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Abstract. Worst-case input generation aims to automatically generate inputs that exhibit
the worst-case performance of programs. It has several applications, and can, for example,
detect vulnerabilities to denial-of-service (DoS) attacks. However, it is non-trivial to
generate worst-case inputs for concurrent programs, particularly for resources like memory
where the peak cost depends on how processes are scheduled.

This article presents the first sound worst-case input generation algorithm for concurrent
programs under non-monotone resource metrics like memory. The key insight is to leverage
resource-annotated session types and symbolic execution. Session types describe commu-
nication protocols on channels in process calculi. Equipped with resource annotations,
resource-annotated session types not only encode cost bounds but also indicate how many
resources can be reused and transferred between processes. This information is critical for
identifying a worst-case execution path during symbolic execution. The algorithm is sound:
if it returns any input, it is guaranteed to be a valid worst-case input. The algorithm is also
relatively complete: as long as resource-annotated session types are sufficiently expressive
and the background theory for SMT solving is decidable, a worst-case input is guaranteed
to be returned. A simple case study of a web server’s memory usage demonstrates the
utility of the worst-case input generation algorithm.

1. Introduction

Understanding the worst-case performance of programs and when it is triggered helps
programmers spot performance bugs and take preemptive measures against algorithmic
complexity attacks. As pioneered by WISE [BJS09], symbolic execution is a well-studied
technique for worst-case input generation. In WISE [BJS09] and SPF-WCA [LKP17], they
first symbolically execute a program on all inputs of small sizes to identify a worst-case
execution path pshort. This path is then generalized to a longer worst-case execution path
plong for a larger input. During the symbolic program along the execution path plong, its
corresponding path constraint is collected. Finally, solving the path constraint yields an
inferred worst-case input for a large input size. Since these techniques do not explore the
entire search space of large inputs, they are scalable but unsound.

To achieve soundness in worst-case input generation, Wang and Hoffmann [WH19]
propose type-guided worst-case input generation for functional programming. In their
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algorithm, symbolic execution of a functional program under analysis is guided by a resource-
annotated type τra, which is automatically inferred by the type-based resource analysis
technique Automatic Amortized Resource Analysis (AARA) [HJ03, HH10, HAH12]. The
resource-annotated type τra encodes a sound (but not necessarily tight) polynomial worst-case
bound. To identify a worst-case execution path, Wang and Hoffmann’s algorithm searches
for an execution path where the cost bound encoded by the resource-annotated type τra
is tight. Solving the path constraint of this worst-case execution path, we obtain a valid
worst-case input: it has the same cost as the cost bound captured by the resource-annotated
type τra, which is not only sound but also tight.

All existing techniques for worst-case input generation, however, cannot handle the
joint setting of (i) concurrent programming and (ii) non-monotone resource metrics (e.g.,
memory). A resource metric is non-monotone if resources can be freed up as well as
consumed. Worst-case input generation for this joint setting has a practical value. For
example, denial-of-service (DoS) attacks overwhelm the memory of servers, which are typically
concurrent programs. Hence, the worst-case input generation for concurrent programs under
non-monotone resource metrics will be able to identify vulnerabilities to DoS attacks.

This article presents the first sound worst-case input generation algorithm for message-
passing concurrent programming under non-monotone resource metrics. Our work builds
on the type-guided worst-case input generation for functional programming by Wang and
Hoffmann [WH19]. In extending their algorithm from functional programming to message-
passing concurrent programming, the first challenge is to adapt the notion of skeletons,
which specify the shapes and sizes of worst-case inputs to be generated, to message-passing
concurrent programming. Designing skeletons is complicated by the following unique
characteristics of message-passing concurrent programming:

• Interaction between channels: the shapes of inputs on different channels may be dependent
on one another. This stands in contrast to functional programming where the shapes of
inputs, if there are multiple, are independent of one another.
• Co-inductive interpretation: inputs to a concurrent program may be infinite.
• Intertwining of input and output: input and output are intertwined, unlike in functional
programming where all inputs are provided before program execution.

Our first contribution is to design a suitable notion of session skeletons for message-
passing concurrent programming. Session skeletons are built on session types [Hon93] that
describe communication protocols on channels in process calculi.

In message-passing concurrent programming, monotone costs like work (i.e., sequential
running time) are independent of how concurrent processes are scheduled. Hence, monotone
costs in message-passing concurrent programming can be treated in the same manner as in
Wang and Hoffmann’s work for functional programming. Meanwhile, costs like span (i.e.,
parallel running time) are dependent on schedules, but they are outside the scope of this
article. Instead, we are interested in work-like, non-monotone costs such as memory.

Non-monotone resource metrics, wherein resources can be consumed as well as freed
up, have two types of costs: net cost (i.e., the net quantity of resources consumed) and
high-water-mark cost (i.e., the peak net cost that has been reached). For example, suppose
3 units of resources (e.g., memory cells) are consumed at the beginning of computation,
but later, 2 units are freed up at the end of the computation. In this case, the net cost is
1 = 3− 2, while the high-water mark cost is 3 because, at any point during the computation,
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the maximum net cost is 3. In message-passing concurrent programming, a worst-case input
is defined as an input with the maximum high-water-mark cost.

The second challenge in worst-case input generation for message-passing concurrent
programming is to identify a worst-case schedule of concurrent processes, which is crucial
for identifying a worst-case input. While the net cost of a program is independent of the
schedules of concurrent processes, the high-water-mark cost is dependent on the schedules.
Moreover, the operational semantics of concurrent programming languages do not specify
the exact scheduling of processes. Consequently, haphazardly performing symbolic execution
of a concurrent program does not necessarily reveal the correct high-water-mark cost of a
given execution path. We must additionally identify a worst-case schedule of concurrent
processes. However, it is non-trivial to learn such a schedule on the fly during symbolic
execution, unless we preprocess the program beforehand. Thus, Wang and Hoffmann’s
algorithm cannot directly be extended to message-passing concurrent programming under
non-monotone resource metrics.

To handle the dependency of high-water-mark costs on schedules, we leverage resource-
annotated session types [DHP18], whose resource annotations capture (i) sound bounds
on high-water-mark costs and (ii) how many resources can be reused and transferred
between processes. Thanks to the availability of sound high-water-mark cost bounds in
resource-annotated session types, like Wang and Hoffmann’s algorithm, our worst-case input
generation algorithm is sound. Furthermore, the information about resource transfer enables
us to correctly track high-water-mark costs of execution paths during symbolic execution.

To summarize, in this article, we make the following contributions:

• We present the first sound worst-case input generation algorithm for message-passing
concurrent programming under non-monotone resource metrics (e.g., memory).
• We propose a suitable notion of skeletons. We also address several technical challenges
posed by session types in the design of skeletons.
• We prove the soundness (i.e., if the algorithm returns anything, it is a valid worst-case
input) and relative completeness (i.e., if AARA is sufficiently expressive and the background
theory for SMT solving is decidable, a worst-case input is guaranteed to be returned).
• We present a case study of worst-case input generation for a web server’s memory usage.

The article is structured as follows. Section 2 provides an overview, describing (i) the
challenge of generating worst-case inputs for concurrent programs under non-monotone
resource metrics and (ii) how we overcome this challenge. Section 3 presents resource-aware
SILL, a message-passing concurrent programming language equipped with resource-annotated
session types. Section 4 defines skeletons and describes the challenges in their design.
Section 5 presents a worst-case input generation algorithm guided by resource-annotated
session types. Section 6 demonstrates the algorithm through a case study of a web server.
Finally, Section 7 discusses related work, and Section 8 concludes the article.

2. Overview

Processes and channels. This work uses the message-passing concurrent programming
language SILL [CP10, TCP13, PG15]. Suppose we are given a process P with two channels
c1 and c2. Communication on the channels c1 and c2 can be bidirectional. The process P
uses the channel c1 as a client and provides the channel c2 as a provider. Fig. 1 (a) depicts
the process P . The environment that the process P interacts with is called the external
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Figure 1. (a) Process P uses channel c1 as a client and provides channel c2.
A dot on a channel denotes the channel’s provider. (b) General SILL program
consisting of multiple concurrent processes An internal channel connects two
processes; an external channel connects a process with the external world.

world. Fig. 1 (b) depicts a general SILL program consisting of multiple concurrent processes.
The network of concurrent processes in SILL must be tree-shaped: each channel is used by
exactly one client, instead of being shared by multiple clients1.

We use the following scenario as a running example. On the channel c1, IP addresses of
packets are sequentially sent from the external world to the process P . The stream of IP
addresses may be finite or infinite. Given the input stream on the channel c1, the process P
counts occurrences of each IP address. Once the input stream on the channel c1 terminates,
P outputs on the channel c2 the number of IP addresses with at least four occurrences.

Suppose the process P is implemented as follows. The process maintains a key-value
store where keys are IP addresses and values are the numbers of occurrences. When a new
IP address is encountered, it is added as a key to the key-value store, incurring the memory
cost of 2. It is because we need one memory cell for the key and another for the value. When
the input stream on the channel c1 terminates, all memory in the key-value store is released.

Session types. Session types [Hon93] describe communication protocols on channels. The
communication on the channel c1 is described by the session type

µX.⊕ {cons : ▷2int ∧X, nil : 1}. (2.1)

Here, µX denotes a recursive session type with a type variable X. The type constructor ⊕
means an internal choice, that is, the channel c1’s provider (i.e., the external world) chooses
between labels cons and nil and sends the choice. If the label cons is chosen, a value of type
int is sent by the external world, and we recurse back to X. Conversely, if the label nil is
chosen, the channel c1 is closed. The resource annotation ▷2 will be explained shortly.

The session type of the channel c2 is int ∧ 1. It means the provider of the channel c2
sends an integer and then closes the channel by sending the end message.

Resource annotations. Resource-aware SILL [DHP18] incorporates resource annotations
into session types, resulting in resource-annotated session types. These resource annotations
indicate the amount of potential necessary to pay for the computational cost, where the idea
of potential comes from the potential method of amortized analysis for algorithms and data

1SILL’s type system was designed to guarantee deadlock freedom. Because cyclic dependency among
channels may cause a deadlock, SILL disallows channels from being shared. This restriction results in a
tree-shaped network of concurrent processes. Although some cycles of channels are benign, SILL’s type
system is not sophisticated enough to handle them. [BP17, BTP19] present more fine-grained type systems
that use the acquire-release primitives to achieve deadlock freedom while permitting the sharing of channels.
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structures [Tar85]. Although potential and resources are similar to each other and hence can
used interchangeably, they are subtly different: potential is an abstract resource used in the
potential method, while resources typically refer to concrete computational resources such
as time and memory. In our example, when a previously unseen IP address is encountered,
two memory cells are allocated. Therefore, in the worst case, we need 2 units of potential to
process each IP address on the channel c1. This is why the resource-annotated session type
of c1 in Eq (2.1) contains ▷2. It denotes that 2 units of potential are transferred from the
channel client (i.e., the external world) to the channel provider (i.e., the process P ).

Resource-annotated session types are inferred automatically. Because all numerical
constraints generated during type inference are linear, they can be solved by an off-the-shelf
linear-program (LP) solver [DBHP19]. Furthermore, the type inference is sound: the cost
bounds represented by the inferred resource-annotated session types are guaranteed to
be valid upper bounds on high-water-mark costs. Resource-annotated session types in
resource-aware SILL can only encode linear cost bounds, but not polynomial ones2.

Session skeletons. A SILL program is a network of processes that interact with the external
world. Therefore, an input to a SILL program is a collection of incoming messages from
the external world. The incoming messages may be intertwined with outgoing messages
produced by the program.

We use the high-water-mark cost, instead of net costs, to define worst-case inputs. This
definition of worst-case inputs for non-monotone resource metrics (e.g., memory), where
resources can be freed up as well as consumed, subsumes the definition of worst-case inputs
for monotone resource metrics (e.g., running time). In monotone resource metrics, the net
cost monotonically increases (without ever decreasing). Hence, in monotone resource metrics,
the high-water-mark cost (i.e., the maximum net cost ever reached) is always equal to the
net cost.

The first step in worst-case input generation is to provide a skeleton for each external
channel. A skeleton is a symbolic input containing variables, whose concrete values are to
be determined later. Skeletons specify the shape of worst-case inputs to be generated.

For the channel c1 in the example, a possible skeleton is

⊕{cons : ▷2x1 ∧ · · · ⊕ {cons : ▷2x10 ∧ ⊕{end : 1}} · · · }, (2.2)

where x1, . . . , x10 ∈ Z are integer-typed variables. This skeleton specifies that the external
world should send ten cons’s, followed by the label nil. As the channel c2 does not take in
any input from the external world, the channel c2 does not need a skeleton.

Skeletons must satisfy the following requirements:

• A skeleton must be compatible with its associated session type. This compatibility relation
coincides with the subtyping relation [GH05].
• The input portion of a skeleton must be finite.

Because the process P allocates two memory cells whenever a new IP address is
encountered, a worst-case input should have mutually distinct IP addresses on the channel
c1’s input stream. An example worst-case input that conforms to the skeleton (2.2) is

∀1 ≤ i ≤ 10.xi = i. (2.3)

2While resource-aware SILL [DHP18] only supports linear bounds, Automatic Amortized Resource Analysis
(AARA) [HJ03, HH10, HAH12], which is an analogous type-based resource analysis method for functional
programs, can infer multivariate polynomial bounds. Furthermore, all numerical constraints generated during
the type inference in AARA are linear, even though it can infer multivariate polynomial cost bounds.
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Figure 2. (a) Tight cost bound when all potential is supplied at once. The
red dashed arrow indicates the potential supplied by the external world. (b)
Tight cost bound when potential is supplied gradually. (c) Loose cost bound.
Potential zero is never reached after the last injection of potential. So we can
lower the cost bound (i.e., shorten the second and third red dashed arrows)
without plunging into negative potential.

Symbolic execution. The goal of worst-case input generation is find an input whose high-
water-mark cost achieves the cost bound inferred by resource-aware SILL. As resource-aware
SILL guarantees the soundness of inferred cost bounds, once we find an input that has the
same cost as an inferred cost bound, the input immediately qualifies as a worst-case input.

To find a worst-case input, we symbolically execute a program on a skeleton, searching
for an execution path where the program’s potential reaches zero since the last time potential
was supplied by the external world. This strategy correctly identifies a worst-case input.
Suppose, for simplicity, that all necessary potential is supplied at the start of execution
(Fig. 2 (a)). Then the cost bound for memory is tight if and only if the potential reaches
zero at some point. If the potential never reaches zero, we can lower the cost bound while
covering all computational cost (and without plunging into negative potential), implying
that the cost bound is not tight.

In SILL, because potential is supplied to a program gradually (rather than all at once),
we must ensure that the program will eventually reach potential zero whenever the external
world supplies potential to the program (Fig. 2 (b)). Otherwise, we could lower the cost
bound (Fig. 2 (c)) without plunging into negative potential.

High-water-mark costs under concurrency. In the presence of multiple concurrent
processes, their concurrency poses a challenge: different schedules for symbolic execution
may result in different high-water marks of non-monotone resources. Generally, in concurrent
programming, monotone resources also have dependency on schedules. An example is a
race condition where two processes compete for a single message and their monotone cost
depends on which process wins. However, in session-typed concurrent programming like
SILL, session types make the communication more rigid. As a result, the above example
never arises in SILL, making monotone resources independent of schedules.

To illustrate the dependency of non-monotone resources on schedules, consider two
processes, P1 and P2. Initially, these two processes run independently. The process P1 has
the high-water mark h = 4 and net cost w = 0. Also, the process P2 has (h,w) = (1, 0), i.e.,
it has the high-water mark h = 1 and the next cost w = 0. Next, the process P1 sends the
message to the process P2, thereby synchronizing them. We assume that the communication
between the processes P1 and P2 is asynchronous. That is, once it sends a message, the
process P1 does not need to wait for the process P2 to receive the message. After sending the
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Figure 3. (a) Concurrent processes P1 and P2. Time passes by in the
direction of arrows. (b) Results of global tracking and local tracking.

message, the process P1 incurs (h,w) = (2, 0). After receiving the message, the process P2

incurs (h,w) = (3, 0). This situation is depicted in Fig. 3 (a). In the figure, the annotation
tick q, where q ∈ Q is a rational number, means q units of resources are consumed. As a
special case, if q < 0, then the annotation tick q means |q| units of resources are freed up.
The arrows indicate the happened-before relation [Lam78].

The worst-case combined high-water-mark cost of the processes P1 and P2 is 5, and it
can be derived as follows. Firstly, before the process P2 receives the message, their worst-case
combined high-water mark is max{4, 2}+ 1 = 5. Due to the asynchrony of communication,
by the time the process P2 receives the message, P1 may have just finished the first phase
where (h,w) = (4, 0) or may already be in the second phase where (h,w) = (2, 0). Therefore,
the high-water mark of P1 before P2 receives the message is given by max{4, 2}. The
high-water mark of P2 before it receives the message is h = 1. If the peak net costs of the
processes P1 and P2 happen at the same time, their worst-case combined high-water mark
is max{4, 2} + 1 = 5. Secondly, after the process P2 receives the message, the combined
high-water mark is 2+ 3 = 5. This is because, in the worst case, the high-water marks of the
processes P1 and P2 in their second phases, namely 2 and 3, happen at the same, resulting
in the combined high-water mark of 2 + 3 = 5. Therefore, overall, the worst-case combined
high-water mark throughout the execution is max{5, 5} = 5.

Global and local tracking of high-water marks. To identify a worst-case execution
path, we must calculate the tight worst-case high-water mark of any execution path. Two
naive ways to track costs are global and local tracking. In global tracking, we have a global
cost counter shared by all processes. In local tracking, each process tracks its own cost. The
combined cost is the sum of all local costs after the program terminates.

Neither global tracking nor local tracking returns the correct worst-case high-water mark
(Fig. 3 (b)). On the one hand, global tracking may underestimate it. Before synchronization,
if the peak costs of the processes P1 and P2 happen at different times, the global counter
registers a high-water mark below 5. On the other hand, local tracking may overestimate
the worst-case combined high-water mark. When the program terminates, the process P1’s
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Figure 4. (a) The potential helps us derive the correct high-water mark. A
rectangle next to an arrow represents the potential during the arrow’s time
period. The number inside a rectangle and its length indicate the amount
of potential. If no rectangle exists, it indicates zero potential. (b) Same
diagram as (a), but the potential is colored red and blue.

local counter registers max{4, 2} = 4, and P2’s counter registers max{1, 3} = 3. Their sum
is 7, which overestimates the tight worst-case combined high-water mark of 5.

The root cause of overestimation in local tracking is that it does not account for the
possibility that, due to message-passing synchronization, the high-water marks of two
concurrent processes cannot happen at the same time. For example, in Fig. 3 (a), the process
P1’s local cost counter registers (h,w) = (4, 0) before P1 sends the message (and hence also
before the process P2 receives the message). Meanwhile, the process P2’s local cost counter
registers (h,w) = (3, 0) after the process P2 receives the message. Thus, the high-water
marks 4 (of the process P1) and 3 (of the process P2) cannot happen at the same time—these
two high-water marks must respectively happen before and after the synchronization of the
two processes. Nonetheless, because local tracking does not account for this fact, it naively
sums the respective high-water marks of the two local counters, resulting in an overestimate
of 3 + 4 = 7 for the worst-case combined high-water mark.

Transfer of potential. To resolve this issue of local tracking, our key insight is to transfer
potential between processes. Suppose the processes P1 and P2 initially store 4 units and 1
unit of potential, respectively. In the process P1, after it runs tick 4, all potential stored in
the process P1 is consumed. But the expression tick −4 in the process P1 frees up 4 units
of potential. Likewise, the process P2’s potential is used up by the expression tick 1, but
is later freed up by the expression tick −1. When the process P1 sends the message, the
message also carries 2 units of potential. This potential is paid by the process P1, and in
turn, it is used to pay for the process P2’s cost. Fig. 4 (a) depicts this situation.

The combined high-water mark of the processes P1 and P2 is bounded above by the
total potential supplied at the beginning, namely 4 + 1 = 5, which is indeed a tight bound.

What makes the potential method more powerful than local tracking is the ability to
transfer potential between processes, allowing the potential to be reused (and hence shared)
by multiple processes. By reusing and sharing the potential between processes, the local cost
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counters of concurrent processes are calibrated such that their sum yields a tighter combined
high-water mark. To illustrate it, recall that, in Fig. 3, local tracking overestimates the
worst-case high-water mark because local tracking does not account for the possibility that
the high-water marks of two concurrent processes cannot happen at the same time. To
fix this issue, we have the process P1 send 2 units of potential to the process P2, along
the message, such that this potential can be reused by the process P2. After the process
P2 receives the message, which carries the 2 units of potential, we use this potential to
partially pay for the high-water mark of the process P2 after the synchronization. This
partial payment allows us to decrease the post-synchronization high-water mark of the
process P2 from 3 to 1 = 3− 2.

The key innovation of our worst-case input generation algorithm for concurrent programs
is to leverage resource-annotated session types [DHP18], which capture information about
potential transfer, to guide symbolic execution. We first automatically infer the resource-
annotated session A of a given concurrent program expressed in SILL. We then run symbolic
execution of the program to systematically and exhaustively search for a finite execution
path (according to user-specified session skeleton like Eq (2.2)) where the bound on the
high-water mark cost encoded by the resource-annotated session type A is tight. In addition
to the high-water-mark bound, the type A encodes information about how resources are
transferred between processes. Hence, by exploiting this information during the symbolic
execution, for any execution path, we can tightly track the worst-case high-water mark
(among all possible schedules of concurrent processes), thereby checking the tightness of the
high-water mark bound encoded inside the type A.

Check tightness of cost bounds. Resource-annotated session types already capture sound
bounds on high-water marks. In order for these bounds to translate into true high-water
marks, it remains to ascertain that the bounds are tight. This is achieved by tracking
individual units of potential during symbolic execution.

Let us call (i) the potential supplied by the external world red potential and (ii) the
potential freed up in a process blue potential. If a process executes tick q for q > 0 and stores
no potential, the external world must supply at least q units of (red) potential to the process.
Conversely, if a process executes tick q for q < 0, then |q| units of (blue) potential are freed
up and become available to the process. A cost bound of an entire concurrent program is
given by the total red potential supplied by the external world to the program.

A cost bound is tight if it satisfies two conditions. Firstly, red potential must be consumed
completely. Otherwise, we could lower the cost bound while paying for all computational
costs. Using the same P1 and P2 from Fig. 3, Fig. 5 (a) illustrates a situation where red
potential is not consumed entirely. The processes P1 and P2 are initially given a total of
4 + 2 = 6 units of red potential. But 0.5 units of red potential are left unconsumed in the
process P2, suggesting that the cost bound of 6 is not tight.

Secondly, every unit of blue potential must be consumed if its generation precedes the
consumption of red potential. Assume otherwise: blue potential is not consumed entirely,
while red potential is consumed after that blue potential was generated. An example is
illustrated in Fig. 5 (b). As in part (a), the processes P1 and P2 are initially given 4 units
and 2 units of red potential, respectively. However, this time, the process P1 only sends 1
unit, instead of 2 units, of (blue) potential to the process P2. Consequently, 1 unit of the
blue potential generated by tick −4 on the process P1 remains unconsumed in the rest of
P1’s lifetime. Furthermore, tick −4 happens before red potential is consumed by tick 3 on



26:10 L. Pham and J. Hoffmann Vol. 20:4

mess
age

4

4

3

3

2

3(b)

1

1

1

mess
age

4

4

2

2

2

3.75(a)

1

2

3

1 1

1

1 1

1 2

Figure 5. (a) Red potential in the process P2 is not entirely consumed.
Red hatched rectangles and blue blank rectangles represent red and blue
potential, respectively. (b) Blue potential is generated in the process P1

before red potential is consumed in the process P2. But some blue potential
is left unconsumed in the process P1.

the process P2. Hence, we could send more blue potential from the process P1 to the process
P2, thereby substituting the blue potential for red potential supplied to the process P2 by
the external world. This means the cost bound of 6 is, again, not tight.

Finally, Fig. 4 (b) illustrates the case where the above two conditions are met. The cost
bound is indeed tight.

Solve path constraints. Once a worst-case execution path is identified, its path constraint
is fed to an SMT solver to generate a concrete worst-case input. In our example Eq (2.1),
the worst-case execution path is where each incoming IP address requires 2 units of potential.
Solving the path constraint of this path, we obtain a set of mutually distinct IP addresses
such as Eq (2.3).

Current SMT technologies cannot solve constraints over an infinite data structure.
Consequently, it is necessary to require the input portion of a session skeleton to be finite;
otherwise, we would not be able to find an infinitely large worst-case input by solving its
path constraint using an SMT solver. An example of a path constraint over an infinite
worst-case input that modern SMT solvers cannot handle is given in Eq (4.3) (Section 4.3).

3. Resource-Aware SILL

Resource-aware Simple Intuitionistic Linear Logic (SILL) [DHP18] has two constructs:
processes and channels. Processes send and receive messages, including channels, on channels.
A channel in SILL connects two processes: a provider and a client. They can communicate
in both directions3. While each process must provide exactly one channel, the process can
be a client of multiple (possibly zero) channels.

3Even though a provider and a client can communicate in both directions, we still assign different roles to
the two endpoints of a channel due to the correspondence between SILL and intuitionistic linear logic [CP10].
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Channels are typed with (resource-annotated) session types, which describe the commu-
nication protocols on the channels. Well-typedness of channels in SILL guarantees deadlock
freedom (i.e., progress) and session fidelity (i.e., preservation) [CP10].

3.1. Session Types. Resource-aware SILL has two layers: functional layer and process
layer. Types τ in the functional layer and resource-annotated session types A in the process
layer are formed by the following grammar:

b ::= unit | bool | int | b1 × b2 | b1 + b2 primitive and polynomial types

τ ::= {c : A← ci : Ai @ q} process type

| b | τ1 → τ2 functional types

A ::= X | b ⊃ A | · · · | ▷qA resource-annotated session types (Table 1).

Functional types. In the functional layer, if an expression e has a process type
{c : A← ci : Ai @ q}, the expression e represents a process that (i) provides a channel c of
resource-annotated session type A and (ii) uses channels c1, . . . , cn of resource-annotated
session types A1, . . . , An. The annotation q ∈ Q≥0 denotes the constant potential initially
stored in the process. The rest of the types in the functional layer are standard.

Session types. In Table 1, the first column lists all resource-annotated session types. The
second column lists the continuations of the session types from the first column, that is,
what session type the channel will have after it makes one action (e.g., send or receive a
message). The last column describes, for each session type A, the operational semantics of a
channel c with the session type A from the viewpoint of the the channel c’s provider.

Briefly, the session type b ⊃ A (and b ∧A) receives (and sends) a value of a functional
type b and then proceeds to the session type A. The session type A1 ⊸ A2 (and A1 ⊗A2)
receives (and sends) a channel of session type A1 and then proceeds to the session type A2.
The session type &{ℓi : Ai} (and ⊕{ℓi : Ai}) receives (and sends) a label ℓj for some j and
proceeds to the session type Aj accordingly. The session type 1 closes the channel and sends
the message end to the channel client in order to signal the closure. The session type ◁qA
(and ▷qA) receives (and sends) q ∈ Q>0 units of potential to the channel client.

Unlike the original SILL [TCP13, PG15], resource-annotated SILL [DHP18] does not
offer the exponential operator ! for copying a channel. Hence, resource-aware SILL is related,
via the Curry-Howard correspondence, to intuitionistic multiplicative-additive linear logic
(IMALL) [LSS93].

We assume a global signature Σ containing definitions of type variables of the form
X = AX , where X is a type variable and AX is a session type that may mention X (hence
recursive). Recursive session types are interpreted co-inductively, so communication can last
forever. Also, we require recursive session types to be contractive [GH05], that is, we cannot
have a recursive session type µX.X that remains identical after unfolding the recursive
operator. Lastly, recursive session types are regarded equi-recursive. Hence, throughout this
article, type variables can be silently replaced by their definitions.

The type inference algorithm attempts to automatically determine resource annotations
q ∈ Q>0 in ▷q and ◁q [DBHP19] by collecting linear constraints from according to the type
system in Section 3.4 and solving them by a linear-program (LP) solver. So a user does not
need to manually provide the values of q.
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Table 1. Resource-annotated session types and process terms. In the last
column, their operational semantics are described from the viewpoint of
channel providers. For the session type 1, the first row is for the provider of
the channel, and the second row is for the client of the channel.

Session type Cont. Process term Cont. Operational semantics

b ⊃ A A x← recv c;Px Px receive a value of base type b on channel c
and bind it to variable x

b ∧A A send c v;P P send a value v : b on channel c
A1 ⊸ A2 A2 x← recv c;Px Px receive a channel of type A1 on channel c

and bind it to variable x
A1 ⊗A2 A2 send c d;P P send a channel d : A1 on channel c

&{ℓi : Ai} Aj case c {ℓi ↪→ Pi} Pj receive a label on c and conduct pattern matching

⊕{ℓi : Ai} Aj c.ℓj ;P P send a label ℓj on channel c
1 N/A close c N/A close channel c by sending the end message

wait c;P P wait for the end message of channel c’s closure
◁qA A get c {q};P P receive q ∈ Q>0 units of potential on channel c
▷qA A pay c {q};P P send q ∈ Q>0 units of potential on channel c

3.2. Syntax. Fix a set F of function identifiers. A program in resource-aware SILL is a
pair (P,Σ), where P is the main process to run and the signature Σ stores type definitions
and function definitions. The syntax of functional terms e and processes P is given below.

e ::= x | ⟨ ⟩ | true | false | n ∈ Z | f ∈ F | · · · standard functional terms

| c← Pc,ci ← ci process constructor

P ::= c← e← ci;Pc spawn a process

| c1 ← c2 forward messages

| tick q;P consume resources

| x← recv c;Px | · · · | pay c {q};P process terms (Table 1).

Functional terms. The term c← Pc,ci ← ci encapsulates a process Pc,ci that provides a
channel c and uses channels ci. The rest of the functional layer’s syntax is standard.

Processes. In the process layer, the process c ← e ← ci;Pc first spawns a new process
denoted by e. This child process provides a channel c and uses channels ci as a client. After
spawning e, the parent process continues as a process Pc and uses the channel c as a client.
The process c1 ← c2 forwards messages between channels c1 and c2 in both directions. The
process tick q;P consumes q ∈ Q units of resources. The construct tick q is inserted either
manually by a user or automatically according to a resource metric of the user’s interest.
For instance, if a user is interested in memory, allocation of a 64-bit integer is modeled as
tick 64. The rest of the syntax is given in the third and fourth columns of Table 1. The
value of q in processes get c {q};P and pay c {q};P is automatically inferred [DHP18].

For illustration, consider a process P that provides a channel c and uses no channels.
Suppose that the process P receives an integer x ∈ Z on the channel c and spawns a new
process that (i) provides a new channel f and (ii) sends an integer x+ 1. Lastly, the process
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P closes the channel c. An implementation of the process P is

P := x← recv c; d← f x; close c (3.1)

f(x) = send c (1 + x); close c. (3.2)

The definition (3.1) of the process P calls a function f : int → {c ← · @ 0}, whose type
signature means that the function f takes an integer as input and returns a process of type
{c← ·@ 0}, i.e., it provides a channel c, uses no channels, and requires zero initial potential.
When the process P runs d← f x, the channel d is substituted for the channel c used inside
the function body (3.2) of f .

A resource metric is said to be monotone if every tick q has q ≥ 0. Conversely, if q < 0
(i.e., resources are freed up as well as consumed) is allowed, the resource metric is said to be
non-monotone. Examples of non-monotone resource metrics are memory (e.g., heap space)
and money (e.g., cryptocurrencies transferred by smart contracts). Non-monotone resource
metrics subsume monotone ones.

3.3. Cost Semantics. The cost semantics of SILL is defined using substructural operational
semantics [PS09], which is essentially a multiset rewriting system [CS06]. A program state
is represented by a multiset, called a configuration, of predicates. Rewriting rules specify
how one configuration transitions to another. Suppose we are given a rewriting rule

I1 I2 · · · In

J1 J2 · · · Jm
(n,m ∈ N). (3.3)

If the predicates I1, . . . , In all exist in a configuration, the next configuration is obtained by
replacing I1, . . . , In with J1, . . . , Jm. Rewriting rules can be applied in any order.

The cost semantics of SILL uses two predicates: proc(c, w, P ) and msg(c, w,M). The
predicate proc(c, w, P ) represents a process P providing a channel c. The predicate
msg(c, w,M) means a message M is being transferred across a channel c, but has not
been received yet. In the predicate proc(c, w, P ), the net-cost counter w ∈ Q tracks the
cumulative net cost of the process. In the predicate msg(c, w,M), the number w ∈ Q is used
when a process terminates and transfers the net cost at that point to another process.

Fig. 6 displays some key rules of the substructural cost semantics. The grammar
of a message M and the remaining rules of the cost semantics can be found in Fig. 12
(Appendix A.1).

The rule spawn considers a configuration where (i) we have a process c ← e ← ci;Qc

(in the first premise) and (ii) the functional term e evaluates to a value x ← Px,xi ← xi
(in the second premise), where Px,xi is a process. The two conclusions in the rule spawn
indicate that the next configuration replaces the premises with the following predicates:
(i) proc(c′, 0, Pc′,ci) for the newly spawned process where the net-cost counter w is initialized
to zero and (ii) proc(d,w,Qc′) for the parent process.

The rule ⊃S concerns a configuration containing a process send c e;P (in the first
premise), which sends a message e on channel c. To send a message in the operational seman-
tics, the premises in the rule are replaced with these two predicates: (i) proc(d,w, P [c′/c])
for the continuation of the process after sending a message and (ii) msg(c′, 0, send c v; c′ ← c)
for the message send c v; c′ ← c containing the content v that is being transferred across
a freshly renamed channel c′. The message predicate msg(c′, 0, send c v; c′ ← c) is then
handled by the rule ⊃R, which concerns a process ready to receive a message (in the first
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proc(c, w, P ) and msg(c, w,M)

proc(d,w, c← e← ci;Qc) e ⇓ (x← Px,xi
← xi) c′ is fresh

proc(c′, 0, Pc′,ci) proc(d,w,Qc′)
spawn

proc(d,w, send c e;P ) e ⇓ v c′ is fresh

proc(d,w, P [c′/c]) msg(c′, 0, send c v; c′ ← c)
⊃S

msg(c′, w1, send c v; c′ ← c) proc(c, w2, x← recv c;Px)

proc(c, w1 + w2, Pv[c
′/c])

⊃R
proc(c, w, tick q;P )

proc(c, w + q, P )
tick

proc(c, w, close c)

msg(c, w, close c)
1S

msg(c, w1, close c) proc(d,w2,wait c;P )

proc(d,w1 + w2, P )
1R

Figure 6. Key rules of the substructural cost semantics of resource-aware
SILL. The functional-layer evaluation judgment e ⇓ v in the rules spawn and
⊃S means the functional term e evaluates to a value v. The definition of the
functional-layer evaluation judgment e ⇓ v is standard. The remaining rules
are available in Fig. 12 (Appendix A.1).

premise). Since rewriting rules can be applied in any order, ⊃R is not necessarily applied
immediately after ⊃S. Hence, communication between processes is asynchronous.

The rule tick states that, whenever tick q is executed, the net-cost counter w in the
premise proc(c, w, tick q;P ) is incremented by q. The rule 1S concerns a process close c,
which seeks to close the channel c that the process provides (and hence also terminates the
process itself). To close the channel in the operational semantics, we remove replace this
premise with a predicate msg(c, w, close c) that carries (i) a signal for the channel closure to
the channel client and (ii) the final net cost w of the process. The client then receives the
message, together with the final net cost of the sender, according to the rule 1R.

The net cost of a configuration C is the sum of the net-cost counters w in predicates
proc(c, w, P ) and msg(c, w,M) in the configuration C when the SILL program terminates
(i.e., no more rewrite rules can be applied to the configuration C). The high-water mark of
the configuration C is its maximum net cost that has ever been reached (i.e., the maximum
sum of the net-cost counters w in all predicates in the configuration C) during the execution
of the SILL program.

3.4. Type System. Fix a signature Σ containing type definitions and function definitions.
A typing judgment of the process layer has the form

Φ;∆; q ⊢ P :: (c : A). (3.4)

The judgment (3.4) means the channel c is provided by the process P and has a resource-
annotated session typeA. Here, Φ is a functional-layer typing context, and ∆ is a process-layer
typing context that maps channels to resource-annotated session types. The channels in
∆’s domain are used by the process P as a client. The number q ∈ Q≥0 denotes how much
potential is initially stored in the process P .

Fig. 7 displays key rules of resource-aware SILL’s type system. The remaining rules are
in Fig. 13 (Appendix A.1).
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Φ;∆; q ⊢ P :: (c : A)

Φ ⊢ e : {x : A← xi : Ai @ p} ∆1 = {ci : Ai} Φ;∆2, c : A; q ⊢ Qc :: (d : D)

Φ;∆1,∆2; p+ q ⊢ (c← e← ci;Qc) :: (d : D)
spawn

Φ;∆, c : A; p ⊢ P :: (d : D) Φ ⊢ e : b

Φ;∆, c : b ⊃ A; p ⊢ send c e;P :: (d : D)
⊃L

Φ, x : b; ∆, p ⊢ Px :: (c : A)

Φ;∆; p ⊢ (x← recv c;Px) :: (c : b ⊃ A)
⊃R

Φ;∆; q ⊢ P :: (c : A) p > q

Φ;∆; p ⊢ P :: (c : A)
relax

Φ;∆; p ⊢ P :: (d : D)

Φ;∆; p+ q ⊢ tick q;P :: (d : D)
tick

Figure 7. Key rules of the type system of resource-aware SILL. The judg-
ment Φ ⊢ e : τ in the rules spawn and ⊃L is a functional-layer typing
judgment stating that the functional term e has a functional type τ . The
remaining rules are in Fig. 13 (Appendix A.1).

The rule spawn in Fig. 7 states that a process c ← e ← ci;Qc, which spawns a new
process-term e, is well-typed if e has a correct process type (in the first premise) and
the continuation process Qc is well-typed (in the third premise). Additionally, the initial
potential necessary for the process c← e← ci;Qc is p+ q, where p is the initial potential
for the spawned process e and q is the initial potential for the continuation process Qc.

The rule ⊃L concerns a process send c e;P , which sends a value e of the functional type
b on the channel c used by the process as a client. The dual rule, ⊃R, concerns a process
x← recv c;Px, which is ready to receive a message of the functional type b on the channel c
provided by the process. The rule relax weakens the resource annotation q in the judgment:
if the initial potential q is sufficient for the process P to run, then any larger potential q > p
works as well. The rule tick states that, to run the construct tick q;P , we require the initial
potential of p+ q, where p is the potential necessary for the continuation process P .

Thm. 3.1 states the soundness of the type system of resource-aware SILL: given an
initial configuration C where the net cost is zero, the total potential of the configuration C
is an upper bound of the high-water mark cost for any configuration reachable from C.

Theorem 3.1 Soundness of resource-aware SILL [DHP18, DBHP19]. Given a well-typed
configuration initial C whose net cost is zero, let p ∈ Q be the total potential stored in the
configuration C. The total potential in the configuration C is defined as the sum of all q in
judgments Φ;∆; q ⊢ P :: (c : A) for all processes P in the predicates proc(c, _, P ) ∈ C. If
C →∗ C ′ (i.e., a configuration C ′ is reachable from the configuration C) and h ∈ Q is the
high-water-mark cost of the configuration C ′, then h ≤ p holds. That is, the initial potential
p correctly upper-bounds the high-water mark cost h.

To prove Thm. 3.1, Das et al. [DHP18] first define a typing judgment Φ;∆1

E

|= C :: ∆2

for a configuration C, where Φ is a functional-layer typing context and ∆i (i = 1, 2) is a
process-layer typing context. The judgment defines E ∈ Q, called energy, as the sum of the
total potential and the net cost in the configuration C. Das et al. then prove that, as the
configuration C evolves, the energy E is conserved: it remains the same or decreases (due to
the weakening of potential). This is the resource-aware SILL’s equivalent of the classic type
preservation theorem, and it implies Thm. 3.1. Prior works [DHP18, DBHP19] only prove
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the soundness under monotone resource metrics. Nonetheless, to extend the soundness result
to non-monotone resource metrics, it suffices to re-examine the inductive case for tick.

4. Session Skeletons

Skeletons are symbolic inputs specifying the shape of worst-case inputs to be generated.
In the worst-case input generation for functional programming [WH19], given a function
that takes in lists, if we want a worst-case input of length three, an appropriate skeleton is
[x1, x2, x3], where xi are variables whose values are to be determined.

Message-passing concurrent programming poses three challenges in the design of skeletons.
First, in the presence of multiple channels, their skeletons are interdependent on each other
due to the interaction between channels. Second, inputs to concurrent programs may be
infinite. Third, the input and output are intertwined in such a way that the output influences
the acceptable set of subsequent inputs. Our design of skeletons works around the first
two challenges. The last challenge, described in Section 4.4, is beyond the scope of this
article because, to fully address this challenge, it is necessary to enrich session types such
that they capture more information, particularly the interdependence between input and
output. The challenge does not affect the relative-completeness theorem of our worst-case
input generation algorithm (Thm. 5.9), since the theorem assumes the cost bounds, which
we calculate by simply summing all resource annotations in session skeletons, are tight.

4.1. Syntax. Fix a set Xskeleton of skeleton variables. They are placeholders for concrete
values in a worst-case input. Skeletons are formed by the following grammar:

H ::= x ∈ Xskeleton | ⟨ ⟩ | bool | false | n ∈ Z skeleton variable and constants

| ⟨H1, H2⟩ | ℓ ·H | r ·H skeleton constructors

K ::= b ⊃ K | H ⊃ K | b ∧K | H ∧K value input/output

| K1 ⊸ K2 | K1 ⊗K2 channel input/output

| &{ℓi : Ki} | &x{ℓi : Ki} external choice;x ∈ Xskeleton

| ⊕{ℓi : Ki} | ⊕x{ℓi : Ki} internal choice;x ∈ Xskeleton

| X | 1 | ◁qK | ▷qK.

The meta-variables H and K stand for, respectively, a skeleton for the functional layer
and a skeleton in the process layer. The grammar of session skeletons K is similar to
that of resource-annotated session types (Section 3.1). One difference is that, in addition
to the skeleton b ⊃ K, we have the skeleton H ⊃ K, where b is a base type and H is
a functional-layer skeleton. The skeleton H ⊃ K is used when the input skeleton H is
generated by the external world, whereas the skeleton b ⊃ K is used when the input type b is
sent by a process. Likewise, the skeletons &x{ℓi : Ki} and ⊕x{ℓi : Ki}, where the subscripts
are skeleton variables x ∈ Xskeleton, are used when the choices are resolved by the external
world. The subscripts x ∈ Xskeleton records which branch is chosen in a worst-case input.
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Φ ⊢ K ⩽ A

Φ ⊢ 1 ⩽ 1
K:Ter

Φ ⊢ H : b Φ ⊢ K ⩽ A

Φ ⊢ H ⊃ K ⩽ b ⊃ A
K:ValIn

Φ;∆ ⊢ K ⩽ A

Φ;∆ ⊢ b ∧K ⩽ b ∧A
K:ValOut

K:ChannelIn
Φ ⊢ A1 ⩽ K1 Φ ⊢ K2 ⩽ A2

Φ ⊢ K1 ⊸ K2 ⩽ A1 ⊸ A2

K:ChannelOut
Φ;∆ ⊢ K1 ⩽ A1 Φ;∆ ⊢ K2 ⩽ A2

Φ;∆ ⊢ K1 ⊗K2 ⩽ A1 ⊗A2

∀j ∈ N ′.Φ ⊢ Kj ⩽ Aj ∅ ⊂ N ′ ⊆ N

Φ ⊢ &x{ℓi : Ki | i ∈ N ′} ⩽ &{ℓj : Aj | j ∈ N}
K:ExtChoice

Φ;∆ ⊢ K ⩽ A

Φ;∆ ⊢ ◁qK ⩽ ◁qA
K:Get

∀i ∈ N.Φ;∆ ⊢ Ki ⩽ Ai

Φ;∆ ⊢ ⊕{ℓi : Ki | N} ⩽ ⊕{ℓi : Ai | N}
K:InChoice

Φ;∆ ⊢ K ⩽ A

Φ;∆ ⊢ ▷qK ⩽ ▷qA
K:Pay

Figure 8. Inference rules of the compatibility relation between a session
skeleton and a resource-annotated session type. The judgment Φ ⊢ H : b in
K:ValIn means the functional-layer skeleton H has a functional type b.

4.2. Compatibility of Skeletons with Session Types. Given an external channel c : A
provided by a process, suppose a user provides a skeleton K. To check the compatibility of
the skeleton K with the resource-annotated session type A, we introduce the judgment

Φ ⊢ K ⩽ A, (4.1)

where Φ is a typing context for functional-layer skeletons. The judgment (4.1) states that
the skeleton K is a valid skeleton of the session type A, given that the external channel c is
provided by a process. Fig. 8 defines Eq (4.1). Dually, if the external channel is provided by
the external world, we use the dual judgment Φ ⊢ A ⩽ K. Its definition is symmetric to
Fig. 8.

Interestingly, the relations K ⩽ A and A ⩽ K coincide with the subtyping relation ⩽
of session types [GH05]. Upon reflection, this makes sense: because the skeleton K admits
some of the semantic objects of the session type A, the skeleton K can be considered as a
subtype of the session type A.

Due to the rule K:Ter, given a session skeleton K = 1, the session type 1 is the only
compatible session type. Hence, a session skeleton K is disallowed from stopping halfway
when the corresponding session type A has not terminated yet, e.g., Φ ̸⊢ 1 ⩽ int ∧ 1.

This restriction eliminates the interdependence between skeletons. For instance, consider
a process P with two channels c1 and c2. In each iteration, the process P either closes
both the channels c1 and c2 or keeps them open. If the channels c1 and c2 are open, the
process P receives one incoming message on the channel c1 and two incoming messages on
the channel c2. So if a (worst-case) input on the channel c1 has size n ∈ N, a (worst-case)
input of the channel c2 must have size 2n. That is, there is interdependence between the
skeletons of the channels c1 and c2. Thanks to the rule K:Ter, when a skeleton Ki on a
channel ci (i = 1, 2) terminates, the corresponding session type Ai for the channel ci must
also terminate. This only happens exactly when (worst-case) inputs on the channels c1 and
c2 are n and 2n, respectively, for some n ∈ N.
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In the rule K:ChannelIn, the first premise uses the dual judgment. This is because,
in the session type A1 ⊸ A2, the input session type A1 reverses the roles of the channel
provider and client. In the rule K:ExtChoice, a skeleton K includes all labels from a
non-empty subset N ′ ⊆ N . As we assume that the channel is provided by a process in the
network, the choice of i in a session type &{ℓi : Ai | i ∈ N} is made by the external world.
Therefore, the skeleton is allowed to limit the set of i to choose from.

4.3. Finite Input Portion of Skeletons. Worst-case inputs must be finite. Otherwise,
two technical challenges would arise:

(1) It is non-trivial to define a worst-case input when inputs may be infinite.
(2) Existing SMT solvers cannot solve constraints over infinite worst-case inputs.

Worst-case infinite inputs. Consider a non-terminating process ·; 0 ⊢ P :: (c : A), where4

A := &{first : µX. ◁2 int ⊸ int⊗X, second : µX. ◁1 int ⊸ int⊗X}. (4.2)

The process P is willing to accept two labels. If first is chosen, every iteration on channel
c requires 2 units of potential. Otherwise, if second is chosen, every iteration only needs 1
unit of potential.

It is unclear which scenario should be deemed the worst-case input. One possible answer
is that they both have an equal cost of infinity. If we spot a recursive session type where
every iteration incurs non-zero cost, then it automatically qualifies as a worst-case input,
provided that the path constraint is solvable. However, this idea sounds too simplistic.
Another possible answer is that the first branch results in a higher cost than second because
the former entails 2 units of cost per iteration, while the latter incurs only 1 unit of cost per
iteration. Therefore, at any moment in time, the first branch has a higher cumulative cost
than the second branch. However, this reasoning implicitly treats each iteration in Eq (4.2)
equally. But it is arguable whether the iterations inside the two branches in Eq (4.2) can be
treated equally. For instance, each iteration in the first branch may take twice as much time
as a single iteration in the second branch. However, because SILL provides no information
about timing, it is impossible to tell the cost per unit of time.

Generating infinite data structures. It is tricky to solve constraint satisfaction problems
for infinite data structures. By way of example, consider a process ·; 0 ⊢ P :: (c : A), where
A := µX.bool ⊸ X. Suppose the process P is implemented such that the only worst-case
input is an alternating sequence of true and false. To encode an infinite stream of Booleans,
a sensible idea is to use a function f : N→ bool, where the input is an index in the sequence
and the output is the Boolean value at that index. The path constraint for the worst-case
input, where true and false alternate, is

∀x ∈ N.f(2x) = true ∧ f(2x+ 1) = false. (4.3)

Here, f : N → bool is an uninterpreted function, and we seek a concrete f that satisfies
Eq (4.3). Unfortunately, the current SMT technologies are incapable of finding suitable f in
this example. We tested SMT solvers Z3 [dMB08] and CVC4 [BCD+11] on the SMT-LIB2
encoding of Eq (4.3) (Appendix B.1), and neither of them could verify the satisfiability.

4Although the notation µX.AX is not officially in the syntax of session types (Section 3.1), we use µX.AX

to denote an equi-recursive session type where X = µX.AX .
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To go around these two challenges of infinite worst-case inputs, we require the input
portion of a skeleton to be finite. Appendix B.1 provides further details.

4.4. Input Generation with Loose Cost Bounds. In the presence of multiple channels,
it is non-trivial to calculate a precise cost bound due to the intertwining of the input and
output across different channels. For illustration, consider a process P with two external
channels

c1 : A1; 0 ⊢ P :: (c2 : A2), (4.4)

where

A1 := ⊕{expensive : ▷21, cheap : 1} A2 := ⊕{expensive : ◁31, cheap : 1}. (4.5)

The external world first chooses between expensive, which requires 2 units of potential, and
cheap, which requires no potential. The process P next chooses between expensive and cheap.
If the process P chooses expensive, 3 units of potential are sent as input to the process P ;
otherwise, no extra potential is required.

The input and output are intertwined in this example. The process P first inputs a
label (possibly with potential) from the external world, then outputs a label, and lastly
inputs potential again. Additionally, the input and output happen on different channels:
the first input happens on the channel c1, while the output and second input (i.e., 3 units of
potential) happen on the channel c2.

According to the judgment (4.4), the total cost bound of the process P seems 2 + 3 = 5.
It is achieved when expensive is selected on both the channels c1 and c2. Hence, to achieve
the worst-case cost, the external world should choose expensive on the channel c1. Hopefully,
the process P will choose expensive as well so that the cost bound of 5 is fulfilled.

However, the process P may fail to choose expensive on the channel c2. The choice of
the process P on the channel c2 may depend on the external world’s choice on the channel
c1 in such a way that we cannot have expensive on both channels. For instance, suppose the
process P is implemented such that it sends the opposite label to whatever is received on
the channel c1:

P := case c1 {expensive ↪→ tick 2; c2.cheap, cheap ↪→ tick 3; c2.expensive}. (4.6)

The tight cost bound is 3, which is lower than the bound deduced from Eq (4.4). As a result,
the worst-case input generation algorithm fails because it cannot find an execution path
where the cost bound is tight.

In fact, SILL is already expressive enough to derive the tight cost bound of 3 for the
example (4.6). This is evidenced by another valid typing judgment of the process P :

c1 : A; 3 ⊢ P :: (c2 : A), (4.7)

where A := ⊕{expensive : 1, cheap : 1}. In (4.7), all necessary potential comes from the
initial constant potential 3 stored in the process P , which is tighter than the cost bound of
5. Thus, typing judgments can misrepresent cost bounds, as exemplified by Eq (4.4), even
when resource-aware SILL is capable of deriving tight cost bounds.

The root cause is that session types are not rich enough to capture information about the
interdependence between input and output. Suppose resource annotations are scattered over
a session type. When inputs, including the supply of incoming potential, are interspersed
with outputs, an early input affects an output, which in turn affects a later input’s resource-
annotated session type. Consequently, some combinations of inputs may be infeasible.
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Furthermore, if the input and output reside on different channels, resource-annotated session
types do not tell us how the paths on different channels are linked with each other. In the
above example, if the type system returns the typing judgment (4.7), we obtain a precise
cost bound of 3. However, if the type system returns the typing judgment (4.4), which is an
equally valid typing judgment, we obtain a loose cost bound of 5. Thus, even if SILL’s type
system can figure out the interdependence between input and output on different channels,
this information is not captured by session types. Therefore, to calculate a precise cost
bound, it is not sufficient to just examine the resource annotations in session types and
session skeletons.

Addressing this issue is beyond the scope of this article. For simplicity, when facing a
choice between branches, we sum resource annotations in session skeletons to obtain the
branches’ respective cost bounds and pick the branch with a higher cost bound. The example
(4.4) still respects relative completeness of worst-case input generation (Thm. 5.9) because
the relative-completeness theorem require tight cost bounds.

5. Worst-Case Input Generation Algorithm

Suppose we are given a SILL program (P,Σ) and a collection K of skeletons for external
channels. The worst-case input generation algorithm is displayed in Alg. 1.

Algorithm 1 Worst-case input generation algorithm for a SILL program

1: procedure WC Input Generation((P,Σ),K)
2: Run AARA to infer resource-annotated session types of internal and external channels
3: Check that the skeletons K satisfy all requirements
4: Run symbolic execution while tracking potential to identify an execution path where

the cost bound is tight. Also, construct a path constraint ϕ of this execution path
5: Solve the path constraint ϕ from the previous step . If the path constraint is infeasible,

go back to line 4 to search for another execution path where the cost bound is tight.

In line 2, we run AARA to derive resource annotations of both internal and external
channels. The resource annotations are used to keep track of potential during symbolic
execution (line 4). In line 3, we check the following requirements for session skeletons of
external channels:

• The session skeletons K are compatible with their original session types (Section 4.2).
• The input portions of the session skeletons K are finite (Section 4.3).

Section 5.1 describes how we track potential during the symbolic execution (line 4).
Section 5.2 formalizes the symbolic execution. If the symbolic execution finds an execution
path where the cost bound is tight, the corresponding path constraint ϕ is fed to an SMT
solver in line 5. If the path constraint ϕ is solvable, we obtain a concrete worst-case input.
Otherwise, if the path constraint ϕ is infeasible (i.e., it has no solutions), we go back to
line 4, searching for another execution path where the cost bound is tight.
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5.1. Checking the Tightness of Cost Bounds. The symbolic execution searches for an
execution path where the cost bound is tight. Potential in SILL has a local nature: the
potential is distributed across processes and flows between them. Hence, instead of tracking
the total potential, we locally track individual units of red potential (i.e., potential supplied
by the external world) and blue potential (i.e., potential freed up by tick q for q < 0).

Red potential. Red potential must eventually be consumed completely. To check it, we
equip each process with a Boolean flag r ∈ {true, false}. The flag r = true means the process
contains no red potential. The flag is updated according to the following rules:

• When (red) potential is supplied to the process by the external world, we set r = false.
• Suppose q > 0 units of potential are transferred from one process (which initially has
potential p+ q and a Boolean flag r1) to another process (which initially has a flag r2).
The flag of the sender becomes r1 ∨ (p = 0), and the flag of the recipient becomes r1 ∧ r2.

We forbid processes from throwing away potential when r = false. Potential is thrown
away by the rule relax in the type system (Fig. 7). If it happens, it means the cost bound
is not tight. In such an event, the symbolic execution backtracks and explores another
execution path. Likewise, red potential is not allowed to flow back to the external world,
since cost bounds only factor in incoming potential from the external world.

Blue potential. Blue potential must be consumed if its generation precedes the consumption
of red potential. To formally define what it means for an event (e.g., sending and receiving
of messages, and generation and consumption of potential) to precede another, we introduce
the happened-before relation → between events [Lam78], which is a well-established notion
in distributed and concurrent computing.

Pictorially, the happened-before relation is illustrated in Fig. 3. The figure contains
arrows within each of the processes P1 and P2 and another arrow between them (for sending
and receiving a message). These arrows indicate the chronological ordering of events
(regardless of how concurrent processes are scheduled). Taking the transitive closure of these
arrows yields the happened-before relation →.

Definition 5.1 (Happened-before relation [Lam78]). The happened-before relation → is
the smallest binary relation between events (e.g., sending and receiving messages) that is
closed under the following three conditions. First, if an event A happens before an event
B on the same process, A → B holds, i.e., the event A precedes the event B. Second, if
an event A sends a message and an event B receives the message, A→ B holds. Third, if
A→ B and B → C are true, so is A→ C.

We now explain how to check whether blue potential, if generated before red potential
is consumed, is also consumed entirely. Suppose that, during symbolic generation, blue
potential is generated by an expression tick q, where q < 0, in a process P . We assign a fresh
ID, say bluei ∈ C, to this newly created blue potential. Here, C = {red} ∪ {bluei | i ∈ N} is
the set of all IDs for red and blue potential.

Defn. 5.2 defines what it means for one process to be synchronized with another process
since some event.

Definition 5.2 (Synchronization of two processes). A process Q is synchronized with
another process P since some event of the process P if and only if the process Q’s current
state happens after the event.
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inject red
generate blue1

generate blue2

consume red
consume blue1

Figure 9. Alternating chain of the happened-before relation between events.
The label “inject red” refers to an event of injecting red potential to some
process from the external world. The label “generate blue” refers to the
generation of blue potential.

For concreteness, suppose that a process P has generated blue potential of the ID blue1.
During the symbolic execution, we track the following items:

• The set of processes that have been synchronized (Defn. 5.2) with the process P since
the generation of the ID blue1. We track such processes by passing around the ID blue1
whenever a message is sent by the process P or other processes that carry the ID blue1.
At any moment, the set of synchronized processes is given by the set of processes carrying
the ID blue1.
• What other potential is consumed by a process synchronized with the process P .
• Whether the potential blue1 is completely consumed.

To understand how tracking these items helps us detect loose cost bounds, consider a
scenario where (i) a process Q has been synchronized with the process P ; (ii) the process Q
consumes red potential; and (iii) the potential blue1 is not entirely consumed by the end
of program execution. Because the potential blue1 is generated before the potential red is
consumed, we can substitute blue potential for red potential, thereby lowering the amount
of necessary red potential without plunging into negative potential. Hence, the cost bound
is not tight in this case.

More generally, we can substitute blue potential for red potential along a chain of distinct
blue potential, each with a different ID. For instance, we want to substitute certain blue
potential (with ID, say, blue1) for red potential, where the potential blue1 was generated
before the consumption of red potential. However, the potential blue1 is entirely consumed.
So we must find another blue potential (say blue2) that can substitute for the potential
blue1. This is possible when (i) the potential blue2 is generated before the potential blue1
is consumed and (ii) the potential blue2 is not entirely consumed. Fig. 9 depicts this
situation where we have two distinct potential, namely blue1 and blue2, whose generation
and consumption are related by the happened-before relation.

If the potential blue2 is not completely consumed, we can push the leftover potential of
blue2, from “generate blue2” to “inject red,” along the alternating path of → in Fig. 9. As
a result, we can reduce the total red potential injected to the program without plunging
into negative potential, thereby lowering the cost bound.

To correctly detect such alternating paths of the happened-before relation →, symbolic
execution maintains a graph whose set of nodes is C (i.e., set of IDs for red and blue potential).
The graph has an edge (v1, v2) if and only if potential v2 is consumed after potential v1 is
generated. In this graph, if there is a path from a node bluei to a node red such that the
node bluei is not entirely consumed, then the cost bound is not tight. If the cost bound is
detected to be loose on the current execution path, the symbolic execution backtracks and
explores another execution path.

Thm. 5.3 states the correctness of tracking potential. A proof is given in Appendix C.2.
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Theorem 5.3 (Checking tightness of cost bounds). If red and blue potential is tracked
without encountering issues, then the cost bound is tight.

5.2. Symbolic Execution. The symbolic execution runs a SILL program on a skeleton
while keeping track of potential. Because the operational semantics of SILL is given by a
multiset rewriting system, we also use it to define the symbolic execution. The symbolic
execution involves two types of predicates:

proc(∆; q ⊢ P :: (c : A), ϕ, IDs) msg(c,M, ϕ, IDs). (5.1)

The first predicate of Eq (5.1) represents a well-typed process ∆; q ⊢ P :: (c : A), where
A is either a resource-annotated skeleton (if c is an external channel) or a resource-annotated
session type (if c is an internal channel). A logical formula ϕ is a path constraint so far and
will later be fed to an SMT solver. The component IDs = (IDss, IDsp) is a pair of finite sets
of potential’s IDs. The first set IDss ⊂ {bluei | i ∈ N} tracks synchronization: if the set
IDss of a process P contains an ID bluei, then the process P ’s current state happens after
the potential bluei was generated. The second set IDsp ⊂ C tracks potential transfer: if the
set IDsp of a process P contains an ID i, it means the process P contains the (red or blue)
potential identified by the ID i.

The second predicate msg(c,M, ϕ, IDs) in Eq (5.1) represents a message M (encoded as
as process) that provides a channel c. A logical formula ϕ is a path constraint carried by
the message.

Fig. 10 displays key rewriting rules. The remaining rules are given in Appendix C.4.
In the rule ⊃S, when a message is sent, it also carries the set IDss of the sender. It is

then added to the set IDss of the recipient.
The rule &Rexternal resolves an external choice on an external channel. A label k ∈ N

is chosen such that the skeleton Ak has the highest cost bound among {Ai | i ∈ N}. The
path constraint ϕ is then augmented with a constraint x = k, indicating that the external
world should choose k ∈ N to trigger the worst-case behavior. If we find out later that the
current execution path’s cost bound is not tight, we backtrack and try a different k′ ≠ k
such that Ak′ has the highest cost bound. If the algorithm fails to find any Ak (k ∈ N) with
the highest cost bound that is tight, then algorithm returns no worst-case inputs.

The rule 1S forbids red potential from being wasted: red potential must not remain
when a process terminates. Likewise, the rule ◁Lexternal, which is for an external channel,
forbids red potential from flowing back to the external world. Furthermore, if we waste
blue potential (i.e., IDsp \ {red} ̸= ∅) in the rules 1S and ◁Lexternal, we must record its IDs
because we do not want to waste blue potential that could have been substituted for red
potential.

In the rule ◁Rexternal, the process receives red potential from the external world. So the
ID red is added to the set IDsp of the recipient.

Finally, we have two rules for the construct tick. In the rule tick>0, the potential stored in
the process is consumed. Whenever this rule is applied, we must record the pair (IDss, IDsp).
This pair indicates which blue-potential ID was generated before red potential is consumed.
In the rule tick<0, blue potential is generated. Hence, we generate a fresh ID and add it to
the sets IDss and IDsp.
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proc(∆, c : b ⊃ A; p ⊢ send c e;P :: (d : D), ϕ1, (IDss, IDsp)) e ⇓ ⟨ϕ2, v⟩ c′ is fresh

proc(∆, c′ : A; p ⊢ P [c′/c] :: (d : D), ϕ1, (IDss, IDsp)) msg(c′, send c v; c′ ← c, ϕ2, (IDss, ∅))
⊃S

proc(∆; p ⊢ case c {ℓi ↪→ Pi | i ∈ N} :: (c : &x{ℓi : Ai | i ∈ N}), ϕ, (IDss, IDsp))
Ak has the highest cost bound

proc(∆; p ⊢ Pk[c
′/c] :: (c′ : Ak), ϕ ∧ (x = k), (IDss, IDsp))

&Rexternal

proc(·; p ⊢ close c :: (c : 1), ϕ, (IDss, IDsp)) red /∈ IDsp

msg(c, close c, ϕ, (IDss, ∅))
1S

proc(∆, c : ◁qA; p+ q ⊢ pay c {q};P :: (d : B), ϕ, (IDss, IDsp))
c′ is fresh red /∈ IDsp

proc(∆, c′ : A; p ⊢ P [c′/c] :: (d : B), ϕ, (IDss, (p = 0) ? ∅ : IDsp))
◁Lexternal

proc(∆; p ⊢ get c {q};P :: (c : ◁qA), ϕ, (IDss, IDsp))

proc(∆; p+ q ⊢ P :: (c : A), ϕ, (IDss, IDsp ∪ {red}))
◁Rexternal

proc(∆; p+ q ⊢ tick q;P :: (c : A), ϕ, (IDss, IDsp))

proc(∆; p ⊢ P :: (c : A), ϕ, (IDss, (p = 0) ? ∅ : IDsp))
tick>0

proc(∆; p ⊢ tick (−q);P :: (c : A), ϕ, (IDss, IDsp)) bluei ∈ C is fresh

proc(∆; p+ q ⊢ P :: (c : A), ϕ, (IDss ∪ {bluei}, IDsp ∪ {bluei}))
tick<0

Figure 10. Key rules in the process-layer symbolic execution. Throughout
the rules, we have q > 0. A judgment e ⇓ ⟨ϕ, v⟩ means a functional term
e evaluates to a (symbolic) value v with a path constraint ϕ. A ternary
operator (b) ? e1 : e2 returns e1 if the Boolean value b evaluates to true and
e2 otherwise.

5.3. Soundness and Relative Completeness. Thm. 5.3 assures us that symbolic execu-
tion’s high-level idea is sound. However, it assumes that the symbolic execution algorithm
correctly tracks costs and potential. To prove this assumption, we show a simulation between
the symbolic execution and cost semantics. The simulation then leads to the soundness and
relative completeness of our worst-case input generation algorithm.

Cost bounds encoded by resource annotations. Defn. 5.4 defines the cost bound of a
resource-annotated skeleton.

Definition 5.4 (Cost bounds of skeletons). Given a skeleton K for an external channel
provided by a process, its cost bound, denoted by ⌈◁⌉(K), is defined as follows.

⌈◁⌉(H ⊃ K) := ⌈◁⌉(K) ⌈◁⌉(&x{ℓi : Ki | i ∈ N}) := max
i∈N
⌈◁⌉(Ki)

⌈◁⌉(b ∧K) := ⌈◁⌉(K) ⌈◁⌉(⊕{ℓi : Ki | i ∈ N}) := max
i∈N
⌈◁⌉(Ki)

⌈◁⌉(K1 ⊸ K2) := ⌈▷⌉(K1) + ⌈◁⌉(K2) ⌈◁⌉(◁qK) := q + ⌈◁⌉(K)

⌈◁⌉(K1 ⊗K2) := ⌈◁⌉(K1) + ⌈◁⌉(K2) ⌈◁⌉(▷qK) := ⌈◁⌉(K)

⌈◁⌉(1) := 0.
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The dual cost bound ⌈▷⌉(·), which is used in the definition of ⌈◁⌉(K1 ⊸ K2), is defined
analogously.

In order for Defn. 5.4 to make sense, the input portion of the skeleton K must be finite.
◁q contributes to cost bounds in Defn. 5.4, but ▷q does not. If the cost bounds factored in
outgoing potential (i.e., ▷q) as well as incoming potential (i.e., ◁q), the cost bounds might
depend on the output size. In skeletons, while the input size is fixed, the output size is
not known statically. Consequently, before looking for an execution path with a tight cost
bound, the worst-case input generation algorithm would first need to maximize the cost
bound (by minimizing the output size). As this will complicate the algorithm, we do not
factor outgoing potential into cost bounds.

Definition 5.5 (Cost bounds of configurations). Suppose C is a configuration with external
channels c1, . . . , cm, cm+1, . . . , cn. Here, the channels c1, . . . , cm are provided by processes in
the configuration C, whereas the channels cm+1, . . . , cn are provided by the external world.
Let K1, . . . ,Kn be the skeletons of external channels. Also, let p be the total potential
locally stored in processes in the configuration C. The cost bound of the configuration C is
defined as

⌈▷◁⌉(C) := p+

m∑
i=1

⌈▷⌉(Ki) +

n∑
i=m+1

⌈◁⌉(Ki). (5.2)

Here, ⌈▷⌉(Ki) denotes the cost bound of a skeleton Ki when the external channel is provided
by some process in the network (Defn. 5.4). The dual cost bound is ⌈◁⌉(Ki).

Similarity relation and simulation. Defn. 5.6 defines a similarity relation between
predicates. This relation can be lifted from predicates to configurations (Defn. C.5).

Definition 5.6 (Similarity between predicates). Fix S to be a solution (i.e., a mapping
from skeleton variables to concrete values) to a path constraint generated by the symbolic
execution. The similarity relation ∼ between a predicate in symbolic execution and a
predicate in the cost semantics is defined by

S ⊢ Psym = Pcost

proc(_; _ ⊢ Psym :: (c : _), _, _) ∼ proc(c, Pcost)

S ⊢Msym = Mcost

msg(c,Msym, _) ∼ msg(c,Mcost)
.

Here, the premise S ⊢ Psym = Pcost means a predicate Psym in the symbolic execution and
a predicate Pcost in the cost semantics are identical under the mapping S.

Prop. 5.7 establishes a simulation between the symbolic execution and cost semantics.
A proof is given in Appendix C.3.

Proposition 5.7 (Simulation for soundness). Suppose we are given three configurations:
C1,sym, C2,sym, and C1,cost. The first two configurations are used in the symbolic execution,
and the last one is used in the cost semantics. These configurations satisfy two conditions:
(i) C1,sym transitions to C2,sym in one step of the symbolic execution and (ii) C1,sym ∼ C1,cost

holds. Then there exists a configuration C2,cost of the cost semantics such that the following
diagram commutes:

C1,sym w
// C2,sym

C1,cost w

≤1// C2,cost

(5.3)
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In the commutative diagram (5.3), C1,sym −→
w

C2,sym means ⌈▷◁⌉(C1,sym)− ⌈▷◁⌉(C2,sym) = w,

where ⌈▷◁⌉(·) denotes a cost bound of a configuration (Defn. 5.5). Likewise, C1,cost −→
w

C2,cost

means the configuration C1,cost transitions to C2,cost such that the net cost increases by w.
The arrow →≤1 means the number of steps is either zero or one.

In Prop. 5.7, one transition step in symbolic execution may correspond to zero steps
in the cost semantics. It happens when we transfer potential by rewriting rules such as
◁Lexternal in the symbolic execution, which do not have corresponding rules in the cost
semantics.

Thm. 5.8 states the soundness of the worst-case input generation algorithm. In the
statement of the theorem, JK1, . . . ,KnK denotes the set of all possible inputs conforming to
session skeletons K1, . . . ,Kn on channels c1, . . . , cn. Each input is a multiset of predicates
msg(c,M) for channels c and messages M . A formal definition of the set of possible inputs
is given in Defn. C.1.

Theorem 5.8 (Soundness of worst-case input generation). Given a collection K1, . . . ,Kn of
skeletons, suppose the symbolic execution algorithm successfully terminates. Let ϕ be a path
constraint generated by the symbolic execution and t ∈ JK1, . . . ,KnK be an input satisfying
ϕ. Then t has the highest high-water-mark cost of all inputs from JK1, . . . ,KnK.
Proof. Prop. 5.7 shows that the symbolic execution correctly tracks of potential and net cost:
both of them change by the same amount (but in the opposite direction). Furthermore, by
Thm. 5.3, the high-water-mark cost bound is tight for the solution t to the path constraint
ϕ. Therefore, the high-water-mark cost of the input t to the SILL program is indeed the
highest among all possible inputs JK1, . . . ,KnK.

Finally, Thm. 5.9 states the relative completeness of the algorithm.

Theorem 5.9 (Relative completeness of worst-case input generation). Given a SILL program
and a collection K of resource-annotated session skeletons, assume the following:

(A1) The processes are typable in resource-aware SILL.
(A2) The cost bound of K is tight on some finitely long execution path of the SILL program.

(A3) The background theory for path constraints is decidable.

Then the worst-case input generation algorithm Alg. 1 returns a valid worst-case input.

Proof. The assumption A1 is necessary because session skeletons, which define the shape
of a worst-case input to be synthesized and guide the symbolic execution, are based on
resource-annotated session types. Hence, all channels in the SILL program must be typable
with resource-annotated session types.

Under the assumption A2, there exists some finitely long execution path π in the SILL
program that has the same high-water mark as the cost bound encoded in the resource-
annotated skeletons K. The symbolic execution exhaustively searches for an execution path
where the cost bound is tight, until a suitable execution path is found or all execution paths
fail (Alg. 1). Hence, we will eventually find the target execution path π, thanks to Prop. 5.7
stating the correctness of tracking the cost during the symbolic execution. The symbolic
execution has a risk of non-termination on some execution paths. To avoid being stuck in
the exploration of one execution path, the symbolic execution can explore multiple execution
paths in parallel such that any finite execution path will eventually be explored.
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Server Server

(a) (b)

Figure 11. (a) First model of a web server. Here, an independent process
P is assigned to each browser’s session that wants to communicate with the
server. (b) Second model of a web server where a scheduler is modeled.

6. Case Study: Web Server and Browsers

We model the interaction between a web server and multiple web browsers. For each browser,
a new channel is spawned, and the browser first engages in a three-way handshake protocol
with the server (as in TCP). Once the handshake protocol is successfully completed, the
browser and server proceed to the main communication phase for data transfer.

This case study considers the non-monotone resource metric of memory. Suppose the
server requires (i) one memory cell for the handshake protocol and (ii) another memory
cell for the subsequent communication after the handshake. The first memory cell stores
so-called sequence numbers that are established during the handshake. The second memory
cell for the main communication phase stores data about a browser.

Let c be a channel provided by the server and used by browsers. Without loss of
generality, suppose we have two browsers that want to communicate with the server. We
examine two implementations of the server. In the first implementation (Section 6.1), the
two browsers’ sessions run independently of each other. So the server cannot control how
the sessions are scheduled. By contrast, in the second implementation (Section 6.2), the
server coordinates sessions with the help of a scheduler.

6.1. Independent Sessions. In the first implementation, the session type of the provided
channel is

c : A⊗A⊗ 1. (6.1)

That is, the server sequentially spawns a new channel of session type A for each of the two
browsers. The server after spawning two channels is depicted in Fig. 11 (a). The channel
providers P of these channels run independently of each other—the server cannot control
the order of events on these channels.

Resource-annotated session type A is defined as

A := int ⊃ ◁1(int× int) ∧&{ack : int ⊃ ⊕{success : ◁11, failure : 1}, timeout : 1}. (6.2)

In the session type A, the browser first sends an integer x, and the server sends back two
integers: 1+x and y. In response, the browser sends either a label ack followed by an integer
(ideally 1 + y) or a label timeout to indicate that the browser is inactive.

After successful completion of the handshake, the server sends a label success and
terminates. If the browser sends back a wrong integer (i.e., an integer different from 1 + y)
to the server, the server sends a label failure. After success and failure, there is no further
communication between the server and browser. This is for simplicity in our modeling. In
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practice, the success branch has further communication. The detailed implementation of
such a server is given in Eq (D.2) (Appendix D).

Let a session skeleton for the external channel c be K1 ⊗K2 ⊗ 1 , where the session
skeleton Ki (i = 1, 2) is

Ki := zi,1 ⊃ ◁1(int× int) ∧&{ack : zi,2 ⊃ ⊕{success : ◁11, failure : 1}, timeout : 1}. (6.3)

Here, zi,1 and zi,2 are skeleton variables of the integer type. Thus, the skeleton K1 ⊗K2 ⊗ 1
is simply obtained from the original session type A⊗A⊗ 1 by substituting fresh skeleton
variables for all occurrences of int in the session type.

The worst-case cost bound of the skeleton K1 ⊗K2 ⊗ 1 is 4. This is because each Ki

(i = 1, 2) has a worst-case cost bound of 2, which happens if the browser sends the label ack
to the server. The worst-case input generation algorithm generates a worst-case input

z1,1 = x1 z1,2 = y1 + 1 z2,1 = x2 z2,2 = y2 + 1, (6.4)

where x1, x2 ∈ Z are unconstrained, and y1, y2 ∈ Z are the integers sent back from the server
to a browser. The constants y1, y2 are assumed to be hard-coded in the server’s code.

More generally, if we have n many browsers, the cost bound becomes 2n. It is tight:
because different sessions run independently, in the worst case, we will need 2n memory
cells at the peak memory usage. As before, the worst-case input generation algorithm can
compute a correct worst-case input of high-water-mark cost 2n. It suggests that adversaries
can overwhelm the server’s memory by deploying a large number of browsers.

This vulnerability is reminiscent of a denial-of-service (DoS) attack. However, our SILL
implementation does not faithfully model the true DoS attack. A DoS attack creates a large
number of so-called half-open sessions, where the completion of the handshake is delayed
by withholding the label ack. Meanwhile, our SILL implementation does not model the
withholding of the label ack. Instead, all browsers’ sessions will eventually terminate in
our SILl implementation, and the worst-case high-water-mark cost of the entire concurrent
program happens when the high-water marks of all individual processes coincide. To faithfully
model a DoS attack, it would be necessary to model the withholding of sending the label ack
in a large number browsers’ sessions at the same. However, it cannot be faithfully modeled
in SILL due to the following limitations in the expressivity: (i) SILL cannot withhold events
(e.g., sending and receiving messages)—they must proceed; and (ii) SILL cannot specify the
exact timing of events, such as that certain events on different channels and processes all
happen at the same time.

6.2. Coordinating Sessions with Schedulers. Now consider an alternative implemen-
tation where it is the external world that spawns channels. The typing judgment of the
channel c is

c : A ⊸ A ⊸ 1, (6.5)

where the session type A (without resource annotations) is

A := int ∧ (int× int) ⊃ ⊕{ack : int ∧&{success : 1, failure : 1}, timeout : 1}. (6.6)

The resource annotation in the session type A depends on how the browsers’ sessions are
scheduled.

Unlike in Section 6.1, in this section, the two channels are directly connected to the
server (Fig. 11 (b)). Hence, the server can/must coordinate the communication sessions
on the channels. For example, the server can use a round-robin scheduler that alternates
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between the two browsers. Another possibility is a sequential scheduler: the server serves
the first browser and then moves on to the second one after the first browser is finished.

With a round-robin scheduler, we obtain the same high-water mark as Section 6.1. With
a sequential scheduler, the typing judgment of channel c is

c : Aanno ⊸ A ⊸ 1, (6.7)

where the resource-annotated session type for the first browser is

Aanno := int ∧ ▷1(int× int) ⊃ ⊕{ack : int ∧&{success : ▷11, failure : 1}, timeout : 1}. (6.8)

and the session type A for the second browser, which happens to require zero potential, is
given in Eq (6.6). It is a valid typing judgment because once the server finishes talking
with the first browser, two memory cells are freed up and are reused for the second browser.
Therefore, the sequential scheduler’s cost bound is lower than the round-robin scheduler’s.

More generally, if we have n browsers, the sequential scheduler’s cost bound remains 2.
Further, thanks to the soundness of resource-annotated session types, the bound 2 is a valid
cost bound. Therefore, adversaries cannot overwhelm the server by sending a large number
of communication requests.

7. Related Work

Resource analysis. Resource analysis of programs aims to derive symbolic cost bounds.
Numerous approaches exist: type systems [CW00, Vas08, Dan08, LG11, ADL17, ÇBG+17,
HVH19], recurrence relations [Weg75, Gro01, AAG+07, KCBR17, KMLD19, CLD20], term
rewriting [AM13, BEF+14, HM14, MS20], and static analysis [GMC09, ADLM15, CFG19].
Among type-based approaches is AARA. Linear AARA was first developed by Hofmann
and Jost [HJ03] and later extended to univariate polynomial bounds [HH10], multivariate
polynomial bounds [HAH12], and exponential bounds [KH20]. AARA has also been incorpo-
rated into imperative programming [CHS15], parallel programming [HS15], and probabilistic
programming [NCH18, WKH20, AMS20].

Session types. Session types, which describe communication protocols on channels, were
originally proposed by Honda [Hon93]. Caires and Pfenning [CP10] build a session type
system whose logical counterpart is intuitionistic linear logic. Their session type system
has been integrated into a functional programming language using contextual monads,
resulting in the language SILL [TCP13, PG15]. Resource-aware SILL [DHP18] incorporates
linear AARA into SILL (excluding shared channels). Nomos [DBHP19] is a session-typed
programming language that uses resource-aware SILL to infer gas bounds of smart contracts.
Wadler has developed a session type system based on classical linear logic [Wad12]. Binary
session types have also been extended to multiparty ones [HYC08].

Worst-case input generation. The present work was inspired by the type-guided worst-
case input generation for functional programming by Wang and Hoffmann [WH19]. While
[WH19] focuses on monotone resource metrics in sequential programming, the present
work considers more general non-monotone resource metrics in message-passing concurrent
programming. Non-monotone resource metrics, when combined with concurrency of processes,
pose challenges to worst-case input generation.
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WISE [BJS09] is the first work to use symbolic execution for worst-case input generation.
It first explores an entire search space for a small input to identify a worst-case execution
path. This path is then generalized to a branch policy to handle larger inputs. The use of
branch policies reduces the search space of large inputs, thereby making worst-case input
generation more scalable. SPF-WCA [LKP17] extends WISE with path policies that take
into account histories when we determine which branch to take during symbolic execution.

Instead of branch and path policies, Wang and Hoffmann [WH19] and we use resource-
annotated types to guide symbolic execution. One advantage of type-guided symbolic
execution is that worst-case input generation becomes sound. Another advantage is that we
learn how many non-monotone resources can be transferred between concurrent processes.

The fuzzing research community has investigated worst-case input generation. Slow-
Fuzz [PZKJ17] is the first fuzzer that automatically finds worst-case inputs with gray-box
access to programs. PerfFuzz [LPSS18] extends SlowFuzz with multi-dimensional objectives.
MemLock [WWL+20] focuses on memory consumption bugs. Although fuzzing generally of-
fers neither soundness nor relative completeness, it is more scalable than static-analysis-based
worst-case input generation because fuzzers do not analyze programs’ internal workings.

8. Conclusion

It is non-trivial to generate worst-case inputs to concurrent programs under non-monotone
resource metrics. The high-water-mark cost of a concurrent program depends on how
processes are scheduled at runtime. As a result, haphazardly executing a concurrent program
may not reveal its correct high-water-mark cost.

In this work, we have developed the first sound worst-case input generation algorithm
for message-passing concurrent programming under non-monotone resource metrics. The
key insight is to have resource-annotated session types guide symbolic execution. We have
also identified several technical challenges posed by session types in the design of skeletons.
We have proved the soundness and relative completeness of our algorithm. Finally, we have
presented a simple case study of a web server’s memory usage, illustrating the utility of the
worst-case input generation algorithm.
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msg(c, w1, send c v; c← c′) proc(d,w2, x← recv c;Px)

proc(d,w1 + w2, Pv[c
′/c])

∧R

proc(c, w, send c e;P ) e ⇓ v c′ is fresh

proc(c′, w, P [c′/c]) msg(c, 0, send c v; c← c′)
∧S

proc(d,w, send c1 c2;P ) c′1 is fresh

proc(d,w, P [c′1/c1]) msg(c′1, 0, send c1 c2; c
′
1 ← c1)

⊸S

msg(c′1, w1, send c1 c2; c
′
1 ← c1)

proc(c1, w2, x← recv c1;Px)

proc(c1, w1 + w2, Pc2 [c
′
1/c1])

⊸R

msg(c1, w1, send c1 c2; c1 ← c′1)
proc(d,w2, x← recv c1;Px)

proc(d,w1 + w2, Pc2 [c
′
1/c1])

⊗R
proc(c1, w, send c1 c2;P ) c′1 is fresh

proc(c′1, w, P [c′1/c1]) msg(c1, 0, send c1 c2; c1 ← c′1)
⊗S

proc(d,w, c.ℓk;P ) c′ is fresh

proc(d,w, P [c′/c]) msg(c′, 0, c.ℓk; c
′ ← c)

&S

msg(c′, w1, c.ℓk; c
′ ← c)

proc(c, w2, case c {ℓi ↪→ Pi})
proc(c, w1 + w2, Pk[c

′/c])
&R

msg(c, w1, c.ℓk; c← c′)

proc(d,w2, case c {ℓi ↪→ Pi})
proc(d,w1 + w2, Pk[c

′/c])
⊕R

proc(c, w, c.ℓk;P ) c′ is fresh

proc(c′, w, P [c′/c]) msg(c, 0, c.ℓk; c← c′)
⊕S

proc(c1, w, c1 ← c2)

msg(c1, w, c1 ← c2)
fwds

proc(c2, w1, P ) msg(c1, w2, c1 ← c2)

proc(c1, w1 + w2, P [c1/c2])
fwd+r

msg(c1, w1, c1 ← c2)
proc(d,w2, P )

proc(d,w1 + w2, P [c2/c1])
fwd−r

Figure 12. Remaining rules in the cost semantics of SILL. The judgment
e ⇓ v means functional term e evaluates to value v.

Appendix A. Resource-Aware SILL

A.1. Cost Semantics and the Type System. Fig. 6 already gives some rewriting rules
of the substructural cost semantics of SILL. Remaining rules are displayed in Fig. 12.

To treat proc(·) and msg(·) uniformly, message M in predicate msg(c,M) is encoded as
a process [DHP18], just like P in predicate proc(c, P ). The grammar of message M , which
is subsumed by the grammar of processes, is presented below.

M ::= c← c′ | c.ℓi; c← c′ | c.ℓi; c′ ← c

| send c v; c← c′ | send c v; c′ ← c

| send c1 c2; c1 ← c′1 | send c1 c2; c
′
1 ← c1 | close c.

Here, c and c′ are channels, v is a functional-layer value, and q ∈ Q>0 is a quantity of
potential.
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Φ;∆; q ⊢ P :: (c : A)

Φ, x : b; ∆, c : A; p ⊢ Px :: (d : D)

Φ;∆, c : b ∧A; p ⊢ x← recv c;Px :: (d : D)
∧L

Φ;∆; p ⊢ P :: (x : A) Φ ⊢ e : b

Φ;∆; p ⊢ send c e;P :: (c : b ∧A)
∧R

Φ;∆, c1 : A2; p ⊢ P :: (d : D)

Φ;∆, c2 : A1, c1 : A1 ⊸ A2; p ⊢
send c1 c2;P :: (d : D)

⊸L
Φ;∆, x : A1; p ⊢ Px :: (c : A2)

Φ;∆; p ⊢ (x← recv c;Px) :: (c : A1 ⊸ A2)
⊸R

Φ;∆, x : A1, c : A2; p ⊢ Px :: (d : D)

Φ;∆, c : A1 ⊗A2; p ⊢
x← recv c;Px :: (d : D)

⊗L
Φ;∆; p ⊢ P :: (c1 : A2)

Φ;∆, c2 : A1; p ⊢
send c1 c2;P :: (c1 : A1 ⊗A2)

⊗R

Φ;∆, c : Ak; p ⊢ P :: (d : D)

Φ;∆, c : &{ℓi : Ai}; p ⊢
c.ℓk;P : (d : D)

&L
∀i.Φ;∆; p ⊢ Pi :: (c : Ai)

Φ;∆; p ⊢ case c {ℓi ↪→ Pi} :: (c : &{ℓi : Ai})
&R

∀i.Φ;∆, c : Ai; p ⊢ Pi :: (d : D)

Φ;∆, c : ⊕{ℓi : Ai}; p ⊢
case c {ℓi ↪→ Pi} :: (d : D)

⊕L
Φ;∆; p ⊢ P :: (c : Ak)

Φ;∆; q ⊢ (c.ℓk;P ) :: (c : ⊕{ℓi : Ai})
⊕R

Φ; c2 : A; 0 ⊢ c1 ← c2 :: (c1 : A)
fwd

Φ;∆; p ⊢ P :: (d : D)

Φ;∆, c : 1; p ⊢ wait c;P :: (d : D)
1L

Φ; ·; 0 ⊢ close c :: (c : 1)
1R

Φ;∆, c : A; p ⊢ P :: (d : D)

Φ;∆, c : ◁qA; p+ q ⊢ pay c {q};P :: (d : D)
◁L

Φ;∆; p+ q ⊢ P :: (c : A)

Φ;∆; p ⊢ get c {q};P :: (c : ◁qA)
◁R

Φ;Φ;∆, c : A; p+ q ⊢ P :: (d : D)

Φ;Φ;∆, c : ▷qA; p ⊢ get c {q};P :: (d : D)
▷L

Φ;∆; p ⊢ P :: (c : A)

Φ;∆; p+ q ⊢ pay c {q};P :: (c : ▷qA)
▷R

Figure 13. Remaining rules of the type system of resource-aware SILL.
Φ ⊢ e : τ in the rules spawn and ⊃L is a typing judgment for the functional
layer.

Some rules of the type system of resource-aware SILL are already given in Fig. 6. The
remaining rules are presented in Fig. 13.

Appendix B. Session Skeletons

B.1. Checking Finiteness of Input Portions. The SMT-LIB2 encoding of Eq (4.3) is
displayed below.

(set-logic UFLIA)

(declare-fun f (Int) Bool)

(assert (forall ((x Int))



26:36 L. Pham and J. Hoffmann Vol. 20:4

Γ ⊢ K countInput(n)

Γ ⊢ 1 countInput(0)

Γ ⊢ K2 countInput(n)

Γ ⊢ H ⊃ K countInput(n+ 1)

Γ ⊢ K countInput(n)

Γ ⊢ b ∧K countInput(n)

Γ ⊢ K1 countOutput(n1) Γ ⊢ K2 countInput(n2)

Γ ⊢ K1 ⊸ K2 countInput(n1 + n2 + 1)

Γ ⊢ K1 countInput(n1) Γ ⊢ K2 countInput(n2)

Γ ⊢ K1 ⊗K2 countInput(n1 + n2)

∀i ∈ N.Γ ⊢ Ki countInput(ni)

Γ ⊢ &x{ℓi : Ki | i ∈ N} countInput(1 + max
i∈N
{ni})

Γ ⊢ K countInput(n)

Γ ⊢ ◁qK countInput(n+ 1)

∀i ∈ N.Γ ⊢ Ki countInput(ni)

Γ ⊢ ⊕{ℓi : Ki | i ∈ N} countInput(max
i∈N
{ni})

Γ ⊢ K countInput(n)

Γ ⊢ ▷qK countInput(n)

Figure 14. Number of input actions in a skeleton.

(and (= (f (* 2 x)) true)

(= (f (+ (* 2 x) 1)) false))))

(check-sat)

How do we check the finiteness of an input portion? Our approach is to count the
number of input actions at the type level and check if the number is infinite. Given a skeleton
K, the judgment

Γ ⊢ K countInput(n) (B.1)

states that K contains at most n many input actions at the type level, where n ∈ N ∪ {∞}.
A context Γ maps type variables (i.e., X in µX.KX) to their associated numbers of input
actions. Here, input actions are defined from the viewpoint of the channel’s provider. We
also have the dual judgment Γ ⊢ K countOutput(n) stating that K contains n output actions
at the type level.

The judgment (B.1) is defined in Fig. 14. The dual judgment is defined similarly, so we
omit its definition. To compute the number of input and output actions, we construct a
template derivation tree according to this inference system. In the tree, we use variables n’s
to record the number of input/output actions, and collect constraints on them. Finally, we
solve them by an LP solver.

B.2. Extraction of Cost Bounds. A type-level path of a session type (or a skeleton) is a
path on the session type where all choices of labels (including external and internal choices)
are resolved.
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Definition B.1 (Type-level paths). Given a session type/skeleton A, its set of type-level
paths is

path(A1 ⊸ A2) := {p1 ⊸ p2 | pi ∈ path(Ai)}
path(A1 ⊗A2) := {p1 ⊗ p2 | pi ∈ path(Ai)}

path(&{ℓi : Ai | i ∈ N}) := {&{ℓk : pk} | k ∈ N, pk ∈ path(Ak)}
path(⊕{ℓi : Ai | i ∈ N}) := {⊕{ℓk : pk} | k ∈ N, pk ∈ path(Ak)}

path(1) := {1}.

The sets of type-level paths for other type constructors can be defined straightforwardly.

The issue illustrated by Eq (4.6) arises from the interactive nature of resource-aware
SILL. A process in concurrent programming receives incoming messages (i.e., input) and
sends outgoing messages (i.e., output) that may depend on the previous input. Afterwards,
the process repeats the process of receiving input and sending output. In this way, input
and output are intertwined in SILL. As a consequence of the interdependence between input
and output across different channels, not all combinations of type-level paths on different
channels are feasible. Furthermore, if some type-level paths have higher cost bounds than
others but are infeasible, it becomes challenging to figure out which type-level paths to
explore during worst-case input generation.

Appendix C. Worst-Case Input Generation

C.1. Problem Statement. An input to a SILL program is a collection of predicates msg(·, ·)
from the external world. To formalize inputs in SILL, we fix a naming scheme for channels
in the rewriting system. As of now, whenever a fresh channel name is needed, the rewriting
system does not specify the fresh name. Consequently, when we formally define an input
as a collection of predicates msg(c,M), it is unclear what precisely c should be. Thus, to
formally define inputs, we must determine fresh channel names deterministically. Although
it is possible to devise a desirable naming scheme for channels, due to its complexity, we
omit its formal definition. Throughout this section, we adopt such a naming scheme.

Each input is a multiset of predicates msg(c,M). Given a channel c : K (where K is
a skeleton), let inputs(K, c) denote the set of possible inputs from the perspective of c’s
provider. It is defined in Fig. 15. The dual outputs(K, c) is the set of all outputs for c’s
provider. Since outputs(·, ·) is defined similarly, we omit its definition.

Definition C.1 (Set of possible inputs). Consider a network of processes with well-typed
external channels c1 : K1, . . . , cm : Km, cm+1 : Km+1, . . . , cn : Kn. Here, c1, . . . , cm are
provided by processes inside the network, and cm+1, . . . , cn are provided by the external
world. K1, . . . ,Km are skeletons compatible with their original session types. The set of all
possible inputs to this network is given by

JK1, . . . ,KnK :=
∏

1≤i≤m

inputs(Ki, ci)×
∏

m<i≤n

outputs(Ki, ci). (C.1)

Definition C.2 (Worst-case inputs). A worst-case input (t1, . . . , tn) ∈ JK1, . . . ,KnK is such
that, if we add

⋃
1≤i≤n ti to the initial configuration of the network and run it, we obtain

the highest high-water-mark cost of all possible inputs from JK1, . . . ,KnK.



26:38 L. Pham and J. Hoffmann Vol. 20:4

inputs(H ⊃ K, c) := {t ∪ {msg(c, send c v)} | v ∈ JHK, t ∈ inputs(K, c′)}
inputs(b ∧K, c) := inputs(K, c)

inputs(K1 ⊸ K2, c) := {t1 ∪ t2 ∪ {msg(c′, send c d; c′ ← c)} |
c′, d are fresh, t1 ∈ inputs(K2, c

′), t2 ∈ outputs(K1, d)}
inputs(K1 ⊗K2, c) := {t1 ∪ t2 | c′, d are fresh, t1 ∈ inputs(K2, c

′), t2 ∈ inputs(K1, d)}
inputs(&{ℓi : Ki | i ∈ N}, c) := {t ∪ {msg(c′, c.ℓk; c

′ ← c)} | j ∈ N, c′ is fresh, t ∈ inputs(Kj , c
′)}

inputs(⊕{ℓi : Ki | i ∈ N}, c) := {t | j ∈ N, c′ is fresh, t ∈ inputs(Kj , c
′)}

inputs(1, c) := {∅}

Figure 15. Set of possible inputs of a skeleton. The dual outputs(K, c) is
the set of all outputs for c’s provider.

C.2. Checking Tightness of Cost Bounds.

Proposition C.3 (Checking depletion of red potential). Suppose red potential is tracked as
described above without encountering the following issues:

• Red potential remains in some process at the end of symbolic execution;
• Red potential is thrown away or flows back to the external world.

Then the red potential supplied to the program is completely consumed.

Proof. Whenever potential flows from one process to another, we assume that red potential
(if there is any) in the sender is split evenly, and half of it is transferred. Throughout the
symbolic execution, the flag r is true if and only if the current process contains red potential.
This invariant is proved by case analysis. Firstly, when potential is supplied by the external
world, the Boolean flag of the recipient is set to false, and it is consistent with the invariant.
Secondly, when potential is transferred, the Boolean flag is correctly updated in a way that
preserves the invariant. Lastly, red potential is never discarded. Thanks to the Boolean
flag’s invariant, when the symbolic execution successfully finishes, red potential should
be completely gone because processes terminate only when r = true (i.e., red potential is
absent). Therefore, if the symbolic execution successfully terminates, red potential will have
been consumed completely.

We split red potential evenly when potential is transferred to another process. Even if
red potential is split differently, it does not affect our conclusion. For example, suppose we
split red potential such that it stays in the sender or it all goes to the recipient. Then the
set of processes with red potential is a subset of what we will have when red potential is
split evenly. When the symbolic execution terminates, if red potential is divided evenly, the
set of processes with red potential is empty. Hence, even if we change the way red potential
is split, by the end of the symbolic execution, red potential must be completely gone.

In conclusion, regardless of how we split red potential, when symbolic execution success-
fully terminates, all red potential is gone.

Theorem 5.3. If red and blue potential is tracked without encountering issues, then the
cost bound is tight.

Proof. A cost bound is equal to the amount of (red) potential supplied by the external
world to a SILL program. It follows from Prop. C.3 that red potential is entirely consumed
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if the symbolic execution successfully terminates. Also, because the symbolic execution
properly tracks blue potential, there should be no path from unconsumed blue potential to
red potential in Fig. 9.

To show the tightness of a cost bound, it suffices to explicitly construct a schedule of
processes whose high-water mark is equal to the cost bound. Firstly, suppose we only have
one process P . If red potential is consumed completely, then when the last red potential
is consumed, the high-water mark of P is equal to the total red potential supplied by the
external world. This can be seen from Fig. 2 (b).

Next, consider a non-trivial case where we have two processes: P1 and P2. Let t1 be the
moment in P1’s timeline when it completely consumes all potential in Fig. 9, including red
potential. Define t2 similarly for P2. We can then run P1 and P2 until they stop exactly
at t1 and t2, respectively. For example, if P1 sends a message and P2 receives it before
t2, then t1 must happen after the event of P1 sending the message. Because potential is
completely consumed at t2, any potential generated before t2, including potential on P1 right
before sending the message, must be gone before P1 reaches t1. Furthermore, the high-water
mark when t1 and t2 are reached is equal to the total red potential supplied by the external
world. No potential is captured by messages in transit; otherwise, it would contradict the
assumption that all potential in Fig. 9 is entirely consumed by the time t1 and t2. Thus, all
potential in Fig. 9, including red potential, should have been consumed by P1 and P2 when
they reach t1 and t2. Therefore, the net cost at this point is equal to the total red potential
supplied by the external world.

This reasoning can be generalized to more than two processes.

C.3. Soundness and Relative Completeness.

Definition C.5 (Similarity between configurations). Fix S to be a solution to a final path
constraint generated once the symbolic execution terminates. Let t be an input (i.e., a
multiset of predicates msg(c,M)) induced by the solution S to the final path constraint.
Consider some configuration Csym during the symbolic execution and a configuration Ccost

for the cost semantics. The similarity relation Csym ∼ Ccost holds if and only if there is an
injection from the multiset t ∪ Csym of predicates to the multiset Ccost of predicates such
that each pair in the injection satisfies the similarity relation (Defn. 5.6).

All proofs related to the soundness and relative completeness of worst-case input
generation are presented in this section.

Theorem 5.7. Suppose we are given three configurations: C1,sym, C2,sym, and C1,cost.
The first two configurations are used in the symbolic execution, and the last one is used in the
cost semantics. These configurations satisfy two conditions: (i) C1,sym transitions to C2,sym

in one step of the symbolic execution and (ii) C1,sym ∼ C1,cost holds. Then there exists a
configuration C2,cost of the cost semantics such that the following diagram commutes:

C1,sym w
// C2,sym

C1,cost w

≤1// C2,cost

(C.2)
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In this diagram, C1,sym −→
w

C2,sym means ⌈▷◁⌉(C1,sym) − ⌈▷◁⌉(C2,sym) = w, where ⌈▷◁⌉(·)
denotes a cost bound of a configuration (see Defn. 5.5). Likewise, C1,cost −→

w
C2,cost means

C1,cost transitions to C2,cost such that the net cost increases by w. The arrow →≤1 means
the number of steps is either zero or one.

Proof. By case analysis on the rewriting rules of the symbolic execution. Strictly speaking, in
the rules for termination and forwarding in symbolic execution, potential may be discarded.
Therefore, the above commutative diagram is not quite correct: after one transition step in
both the symbolic execution and cost semantics, the potential may decrease by w, while the
net cost stays the same. However, this can be fixed by saving all potential, including the one
that is actually discarded before termination and forwarding in the symbolic execution.

Proposition C.7 (Simulation for completeness). Suppose we are given three configurations:
C1,cost, C2,cost, and C1,sym. The first two configurations are used in the cost semantics, and
the last one is used in the symbolic execution. These configurations satisfy two conditions:
(i) C1,cost transitions to C2,cost in one step of cost semantics and (ii) C1,sym ∼ C1,cost holds.
Then there exists a configuration C2,sym of the symbolic execution such that the following
diagram commutes:

C1,sym w

≥1// C2,sym

C1,cost w
// C2,cost

(C.3)

In this diagram, C1,cost −→
w

C2,cost means C1,cost transitions to C2,cost such that the net cost

increases by w. The arrow →≥1 means the number of steps is at least one. Likewise,
C1,sym −→

w
C2,sym means ⌈▷◁⌉(C1,sym)− ⌈▷◁⌉(C2,sym) = w.

Proof. By case analysis on the rewriting rules of the cost semantics (Fig. 6). In the symbolic
execution, when processes terminate or forward, the processes are sometimes allowed to
throw away potential. As a result, this breaks the above commutative diagram because
potential may decreases while the net cost stays the same. To work around this issue, as
done in the proof of Prop. 5.7, we save potential somewhere instead of throwing it away.

C.4. Symbolic Execution. Some of the key rules for the symbolic execution are already
presented in Fig. 10. The remaining key rules are given in Figs. 16 and 17. Figs. 10, 16
and 17 cover half of all rules. The other half is just the dual of the three figures in this
article; hence, it is omitted.

In the symbolic execution for the process layer, we need to transfer potential. Hence,
we augment the grammar of message M (Appendix A.1) as follows:

M ::= · · · | pay c {q}; c← c′ | pay c {q}; c′ ← c.

Here, q ∈ Q>0 denotes the quantity of potential to be transferred.
Skeleton variables of functional types are added to path constraints during the functional

layer’s symbolic execution. For instance, suppose a process’s code contains if b then e1 else e2.
During the symbolic execution, if we choose to explore the first branch, we add b to a path
constraint. As the symbolic execution for the functional layer is already presented in a prior
work [WH19], this article omits it.
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proc(∆1,∆2; p+ q ⊢ (c← e← ci;Qc) :: (d : D), ϕ2, (IDss, IDsp))
e ⇓ ⟨ϕ1, x← Px,xi

← xi⟩ c′ is fresh

proc(∆1; p ⊢ Pc′,ci :: (c
′ : A), ϕ1, (IDss, (p = 0) ? ∅ : IDsp))

proc(∆2, c
′ : A; q ⊢ Qc′ :: (d : D), ϕ2, (IDss, (q = 0) ? ∅ : IDsp))

spawn

msg(c′, send c v; c′ ← c, ϕ1, (IDss,1, ∅))
proc(∆; p ⊢ x← recv c;Px :: (c : b ⊃ A), ϕ2, (IDss,2, IDsp,2))

proc(∆; p ⊢ Pv[c
′/c] :: (c : A), ϕ1 ∧ ϕ2, (IDss,1 ∪ IDss,2, IDsp,2))

⊃Rinternal

proc(∆; p ⊢ x← recv c;Px :: (c : H ⊃ K), ϕ, (IDss, IDsp))

proc(∆; p ⊢ PH [c′/c] :: (c : K), ϕ, (IDss, IDsp))
⊃Rexternal

proc(∆, c1 : A1 ⊸ A2, c2 : A1; p ⊢ send c1 c2;P :: (d : D), ϕ, (IDss, IDsp))
c′1 is fresh

proc(∆, c′1 : A2; p ⊢ P [c′1/c1] :: (d : D), ϕ, (IDss, IDsp))
msg(c′1, send c1 c2; c

′
1 ← c1,⊤, (IDss, ∅))

⊸S

msg(c′1, send c1 c2; c
′
1 ← c1,⊤, (IDss,1, ∅))

proc(∆; p ⊢ x← recv c1;Px :: (c1 :: A1 ⊸ A2), ϕ, (IDss,2, IDsp,2))

proc(∆; p ⊢ Pc2 [c
′
1/c1] :: (c

′
1 : A2), ϕ, (IDss,1 ∪ IDss,2, IDsp,2))

⊸Rinternal

proc(∆; p ⊢ x← recv c1;Px :: (c1 :: A1 ⊸ A2), ϕ, (IDss, IDsp)) c′1 is fresh

proc(∆; p ⊢ Pc2 [c
′
1/c1] :: (c

′
1 : A2), ϕ, (IDss, IDsp))

⊸Rexternal

proc(∆, c : &{ℓi : Ai | i ∈ N}; p ⊢ c.ℓk;P :: (d : D), ϕ, (IDss, IDsp)) c′ is fresh

proc(∆, c′ : Ak; p ⊢ P [c′/c] :: (d : D), ϕ, (IDss, IDsp)) msg(c′, c.ℓk; c
′ ← c,⊤, (IDss, ∅))

&S

msg(c′, c.ℓk; c
′ ← c,⊤, (IDss,1, ∅))

proc(∆; p ⊢ case c {ℓi ↪→ Pi | i ∈ N} :: (c : &{ℓi : Ai | i ∈ N}), ϕ, (IDss,2, IDsp,2))

proc(∆; p ⊢ Pk[c
′/c] :: (c′ : Ak), ϕ, (IDss,1 ∪ IDss,2, IDsp,2))

&Rinternal

Figure 16. Remaining key rules in the symbolic execution for the process
layer (part 1). The judgment e ⇓ ⟨ϕ, v⟩ means e evaluates to a (symbolic)
value v with a path constraint ϕ.

Appendix D. Case Study: Server and Browsers

The implementation of a server with independent sessions (Section 6.1) is

d1 ← P ← ·; send c d1; d2 ← P ← ·; send c d2; close c, (D.1)
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proc(c2 : A; p ⊢ c1 ← c2 :: (c1 : A), ϕ, (IDss, IDsp)) red /∈ IDsp

msg(c1, c1 ← c2, ϕ)
fwds

proc(∆; p ⊢ P :: (c2 : A), ϕ1, (IDss,1, IDsp,1)) msg(c1, c1 ← c2, ϕ2, (IDss,2, ∅))
proc(∆; p ⊢ P [c1/c2] :: (c1 : A), ϕ1 ∧ ϕ2, (IDss,1 ∪ IDss,2, IDsp,1))

fwd+r

msg(c1, c1 ← c2, ϕ1, (IDss,1, ∅)) proc(∆, c1 : A; p ⊢ P :: (d : D), ϕ2, (IDss,2, IDsp,2))

proc(∆, c2 : A; p ⊢ P :: (d : D), ϕ1 ∧ ϕ2, (IDss,1 ∪ IDss,2, IDsp,2))
fwd−r

msg(c, close c, ϕ1, (IDss,1, ∅)) proc(∆, c : 1; p ⊢ wait c;P :: (d : D), ϕ2, (IDss,2, IDsp,2))

proc(∆; p ⊢ P :: (d : D), ϕ1 ∧ ϕ2, (IDss,1 ∪ IDss,2, IDsp))
1Rinternal

proc(∆, c : 1; p ⊢ wait c;P :: (d : D), ϕ2, (IDss, IDsp))

proc(∆; p ⊢ P :: (d : D), ϕ1 ∧ ϕ2, (IDss, IDsp))
1Rexternal

proc(∆, c : ◁qA; p+ q ⊢ pay c {q};P :: (d : B), ϕ, (IDss, IDsp)) c′ is fresh

proc(∆, c′ : A; p ⊢ P [c′/c] :: (d : B), ϕ, (IDss, (p = 0) ? ∅ : IDsp))
msg(c′, pay c {p}; c′ ← c, (IDss, IDsp))

◁Linternal

proc(∆; q ⊢ get c {p};P :: (c : ◁pA), ϕ, (IDss,1, IDsp,1))
msg(c′, pay c {p}; c← c′, (IDss,2, IDsp,2))

proc(∆; p+ q ⊢ P [c′/c] :: (c′ : A), ϕ, (IDss,1 ∪ IDss,2, IDsp,1 ∪ IDsp,2))
◁Rinternal

Figure 17. Remaining key rules in the symbolic execution for the process
layer (part 2).

where the process d← P ← · is implemented as

P := x← recv d; tick 1; send d ⟨x+ 1, y⟩;
case d {ack ↪→ z ← recv d;

if (z = 1 + y) then

d.success; tick 1; tick − 2; close d

else

d.failure; close d,

timeout ↪→ tick − 1; close d}.

(D.2)

Integers x and y are called sequence numbers and are stored in the server. This is why
we have tick 1. Additionally, once the handshake is completed successfully, we run tick 1
because we assume that one memory cell is required for the subsequent communication
phase. Lastly, before a channel is closed, we free up all memory.

With a sequential scheduler, P is implemented as

P := x1 ← recv d1; tick 1; send d1 ⟨x1 + 1, y1⟩;
case d1 {ack ↪→ . . . ;x2 ← recv d2; tick 1; send d2 ⟨x2 + 1, y2⟩;

case d2 {ack ↪→ . . . , timeout ↪→ . . .},
timeout ↪→ . . .}.

(D.3)
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Section 6.2 studies a web server capable of scheduling sessions. With a round-robin
scheduler, the server is

d1 ← recv c; d2 ← recv c; c← P ← d1, d2, (D.4)

where the process c← P ← d1, d2 is implemented as

P := x1 ← recv d1;x2 ← recv d2;

tick 1; tick 1; send d1 ⟨x1 + 1, y1⟩; send d2 ⟨x2 + 1, y2⟩
case d1 {ack ↪→ case d2 {. . .}, timeout ↪→ case d2 {. . .}}.

(D.5)

With the round-robin scheduler, resource-annotated A is

Aanno := int ∧ ▷1(int× int) ⊃ ⊕{ack : int ∧&{success : ▷11, failure : 1}, timeout : 1}. (D.6)

Hence, the overall cost bound according to this resource-annotated session type is 4 (i.e.,
2 for each instance of A). This is identical to the cost bound from Section 6.1, and the
worst-case input generation algorithm generates the same worst-case input.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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