes a and then terminates. It can be encoded as the Petri net on the left in Figure 1
(the usage of the apparently redundant coloured places in the postset of a will be made
clearer in Section 3).

The reversible version of P is R = ⟨⟩ ▷ a.0, where ⟨⟩ denotes an initially empty memory.
According to RCCS semantics, R evolves to R′ = ⟨∗, a, 0⟩ · ⟨⟩▷0 by executing a. The memory

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:3

⟨∗, a, 0⟩ · ⟨⟩ in R′ indicates that it can go back to the initial process R by undoing a. Note
that the net corresponding to P (on the left) contains all the necessary information to
reverse the action a; intuitively, the action a can be undone by firing it in the opposite
direction (i.e., by consuming tokens from the postset and producing them in its preset),
or equivalently, by executing a reversing transition a as depicted in the net shown in the
middle of Figure 1. Furthermore, it is important to highlight that the net on the right
of Figure 1 corresponds to the derivative R′. The coloured place carries the information
stored in the memory of the derivative R′. Consequently, the encoding of a CCS term as
a net already encompasses all the information required for its reversal, which stands in
contrast to the additional memories needed in the case of RCCS. This observation provides
a straightforward and nearly immediate true concurrent representation of RCCS processes,
effectively capturing their reversible behaviour.

Organization of the paper. The paper is structured as follows: after establishing essential
notation, we provide a brief overview of CCS and RCCS in Section 2. Next, in Section 3, we
present a concise summary of Petri nets and introduce the concept of unravel nets, followed
by their reversible counterpart. The encoding of CCS into unravel nets and the mapping of
RCCS terms into reversible unravel nets, along with correspondence results, are described in
Section 4. In the final section, we draw insightful conclusions and discuss potential avenues
for future developments. Additionally, we present a practical implementation of the encoding
and simulation of the execution in Haskell in Appendix A.

A preliminary version of this work has been published as [MMP21b]. In this version we
have extended the scope and applicability of the proposed approach. We move from finite
processes to infinite ones (i.e., recursive processes) by considering terms defined coinductively.
Secondly, in this version we provide full and rigorous proofs of the key results. Finally,
we provide a Haskell implementation of the encoding that allows for the simulation of the
execution of encoded CCS processes. This practical implementation further exemplifies the
feasibility and effectiveness of the approach.

Preliminaries. We recall some notation that we will use in the paper. We denote the
set of natural numbers as N. Let A be a set, a multiset of A is defined as a function
m : A→ N. The set of multisets of A is denoted by ∂A. We assume the usual operations on
multisets, such as union + and difference −. For multisets m,m′ ∈ ∂A, we write m ⊆ m′

to indicate that m(a) ≤ m′(a) for all a ∈ A. Additionally, we define [[m]] as the multiset
where [[m]](a) = 1 if m(a) > 0, and [[m]](a) = 0 otherwise. When a multiset m of A is a set,
i.e., m = [[m]], we write a ∈ m to denote that m(a) ̸= 0. In this case, we often confuse the
multiset m with the set {a ∈ A | m(a) ̸= 0} or a subset X ⊆ A with the multiset X(a) = 1
if a ∈ A and X(a) = 0 otherwise. We also employ standard set operations such as ∩, ∪, or
\, and, with a slight abuse of notation, write ∅ for the multiset m such that [[m]] = ∅.

Given a relation R, we indicate with R∗ its reflexive and transitive closure.

2. CCS and reversible CCS

Let A be a set of actions, denoted as a, b, c, . . ., and let A = {a | a ∈ A} be the set of their
corresponding co-actions. The set containing all possible actions is denoted by Act = A∪A.
We use α and β to represent elements from Actτ = Act ∪ {τ}, where τ is a symbol not

20:4 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

present in Act, i.e., τ /∈ Act, and denotes a silent action. We assume that for each α ∈ Act

we have that ¯̄α = α.

(Actions) α ::= a | a | τ

(CCS Processes) P,Q ::=co
∑

i∈I αi.Pi | (P ∥ Q) | P\a

Figure 2. CCS Syntax

The syntax of CCS is presented in Figure 2. A prefix (or action) in CCS can take one of
three forms: an input a, an output a, or the silent action τ . A term of the form

∑
i∈I αi.Pi

represents a process that non-deterministically starts by selecting and performing some
action αi and then continues as Pi. We use 0, the idle process, when I = ∅ in place of∑

i∈I αi.Pi. Similarly, we use αi.P for a unitary sum where I is the singleton {i}. The
term P ∥ Q represents the parallel composition of processes P and Q. An action a can be
restricted to be visible only inside process P , denoted as P\a. Restriction is the only binder
in CCS, where a is bound in P\a. We addressed the representation of infinite processes by
adopting an approach initiated by [CGP09]. Instead of fixing a syntactic representation of
recursion, we simplified the treatment by employing infinite regular trees. Throughout this
paper, in Figure 2 and beyond, we use the symbol ::=co to indicate that the productions
should be interpreted coinductively. As a result, the set of processes is the greatest fixed point
of the (monotonic) functor over sets defined by the grammar above [BDd22]. Consequently,
a process is a potentially infinite, regular term coinductively generated by the grammar in
Figure 2. A term is considered regular if it consists of finitely many distinct subterms. The
language generated by the coinductive grammar is thus finitely representable either using
the so-called µ notation [Pie02] or as solutions of finite sets of equations [Cou83]. For a
more comprehensive treatment, interested readers are referred to [Cou83].

We represent the set of all CCS processes as P . We denote the set of names of a process
P as n(P), and we use fn(P) and bn(P) to represent the sets of free and bound names in P ,
respectively. (These functions can be straightforwardly defined by coinduction.)

Definition 2.1 (CCS Semantics). The operational semantics of CCS is defined as the LTS
(P, Actτ ,→) where the transition relation → is the smallest relation induced by the rules in
Figure 3.

Let us provide some comments on the rules presented in Figure 3. The act rule indicates
that a non-deterministic choice proceeds by executing one of its prefixes αz and transitions
to the corresponding continuation Pz. The par-l and par-r rules allow the left and right
processes of a parallel composition to independently execute an action while the other
remains unchanged. The syn rule regulates synchronisation, allowing two processes in
parallel to perform a handshake. Lastly, the hide rule restricts a certain action from being
further propagated.

2.1. Reversible CCS. Reversible CCS (RCCS) [DK04, Kri13] is a reversible variant of
CCS. In RCCS, processes are equipped with a memory that stores information about their
past actions. The syntax of RCCS, shown in Figure 4, includes the same constructs as
the original CCS formulation, but with the addition of reversible processes. A reversible
process in RCCS can take one of the following forms: a monitored process m ▷ P where

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:5

z ∈ I∑
i∈I

αi.Pi
αz−→ Pz

(act)
P

α−→ P ′

P ∥ Q α−→ P ′ ∥ Q
(par-l)

Q
α−→ Q′

P ∥ Q α−→ P ∥ Q′
(par-r)

P
α−→ P ′ Q

ᾱ−→ Q′

P ∥ Q τ−→ P ′ ∥ Q′ (syn)
P

α−→ P ′ α /∈ {a, ā}
P\a α−→ P ′\a

(r-res)

Figure 3. CCS semantics

(CCS Processes) P,Q ::=co
∑

i∈I αi.Pi | (P ∥ Q) | P\a

(RCCS Processes) R,S ::= m ▷ P | (R ∥ S) | R\a

(Memories) m ::= ⟨∗, α,Q⟩ ·m | ⟨m,α,Q⟩ ·m′ | ⟨0⟩ ·m | ⟨1⟩ ·m | ⟨⟩

Figure 4. RCCS syntax

m represents the memory, and P is a CCS process; the parallel composition R ∥ S of the
reversible processes R and S; and the restriction R\a, where the action a is restricted to the
process R. A memory is essentially a stack of events that encodes the history of actions
previously performed by a process. The left-most element in the memory corresponds to the
very last action executed by the monitored process. Memories in RCCS can contain three
different kinds of events1: partial synchronisations ⟨∗, α,Q⟩, full synchronisations ⟨m,α,Q⟩,
and memory splits ⟨0⟩ and ⟨1⟩. In a synchronisation, whether partial or full, the action α
and the process Q serve specific purposes in recording the selected action α of a choice and
the discarded branches Q. The technical distinction between partial and full synchronisation
will become evident when describing the semantics of RCCS. Events ⟨0⟩ and ⟨1⟩ represent
the splitting of a monitored process into two parallel ones, respectively the left one (⟨0⟩)
and the right one (⟨1⟩). The empty memory is represented by ⟨⟩. Let us note that in RCCS,
memories also serve as unique process identifiers, and this will be handy when undoing a
full synchronisation.

We define the following sets: the set PR of all RCCS processes, the setM of all possible
memories, and M̂ =M∪M2, which includes individual as well as pairs of memories. We
let m̂ to range over the set M̂.

As for CCS, the only binder in RCCS is restriction, which applies at the level of both
CCS and RCCS processes. Consequently, we extend the functions n, fn, and bn to RCCS
processes and memories accordingly.

Definition 2.2. The operational semantics of RCCS is defined as a pair of LTSs sharing
the same set of states and labels: a forward LTS (PR,M̂ × Actτ ,→) and a backward LTS

(PR,M̂× Actτ ,⇝). Elements of the set M̂× Actτ will be denoted as m : α. The transition
relations → and ⇝ are the smallest relations induced by the rules in Figure 5 (left and right
columns, respectively). Both relations make use of the structural congruence relation ≡,

1In this paper, we adopt the original RCCS semantics with partial synchronisation. Later versions, such
as [Kri13], employ communication keys to uniquely identify actions.

20:6 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

(r-act)

m ▷
∑
i∈I

αi.Pi
m:αz−−−→ ⟨∗, αz

z,
∑

i∈I\{z}

αi.Pi⟩ ·m ▷ Pz

⟨∗, αz
z,

∑
i∈I\{z}

αi.Pi⟩ ·m ▷ Pz

m:αz

m ▷
∑
i∈I

αi.Pi

(r-act•)

(r-par-l)
R

m:α−−→ R′

R ∥ S m:α−−→ R′ ∥ S

R
m:α

R′

R ∥ S
m:α

R′ ∥ S
(r-par-l•)

(r-par-r)
S

m:α−−→ S′

R ∥ S m:α−−→ R ∥ S′

S
m:α

S′

R ∥ S
m:α

R ∥ S′
(r-par-r•)

(r-syn)
R

m1:α−−−→ R′ S
m2:ᾱ−−−→ S′

R ∥ S m1,m2:τ−−−−−→ R′
m2@m1

∥ S′
m1@m2

R
m1:α

R′ S
m2:ᾱ

S′

Rm2@m1 ∥ Sm1@m2

m1,m2:τ
R′ ∥ S′

(r-syn•)

(r-res)
R

m:α−−→ R′ α /∈ {a, ā}

R\a m:α−−→ R′\a

R
m:α

R′ α /∈ {a, ā}

R\a
m:α

R′\a
(r-res•)

(r-equiv)
R ≡ R′ R′ m:α−−→ S′ S′ ≡ S

R
m:α−−→ S

R ≡ R′ R′ m:α
S′ S′ ≡ S

R
m:α

S
(r-equiv•)

Figure 5. RCCS semantics

which is the smallest congruence on RCCS processes containing the rules shown in Figure 6.
We define ↪−→=→ ∪⇝.

Let us provide some comments on the forward rules in Figure 5 (left column). Rule
r-act allows a monitored process to perform a forward action αz. Notably, the label of this
transition pairs the executed action αz with the memory m of the process. At this point,
we are uncertain whether the performed action will synchronise with the context or not.
Consequently, a partial synchronisation event of the form ⟨∗, αz

z,
∑

i∈I\z αi.Pi⟩ is added on

top of the memory. The ‘*’ in the partial synchronisation event will be replaced by a memory,
let’s say m1, if the process eventually synchronises with another process monitored by m1.
Additionally, it is essential to note that the discarded process

∑
i∈I\z αi.Pi is recorded in the

memory. Moreover, along with the prefix, we store its position ‘z’ within the sum. While this
piece of information may be redundant for RCCS itself and was not present in the original
semantics, it becomes useful when encoding an RCCS process into a net and when proving
operational correspondence. This additional information enables a more straightforward
representation of RCCS processes in a net-based setting and supports the validation of
operational correspondence between the LTS and the net semantics. Importantly, it is worth

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:7

(split) m ▷ (P ∥ Q) ≡ ⟨0⟩ ·m ▷ P ∥ ⟨1⟩ ·m ▷ Q

(res) m ▷ P\a ≡ (m ▷ P)\a if a /∈ fn(m)

(α) R ≡ S if R =α S

Figure 6. RCCS Structural laws

mentioning that this straightforward modification does not alter the original semantics of
RCCS.

Rules r-par-l and r-par-r allows for the independent execution of an action in different
components of a parallel composition. Rule r-syn allows two parallel processes to synchronise.
For synchronisation to occur, the action α in one process must match the co-action α in the
other process. Once this condition is met, the two partial synchronisations are updated to
two full synchronisations using the operator ‘@’.

Definition 2.3. Let R be a monitored process, and let m1 and m2 be two memories. Rm2@m1

represents the process obtained from R by substituting all occurrences of ⟨∗, α,Q⟩ ·m1 with
⟨m2, α,Q⟩ ·m1.

Rule r-res propagates actions through restriction, provided that the action is not on the
restricted name. Rule r-equiv allows one to exploit the structural congruence defined
in Figure 6. The structural rule split enables a monitored process with a top-level parallel
composition to split into left and right branches, resulting in the duplication of the memory.
The structural rule res permits pushing restrictions outside monitored processes. Lastly,
the structural rule α allows one to take advantage of α-conversion, denoted by =α.

Backward rules are reported in the right column of the Figure 5. As one can see, for
each forward rule there exists a symmetrical backward one. Rule r-act• allows a monitored
process to undo its last action, which coincides with the event on top of the memory stack.
As we can see, all the information is stored in the last performed event, hence the rule pops
out the last event on the memory, and restores back the prefix corresponding to the event
and the plus context. Rules r-par-l• and r-par-r• allow for the independent undoing
of an action in different components of a parallel composition. Rule r-syn• allows for a
de-synchronisation: that is, two parallel components which participated to a synchronisation,
say, with labels α and α can undo this synchronisation. Let us stress out that two processes,
say R and S can undo a synchronisation along memories m1 and m2 only if they are in the
form Rm2@m1 and Sm1@m2 . Rules r-res

• and r-equiv• acts like their forward counterparts.

Definition 2.4. An RCCS process of the form ⟨⟩ ▷ P is referred to as initial. Any process
R derived from an initial process using the rules in Figure 5 is called coherent.

Example 2.5. Let P = a.(b ∥ c) ∥ (a ∥ d). Via an application of the Split rule we obtain
the following process

⟨⟩ ▷ P ≡
(
⟨0⟩ · ⟨⟩ ▷ a.(b ∥ c)

)
∥
(
⟨1⟩ · ⟨⟩ ▷ (a ∥ d)

)
= R1

and we can further apply Split rule on the second monitored process of R1 as follows:

R1 ≡ ⟨0⟩ · ⟨⟩ ▷ a.(b ∥ c) ∥ ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ a ∥ ⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d = R2

20:8 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

Now, in the process R2 there are two monitored processes which can synchronise on a. That
is

R2
m1,m2:τ−−−−−→ ⟨m1, a,0⟩ · ⟨0⟩ · ⟨⟩ ▷ (b ∥ c) ∥

(
⟨m2, a,0⟩ · ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ 0

)
∥
(
⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d

)
= R3

and by applying the Split rule on the left-most monitored process of R3 we obtain

R3 ≡
(
⟨0⟩ · ⟨m1, a,0⟩ · ⟨0⟩ · ⟨⟩ ▷ b

)
∥
(
⟨1⟩ · ⟨m1, a,0⟩ · ⟨0⟩ · ⟨⟩ ▷ c

)
∥(

⟨m2, a,0⟩ · ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ 0
)
∥
(
⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d

)
where m1 = ⟨0⟩ · ⟨⟩ and m2 = ⟨1⟩ · ⟨⟩.

An important property of a fully reversible calculus is the so called Loop Lemma, stating
that any action can be undone. Formally:

Lemma 2.6 (Loop Lemma [DK04]). Let R be a coherent process. For any forward transition

R
m̂:α−−→ S there exists a backward transition S

m̂:α
R, and conversely.

Corollary 2.7. Let R be a coherent process. If R ↪−→∗ R1 then R1 ↪−→∗ R.

RCCS is shown to be causal consistent, that is any step can be undone provided that its
consequences are undone beforehand. A consequence of causal consistent reversibility, it
that any process reached by mixing computations (e.g., forward and backward transitions)
can be reached by only forward computations. That is:

Property 2.8. For any initial procces P , if ⟨⟩ ▷ P ↪−→∗ R then ⟨⟩ ▷ P →∗ R.

The notion of context below will be useful in the following sections.

Definition 2.9. RCCS process context C and active contexts E are reversible processes
with a hole “◦”, defined by the following grammar:

C ::=co ◦ | m ▷ C | α.C |
∑
i∈I

PC
i | C | (P ∥ C) | (C ∥ P) | C\A

E ::=co ◦ | (R ∥ E) | (E ∥ R) | E\A

where PC can be either C or P .

3. Petri nets, Unravel Nets and Reversible Unravel Nets

3.1. Petri nets. We provide a brief overview of Petri nets, along with some related auxiliary
notions.

Definition 3.1. A Petri net is a tuple N = ⟨S, T, F,m⟩, where S is a set of places, T is a
set of transitions (with S ∩ T = ∅), F ⊆ (S × T) ∪ (T × S) is the flow relation, and m ∈ ∂S
is the initial marking.

Petri nets are conventionally represented with transitions depicted as boxes, places as circles,
and the flow relation indicated by directed arcs. The marking m, i.e., the state of the net, is
depicted by drawing in the place s a number m(s) of ‘•’ symbols, also called tokens.

Given a net N = ⟨S, T, F,m⟩ and x ∈ S ∪ T , we define the following multisets: •x =
{y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}. If x is a place then •x and x• are (multisets)
of transitions; analogously, if x ∈ T then •x ∈ ∂S and x• ∈ ∂S. The sets •x and x• are

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:9

respectively called the pre and postset of x. A transition t ∈ T is enabled at a marking
m ∈ ∂S, denoted by m [t⟩ , whenever •t ⊆ m. A transition t enabled at a marking m can
fire and its firing produces the marking m′ = m− •t+ t•. The firing of t at a marking m
producing m′ is denoted by m [t⟩m′. We assume that each transition t of a net N is such
that •t ̸= ∅, meaning that no transition may fire spontaneously. Given a generic marking
m (not necessarily the initial one), the firing sequence (shortened as fs) of N = ⟨S, T, F,m⟩
starting at m0 is defined as:

• m0 is a firing sequence (of length 0), and
• if m0 [t1⟩m1 · · · mn−1 [tn⟩mn is a firing sequence and mn [t⟩m′, then also m0 [t1⟩m1 · · ·
mn−1 [tn⟩mn [t⟩m′ is a firing sequence.

The set of firing sequences of a net N = ⟨S, T, F,m⟩ starting at a marking m is denoted
by RN

m and it is ranged over by σ. Given a fs σ = m0 [t1⟩σ′ [tn⟩mn, start(σ) is the
marking m0, lead(σ) is the marking mn and tail(σ) is the fs σ′ [tn⟩mn. Given a net
N = ⟨S, T, F,m⟩, a marking m′ is reachable iff there exists a fs σ ∈ RN

m such that lead(σ)
is m′. The set of reachable markings of N is MN = {lead(σ) | σ ∈ RN

m}. Given a fs
σ = m [t1⟩m1 · · ·mn−1 [tn⟩m′, we writeXσ =

∑n
i=1 ti for the multiset of transitions associated

to fs, which we call an execution of the net and we write E(N) = {Xσ ∈ ∂T | σ ∈ RN
m} for

the set of the executions of N . Observe that an execution simply says which transitions (and
the relative number of occurrences of them) has been executed, not their (partial) ordering.
Given a fs σ = m [t1⟩m1 · · ·mn−1 [tn⟩mn · · · , with ρσ we denote the sequence t1t2 · · · tn · · · .

Definition 3.2. A net N = ⟨S, T, F,m⟩ is said to be safe if each marking m ∈MN is such
that m = [[m]].

The notion of subnet will be handy in the following. A subnet is obtained by restricting
places and transitions, and correspondingly the flow relation and the initial marking.

Definition 3.3. Let N = ⟨S, T, F,m⟩ be a Petri net and let T ′ ⊆ T be a subset of transitions
and S′ = •T ′ ∪ T ′•. Then, the subnet generated by T ′ N |T ′ = ⟨S′, T′, F′,m′⟩, where F ′ is
the restriction of F to S′ and T ′, and m′ is the multiset on S′ obtained by m restricting to
the places in S′.

3.2. Unravel nets. To define unravel nets we need the notion of causal net, i.e., a net
representing how the various transitions are related and all of them can be executed in a
firing sequence.

Definition 3.4. A safe Petri net N = ⟨S, T, F,m⟩ is a causal net (CA for short) when
∀s ∈ S. | •s| ≤ 1 and |s•| ≤ 1, F ∗ is acyclic, T ∈ E(N), and ∀s ∈ S •s = ∅ ⇒ m(s) = 1.

Requiring that T ∈ E(N) implies that all the transition can be executed whereas F ∗ acyclic
means that dependencies among transitions are settled. Observe that causal net has no
isolated and unmarked places as ∀s ∈ S •s = ∅ ⇒ m(s) = 1.

Definition 3.5. An unravel net (UN for short) N = ⟨S, T, F,m⟩ is a safe net such that

(1) for each execution X ∈ E(N) the subnet N |X is a CA, and
(2) ∀t, t′ ∈ T . •t = •t′ ∧ t• = t′• ⇒ t = t′.

Unravel nets describe the dependencies among transitions in the executions of a concurrent
and distributed device and are similar to flow nets [Bou90, BC94]. Flow nets are safe nets

20:10 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

in which, for every possible firing sequence, each place can be marked only once. The first
condition in Definition 3.5 implies that the subnet consisting of the transitions executed
by the firing sequence is a causal net. The second condition, which states that when two
transitions have identical pre- and postsets they are the same transition, serves the purpose
of ruling out the possibility of having two different transitions that are indistinguishable
because they consume and produce the same tokens (places). Similar to flow nets, UN also
adhere to the rule that each place can be marked only once. However, unlike flow nets, the
requirement that two transitions with the same preset and postset are the same transition
(economy efficiency) stipulated by the second condition is integral to its definition. Moreover,
flow nets were initially introduced alongside flow event structure [Bou90], a concept which
we do not consider in this paper. Lastly, as the process algebra we consider cannot have
terms with unguarded choices, the requirement that outgoing arcs are denumerable is always
fulfilled and therefore we do not require it explicitly. In an UN, two transitions t and t′

are conflicting if they never appear together in an execution, i.e., ∀X ∈ E(N). {t, t′} ̸⊆ X,
as formally stated below. Given a place s of an unravel net, if •s contains two or more
transitions, then they are in conflict.

Proposition 3.6. Let N = ⟨S, T, F,m⟩ be an UN and s ∈ S be a place such that |•s| > 1.
Then ∀t, t′ ∈ •s. ∀X ∈ E(N), if t ∈ X and t′ ∈ X then t = t′.

Proof. Take a place s ∈ S such that |•s| > 1 and take t, t′ ∈ •s. Assume that there is an
execution X ∈ E(N) such that X contains both t and t′. As N |X is a causal net we have
that it is acyclic and therefore t must be equal to t′ as both produce a token in s.

It is worth noting that the classical notion of an occurrence net [NPW81, Win86] is, in
fact, a specific type of UN. In this context, the conflict relation is inherited throughout the
transitive closure of the flow relation and can be inferred directly from the structure of the
net itself. A further evidence that unravel nets generalize occurrence nets is implied also by
the fact that flow nets generalize occurrence nets as well [Bou90].

Definition 3.7. An unravel net N = ⟨S, T, F,m⟩ is complete whenever ∀t ∈ T . ∃st ∈ S.
•st = {t} ∧ st

• = ∅, and |t•| > 1. We use KT to denote the subset of S of such places and
we call the places in KT key-places.

We choose the term key-places to denote the places within the set KT , as they resemble the
communication keys in CCKS [PU07]. These keys serve as unique markers used to indicate
partial or full synchronisation. Thus, in a complete UN, the execution of a transition t is
signalled by the marked place st. Given an UN N , it can be turned easily into a complete
one by adding for each transition the suitable place, without changing the executions of the
net, thus we consider complete UNs only. Completeness comes handy when defining the
reversible counterpart of an UN. In a complete UN N = ⟨S, T, F,m⟩, it is easy to see that
|KT | = |T |.

Proposition 3.8. Let N = ⟨S, T, F,m⟩ be a complete UN and KT the key-places. Then,
E(N) = E(N ′) where N ′ = ⟨S′, T, F ′,m⟩ and S′ = S \KT and F ′ = F ∩ ((S′×T)∪ (T ×S′)).

The key-places do not play any role in the firing of transitions in a UN.

Example 3.9. Consider the nets in Figure 7. The net N is an unravel net, that has the
two maximal executions delineated by the following sequences: first a, followed by c, or
first b, then c. The net N is not complete due to the absence of key-places associated with

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:11

transitions a, b, and c. Transitions a and b lack key-places because each place in their
postsets possesses an outgoing arc. Transition c also lacks a key-place because it has just
one place in its postset. The net N ′ is derived from N by augmenting each transition with a
key-place, rendering N ′ a complete net. These key-places serve the purpose of recording
executed transitions. Consequently, in executions such as first a and then c, tokens are
placed in the key-places corresponding to a and c.

In a complete net, certain key-places can be determined unambiguously, such as those
associated with transitions a and b in Figure 7B. However, for others, the selection is
somewhat arbitrary, as one place is chosen among alternative options. This is exemplified
by the key-place linked to transition c in Figure 7B

a b

c

(A) N

a b

c

(B) N ′

a b

c

(C) N ′

Figure 7. An UN N , its complete version N ′ and the net N ′ after the
execution of a and b

3.3. Reversible unravel nets. The definition of reversible unravel nets builds upon that
of the reversible occurrence nets of [MMP+20], extending the notion just as unravel nets
generalise upon occurrence nets.

Definition 3.10. A reversible unravel net (rUN for short) is a quintuple N = ⟨S, T, U, F,m⟩
such that

(1) U ⊆ T and ∀u ∈ U . ∃! t ∈ T \ U such that •u = t• and u• = •t, and
(2) N |T\U is a complete unravel net and ⟨S, T, F,m⟩ is a safe one.

The transitions in U are the reversing ones; hence, we often say that a reversible unravel
net N is reversible with respect to U . A reversing transition u is associated with a unique
non-reversing transition t (condition 1) and its effects are intended to undo t. This fact
ensures the existence of an injective mapping h : U → T \ U , which consequently implies
that each reversible transition is accompanied by precisely one corresponding reversing
transition. The second condition stipulates that when disregarding all reversing transitions,
the resulting subnet is indeed a complete unravel net and the net itself is a safe net.

Along the lines of [MMP+20], we can prove that the set of reachable markings of a
reversible unravel net is not influenced by performing a reversing transition.

Proposition 3.11. Let N = ⟨S, T, U, F,m⟩ be an rUN. ThenMN =MN |
T\U

.

Proof. ClearlyMN |
T\U
⊆MN . For the other inclusion, we first observe that if m [t⟩ then

t ∈ T \ U as none of the transitions in U is enabled at the initial marking. Consider now an
fs σ [u⟩m, with u ∈ U , and w.l.o.g. assume that all the transitions in σ belong to T \ U ,

20:12 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

aa b

cc d

(A) N

a b

c d

(B) N |T\U

aa b b

cc

(C)
−→

N ′

Figure 8. An rUN N with reversing transitions U = {a, c}, the UN N |T\U

and the complete
−→

N ′ associated to the net N ′ in Figure 7B

i.e., Xσ ⊆ T \ U . We construct an fs leading to m which does not contain any transition in
U . As σ [u⟩ we have that •u ⊆ lead(σ) and this implies that the transition h(u) ∈ Xσ. We
can then write σ as σ′ [h(u)⟩σ′′ and none of the transitions in σ′′ uses the tokens produced
by h(u) as N |Xσ

is a subnet of N |T\U , which is a complete UN. Therefore we have that the

transitions in the fs lead(σ′) [h(u)⟩σ′′ can be rearranged in a fs σ′′′ [h(u)⟩ lead(σ). Observing
that the effects of firing u at lead(σ) are producing the tokens in places •h(u) we have that
the fs we are looking for is obtained executing the transitions in σ′ followed by the ones in
σ′′′ and the reached marking is precisely lead(σ). Hence alsoMN ⊆MN |

T\U
holds.

A consequence of this fact is that each marking can be reached by using just forward
transition.

Given an unravel net and a subset of transitions to be reversed, it is straightforward to
obtain a reversible unravel net.

Proposition 3.12. Let N = ⟨S, T, F,m⟩ be a complete unravel net and let U ⊆ T be the set

of transitions to be reversed. Define
−→

NU = ⟨S ′, T ′, U ′, F ′,m ′⟩ where S = S ′, U ′ = U ×{r},
T ′ = (T × {f}) ∪ U ′,

F ′ = {(s, (t, f)) | (s, t) ∈ F} ∪ {((t, f), s) | (t, s) ∈ F} ∪
{(s, (t, r)) | (t, s) ∈ F} ∪ {((t, r), s) | (s, t) ∈ F}

and m′ = m. Then
−→

NU is a reversible unravel net.

Proof. We check the conditions of Definition 3.10. The first condition is satisfied as we
observe that for each transition in (t, r) ∈ U ′, there exists a unique corresponding transition
(t, f) ∈ T × {f}; moreover, •(t, r) = (t, f)• and (t, r)• = •(t, f). The second one depends on
the fact that N is a complete UN. Finally N is, up to the renaming of transitions, equal to−→
NU |U ′ , which is a complete unravel net. Finally,

−→
NU is trivially safe as N is safe.

The construction above simply adds as many events (transitions) as transitions to be reversed
in U . The preset of each added event is the postset of the corresponding event to be reversed,

and its postset is the preset of the event to be reversed. We write
−→

N instead of
−→

N T when
N = ⟨S, T, F,m⟩, i.e., when every transition is reversible. The reversible unravel net obtained
by reversing every transition is depicted in Figure 8C.

To clarify the crucial role played by key-places, consider the UN N depicted Figure 7A.
Simply adding the reversing transitions in accordance with Proposition 3.12 would yield the

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:13

aa b b

cc

(A) N

aa b b

cc

(B) N after executing a

Figure 9. An rUN N with reversing transitions U = {a, c} and the net N
after the firing of the transition a.

0

(A) N (0)

b.0

b̂.0

b̂.b

b

(B) N (b.0)

a.b.0 â.b.0

â.a

â.b̂.0

â.b̂.b

a â.b

(C) N (a.b.0)

Figure 10. Example of nets corresponding to CCS processes

net shown in Figure 9A. However, this net is not an rUN, as the net obtained by removing the
reversing transitions is not complete. Now, consider the marking after firing a, as depicted
in Figure 9B. With this marking, the reversing transition b is enabled and can be executed,
contradicting the expectation that a transition can only be reversed if it has been previously
executed. The inclusion of the key-places for transitions a, b and c resolves this problem.

4. CCS processes as unravel nets

4.1. Encoding of CCS processes. We now recall the encoding of CCS terms into Petri
nets due to Boudol and Castellani [BC94]. It is worth noting that the original encoding was
on proved terms instead of plain CCS. The difference between proved terms and CCS is that
in a proved term the labels carry the position of the process which did the action. Hence,
we will use decorated versions of labels. For instance, â.b denotes an event b that has been
preceded by the occurrence of a in the term a.b. Analogously, labels carry also information
about the syntactical structure of a term, actions corresponding to subterms of a choice
and of a parallel composition are also decorated with an index i that indicates the subterm
that performs the action. An interesting aspect of this encoding is that these information
is reflected in the name of the places and the transitions of the nets, which simplifies the
formulation of the behavioural correspondence of a term and its associated net. We write
ℓ() for the function that removes decorations for a name, e.g., ℓ(â.b̂.c) = c.

We are now in place to define and comment the encoding of a CCS term into a net. The
encoding is inductively defined on the structure of the CCS process. For a CCS process P ,
its encoded net is N (P) = ⟨SP , TP , FP ,mP ⟩. The net corresponding to the inactive process
0, is just a net with just one marked place and with no transition, that is:

Definition 4.1. The net N (0) = ⟨{0}, ∅, ∅, {0}⟩ is the net associated to 0 and it is called
zero.

20:14 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

To ease notation in the constructions we are going to present, we adopt the following conven-
tions: let X ⊆ S∪T be a set of places and transitions, we write α̂.X for the set {α̂.x | x ∈ X}
containing the decorated versions of places and transitions in X. Analogously we lift this
notation to relations: if R is a binary relation on (S∪T), then α̂.R = {(α̂.x, α̂.y) | (x, y) ∈ R}
is a binary relation on (α.S ∪ α.T).

The net N (α.P) corresponding to a process α.P extends N (P) with two extra places
α.P and â.α and one transition α. The place α.P stands for the process that executes the
prefix α and follows as P . The place â.α is not in the original encoding of [BC94]; we have
add it to ensure that the obtained net is complete, which is essential for the definition of
the reversible net. This will become clearer when commenting the encoding of the parallel
composition. It should be noted that this addition does not interfere with the behaviour
of the net, since all added places are final. Also a new transition, named α is created and
added to the net, and the flow relation is updated accordingly. We use colours to indicate
the name of places that serve as key places. The input and output places of the added
transitions vary depending on the CCS operator under consideration.

Figures 10A, 10B and 10C report respectively the encodings of the inactive process, of
the process b.0 and a.b.0. Moreover the aforementioned figures systematically show how
the prefixing operator is rendered into Petri nets. As a matter of fact, the net a.b.0 is built
starting from the net corresponding to b.0 by adding the prefix a. We note that also the
label of transitions is affected by appending the label of the new prefix at the beginning.
This is rendered in Figure 10C where the transition mimicking the action b is labeled as â.b
indicating that an a was done before b. In what follows we will often omit such representation
from figures.

Definition 4.2. Let P a CCS process and N (P) = ⟨SP , TP , FP ,mP ⟩ be the associated net.
Then N (α.P) is the net ⟨Sα.P , Tα.P , Fα.P ,mα.P ⟩ where

Sα.P = {α.P, α̂.α} ∪ α̂.SP

Tα.P = {α} ∪ α̂.Tp

Fα.P = {(α.P, α), (α, α̂.α)} ∪ {(α, α̂.b) | b ∈ mP } ∪ α̂.FP

mα.P = {α.P}

The set of key-places of N (α.P) is α̂.KTP
∪ {α̂.α}, where KTP

are the key-places of N (P).
As we have done for prefixes, for a set X of transitions and places we write ∥iX for

{∥ix | x ∈ X}, which straightforwardly lifts to relations. We do the same with +i and \a,
which are the decorations for the sum and the restriction.

The encoding of parallel goes along the line of the prefixing one. Also in this case we
have to decorate the places (and transitions) with the position of the term in the syntax
tree. To this end, each branch of the parallel is decorated with ∥i with i being the i-th
position. Regarding the transitions, we have to add all the possible synchronisations among
the processes in parallel. This is why, along with the transitions of the branches (properly
decorated with ∥i) we have to add extra transitions to indicate the possible synchronisation.
Naturally a synchronisation is possible when one label is the co-label of the other transition.
Figure 11A shows the net corresponding to the process a.b ∥ a.c. As we can see, the encoding
builds upon the encoding of a.b and a.c, by (i) adding to all the places and transitions
whether the branch is the left one or the right one and (ii) adding an extra transition and
place for the only possible synchronisation. We add an extra place (in line with the prefixes)
to mark the fact that a synchronisation has taken place. Let us note that the extra places a,
a and τ are used to understand whether the two prefixes have done a partial synchronisation

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:15

or they contributed to do a synchronisation. Suppose, for example, that the net had not
such places, and suppose that we have two tokens in the places ∥0â.b and ∥1ˆ̄a.b. Now, how
can we understand whether these two tokens are the result of the firing sequence a,a or
they are the result of the τ transition? It is impossible, but by using the aforementioned
extra-places, which are instrumental to tell if a single prefix has executed, we can distinguish
the τ from the sequence aa and then reverse accordingly.

Definition 4.3. Let N (P1) and N (P2) be the nets associated to the processes P1 and P2.
Then N (P1∥P2) is the net ⟨SP1∥P2

, TP1∥P2
, FP1∥P2

,mP1∥P2
⟩ where

SP1∥P2
= ∥0SP1 ∪ ∥1SP2 ∪ {s{t,t′} | t ∈ TP1 ∧ t′ ∈ TP2 ∧ ℓ(t) = ℓ(t′)}

TP1∥P2
= ∥0TP1 ∪ ∥1TP2 ∪ {{t, t′} | t ∈ TP1 ∧ t′ ∈ TP2 ∧ ℓ(t) = ℓ(t′)}

FP1∥P2
= ∥0FP1 ∪ ∥1FP2

∪{({t, t′}, s{t,t′}) | t ∈ TP1 ∧ t′ ∈ TP2 ∧ ℓ(t) = ℓ(t′)}
∪{(∥is, {t1, t2}) | (s, ti) ∈ FPi} ∪ {({t1, t2}, ∥is) | (ti, s) ∈ FPi ∧ s ̸∈ KTPi

}
mP1∥P2

= ∥0mP1 ∪ ∥1mP2

The key-places of the resulting net are the following.

∥0KTP1
∪ ∥1KTP2

∪ {s{t,t′} | t ∈ TP1 ∧ t′ ∈ TP2 ∧ ℓ(t) = ℓ(t′)}
They are obtained by properly renaming the ones arising from the encoding of the branches
and those corresponding to the synchronisations of the components.

The encoding of the choice operator is similar to the parallel one. The only difference is
that we do not have to deal with possible synchronisations since the branches of a choice are
mutually exclusive. Figure 11B illustrates the net corresponding to the process a.b+ ā.c. As
in the previous examples, the net is built upon the subnets representing a.b and ā.c.

Definition 4.4. Let N (Pi) be the net associated to the processes Pi for i ∈ I. Then +i∈IPi

is the net ⟨S+i∈IPi , T+i∈IPi , F+i∈IPi ,m+i∈IPi⟩ where:
S+i∈IPi = ∪i∈I+iSPi

T+i∈IPi = ∪i∈I+iTPi

F+i∈IPi = {(+ix,+iy) | (x, y) ∈ FPi} ∪ {(+js,+it) | s ∈ mPj ∧ •t ∈ mPi ∧ i ̸= j}
m+i∈IPi = ∪i∈I+imPi .

In this case the key-places of +i∈IPi are just the union of all key-places after the suitable
renaming, i.e., ∪i∈I+iKTPi

.

We write T a for the set all transitions in T labelled by a or ā, i.e., {t ∈ T | ℓ(t) =
a ∨ ℓ(t) = ā}. The encoding of the hiding operator simply removes all transitions whose labels
corresponds to actions performed over the restricted name and the key-places associated to
these transitions.

Definition 4.5. Let P a CCS process and N (P) = ⟨SP , TP , FP ,mP ⟩ be the associated net.
Then N (P \ a) is the net ⟨SP\a, TP\a, FP\a,mP\a⟩ where

SP\a = \a(SP \ KTa)
TP\a = \a(TP \ T a)
FP\a = {(\as, \at) | s ∈ SP \ KTa ∧ (s, t) ∈ FP ∧ t ̸∈ T a} ∪

{(\at, \as) | s ∈ SP \ KTa ∧ (t, s) ∈ FP ∧ t ̸∈ T a}
mP\a = \amP

20:16 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

∥0 a.b ∥1 a.c

∥0 â.b

a a

τ

b c

∥1 ˆ̄a.c

∥0 â.b̂ ∥1 ˆ̄a.ĉ

a

b

τ ā

c

(A) N (a.b ∥ ā.c)

+0a.b +1a.c

+0â.b +1ˆ̄a.c

+0â.b̂ +1ˆ̄a.ĉ

b c

a aa

b

ā

c

(B) N (a.b+ ā.c)

Figure 11. Example of nets corresponding to CCS parallel and choice
operator. We omit the trailing 0

\a ∥0 a.b \a ∥1 a.c

\a ∥0 â.b
\aτ

\ab \ac

\a ∥1 ˆ̄a.c

\a ∥0 â.b̂ \a ∥1 ˆ̄a.ĉ

b

τ

c

Figure 12. The net N ((a.b ∥ a.c) \ a)

In this case, as the number of firable transitions decreases, a corresponding decrease is
observed in the number of key-places. Hence, K\a(TP \Ta) = \a(KTP

\ KTa). Figure 12 shows
the net corresponding to the CCS process (a.b ∥ a.c) \a. Observe that certain transitions are
removed (those labeled with the restricted action), along with their associated key-places,
although this is not strictly necessary. In fact, after the removal of the transitions, the
respective places remain isolated because the only connected transitions have been removed.

∥0 a.a
∥1 +0a

∥0 â.a

a

∥1 +0ˆ̄a
a

b

τ

τ

∥0 â.â

a

∥1 +1b

∥1 +1b̂

a

a τ

τ

ā b

Figure 13. A complex example: N (a.a ∥ a+ b)

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:17

In Figure 13, a more complex example is depicted, illustrating the net corresponding to
the process a.a ∥ a+ b. In this case, the process on the right of the parallel composition
can synchronise with the one on the left one in two different occasions. This is why there
are two different transitions representing the synchronisations. However, due to the nature
of the process on the right-hand side being a choice, there is a possibility that the right
branch of that choice gets executed, thereby preventing the synchronisation from occurring.
As the right branch of the parallel constitutes a choice between two options, the encoding
designates these branches as ‘∥1+0’ and ‘∥1+0’ respectively. These labels serve to identify
the left and right branches of the choice, which is situated within the right branch of the
parallel operator.

The following proposition is instrumental for the main correspondence result.

Proposition 4.6. The nets defined in Definitions 4.1 to 4.5 are complete unravel nets.

Proof. By induction on the structure of a CCS process. Clearly the net N (0) is an unravel
net and it is trivially complete because it has no transition. Assume now that N (P) =
⟨SP , TP , FP ,mP ⟩ associated with the CCS process P is a complete UN. Also N (α.P) =
⟨Sα.P , Tα.P , Fα.P ,mα.P ⟩ is an UN as it is obtained by adding a new transition α that precedes
all transitions in TP . Moreover, a new key-place α̂.α is added for such transition. Assuming
now that N (P1) and N (P2) are the two complete UNs associated with P1 and P2. The net
N (P1∥P2) is an UN as the two components, when synchronise, have the effect of the local
changes beside the key-places. For each synchronising transition {t, t′}, a corresponding
key-place s{t,t′} exists, rendering the net complete. Similarly, +i∈IPi is a complete unravel
net, as each N (Pi) is a complete unravel net. The additional flow arcs ensure that only
transitions of a specific component are executed. Lastly, N (P \ a) is complete because the
elimination of transitions does not add any new behaviour.

4.2. Encoding of RCCS processes. We are now at the point where we can define the
network that corresponds to an RCCS process. So far, our focus has been on encoding
CCS processes into nets. Since RCCS is built upon CCS processes, our encoding of RCCS
naturally builds upon the encoding of CCS. To do so, we first introduce the concept of
ancestor, i.e., the initial process from which an RCCS process is derived. Notably, in the
context of our discussion involving coherent RCCS processes (as defined in Definition 2.4),
an RCCS process invariably possesses an ancestor.

The ancestor ρ(R) of an RCCS process R can be calculated through syntactical analysis
of R, as all information about its past is stored within memories. The sole instance in which
a process must wait for its counterpart is during a memory fork, denoted as ⟨1⟩ or ⟨2⟩.

Definition 4.7. Given a coherent RCCS process R, its ancestor ρ(R) is derived by using
the inference rules of Figure 14. The rules use the pre-congruence relation ⪯ defined as ≡
(see Figure 6) with the exception that rule Split can be only applied from right to left.

Example 4.8. Consider the RCCS term R below:

R = ⟨0⟩ · ⟨m2, a
1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ b ∥ ⟨1⟩ · ⟨m2, a

1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ c ∥
⟨m1, a

1,0⟩ · ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ 0 ∥ ⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d

20:18 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

⟨ , αz
z,

∑
i∈I\{z}

αi.Pi⟩ ·m ▷ P ⇁ m ▷
∑
i∈I

αi.Pi (Act)

R ⪯ R′ R′ ⇁ S′ S′ ⪯ S

R ⇁ S
(Pre)

R ⇁ R′

R ∥ S ⇁ R′ ∥ S
(Par)

R ⇁ R′

R\a ⇁ R′\a
(Res)

R ⇁∗ ⟨⟩ ▷ P
ρ(R) = P

(Init)

Figure 14. Ancestor inference rules

with m1 = ⟨0⟩ · ⟨⟩ and m2 = ⟨0⟩ · ⟨1⟩ · ⟨⟩ By applying the inference rules in Figure 14, we
compute its ancestor as follows:

R ⇁ ⟨m2, a
1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ (b ∥ c) ∥ (Act)

⟨m1, a
1,0⟩ · ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ 0 ∥ ⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d

⇁ ⟨0⟩ · ⟨⟩ ▷ a.(b ∥ c) ∥ ⟨m1, a
1,0⟩ · ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ 0 ∥ ⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d (Act)

⇁ ⟨0⟩ · ⟨⟩ ▷ a.(b ∥ c) ∥ ⟨0⟩ · ⟨1⟩ · ⟨⟩ ▷ a ∥ ⟨1⟩ · ⟨1⟩ · ⟨⟩ ▷ d (Pre)

⇁ ⟨0⟩ · ⟨⟩ ▷ a.(b ∥ c) ∥ ⟨1⟩ · ⟨⟩ ▷ (a ∥ d) (Pre)

⇁ ⟨⟩ ▷ (a.(b ∥ c) ∥ a ∥ d)

that is ρ(R) = a.(b ∥ c) ∥ a ∥ d. Let us note that reversing a synchronisation is achieved
by applying the Act rule twice—each monitored process can undo its respective part of
the synchronisation. This is possible due to the coherence of processes. Essentially, upon
encountering a synchronisation event, a process possesses adequate information to revert to
its previous local state. Conversely, when encountering a split event, the process must await
its siblings (as per the Pre rule) to reconstruct the parallel process.

Lemma 4.9. For any coherent RCCS process R its ancestor ρ(R) exists and it is unique.

Proof. Since R is a coherent process then there exists a CCS process P such that ⟨⟩▷P ↪−→∗ R.
By Property 2.8 we have that ⟨⟩ ▷ P →∗ R, and by applying Corollary 2.7 we obtain that
R⇝∗ ⟨⟩ ▷ P . The proof is then by induction on the number n of reductions contained in ⇝∗

and by noticing that for each application of ⇝ there exists a corresponding rule of ⇁.

There is a tight correspondence between RCCS memories and transitions/places names.
That is, a memory contains all the information to recover the path from the root to the
process itself. To this end, we introduce the function path(·), which is inductively defined
as follows

path(m · ⟨m′, αi,0⟩) = path(m · ⟨∗, αi,0⟩) = α̂.path(m)

path(m · ⟨m′, αi, Q⟩) = path(m · ⟨∗, αi, Q⟩) = +iα̂.path(m)

path(m · ⟨i⟩) = ∥i path(m)

path(⟨⟩) = ϵ

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:19

∥0 a.b ∥1 a.c

∥0 â.b ∥1 ˆ̄a.c

∥0 â.b̂ ∥1 ˆ̄a.ĉ

a a

b c

τ

aa

bb

τ τ ā ā

c c

(A)
−−−−→

N (R1)

∥0 a.b ∥1 a.c

∥0 â.b ∥1 â.c

∥0 â.b̂ ∥1 ˆ̄a.ĉ

a a

b c

τ

aa

bb

τ τ ā ā

c c

(B)
−−−−→

N (R2)

Figure 15. Example of nets corresponding to RCCS process R1 and R2

Example 4.10. Let us consider the RCCS processes R1 and R2 defined below

R1 =⟨∗, a1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ b ∥ ⟨1⟩ · ⟨⟩ ▷ ā.c
R2 =⟨∗, b1,0⟩ · ⟨m2, a

1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ 0 ∥ ⟨m1, a
1,0⟩ · ⟨1⟩ · ⟨⟩ ▷ c

with mi = ⟨i⟩ · ⟨⟩. Their corresponding nets are shown in Figure 15.
We have that the path of the left process is path(⟨∗, a1,0⟩ · ⟨0⟩ · ⟨⟩) = ∥0â, while the

path of the right process is path(⟨1⟩ · ⟨⟩) = ∥1.

The encoding of an RCCS process should yield an equivalent net to that of its ancestor,
with the only potential distinction being the marking – indicating the specific locations
where tokens are placed. And such positions are inferred from the information stored in
memories. Following the intuitions in Section 4, we will treat names of places and transitions
as strings. When we write ϕX, where X is a set of strings and ϕ ∈ {∥i,+i, α̂, \a}, we are

indicating the set {ϕx | x ∈ X}. Also, we will indicate with ϕ̃ the sequence ϕ1 · · ·ϕn with

20:20 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

ϕi ∈ {∥j,+j, α̂, \a}. Then the marking function µ(·) is inductively defined as follows:

µ(R ∥ S) = µ(R) ▷◁ µ(S)

µ(R\a) = \aµ(R)

µ(m · ⟨m1, α
i,0⟩ · ⟨⟩ ▷ P) = {α,m1} ∪ α̂.µ(m · ⟨⟩ ▷ P)

µ(m · ⟨m1, α
i, Q⟩ · ⟨⟩ ▷ P) = {+iα,m1} ∪+iα̂.µ(m · ⟨⟩ ▷ P)

µ(m · ⟨∗, αi,0⟩ · ⟨⟩ ▷ P) = {α̂.α} ∪ α̂.µ(m · ⟨⟩ ▷ P)

µ(m · ⟨∗, αi, Q⟩ · ⟨⟩ ▷ P) = {+iα̂.α} ∪+iα̂.µ(m · ⟨⟩ ▷ P)

µ(m · ⟨i⟩ · ⟨⟩ ▷ P) = ∥i µ(m · ⟨⟩ ▷ P)

µ(⟨⟩ ▷ P) = {P}

where ▷◁ is defined as the usual set union on single element, and as the merge on pairs
of the form {t1,m2} {t2,m1} where {t1,m2} ▷◁ {t2,m1} = s{t1,t2} if ℓ(t1) = ℓ(t2) and
ti = path(mi)αi with αi = ℓ(ti), where s{t1,t2} is the key place of the synchronisation
between transitions t1 and t2.

Example 4.11. Let us consider the RCCS processes R1 and R2 of Example 4.10. The
marking of the process R1 is

µ(⟨∗, a1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ b ∥ ⟨1⟩ · ⟨⟩ ▷ ā.c)
= (µ(⟨∗, a1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ b)) ▷◁ (∥1µ(⟨⟩ ▷ ā.c))
= (∥0µ(⟨∗, a1,0⟩ · ⟨⟩ ▷ b)) ▷◁ ({∥1ā.c})
= ({∥0â.a} ∪ ∥0â.µ(⟨⟩ ▷ b)) ▷◁ {∥1ā.c}
= {∥0â.a, ∥0â.b} ▷◁ {∥1ā.c}
= {∥0â.a, ∥0â.b, ∥1ā.c}

and the marking of the process R2 is

µ(⟨∗, b1,0⟩ · ⟨m2, a
1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ 0 ∥ ⟨m1, a

1,0⟩ · ⟨1⟩ · ⟨⟩ ▷ c)
= (µ(⟨∗, b1,0⟩ · ⟨m2, a

1,0⟩ · ⟨0⟩ · ⟨⟩ ▷ 0)) ▷◁ (µ(⟨m1, a
1,0⟩ · ⟨1⟩ · ⟨⟩ ▷ c))

= (∥0µ(⟨∗, b1,0⟩ · ⟨m2, a
1,0⟩ · ⟨⟩ ▷ 0)) ▷◁ (∥1µ(⟨m1, a

1,0⟩ · ⟨⟩ ▷ c))
= ∥0({a,m2}, â.µ(⟨∗, b1,0⟩ · ⟨⟩ ▷ 0)) ▷◁ (∥1{{a,m1}, â.µ(⟨⟩ ▷ c)})
= ∥0({a,m2}, â.{b, b}) ▷◁ (∥1{{a,m1}, â.c})

= {{∥0a,m2}, ∥0â.b, ∥0â.b̂} ▷◁ {{∥1a,m1}, ∥1â.c}

= {{∥0a, ∥1a}, ∥0â.b, ∥0â.b̂, ∥1â.c}

We are now in place to define a property that relates the definitions of µ(·) and path(·) with
RCCS processes.

Property 4.12. Let R = m ▷
∑

i∈I αi.Pi be a RCCS process. For any z ∈ I such that

R
m:αz−−−→ ⟨∗, αz

z,
∑

i∈I\{z} αi.Pi⟩ ·m ▷ Pz we have that

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:21

µ(⟨∗, αz
z,

∑
i∈I\{z}

αi.Pi⟩ ·m ▷ Pz) = µ(R) \ {path(m)+zαz.Pz}

∪ {path(m)+zα̂z.αz, path(m)+zαz.Pz}

Proof. The proof is by induction on the size of m. The base case with m = ⟨⟩ trivially holds.
In the inductive case we have m = m1 · e · ⟨⟩ where e can be ⟨i⟩, ⟨∗, βi, Q⟩ or ⟨m2, β

i, Q⟩. We
will show the first two cases, with the third being similar to the second one. We have that

S0 = m1 · ⟨⟩ ▷
∑
i∈I

αi.Pi
m1·⟨⟩:αz−−−−−→ ⟨∗, αz

z,
∑

i∈I\{z}

αi.Pi⟩ ·m1 · ⟨⟩ ▷ Pz = R0

and by applying inductive hypothesis (on a shorter memory) we have that

µ(S0) = µ(R0) \ {path(m1)+zαz.Pz} ∪ {path(m1)+zα̂z.αz, path(m1)+zαz.Pz} (4.1)

We proceed by case analysis.

e = ⟨i⟩: let us note that path(m) = ∥ipath(m1), and that µ(R) = ∥iµ(R0) and µ(S) =
∥iµ(S0). Thanks to Eq. (4.1) we know the form of µ(S0), hence

µ(S) = ∥iµ(S0)

= ∥iµ(R0) \ {∥ipath(m1)+zαz.Pz} ∪ {∥ipath(m1)+zα̂z.αz, ∥ipath(m1)+zαz.Pz}
= µ(R) \ {path(m)+zαz.Pz} ∪ {path(m)+zα̂z.αz, path(m)+zαz.Pz}

as desired.
e = ⟨∗, βi, Q⟩: let us note that path(m) = +iβ̂.path(m1), and that µ(R) = +iβ̂.µ(R0) ∪

{+iβ̂.β}, and µ(S) = +iβ̂.µ(S0) ∪ {+iβ̂.β}. Thanks to Eq. (4.1) we know the form of
µ(S0), hence

µ(S) = +iβ̂.µ(S0) ∪ {+iβ̂.β}

= +iβ̂.{µ(R0) \ {path(m1)+zαz.Pz}

∪ {path(m1)+zα̂z.αz, path(m1)+zαz.Pz}} ∪ {+iβ̂.β}

= +iβ̂.µ(R0) \ {+iβ̂.path(m1)+zαz.Pz}

∪ {+iβ̂.path(m1)+zα̂z.αz,+iβ̂.path(m1)+zαz.Pz}} ∪ {+iβ̂.β}

= +iβ̂.µ(R0) \ {path(m)+zαz.Pz}

∪ {path(m)+zα̂z.αz, path(m)+zαz.Pz}} ∪ {+iβ̂.β}
= µ(R) \ {path(m)+zαz.Pz} ∪ {path(m)+zα̂z.αz, path(m)+zαz.Pz}}

as desired.

As a consequence, we have the following corollary.

Corollary 4.13. Let R = m ▷ α.P be a RCCS process. For any z ∈ I such that R
m:αz−−−→

⟨∗, α,0⟩ ·m ▷ P we have that

µ(⟨∗, α,0⟩ ·m ▷ P) = µ(R) \ {path(m)α.P} ∪ {path(m)α̂.α, path(m)α.P}

We are now ready to formalise the reversible net corresponding to an RCCS process.

20:22 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

Definition 4.14. Let R be an RCCS term with ρ(R) = P . Then
−−−→

N (R) is the net
⟨S, T, F, µ(R)⟩ where N (P) = ⟨S, T, F,m⟩.

Note that the reversible net corresponding to a coherent RCCS process R retains identical
places, transitions, and flow relationships as the ancestor of R. The sole divergence lies in
the marking, which is derived through the utilisation of the computational history stored
within the memories of R. The following Proposition is a consequence of the Proposition 4.6,
Lemma 4.9 and of the definition of µ(·).

Proposition 4.15. Let R be an RCCS term with ρ(R) = P . Then
−−−→

N (R) is a reversible
unravel net.

4.3. Correctness result. We prove the correctness of our encoding in terms of a be-
havioural equivalence. To this aim we reformulate the definition of forward and reverse
bisimilarity [PU07], initially stated for CCSK, to cope with RCCS terms and Petri nets.

Definition 4.16 (Forward and reverse bisimulation). Let R a coherent RCCS process
and N = ⟨S, T, F,m⟩ an rUN. The relation R is a forward reverse bisimulation if whenever
(R,N) ∈ R:
(1) if R

m:α−−→ R′ then there exist t ∈ T and m′ such that m [t⟩m′, t = (path(m)α, f) and
(R′, ⟨S, T, F,m′⟩) ∈ R;

(2) if R
m:α

R′ then there exist t ∈ T and m′ such that m [t⟩m′, t = (path(m)α, r) and
(R′, ⟨S, T, F,m′⟩) ∈ R;

(3) if R
m1,m2:τ−−−−−→ R′ then there exist (t1, f), (t2, f) ∈ T and m′ such that m [({t1, t2}, f)⟩m′,

ℓ(t1) = ℓ(t2), path(mi) < ti for i ∈ {1, 2} and (R′, ⟨S, T, F,m′⟩) ∈ R;
(4) if R

m1,m2:τ
R′ then there exist (t1, r), (t2, r) ∈ T and m′ such that m [({t1, t2}, r)⟩m′,

ℓ(t1) = ℓ(t2), path(mi) < ti for i ∈ {1, 2} and (R′, ⟨S, T, F,m′⟩) ∈ R;
(5) if m [t⟩m′ with t = (path(m)α, f) then there exists R,R′ such that µ(R) = m, µ(R′) = m′,

R
m:α−−→ R′ and (R′, ⟨S, T, F,m′⟩) ∈ R;

(6) if m [t⟩m′ with t = (path(m)α, r) then there exists R,R′ such that µ(R) = m, µ(R′) = m′,

R
m:α

R′ and (R′, ⟨S, T, F,m′⟩) ∈ R;
(7) if m [({t1, t2}, f)⟩m′ with ℓ(t1) = ℓ(t2) and path(mi)αi = ti with ℓ(ti) = αi for i ∈
{1, 2} then there exists R,R′ such that µ(R) = m, µ(R′) = m′, R

m1,m2:τ−−−−−→ R′ and
(R′, ⟨S, T, F,m′⟩) ∈ R;

(8) if m [({t1, t2}, r)⟩m′ with ℓ(t1) = ℓ(t2) and path(mi)αi = ti with ℓ(ti) = αi for i ∈
{1, 2} then there exists R,R′ such that µ(R) = m, µ(R′) = m′, R

m1,m2:τ
R′ and

(R′, ⟨S, T, F,m′⟩) ∈ R.
The largest forward reverse bisimulation is called forward reverse bisimilarity, denoted with
∼FR.

We first prove that two coherent RCCS processes which are structurally congruent are
encoded within the same rUN. Subsequently, we demonstrate the equivalence between a step
taken in the process algebra and the firing of an appropriate transition in the corresponding
network, and vice versa.

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:23

Lemma 4.17 (Preservation). Let R1 and R2 be two coherent RCCS processes. If R1 ≡ R2

then
−−−−→

N (R1) and
−−−−→

N (R2) are isomorphic and have the same marking up to places renaming.

Proof. Since ≡ is defined on monitored processes, then the only axiom which changes the
structure of the ancestor process is the α-renaming. Hence R1 and R2 have the same
ancestor, say P , up to α-renaming. It is easy to see that the two generated nets have the
same places, transitions and flow relation up to renaming, hence they are isomorphic. We
just have to check whether the initial markings are the same. The proof follows by induction
and case analysis on the last applied axiom of ≡:
Split: If the last applied rule is (Split), w.l.o.g. we can assume R1 = m ▷ (P1 ∥ P2) and

R2 = ⟨0⟩ ·m ▷ P1 ∥ ⟨1⟩ ·m ▷ P2. We need to show that µ(R1) = µ(R2). By looking
at the definition of µ(·) we have that

µ(R1) = m and

and

µ(R2) = µ(⟨0⟩ ·m ▷ P1) ▷◁ µ(⟨1⟩ ·m ▷ P2)

Also, by definition of µ(·) we have that m = m0 ∪ path(m)mP1∥P2
, where mP1∥P2

is
the initial marking of the net encoding (P1 ∥ P2). Hence, we can divide this marking
into the marking of P1 and the marking of P2 as follows:

m = m0 ∪ path(m)∥0mP1 ∪ path(m)∥1mP2

Also, we have that:

µ(⟨0⟩ ·m ▷ P1) = ma ∪ path(⟨0⟩ ·m)mP1 = ma
0 ∪ path(m)∥0mP1

µ(⟨1⟩ ·m ▷ P2) = mb ∪ path(⟨1⟩ ·m)mP2 = mb
0 ∪ path(m)∥1mP2

Were ma = mb = m0, since it is the marking derived from the information contained
into the memory m. Now, it is simple to conclude, since ma ▷◁ mb = m0 ▷◁ m0 = m0,
as they are the same marking and since we are considering reachable processes it is
impossible for a process to synchronise in the future with itself, hence ▷◁ acts as the
normal set union.

Res: this case is a simplified version of the previous one.
α: Suppose µ(R1) = m ∪m′ where m′ is the markings containing the bound action which

will be converted by the last application of ≡. By inductive hypothesis we also have
that µ(R2) = m∪α(m′) where the α-conversion is applied only to those names which
contains the bound action, that is m′. We have that the two nets have the same
marking up to some renaming, as desired.

Lemma 4.18 (Soundness). Let R1 be an RCCS coherent process and
−−−−→

N (R1)=⟨S, T, F, µ(R1)⟩
its corresponding rUN. If R1

m̂:α
↪−−→ R2 then

•
−−−−→

N (R2) = ⟨S, T, F, µ(R2)⟩; and
• there exists t ∈ T such that µ(R1) [t⟩µ(R2); and
• for some d ∈ {f, r} either
– m̂ = m and t = (path(m)α, d); or

– m̂ = m1,m2 and α = τ and there exist two transitions (t1, d), (t2, d) ∈ T with ℓ(t1) =
ℓ(t2) and path(mi)αi = ti with ℓ(ti) = αi for i ∈ {1, 2}, and t = ({t1, t2}, d).

20:24 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

Proof. As R1 is a coherent process then it has an ancestor ρ(R1), say P which is unique
(thanks to Lemma 4.9), which is the same ancestor of R2, as R2 is reached by R1 with one

reduction step. Therefore
−−−−→

N (R1) and
−−−−→

N (R2) have the same places, transitions and flow
relation, the only difference being the marking. We show that for each move in the process
algebra a corresponding firing of a transition t ∈ T exists such that (µ(R1)\ •t)∪ t• = µ(R2).

We have two cases: either the process synchronises with the context or it performs a
τ (or a reversing of any of them). Both cases are similar, so we will focus on the first one.

We proceed by induction on the derivation R1
m:α−−→ R2 with a case analysis on the last

applied rule. The base cases correspond to the application of either r-act or r-act•.

r-act: Consider the application of the rule r-act. We have

R1 = m ▷
∑
i∈I

αi.Qi
m:αz−−−→ ⟨∗, αz

z,
∑

i∈I\{z}

αi.Qi⟩ ·m ▷ Pz = R2

We first consider the case where |I| = 1. Hence we have

R1 = m ▷ α.Q
m:α−−→ ⟨∗, α,0⟩ ·m ▷ Q = R2

The marking corresponding to R1 in the net
−−−→

N (P) = ⟨S, T, F,m⟩ is µ(R1) =
µ(m ▷ α.Q) and thanks to Corollary 4.13 the marking of R2 is

µ(R2) = µ(⟨∗, α,0⟩ ·m ▷ Q)

= µ(m ▷ α.Q) \ {path(m)α.Q} ∪ {path(m)α̂.α} ∪ {path(m)α̂.mQ}

By construction (see Definition 4.2), the net
−−−→

N (P) contains a transition t ∈ T
such that t = (path(m)α, f), with •t = {path(m)α.Q} and t• = {path(m)α̂.α} ∪
{path(m)α̂.mQ}. The thesis follows by observing that such transition is enabled at
µ(R1) because {path(m)α.Q} ∈ µ(R1) by definition of µ(·), and µ(R1) [t⟩µ(R2).

Consider now the case with |I| > 1.

R1 = m ▷
∑
i∈I

αi.Qi
m:αz−−−→ ⟨∗, αz

z,
∑

i∈I\{z}

αi.Qi⟩ ·m ▷ Pz = R2

The marking corresponding to R1 in the net
−−−→

N (P) = ⟨S, T, F,m⟩ is

µ(R1) = µ(m ▷
∑
i∈I

αi.Qi)

=
⋃
i∈I

µ(m ▷ αi.Qi)

and it contains the marked places {path(m)+iαi.Qi | i ∈ I}. Again by construction,

the net
−−−→

N (P) contains a transition t ∈ T such that t = (path(m)+zαz, f), with z ∈ I,
•t = {path(m)+iαi.Qi | i ∈ I} and t• = {path(m)+zα̂z.αz} ∪ {path(m)+zα̂z.mQz}
and again µ(R1) [t⟩µ(R2) where µ(R2) is the marking

µ(m ▷
∑
i∈I

αi.Qi)\{path(m)+iαi.Qi | i∈I}∪{path(m)+zα̂z.αz}∪{path(m)+zα̂z.mQz}

r-act•: The case in which (r-act•) is used is similar. Assume

R1 = ⟨∗, αz
z,

∑
i∈I\{z}

αi.Qi⟩ ·m ▷ Qz

m:αz

m ▷
∑
i∈I

αi.Qi = R2

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:25

and again take |I|=1.Then µ(R1)=µ(⟨∗, α,0⟩ ·m▷Q)=µ(m ▷ α.Q)\{path(m)α.Q}∪
{path(m)α̂.α} ∪ {path(m)α̂.mQ}. The transition t = (path(m)a, r) in

−−−→
N (P) is

enabled at µ(R1) as it is the reverse of (path(m)α, f) and its execution leads to the
marking µ(R2) = µ(m ▷ α.Q) as required.

The case with |I| > 1 follows the same argument of the forward one.

In the inductive case we have to do a case analysis on the last applied rule. We have (l-par),
(r-sych), (r-res) and (r-equiv) and their reversible variants. The most representative
cases are (r-sych) and (r-equiv).

r-equiv: Consider the application of the rule (r-equiv). It follows by induction and by
applying Lemma 4.17.

r-equiv•: The application of the rule (r-equiv•) follows the same argument of the previous
case.

r-synch: For the (r-sych) case, let us suppose R0 = R1
0 ∥ R2

0. We have that R1
0 ∥

R2
0

m1,m2:τ−−−−−→ R1
1m1@m2

∥ R2
1m2@m1

with Ri
0

mi:αi−−−→ Ri
1 and α1 = α2. By applying the

inductive hypothesis on the derivations Ri
0

mi:αi−−−→ Ri
1 we have that there exists two

transitions t1 and t2 such that mi
r0 [ti⟩m

i
r1 , (path(mi)αi, f) = ti, µ(R

i
0) = mi

r0 and

µ(Ri
1) = mi

r1 . We can desume that •t1 ∩ •t2 = ∅, since they are enabled on different

markings. Also, by definition we have that mr0 = µ(R0) = µ(R1
0) ▷◁ µ(R2

0). Let us
note that the operator ▷◁ acts on places which corresponds to past synchronisations,
hence it does not affect •ti, that is

•ti ∈ mr0 . Since α1 = α2 then by Definition 4.3 in
the net there exists a transition tτ = ({path(m1)α1, path(m2)α2}, f) where the preset
and postset are respectively •tτ = •t1∪ •t2 and tτ

• = (t1
•\{path(m1)α̂1.α1})∪(t2•\

{path(m2)α̂2.α2})∪{s{path(m1)α1,path(m2)α2}}. Hence we have that mr0 [tτ ⟩ (mr\•tτ)∪
tτ

•. By definition we have that {path(m1)α1,m2} ∈ µ(R1
1) and {path(m2)α2,m1} ∈

µ(R2
1) and that {path(m1)α1, path(m2)α2} ∈ µ(R1

1) ▷◁ µ(R2
1). Also let us note that

the mi@mj operation just replace the ∗ on top of the memory mi with mj , which is
similar to the ▷◁ operator. Hence µ(R1

1) ▷◁ µ(R2
1) = µ(R1

1m1@m2
∥ R2

1m2@m1
) = mr2 ,

as desired.
r-sych•: this case is analogous to (r-act•).

Lemma 4.19 (Completeness). Let R1 be an RCCS coherent process and let
−−−−→

N (R1) =
⟨S, T, F, µ(R1)⟩ be the corresponding rUN. If µ(R1) [t⟩m′, then there exists R2 s.t. one of
the following holds:

• t = (path(m)α, d) and R1
m:α
↪−−→ R2 and

−−−−→
N (R2) = ⟨S, T, F,m′⟩;

• t = ({t1, t2}, d) such that ℓ(t1) = ℓ(t2), with ti = (path(mi)αi, d), αi ∈ {ℓ(t1), ℓ(t2)} for
i = 1, 2 and R1

m1,m2:τ
↪−−−−−→ R2 with

−−−−→
N (R2) = ⟨S, T, F,m′⟩

with d ∈ {f, r}.

Proof. If µ(R1) [t⟩m′, then µ(R1) = m0 ∪ •t and m′ = (m0 \ •t) ∪ t•. The encoding of N (·)
is such that each transition or place name has a unique form, which corresponds to a path

of a CCS term, and the transitions in
−−→

N (·) are of the form (t, d), where t is the transition
name of the CCS term and d ∈ {f, r} is the direction, either forward or reverse. That is
from the transition name (t, d) we can isolate the RCCS term which can mimic the action.

If the transition (t, d) is not a synchronisation, that is (t, d) is not of the form ({t1, t2}, d),
then we can assume w.l.o.g. that t = (ϕ̃α, d) with ϕ̃ being a sequence of ϕ ∈ {∥i,+i, α̂, \a}.

20:26 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

Suppose d is f. If the last decoration in ϕ̃ has the form +j, that is ϕ̃ = ϕ̃′+j this means

there exists in the net a set of transition T ′ = {ti = (ϕ̃βi, f) | (ti, f) ∈ T}. Now, let assume
that the ancestor of R1 is P , we have that P = C[

∑
i∈I βi.Qi] where there exists an index

j ∈ I such that βj = α and α is the action mimicked by the transition (t, f) and the right

position of the hole in the context is calculated using ϕ̃. Also, since the transition is enabled
in the net, then also R1 = E[(m ▷

∑
i∈I βi.Qi)\A] where E[·] is an active context. Hence,

we have that

E[(m ▷
∑
i∈I

βi.Qi)\A]
m:βj

−−−→ E[(⟨∗, βj ,
∑

i∈I\{j}

⟩ ·m ▷ Qj)\A] = R2

By definition 4.14 we have m = µ(R1), and by definition 4.4 •t = {ϕ̃βi.Qi | i ∈ I} and
t• = {ϕ̃β̂j .βj} ∪ ϕ̃.{βj .Qj}. Also

µ(R1) = µ(E[0]) ▷◁ µ((m ▷
∑
i∈I

βi.Qi)\A) = m ∪m1

µ(R2) = µ(E[0]) ▷◁ µ((⟨∗, βj ,
∑

i∈I\{j}

⟩ ·m ▷ Qj)\A) = m ∪m2

where m1 and m2 are the results of applying the eventual synchronisation ▷◁ respectively
on µ((m ▷

∑
i∈I βi.Qi)\A) and µ((⟨∗, βj ,

∑
i∈I\{j}⟩ ·m ▷ Qj)\A). Moreover, we can separate

from m1 and m2 the key places, that is the places whose name terminates with α̂.α or with
s{t1,t2}. Be mk

i such markings then we have:

µ(R1) = m ∪m1 = m ∪mk
1 ∪m′

1

µ(R2) = m ∪m2 = m ∪mk
2 ∪m′

2

By definition of µ(·) we have that

m′
1 = {path(m).+iβi.Qi | i ∈ I}

m′
2 = {path((⟨∗, βj ,

∑
i∈I\{j}

⟩ ·m).β̂j .βj} ∪ {path((⟨∗, βj ,
∑

i∈I\{j}

⟩ ·m).β̂j .Qj}

It is easy to check that ϕ̃ = path(m)+i and ϕ̃ = path((⟨∗, βj ,
∑

i∈I\{j}⟩ ·m). And we are

done.
The cases of synchonisation and backward transitions are similar.

We can now state our main result in terms of bisimulation:

Theorem 4.20. Let R be an RCCS process and let P = ρ(R) be its ancestor, then

⟨⟩ ▷ P ∼FR
−−−→

N (P)

Proof. It is sufficient to show that

R = {(R, ⟨S, T, F, µ(R)⟩) | ρ(R) = P,
−−−→

N (P) = ⟨S, T, F,m⟩}
is a forward and reverse bisimulation. It is easy to check that all the conditions of Defini-
tion 4.16 are matched by Lemmas 4.18 and 4.19.

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:27

5. Conclusions and future works

On the line of previous research we have equipped a reversible process calculus with a non
sequential semantics by using one of the classical encoding of process calculi into nets. What
comes out from the encoding is that the machinery to reverse a process was already present
in the encoding. Other approaches to address true concurrency in reversible calculi have been
explored, for instance [Aub22, Aub24], where a proved semantics [DP92] for CCSK is given.
This requires to revisit the LTS of CCSK in order to add extra information in the labels,
about the process which contributed to an action, and then to derive a true-concurrent
notion. Our approach directly compiles RCCS into a truly concurrent model, and hence
we do not need to modify the lts of RCCS. Hence we exploit the natively truly concurrent
semantics of Petri nets in order to retrieve a truly concurrent semantics of RCCS. Also our
approach accounts for infinite behaviours, while [Aub22, Aub24] do not.

The current results applies to RCCS, but we do believe that the same encoding could
be used to model CCSK processes. As a matter of fact, in CCSK the information is stored
directly in the process and executed prefixes are marked with communications keys and in
our encoding it is signalled by a token in key-places. For example if we take the process
P = a.Q in CCSK the process evolves in a[i].Q where the forward behaviour of the process
is Q while the backward behaviour is represented by the marked prefix a[i]. The same
mechanisms applies to synchronisations. If we take the process a.b.0 ∥ a.0 the process
can make a synchronisation followed by the b action and evolves to a[i].b[j].0 ∥ a[i].0. In
this way, the synchronisation on a cannot be undone if first the action b is undone. By
looking on how history information is kept into CCSK processes, it is clear that there is
a tight correspondence between the marked prefixes, the key-places and ·̂ decorations we
have used in unravel nets. Also in CCSK the process structure does not change, and the
marking of the reversible net would correspond to the marked prefixes. This seems to bring
a more straightforward encoding of CCSK into Petri Nets, where the marking can be easily
retrieved from a CCSK term. Having the two encodings into Petri Net would allow us for
cross-fertilization results, in line with [LMM21]. The whole encoding and the machinery
connected to it is left for future work.

Our result relies on unravel nets, that are able to represent or -causality. The consequence
is that the same event may have different pasts. Unravel nets are naturally related to bundle
event structures [Lan92, LBK97], where the dependencies are represented using bundles,
namely finite subsets of conflicting events, and the bundle relation is usually written as
X 7→ e. Starting from an unravel net ⟨S, T, F,m⟩, and considering the transition t ∈ T , the
bundles representing the dependencies are •s 7→ t for each s ∈ •t, and the conflict relation
can be easily inferred by the semantic one definable on the unravel net. This result relies
on the fact that in any unravel net, for each place s, the transitions in •s are pairwise
conflicting. The reversible bundle structures add to the bundle relation (defined also on the
reversing events) a prevention relation, and the intuition behind this relation is the usual
one: some events, possibly depending on the one to be reversed, are still present and they
prevent that event to be reversed. The problem here is that in an unravel net, differently
from occurrence nets, is not so easy to determine which transitions depend on the happening
of a specific one, thus potentially preventing it from being reversed. An idea would be to
consider all the transitions in s• for each s ∈ t•, but it has to be carefully checked if this
is enough. Thus, which is the proper “reversible bundle event structure” corresponding to
the reversible unravel nets has to be answered, though it is likely that the conditions to be

20:28 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

posed on the prevention relations will be similar to the ones considered in [GPY18, GPY21].
Once that also this step is done, we will have the full correspondence between reversible
processes calculi and non sequential models.

Another future works idea would be to move from reversible CCS to reversible π-calculus
[LMS16, CKV13] by relying on the results of [BG09]. In [BG09] a truly concurrent semantics
of π-calculus is given in form of Petri nets with inhibitor arcs. We could exploit our previous
results on reversibility and Petri nets with inhibitor arcs [MMP21a, MMP23, MMP24] to
obtain a truly concurrent semantics for reversible π-calculus in Petri nets with inhibitor arcs.
Alternatively we could exploit the encoding of reversible π-calculus into rigid families (based
on configuration structures), given in [CKV16], and bring it to Petri nets.

References

[A+20] Bogdan Aman et al. Foundations of reversible computation. In Reversible Computation: Extending
Horizons of Computing - Selected Results of the COST Action IC1405, volume 12070 of LNCS,
pages 1–40. Springer, 2020. doi:10.1007/978-3-030-47361-7_1.

[AC20] Clément Aubert and Ioana Cristescu. How reversibility can solve traditional questions: The
example of hereditary history-preserving bisimulation. In 31st International Conference on
Concurrency Theory, CONCUR 2020, volume 171 of LIPIcs, pages 7:1–7:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.7.

[Aub22] Clément Aubert. Concurrencies in reversible concurrent calculi. In Reversible Computation -
14th International Conference, RC 2022, Urbino, Italy, July 5-6, 2022, Proceedings, volume
13354 of Lecture Notes in Computer Science, pages 146–163. Springer, 2022. doi:10.1007/
978-3-031-09005-9_10.

[Aub24] Clément Aubert. The correctness of concurrencies in (reversible) concurrent calculi. J. Log.
Algebraic Methods Program., 136:100924, 2024. doi:10.1016/J.JLAMP.2023.100924.

[BC94] Gérard Boudol and Ilaria Castellani. Flow models of distributed computations: Three equivalent
semantics for CCS. Information and Computation, 114(2):247–314, 1994. doi:10.1006/inco.
1994.1088.

[BDd22] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. Open compliance in
multiparty sessions. In Formal Aspects of Component Software - 18th International Conference,
FACS 2022, Virtual Event, November 10-11, 2022, Proceedings, pages 222–243, 2022. doi:
10.1007/978-3-031-20872-0_13.

[BG09] Nadia Busi and Roberto Gorrieri. Distributed semantics for the pi-calculus based on Petri nets
with inhibitor arcs. J. Log. Algebraic Methods Program., 78(3):138–162, 2009. doi:10.1016/j.
jlap.2008.08.002.

[Bou90] Gérard Boudol. Flow event structures and flow nets. In Semantics of Systems of Concurrent
Processes, LITP Spring School on Theoretical Computer Science, La Roche Posay, France, April
23-27, 1990, Proceedings, volume 469 of LNCS, pages 62–95. Springer, 1990. doi:10.1007/
3-540-53479-2_4.

[CGP09] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems (TOPLAS), 31(5):1–61, 2009.

[CKV13] Ioana Cristescu, Jean Krivine, and Daniele Varacca. A compositional semantics for the reversible
p-calculus. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013,
New Orleans, LA, USA, June 25-28, 2013, pages 388–397. IEEE Computer Society, 2013.
doi:10.1109/LICS.2013.45.

[CKV16] Ioana Cristescu, Jean Krivine, and Daniele Varacca. Rigid families for the reversible π-calculus.
In Reversible Computation - 8th International Conference, RC 2016, volume 9720, pages 3–19.
Springer, 2016. doi:10.1007/978-3-319-40578-0_1.

[Cou83] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25(2):95–
169, 1983. doi:10.1016/0304-3975(83)90059-2.

[DK04] Vincent Danos and Jean Krivine. Reversible communicating systems. In CONCUR 2004 -
Concurrency Theory, volume 3170 of LNCS, pages 292–307. Springer, 2004.

https://doi.org/10.1007/978-3-030-47361-7_1
https://doi.org/10.4230/LIPIcs.CONCUR.2020.7
https://doi.org/10.1007/978-3-031-09005-9_10
https://doi.org/10.1007/978-3-031-09005-9_10
https://doi.org/10.1016/J.JLAMP.2023.100924
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1006/inco.1994.1088
https://doi.org/10.1007/978-3-031-20872-0_13
https://doi.org/10.1007/978-3-031-20872-0_13
https://doi.org/10.1016/j.jlap.2008.08.002
https://doi.org/10.1016/j.jlap.2008.08.002
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1007/3-540-53479-2_4
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-40578-0_1
https://doi.org/10.1016/0304-3975(83)90059-2

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:29

[DNM88] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. A distributed operational semantics for
CCS based on condition/event systems. Acta Informatica, 26(1/2):59–91, 1988. doi:10.1007/
BF02915446.

[DP92] Pierpaolo Degano and Corrado Priami. Proved trees. In Automata, Languages and Programming,
19th International Colloquium, ICALP92, volume 623 of Lecture Notes in Computer Science,
pages 629–640. Springer, 1992. doi:10.1007/3-540-55719-9_110.

[Gol90] Ursula Goltz. CCS and Petri Nets. In Semantics of Systems of Concurrent Processes, LITP Spring
School on Theoretical Computer Science, La Roche Posay, France, April 23-27, 1990, Proceedings,
volume 469 of LNCS, pages 334–357. Springer, 1990. doi:10.1007/3-540-53479-2_14.

[GPY18] Eva Graversen, Iain Phillips, and Nobuko Yoshida. Event structure semantics of (controlled)
reversible CCS. In Reversible Computation RC 2018, volume 11106 of LNCS, pages 102–122.
Springer, 2018. doi:10.1007/978-3-319-99498-7_7.

[GPY21] Eva Graversen, Iain Phillips, and Nobuko Yoshida. Event structure semantics of (controlled)
reversible CCS. Journal of Logical and Algebraic Methods in Programming, 2021. doi:10.1016/
j.jlamp.2021.100686.

[Kri13] Jean Krivine. A verification technique for reversible process algebra. In Reversible Computation RC
2012. Revised Papers, volume 7581 of LNCS. Springer, 2013. doi:10.1007/978-3-642-36315-3.

[Lan92] Rom Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. In Formal
Description Techniques, V, Proceedings of the IFIP TC6/WG6.1 FORTE 92, volume C-10 of
IFIP Transactions, pages 331–346. North-Holland, 1992.

[LBK97] Rom Langerak, Ed Brinksma, and Joost-Pieter Katoen. Causal ambiguity and partial orders in
event structures. In CONCUR ’97: Concurrency Theory, volume 1243 of LNCS, pages 317–331.
Springer, 1997. doi:10.1007/3-540-63141-0_22.

[LMM21] Ivan Lanese, Doriana Medic, and Claudio Antares Mezzina. Static versus dynamic reversibility
in CCS. Acta Informatica, 58(1):1–34, 2021. doi:10.1007/s00236-019-00346-6.

[LMS16] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Reversibility in the higher-order
π-calculus. Theor. Comput. Sci., 625:25–84, 2016. doi:10.1016/j.tcs.2016.02.019.

[M+20] Claudio Antares Mezzina et al. Software and reversible systems: A survey of recent activities. In
Reversible Computation: Extending Horizons of Computing - Selected Results of the COST Action
IC1405, volume 12070 of LNCS, pages 41–59. Springer, 2020. doi:10.1007/978-3-030-47361-7_
2.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.
doi:10.1007/3-540-10235-3.

[MMP+20] Hernán Melgratti, Claudio Antares Mezzina, Iain Phillips, G. Michele Pinna, and Irek
Ulidowski. Reversible occurrence nets and causal reversible prime event structures. In Re-
versible Computation RC 2020, volume 12227 of LNCS, pages 35–53. Springer, 2020. doi:

10.1007/978-3-030-52482-1_2.
[MMP21a] Hernán Melgratti, Claudio Antares Mezzina, and G. Michele Pinna. A distributed operational view

of reversible prime event structures. In Proceedings of the 36rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.
2021.9470623.

[MMP21b] Hernán Melgratti, Claudio Antares Mezzina, and G. Michele Pinna. Towards a truly concurrent
semantics for reversible CCS. In Reversible Computation - 13th International Conference, RC
2021, volume 12805 of Lecture Notes in Computer Science, pages 109–125. Springer, 2021.
doi:10.1007/978-3-030-79837-6_7.

[MMP23] Hernán Melgratti, Claudio Antares Mezzina, and G. Michele Pinna. Relating reversible Petri
nets and reversible event structures, categorically. In Formal Techniques for Distributed Objects,
Components, and Systems - 43rd IFIP WG 6.1 International Conference, FORTE 2023, Held
as Part of the 18th International Federated Conference on Distributed Computing Techniques,
DisCoTec 2023, volume 13910 of Lecture Notes in Computer Science, pages 206–223. Springer,
2023. doi:10.1007/978-3-031-35355-0_13.

[MMP24] Hernán Melgratti, Claudio Antares Mezzina, and G. Michele Pinna. A reversible perspective
on petri nets and event structures. ACM Trans. Comput. Logic, aug 2024. Just Accepted.
doi:10.1145/3686154.

https://doi.org/10.1007/BF02915446
https://doi.org/10.1007/BF02915446
https://doi.org/10.1007/3-540-55719-9_110
https://doi.org/10.1007/3-540-53479-2_14
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1016/j.jlamp.2021.100686
https://doi.org/10.1007/978-3-642-36315-3
https://doi.org/10.1007/3-540-63141-0_22
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-030-47361-7_2
https://doi.org/10.1007/978-3-030-47361-7_2
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.1007/978-3-030-52482-1_2
https://doi.org/10.1109/LICS52264.2021.9470623
https://doi.org/10.1109/LICS52264.2021.9470623
https://doi.org/10.1007/978-3-030-79837-6_7
https://doi.org/10.1007/978-3-031-35355-0_13
https://doi.org/10.1145/3686154

20:30 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

[MMU20] Hernán Melgratti, Claudio Antares Mezzina, and Irek Ulidowski. Reversing place transition nets.
Log. Methods Comput. Sci., 16(4), 2020. URL: https://lmcs.episciences.org/6843.

[NPW81] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science, 13:85–108, 1981. doi:10.1016/0304-3975(81)90112-2.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
[PU07] Iain Phillips and Irek Ulidowski. Reversing algebraic process calculi. J. Log. Algebraic Methods

Program., 73(1-2):70–96, 2007. doi:10.1016/j.jlap.2006.11.002.
[Rei85] Wolfgang Reisig. Petri Nets: An Introduction, volume 4 of EATCS Monographs on Theoretical

Computer Science. Springer, 1985. doi:10.1007/978-3-642-69968-9.
[Rei99] Claus Reinke. Haskell-Coloured Petri Nets. In Implementation of Functional Languages, 11th

International Workshop, IFL’99, volume 1868 of Lecture Notes in Computer Science, pages
165–180. Springer, 1999. doi:10.1007/10722298_10.

[Win86] Glynn Winskel. Event Structures. In Petri Nets: Applications and Relationships to Other
Models of Concurrency, volume 255 of LNCS, pages 325–392. Springer, 1986. doi:10.1007/
3-540-17906-2_31.

[Win88] Glynn Winskel. An introduction to event structures. In Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, School/Workshop, Noordwijkerhout, The
Netherlands, May 30 - June 3, 1988, Proceedings, volume 354 of Lecture Notes in Computer
Science, pages 364–397. Springer, 1988.

Appendix A. Implementation

We describe an effective implementation of the proposed encoding in Haskell2. The intent
of this section is to provide a practical evidence that the coinductive approach to describe
infinite behaviours is effective, rather than providing a fully fledged tool. We are aware there
exist other Petri net implementations in Haskel (see for example [Rei99]), but a comparison
with such tools is out of the scope of this section.

A.1. Representation of infinite nets. When working with an infinite data structure,
a pivotal aspect is devising an efficient strategy to traverse the pertinent section of the
structure. In our specific scenario, we prioritise the capability to identify and execute
enabled transitions within a (potentially infinite) net. Therefore, our main objective is to
identify those transitions that are enabled at a given marking. For this purpose, we adopt
a representation of infinite nets that facilitates obtaining a truncated version of the net
that contains all the enabled transitions in given marking. To maintain simplicity, we avoid
explicitly representing the flow relation as a set of pairs. Instead, we associate each transition
with its preset (input places) and postset (output places). Consequently, we rely on the
following instrumental datatype to represent transitions.

-- Each transition consists of a name, a preset and a postset

data Transition t s = Transition

{ trName :: t

, trPre :: [s]

, trPost :: [s]

}

The parameters t and s represent the types of the names of transitions and places, respectively.
In this representation, a transition is defined by its name and two lists of places, corresponding
to its pre and postset.

2The code can be accessed at https://github.com/hmelgra/reversible-ccs-as-nets.

https://lmcs.episciences.org/6843
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/10722298_10
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://github.com/hmelgra/reversible-ccs-as-nets

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:31

Then, the datatype for nets is as follows:

data Net s t = Net

{ netPlaces :: [s]→ [s]

, netTransitions :: [s]→ [Transition t s]

, netMarking :: [s]

}

The components of a net include a marking, denoted as netMarking, which is essentially a set
of places. Additionally, there are two functions, netPlaces and netTransitions, which map
every marking to a set of places and transitions, respectively, of a truncated, finite version
of the net. This truncated net includes all the transitions from the potentially infinite net
that are enabled in the given marking.

Example A.1. Consider the infinite net N depicted in Figure 16A. One potential Haskell
definition for N could be nAt [0], utilising the function nAt given in Figure 16B. This
function takes a marking of type [Int] and returns a net with place names represented as
integers and transitions as strings, i.e., of type Net Int String. The net’s definition relies on
the functions p and t, which determine the truncation of the net corresponding to a given
marking. It is important to note that, for a specific marking m, any enabled transition t in
m should satisfy the conditions •t = {i− 1} and t• = {i}, where 0 < i ≤ m, and m is the
maximum integer in m. Therefore, the function p, which maps markings to sets of places, is
defined as follows:

• For the empty marking, it returns an empty set of places since no transitions are enabled
in the empty marking.
• For a non-empty marking m, it generates a list containing all integers in the range from 0
to the maximum value in m plus one.

Similarly, the function t creates a list of transitions, encompassing all those among the
places in p m. These transitions are defined in such a way that [i - 1] represents its preset,
and [i] represents its postset. The name of the i-th transition is denoted by i occurrences
of ’a’.

0

1

2

a

aa

...

(A) N

nAt :: [Int]→ Net Int String

nAt = Net p t

where

p [] = []

p m = [0 .. maximum m + 1]

t [] = []

t m = [Transition (replicate i ’a’) [i - 1] [i] |
i← [1 .. maximum m + 1]]

(B) Haskell code

Figure 16. The Haskell representation of a simple infinite net N

The auxiliary functions places and transitions, defined below, allow us to respectively
retrieve the set of places and transitions from the truncation of net for its marking. For
instance, places (nAt [0]) returns [0,1], and places (nAt [1,3]) gives [0,1,2,3,4].

20:32 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

places :: Net s t→ [s]

places n = netPlaces n $ netMarking n

transitions :: Net s t→ [Transition t s]

transitions n = netTransitions n $ netMarking n

Analogously, we rely on isTransition :: Eq t ⇒ t → Net s t → Bool to check that a
given transition appears in the truncation of the net n. Then, the following predicate
isEnabled allows to check if a given transition is enabled on a net.

isEnabled :: (Eq s, Eq t)⇒ t→ Net s t→ Bool

isEnabled t n

| isTransition t n = all (‘elem‘ netMarking n) (pre t n)

| otherwise = False

The guard isTransition t n simply checks that t appears in the truncation of the net n. In
such case, a transition t is enabled if all elements in its preset appear in the marking of the
net. Otherwise, the transition is not enabled.

The firing of a transition straightforwardly changes the marking of the net as expected,
i.e., by removing the preset of the transition and by adding the postset of the transition

fire :: (Eq s, Eq t)⇒ t→ Net s t→ Net s t

fire t n@(Net ps ts m)

| isEnabled t n = Net ps ts ((m L.\\ pre t n) ++ post t n)

| otherwise = error "transition␣not␣enabled"

Note that the firing generates an error if the transition is not enabled.

A.2. Representing CCS processes. The datatype for representing CCS actions is straight-
forwardly defined as follows:

data Action a

= In a -- Input

| Out a -- Output

Note that the datatype is parametric with respect to the type a of action names. The binary
predicate dual (shown below) tests whether a two actions are dual, i.e., one is an input and
the other is an output performed over the same channel.

-- It checks whether a pair of actions are duals

dual :: Eq a⇒ Action a→ Action a→ Bool

dual (Out x) (In y) = x == y

dual (In x) (Out y) = x == y

The datatype for representing CCS processes is as follow.

{- Syntax for infinite CCS Processes -}

data CCS a

= (Action a) :. (CCS a) -- Prefix

| (CCS a) : | (CCS a) -- Parallel

| (CCS a) :+ (CCS a) -- Choice

| (CCS a) :\ a -- Restriction

| Nil -- Ended process

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:33

| Var VarName -- Process variable

| Rec VarName (CCS a) -- Recursive process

The constructors are straightforward. For instance, CCS Char stands for the type of CCS
processes whose channel names are characters. Then, the process a.a ∥ a+ b in Figure 13 is
defined as

ccs :: CCS Char

ccs = (In ’a’ :. Out ’a’ :. Nil) : | ((Out ’a’ :. Nil) :+ (In ’b’ :. Nil))

We highlight that the datatype CCS includes constructors for the finite definition of infinite
processes, i.e., Var for a process variable and Rec for a recursive definition. This choice is
down to the facts that (i) our encoding uses CCS processes as the names of the elements of
the generated nets; and (ii) the operational semantics of nets is defined under the assumption
that names can be effectively compared (see details below). In order to have an equality
test for infinite terms, we opted for a finite representation. Hence, the infinite CCS process
consisting of an infinite sequence of inputs over the channel a can be defined as follows

ccs’ :: CCS Char

ccs’ = Rec (VarName "X") (In ’a’ :. Var (VarName "X"))

Process variables in CCS are now represented using the following type:

newtype VarName = VarName String deriving (Eq, Ord)

This new type aims to enhance the parsing of strings into Ccs instances by implementing
the Read class (Details are omitted as they are non-essential for the translation process).

This new type has been introduced in order to facilitate the parsing of strings to CCS
instances, by providing an instances of the class Read.

When dealing with the finite representation of infinite processes, we need the usual
unfolding operation, which is defined in terms of the substitution of a process variable by a
process. Substitution is given by the following function

subs :: CCS a -- ^ process over which substitution is applied

→ String -- ^ process variable to be substituted

→ CCS a -- ^ replacement term

→ CCS a

whose defining equations are standard and therefore omitted.
The unfold function is as follows.

unfold :: CCS a→ CCS a

unfold (Rec (VarName x) p) = subs p x (Rec (VarName x) p)

unfold p = p

The function unfold will be used in the definition of the encoding.
Despite we rely on the finite representation of CCS processes, we remark that the

implementation of the encoding associates infinite nets to recursive CCS processes.

A.3. Implementation of the encoding. According to the encoding introduced in Section 4,
the names of the places and transitions of the obtained nets are (possibly) decorated CCS
processes. We rely on the following datatypes introducing constructors for the names of
places and transitions.

20:34 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

{-- Place’s names --}

data PlaceNames a

= Proc (CCS a) -- CCS process

| PKey (Action a) -- key for an action

| PPref (Action a) (PlaceNames a) -- prefixed by an executed action

| PParLeft (PlaceNames a) -- on the left of a parallel operator

| PParRight (PlaceNames a) -- on the right of a parallel operator

| PSync (TransNames a) (TransNames a) -- key for synchronisation

| PPlusLeft (PlaceNames a) -- on the left of a sum operator

| PPlusRight (PlaceNames a) -- on the right of sum operator

| PRest (PlaceNames a) a -- under restriction

deriving (Eq, Ord)

{-- Transition’s names --}

data TransNames a

= Act (Action a) -- CCS process

| TPref (Action a) (TransNames a) -- prefixed by an executed action

| TParLeft (TransNames a) -- on the left of a parallel operator

| TParRight (TransNames a) -- on the right of a parallel operator

| TSync (TransNames a) (TransNames a) -- a synchronisation

| TPlusLeft (TransNames a) -- on the left of a sum operator

| TPlusRight (TransNames a) -- on the right of sum operator

| TRest (TransNames a) a -- under restriction

deriving (Eq, Ord)

The above definitions are in one-to-one correspondence with the names introduced by the
encoding of the previous Section, and self-explanatory.

We will use the predicate isKey on place’s names that determines if a place name is a
key, i.e., either PKey or PSync (its omitted definition is straightforward).

isKey :: PlaceNames a→ Bool

The following function

label :: TransNames a→ Action a

allows us to recover the label associated with a transition.
Then, the encoding function is given by

enc :: (Eq t)⇒ CCS t→ Net (PlaceNames t) (TransNames t)

We now illustrate some of its representative defining equations. According to Defini-
tion 4.1, the encoding of the process 0 (here represented by Nil) produces a net consisting
of just one marked place. We name that place Proc Nil, i.e., the CCS process 0.

enc Nil = Net (const [Proc Nil]) (const []) [Proc Nil]

The fact that the net is defined in terms of the constant functions const [Proc Nil]

and const [] reflect that every finite truncation, independently from the given marking,
consists of just one place Proc Nil and none transition. The marking [Proc Nil] assigns
one token to the unique place.

The encoding of a prefixed process follows Definition 4.2. Hence, the encoding of α.P
(written a :.p in the implementation) is built on top of the encoding of P , i.e., the names

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:35

of the places and the transitions appearing in the encoding of P are decorated with the
prefix α̂. We use PPref a for decorating a place name with the past of action a and similarly
TPref a for a transition name. The following function (whose defining equations are omitted
because are uninteresting) is in charge of applying renamings to a net.

rename :: (s→ s’)→ (t→ t’)→ (s’→ Maybe s)→ Net s t→ Net s’ t’

The first and second parameter correspond respectively to the renaming of places and
transitions. The third one is instrumental for mapping a marking on the decorated names
to a marking of the encoding of P , which is needed for computing a truncation. Then, the
equation for the encoding of a :.p is as follows.

1 enc (a :. p) = Net s t [Proc (a :. p)]

2 where

3 Net aSp aTp amp = rename (PPref a) (TPref a) (unwrapPref a) $ enc p

4 s m = if null m then [] else [Proc (a :. p), PKey a] ++ aSp m

5 t m = if null m then [] else

6 Transition (Act a) [Proc (a :. p)] (PKey a : amp) : aTp m

Note that line 3 introduces the net corresponding to the encoding of p, with its element
suitable renamed. Then, the places and transitions of the (truncations of the) net are
given by the defining equations of s and t. Besides the fact that they are empty for empty
markings, their definitions mimic Definition 4.2. The encoding of p is extended with two
places, one for the process (i.e., Proc (a :. p)) and one for the key (i.e, PKey a), and one
transition of name Act a, whose preset is Proc (a :. p) and whose poset corresponds to
the initial marking of the encoding of p, i.e., amp, and the new key PKey a.

As for the illustrated cases, the remaining equations follow the corresponding definitions
in Section 4.

A.4. Reversing nets. Reversible nets, are implemented as nets with tagged transitions: the
tag Fwd stands for forward transitions and Bwd are for reversing transitions. The corresponding
data type is as follows.

1 data Directed a

2 = Fwd a

3 | Bwd a deriving (Eq, Ord)

Then, the following function rev takes a net and generates its reversible version.

1 rev :: Net s t→ Net s (Directed t)

2 rev (Net s t m) = Net s t’ m

3 where

4 t’ = foldr reverse [] . t

5

6 reverse (Transition x y z) =

7 (Transition (Fwd x) y z :) . (Transition (Bwd x) z y :)

Consider the network, denoted as Net s t m, which is translated into a new net with
the same sets of places and markings, represented as Net s t’ m. The set of transitions
t’ in the new net is obtained by applying the following transformations to each transition
Transition x y z from the original set t:

20:36 H. Melgratti, C. A. Mezzina, and G. M. Pinna Vol. 20:4

• Add a forward transition, denoted as Transition (Fwd x) y z, to tag each transition in t

as forward.
• Add the corresponding reversing transition, denoted as Transition (Rev x) y z, to main-
tain the bidirectional nature of the net.

A.5. Simulation. The concepts introduced in the previous sections can now be effectively
utilised to simulate the behavior of reversible CCS processes. To illustrate this, let us
consider the definition of the infinite CCS process ccs below.

1 ccs1 :: CCS Int

2 ccs1 = Rec (VarName "X") (In 1 :. Var (VarName "X"))

3

4 ccs2 :: CCS Int

5 ccs2 = Rec (VarName "X") ((Out 2 :. Var (VarName "X")) :+ (Out 1 :. Nil))

6

7 ccs :: CCS Int

8 ccs = (ccs1 : | ccs2) :\ 1

This process is defined as the parallel composition of two infinite processes, where the shared
name 1 is restricted.

To obtain the corresponding reversible net, we apply the encoding followed by the
reversing function, represented as rev(enc ccs).

Using the functions that determine the enabled transitions of net and compute the firing
of transitions, we can seamlessly implement a simulation function to replicate the behavior
of the process.

1 simulate :: (Show s, Show t, Ord t, Eq s)⇒ Net s t→ IO ()

Then, the evaluation of

1 simulate $ rev (enc ccs)

shows the set of enabled transitions of the obtained net, which are as follows.

Enabled transitions:

1) → (|r:+l:2!)\1
2) → (|l:1?∗ |r:+r:1!)\1

The name (|r:+l:2!)\1 of the first transition indicates that it corresponds to the output
performed on channel 2 by the left branch (i.e., +l:) of the right hand of the parallel
composition (i.e., |r:). Similarly, the symbol ∗ in the name |l:1?∗|r:+r:1!)\1 indicates
that the transition corresponds to a synchronisation between the input performed on channel
1 by the left hand side of the parallel composition (i.e., |l:) and the output on channel
1 performed by the right branch of the right hand side of the parallel composition (i.e.,
|r:+r:).

At this point, any of the two transitions can be fired. After firing the first one, the
obtained set of enabled transitions is the following.

Enabled transitions:

1)→ (|r:+l:^2!.+l:2!)\1
2)→ (|l:1?∗ |r:+l:^2!.+r:1!)\1
3)← (|r:+l:2!)\1

Vol. 20:4 A TRULY CONCURRENT SEMANTICS FOR REVERSIBLE CCS 20:37

The first two transitions mirror the ones originally enabled; however, their names indicate
that actions on the right-hand side of the parallel composition causally depend on the
preceding performed action (the prefix +l:^2!).

In addition to these two forward transitions, there is one reversing transition that undoes
the previously executed action.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	Preliminaries

	2. CCS and reversible CCS
	2.1. Reversible CCS

	3. Petri nets, Unravel Nets and Reversible Unravel Nets
	3.1. Petri nets
	3.2. Unravel nets.
	3.3. Reversible unravel nets.

	4. CCS processes as unravel nets
	4.1. Encoding of CCS processes
	4.2. Encoding of RCCS processes
	4.3. Correctness result

	5. Conclusions and future works
	References
	Appendix A. Implementation
	A.1. Representation of infinite nets
	A.2. Representing CCS processes
	A.3. Implementation of the encoding
	A.4. Reversing nets
	A.5. Simulation

