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Abstract. Multi-structural (MS) games are combinatorial games that capture the number
of quantifiers of first-order sentences. On the face of their definition, MS games differ
from Ehrenfeucht-Fräıssé (EF) games in two ways: first, MS games are played on two sets
of structures, while EF games are played on a pair of structures; second, in MS games,
Duplicator can make any number of copies of structures. In the first part of this paper, we
perform a finer analysis of MS games and develop a closer comparison of MS games with
EF games. In particular, we point out that the use of sets of structures is of the essence and
that when MS games are played on pairs of structures, they capture Boolean combinations
of first-order sentences with a fixed number of quantifiers. After this, we focus on another
important difference between MS games and EF games, namely, the necessity for Spoiler to
play on top of a previous move in order to win some MS games. Via an analysis of the types
realized during MS games, we delineate the expressive power of the variant of MS games
in which Spoiler never plays on top of a previous move. In the second part we focus on
simultaneously capturing number of quantifiers and number of variables in first-order logic.
We show that natural variants of the MS game do not achieve this. We then introduce a
new game, the quantifier-variable tree game, and show that it simultaneously captures the
number of quantifiers and number of variables. We conclude by generalizing this game to
a family of games, the syntactic games, that simultaneously capture reasonable syntactic
measures and the number of variables.

1. Introduction

Combinatorial games are an effective tool to analyze the expressive power of logics on sets
of structures. The prototypical example of such combinatorial games are the Ehrenfeucht-
Fräıssé (EF) games [Ehr61, Fra54], played by two players, called Spoiler and Duplicator; EF
games capture the quantifier rank of first-order sentences and have been used to analyze
the expressive power of first-order logic (FO). Specifically, for every r ∈ N, two structures
A and B satisfy the same FO-sentences of quantifier rank r if and only if Duplicator wins
the r-round EF game on (A,B). Since this holds true for finite and infinite structures
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alike, EF games can be used in finite model theory, unlike other tools from mathematical
logic that fail in the finite realm, such as the compactness theorem. Variants of EF games
in which the players start by playing unary relations were used to analyze the expressive
power of monadic NP, which is the collection of problems in NP that are definable by
sentences of existential monadic second-order logic [Fag75, dR84, Sch94, FSV95]. A different
variant of EF games are the pebble games; they capture the number of variables and were
used to analyze the expressive power of finite-variable first-order logic and infinitary logics
[Bar77, Imm82, KV92].

Multi-structural (MS) games were introduced in [Imm81], re-discovered recently in
[FLRV21], and investigated further in [FLVW22] and [CFI+24]. MS games capture the
number of quantifiers of FO-sentences, which is another important parameter in understand-
ing the expressive power of FO. If one is interested in showing that a property P of finite
structures, such as connectivity or acyclicity, is not expressible by any fixed FO-sentence ψ,
then both EF games and MS games work equally well. The original motivation of introducing
MS games, however, came from the potential use of MS games to obtain lower bounds when
a sequence {ψn}n≥1 of FO-sentences is considered so that a property P is expressed by ψn

on structures with at most n elements. Let h(n) be a function from the natural numbers to
the natural numbers. In [Imm81], QN[h(n)] is defined to be the class of all properties P for
which there is a uniform sequence {ψn}n≥1, of FO-sentences such that ψn expresses P on
structures with at most n elements, ψn has O(h(n)) quantifiers, and h(n) is constructible in
DSPACE[h(n)], where DSPACE stands for deterministic space. From results in [Imm81], it
follows that on the class of all ordered finite structures,

NL ⊆ QN[log(n)].

Thus, proving that some NP-complete or some P-complete problem requires ω(log(n))
quantifiers would separate NL from NP or from P, and this could be achieved by playing
MS games on ordered finite structures. In contrast, as pointed out in [Imm81], FO-sentences
of quantifier rank O(log(n)) capture isomorphism on ordered finite structures, and hence EF
games cannot be used to prove lower bounds for sequences of FO-sentences with ω(log(n))
quantifiers. Even though the early optimism of using combinatorial games to separate
complexity classes has yet to materialize, it is still worth exploring MS games further with
the aim of developing a deeper understanding of their features and potential uses.

On the face of their definitions, EF games and MS games differ in the following ways.
First, EF games are played on a pair (A,B) of structures, while MS games are played on
a pair (A,B) of sets of structures; second, in each round of the MS game, Duplicator can
make any number of copies of structures on the side that she has to play; and, third, in
the EF game, Duplicator must maintain a partial isomorphism between A and B, while
in the MS game, she must maintain a partial isomorphism between some structure from
A and some structure from B. Spoiler wins the r-round EF game on (A,B) iff there is a
FO-sentence of quantifier rank r that is true on A and false on B, while Spoiler wins the
r-round MS game on (A,B) iff there is a FO-sentence with r quantifiers that is separating
for (A,B), i.e., it is true on every structure in A and false on every structure in B.

In this paper, we carry out a finer analysis of MS games and shed additional light
on how EF games compare with MS games. In particular, when applying MS games to
obtain inexpressibility results, one can use infinite sets A and B of structures. We show
that the use of infinite sets does not yield stronger inexpressibility results; however, the
sets used cannot always be assumed to be singletons (i.e., we cannot always start with
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a pair of structures). We also show that r-round MS games restricted to singleton sets
capture Boolean combinations of FO-sentences with r quantifiers. Finally, we add insight
into Duplicator’s ability to make copies of structures during the game: if enough copies of
each structure are made before the first round, then Duplicator does not need to make any
additional copies during gameplay.

In [FLRV21] and [FLVW22], it was pointed out that, unlike the EF game, Spoiler may
get an advantage in the MS game by playing “on top,” i.e., by placing a pebble on top of
an existing pebble or a constant. Here, we first give a self-contained proof of the fact that,
in general, Spoiler may not win an MS game without sometimes playing on top. We then
explore the expressive power of the variant of the MS game in which Spoiler never plays on
top. By analyzing the types (i.e., the combinations of atomic and negated atomic formulas
satisfied by the pebbles played and the constants), we characterize when Spoiler wins the
r-round MS game on (A,B) without playing on top in terms of properties of separating
sentences for (A,B).

We next study combinatorial games that simultaneously capture number of quantifiers
and number of variables. It is well known that EF games can be adapted to simultaneously
capture quantifier rank and number of variables by limiting the number of pebbles used.
In contrast, we show that natural variants of MS games obtained by limiting the number
of pebbles fail to simultaneously capture number of quantifiers and number of variables.
For this reason, we introduce a new game, the quantifier-variable tree game (QVT game).
The QVT game is inspired by the Adler-Immerman game [AI01], which was introduced to
study formula size. Variants of the Adler-Immerman game were subsequently investigated in
[GS05] to study the succinctness of logics, and in [HV15] to obtain lower bounds for formula
size in propositional logic and in FO. Our main result about the QVT game asserts that
Spoiler wins the r-round, k-pebble QVT game on a pair (A,B) of sets of structures if and
only if there is a separating sentence for (A,B) with r quantifiers and k variables.

Finally, we generalize the QVT game to a class of two-player games called syntactic
games, that simultaneously capture some other measure of first-order formulas and the
number of variables. We focus on compositional syntactic measures, i.e., measures on first-
order formulas defined inductively for formulas in terms of its value on their subformulas.
Quantifier count, quantifier rank, and formula size are all examples of such measures. Our
syntactic games provide a unified game-theoretic setting in which to study these measures.
A similar game for formulas of the infinitary logic Lω1,ω was studied in [VW13].

In conclusion, our results yield new insights into MS games, their variants, and gener-
alizations. The next step in this investigation would be to use these games to determine
the optimal value of a complexity measure and number of variables to express various
combinatorial properties as a function of the size of the relevant structures.

2. Preliminaries

Throughout this paper, we consider a relational schema τ consisting of finitely many relation
and constant symbols. We denote the set of relation symbols in τ by Pred(τ). We write
τ -structures in boldface, e.g., A. We denote the universe (i.e., set of elements) of A by A,
and sets of τ -structures using calligraphic typeface, e.g., A.
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2.1. Pebbled structures. We have a set C of pebble colors, with arbitrarily many pebbles
of each color available. A τ -structure A is pebbled if zero or more elements from A have one
or more pebbles on them, so that at most one pebble of each color is present in A. If pebbles
of color 1, . . . , t are placed on elements a1, . . . , at ∈ A, we refer to this pebbled structure as
⟨A | a1, . . . , at⟩. For readability, when the context is obvious, we refer to ⟨A | a1, . . . , at⟩
as the t-pebbled (or simply pebbled) structure A. Note that the unpebbled structure A
corresponds to the pebbled structure ⟨A | ⟩, with an empty set of pebbles. When t = 0, the
notation ⟨A | a1, . . . , at⟩ refers to the unpebbled structure ⟨A | ⟩.

Definition 2.1. Consider two pebbled structures ⟨A | a1, . . . , at⟩ and ⟨B | b1, . . . , bt⟩, and
let f : A→ B be the map such that:

• for 1 ≤ i ≤ t, we have that f maps ai 7→ bi.
• for each constant symbol c in τ , we have that f maps cA 7→ cB.

We say the pair ⟨A | a1, . . . , at⟩ and ⟨B | b1, . . . , bt⟩ of pebbled structures matches (and call
it a matching pair) iff the map f defined above is an isomorphism between the substructures
of A and B induced by its domain and range.

Of course, note that the pebbled structures ⟨A | a1, . . . , at⟩ and ⟨B | b1, . . . , bt⟩ may
form a matching pair even if A and B are not isomorphic. In fact, they may even form a
matching pair without any pebbles placed on them.

2.2. The multi-structural game. Fix r ∈ N, and two nonempty sets A and B of τ -
structures. We define the r-round multi-structural game on (A,B) as follows. We refer to A
and B as the left and right sides, respectively. Informally, in each round of the game, one
player (Spoiler) places a pebble on every structure on either the left side or the right side.
Then the other player (Duplicator) places a pebble of the same color on every structure
on the other side. Duplicator (but not Spoiler) may copy structures to make different
placements on distinct copies of the same structure. Duplicator tries to ensure that, at the
end of every round, there is some matching pair (Definition 2.1); Spoiler tries to eliminate
all matching pairs in r or fewer rounds.

We now give a formal description of the game. We view all structures henceforth as
pebbled structures. The game proceeds over up to r rounds, by building a sequence of
configurations (A0,B0), (A1,B1), . . ., where A0 = A and B0 = B. Initially, if there are no
matching pairs, then Spoiler wins the 0-round game. Otherwise, inductively, in each round
t = 1, . . . , r, with configuration (At−1,Bt−1), Spoiler selects one of the following moves:

• Play-Left:
(a) For each pebbled structure ⟨A | a1, . . . , at−1⟩ ∈ At−1, Spoiler places a pebble colored

t on an element at ∈ A, creating the pebbled structure ⟨A | a1, . . . , at⟩. Call the
resulting set At.

(b) For each pebbled structure ⟨B | b1, . . . , bt−1⟩ ∈ Bt−1, Duplicator may make any
number of copies of this pebbled structure, and then for each such copy, must place a
pebble colored t on an element bt ∈ B, creating the pebbled structure ⟨B | b1, . . . , bt⟩.
Call the resulting set Bt.

(c) At the end of this round, if no t-pebbled structure in At forms a matching pair with
a t-pebbled structure in Bt, then Spoiler wins the game. Otherwise, if t < r, play
continues.
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• Play-Right: This move is dual to Play-Left; Spoiler places pebbles colored t on the pebbled
structures on the right side, and Duplicator responds on the left side.

At the end of round r, Duplicator wins the game if there is still some r-pebbled structure on
the left and some r-pebbled structure on the right forming a matching pair.

After t rounds of the r-round MS game on (A,B) have been played, we have the
collection At of pebbled structures ⟨A | a1, . . . , at⟩ on the left, and the collection Bt of
pebbled structures ⟨B | b1, . . . , bt⟩ on the right, where A and B range over A and B
respectively, and ai and bi are the elements pebbled by the players on A and B in round i,
for 1 ≤ i ≤ t. A strategy for Spoiler is a function that takes as input such a configuration
(At,Bt), and provides him with the next move in the game. Specifically, given such a
configuration, a strategy tells Spoiler whether to play Play-Left or Play-Right; if it tells
Spoiler to play Play-Left, then for each pebbled structure ⟨A | a1, . . . , at⟩ ∈ At, the strategy
provides an element at+1 ∈ A for Spoiler to play the pebble colored t + 1 on. Similarly,
if it tells Spoiler to play Play-Right, then for each pebbled structure ⟨B | b1, . . . , bt⟩ ∈ Bt,
the strategy provides an element bt+1 ∈ B for Spoiler to play the pebble colored t+ 1 on.
A winning strategy for Spoiler in the r-round MS game on (A,B) is a strategy such that
Spoiler always wins the game if he follows it.

We say that Duplicator follows the oblivious strategy if in each round, for every pebbled
structure on the side she plays on, she makes as many copies as there are elements in the
universe of the structure, and then plays a pebble on a different element in each copy. It is
obvious that if Duplicator wins the r-round MS game on (A,B), then Duplicator can win by
following the oblivious strategy. From now on, unless we say otherwise, we will assume that
Duplicator follows the oblivious strategy in the MS game.

We next state an important definition.

Definition 2.2. Given two sets A and B of τ -structures, a separating sentence for (A,B) is
a FO-sentence ψ such that every A ∈ A has A |= ψ, and every B ∈ B has B |= ¬ψ.

Clearly, ψ is a separating sentence for (A,B) if and only if ¬ψ is a separating sentence
for (B,A).

Next, we state without proof the fundamental theorem of MS games, which is in [Imm81,
Theorem 10] and [FLRV21, Theorem 1.2].

Theorem 2.3 [Imm81, FLRV21]. Spoiler has a winning strategy for the r-round MS game
on (A,B) if and only if there is an r-quantifier separating sentence for (A,B).

As discussed in [Imm81], Duplicator’s ability to make copies of the structures in the MS
game is crucial. Consider the next example (Figure 1).

The game is played on {LO(3)}, a singleton set consisting of a linear order of size 3
on the left, and {LO(2)}, a singleton set consisting of a linear order of size 2 on the right.
Spoiler’s only interesting move is to play the middle element B2 on the left, as indicated in
red in the figure (it can be easily seen that all other moves by Spoiler lead to defeats). If
this were now an EF game, Duplicator would lose — a response of L1 would be met with
a Spoiler play on B1 in round 2, while a response of L2 would be met with a Spoiler play
on B3 in round 2. However, in the MS game, Duplicator can make a second copy of LO(2),
and play both possible moves. It should now be obvious that it is impossible for Spoiler to
win in the one remaining move, illustrating a clear difference between EF and MS games.
Indeed, there is a separating sentence for ({LO(3)}, {LO(2)}) of quantifier rank 2, namely,
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B1 B2 B3 L1 L2
B1 B2 B3

L1 L2

L1 L2

Figure 1: The beginning of a 2-round MS game on (A,B), where A = {LO(3)}, the singleton
linear order of size 3, and B = {LO(2)}, the singleton linear order of size 2.
Spoiler plays his first move (indicated in red) on B2, the middle element of LO(3).
Duplicator then makes a copy of LO(2) and plays each of the two possible moves
in response. This example is a slight variation on the examples in [FLRV21,
FLVW22].

∃x(∃y(y < x) ∧ ∃y(x < y)), which uses three quantifiers, but no separating sentence with
two quantifiers!

2.3. Strategies. A perusal of the proof of Theorem 2.3 in [Imm81] or in [FLRV21] reveals
that if ψ is a separating sentence for (A,B) with r quantifiers, then Spoiler has a winning
strategy for the r-round MS game on (A,B) where he “follows” ψ. To explain in more
precise terms what “following” ψ means, assume that ψ is of the form Q1x1 . . . Qrxrθ, where
θ is quantifier-free. If Qt is ∃, then Spoiler plays Play-Left, while if Qt is ∀, then Spoiler
plays Play-Right. Assume by induction that at the start of round t ≥ 1, the configuration
has the property that for every ⟨A | a1, . . . , at−1⟩ on the left and ⟨B | b1, . . . , bt−1⟩ on the
right in this configuration, we have:

A |= Qtxt . . . Qrxrθ(a1/x1, . . . , at−1/xt−1)

B |= ¬Qtxt . . . Qrxrθ(b1/x1, . . . , bt−1/xt−1).

If Qt is ∃, then there is some at ∈ A such that A |= Qt+1xt+1 . . . Qrxrθ(a1/x1, . . . , at/xt);
in this case, Spoiler picks such an element at and plays the pebble on it. If Qt is ∀, then
B |= ∃xt¬Qt+1xt+1 . . . Qrxrθ(b1/x1, . . . , bt−1/xt−1), and so there is an element bt ∈ B such
that B |= ¬Qt+1xt+1 . . . Qrxrθ(b1/x1, . . . , bt/xt); in this case, Spoiler picks such an element
bt and plays the pebble on it. Since in each of these cases, more than one witness to the
existential quantifier may exist, there may exist different strategies for Spoiler obtained by
“following” ψ; however, each of these strategies is a winning strategy for Spoiler. We say that
a strategy for Spoiler is obtained from ψ if it is one of the strategies for Spoiler obtained by
following ψ in this way.

The preceding discussion is summarized in the first part of the next result; the second
part of the result can be extracted from the proof of Theorem 2.3.

Theorem 2.4. Let r ∈ N, and let A and B be two sets of τ -structures. Then, the following
are true.

(a) If ψ ≡ Q1x1 . . . Qrxrθ is a separating sentence for (A,B) with r quantifiers, then Spoiler
can win the r-round MS game on (A,B) using a strategy obtained from ψ. Moreover,
for every such strategy and for all pebbled structures ⟨A | a1, . . . , ar⟩ on the left and
⟨B | b1, . . . , br⟩ on the right in the final configuration arising by using this strategy, we
have A |= θ(a1/x1, . . . , ar/xr) and B |= ¬θ(b1/x1, . . . , br/xr).
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(b) If Spoiler has a winning strategy S for the r-round MS game on (A,B), then there is a
separating sentence ψ for (A,B) with r quantifiers such that the strategy S is one of
the strategies for Spoiler obtained from ψ.

2.4. Types. The following concepts will recur throughout this paper. An atomic formula
is an expression of one of the following forms: an equality xi = xj between two distinct
variables; an equality ci = xj between a constant symbol and a variable; an equality ci = cj
between two distinct constant symbols; an expression R(y1, . . . , ym), where R is an m-ary
relation symbol in the given schema, for some m ≥ 1, and y1, . . . , ym are not-necessarily-
distinct variables or constant symbols. A type over an r-tuple of distinct variables, x1, . . . , xr,
is a conjunction of atomic and negated atomic formulas such that for each atomic formula
with variables from x1, . . . , xr, exactly one of the atomic formula and its negation appears
as a conjunct. We will often denote such a type by t(x1, . . . , xr). If we wish to emphasize
the numbers of variables, we can also refer to such a type as an r-type.

3. Ehrenfeucht-Fräıssé Games vs. Multi-Structural Games

Ehrenfeucht-Fräıssé games capture indistinguishibility with respect to quantifier rank, while
multi-structural games capture indistinguishibility with respect to number of quantifiers.
Each of these two families of games yields a method for establishing lower bounds in the
corresponding fragment of first-order logic. Here, we compare the two methods and uncover
differences between them.

A property of τ -structures is a Boolean query on τ , i.e., a function P such that for every
τ -structure A, either P (A) = 1, or P (B) = 0, and P is invariant under isomorphisms. If
P (A) = 1, we say that A satisfies P . In the rest of the presentation, we shall say Spoiler
(resp. Duplicator) wins a certain EF game to mean that he (resp. she) has a winning strategy
in that game.

Method 3.1 (The EF Game Method). Let r ∈ N, and let P be a property of τ -structures.
Then the following statements are equivalent.

(a) No FO(τ)-sentence of quantifier rank r defines P .
(b) There are τ -structures A and B such that A satisfies P , B does not satisfy P , and

Duplicator wins the r-round EF game on (A,B).

The direction (b) ⇒ (a) captures the “soundness” of Method 3.1. It follows immediately
from the basic property of EF games that if Duplicator wins the r-round EF game on (A,B),
then every FO-sentence of quantifier rank at most r that is true on A is also true on B.
The direction (a) ⇒ (b) captures the “completeness” of Method 3.1. Its proof uses the fact
that FO-sentences of quantifier rank r are closed under disjunctions, and also the following
properties of the equivalence relation ≡qr

r , where A ≡qr
r B means that A and B satisfy the

same FO-sentences of quantifier rank at most r:

(a) ≡qr
r has finitely many equivalence classes.

(b) Each equivalence class of ≡qr
r is definable by a FO-sentence of quantifier rank r.

We now turn our attention to the MS game. The following result is an immediate
consequence of Theorem 2.3 and the determinacy of the MS game.

Method 3.2 (The MS Game Method). Let r ∈ N, and let P be a property of τ -structures.
Then the following statements are equivalent.



27:8 M. Carmosino, R. Fagin, N. Immerman, P. Kolaitis, J. Lenchner, and R. Sengupta Vol. 20:4

(a) No FO-sentence with r quantifiers defines P .
(b) Duplicator wins the r-round MS game on (A(P ),B(P )), where A(P ) is the set of all

τ -structures that satisfy P and B(P ) is the set of all τ -structures that do not.

Clearly, for every property P , at least one of A(P ) and B(P ) is infinite. Thus, it is
natural to ask: can the MS Game Method be used to prove inexpressibility results by
considering finite sets of structures only?

Let r ∈ N and consider the number-of-quantifiers equivalence relation ≡qn
r , where

A ≡qn
r B means that A and B satisfy the same FO-sentences with r quantifiers. The

following proposition contains some basic facts about ≡qn
r .

Proposition 3.3. For every r ∈ N, the following hold.

(a) ≡qn
r has finitely many equivalence classes.

(b) For every τ -structure A, the ≡qn
r -equivalence class of A is definable by the conjunction

of all FO-sentences with r quantifiers satisfied by A.
(c) Each ≡qn

r -equivalence class is definable by a FO-sentence, but it need not be definable
by a FO-sentence with r quantifiers.

Proof. The equivalence relation ≡qn
r has finitely many equivalence classes1 because, up to

logical equivalence, there are only finitely many FO-sentences with r quantifiers. Recall
that we made the assumption throughout that our fixed schema τ has finitely many relation
symbols.

Take a structure A and consider all FO-sentences with (at most) r quantifiers that are
true on A. Since, up to logical equivalence, there are finitely many such sentences, the
conjunction θA of these sentences is a FO-sentence. Moreover, θA defines the ≡qn

r -equivalence
class of A, because FO-sentences with r quantifiers are closed under negation. Indeed, if B
satisfies θA, then clearly every FO-sentence with r quantifiers that is true on A is also true
on B. The converse is also true, since, otherwise, we would have a FO-sentence ψ with r
quantifiers that is true on B but not on A. But then ¬ψ would be true on A and false on
B, which is a contradiction.

In general, the sentence θA need not be logically equivalent to any FO-sentences with
r quantifiers. To see this, consider the case r = 1 and a relational schema consisting of a
binary relation symbol R. Let A be the structure consisting of a self-loop R(a, a) and an
isolated node b. Then A satisfies ∃xR(x, x) ∧ ∃y¬R(y, y), but no FO-sentence with a single
quantifer logically implies ∃xR(x, x)∧ ∃y¬R(y, y), and hence the ≡qn

r -equivalence class of A
cannot be expressed by a FO-sentence with a single quantifier. This generalizes to r > 1.

Note also that, unlike FO-sentences of quantifier rank r, FO-sentences with r quantifiers
are not closed under finite disjunctions or finite conjunctions.

The next proposition shows that it suffices to consider finite sets in MS games.

Proposition 3.4. Let r ∈ N, let A and B be two sets of τ -structures, and let A′ and B′ be
the sets of τ -structures obtained from A and B by keeping exactly one structure from each
equivalence class ≡qn

r with members in A and B, respectively. Then the following hold.

(a) The sets A′ and B′ are finite.
(b) Duplicator wins the r-round MS game on (A,B) if and only if Duplicator wins the

r-round MS game on (A′,B′).

1Technically speaking, this is true only once we have fixed the schema τ . For the sake of readability, we
make this assumption throughout.
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Proof. The first part follows immediately from Proposition 3.3, by the fact that the equiva-
lence relation ≡qn

r has finitely many equivalence classes.
For the second part, since A′ ⊆ A and B′ ⊆ B, if Duplicator wins the r-round MS game

on A′ and B′, then Duplicator also wins the r-round MS game on A and B. For the other
direction, assume that Duplicator wins the r-round MS game on A and B. We have to show
that Duplicator wins the r-round MS game on A′ and B′. If this were not true, then Spoiler
wins the r-round MS game on A′ and B′. Hence, by Theorem 2.3, there is a FO-sentence ψ
with r quantifiers such that ψ is true on every structure in A′ and false on every structure
in B′. Since every structure in A (resp. B) is ≡qn

r to a structure in A′ (resp. B′), it follows
that ψ is true on every structure in A and false on every structure in B. Hence, by Theorem
2.3, Spoiler wins the r-round game on A and B, which is a contradiction.

By combining Method 3.2 and Proposition 3.4, we obtain a method that brings Method
3.2 closer to Method 3.1.

Method 3.5 (The MS Game Method revisited). Let r ∈ N, and let P be a property of
τ -structures. Then the following statements are equivalent.

(a) No FO-sentence with r quantifiers defines P .
(b) There are finite sets A and B of τ -structures such that every structure in A satisfies P ,

no structure in B satisfies P , and Duplicator wins the r-round MS game on (A,B).

Can Method 3.5 be further refined so that inexpressibility results about FO-sentences
with r quantifiers are proved by playing MS games on pairs of singleton sets? It is clear
that if Spoiler wins the r-round MS game on (A,B), then for every A ∈ A and every B ∈ B,
Spoiler wins the r-round MS game on ({A}, {B}). The next example shows that the converse
need not be true, even if r = 1.

Example 3.6. Consider a schema with two unary predicates R and G, and consider the
structures A, B, and C, where

• A has {a1, a2} as its universe, RA = {a1}, GA = {a2}.
• B has {b} as its universe, RB = {b}, GB = ∅.
• C has {c} as its universe, RC = ∅, GC = {c}.
It is easy to check that Spoiler wins the 1-round MS game on ({A}, {B}) and also on
({A}, {C}), but Duplicator wins the 1-round MS game on ({A}, {B,C}).

Thus, Duplicator may win the MS game on two sets of structures, but Duplicator may
not win the MS game on any pair of structures from these two sets.

What do MS games restricted to singleton sets of structures capture? The next result
gives the answer.

Theorem 3.7. Let r ∈ N, and let P be a property of τ -structures. Then the following
statements are equivalent.

(a) The property P is definable by a Boolean combination of FO-sentences each with r
quantifiers.

(b) For all τ -structures A and B, if A satisfies property P and Duplicator wins the r-round
MS game on ({A}, {B}), then B satisfies property P .

Proof. Assume that P is a property definable by a Boolean combination ψ of FO-sentences
each of which has r quantifiers. WLOG assume that ψ is in disjunctive normal form, i.e., ψ is
a disjunction

∨m
i=1 θi, where each θi is a conjunction of FO-sentences each with r quantifiers
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(observe that the negation of a FO-sentence with r quantifiers is a FO-sentence with r
quantifiers). Assume now that A is a structure that satisfies P and that Duplicator wins the
r-round MS game on ({A}, {B}). Since A satisfies P , there is some i ≤ m such that A |= θi.
Since Duplicator wins the r-round MS game on ({A}, {B}), Theorem 2.3 implies that every
FO-sentence with r quantifiers that is true on A is also true on B, so that every conjunct of
θi is true on B, and hence B |= θi. This implies that B |= ψ and so B satisfies P .

Conversely, assume that for all structures A and B, if A satisfies P and Duplicator wins
the r-round MS game on ({A}, {B}), then B satisfies P . For every structure A satisfying
P , let θA be the conjunction of all FO-sentences with r quantifiers satisfied by A. By
Proposition 3.3, θA is a FO-sentence that defines the ≡qn

r -equivalence class of A. Let ψ
be the (finite) disjunction

∨
A|=P θA. Clearly, ψ is a Boolean combination of FO-sentences

each with r quantifiers. We claim that ψ defines P . Assume first that B is a structure that
satisfies P . Then B |= θB, and θB is a disjunct of ψ, hence B |= ψ. Conversely, assume
that B is a structure such that B |= ψ. Hence, there is a structure A such that A satisfies
P and B |= θA. Since θA defines the ≡qn

r -equivalence class of A, it follows that A and B
satisfy the same FO-sentences with r quantifiers. Therefore, by Theorem 2.3, we have that
Duplicator wins the r-round MS game on ({A}, {B}), hence, by our hypothesis, we have
that B satisfies P .

As an immediate consequence of Theorem 3.7, we obtain the following method about
MS games on singleton sets.

Method 3.8. Let r ∈ N, and let P be a property of τ -structures. Then the following
statements are equivalent.

(a) There is no Boolean combination of FO-sentences each with r quantifiers that defines P .
(b) There are τ -structures A and B such that A satisfies P , B does not satisfy P , and

Duplicator wins the r-round MS game on ({A}, {B}).

Because of the disjunctive normal form and since FO-sentences with r quantifiers
are closed under negation, we could replace “Boolean combination” by “disjunction of
conjunctions” in the statements of Theorem 3.7 and Method 3.8.

In summary, we now have the following rather complete picture about the similarities
and the differences between EF games and MS games:

(a) r-round EF games played on a pair of structures capture expressibility by a FO-sentence
of quantifier rank r.

(b) r-round MS games played on sets of structures capture expressibility by a FO-sentence
with r quantifiers.

The sets of structures can be taken to be finite, but not singletons.
(c) r-round MS games played on a pair of structures (i.e., on singletons) capture express-

ibility by a Boolean combination of FO-sentences, each with r quantifiers.

The difference between (a) and (c) is because FO-sentences of quantifier rank r are closed
under disjunctions and conjunctions, whereas FO-sentences with r quantifiers are not.

We also have the following trade-off between the EF Game Method and the MS Game
Method in establishing inexpressibility results about a property P : for EF games, we can
work with pairs of structures, but we need to find them and to show that they have the
desired properties in Method 3.1; in contrast, for MS games we can collect all the structures
that satisfy property P on one side and all the structures that do not satisfy P on the other,
but then it may be harder to show that Duplicator wins the MS game on these sets.
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Duplicator’s “superpower” in MS games arises from the ability to make copies of
structures while the game is played. The next theorem says that, if enough copies of each
structure are made at the beginning of the game, then Duplicator does not need to make
any further copies during gameplay.

Theorem 3.9. Fix r ∈ N, and let A and B be two sets of finite τ -structures. Then, the
following are equivalent.

(a) Duplicator wins the r-round MS game on (A,B).
(b) Duplicator wins the r-round MS game without duplicating on (A+,B+), where A+ is

the multiset consisting of |A|r copies of each A ∈ A, and B+ is the multiset consisting
of |B|r copies of each B ∈ B.

Proof. Fix a number r of rounds. Let us refer to the ordinary MS game on (A,B) as
the original game, and to the MS game on (A+,B+) where Duplicator is not allowed to
make copies as the new game. Recall that the game proceeds by building a sequence
of configurations (A0,B0), (A1,B1), . . ., where A0 = A and B0 = B. In particular, the
configuration at the beginning of round t for 1 ≤ t ≤ r is (At−1,Bt−1), consisting of (t− 1)-
pebbled structures (including when t = 1). We define the configurations (A+

t ,B
+
t ) of the

new game analogously.

Claim 1. If Spoiler has a winning strategy in the original game on (A,B), then Spoiler has
a winning strategy in the new game on (A+,B+).

This direction is quite easy: if Spoiler has a winning strategy in the original game on
(A,B), then by the Fundamental Theorem of MS Games, this means there is some separating
FO sentence φ ∈ L(τ) such that φ is true of all A ∈ A, and φ is false of all B ∈ B. Since
the set of structures in A+ (resp. B+) is precisely the set of structures in A (resp. B), this
must also mean that φ is a separating sentence for (A+,B+) as well. Therefore, Spoiler
has a winning strategy in (A+,B+) for the original game. Then, since the only difference
between the old and new games is that Duplicator is more restricted in the new game,
Spoiler certainly has a winning strategy in the new game for (A+,B+) as well.

For an alternative argument involving an explicit description of Spoiler’s winning strategy,
we proceed as follows.

Fix an arbitrary instance (A,B) of the original game, and assume that Spoiler has a
winning strategy on this instance in the original game (and WLOG, assume that Duplicator
plays obliviously, so that Spoiler’s strategy is non-adaptive in the following sense: his
sequence of moves in the game is determined at the start of the game, before any move has
been played). Consider the corresponding instance (A+,B+) of the new game. We shall
define a strategy for Spoiler to win this instance (A+,B+) in the new game.

Suppose WLOG in round t, Spoiler plays in At−1 in the original game; this is well-defined
since Spoiler’s strategy is non-adaptive. We shall ensure that in round t of the new game,
Spoiler plays in A+

t−1. A symmetric argument will hold if Spoiler plays in Bt−1.
To lift Spoiler’s move in round t to a move in the new game, we will ensure that the

following invariant holds for all t satisfying 1 ≤ t ≤ r + 1:

Invariant 1. Every ⟨A | a1, . . . , at−1⟩ ∈ A+
t−1 in the new game is present in At−1 in the

original game. Similarly, every ⟨B | b1, . . . , bt−1⟩ ∈ B+
t−1 in the new game is present in Bt−1

in the original game.
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As long as Invariant 1 holds, Spoiler can take all copies of any particular pebbled
structure in the new game, and play the move he plays on that structure in the original
game; this would be a well-specified strategy.

To see that Invariant 1 holds under this strategy, we shall use induction on t. Clearly, it
is true for t = 1, by the definition of A+ and B+. Suppose Invariant 1 is true of t− 1, and
assume Spoiler follows the strategy above in round t.

Consider a pebbled structure ⟨A | a1, . . . , at⟩ ∈ A+
t in the new game. This structure

arose because in round t, Spoiler played pebble t on element at ∈ A in the pebbled structure
⟨A | a1, . . . , at−1⟩. Therefore, the structure ⟨A | a1, . . . , at−1⟩ was in A+

t−1. By induction,
this structure ⟨A | a1, . . . , at−1⟩ was also in At−1 in the original game. By our specified
strategy, Spoiler played pebble t on at ∈ A in the new game precisely because he also made
that same move in the original game. Therefore, the structure ⟨A | a1, . . . , at⟩ exists at the
end of round t in the original game (and hence is in At).

Now consider a pebbled structure ⟨B | b1, . . . , bt⟩ ∈ B+
t in the new game. This structure

arose in round t when Duplicator played pebble t on element bt ∈ B on the pebbled structure
⟨B | b1, . . . , bt−1⟩. Hence, ⟨B | b1, . . . , bt−1⟩ is in B+

t−1. By induction, this pebbled structure
⟨B | b1, . . . , bt−1⟩ was also in Bt−1 in the original game. Since Spoiler plays his round t move
in At−1, we know Duplicator moves obliviously in Bt−1 in the original game, and makes all
possible moves, including a move that plays pebble t on bt ∈ B. (Note that we make no
assumptions about Duplicator’s strategy in the new game.) Hence, the pebbled structure
⟨B | b1, . . . , bt⟩ arises during round t in the original game (and hence is in Bt).

Therefore, Invariant 1 is true of t, and so by induction, Spoiler’s strategy is well-specified.
By assumption, we used a winning strategy for Spoiler in the original game on (A,B);

therefore, at the end of r rounds in the original game, no pair of pebbled structures from
Ar and Br forms a matching pair. Suppose in the new game there are pebbled structures
⟨A | a1, . . . , ar⟩ ∈ A+

r and ⟨B | b1, . . . , br⟩ ∈ B+
r that form a matching pair. By Invariant

1 above, these also appear in Ar and Br in the original game, which is a contradiction.
Therefore, after r rounds, no pair of pebbled structures from A+

r and B+
r form a matching

pair, and hence Spoiler wins the new game on (A+,B+).

Claim 2. If Duplicator has a winning strategy in the original game on (A,B), then she has
a winning strategy in the new game on (A+,B+).

Fix an arbitrary instance (A,B) of the original game, and consider the corresponding
instance (A+,B+) of the new game. We shall define a strategy for Duplicator in this instance
(A+,B+) of the new game, and prove that it is well-specified. Once we do this, we shall
show that this strategy in the new game essentially “simulates” the oblivious strategy in the
original instance (A,B) in the original game; therefore, if Duplicator has a winning strategy
in the original instance, then her oblivious strategy would win, and we would then be able
to conclude that she wins in the new game as well.

To describe Duplicator’s strategy, we need to describe her move in round t of the new
game, for each t satisfying 1 ≤ t ≤ r. For this, we will ensure that the following invariant
holds for all t satisfying 0 ≤ t ≤ r + 1:

Invariant 2. For each ⟨A | a1, . . . , at⟩ ∈ A+
t , there are |A|r−t copies of it in A+

t . Similarly,
for each ⟨B | b1, . . . , bt⟩ ∈ B+

t , there are |B|r−t copies of it in B+
t .

Note that Invariant 2 is certainly true for t = 0, by the definition of A+ and B+. We
proceed inductively, so suppose Invariant 2 is true of t− 1. Assume WLOG that in round t
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of the new game, Spoiler plays in A+
t−1. For each ⟨A | a1, . . . , at−1⟩ ∈ A+

t−1, Spoiler chooses

some at ∈ A, and plays pebble t on at, creating ⟨A | a1, . . . , at⟩ ∈ A+
t . By induction, there

are |A|r−t+1 copies of ⟨A | a1, . . . , at−1⟩, but at most |A| distinct new pebbled structures that
can be created as a result of playing pebble t. So, by the pigeonhole principle, there must
be some t-pebbled structure ⟨A | a1, . . . , at⟩ arising from ⟨A | a1, . . . , at−1⟩ that has at least
|A|r−t copies after this move. We call this move by Spoiler (i.e., playing pebble t on at ∈ A)
his favorite move on the pebbled structure ⟨A | a1, . . . , at−1⟩ ∈ A+

t−1. Duplicator keeps these

|A|r−t copies of ⟨A | a1, . . . , at⟩ in A+
t (breaking ties arbitrarily in case there are multiple

such structures with at least that many copies), and deletes all other t-pebbled structures
arising from ⟨A | a1, . . . , at−1⟩. Note that deleting structures only makes it harder for
Duplicator to win. This ensures that each set of |A|r−t+1 copies of ⟨A | a1, . . . , at−1⟩ ∈ A+

t−1

gives rise to |A|r−t copies of some ⟨A | a1, . . . , at⟩ ∈ A+
t (as a result of Spoiler playing his

favorite move on those pebbled structures), and these are the only copies arising from that
set.

Duplicator also has to respond in B+
t−1. By induction, each structure ⟨B | b1, . . . , bt−1⟩ ∈

B+
t−1 has |B|r−t+1 copies. For each bt ∈ B, Duplicator plays pebble t on element bt in exactly

|B|r−t of these copies. This ensures that each set of |B|r−t+1 copies of ⟨B | b1, . . . , bt−1⟩ ∈ B+
t−1

gives rise to |B| new sets of t-pebbled structures in B+
t , each consisting of |B|r−t copies of

some ⟨B | b1, . . . , bt⟩ ∈ B+
t (and each corresponding to a distinct choice of bt), and these are

the only copies arising from that set.
Therefore, Invariant 2 is true of t; by induction, Duplicator’s strategy is well-specified.
We shall now prove that, if Duplicator has a winning strategy for (A,B) in the original

game, then her strategy described above is winning in the new game for (A+,B+). Assume
henceforth that Duplicator has a winning strategy for (A,B) in the original game. In
particular, her oblivious strategy wins in the original game.

Consider any sequence of moves by Spoiler in the new game on (A+,B+), followed by
Duplicator’s responses as specified by her strategy above. This describes a complete run of
the new game over r rounds. We shall now lift this to a complete run of the original game
over r rounds. To do so, we shall maintain the following invariant for 0 ≤ t ≤ r:

Invariant 3. The multiset A+
t contains |A|r−t copies of a pebbled structure ⟨A | a1, . . . , at⟩

if and only if At contains one copy of the same structure (and similarly for B+
t and Bt).

Note that Invariant 3 is certainly true for i = 0, by the definition of A+ and B+.
We proceed inductively, so suppose Invariant 3 is true of t − 1. Assume WLOG that in
round t of the new game, Spoiler plays in A+

t−1. We know from Invariant 2 that each

⟨A | a1, . . . , at−1⟩ ∈ A+
t−1 comes in a set of |A|r−t+1 copies. By induction, there is one copy

of ⟨A | a1, . . . , at−1⟩ in At−1 in the original game. We shall specify Spoiler’s move on this
copy in the original game, in order to construct our valid run. By Duplicator’s specified
strategy in the new game, this set of |A|r−t+1 copies gives rise (through Spoiler’s favorite
move) to a set of |A|r−t copies of some ⟨A | a1, . . . , at⟩ ∈ A+

t , with all other copies deleted.
In the original game, we shall have Spoiler play his favorite move on the copy as well; namely,
we shall have him play pebble t on element at ∈ A, creating ⟨A | a1, . . . , at⟩ ∈ At. We repeat
this process for all other structures in At−1, and hence specify Spoiler’s move in round
t completely. We have Duplicator respond obliviously in Bt−1 in round t in the original
game. By Invariant 2, we know each ⟨B | b1, . . . , bt−1⟩ ∈ B+

t−1 comes in a set of |B|r−t+1

copies, which gives rise to |B| sets each comprised of |B|r−t copies of ⟨B | b1, . . . , bt⟩ ∈ B+
t
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(each such set corresponding to a distinct choice of bt). By induction, there was one copy
of ⟨B | b1, . . . , bt−1⟩ in Bt−1. When Duplicator responds obliviously, she creates one copy
of each ⟨B | b1, . . . , bt⟩ ∈ Bt in the original game (one copy for each distinct choice for bt).
Therefore, each such copy rising in the original game corresponds to one of the sets of |B|r−t

copies in the new game. This completely specifies Duplicator’s move in round t completely,
and also proves that Invariant 3 is true of t as well, finishing the induction.

This specifies one particular run of the original game on (A,B), where in each round,
Spoiler plays his favorite move for that round on all structures in his side, and Duplicator
responds obliviously on the other side. Since by assumption, this is a winning instance for
Duplicator, this means that her oblivious strategy wins against any Spoiler strategy, and
so in particular on this run of the game composed of Spoiler’s sequence of favorite moves
as well. In particular, there is some ⟨A | a1, . . . , ar⟩ ∈ Ar and some ⟨B | b1, . . . , br⟩ ∈ Br

forming a matching pair. By Invariant 3, this matching pair is present in (A+
r ,B+

r ) as well,
and so Duplicator wins this run of the new game.

Since Spoiler’s moves in the new game were arbitrary, it follows that Duplicator has a
winning strategy in the new game, and we are done.

4. Play-on-Top Moves in MS Games

In [FLRV21], the authors draw attention to a surprising difference between the EF game
and the MS game. Specifically, in the EF game, Spoiler gains no advantage by ever placing
a pebble on top of an existing pebble or a constant. As it turns out, there are instances
of the MS game where Spoiler wins, but only if he may sometimes play “on top”, i.e., he
places a pebble on a constant or on an existing pebble. In this section, we delineate the
expressive power of the variant of the MS game in which Spoiler never plays on top.

We begin with an example which will be used later, in which Spoiler wins the 3-round
MS game without playing on top. For s = 3, 4, let LO(s) be the linear order of size s, and
consider the sentence

Φ3,∀ : ∀x1∃x2∃x3(x1 < x2 < x3 ∨ x2 < x3 < x1). (4.1)

This sentence says that every element has two smaller elements or two larger elements, and so
LO(4) |= Φ3,∀, but LO(3) |= ¬Φ3,∀. Since Φ3,∀ is a separating sentence for ({LO(4)}, {LO(3)}),
Spoiler wins the 3-round MS game on ({LO(4)}, {LO(3)}). Moreover, it is easy to verify
that, by following the sentence Φ3,∀, Spoiler can win the MS game on ({LO(4)}, {LO(3)})
without ever playing on top.

Ideas and results in [FLRV21] and [FLVW22] yield examples where Spoiler wins, but
only by playing on top. We give a self-contained proof that Spoiler sometimes needs to play
on top, using an example that involves smaller structures and only three rounds (which is
the fewest rounds for which playing on top may make a difference if there are no constants
in τ).

See Figure 2, whose left side contains RT(4), a rooted tree whose longest branch has 4
nodes and, LO(4). The right side contains RT(3), whose longest branch has 3 nodes, and
LO(3). Let τ have the single binary relation symbol <, where x < y means that x is a
descendent of y in the trees as drawn, so that larger nodes consistently appear higher on the
page.

The following proposition shows that Spoiler needs to play on top to win this instance
in the 3-round MS game.
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Figure 2: A rooted tree RT(4) whose longest branch has 4 nodes, and a linear order LO(4)
of 4 nodes, drawn as a rooted tree (left); a rooted tree RT(3) whose longest branch
has 3 nodes and a linear order LO(3) of 3 nodes (right).

Proposition 4.1. Consider the sets A = {RT(4), LO(4)} and B = {RT(3), LO(3)} as
depicted in Figure 5. Spoiler wins the 3-round MS game on (A,B), but cannot win this game
without playing on top.

Proof. Consider the FO-sentence

Φ3,∃ : ∃x1∀x2∃x3
(

x2 < x1 → x3 > x1 ∧

x2 > x1 → (x3 ̸= x2 ∧ x3 > x1) ∧

x2 = x1 → x3 < x1

)
, (4.2)

which asserts that there is an element with one smaller element and two larger elements.
Clearly, Φ3,∃ has 3 quantifiers and is a separating sentence for (A,B); hence Theorem 2.3
implies that Spoiler wins the 3-round MS game on (A,B). We will show that every winning
strategy for Spoiler in the 3-round MS game requires that Spoiler plays on top. As a stepping
stone, we will first establish the following claim.

Claim 1: For every winning strategy for Spoiler in the 3-round MS game on (A,B), the
following hold:

(a) Spoiler’s round 1 move must be Play-Left.
(b) Spoiler’s round 1 play on RT(4) must be on either B11 or B12; furthermore, Spoiler’s

round 1 play on LO(4) must be on either B2 or B3.
(c) Spoiler’s round 2 move must be Play-Right.
(d) Spoiler’s round 3 move must be Play-Left.

Note that (a), (c), and (d) also mean that every 3-quantifier separating sentence for
(A,B) must have ∃∀∃ as its quantifier prefix.

Proof of Claim 1. (a) We begin by showing that Spoiler’s first-round move must be on the
left side. For this, it suffices to show that if Spoiler’s first-round move is on the right
side, then Duplicator can maintain a matching pair with one copy of RT(4) and one
copy of RT(3) for three rounds. Indeed, in response to a first-round move by Spoiler on
L1 in RT(3), Duplicator plays on B1 in one copy of RT(4), and then easily survives two
more rounds just on this pair of pebbled structures (e.g., in response to a second-round
Spoiler play on B12, Duplicator plays on L11 in one copy and L12 in another copy of
the RT(3)). First-round Spoiler plays on L11 or L21 are met by a Duplicator play on
B21 in one copy of RT(4), and first-round Spoiler plays on L12 or L22 are met by a
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Duplicator play on B22 in a copy of RT(4); in each case, Duplicator readily survives
two more rounds on just this pair of structures. Thus, Spoiler’s round 1 move must be
Play-Left.

(b) If Spoiler’s first-round move on RT(4) is not on B11 or on B12, then once again,
Duplicator survives three rounds just on the pair ({RT(4)}, {RT(3)}) by keeping a
matching pair between two copies via the following responses in a copy of RT(3):
B1↪→L1, B13↪→L12, B21↪→L21, B22↪→L22.

Furthermore, if Spoiler’s first-round move on LO(4) is on B1 or B4, Duplicator
survives three rounds just on the pair ({LO(4)}, {LO(3)}) by responding on L1 or L3
respectively. Therefore, Spoiler’s first-round move on LO(4) must be on B2 or B3.

(c) Figure 3 now depicts the state of the game after the first round (with Spoiler having
played on B12 on the RT(4) and on B3 on the LO(4)), showing Duplicator’s oblivious
response on the right side as well.
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Figure 3: Configuration after round 1 of the MS game, with a particular choice of Spoiler’s
round 1 moves in red on the left, and Duplicator’s oblivious responses in red on
the right.

We now show that Spoiler’s second-round moves must be on the right side. We
can focus entirely on the linear orders on the two sides. It suffices to consider Spoiler
playing B3 in round 1 (as B2 would be symmetric). Figure 4 depicts the linear orders
on the two sides after round 1.
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B1
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Figure 4: Linear orders with moves in red after the first round of the MS game.

If Spoiler’s second-round move on LO(4) is on B3, he already plays on top, and we
are done. If Spoiler’s second-round move is on B1 in LO(4), then Duplicator would play
L1 in the second and third copies, and survive another round on one of these pairs. If
Spoiler’s second-round move is on B2, Duplicator would play L1 in the second copy
and L2 in the third copy, and survive another round on one of these pairs. Finally, if
Spoiler’s second-round move is on B4, then Duplicator would play L3 on the second
copy and survive one more round on this pair. It follows that Spoiler’s round 2 move
must be Play-Right.

(d) If Spoiler’s third-round move is also on the right side, then it is easy to check that
Duplicator can maintain a matching pair with the LO(4) on the left and the third copy
of LO(3) shown on the right. This proves Claim 1.

Now that Claim 1 has been established, we are ready to show that Spoiler cannot win
the 3-round MS game on (A,B) without playing on top. We can make this argument by
considering just the linear orders. By symmetry, we may assume that Spoiler’s round 1 move
on the LO(4) is on B3. Let us focus on the second copy of LO(3) on the right. If Spoiler’s
second-round move on that copy is on L3, then Duplicator responds on B4 in LO(4) and
wins on just this pair easily. Therefore, if Spoiler is to not move on top, he must play on L1
on this second copy of LO(3), and on L1 or L2 on the third copy of LO(3). If Spoiler plays
on L2, then Duplicator responds on B2 in LO(4) and is guaranteed a matching pair between
LO(4) and one of the copies of LO(3); if Spoiler plays on L1, then Duplicator responds on
B1, and the same conclusion holds.

This completes the proof that Spoiler must play on top in order to win the 3-round MS
game on (A,B).

We now analyze the variant of the MS game in which Spoiler never plays on top. Recall
that a type over an r-tuple of distinct variables, x1, . . . , xr, is a conjunction of atomic and
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negated atomic formulas such that for each atomic formula with variables from x1, . . . , xr,
exactly one of the atomic formula and its negation appears as a conjunct.

We assume that every FO-sentence with r quantifiers is in prenex normal form, that its
quantifier-free part is a disjunction of types, and that the quantifier prefix is Q1x1 . . . Qrxr,
where each Qj is the quantifier ∃ or the quantifier ∀. In other words, we assume that we
work with FO-sentences of the form Q1x1 . . . Qrxrθ, where θ is a disjunction of types.

Definition 4.2. Let ψ be a FO-sentence of the form Q1x1 . . . Qrxrθ, where θ is a disjunction
of types.

• A type t(x1, . . . , xr) occurring as a disjunct of θ is non-replicating in ψ if conditions (a)
and (b) below hold:
(a) For every two distinct variables xi and xj , if the equality xi = xj appears in

t(x1, . . . , xr), then exactly one of the following two conditions holds:
(i) Both variables xi and xj are universally quantified;
(ii) One of the two variables is universally quantified, the other variable is exis-

tentially quantified, and the existential quantifier appears before the universal
quantifier in the quantifier prefix (that is, if Qi = ∃ and Qj = ∀, then we must
have i < j).

(b) If an equality ci = xj appears in t(x1, . . . , xr), then the variable xj is universally
quantified.

• A type t(x1, . . . , xr) occurring as a disjunct of θ is replicating in ψ if t(x1, . . . , xr) is not
non-replicating in ψ.

• ψ is a non-replicating sentence if every type occurring as a disjunct of θ(x1, . . . , xr) of ψ
is non-replicating in ψ.

• ψ is a replicating sentence if it is not a non-replicating sentence (i.e., at least one type
occurring as a disjunct of θ(x1, . . . , xr) of ψ is replicating in ψ).

We illustrate the notion of a non-replicating sentence with several examples in which
the < relation is assumed to range over the elements of rooted trees (with not all elements
necessarily related); thus, instead of spelling out full types explicitly, we will often give a
part of the type that determines the full type.

Example 4.3. If ψ ≡ Q1x1 . . . Qrxrθ is such that every type in θ is equality-free, then ψ is
non-replicating.

Example 4.4. Consider the FO-sentence

Φ3,∀ : ∀x1∃x2∃x3(x1 < x2 < x3 ∨ x2 < x3 < x1), (4.3)

encountered at the beginning of this section. We claim that both Φ3,∀ and ¬Φ3,∀ are
non-replicating sentences.

To see this, first observe that the quantifier-free part of Φ3,∀ consists of two equality-free
types, hence Φ3,∀ is a non-replicating sentence by Example 4.3.

Secondly, the negation ¬Φ3,∀ of Φ3,∀ is the FO-sentence

∃x1∀x2∀x3¬(x1 < x2 < x3 ∨ x2 < x3 < x1). (4.4)

This is a non-replicating sentence because the possible equalities in the types of its quantifier-
free part are x1 = x2, x1 = x3, and x2 = x3. The first two involve the existentially quantified
variable x1 and the universally quantified variables x2 or x3 (hence, they satisfy condition
(ii) in Definition 4.2(a)), while the third involves the two universally quantified variables x2
and x3 (hence, it satisfies condition (i) in Definition 4.2(a)).
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Example 4.5. Consider the FO-sentence

Φ3,∃ : ∃x1∀x2∃x3
(

x2 < x1 → x3 > x1 ∧

x2 > x1 → (x3 ̸= x2 ∧ x3 > x1) ∧

x2 = x1 → x3 < x1

)
. (4.5)

This sentence asserts that there is an element with one smaller element and two larger
elements. We claim that Φ3,∃ is a non-replicating sentence, but its negation ¬Φ3,∃ is
replicating.

First, it is easy to see that the quantifier-free part of Φ3,∃ is logically equivalent to a
disjunction of types in which the only equality is x1 = x2. Since x1 is existentially quantified
and x2 is universally quantified in Φ3,∃, the sentence Φ3,∃ is non-replicating. The negation
¬Φ3,∃ of Φ3,∃ is the FO-sentence

∀x1∃x2∀x3 ¬
(

x2 < x1 → x3 > x1 ∧

x2 > x1 → (x3 ̸= x2 ∧ x3 > x1) ∧

x2 = x1 → x3 < x1

)
, (4.6)

By pushing the negation inside, it is easy to see that, as a disjunction of types, the quantifier-
free part of ¬Φ3,∃ includes the type x1 = x2 < x3 as a disjunct. Since x1 is universally
quantified and x2 is existentially quantified in ¬Φ3,∃, the sentence ¬Φ3,∃ is replicating.

We are now ready to state and prove the main result about the expressive power of the
variant of the MS game in which Spoiler never plays on top.

Theorem 4.6. Let r ∈ N, and let A and B be two sets of τ -structures. Then the following
statements are equivalent:

(a) Spoiler wins the r-round MS game on (A,B) without ever playing on top.
(b) There is a separating sentence ψ for (A,B) of the form Q1x1 . . . Qrxrθ(x1, . . . , xr),

where θ is quantifier-free; moreover, if S is a winning strategy for Spoiler obtained from
ψ, then for every pebbled structure ⟨A | a1, . . . , ar⟩ with A ∈ A, and for every pebbled
structure ⟨B | b1, . . . , br⟩ with B ∈ B arising by using this strategy, the following hold:

(i) The disjunct of θ satisfied by (a1, . . . , ar) is a non-replicating type in ψ.
(ii) The disjunct of ¬θ satisfied by (b1, . . . , br) is a non-replicating type in ¬ψ.

Proof. Assume that Spoiler wins the r-round MS game on A and B without ever playing
on top. By Theorem 2.4, there is a FO-sentence ψ ≡ Q1x1 . . . Qrxrθ(x1, . . . , xr) with r
quantifiers such that ψ is separating for (A,B); moreover, if S is a winning strategy for
Spoiler obtained from ψ, then for every pebbled structure ⟨A | a1, . . . , ar⟩ with A ∈ A,
and every pebbled structure ⟨B | b1, . . . , br⟩ with B ∈ B arising by using this strategy,
we have that A |= θ(a1, . . . , ar) and B |= ¬θ(b1, . . . , br). Fix two such pebbled structures
⟨A | a1, . . . , ar⟩ with A ∈ A and ⟨B | b1, . . . , br⟩ with B ∈ B. Let t(x1, . . . , xr) be the type
that occurs as a disjunct of θ(x1, . . . , xr) and is satisfied by (a1, . . . , ar). We claim that
t(x1, . . . , xr) is a non-replicating type in ψ. Otherwise, one of the following three things
would happen: (1) t(x1, . . . , xr) would contain an equality xi = xj , where both the i-th and
the j-th quantifier of ψ are ∃; this implies that ai = aj , but since both ai and aj were played
by Spoiler, this means that Spoiler played on top, which is a contradiction. (2) t(x1, . . . , xr)
would contain an equality xi = xj , where the i-th quantifier of ψ is ∀, the j-th quantifier of
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ψ is ∃, and i < j; this implies that ai = aj , but since aj was played by Spoiler, this means
that Spoiler played on top, which is a contradiction. (3) t(x1, . . . , xr) would contain an
equality ci = xj , where the j-th quantifier of ψ is ∃; this implies that ci = aj , but aj was
played by Spoiler, hence Spoiler played on top, which is a contradiction.

A similar argument shows that the disjunct of ¬θ satisfied by (b1, . . . , br) is a non-
replicating type in ¬ψ.

Conversely, assume that there is a separating sentence ψ for (A,B) of the form
Q1x1 . . . Qrxrθ(x1, . . . , xr), where θ is quantifier-free; further, assume that if S is a winning
strategy for Spoiler obtained from ψ, then the properties asserted in (b) hold. We claim that
Spoiler never plays on top using strategy S. Consider a pebbled structure ⟨A | a1, . . . , ar⟩
with A ∈ A and a pebbled structure ⟨B | b1, . . . , br⟩ with B ∈ B arising by using this
strategy. Let us examine the j-th move of Spoiler, where 1 ≤ j ≤ r. There are two cases
to consider, namely, the case in which Qj = ∃ and the case in which Qj = ∀. If Qj = ∃,
then Spoiler has to place the j-th pebble on an element of A. Since Spoiler plays using the
strategy S, Part (a) of Theorem 2.4 tells that A |= θ(a1, . . . , ar). Consequently, the tuple
(a1, . . . , ar) must satisfy a type t(x1, . . . , xr) occurring as a disjunct of θ. Thus, t(x1, . . . , xr)
must be a non-replicating type in ψ. Since the j-th quantifier of ψ is ∃, the type t(x1, . . . , xr)
cannot contain an equality of the form xi = xj with i < j or an equality of the form ci = xj ;
instead, it must contain ¬(xi = xj) and ¬(ci = xj). Therefore, ai ̸= aj , for every i < j, and
also ci ̸= aj , where ci is a constant; hence, Spoiler does not play on top on A. If Qj = ∀,
the argument is similar using the fact that the type in ¬θ satisfied by (b1, . . . , br) must be
non-replicating in ¬ψ.
Corollary 4.7. Let r ∈ N, and let A and B be two sets of τ -structures. If there is a
separating sentence ψ for (A,B) with r quantifiers such that both ψ and ¬ψ are non-
replicating sentences, then Spoiler wins the r-round MS game on (A,B) without ever playing
on top.

Consider the variant of the MS game in which Spoiler never plays on top on the left and
the variant of the MS game in which Spoiler never plays on top on the right. The proof of
Theorem 4.6 can be adapted to yield analogous results for these two variants. For example,
we have the following results, whose proofs we omit.

Theorem 4.8. Let r ∈ N, and let A and B be two sets of τ -structures. Then the following
statements are equivalent:

(a) Spoiler wins the r-round MS game on (A,B) without ever playing on top on the left
side.

(b) There is a separating sentence ψ for (A,B) of the form Q1x1 . . . Qrxrθ(x1, . . . , xr),
where θ is quantifier-free; moreover, if S is a winning strategy for Spoiler obtained from
ψ, then for every ⟨A | a1, . . . , ar⟩ with A ∈ A arising by using this strategy, the disjunct
of θ satisfied by (a1, . . . , ar) is a non-replicating type in ψ.

Corollary 4.9. Let r ∈ N, and let A and B be two sets of τ -structures. If there is a
separating sentence ψ for (A,B) with r quantifiers such that ψ is a non-replicating sentence,
then Spoiler wins the r-round MS game on (A,B) without ever playing on top on the left
side.

We revisit Example 4.4. Since the sentence Φ3,∀ asserts that every element has two
smaller elements or two larger elements, Φ3,∀ is a separating sentence for ({LO(4)}, {LO(3)}).
According to Example 4.4, both Φ3,∀ and ¬Φ3,∀ are non-replicating sentences, hence Corollary
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4.7 implies that Spoiler can win the 3-round MS game on ({LO(4)}, {LO(3)}) without playing
on top. As mentioned earlier, we can also verify this directly. Note that Φ3,∀ is a separating
sentence for ({LO(4)}, {RT(3), LO(3)}) as well, hence Corollary 4.7 implies that Spoiler can
win the 3-round MS game on ({LO(4)}, {RT(3), LO(3)}) without playing on top.

For a different application, we claim that Spoiler can win the 3-round MS game on
({RT(4), LO(4)}, {LO(3)}) without playing on top. For this, we first let inc(x, y) be the
formula ¬(x < y) ∧ ¬(y < x) ∧ (x ̸= y), asserting that x and y are distinct incomparable
elements, and then let Ψ3,∀ be the sentence

Ψ3,∀ : ∀x1∃x2∃x3(x1 < x2 < x3 ∨ x2 < x3 < x1 ∨ inc(x1, x2) ∧ inc(x1, x3) ∧ x2 ̸= x3),

which asserts that every element has two bigger elements, or two smaller elements, or two
different elements that are incomparable with it. Clearly, Ψ3,∀ is a separating sentence for
({RT(4), LO(4)}, {LO(3)}); moreover, it is easy to see that both Ψ3,∀ and its negation are
non-replicating sentences, hence Corollary 4.7 implies that Spoiler can win the 3-round MS
game on ({RT(4), LO(4)}, {LO(3)}) without playing on top.

Finally, Proposition 4.1 and Corollary 4.7 imply that there is no FO-sentence ψ with 3
quantifiers such that ψ is a separating sentence for ({RT(4), LO(4)}, {RT(3), LO(3)}) and
both ψ and ¬ψ are non-replicating sentences.

Corollary 4.7 gives a sufficient condition for Spoiler to win the r-round MS game without
ever playing on top, namely, it suffices to have a separating sentence such that both the
sentence and its negation are non-replicating. It is natural to ask whether this condition is
also necessary, in which case it would replace the more complicated necessary and sufficient
condition in Theorem 4.8. The next result answers this question in the negative.

B13

B12

B11

B1

B21

B22

L12

L11

L1

L21

L22

Figure 5: A rooted tree RT(4) whose longest branch has 4 nodes (left); a rooted tree RT(3)
whose longest branch has 3 nodes (right).

Theorem 4.10. Let RT(4) and RT(3) be the rooted trees in Figure 5. Then the following
statements are true.

(a) Spoiler can win the 3-round MS game on ({RT(4)}, {RT(3)}) without playing on top.
(b) There is no FO-sentence ψ with 3 quantifiers such that

(i) ψ is a separating sentence for ({RT(4)}, {RT(3)});
(ii) both ψ and ¬ψ are non-replicating sentences.

Proof. We claim that Spoiler can win the 3-round MS game on ({RT(4)}, {RT(3)}) without
playing on top by playing his first-round moves on the left, his second-round moves on the
right, and his third-round moves on the left as described below.

• Spoiler plays first by placing a pebble on B12 in RT(4) on the left.
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• After Duplicator makes five copies of RT(3) on the right and places a pebble on a different
element of each copy, Spoiler places pebbles on each copy of RT(3) as follows:
(a) In response to L1 on the first copy of RT(3), Spoiler pebbles L11.
(b) In response to L11 on the second copy of RT(3), Spoiler pebbles L1,
(c) In response to L12 on the third copy of RT(3), Spoiler pebbles L21.
(d) In response to L21 on the fourth copy of RT(3), Spoiler pebbles L1.
(e) In response to L22 on the fifth copy of RT(3), Spoiler pebbles L11.

• After Duplicator makes six copies of RT(4) on the left and places a pebble on a different
element of each copy, Spoiler places pebbles on each copy of RT(4) as indicated in Figure
6, where the first-round moves of the two players are colored red, the second-round-moves
of the two players are colored blue, and Spoiler’s third-round moves are colored green.

Figure 6: The configuration of the 3-round MS game after Spoiler’s moves in the 3 rounds.
Note that Spoiler has played Pebble-Left in round 1 with red, Pebble-Right in
round 2 with blue, and Pebble-Left in round 3 with green.

From Figure 6, it is clear that Duplicator can not play on the right in the third round so that
a partial isomorphism is maintained between one of the six copies of RT(4) and one of the
five copies of RT(3). For instance, in four copies of RT(4), the green pebble played by Spoiler
are above the red one; in order to maintain a partial isomorphism with one of these copies,
there are only two copies of RT(3) for Duplicator as candidates – and in both of them, any
choice of a green pebble above a red pebble would break all isomorphisms with the copies of
RT(4) on the left. Similarly, there are two copies of RT(4) with a green pebble below a red
pebble, so Duplicator has only two candidates among the copies of RT(3) to place a green
pebble below a red pebble – and in both of them, the blue pebble is comparable with at
least one other pebble, which is not true in the corresponding copies of RT(4) on the left.
Thus, Spoiler wins the 3-round MS game on ({RT(4)}, {RT(3)}). Moreover, only B12 in the
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third copy of RT(4) has two pebbles placed on it with the red pebble placed by Spoiler in
the first round and the blue pebble placed by Duplicator in the second round. Thus, Spoiler
wins the 3-round MS game on ({RT(4)}, {RT(3)}) without playing on top. This completes
the proof of the first part of the theorem.

To prove the second part of the theorem, we claim that Spoiler wins the 3-round MS
game on ({RT(4)}, {RT(3)}) without playing on top only if Spoiler plays on the left in the
first round, on the right in the second round, and on the left in the third round; moreover,
Spoiler’s round first move on RT(4) must be on either B11 or B12. The argument about
Spoiler’s first-round move is similar to the one in the proof of Proposition 4.1.

We claim that if Spoiler’s first-round move is on the right, then Duplicator can maintain
a partial isomorphism between one copy of RT(4) and one copy of RT(3) for three rounds.
Indeed, in response to a first-round move by Spoiler on L1 in RT(3), Duplicator plays on
B1 in one copy of RT(4), and then easily survives two more rounds (e.g., in response to a
second-round Spoiler play on B12, Duplicator plays on L11 in one copy and L12 in another
copy of the RT(3)). First-round Spoiler plays on L11 or L21 are met by a Duplicator play
on B21 in one copy of RT(4), and first-round Spoiler plays on L12 or L22 are met by a
Duplicator play on B22 in a copy of RT(4); in each case, Duplicator readily survives two
more rounds on just this pair of structures. If Spoiler’s first-round move on RT(4) is not on
B11 or on B12, then once again, Duplicator survives three rounds just on ({RT(4)}, {RT(3)})
by maintaining a partial isomorphism between two copies via the following responses in a
copy of RT(3): B1↪→L1, B13↪→L12, B21↪→L21, B22↪→L22.

We have established that Spoiler wins only if his first-round move is on B12 or on B12
on the left. Using this, it is easy to verify that Spoiler must play his second-round moves
on the right and his third-round moves on the left. Otherwise, Duplicator easily survives
two more rounds. For example, if Spoiler plays B12 in the first round and B1 in the second
round, then Duplicator plays L12 and L1 in the third copy of RT(3), and then survives the
third round.

So far, we have shown that Spoiler wins the 3-round MS game on ({RT(4)}, {RT(3)})
without playing on top only if Spoiler plays on the left in the first round, on the right in the
second round, and on the left in the third round. Suppose now that there is a FO-sentence
ψ with 3 quantifiers that is separating for ({RT(4)}, {RT(3)}) and such that both ψ and ¬ψ
are non-replicating. Corollary 4.7 implies that if Spoiler follows ψ, then Spoiler wins the
3-move MS game on ({RT(4)}, {RT(3)}) without playing on top. Therefore, ψ must have a
quantifier prefix of the form ∃∀∃. Proposition 4.11, however, implies that at least one of the
sentences ψ and ¬ψ must be a non-replicating sentence, which is a contradiction. The proof
of the theorem is now complete.

The proof of Theorem 4.10 shows that there are situations in which for Spoiler to win
without ever playing on top, he must alternate between the left side and the right side
more than once. In such cases, the separating sentence extracted from Spoiler’s winning
strategy has at least three alternations of quantifiers. The next proposition asserts that no
sentence with three alternations of quantifiers has the property that both the sentence and
its negation are non-replicating sentences.

Proposition 4.11. Let Q1x1 . . . Qrxrθ be a FO-sentence with r variables such that r ≥ 3
and θ is quantifier-free. If both ψ and ¬ψ are non-replicating sentences, then neither ψ nor
¬ψ contains the quantifiers ∃xi, ∀xj, ∃xk with i < j < k in its prefix.
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Proof. Towards a contradiction and without loss of generality assume that ψ and ¬ψ are
non-replicating sentences such that the quantifier prefix of ψ contains the quantifiers ∃xi,
∀xj , ∃xk with i < j < k. The quantifier-free parts θ of ψ and ¬θ of ¬ψ can be written
as disjunctions of consistent types, so that each consistent type is a disjunct either of θ
or of ¬θ (but not of both). Since ψ is a non-replicating sentence, no type occurring as a
disjunct of θ can contain the equalities xi = xk or xj = xk. Hence, at least one of the types
t(x1, . . . , xr) occurring as a disjunct of ¬θ must contain the equalities xi = xk and xj = xk.
Since t(x1, . . . , xr) is a consistent type, it follows that t(x1, . . . , xr) must also contain the
equality xi = xj . Since xi is universally quantified in ¬ψ and xj is existentially quantified in
¬ψ, it follows that ¬ψ is a replicating sentence, contradicting the assumption made.

5. Restricting the Number of Variables

Suppose in addition to the number of quantifiers, we also wish to simultaneously capture
the number of variables needed to express a certain property, or distinguish two sets of
τ -structures. How do we achieve this?

Let FOk(τ) be the set of well-formed FO formulas over the schema τ , that only use the
variables {x1, . . . , xk}.

5.1. Limitations of MS Games. It might at first seem reasonable to try to adapt the
MS game (which already captures the number of quantifiers) to also capture the number of
variables, simply by limiting the number of pebble colors that can be used. This approach
works in a straightforward manner with EF games [Imm99, Definition 6.2, Theorem 6.10].
There are two natural ways to define such adaptations of the MS game.

Game 5.1 (MS Game with Repebbling). Define the r-round, k-color MS game with
repebbling on (A,B) as identical to the r-round MS game on (A,B), except that the set C
of pebble colors satisfies |C| = k, and so, Spoiler needs to play with at most k pebble colors
(forcing him to possibly re-use the same pebble color in two different rounds). When a pebble
of a given color is re-used, the previously played pebble of the same color is “picked up” from
all structures. In every round, Duplicator has to respond with the same pebble color as the
one used by Spoiler in that round. As before, the winning conditions are the same, i.e., at
the end of each of r rounds, Duplicator needs to exhibit a pebbled structure on the left and
a pebbled structure on the right forming a matching pair, while Spoiler needs to exhibit a
configuration within r rounds where no pair of pebbled structures from the left and right form
a matching pair.

While Game 5.1 seems like a reasonable candidate for capturing FO-distinguishability
with r quantifiers and k variables, this turns out to not work. Recall that the discussion
following Figure 1 observed that there is a 3-quantifier 2-variable sentence that is separating
for ({LO(3)}, {LO(2)}), namely: ∃x(∃y(x < y)∧∃y(y < x)). So, if Game 5.1 were to capture
distinguishability with r quantifiers and k variables, then Spoiler would need to have a
winning strategy in the 3-round, 2-color MS game with repebbling on this instance. The
following lemma, whose proof is straightforward and omitted, shows that this is not the case.

Lemma 5.2. Duplicator has a winning strategy in the 3-round, 2-color MS game with
repebbling on ({LO(3)}, {LO(2)}).

In order to define the second variant of the MS game, we first need a definition.
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Definition 5.3. During a complete play of the r-round, k-color MS game with repebbling
on (A,B), we say that a pebbled structure ⟨S | s1, . . . , st⟩ is a parent of a pebbled structure
⟨S | s′1, . . . , s′t′⟩, if both of the following statements hold:

• the configuration containing ⟨S | s1, . . . , st⟩ is from the round immediately preceding the
configuration containing ⟨S | s′1, . . . , s′t′⟩,

• ⟨S | s′1, . . . , s′t′⟩ is the result of playing a new pebble color or reusing a pebble color on
⟨S | s1, . . . , st⟩.

Note that this means t′ = t (if a color was reused), or t′ = t+ 1 (if a new color was used).

Observe that in the MS game with repebbling, there may be A,A′ ∈ A and B,B′ ∈ B
such that the following are both true for some 0 ≤ t < r:

• ⟨A′ | a′1, . . . , a′t′⟩ and ⟨B′ | b′1, . . . , b′t′⟩ are a matching pair in round t+ 1.
• there are no matching pairs ⟨A | a1, . . . , at⟩ and ⟨B | b1, . . . , bt⟩ in round t such that
⟨A | a1, . . . , at⟩ is a parent of ⟨A′ | a′1, . . . , a′t′⟩, and ⟨B | b1, . . . , bt⟩ is a parent of
⟨B′ | b′1, . . . , b′t′⟩.

Our second variant of the MS game will constrain this heavily. First we need a definition.

Definition 5.4. During a complete play of the r-round, k-color MS game with repebbling
on (A,B), two t-pebbled structures ⟨A | a1, . . . , at⟩ on the left and ⟨B | b1, . . . , bt⟩ on the
right form a hereditary match if the following hold:

(a) ⟨A | a1, . . . , at⟩ and ⟨B | b1, . . . , bt⟩ are within the same configuration, say at the end
of round t′.

(b) There is a sequence A0, . . . ,At′ of pebbled structures with A0 = A and At′ =
⟨A | a1, . . . , at⟩, such that Ai is the parent of Ai+1 for each 0 ≤ i < t′.

(c) There is a sequence B0, . . . ,Bt′ of pebbled structures with B0 = B and Bt′ =
⟨B | b1, . . . , bt⟩, such that Bi is the parent of Bi+1 for each 0 ≤ i < t′.

(d) Ai and Bi form a matching pair, for 0 ≤ i ≤ t′.

Game 5.5 (Hereditary MS Game with Repebbling). Define the r-round, k-color hereditary
MS game with repebbling on (A,B) as identical to the r-round, k-color MS game with
repebbling on (A,B), except that, at the end of each of r rounds, Duplicator needs to exhibit
a pebbled structure on the left and a pebbled structure on the right forming a hereditary
match (Definition 5.4), while Spoiler needs to exhibit a configuration within r rounds where
no pebbled structure on the left forms a hereditary match with any pebbled structure on the
right.

Note that a Duplicator win in round r of Game 5.5 immediately certifies a sequence
of matching pairs that are valid for each of the previous rounds, and so if Duplicator wins
Game 5.5 on an instance (A,B), she certainly wins Game 5.1 on (A,B). We also note that
when k = r, both Games 5.1 and 5.5 are identical to ordinary MS games. Furthermore, it is
straightforward to see that Duplicator’s oblivious strategy is optimal for both these variants.

We observe that the instance from Lemma 5.2 does not work as a counterexample for
Game 5.5, as Spoiler does win the 3-round, 2-color hereditary MS game with repebbling on
({LO(3)}, {LO(2)}). We leave this to the reader to verify.

However, it turns out that this stronger candidate game also fails to simultaneously
capture the number of quantifiers and number of variables for FO-distinguishability. This
will follow from Proposition 5.8, but we will first need to set up stronger methods in order
to prove such a result.
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We now introduce a game that does simultaneously capture these two parameters.

5.2. The Quantifier-Variable Tree Game. We define the (r, k)-quantifier-variable tree
(QVT) game, denoted the QVT (r, k) game, on (A,B) as follows.

Two players, Spoiler and Duplicator, play by growing a game tree T , starting from
a single root node Xroot. Once again, we have a set C of pebble colors, with |C| = k, and
arbitrarily many pebbles available of each color. Throughout the rest of this section, name
the colors in C as x1, . . . , xk. The color xi will turn out to correspond to the variable xi, and
so we use this ambiguous notation rather deliberately.

We consider the leaf nodes in T to be open or closed, with the root Xroot being considered
an open leaf at the start of the game. We say T is closed if all its leaves are closed.

Each node of T consists of a left side, a right side, and a counter r′ ∈ N. Each side
consists of a set of pebbled τ -structures. We denote a node in T as a tuple ⟨(left, right)

∣∣ r′⟩.
At the root node Xroot ∈ V (T ),

• the left side consists of A, viewed as pebbled τ -structures (with no pebbles placed yet).
• the right side consists of B, viewed as pebbled τ -structures (with no pebbles placed yet).
• the counter r′ is set to r.

The root node, therefore, is denoted Xroot = ⟨(A,B)
∣∣ r⟩.

The contents ⟨(left, right)
∣∣ r′⟩ of the node X ∈ V (T ) will correspond to a configuration

of the QVT game. When the context is clear, we will often identify a T -node by its
configuration. Throughout the tree T , we will maintain the invariant that on every node
X ∈ V (T ), a pebble color in C appears in one pebbled structure iff it appears in every
pebbled structure throughout the configuration.

Spoiler on his turn can perform any of the following moves:

• Pebble-Left :
(a) Spoiler chooses an open leaf node X = ⟨(A′,B′)

∣∣ r′⟩ with r′ ≥ 1, and a pebble color
xi ∈ C. If all structures in X contain the pebble color xi, Spoiler removes all of these
pebbles.

(b) For each pebbled structure A ∈ A′, Spoiler places a pebble colored xi on an element
in the universe of A. Call this new set of pebbled structures A′′.

(c) For each pebbled structure B ∈ B′, Duplicator may make any number of copies of
B, then must place a pebble colored xi on an element in the universe of B and an
element in the universe of each copy. Call this new set of pebbled structures B′′.

(d) Spoiler makes a new open leaf X ′ = ⟨(A′′,B′′)
∣∣ r′ − 1⟩ in T , with parent X. Note

that X is no longer a leaf in T .
• Pebble-Right: This move is dual to Pebble-Left; Spoiler plays on B, and Duplicator responds
on A.

• Split-Left:
(a) Spoiler chooses an open leaf node X = ⟨(A′,B′)

∣∣ r′⟩ and r′1, r
′
2 ∈ N such that

r′ = r′1 + r′2.
(b) Spoiler partitions A′ so that A′ = A′

1 ∪ A′
2.

(c) Spoiler makes two new open leaf nodes X1 = ⟨(A′
1,B′)

∣∣ r′1⟩ and X2 = ⟨(A′
2,B′)

∣∣ r′2⟩
in T . Both new nodes have parent X.

• Split-Right: This move is dual to Split-Left; Spoiler partitions B′.
• Swap: Spoiler chooses an open leaf node X = ⟨(A′,B′)

∣∣ r′⟩ in T . He makes a new open

leaf node X ′ = ⟨(B′,A′)
∣∣ r′⟩ in T , with parent X.
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• Close: Spoiler chooses an open leaf node X in T , say ⟨(A′,B′)
∣∣ r′⟩. Suppose there is an

atomic formula φ ∈ FOk with variables {xi1 , . . . , xim}, such that:
(a) Every pebbled structure ⟨A | a1, . . . , aℓ⟩ in A has elements ai1 , . . . , aim ∈ A pebbled

by colors xi1 , . . . , xim respectively, and A |= φ(xi1/ai1 , . . . , xim/aim).
(b) Every pebbled structure ⟨B | b1, . . . , bℓ⟩ in B has elements bi1 , . . . , bim ∈ B pebbled

by colors xi1 , . . . , xim respectively, and B |= ¬φ(xi1/bi1 , . . . , xim/bim).
Then, Spoiler can mark X closed.

We say that T is closed if there are no open leaf nodes. Spoiler wins the game if he closes
T , and Duplicator wins otherwise.

The following theorem characterizes the expressive power of the QVT game, showing
that it does indeed capture simultaneous bounds on number of quantifiers and number of
variables. The key intuition behind the proof is that a closed game tree T is by design
isomorphic to the parse tree for a separating sentence for (A,B), with the moves Pebble-Left,
Pebble-Right, Split-Left, Split-Right, and Swap in the game tree corresponding respectively to
∃, ∀, ∨, ∧, and ¬ in the separating sentence. We omit the proof, as it will follow immediately
from the more general Theorem 6.7 and Example 6.2 in Section 6.

Theorem 5.6 (Equivalence theorem for QVT). Spoiler has a winning strategy for the
QVT (r, k) game on (A,B) iff there is an r-quantifier, k-variable sentence over τ that is
separating for (A,B).

For ease of arguments, we will henceforth refer to Pebble-Left or Pebble-Right moves as
pebble moves, and Split-Left or Split-Right moves as split moves. We will say an internal
vertex of T is closed when all T -leaves descended from it are closed. Note that the value of
the counter r′ at each T -node effectively represents the “budget” on the number of pebble
moves available to Spoiler to close that node.

It is not entirely obvious that Duplicator’s optimal strategy in the QVT game is also
to play the oblivious strategy. The following proposition asserts that this is still true. The
proof, once again, is omitted, as it will follow from the more general Proposition 6.8.

Proposition 5.7. If Duplicator has a winning strategy in the QV T game, then the oblivious
strategy is a winning strategy.

Figure 7 depicts a complete game tree T for the (3, 2)-QVT game on (LO(3), LO(2)).
Duplicator plays her oblivious strategy, but Spoiler is able to close the tree. Note that this
is the same instance as both Figure 1 and Lemma 5.2.

5.3. The hereditary MS game with repebbling does not capture number of
variables. We are now ready to prove that the r-round, k-color hereditary MS game
with repebbling (Game 5.5) does not capture the number of variables and quantifiers
simultaneously, using Theorem 5.6.

Proposition 5.8. The following are both true:

(a) There is no 3-quantifier, 2-variable separating sentence for (LO(4), LO(3)).
(b) Spoiler has a winning strategy in the 3-round, 2-color hereditary MS game with repebbling

on {{LO(4)}, {LO(3)}}.

Proof. We first show (a), i.e., there is no 3-quantifier, 2-variable separating sentence for
(LO(4), LO(3)). By Theorem 5.6, it suffices to show that Duplicator has a winning strategy
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r′ = 3

Pebble-Left

r′ = 2

Split-Right

r′ = 1 r′ = 1

Pebble-Left Pebble-Left

r′ = 0 r′ = 0

Close

x2 < x1

Close

x1 < x2

Figure 7: A complete play of the QVT (3, 2) game on ({LO(3)}, {LO(2)}). Spoiler closes the
game tree T using only three pebble moves, and two pebble colors x1 (red) and
x2 (blue). The atomic separating sentences are shown below, and the resulting
separating sentence is ∃x1(∃x2(x2 < x1)∧ ∃x2(x1 < x2)), which can be read off T .

on the game QVT (3, 2) game on ({LO(4)}, {LO(3)}). Since we are starting with singleton
sets, Spoiler cannot play a split move, and gains nothing from a Swap move at the root node
of T . Let us consider each of the possible pebble moves one by one. Note that the counter
will decrement after this move from 3 to 2.

It is straightforward to check that, at the root node of T , a Pebble-Right play on L1 or L3
is met easily with a Duplicator response on B1 or B4 respectively. This results in a Duplicator
victory in the 3-round MS game, and therefore in QVT (3, 3) game on ({LO(4)}, {LO(3)}),
and therefore also in QVT (3, 2) game on ({LO(4)}, {LO(3)}). So assume Spoiler plays
Pebble-Right on L2 at the root of T . By Proposition 5.7, we can assume Duplicator responds
obliviously, and we are again at the situation depicted in Figure 10. At this point, a Spoiler
split move can be ruled out, as the T -node resulting from the split containing the second
structure on the left will require two more pebble moves to close, while the other T -node
from the split will require at least one more pebble move to close. Spoiler therefore has to
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use up his second pebble move at this point, and we examine in turn the two possible pebble
moves at this T -node. After this move, the counter will decrement to 1.

If for his second pebble move, Spoiler plays Pebble-Right on L1, then Duplicator can
respond on B1 on the second board on the left, and survive another pebble move on just
this pair of structures. A symmetric argument applies when Spoiler plays Pebble-Right on
L3. Finally, it is easy to see that Spoiler playing Pebble-Right on L2 achieves nothing. So
Spoiler must play Pebble-Left for his second pebble move.

Let us now examine this second pebble move by Spoiler on the second structure on the
left. Where does Spoiler place a pebble? If he plays on B1 or B2, Duplicator responds with
L1 or L2 respectively, and easily survives another pebble move. So, Spoiler must play either
B3 or B4, which must be met with a Duplicator response on L3. In fact, for Spoiler to win
on this pair of pebbled structures with one more pebble move, he must play on B3 (not B4)
for his second pebble move. A symmetric argument shows that on the third structure on
the left, Spoiler must play on B2 in his second pebble move. We can now look at Figure 8,
where we have only depicted four relevant pebbled structures after two pebble moves.

B1 B2 B3 B4

B1 B2 B3 B4

L1 L2 L3

L1 L2 L3

Figure 8: Configuration (partial) after two pebble moves, depicting just two pairs of pebbled
structures that maintain isomorphisms.

At this point, splitting is not an option, as the counter is at 1, and so splitting would
cause one of the two resultant T -nodes to have the counter value at 0, and Spoiler cannot
close that node. But Spoiler cannot win without splitting either, as moving any pebble on
any of the four structures in Figure 8 can be met with a response on at least one of the two
structures on the other side that maintains an isomorphism. It follows that Spoiler cannot
win with a Pebble-Right move at the root of T .

It is straightforward to check that, at the root of T , a Pebble-Left play on B1 or B4 is
met easily with a Duplicator response on L1 or L3 respectively. So assume Spoiler plays
Pebble-Left on B2 for his first pebble move (B3 will be symmetric). By Proposition 5.7, we
can assume Duplicator responds obliviously, as depicted in Figure 9. The counter is at 2.

B1 B2 B3 B4

L1 L2 L3

L1 L2 L3

L1 L2 L3

Figure 9: Configuration of the game QVT (3, 2) game on ({LO(4)}, {LO(3)}) after the first
pebble move, where Spoiler plays Pebble-Left on B2 and Duplicator responds
obliviously.

By a similar argument as before, we can conclude that a Spoiler split move can be
ruled out. We can now argue that in order to win in three pebble moves, Spoiler must play
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Pebble-Right for his second pebble move. Indeed, if instead, Spoiler plays Pebble-Left, then
a play of

• B1 is met with Duplicator playing on L1 on the middle structure on the right and surviving
one more pebble move on that pair;

• B3 is met with Duplicator playing L2 on the top structure on the right and L3 on the
middle structure on the right, and surviving one more pebble move on one of these
structures;

• B4 is met with Duplicator playing L3 on both of the top two structures on the right, and
surviving one more pebble move on one of these structures.

We now claim that for Spoiler’s second pebble move with the Pebble-Right, he must
play on L3 on the middle structure on the right. Otherwise, a play on L1 or L2 is met by
a Duplicator move on B1 or B2 respectively on the structure on the left, where she easily
survives one more pebble move just on this pair. However, a Spoiler play of L3 is met with
a Duplicator play on B4 on the left, and she can survive one more pebble move on this pair.
This concludes the proof of (a).

We next show (b), i.e., Spoiler wins the 3-round, 2-color hereditary MS game with
repebbling on {{LO(4)}, {LO(3)}}. Spoiler’s first round Play-Right move, with Duplicator’s
oblivious responses on the left side, is shown in Figure 10.

B1 B2 B3 B4

B1 B2 B3 B4

B1 B2 B3 B4

B1 B2 B3 B4

L1 L2 L3

Figure 10: Configuration after round 1 of the 3-round, 2-color hereditary MS game with
repebbling on {{LO(4)}, {LO(3)}}.

Spoiler will play Play-Left for the two remaining rounds. His second round plays are
indicated in blue in Figure 11.

B1 B2 B3 B4

B1 B2 B3 B4

B1 B2 B3 B4

B1 B2 B3 B4

L1 L2 L3

Figure 11: Configuration (partial) after Spoiler’s second round Play-Left move (given
in blue) for the 3-round, 2-color hereditary MS game with repebbling on
{{LO(4)}, {LO(3)}}.
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In response, let us WLOG only consider Duplicator’s plays on L1 and L3 (the L2
move achieves nothing). Responding with L1 on the right keeps an isomorphism going
with pebbled structures 3 and 4 on the left, and responding with L3 on the right keeps an
isomorphism going with pebbled structures 1 and 2 on the left. In response, in the third
round, Spoiler plays the red pebble on B3, B4, B1, and B2 on pebbled structures 1, 2, 3,
and 4 respectively, in all cases breaking all hereditary isomorphisms with pebbled structures
on the right. This concludes the proof.

It is worth noting that we could not have proven Proposition 5.8 via a straightforward
pebble game argument with 3 rounds and 2 pebbles. Indeed, Spoiler easily wins such a
game beginning with a play on B2, B3 or L2. This implies that there is a rank-3, 2-variable
separating sentence for ({LO(4)}, {LO(3)}), namely, ∃x((∃y(y < x))∧∃y(x < y∧∃x(y < x))).

6. The Syntactic Game

Consider a node X = ⟨(A′,B′)
∣∣ r′⟩ in the game tree T for a given QVT game. The counter

r′ ∈ N in X is the number of pebble moves Spoiler may use to close the subtree of T rooted
at X. The proof of Theorem 5.6 will follow from the fact that this is exactly the number
of quantifiers needed in some sense to “distinguish” between A′ and B′. In fact, as stated
earlier, we will prove a significantly stronger generalization. We first need the formal notion
of a syntactic measure. Such measures were introduced to derive combinatorial games for
“reasonable” complexity measure of infinitary formulas in the logic Lω1,ω [VW13, Definition
5.1]. In this section, we will derive games precisely capturing many familiar complexity
measures, including: quantifier count, quantifier rank, and formula size. The main idea in
all of these games would be to have specific types of pebble moves corresponding to the
inductive ways to build up FO formulas; Spoiler will use these moves to explicitly simulate
a separating formula, and will try to do this and close the game tree without running out
of a “budget” on the syntactic measure, which we keep track of by means of a counter.
In these moves, the number of pebble colors captures the number of variables. For each
logical connective occurring in the language in question, there is a move and a corresponding
cost of using that operator. For example, to count the quantifier number, we add 1 for
each quantifier used, as in the QVT game. Thus, these games capture the descriptive cost
function under consideration. They are the natural tool for proving descriptive lower bounds;
sometimes they are the best choice for proving upper bounds as well.

6.1. Compositional syntactic measures. Recall that FOk(τ) is the set of well-formed
FO formulas over the schema τ , that use only the variables {x1, . . . , xk}. Note that FOk(τ)
is defined inductively, where each formula is the application of a logical symbol to some
subformulas. A compositional syntactic measure uses such an inductive definition to measure
formula complexity.

Recall that Pred(τ) is the set of predicate symbols of τ , assumed to be finite.

Definition 6.1. A compositional syntactic measure is a function f : FOk(τ) → N defined
in terms of helper functions h¬, h∃, h∀ : N → N, h∨, h∧ : N2 → N, hatomic : Pred(τ) → N, as
follows:

• if φ is atomic, say φ = P (t1, . . . , tr) for some P ∈ Pred(τ), and terms t1, . . . , tr, where r
is the arity of P , then f(φ) = hatomic(P ).
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• if φ = ¬ψ, then f(φ) = h¬(f(ψ)).
• if φ = (ψ ∨ γ), then f(φ) = h∨(f(ψ), f(γ)).
• if φ = (ψ ∧ γ), then f(φ) = h∧(f(ψ), f(γ)).
• if φ = ∃x(ψ), then f(φ) = h∃(f(ψ)).
• if φ = ∀x(ψ), then f(φ) = h∀(f(ψ)).

We call such a measure “compositional” because the value of f is determined by the
value of f on its subformulas. Compositional syntactic measures are a large and natural
class of syntactic measures, which includes quantifier rank, quantifier number, formula size,
and number of atomic formulas. However, we remark that the number of distinct variables
is not a compositional measure, as the value of this measure on, say, a disjunction depends
not only on the values on the subformulas, but actually on the subformulas themselves. We
also note that in Definition 6.1, we treat equality as an ordinary binary predicate.

We could have stated Definition 6.1 purely in terms of well-formed formulas over τ ,
instead of the slice FOk(τ). However, we chose our convention to evoke the idea of fixing k
variables at the outset, which will be relevant in the rest of this section.

The following examples show that quantifier number, quantifier rank, and formula size
are indeed compositional syntactic measures.

Example 6.2. The quantifier count fq satisfies:

• if φ is atomic, fq(φ) = 0. In other words, hatomic(φ) = 0.
• if φ = ¬ψ, fq(φ) = fq(ψ). In other words, h¬(n) = n.
• if φ = (ψ ∧ γ) or φ = (ψ ∨ γ), fq(φ) = fq(ψ) + fq(γ). In other words, h∨(m,n) =
h∧(m,n) = m+ n.

• if φ = ∃xψ or φ = ∀xψ, fq(φ) = 1 + fq(ψ). In other words, h∃(n) = h∀(n) = n+ 1.

Example 6.3. The quantifier rank fr satisfies:

• if φ is atomic, fr(φ) = 0. In other words, hatomic(φ) = 0.
• if φ = ¬ψ, fr(φ) = fr(ψ). In other words, h¬(n) = n.
• if φ = (ψ ∧ γ) or φ = (ψ ∨ γ), fr(φ) = max(fr(ψ), fr(γ)). In other words, h∨(m,n) =
h∧(m,n) = max(m,n).

• if φ = ∃xψ or φ = ∀xψ, fr(φ) = 1 + fr(ψ). In other words, h∃(n) = h∀(n) = n+ 1.

Example 6.4. The formula size fs satisfies:

• if φ is atomic, fr(φ) = 1. In other words, hatomic(φ) = 1.
• if φ = ¬ψ, fr(φ) = 1 + fr(ψ). In other words, h¬(n) = n+ 1.
• if φ = (ψ ∧ γ) or φ = (ψ ∨ γ), fr(φ) = 1 + fr(ψ) + fr(γ). In other words, h∨(m,n) =
h∧(m,n) = 1 +m+ n.

• if φ = ∃xψ or φ = ∀xψ, fr(φ) = 1 + fr(ψ). In other words, h∃(n) = h∀(n) = n+ 1.

We are now ready to define the syntactic game.

6.2. The syntactic game. Fix a τ -structure A, and let αA be a partial assignment, i.e., a
function that maps a set of variables to elements in A. We call the ordered pair (A, αA) a
structure-assignment pair. Note that if we identify pebble colors with variables, a pebbled
τ -structure ⟨A | a1, . . . , at⟩ has a one-to-one correspondence with the pair (A, αA), where
αA maps the variable corresponding to a pebble color to the element in A that it is placed
on. In particular, a τ -structure A has a one-to-one correspondence with the pair (A,∅),
where ∅ is the empty assignment.
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Just as a τ -structureA satisfies a sentence over τ , we can extend this notion to a structure-
assignment pair (A, αA) satisfying a formula, which is allowed to have free variables as
long as all such variables are in the domain2 of αA. Formally, let (A, αA) be a structure-
assignment pair, and ψ be a formula such that Free(ψ) = {xi1 , . . . , xim} ⊆ dom(αA). Suppose
αA(xij ) = aij ∈ A for all 1 ≤ j ≤ m. We say that (A, αA) satisfies ψ (or (A, αA) |= ψ) if
A |= ψ(xi1/ai1 , . . . , xim/aim).

Of course, for every structure-assignment pair (A, αA) and formula ψ with Free(ψ) ⊆
dom(αA), exactly one of (A, αA) |= ψ and (A, αA) |= ¬ψ is true.

For the rest of this paper, by convention, we will denote sets of structure-assignment
pairs with script typeface A ,B, and so on. Note that the τ -structures among the pairs in
any such A can in general be different. We now state a definition for convenience.

Definition 6.5. Two sets A and B of structure-assignment pairs are called domain-
consistent if there is a set W of variables such that for every structure-assignment pair
(X, αX) ∈ A ∪ B, we have that dom(αX) = W . We denote this common domain W by
dom(A ) (or, equivalently, dom(B)).

In other words, every partial assignment across all pairs in the two sets have the same
domain. In particular, every structure-assignment pair within the set A (or, equivalently,
B) also has the same domain for its partial assignment.

We can now formalize what it means for a formula with free variables to be a separating
formula, thereby generalizing Definition 2.2.

Definition 6.6. Let A and B be domain-consistent sets of structure-assignment pairs
with common domain dom(A ). A separating formula for (A ,B) is a FO-formula ψ with
Free(ψ) ⊆ dom(A ), such that every (A, αA) ∈ A satisfies (A, αA) |= φ, and every (B, αB) ∈
B satisfies (B, αB) |= ¬φ.

Note that this does generalize Definition 2.2, using the correspondence between A and
(A,∅). A separating sentence is just a separating formula with no free variables.

We are now ready to define the syntactic game. Fix two domain-consistent sets A
and B of structure-assignment pairs. For a compositional syntactic measure f , define the
(r, k)-syntactic game on f , denoted SG(r, k; f), on (A ,B) as follows.

Two players, Spoiler and Duplicator, play by growing a game tree T , starting from
a single root node Xroot. As in the QVT game, we have a set C = {x1, . . . , xk} of pebble
colors, with arbitrarily many pebbles available of each color. Once again, the color xi will
correspond to the variable xi. The leaf nodes in T are open or closed, with the root Xroot

considered to be an open leaf at the start of the game. As before, we define T to be closed if
all its leaves are closed. The notion of an internal vertex being closed also carries over from
Section 5. The nodes X ∈ V (T ) will correspond to a tuple ⟨(left, right)

∣∣ c⟩ as before. We
define a configuration of the game as before, and maintain the same invariant as in the QVT
game. Recall that a pebbled τ -structure ⟨A | a1, . . . , at⟩ now has a one-to-one correspondence
with the pair (A, αA), where αA is the assignment that maps a variable corresponding to a
pebble color to the element in A it is placed on. To avoid notational clutter, we will view
A or B as either a set of pebbled τ -structures or as a set of structure-assignment pairs
interchangeably, where the precise one will be clear from context.

At the root node Xroot ∈ V (T ),

2Note that throughout this section, the term domain will always refer to the domain of the assignment
functions, and never to the universe of τ -structures.
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• the left side consists of A , viewed as pebbled τ -structures (with the pebbling inherited
from the assignment functions).

• the right side consists of B, viewed as pebbled τ -structures (with the pebbling inherited
from the assignment functions).

• the counter r′ is set to r.

The root node, therefore, is denoted Xroot = ⟨(A ,B)
∣∣ r⟩. Note that since A and B are

domain-consistent, every pebbled τ -structure at the root has the same set of pebbles on it.
We will maintain this invariant throughout every node of T (i.e., every configuration will
correspond to a pair of domain-consistent sets A ′ and B′). As before, the root is considered
an open leaf node at the start.

Once again, Spoiler on his turn can perform any of the following moves on an open leaf
node X = ⟨(A ′,B′)

∣∣ r′⟩, as long as the precondition for that move is met:

• Pebble-Left : precondition: h−1
∃ (r′) ̸= ∅

(a) Spoiler chooses a pebble color xi ∈ C. If all structures in X contain the pebble color
xi, Spoiler removes all of these pebbles.

(b) For each pebbled structure (A, αA) ∈ A ′, Spoiler places a pebble colored xi on an
element in the universe of A. Call this new set of pebbled structures A ′′.

(c) For each pebbled structures (B, αB) ∈ B′, Duplicator may make any number of
copies of (B, αB), then must place a pebble colored xi on an element in the universe
of B and an element in the universe of each copy. Call this new set of pebbled
structures B′′.

(d) Spoiler chooses some r′′ ∈ N with h∃(r
′′) = r′. Note that this is guaranteed to exist

by the precondition.
(e) Spoiler makes a new open leaf X ′ = ⟨(A ′′,B′′)

∣∣ r′′⟩ in T , with parent X. Note that
X is no longer a leaf in T .

• Pebble-Right : precondition: h−1
∀ (r′) ̸= ∅

This move is dual to Pebble-Left; Spoiler plays on B′, Duplicator responds on A ′, and
Spoiler chooses some r′′ ∈ N with h∀(r

′′) = r′.
• Split-Left: precondition: h−1

∨ (r′) ̸= ∅
(a) Spoiler partitions A ′ so that A ′ = A ′

1 ∪ A ′
2 .

(b) Spoiler chooses r′1, r
′
2 ∈ N such that h∨(r

′
1, r

′
2) = r′. Note that these are guaranteed

to exist by the precondition.
(c) Spoiler makes two new open leaf nodes X1 = ⟨(A ′

1 ,B
′)
∣∣ r′1⟩ and X2 = ⟨(A ′

2 ,B
′)
∣∣ r′2⟩

in T . Both new nodes have parent X.
• Split-Right: precondition: h−1

∧ (r′) ̸= ∅
This move is dual to Split-Left; Spoiler partitions B′ and chooses r′1, r

′
2 ∈ N such that

h∧(r
′
1, r

′
2) = r′.

• Swap: precondition: h−1
¬ (r′) ̸= ∅.

(a) Spoiler chooses r′′ ∈ N such that h¬(r
′′) = r′.

(b) Spoiler makes a new open leaf node X ′ = ⟨(B′,A ′)
∣∣ r′′⟩ in T , with parent X.

• Close: If there is an atomic formula φ over τ that is separating (Definition 6.6) for (A ′,B′),
such that hatomic(φ) = r′, Spoiler can mark X closed.

We say that T is closed if there are no open leaf nodes. Spoiler wins the game if he closes
T , and Duplicator wins otherwise.
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If A and B are sets of τ -structures, we will abuse notation slightly and talk about the
syntactic game on (A,B), where these will be viewed as sets of structure-assignment pairs
with the empty assignment throughout.

We are now ready to characterize the expressive power of the syntactic game. The key
to the proof is the observation that a closed game tree T is isomorphic to the parse tree of a
formula separating (A ,B).

Theorem 6.7 (Syntactic Game Fundamental Theorem). Fix a compositional syntactic
measure f , and domain-consistent sets A ,B of structure-assignment pairs, with dom(A ) ⊆
{x1, . . . , xk}. Spoiler has a winning strategy for the game SG(r, k; f) on (A ,B) if and only
if there is a formula φ ∈ FOk(τ) with f(φ) = r, that is separating for (A ,B).

Proof.
(=⇒:) Suppose Spoiler closes T even with optimal play from Duplicator. We use

induction on the closed game tree T to prove that there is a separating formula. If T
consists of a single node, then Spoiler closed the root node for his first move, and this
corresponds to an atomic formula with the specified counter value by definition of the Close
move. Otherwise, consider a closed tree T , and consider Spoiler’s first move on the root.
Inductively, each of the subtrees corresponds to a separating formula. We consider each
possible first move by Spoiler. Let the root node be Xroot = ⟨(A ,B)

∣∣ r⟩.
• Suppose Spoiler plays Swap, creating X = ⟨(B,A )

∣∣ r′⟩. By induction, (B,A ) is separable
by a formula ψ such that f(ψ) = r′. Consider the formula φ = ¬ψ, and observe that φ is
a separating formula for (A ,B). Furthermore, f(φ) = h¬(f(ψ)) = h¬(r

′) = r.
• Suppose Spoiler plays Split-Left, creating X1 = ⟨(A1,B)

∣∣ r1⟩ and X2 = ⟨(A2,B)
∣∣ r2⟩. By

induction, (A1,B) is separable by a formula φ1 with f(φ1) = r1, and (A2,B) is separable
by a formula φ2 with f(φ2) = r2. Then, φ = φ1 ∨ φ2 is a separating formula for (A ,B),
and f(φ) = h∨(r1, r2) = r.

• If Spoiler plays Split-Right, the analysis is similar.
• Suppose Spoiler plays Pebble-Left using the pebble color xi, creating X = ⟨(A ′,B′)

∣∣ r′⟩.
By induction, (A ′,B′) has a separating formula ψ with f(ψ) = r′. Let φ = ∃xiψ,
and consider one particular structure-assignment pair (A, αA) ∈ A. We know this pair
became a pair (A, α′

A) ∈ A ′, such that (A, α′
A) |= ψ. Furthermore, the only difference

between the two pairs is the mapping of the domain element xi. Regardless of whether
or not xi ∈ dom(αA), we have (A, αA) |= ∃xiψ, just by reverting the mapping of the
element xi (or arbitrarily mapping it, if it was not in the domain). On the other hand,
if some (B, αB) ∈ B satisfies (B, αB) |= ∃xiψ, then Duplicator can respond to Spoiler’s
Pebble-Left move by (re-)mapping the variable xi to a witness for ψ, and the resulting pair
(B, α′

B) ∈ B′ would satisfy (B, α′
B) |= ψ. This is a contradiction, so every (B, αB) ∈ B

satisfies (B, αB) |= ¬∃xiψ ≡ ¬φ. Therefore, φ is a separating formula for (A ,B). Of
course, f(φ) = f(∃xiψ) = h∃(f(ψ)) = h∃(r

′) = r.
• If Spoiler plays Pebble-Right, the analysis is similar.

(⇐=:) We use induction on the separating formula. Suppose there is a separating
formula φ ∈ FOk(τ) for (A ,B) with f(φ) = r. We will show inductively that Spoiler has a
winning strategy in the game SG(r, k; f) on (A ,B).

If φ is atomic, Spoiler can just use φ to close the root node Xroot = ⟨(A ,B)
∣∣ r⟩.

Otherwise, inductively, we have the following cases:
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• If φ = ¬ψ, then Spoiler plays Swap, creating child X1 = ⟨(B,A )
∣∣ r′⟩ where f(ψ) = r′

and r = h¬(r
′). Note that the precondition is met, so Spoiler can play this move. Note

that ψ ∈ FOk(τ) separates (B,A ), so by induction, Spoiler wins the remaining game.
• If φ = ψ∨γ, then every (A, αA) ∈ A satisfies (A, αA) |= ψ∨γ, whereas every (B, αB) ∈ B
satisfies (B, αB) |= ¬(ψ ∨ γ) ≡ ¬ψ ∧ ¬γ. Let A1 be the subset of A satisfying ψ, and let
A2 = A − A1. Let f(ψ) = r1 and f(γ) = r2, so that r = h∨(r1, r2). Now, Spoiler plays
Split-Left with nodes ⟨(A1,B)

∣∣ r1⟩ and ⟨(A2,B)
∣∣ r2⟩. Note that the precondition is met,

so Spoiler can play this move. The formula ψ ∈ FOk(τ) separates (A1,B) and satisfies
f(ψ) = r1. Similarly, the formula γ ∈ FOk(τ) separates (A2,B) and satisfies f(γ) = r2.
By induction, Spoiler wins the remaining games.

• If φ = ψ ∧ γ, Spoiler plays Split-Right analogously.
• Suppose φ = ∃xiψ. If f(ψ) = r′, then note that r = h∃(r

′). Note that the precondition is
met, so Spoiler can play Pebble-Left. By assumption, every (A, αA) ∈ A has (A, αA) |=
∃xiψ. So for some a ∈ A, (A, α′

A) |= ψ, where α′
A is identical to αA except that xi has

been (re)mapped to the element a. Spoiler plays Pebble-Left, placing pebble xi on the
witness a on each A. Note that this creates exactly (A, α′

A). On the other hand, every
(B, αB) ∈ B satisfies (B, αB) |= ¬∃xiψ ≡ ∀xi¬ψ, and so every b ∈ B is a witness for
¬ψ, and so even after making copies, Duplicator can never play on a witness for ψ in
any B. So for each pair (B, α′

B) created by Duplicator, we have (B, α′
B) |= ¬ψ. At the

end, therefore, we have the new tree node X ′ = ⟨(A ′,B′)
∣∣ r′⟩, where ψ ∈ FOk(τ) is a

separating formula for (A ′,B′) with f(ψ) = r′, and so by induction, Spoiler wins the
remaining game.

• If φ = ∀xiψ, Spoiler plays Pebble-Right analogously.
This proves both directions of the theorem.

We remark here that Theorem 6.7 is applicable directly to several straightforward
compositional syntactic measures, including the ones in Examples 6.2, 6.3, and 6.4. In
particular, an examination of Example 6.2 shows that the (r, k)-QVT game is identical to
SG(r, k; fq), where fq is the quantifier-number measure; this proves Theorem 5.6 immediately.

We now complete this subsection with a result showing that a familiar tool for analyzing
these games carries over to this general framework as well. The following proposition shows
that Duplicator’s oblivious strategy is optimal in the syntactic game for every compositional
syntactic measure.

Proposition 6.8. Let f be a compositional syntactic measure. If Duplicator has a winning
strategy in the SG(r, k; f) on (A ,B), then the oblivious strategy is winning.

Proof. It suffices to consider the case where Spoiler plays Pebble-Left on some node X =
⟨(A ′,B′)

∣∣ r′⟩ of T , creating the new node X ′ = ⟨(A ′′,B′′)
∣∣ r′′⟩. Note that h∃(r

′′) = r′.
The Pebble-Right move will be analogous, and Duplicator has no agency elsewhere.

Suppose there is no separating formula φ ∈ FOk(τ) for (A ′,B′) with f(φ) = r′. It
suffices to show that regardless of Spoiler’s move, as long as Duplicator responds obliviously,
there is no separating formula ψ ∈ FOk(τ) for (A ′′,B′′) with f(ψ) = r′′.

Suppose WLOG Spoiler plays the pebble color xi on his move. Consider all pairs
(A, α′

A) ∈ A ′′, and take any arbitrary formula ψ ∈ FOk(τ) with f(ψ) = r′′ that is true for
all these pairs. In other words, for every pair (A, α′

A) ∈ A ′′, we have (A, α′
A) |= ψ. An

arbitrary pair (A, α′
A) ∈ A ′′ arose from a pair (A, αA) ∈ A ′, with Spoiler changing the
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assignment αA by just (re)assigning the variable xi. Furthermore, every pair (A, αA) ∈ A ′

gave rise to a new pair in this way.
We claim that this means the formula σ = ∃xiψ is true of all pairs (A, αA) ∈ A ′.

This follows by simply reversing the assignment of the variable xi in each of the pairs.
It follows that for each pair (A, αA) ∈ A ′, we have (A, αA) |= σ. Note that f(σ) =
f(∃xiψ) = h∃(f(ψ)) = h∃(r

′′) = r′. By our assumption, therefore, there must be some pair
(B, αB) ∈ B′ satisfying (B, αB) |= σ. In other words, (B, αB) |= ∃xiψ.

Now, when Duplicator responds obliviously, she (re)assigns the variable xi in all possible
ways in each of the pairs in B′. In particular, therefore, in one of the copies of the pair
(B, αB) defined above, she plays on a witness b ∈ B for ψ, creating the pair (B, α′

B) ∈ B′′.
But then, (B, α′

B) |= ψ, and so ψ cannot be a separating formula for (A ′′,B′′).
Since ψ was arbitrary, we are done.

Of course, Proposition 5.7 follows immediately as a corollary.
It is worth remarking that the proof of Proposition 6.8 also captures why it is critical

for Duplicator to use her copying ability. Duplicator needs a pair (B, αB) ∈ B′ to be
a witness for the formula ψ. However, the same pair can be a witnessing structure for
two different such formulas. In particular, it could be the case that (B, αB) |= ∃xiψ1 and
(B, αB) |= ∃xiψ2, but the elements in B that witness ψ1 and ψ2 are different. Making copies
of the pair (B, αB) in order to have two new assignments of xi, enabling different elements
to act as witnesses simultaneously in the same move, achieves this.

6.3. Properties of some measures. Having defined the syntactic game, it is natural to
ask for the properties of specific syntactic measures that can enable us to apply existing
tools of analyzing similar games, in order to have the results carry over to this realm.

Consider the quantifier rank syntactic measure, denoted by fr in Example 6.3. Consider
the game SG(r, k; fr), and observe that it is very similar to the QVT game. The only
difference is that in the Split-Left and Split-Right moves on a tree node X = ⟨(A′,B′)

∣∣ r′⟩,
Spoiler labels the new nodes in T with two values whose maximum is r′, instead of two
values that sum to r′.

The following proposition considers when we could look at games on each of the singleton
pairs, rather than entire classes of τ -structures.

Proposition 6.9. Consider the syntactic game for any compositional syntactic measure f
satisfying:

1. there are finitely many equivalence classes of the equivalence relation “satisfy the same
FO-sentences with f -measure r and k variables”,

2. each such class is definable by a sentence with the parameters defining the class,
3. the set of sentences with these parameters is closed under disjunction.

Then, for all nonempty sets A and B of τ -structures, and for all r, k ∈ N, the following
statements are equivalent:

(a) Spoiler wins the SG(r, k; f) on (A,B).
(b) For every A ∈ A and every B ∈ B, there is a separating k-variable sentence φ for

({A}, {B}) with f(φ) = r.

Proof.
(=⇒:) Take a separating k-variable sentence φ for (A,B) with f(φ) = r. This is

separating for every pair ({A}, {B}) with A ∈ A and B ∈ B.
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(⇐=:) By property 1, there are finitely many equivalence classes of the equivalence
relation “satisfy the same FO-sentences with measure r and k variables”, and by property
2, each such class is definable by a FO-sentence with these parameters. Let θ1, . . . , θm
be the list of all such sentences arising from structures in A, and consider the sentence
ψ = θ1 ∨ . . . ∨ θm. By property 3, ψ is a k-variable formula with f(ψ) = r. We claim that ψ
is a separating sentence for (A,B). Indeed, clearly, every structure in A satisfies one of the
θj ’s. We claim that no structure B ∈ B does. Otherwise, take B ∈ B satisfying θj for some
j. Then B satisfies the same sentences with measure r and k variables as some structure
A ∈ A. But then ({A}, {B}) is inseparable, which is a contradiction.

Proposition 6.9 immediately helps us relate the syntactic game on the quantifier rank
measure fr to the other canonical technique we have for quantifier rank — the EF games.

Corollary 6.10. Let fr be the quantifier rank syntactic measure. For all nonempty sets A
and B of τ -structures, and for all r, k ∈ N, the following statements are equivalent:

(a) Spoiler wins the game SG(r, k; fr) on (A,B).
(b) For every A ∈ A and every B ∈ B, Spoiler wins the EF (r, k) game on (A,B).

We next remark on the formula size measure, denoted by fs in Example 6.4. Consider
the SG(r, k; fs) game, and observe that it would be very similar to the QVT game, with the
following differences on a node X = ⟨(A′,B′)

∣∣ r′⟩:
• For a Pebble-Left, Pebble-Right, or Swap move, Spoiler would decrement the value of the
counter r′ to r′ − 1.

• For a Split-Left or Split-Right move on a node with counter value r′, Spoiler would choose
r′1 and r′2 such that r′ = r′1 + r′2 + 1.

• Spoiler would only close nodes with counter value of 1.

Note that this last game is very similar to the ones in [AI01] and [HV15]. In fact, as in
[HV15], we could have changed the rules of the syntactic game and allowed Duplicator to
choose one of the branches from a split move to continue along as well, without affecting the
eventual winner. But then we would lose the property that a closed game tree is isomorphic
to a parse tree of a separating sentence.

Finally, we remark briefly on the measure ft that is always zero. This is clearly a valid
compositional syntactic measure. It should be clear that SG(0, k; ft) is equivalent to the
k-pebble game [Bar77, Imm82]. Formally, we claim that Spoiler wins the k-pebble game on
(A,B) if and only if he wins SG(0, k; ft) on ({A}, {B}). Indeed, if Spoiler has a winning
strategy on the k-pebble game, he can make the same move at the root node of T , and then
once Duplicator responds, he can split the resulting node into singletons and win inductively
on each of them. Conversely, if Duplicator wins the k-pebble game, she just plays the same
moves on the syntactic game without making any copies, proving the result.

7. Open Problems & Future Directions

Our results suggest several open problems about multi-structural games and their variants.
To begin with, we saw that the hereditary MS game with repebbling (Game 5.5) does not
simultaneously capture the number of quantifiers and the number of variables. What is the
fragment of FO captured by this game? Considered from a slightly different perspective,
how is the “hereditary” property reflected by FO semantics?
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We also investigated the variant of the MS game in which Spoiler wins without ever
playing on top. In some cases, Spoiler wins the MS game on (A,B) without playing on top
on the left side (but may play on top on the right), while in other cases, this is reversed. Is
it true that Spoiler wins the r-round MS game on (A,B) without playing on top if and only
if Spoiler wins both the r-round MS game on (A,B) without playing on top on the left side,
and the r-round MS game on (A,B) without playing on top on the right side?

We investigated compositional syntactic measures and their associated games for first-
order logic (introduced for the case of infinitary formulas by [VW13]). These definitions
allowed us to relate structural properties of such complexity measures to properties of game
strategies. What other relationships are possible? Can we unify and better understand
logical inexpressibility results by studying syntactic measures?

Beyond these and other related problems, the main challenge is to use syntactic games
to prove lower bounds on any reasonable complexity measure, first on unordered structures
and then, hopefully, on ordered structures — the latter will be very difficult, because of
connections to longstanding open problems in computational complexity (see Section 1).
A few exceptions notwithstanding (e.g., [Sch94, Ruh99, Sch01]), there are relatively few
inexpressibility results obtained using EF games on ordered structures or on structures
with built-in arithmetic predicates. Can we go beyond these applications of the EF games?
What about other syntactic measures on ordered structures, such as simultaneous bounds
on number of quantifiers and number of variables?
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