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Abstract. Measurable cones, with linear and measurable functions as morphisms, are a
model of intuitionistic linear logic and of call-by-name probabilistic PCF which accommo-
dates “continuous data types” such as the real line. So far however, they lacked a major
feature to make them a model of more general probabilistic programming languages (notably
call-by-value and call-by-push-value languages): a theory of integration for functions whose
codomain is a cone, which is the key ingredient for interpreting the sampling programming
primitives. The goal of this paper is to develop such a theory: our definition of integrals
is an adaptation to cones of Pettis integrals in topological vector spaces. We prove that
such integrable cones, with integral-preserving linear maps as morphisms, form a model of
Linear Logic for which we develop two exponential comonads: the first based on a notion
of stable and measurable functions introduced in earlier work and the second based on a
new notion of integrable analytic function on cones.

Introduction

There are several approaches in the denotational semantics of functional probabilistic
programming languages that we can summarize as follows:

• quasi-Borel spaces (QBSs) [VKS19] which are, roughly speaking, separated presheaves
on the cartesian category of measurable spaces and measurable functions (or on a full
cartesian sub-category thereof), and the considered category of QBSs must be given
together with a well behaved probability monad (à la Giry);

• probabilistic games [DH00] which are similar to deterministic games apart that now
strategies are probability distributions on plays;

• models based on categories of domains, possibly equipped with a probabilistic monad, and
where morphisms are Scott continuous functions;

• probabilistic coherence spaces [DE11] (PCSs) which are a refinement of the relational
model of Linear Logic (LL). In the PCS model, an object is a set equipped with a collection
of “valuations”, which are functions1 from this set to R≥0, and a morphism is a linear
functions on these valuations, or analytic functions in the CCC used for interpreting
the programming languages. This approach can be understood as extending to higher

1For objects corresponding to ground types, these valuations are the subprobability distributions.
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types the basic idea of [Koz81] which is to interpret programs as probability distribution
transformers.

Main motivation. Modern probabilistic programming languages deal with probability
distributions on continuous data-types such as the real line, and PCSs are not able to
represent such types: PCSs are fundamentally of a discrete nature. On the other hand,
QBS-based models accept continuous data-types by construction, and give rise to cartesian
closed categories for a very general reason — they are essentially categories of presheaves —.
This also means that these models are not very informative about morphisms: they are
essentially only required to satisfy a hereditary measurability condition and, accordingly,
they have in general no clear underlying linear structure (in the sense of the categorical
semantics of Linear Logic). The benefit of such a linear structure is that it allows to take into
account in a modular way the various options in the design of a programming language, and
in particular the choice of operational semantics (call-by-name or call-by-value, typically).
Also the linear structure provides tools — versions of the Taylor expansion of analytic
functions — allowing to analyze the resource usage of programs.

In contrast to QBSs, PCSs are natively a model of LL whose associated cartesian closed
category can be used as a model of probabilistic functional languages. In this CCC the
morphisms are quite regular: they are analytic functions described by generalized power
series with nonnegative coefficients. This feature allowed the first author to prove, for
instance, two full abstraction results [EPT18a, ET19] wrt. the PCS semantics.

The main purpose of the model presented in this paper is to extend to the continuous
probability setting these two main features of PCSs: the model has a linear underlying
structure and the programs are interpreted as functions which are analytic in some generalized
sense. One essential feature of our semantics is that a functional program M of type ρ (the
type of real numbers) with only one variable x of type ρ will be interpreted as a function f
from the set R of subprobability measures on R to R. With this intuition in mind, it is easier
to understand what linearity can mean for such a function (very roughly: commutation
with existing linear combinations of measures), and also what analyticity can mean: the
function g which maps a subprobability distribution µ on R to µ ∗ µ (convolution product of
measures) is clearly not linear, but it is polynomial of degree 2. More precisely, the addition
program on real numbers will typically be represented as a function a : R×R → R which
will be bilinear: it maps a pair (µ, ν) ∈ R2 of subprobability measures to α∗(µ× ν) where
α : R × R → R is the addition function, µ × ν is the usual product of µ and ν, which is
a subprobability measure on R × R, and α∗ is the push-forward operation on measures
associated with the measurable function α. The function g is polynomial of degree 2 because
g(µ) = a(µ, µ).

Types as cones. In recent works [EPT18b, Ehr20] we have developed such a continuous
extension of the PCS semantics, using quite a suitable notion of positive cone introduced
by Selinger in [Sel04] (we will often drop the adjective “positive”). Cones are similar
to real Banach spaces, with the difference that, in a cone, “everything is positive”; for
instance the coefficients are taken in R≥0 and not in R and x + y = 0 is possible only
if x = y = 0. For that reason cones are naturally ordered and are required to satisfy a
completeness property expressed à la Scott, in terms of the norm and of this order relation.
This notion of completeness is very different from the standard Cauchy-completeness of
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ordinary Banach spaces. It has the benefit of making the interpretation of recursive programs
quite straightforward (no need for contractivity assumptions).

In this setting, the ground type ρ of real numbers of our programming language is
interpreted as the set R of finite nonnegative measures on the real line equipped with its
Borel σ-algebra, this set R has indeed an obvious structure of cone. Cones are naturally
equipped with a notion of linear morphisms, which are also assumed to be Scott continuous,
and with a notion of non-linear morphism introduced in [EPT18b], called stable functions
and characterized by a total monotonicity condition (plus Scott continuity) which allow to
define a cartesian closed category where fixpoint operators are available at all types. With
these morphisms, cones are a conservative extension of the category of PCSs and analytic
functions as shown in [Cru18].

Integration and sampling. The most essential feature of a probabilistic programming
language is the possibility of sampling a value according to a given probability distribution.
In our semantical setting and in the presence of continuous data-types this requires some
form of integration and therefore the morphisms (here, the linear or the stable functions
between cones) must satisfy a suitable measurability condition. Consider indeed a functional
program M such that x : ρ ⊢ M : σ for some type σ, where we recall that ρ is the type
of real numbers, and a program N such that ⊢ N : ρ. Then N will be interpreted as an
element µ of R (a subprobability measure on R actually) and M as an analytic function
g : R → P where P is the cone interpreting the type σ. Then we typically would like to
write a program R = sample(x,N,M) which should satisfy ⊢ R : σ. The semantics of R
should then be ∫

g(δ(r))µ(dr)

because the Dirac probability measure at r ∈ R, δ(r) ∈ R, is the representation in our
semantics of the real number r. For instance ifM = x+x (so that A = ρ) then the semantics
of N [M/x] =M +M is g(µ) = µ ∗µ and the semantics ν ∈ R of R = sample(x,N, x+x) is∫

δ(2r)µ(dr) = β∗(µ)

where β : R → R is defined by β(r) = 2r. In Section 9.1, we will understand that this
sampling operation is simply a let construct, exactly as in the discrete PCS setting of [ET19].
See Example 9.9 for a more developed explanation.

In [EPT18b, Ehr20] the cones were accordingly equipped with a measurability structure
defined in reference to a collection of basic measurable spaces (such a collection can be simply
{R}, what we assume in this introduction for simplicity). Given a cone P equipped with
such a measurability structure M it is then possible to define a class of bounded2 functions
R → P that we call the measurable paths of P . And then a (linear or stable) function
P → Q is measurable from (P,M) to (Q,N ) if its pre-composition with each M-measurable
path of P gives a N -measurable path of Q. Equipped with their measurability paths, these
measurable cones (more precisely, their unit balls) can be considered as QBSs, and the
condition above of measurable path preservation is exactly the same as the definition of a
morphism of QBSs (however notions such as linearity, stability or analyticity, which are
crucial for us, do not arise naturally in the framework of QBSs).

2With respect to the norm of P .
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These measurable cones were sufficient in [EPT18b] to allow sampling over the type
ρ in a probabilistic extension of PCF because all types in such a language can be written
σ1 ⇒ · · · ⇒ σn ⇒ ρ and hence integrability for paths valued in such a type boils down to the
integrability of R-valued paths (with additional parameters in σ1, . . . , σn) which is possible
by our measurability assumptions. But if we want to interpret a call-by-value (or even
call-by-push-value) language then we face the problem of integrating functions valued in
more general cones such as for instance !R (in the sense of LL, R being the cone of finite
measures on R). So we must deal with cones where measurable paths can be integrated.
Fortunately it turns out that, thanks to the properties of the measurability structure M of
a cone P , it is easy to define the integral of a P -valued path γ : R → P wrt. a finite measure
µ on R: it is an x ∈ P such that, for each measurability test m on P , the real number m(x)
is equal to the standard Lebesgue integral

∫
m(γ(r))µ(dr) which is well defined and belongs

to R≥0 since m ◦ γ is measurable and bounded, and µ is finite. And when such an x exists
it is unique by our assumptions that the measurability tests associated with a cone separate
it. So we can define a cone to be integrable if such integrals always exist, whatever be the
choices of γ and µ.

In that way we are able to define a category of integrable cones and linear and integrable
maps, that is, linear and measurable maps of cones which moreover commute with all
integrals, a property which can be understood as a strong form of linearity. Such linear maps
will sometimes be called integrable. It is rather easy to prove that this locally small category
is complete, has a cogenerator and is well-powered so that we know by the special adjoint
functor theorem that each continuous functor from this category to any other locally small
category has a left adjoint. This allows first to equip our category with a tensor product:
given two integrable cones B,C (we keep the measurability structures implicit), we can form
the integrable cone B ⊸ C whose elements are the linear integrable maps from B to C,
addition is defined pointwise and the norm is defined by ∥f∥ = sup∥x∥≤1 ∥f(x)∥. Then the
functor B⊸ is easily seen to preserve all limits and hence has a left adjoint ⊗B. And
we can prove that one defines in that way a tensor product ⊗ which makes our category
symmetric monoidal closed3.

There is a faithful functor from the category of measurable spaces and sub-probability
kernels to the category of measurable cones which maps a measurable space X to the
cone FMeas(X) of finite non-negative measures on X. As already explained in [Geo21] (in
a slightly different context) the integral preservation property that we enforce on linear
morphisms on cones has the major benefit of making this functor not only faithful but also
full.

Nonlinear functions: stability and analyticity. In a second part of the paper we define
two cartesian closed categories of integrable cones and non-linear morphisms which are Scott
continuous and measurable. We also develop the associated notions of exponential comonad
(in the sense of the semantics of LL, see for instance [Mel09]) applying the special adjoint
functor theorem to the continuous inclusion functor from the category of integrable cones
and integrable linear functions to the non-linear category.

• In the first case the non-linear morphisms between integrable cones are the measurable
and stable functions that were introduced in [EPT18b]. These morphisms are Scott
continuous functions satisfying a “total monotonicity” condition, which is an iterated form

3In [Ehr20] we used the fact that PCSs are dense in cones to prove this result but this is actually not
necessary, thanks to a slightly stronger assumption on the measurability structure of cones.
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of monotonicity (plus preservation of measurable paths by post-composition of course). A
peculiarity of this construction is that apparently no integral preservation condition is
imposed on these morphisms4.

• This fact can be considered as an issue for which we propose a solution by defining a
notion of analytic morphism as the bounded limits of polynomial functions which are
themselves described as finite sums of functions of shape x 7→ f(x, . . . , x) where f is an
n-linear symmetric integrable and measurable function. These analytic functions are of
course stable and measurable but not all stable and measurable functions are analytic
because this latter notion is based on integrable linearity5.

For each measurable space X, we show that for both exponential comonads ! described
above, the integrable cone FMeas(X) has a canonical structure of coalgebra, which means
that this cone can be considered as a data-type in the sense of [Kri90] or in the sense of
the positive formulas of Polarized Linear Logic [Gir91, LR03, Ehr16]. It is very important
to observe that this construction uses integration in a crucial way: as already explained
above, the associated let operator can also be understood as a sampling construct, it is
interpreted using this coalgebra structure which is defined using integration in the integrable
cone !FMeas(X). Combined with the fact that the Kleisli categories of these comonads are
cartesian closed and ω-cpo enriched, this means that integrable cones provide a semantics
for a large number of functional programming languages with continuous data types and
basic probability features.

Convex QBSs. Besides measurable cones, one major source of inspiration of this work
is [Geo21], which introduces the notion of convex QBS, which are a particular class of algebras
on the Giry-Panangaden monad of sub-probability measures in the category of QBSs. In
other words, a convex QBS is a QBS equipped with an abstract, algebraic operation of
“integration” from which all elementary operations of a cone can be derived. As in the present
work, linear morphisms are required to commute with integration, i.e. to be morphisms of
algebras on the sub-probability monad. The main differences with respect to the present
setting are, first, that linear negation in convex QBSs is involutive (because they are defined
as dual pairs) whereas we strongly conjecture that this is not true for integrable cones; and
second, that measurability in convex QBSs is axiomatized in the QBS manner, by equipping
each object with a collection of “measurable paths” from R to this object, satisfying sheaf-like
conditions6. In integrable cones, following [EPT18b], measurability is axiomatized by means
of a “measurability structure”, i.e. a collection of “test functions” that map a real number
and an element of the cone to a non-negative real number, measurably with respect to
the first variable, and linearly and continuously with respect to the second. In turn, this
measurability structure induces a class of measurable maps from R to the cone, turning the
latter into a QBS: a map from R to the cone is measurable if and only if its composition
with each test function is a measurable map from R× R to R≥0 (by composition, we mean
that the second argument of the test function is replaced by the map, and the first argument
is left alone). A map between integrable cones is measurable when it is a morphism of

4Notice that it is not possible to expect that non-linear morphisms will preserve integrals but one could
expect that they satisfy a weakened version of this condition.

5An n-ary integrable multilinear function is a function with n-arguments which is linear and integrable in
each parameter.

6In fact, these two differences are closely linked: negation in convex QBSs can be involutive precisely
because their measurability is axiomatized in the QBS manner, without restrictions on the QBS-structure.
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QBSs. This means that, from the point of view of measurability alone (i.e. if we forget the
algebraic structure), integrable cones can be seen as a particular class of QBSs whose QBS
structure can be defined as the “dual” of a set of test functions. This restriction has the
pleasant consequence of making the theory of measurability and integration in cones quite
easy, reducing it to standard Lebesgue integration by means of post-composition with tests.

Similarly defined integrals of functions ranging in topological vector spaces separated
by their topological duals have been introduced by Pettis a long time ago [Pet38], and are
also known as weak integrals or Gelfand-Pettis integrals. The transposition of this definition
in our positive cone setting turns out to be quite suitable, thanks to its compatibility with
categorical limits.

Contents

Introduction 1
1. Preliminaries 7
1.1. Notations 7
1.2. Categories 8
2. Cones 8
2.1. Basic definitions 9
2.2. An archetypal example: the cone of finite measures 12
2.3. Basic properties 13
2.4. The category of cones and linear and continuous maps 14
3. Measurable cones 17
3.1. The category of measurable cones and linear, continuous and measurable maps 19
3.2. Examples: the measurable cones of measures and paths 20
4. Integrable cones 24
4.1. Integrable cones as quasi-Borel spaces with additional structure 27
4.2. The integrable cone of paths and a Fubini theorem for cones 28
4.3. The category of integrable cones 29
4.4. Colimits and coproducts 34
5. Internal linear hom and the tensor product 36
5.1. The cone of linear morphisms 37
5.2. Bilinear maps 42
5.3. The linear hom functor 43
5.4. The tensor product of integrable cones 45
5.5. The symmetric monoidal structure of ICones 48
6. Categorical properties of integration 50
6.1. The category of substochastic kernels as a full subcategory of ICones 53
7. Stable and measurable functions 54
7.1. The local cone 55
7.2. The integrable cone of stable and measurable functions 56
7.3. Finite differences 59
7.4. The cartesian closed category of integrable cones and stable and measurable

functions 65
8. Analytic and integrable functions on cones 68
8.1. The cone of multilinear and symmetric functions 68
8.2. The cone of homogeneous polynomial functions 69



Vol. 21:1 INTEGRATION IN CONES 1:7

8.3. The cone of analytic functions 72
8.4. The category of integrable cones and analytic functions 75
9. The linear-non-linear adjunction, in the stable and analytic cases 81
9.1. The coalgebra structure of FMeas(X) 83
9.2. Fixpoint operators in the cartesian closed category 88
10. Probabilistic coherence spaces as integrable cones 88
10.1. More constructions 93
10.2. Example: the Cantor Space as an equalizer of Pcoh morphisms 94
Conclusion 96
Acknowledgments 96
References 96

1. Preliminaries

1.1. Notations. In the whole paper, we say that a set is countable if it is finite or has the
same cardinality as N.

We use notations borrowed from the lambda-calculus to denote mathematical functions:
if e is a mathematical expression for an element of B depending on a parameter x ∈ A, we
use λx ∈ A · e for the corresponding function A→ B.

1.1.1. Categorical notations borrowed from LL. We also borrow notations from intuitionistic
LL for denoting objects of our categories and construction on these objects. These notations
are quite coherent although they somehow depart from the categorical traditions. In what
follows, the word “linear” has to be understood in an intuitive way: as explained in the
Introduction, our constructions are based on notions of linear morphisms which will be
defined precisely later.

• We use E ⊸ F to denote a space of linear morphisms from E to F ;
• we use G⊗E to denote the tensor product of G and E, such that a linear morphism from
G⊗E to F is the same thing as linear morphism from G to E ⊸ F ;

• we use 1 for the unit of ⊗ (instead of the more traditional I);
• we use & (instead of the more traditional × that we use for denoting the standard cartesian
product of sets) for the categorical product (aka. direct product) and ⊤ (instead of the
more traditional 1) for the associated unit, which is the terminal object;

• we use ⊕ for the coproduct (aka. direct sum) and 0 for the associated unit which is the
initial object;

• we use !E for the linear logic exponential, which is not a symmetric tensor algebra but
rather a symmetric tensor coalgebra.

Even if in our categories 0 and ⊤ are the same object (just as in the category of vector
spaces), we prefer to keep distinct notations because we have in mind a refinement of our
model where these objects are distinct, and we use the two notations depending on the
context. Similarly, in some context where 1 is considered as a dualizing object, we denote it
as ⊥, again in accordance with the tradition of LL.
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1.1.2. Measure theory and other notations. We use Meas for the category of measurable
spaces and measurable functions.

If X and Y are measurable spaces, recall that a kernel from X to Y is a map κ :
X × σY → R≥0 (where σY denotes the σ-algebra of Y ) such that:

• for all x ∈ X, the map λU · κ(x, U) is a measure on Y ,
• for all U ∈ σY , the map λx · κ(x, U) is measurable.

We write κ : X ⇝ Y for “κ is a kernel from X to Y ”. We say that κ is bounded if the set
{κ(x, Y ) | x ∈ X} has a finite upper bound.

If X is a measurable space, µ a non-negative measure on X and f : X → R≥0 a
non-negative measurable function, we use∫

f(r)µ(dr)

for the integral, which belongs to R≥0, rather than the more usual
∫
f(r)dµ(r). The reason

of this choice is that it is much more convenient when the measure arises as the image of
a kernel κ : Y ⇝ X in which case we can use the non ambiguous notation

∫
f(r)κ(s, dr).

This notation is also intuitively compelling if we see dr as representing metaphorically an
“infinitesimal” measurable subset of X.

If a is an element and n ∈ N we use an for the n-tuple (a, . . . , a).
We use N+ for N \ {0}.
If n ∈ N we set [n] = {1, . . . , n}.
If I is a set, we use Mfin(I) for the set of all finite multisets of elements of I, which are

the functions m : I → N such that the set supp(m) = {i ∈ I | m(i) ̸= 0} is finite.

1.2. Categories. The following is an easy consequence of the Yoneda lemma which gives
a simple tool for proving that two functors are naturally isomorphic by checking that two
associated indexed classes of homsets are in natural bijective correspondence.

Lemma 1.1. Let C and D be categories, F,G : C → D be functors and let ψC,D :
D(F (C), D) → D(G(C), D) be a natural bijection. Then the family of morphisms ηC =
ψC,F (C)(IdF (C)) ∈ D(G(C), F (C)) is a natural isomorphism whose inverse is the family of

morphisms θC = ψC,G(C)
−1(IdG(C)) ∈ D(F (C), G(C)).

2. Cones

Cones are the basic objects of our model. They are algebraic structures with numerical
features (the non-negative real half line acts on them) as well as domain theoretic features.
The algebraic and numerical aspects will be essential to account for the probabilistic aspects
of the model and the domain theoretic aspects will be crucial to give to our model a suitable
computational expressive power, allowing to interpret arbitrary recursive definitions.

The purpose of the present section is to introduce this basic algebraic and numerical
infrastructure and give its basic properties. Our definition of cones is borrowed without
major modifications from [Sel04]. As explained in that paper, they are close to the domain
theoretic treatment of positive cones developed in [Tix98], with the difference that Selinger’s
cones are equipped with a norm and that their order-theoretic completeness is deeply related
to this norm.
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The notion of positive cone itself is pervasive in functional analysis and it would be a
very difficult task to describe its genealogy and many avatars in the literature. Our (and
Selinger’s) cones seem very similar to normal cones in Banach spaces, and it seems actually
possible, given one or our cones P , to define an enveloping Banach space of which P is a
normal positive cone. However, the linear morphisms that we consider between our cones
are assumed to be continuous in a domain theoretic sense, and this seems to be a stronger
property than continuity wrt. the topology induced by the norm (when the linear morphism
is extended to the associated Banach space). This difference in the definition of morphisms
seems to be a major drift wrt. the standard uses of cones in analysis.

Both Selinger and Tix assume that their cones are continuous (in the domain-theoretic
sense) which makes it possible to prove a separation property similar to a Hahn-Banach
theorem. This is an assumption that we cannot afford here because we will need our category
of cones and linear maps to be complete and continuity does not seem to be preserved by
equalizers in general. We will see that dropping this assumption is essentially harmless
in the setting of this paper: our measurability structures of Section 3 will provide us the
required separation properties.

Another difference between Selinger’s cones and ours is that we do not assume order-
theoretic completeness wrt. arbitrary norm-bounded directed sets, as it is usual in domain
theory, but only wrt. norm-bounded ω-increasing sequences (or, equivalently, to countable
directed sets). This assumption is sufficient for computing arbitrary fixpoints, see Section 9.2,
and cannot be significantly strengthened because of our constant use of the monotone
convergence theorem.

Measurability notions for cones will be necessary as well to deal with probabilities on
arbitrary measurable spaces such as the real line; this will be done in Section 3.

2.1. Basic definitions. A precone is a R≥0-semimodule P which satisfies

(Cancel) ∀x1, x2, x ∈ P x1 + x = x2 + x⇒ x1 = x2

(Pos) ∀x1, x2 ∈ P x1 + x2 = 0 ⇒ x1 = 0

Given x1, x2 ∈ P , we stipulate that x1 ≤ x2 if ∃x ∈ P x2 = x1 + x. By (Cancel) and
(Pos) this defines a partial order relation on P : the cone order of P . Moreover when x1 ≤ x2
there is exactly one x ∈ P such that x2 = x1 + x, that we denote as x2 − x1. Notice that
this subtraction between elements of P is only partially defined, and that it satisfies all the
usual laws of subtraction.

A cone is a precone P equipped with a function ∥ ∥P : P → R≥0 (or simply ∥ ∥), called
the norm of P , which satisfies the following properties.

(Normh) ∀λ ∈ R≥0∀x ∈ P ∥λx∥ = λ ∥x∥

(Normz) ∀x ∈ P ∥x∥ = 0 ⇒ x = 0

(Normt) ∀x1, x2 ∈ P ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥

(Normp) ∀x1, x2 ∈ P ∥x1∥ ≤ ∥x1 + x2∥ or, equivalently ∀x1, x2 ∈ P x1 ≤ x2 ⇒ ∥x1∥ ≤
∥x2∥.

Condition (Normp) expresses the positiveness of P and implies (Pos), but it is seems
more sensible to require (Pos) at the beginning because of its purely algebraic nature, and
because this allows to define the useful notion of precone.
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(Normc) Each sequence (xn)n∈N of elements of P which is increasing7 (for the cone order
relation of P ) and satisfies ∀n ∈ N ∥xn∥ ≤ 1 has a lub x = supn∈N xn in P which satisfies
∥x∥ ≤ 1.

A subset A of P is

• bounded if ∃λ ∈ R≥0∀x ∈ A ∥x∥ ≤ λ. We set BP = {x ∈ P | ∥x∥ ≤ 1} and call this set
the unit ball of P (unit tip might be more appropriate but seems less standard). With
this notation, A is bounded iff ∃λ ∈ R≥0 A ⊆ λBP .

• ≤-bounded if there is y ∈ P such that ∀x ∈ A x ≤ y. This implies that A is bounded (but
the converse is not true).

• ω-closed if ∀x1, x2 ∈ P (x1 ≤ x2 and x2 ∈ A) ⇒ x1 ∈ A and for each bounded increasing
sequence (xn)n∈N of elements of A one has supn∈N xn ∈ A.

Notice that P and BP are ω-closed subsets of P .

Definition 2.1. Let S be a set and P be a cone. A function f : S → P is bounded if f(S)
is bounded in P .

Definition 2.2. Let P and Q be cones, let A ⊆ P be ω-closed and let f : A → Q be a
function.

• f is increasing if ∀x1, x2 ∈ A x1 ≤ x2 ⇒ f(x1) ≤ f(x2). Notice that if f is increasing
and (xn)n∈N is a bounded and increasing sequence in A then the sequence (f(xn))n∈N is
bounded by ∥f(supn∈N xn)∥ in Q, by (Normp) and monotonicity of f .

• f is ω-continuous, or simply continuous (no other notion of continuity will be considered
in this paper), if f is monotonic and for each bounded increasing sequence (xn)n∈N of
elements of A, one has f(supn∈N xn) = supn∈N f(xn), that is f(supn∈N xn) ≤ supn∈N f(xn)
since the converse holds by monotonicity of f .

• f is linear if A = P , f(λx) = λf(x) and f(x1 + x2) = f(x1) + f(x2), for all λ ∈ R≥0 and
x, x1, x2 ∈ P . Notice that if f is linear then f is increasing because, given x1, x2 ∈ P , if
x1 ≤ x2 then f(x2−x1)+f(x1) = f(x2), and moreover we have f(x2−x1) = f(x2)−f(x1).
One says that f is linear and continuous if it is linear and ω-continuous.

• If f : P → Q is linear, one says that f is bounded if its restriction to BP is a bounded
function.

One major interest of this kind of continuity is the fact that separate continuity implies
continuity (see Lemma 2.19), a property that usual topological continuity does not satisfy.

There are plenty of examples of cones:

Example 2.3. Let X be a measurable space. The space of all bounded measurable maps
from X to R≥0 forms a cone: the operations are defined pointwise, and the norm is given by
the supremum.

Example 2.4. Section 2.2 describes the cone of finite measures on a measurable space
which provides one of the main motivations for this work. All the objects of the probabilistic
coherence space model of LL can be seen as cones; the interested reader can have a look
at the beginning of Section 10 to see more about them. Here are some instances of this
particular class.

7A reader acquainted with domain-theory might expect here a stronger completeness requirement using
arbitrary directed sets instead of ω-chains (or, equivalently, countable directed sets). It is absolutely crucial
to use this restricted definition because we will often have to use the monotone convergence theorem to prove
this property, and this theorem is valid only for countable families.



Vol. 21:1 INTEGRATION IN CONES 1:11

• The cone N whose elements are the u ∈ (R≥0)
N such that

∑
n∈N un <∞, with algebraic

operations defined pointwise, and ∥u∥ =
∑

n∈N un. This is also a special case of the cones
of Section 2.2 where the measurable space is N with the discrete σ-algebra.

• The dual of N (in the sense of Definition 2.14) which can be described as the cone N⊥ of
bounded families u ∈ (R≥0)

N with norm defined by ∥u∥ = supn∈N un.

• The cone P ⇒ 1 where P ∈ {N,N⊥}, whose elements are the families t ∈ (R≥0)
Mfin(N)

such that there is λ ∈ R≥0 such that

∀u ∈ P ∥u∥ ≤ 1 ⇒
∑

m∈Mfin(N)

tmu
m ≤ λ

where um =
∏

n∈N u
m(n)
n , with algebraic operations defined componentwise and norm

defined by ∥t∥ = supu∈BP t̂(u) where t̂(u) =
∑

m∈Mfin(N) tmu
m. In both cases P = N and

P = N⊥ , t̂ can be seen as a bounded function BP → R≥0. The set of these families t
equipped with that norm is easily seen to be a cone. An element of N⊥ ⇒ 1 can be seen as
a power series with infinitely many parameters, defining a function BN⊥ = [0, 1]N → R≥0.
An element of N ⇒ 1 is an analytic function on the subprobability distributions on the
natural numbers, we give an example of such a function. Given two such distributions
u and v, we can define their convolution product u ∗ v ∈ N by (u ∗ v)n =

∑n
i=0 uivn−i

which is again a subprobability distribution (the push-forward of addition). If u (resp. v)
is the probability distribution of a N-valued random variable X (resp. Y ) and X and Y
are independent, then u ∗ v is the probability distribution associated with X + Y . Given a
family (an ∈ R≥0)n∈N such that

∑
n∈N an = 1, a non trivial example of element of N ⇒ 1

is t given by

t̂(u) =
∞∑
n=0

an

n︷ ︸︸ ︷
u ∗ · · · ∗ u .

whose coefficients are

tm =
#m!

m!
a#m+1

where #m is the number of elements of m (taking multiplicities into account) and
m! =

∏
i∈Nm(i)!. Such power series are typical examples of the analytic functions that

we will meet in Section 8 in the general setting of integrable cones.

Remark 2.5. We can already observe that our analytic functions will be defined in general
only on the unit ball of their domain. The reason is that the analytic functions which
interpret programs will in general be characterized by recursive equations. For instance, it is
quite easy to define a probabilistic program (of type unit → unit) whose interpretation is
a function f : [0, 1] → [0, 1] such that f(u) = 1

2u+ 1
2f(u)

2, so that f(u) = 1−
√
1− u: this

is the only solution of the quadratic equation which gives a power series with nonnegative
coefficients (tn)n∈N such that f(u) =

∑
n∈N tnu

n for all u ∈ [0, 1], but the series diverges for
u > 1.

Remark 2.6. As we have seen in the basic definitions and in the first examples, all the
real numbers we consider are non-negative. A natural question is whether this restriction
could be dropped and we argue that this issue is more tricky than it might seem at first
sight. Consider an analytic function (in the sense described above) f : [0, 1]2 → [0, 1],
given by a family t ∈ R2

≥0, so that f(u, v) =
∑

n,p∈N tn,pu
nvp. Then for each u ∈ [0, 1], the
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function fu : [0, 1] → [0, 1] such that fu(v) = f(u, v) has a least fixpoint g(u), and we shall
see in Section 9.2 that the function g is itself analytic, that is g(u) =

∑
n∈N snu

n for some
(sn ∈ R≥0)n∈N such that

∑
n∈N sn ≤ 1. If we relax this positivity requirement, then our

function f could be f(u, v) = 1 − (1 − u)(1 − v) = u + v − uv (mentioned in particular
in [EHS04]). It is still true that fu has a least fixpoint g(u), but one checks easily that
g(0) = 0 and g(u) = 1 if u > 0, which shows that g cannot be analytic, even with possibly
negative coefficients.

2.2. An archetypal example: the cone of finite measures. Let X be a measurable
space. The set FMeas(X) of all finite (non-negative, real-valued) measures on X is naturally
equipped with the structure of a cone:

• the algebraic operations of FMeas(X) are defined pointwise (e.g. (µ1 + µ2)(U) = µ1(U) +

µ2(U) for all U ∈ σX);
• the norm is given by ∥µ∥ = µ(X) (this is the total variation norm of µ since µ is
non-negative);

• observing that µ1 ≤ µ2 means ∀U ∈ σX µ1(U) ≤ µ2(U), it is clear that each increasing
sequence (µn)n∈N in BP has a least upper bound µ ∈ BP which is computed pointwise:
µ(U) = supn∈N µn(U).

The set FMeas(X) itself can be equipped with a σ-algebra, in the spirit of the Giry monad.

Let κ : X ⇝ Y be a bounded kernel. Then the map κ̂ : FMeas(X)⇝ FMeas(Y ) defined

by κ̂(µ)(V ) =
∫
x∈X κ(x, V )µ(dx) is linear, continuous and measurable.

In fact, this map κ̂ has a stronger property: it preserves (S-)finite integrals. Namely,
whenever µ is a finite measure on FMeas(X) (or more generally an S-finite8 measure such
that

∫
ν∈FMeas(X) ν(X) µ(dν) <∞), we have

κ̂
(∫

ν∈FMeas(X)
ν µ(dν)

)
=

∫
ν∈FMeas(X)

κ̂(ν)µ(dν) ,

where the integrals are defined pointwise (recall that a measure on X is in particular a
map from σX to R≥0). Conversely, if a map f : FMeas(X)⇝ FMeas(Y ) preserves S-finite

integrals, then there exists a unique bounded kernel κ : X ⇝ Y such that f = κ̂. It is given
by κ(x) = f(δX(x)), where δX(x) denotes the Dirac measure at x on X. If we think of
S-finite measures as a generalization of formal linear combinations, then commutation with
S-finite integrals is simply a generalization of linearity.

Preservation of S-finite integrals implies continuity and linearity, but the converse does
not hold in general as illustrated in Remark 2.7.

Remark 2.7. Consider the map cont : FMeas(R) → FMeas(R) defined by

cont(µ) =
dµ

dλ
λ

where λ is the Lebesgue measure on R and dµ
dλ is the Radon-Nikodym derivative of µ with

respect to λ. In other words, this map extracts the continuous part of the measures on R.

8Recall that a measure is S-finite if it is a countable sum of finite measures. This is a weaker property
than σ-finiteness.
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This map is linear, ω-continuous and measurable (because the map µ 7→ dµ
dλ is measur-

able [Kal17, Theorem 1.28]). On the other hand,

cont
(∫

δR(r)λ[0,1](dr)
)
= cont

(
λ[0,1]

)
= λ[0,1] ,

(where λ[0,1] is the Lebesgue measure on [0, 1]), while∫
cont(δR(r))λ[0,1](dr) =

∫
0λ[0,1](dr) = 0 .

Therefore, there exists no kernel κ : R⇝ R such that cont = κ̂. As we shall see, avoiding
this kind of situation is one of our main motivations for introducing integrability.

2.3. Basic properties. The following means that the notion of continuity we consider for
linear maps behaves in an essentially algebraic way.

Lemma 2.8. Let P and Q be cones and let f : P → Q be linear and continuous. If f is
bijective then f−1 is linear and continuous.

Proof. Linearity follows from the injectivity of f : let y1, y2 ∈ Q, x1 = f−1(y1 + y2) and
x2 = f−1(y1)+f

−1(y2), we have f(x1) = y1+y2 and f(x2) = y1+y2 by linearity of f , hence
x1 = x2. Scalar multiplication is dealt with similarly. Since f−1 is linear, it is increasing.

Let (yn ∈ BQ)∞n=1 be an increasing sequence and let y ∈ BQ be its lub. The sequence
(f−1(yn) ∈ P )∞n=1 is increasing and upper bounded by f−1(y) and hence bounded in norm
by

∥∥f−1(y)
∥∥
P
, so it has a lub x ∈ P such that x ≤ f−1(y). By continuity of f we have

f(x) = f(sup∞n=1 f
−1(yn)) = sup∞n=1 yn = y and hence x = f−1(y) which shows that f−1 is

continuous.

Using the notations of LL for the multiplicative constants, there is a cone 1 = ⊥ whose set
of elements is R≥0 and ∥x∥ = x: the 1-dimensional cone. And using the notations of LL for
the additive constants, there is also a cone 0 = ⊤ whose only element is 0: the 0-dimensional
cone.

Lemma 2.9. Let P be a cone. Addition P × P → P and scalar multiplication 1× P → P
are increasing and ω-continuous.

Proof. See [Sel04].

The following lemma will be quite useful to prove that the difference between two linear and
continuous functions is also linear and continuous, when it exists.

Lemma 2.10. Let P and Q be cones, let A ⊆ P be ω-closed and let f, g : A → Q be
functions such that f is increasing, g is ω-continuous, ∀x ∈ P f(x) ≤ g(x) and the function
g − f = λx ∈ P · (g(x)− f(x)) is increasing. Then g − f is ω-continuous.

Proof. Let (xn)n∈N be a bounded increasing sequence in A and let x = supn∈N xn. For
all n ∈ N we have f(xn) ≤ f(x) and hence g(xn) ≤ f(x) + g(xn) − f(xn). The sequence
(f(x) + g(xn)− f(xn))n∈N is increasing by our assumption that g − f is increasing, and it is
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≤-bounded by f(x) + g(x). We have

g(x) = g(sup
n∈N

xn)

= sup
n∈N

g(xn) since g is ω-continuous

≤ sup
n∈N

(f(x) + g(xn)− f(xn))

= f(x) + sup
n∈N

(g(xn)− f(xn)) by Lemma 2.9

and hence g(x)− f(x) ≤ supn∈N(g(xn)− f(xn)). Since g − f is increasing, if follows that
g − f is ω-continuous.

Lemma 2.11. If f : P → Q is linear then f(BP ) is bounded. We set

∥f∥ = sup
x∈BP

∥f(x)∥ ∈ R≥0 .

Proof. See [Sel04], we give the proof because it is short and interesting. If the lemma does
not hold there is a sequence (xn)n∈N such that ∀n ∈ N ∥xn∥ ≤ 1 and ∀n ∈ N ∥f(xn)∥ ≥ 4n.
Then let yn =

∑n
k=1

1
2k
xk ∈ P , we have ∥yn∥ ≤

∑n
k=1

1
2k

∥xn∥ ≤ 1 and (yn)n∈N is an
increasing sequence which therefore has a lub y ∈ BP , and we have ∥f(y)∥ ≥ ∥f(yn)∥ ≥
1
2n ∥f(xn)∥ ≥ 2n by (Normp) and linearity of f . Since this holds for all n ∈ N we have a
contradiction.

Remark 2.12. We have obtained this property without even requiring f to be ω-continuous.

2.4. The category of cones and linear and continuous maps. Given cones P and
Q the set P ⊸ Q of all linear and continuous maps from P to Q, equipped with obvious
pointwise defined algebraic operations, is a precone. Notice that f1 ≤ f2 simply means that
∀x ∈ P f1(x) ≤ f2(x) and then the difference is given by (f2 − f1)(x) = f2(x) − f1(x): it
suffices to check that this latter map is linear which is obvious, and that it is continuous
which results from Lemma 2.10.

Lemma 2.13. Equipped with the norm defined in Lemma 2.11, the precone P ⊸ Q is a
cone.

The proof is easy. By definition of ∥f∥ and by (Normh) we have

∀x ∈ P ∥f(x)∥ ≤ ∥f∥ ∥x∥ .

Definition 2.14. We set P ′ = (P ⊸ ⊥). If x ∈ P and x′ ∈ P ′ we write ⟨x, x′⟩ = x′(x) ∈
R≥0.

Notice that, with these notations, ∥x′∥ = supx∈BP ⟨x, x′⟩.

Remark 2.15. The cone P ′ should be understood as an analog of the topological dual
of a normed vector space; for instance one can define a linear and continuous morphism
η : P → P ′′ which corresponds to the usual embedding of a vector space into its bidual.
However, in the case of cones, this morphism η is not necessarily injective: see the counter-
example in Remark 2.16. As already mentioned we know from [Sel04] that an additional
requirement on morphisms — namely, continuity, in the domain-theoretic sense — could
guarantee the injectivity of this morphism; however continuity is too strong a requirement
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for what we are trying to accomplish. For this reason, the structures we define below
(measurable, and later, integrable cones) will contain the axiom (Mssep) which states
precisely that this morphism is injective.

Remark 2.16 (A cone whose dual is zero). The following construction provides a non-trivial
cone P whose dual P ′ contains only 0. This construction was suggested to us by one of the
reviewers: many thanks to her/him. Consider the quotient set P = P0/∼, where P0 is the
set of all bounded measurable maps from [0, 1] to R≥0 (Example 2.3), and ∼ is the following
equivalence relation: f ∼ g if and only if f and g differ only on a meager9 subset of [0, 1].

The set P0 inherits the structure of a cone from P , with ∥[f ]∥ defined as inf{∥g∥ | g ∼ f}
(where [f ] denotes the equivalence class of f and ∥g∥ = supx∈[0,1] g(x)). This is indeed a

cone: the least obvious part is the fact that ∥[f ]∥ = 0 implies [f ] = 0. Indeed, assume
∥[f ]∥ = 0. Then for all n > 0, there exists fn ∼ f such that ∥fn∥ ≤ 1

n . Thus, there exists a

co-meager set Xn such that f(x) ≤ 1
n for all x ∈ Xn. The intersection of all the Xn is itself

co-meager, and therefore f ∼ 0.
We shall prove that P ′ = {0}. Let α ∈ P ′. The map f 7→ α([f ]) (from P0 to R≥0) must

commute with countable sums, therefore there must exist a finite measure µ on [0, 1] such
that α([f ]) =

∫
x∈[0,1] f(x)µ(dx) for all f . Moreover, we have that µ(Y ) = 0 for all meager

sets Y . On the other hand, there exists a co-meager set X such that µ(X) = 0. Indeed, let
D be a dense countable subset of [0, 1] such that µ(D) = 0 (such a set must exist because
µ has at most countably many atoms). For all n > 0, there exists an open set Xn that
contains D (and is therefore dense) and such that µ(Xn) ≤ 1

n . The intersection X of all the
Xn is co-meager, and its measure is 0. Therefore, µ([0, 1]) = µ(X) + µ([0, 1] \X) = 0, and
thus α = 0.

Definition 2.17. The category Cones has the cones as objects, and Cones(P,Q) is the
set of all linear and continuous f : P → Q such that ∥f∥ ≤ 1.

Theorem 2.18. The category Cones has all small products. Given a family (Pi)i∈I of
cones (with no cardinality restrictions on I), their categorical product (&i∈I Pi, (pri)i∈I) is
defined as follows:

• &i∈I Pi is the set of all −→x = (xi)i∈I ∈
∏

i∈I Pi such that the family (∥xi∥)i∈I is bounded,
equipped with the obvious algebraic operations defined componentwise

• and ∥−→x ∥ = supi∈I ∥xi∥.
In particular, the terminal object (corresponding to the case where I = ∅) is ⊤.

The projections are the standard projections of the cartesian product in Set. Given
a family of morphisms (fi ∈ Cones(Q,Pi))i∈I , the associated morphism f = ⟨fi⟩i∈I ∈
Cones(Q,&i∈I Pi) is characterized by f(y) = (fi(y))i∈I .

The cone order of &i∈I Pi is the product of the cone orders of the Pi’s and the lubs of
bounded sequences of elements of &i∈I Pi are computed componentwise.

See [Sel04]. There is a clear similarity with the ℓ∞ construct of Banach spaces.
As announced, we can check now that separate continuity implies continuity.

Lemma 2.19. Let P , Q and R be cones, let A ⊆ P and B ⊆ Q be ω-closed, so that A×B
is an ω-closed subset of the product cone P & Q, and let f : A × B → R be separately

9Recall that a subset of a topological space is meager if it is contained in a countable union of closed sets
whose interiors are empty. Conversely, a subset is co-meager if it contains a countable intersection of dense
open subsets.
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ω-continuous (that is, for all y ∈ B the function λx ∈ A · f(x, y) is ω-continuous and for all
x ∈ A the function λy ∈ B · f(x, y) is ω-continuous). Then f is ω-continuous.

Proof. Let ((xn, yn) ∈ A × B)n∈N be an increasing bounded sequence in A × B so that
(xn)n∈N is increasing and bounded in A, and (yn)n∈N is increasing and bounded in B, and
supn∈N(xn, yn) = (supn∈N xn, supn∈N yn). We have

f(sup
n∈N

(xn, yn)) = sup
n∈N

sup
k∈N

f(xn, yk) by separate continuity

= sup
n∈N

f(xn, yn)

because f is increasing.

Theorem 2.20. The category Cones has all binary equalizers and therefore is complete.
Moreover, if (E, e ∈ Cones(E,P )) is the equalizer of f, g ∈ Cones(P,Q) then e reflects the
order relation: if x, y ∈ E satisfy e(x) ≤P e(y) then x ≤E y.

Proof. Let f, g ∈ Cones(P,Q). Let E = {x ∈ P | f(x) = g(x)}. We equip E with
the algebraic operations of P which makes sense since f and g are linear: if x1, x2 ∈ E
then f(x1 + x2) = f(x1) + f(x2) = g(x1) + g(x2) = g(x1 + x2) so that x1 + x2 ∈ E and
similarly for scalar multiplication. Next, for x ∈ E, we set ∥x∥E = ∥x∥P which easily
satisfies (Normh), (Normz), (Normt) and (Normp). Let x1, x2 ∈ E. It is obvious that
x1 ≤E x2 ⇒ x1 ≤P x2. Conversely assume that x1 ≤P x2 so that x2 − x1 exists in P , we
have f(x2 − x1) = f(x2)− f(x2) by linearity of f and similarly g(x2 − x1) = g(x2)− g(x2)
and hence x2 − x1 ∈ E so that x1 ≤E x2. We have proven that x1 ≤E x2 ⇔ x1 ≤P x2.

We prove that the norm of E satisfies (Normc), so let (xn)n∈N be a sequence which is
increasing in E and such that ∀n ∈ N ∥xn∥E ≤ 1. Then this sequence is increasing in P
and satisfies ∀n ∈ N ∥xn∥P ≤ 1 and hence it has a supremum x ∈ P such that ∥x∥P ≤ 1.
Moreover by continuity of f and g we have x ∈ E. We have ∀n ∈ N xn ≤P x and hence
∀n ∈ N xn ≤E x. Let y ∈ E be such that ∀n ∈ N xn ≤E y, we have ∀n ∈ N xn ≤P y
and hence x ≤P y which implies x ≤E y. This shows that x is the supremum of the xn’s
in E, and since ∥x∥E = ∥x∥P ≤ 1, we have proven (Normc) and hence E is a cone. Let
e : E → P be the inclusion of E into P , it is clear that e ∈ Cones(E,P ).

Finally, if h ∈ Cones(Q,P ) satisfies f h = g h, we have that h(u) ∈ E for all u ∈ Q by
definition of E. So h = e h′ where h′ : Q→ E is defined exactly as h (the only difference is
the codomain), and we have h′ ∈ Cones(Q,E) since the operations in E are defined as in P .
The uniqueness of h′ results from the injectivity of e. So (E, e) is the equalizer of f and g.

It follows that Cones is complete since it has also all small products.

Lemma 2.21. Let P and Q be cones and assume that P ̸= 0. Let f : P → Q be linear and
continuous, and bijective. Then ∥f∥ ≠ 0 and

∥∥f−1
∥∥ ≥ ∥f∥−1.

Proof. By assumption there is x ∈ P such that x ̸= 0 and since f is bijective and f(0) = 0,
we have that Q ̸= 0. If follows that ∥f∥ ≠ 0 and similarly

∥∥f−1
∥∥ ̸= 0. Let ε > 0, we

can find x ∈ P such that ∥f∥ ≥ ∥f(x)∥
∥x∥ − ε hence ∥x∥

∥f(x)∥ ≥ 1
∥f∥+ε . Setting y = f(x), we

have
∥f−1(y)∥

∥y∥ ≥ 1
∥f∥+ε and hence

∥∥f−1
∥∥ ≥ 1

∥f∥+ε and since this holds for all ε > 0 we get∥∥f−1
∥∥ ≥ ∥f∥−1.

Proposition 2.22. If f ∈ Cones(P,Q) is an iso and P ̸= 0, then ∥f∥ = 1.
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Proof. By Lemma 2.21 we have
∥∥f−1

∥∥ ≥ ∥f∥−1 and since f is a morphism ∥f∥ ≤ 1 so∥∥f−1
∥∥ ≥ 1. Hence

∥∥f−1
∥∥ = 1 since f−1 is a morphism. Applying this to f−1 we get

∥f∥ = 1.

The following technical lemma will be useful for proving that our category of integrable
cones is well-powered in Theorem 4.18, a crucial property for being able to apply the special
adjoint functor theorem.

Lemma 2.23. Let P be a cone, S be a set and f : P → S be a bijective function. There is
exactly one cone structure on S for which f becomes an iso in Cones.

Proof. Given s1, s2 ∈ S, we set s1+s2 = f(f−1(s1)+f
−1(s2)) and similarly λs = f(λf−1(s))

for s ∈ S and λ ∈ R≥0. And we set ∥s∥S =
∥∥f−1(s)

∥∥
P
. It is straightforward that one defines

a cone in that way, and that f is an iso. It is also obvious that this structure of cone one S
is the only one such that f is an iso.

3. Measurable cones

Let Ar be a small10 full subcategory of Meas (the category of measurable spaces and
measurable functions) which is closed under cartesian products and contains the terminal
object 0 which is the one point measurable space (we use this notation because the one
point measurable space is geometrically 0-dimensional). We also assume all the objects of
Ar to be non-empty measurable spaces. We also use Ar for the set of all objects of the
category Ar.

Remark 3.1. In most situations we could assume that Ar has all finite products Rn as
objects, and measurable maps as morphisms. We could even assume that Ar has R as single
object, or more precisely, two objects: R and 0 since all the Rn are isomorphic11 to R in
Meas for n > 0.

Definition 3.2. A measurability structure on a cone P is a family M = (MX)X∈Ar with
MX ⊆ (P ′)X (where we recall that P ′ = (P ⊸ ⊥) is the dual of the cone P ) satisfying the
four next conditions (Msmeas), (Mscomp), (Mssep) and (Msnorm). When X = 0 we
consider m ∈ MX as an element of P ′.

(Msmeas) For each m ∈ MX and x ∈ BP , one has λr ∈ X ·m(r, x) ∈ Meas(X, [0, 1])
where [0, 1] ⊆ R is equipped with its standard Borel σ-algebra. This implies in particular
that if r ∈ X, then λx ∈ P ·m(r, x) ∈ Cones(P, 1).

(Mscomp) For each m ∈ MX and φ ∈ Ar(Y,X) one has λ(s, x) ∈ (Y × P ) ·m(φ(s), x) =
m ◦ (φ× P ) ∈ MY .

In particular, since 0 is the terminal object of Ar, each element m ∈ M0 induces an element
λ(r, x) ∈ (X × P ) ·m(x) ∈ MX and in this way we consider M0 as a subset of MX for
each X ∈ Ar.

(Mssep) If x1, x2 ∈ P satisfy ∀m ∈ M0 m(x1) = m(x2) then x1 = x2.

10This assumption is crucial for making the use of the special adjoint functor theorem possible.
11Such isomorphisms involve however non canonical encoding methods so we prefer to avoid using this

property explicitly.
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(Msnorm) For all x ∈ P , one has

∥x∥ = sup
{m(x)

∥m∥
| m ∈ M0 and m ̸= 0

}
or, equivalently, ∥x∥ ≤ sup{m(x)/ ∥m∥ | m ∈ M0 and m ̸= 0}.

Indeed, for each x′ ∈ P ′ \ {0} and x ∈ P one has ∥x∥ ≥ ⟨x,x′⟩
∥x′∥ .

Remark 3.3. The condition (Msnorm) can also be formulated as follows: for each

x ∈ P \ {0} and for each ε > 0 there exists m ∈ M0 \ {0} such that ∥x∥ ≤ m(x)
∥m∥ + ε.

The condition that x ≠ 0 is required because we could possibly have M0 = {0}, but in
that situation, by (Mssep) we must have P = {0}. The condition (Msnorm) was absent
in [Ehr20] which made it much more difficult to prove that the category of cones and linear
measurable cones is symmetric monoidal: we had to use a property of density of the category
of PCSs. (Msnorm) makes the whole theory much better behaved.

Remark 3.4. We do not require M0 to be the whole unit ball of the dual P ′, but only
a subset of it, sufficiently large for satisfying our requirements (Mscomp), (Mssep) and
(Msnorm). As we will see in various constructions, M0 will often be a very small part of
this unit ball.

Remark 3.5. Instead of (Mssep) we could also consider the following stronger separation
condition: if for allm ∈ M0 one hasm(x) ≤ m(y) then x ≤ y. However this would complicate
the definition of the measurability structures of the spaces of stable and measurable functions
in Section 7.2 and of analytic functions in Section 8. This stronger separability does not
seem to be necessary (at least for the purpose of what we do in this paper) but one should
keep in mind that all our constructions could be performed within this restricted class.

Definition 3.6 (Measurable cone). A measurable cone is a pair C = (C,MC) where C is a
cone and MC is a measurability structure on C.

The main purpose of the measurability structure of a measurable cone is to equip the
underlying cone with a structure of QBS by defining a collection of paths ranging in the
cone.

Definition 3.7 (Measurable path). Let X ∈ Ar and let C be a measurable cone. A
(measurable) path of arity X is a function γ : X → C which is bounded and such that, for
each Y ∈ Ar and m ∈ MC

Y , the function λ(s, r) ∈ Y ×X ·m(s, γ(r)) : Y ×X → R≥0 is
measurable. We use Path(X,C) for the set of measurable paths of arity X of the measurable
cone C.

Remark 3.8. Measurable paths should be thought of as a generalization of finite kernels,
and in the case where C is the measurable cone of finite measures on a measurable space Y ,
each bounded kernel from X to Y is a measurable path from X to C. One of the purposes
of introducing integrals is to make the converse true.

Lemma 3.9. Let x ∈ C and γ = λr ∈ X · x : X → C be the constant function. Then γ is a
measurable path.

This immediately results from the definitions.

Lemma 3.10. Let γ : X → C be a measurable path and let φ ∈ Ar(Y,X) for some Y ∈ Ar.
Then γ ◦ φ : Y → C is also a measurable path.
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Proof. Let Y ′ ∈ Ar and m ∈ MC
Y ′ , we have λ(s′, s) ∈ Y ′ × Y ·m(s′, γ(φ(s))) = (λ(s′, r) ∈

Y ′ ×X ·m(s′, γ(r))) ◦ (Y ′ × φ) which is measurable as the composition of two measurable
maps.

We turn the cone 1 = ⊥ into a measurable cone by defining M1
X as the set of all functions

mapping each element r ∈ X to Id : R≥0 → R≥0 for all X ∈ Ar.

Proposition 3.11. Let B be a measurable cone and let x ∈ B. Then

∥x∥ = sup
x′∈BB′

⟨x, x′⟩ .

Proof. By definition of the norm in B′ we have ∥x∥ ≥ ⟨x, x′⟩ for all x′ ∈ BB′. We can
assume that x ̸= 0 since otherwise the announced equation trivially holds. Let ε > 0 and

m ∈ MB
0 \ {0} be such that ∥x∥ ≤ m(x)

∥m∥ + ε. Let x′ = m/ ∥m∥, we have x′ ∈ BB′. Since

∥x∥ ≤ ⟨x, x′⟩+ ε our contention is proven.

Remark 3.12. One main purpose of the condition (Msnorm) is to get the above highly
desirable property. We could have expected to get (Mssep) and (Msnorm) for free by
means of a Hahn Banach theorem for cones as in [Sel04]. However, the counter-example
of Remark 2.16, suggested to us by one of the reviewers of this paper, shows that such a
separation property does not hold in our setting. The very nice Hahn Banach theorem
proven in [Sel04] relies on the assumption that cones are continuous domains, an assumption
that we cannot afford here because we need our cones to define a complete category in order
to apply the special adjoint functor theorem which is our main tool for equipping ICones
with a tensor product and with an exponential. Fortunately, we can take this Hahn Banach
separation property as one of our axioms on the measurability tests, and proving that this
property is preserved by all limits does not induce noticeable technical difficulties.

3.1. The category of measurable cones and linear, continuous and measurable
maps. We can now define our first main category of interest.

Definition 3.13. The category MCones has measurable cones as objects and an element
of MCones(B,C) is an f ∈ Cones(B,C) such that for each X ∈ Ar and each measurable
path β : X → B the function f ◦ β is a measurable path. Equivalently

∀Y ∈ Ar ∀m ∈ MC
Y λ(s, r) ∈ X × Y ·m(s, f(β(r))) is measurable.

Remark 3.14. An isomorphism f ∈ MCones(B,C) is a bijection f : B → C which is
linear and continuous, satisfies ∀x ∈ B ∥f(x)∥C = ∥x∥B and, for each X ∈ Ar and each
function β : X → B, one has β ∈ Path(X,B) ⇔ f ◦ β ∈ Path(X,C). This means that

B and C can be isomorphic even if the measurability structures MC and MD are quite
different: it suffices that they induce the same measurable paths.

Definition 3.15. Let B be a measurable cone and α ∈ R with α > 0. Then αB is
the measurable cone which is defined exactly as B apart for the norm which is given by
∥x∥αB = α−1 ∥x∥B.

Notice that B(αB) = αBB = {x ∈ B | ∥x∥B ≤ α}.
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3.2. Examples: the measurable cones of measures and paths. We introduce two
important examples of measurable cones. The measurable cone of finite measures on an
object of Ar will allow us to understand Ar as our category of basic data-types.

As noticed by one of the reviewers, it would not be strictly necessary to introduce the
measurable cone of measurable paths since we will see that, in the setting of integrable cones,
the cone of measurable paths can be described as an internal linear hom, see Theorem 6.1.
Our motivations for presenting this construction are:

• it illustrates for the first time the reason why our tests have parameters in objects of Ar;
• it is a simple and natural construction, quite different from the cone of finite measures
(and somehow dual to it), and completely independent from our integrability assumptions.

3.2.1. The measurable cone of finite measures. Let X be a measurable space (not necessarily
in Ar). Recall that in Section 2.2 we defined the cone FMeas(X) of all finite measures on X.

For all Y ∈ Ar and all U ∈ σX we define Ũ : Y × FMeas(X) → R≥0 by Ũ(s, µ) = µ(U).

Then we define MY = {Ũ | U ∈ σX}, and FMeas(Y ) = (FMeas(X), (MY )Y ∈Ar) is clearly a
measurable cone.

Remark 3.16. We could have taken another measurability structure as follows. For all

Y ∈ Ar and allW ∈ σY×X we define W̃ : Y ×FMeas(X) → R≥0 by W̃ (s, µ) = µ({r | (s, r) ∈
W}). Then we define MY = {W̃ |W ∈ σY×X}. Then FMeas(X) = (FMeas(X), (MY )Y ∈Ar)
is a measurable cone. As easily checked, these two measurability structures define exactly
the same measurable paths on FMeas(X). This example shows that a given cone (namely
FMeas(X)) can be given two distinct measurability structures. This is also an example
of the situation mentioned in Remark 3.14: the measurability cones defined by these two
measurability structures are isomorphic in the category MCones.

Notice that if Y ∈ Ar then a measurable path γ : Y → FMeas(X) is the same thing as
a bounded kernel from Y to X.

Let φ ∈ Meas(X,Y ) (remember that this means that φ is a measurable function X →
Y ), then given µ ∈ FMeas(X) we can define ν = φ∗(µ) ∈ FMeas(Y ) by ν(V ) = µ(φ−1(V ))

for each V ∈ σY (the push-forward of µ along φ).

Lemma 3.17. We have φ∗ ∈ MCones(FMeas(X),FMeas(Y )). The operation FMeas on
measurable cones extends to a functor FMeas : Ar → MCones, acting on morphisms by
measure push-forward: FMeas(φ) = φ∗.

Proof. Linearity and continuity being obvious, as well as the fact that ∥FMeas(f)∥ ≤ 1, we
only have to check measurability. Let κ : Y ′ → FMeas(X) be a measurable path. We must

prove that κ′ = FMeas(φ) ◦ κ is a measurable path. Let p ∈ MFMeas(Y )
Y ′′ for some Y ′′ ∈ Ar,

that is p = Ṽ for some V ∈ σY . For (s
′′, s′) ∈ Y ′′ × Y ′ we have p(s′′, κ′(s′)) = κ′(s′)(V ) =

κ(s′)(φ−1(V )) and hence λ(s′′, s′) ∈ Y ′′×Y ′ ·p(s′′, κ′(s′)) is measurable because κ is a kernel
and φ is measurable. Functoriality of FMeas is obvious.
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3.2.2. The measurable cone of paths. Let C be an object of MCones and X ∈ Ar. Let
P be the set of all measurable paths γ : X → C. We turn P into a precone by defining
the algebraic laws in the obvious pointwise manner. For instance let γ1, γ2 ∈ P , we define
γ = γ1 + γ2 by γ(r) = γ1(r) + γ2(r) which is bounded by (Normt). To check measurability,
take m ∈ MC

Y , we have λ(s, r) ∈ Y ×X ·m(s, γ(r)) = λ(s, r) ∈ Y ×X ·m(s, γ1(r))+λ(s, r) ∈
Y ×X ·m(s, γ2(r)) (pointwise addition) by linearity of m in its second parameter, which is
measurable in r by continuity of addition on R≥0.

Then we have γ1 ≤ γ2 iff ∀r ∈ X γ1(r) ≤ γ2(r): it suffices to check that, when this
latter condition holds, the map λr ∈ X · (γ2(r) − γ1(r)) is a path which results from the
continuity (and hence measurability) of subtraction of real numbers.

Given γ ∈ P we set

∥γ∥ = sup
r∈X

∥γ(r)∥ ∈ R≥0

which is well defined by our assumption that γ is bounded. This satisfies all the required
conditions for turning P into a cone, the only non obvious one being (Normc). So let
(γn)n∈N be an increasing sequence of elements of P such that ∀n ∈ N ∀r ∈ X ∥γn(r)∥ ≤ 1.
We define γ : X → P by γ(r) = supn∈N γn(r) ∈ BC which is well defined since for each
r ∈ X the sequence (γn(r))n∈N is increasing in BC. It suffices to check that γ satisfies the
measurability condition, so let Y ∈ Ar and m ∈ MC

Y , we have by ω-continuity of m in its
second argument

λ(s, r) ∈ Y ×X ·m(s, γ(r)) = λ(s, r) ∈ Y ×X · sup
n∈N

m(s, γn(r))

which is measurable by the monotone convergence theorem of measure theory (observing
that (λ(s, r) ∈ Y ×X ·m(s, γn(r)))n∈N is an increasing sequence of measurable functions
Y ×X → [0, 1]).

Remark 3.18. Remember that it is precisely for being able to prove this kind of properties
that we assume the unit balls of cones to be complete only for increasing chains and not for
arbitrary directed sets.

So far we have equipped P (the set of measurable paths from X to C) with a structure
of cone in the algebraic sense of Section 2. We equip now this cone with a measurability
structure. This definition will illustrate, for the first time in this paper, the usefulness of the
“additional” parameter of tests, spanning measurable spaces taken in Ar.

Let Y ∈ Ar, φ ∈ Ar(Y,X) and m ∈ MC
Y , we define

φ ▷ m : Y × P → R≥0

(s, γ) 7→ m(s, γ(φ(s))) .

Observe first that for each s ∈ Y , the map λγ ∈ P · (φ ▷ m)(s, γ) is linear and continuous
by linearity and continuity of m in its second argument. We check that the family (MY ⊆
P ′Y )Y ∈Ar defined by MY = {φ ▷ m | φ ∈ Ar(Y,X) and m ∈ MC

Y } is a measurability
structure on P .

▶ (Msmeas). Let p ∈ MY and γ ∈ P , so that p = φ ▷ m for some φ ∈ Ar(Y,X)
and m ∈ MC

Y , then let θ = λs ∈ Y · p(s, γ) = λs ∈ Y · m(s, γ(φ(s))). We know that
ψ = λ(s, r) ∈ Y ×X ·m(s, γ(r)) is measurable Y ×X → [0, 1] and hence θ = ψ ◦ ⟨Y, φ⟩ is
measurable Y → [0, 1] since φ is measurable.
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▶ (Mscomp). Let p ∈ MY and ψ ∈ Ar(Y ′, Y ). We have p = φ ▷ m for some φ ∈ Ar(Y,X)
and m ∈ MC

Y . Then we have p ◦ (ψ × P ) = (φ ◦ ψ) ▷ (m ◦ (ψ × C)) ∈ MY ′ .

▶ (Mssep). Let γ1, γ2 ∈ P and assume that ∀p ∈ M0 p(γ1) = p(γ2). Let r ∈ X
that we consider as an element of Ar(0, X). Let m ∈ MC

0 , by our assumption we have
(r ▷ m)(γ1) = (r ▷ m)(γ2), that is m(γ1(r)) = m(γ2(r)) and since this holds for all m ∈ MC

0

we have γ1(r) = γ2(r) by (Mssep) in C.

▶ (Msnorm). Let γ ∈ P \ {0} and ε > 0. We can find r ∈ X such that γ(r) ̸= 0 and
∥γ∥ ≤ ∥γ(r)∥ + ε

2 . By (Msnorm) holding in C we can find m ∈ MC
0 \ {0} such that

∥γ(r)∥ ≤ m(γ(r))
∥m∥ + ε

2 . Remember that r ▷ m ∈ M0 and notice that ∥r ▷ m∥ = sup{m(δ(r)) |
δ ∈ BP} = ∥m∥ by Lemma 3.9. So we have

∥γ∥ ≤ ∥γ(r)∥+ ε

2
≤ (r ▷ m)(γ)

∥r ▷ m∥
+ ε

and hence ∥γ∥ = sup{p(γ)
∥p∥ | p ∈ M0 and p ̸= 0} as required since M0 = {r ▷ m | r ∈

X and m ∈ MC
0 }.

We use Path(X,C) for the measurable cone (P,M) defined above. We end this section
with the following lemma which will be useful when dealing with the tensor product of
measurable cones, and in particular for proving Theorem 6.7.

Lemma 3.19. Let B be a cone and X,Y ∈ Ar. There is an iso

flX,Y ∈ MCones(Path(X,Path(Y,B)),Path(X × Y,B))

which “flattens” η ∈ Path(X,Path(Y,B)) into flX,Y (η) = λ(r, s) ∈ X × Y · η(r)(s). As a
consequence

fl−1
Y,X flX,Y ∈ MCones(Path(X,Path(Y,B)),Path(Y,Path(X,B))) ,

the function which swaps the parameters of a path of paths, is an iso in MCones.

Proof. Let η ∈ Path(X,Path(Y,B)), we need first to prove that η′ = fl(η) ∈ Path(X × Y,B)

so let Y ′ ∈ Ar and let m ∈ MB
Y ′ , we must prove that

φ = λ(s′, r, s) ∈ Y ′ ×X × Y ·m(s′, η′(r, s)) = λ(s′, r, s) ∈ Y ′ ×X × Y ·m(s′, η(r)(s))

is measurable. Let m′ = m ◦ (pr1 × B) ∈ MB
Y ′×Y (that is m′(s′, s, x) = m(s′, x)) so that

pr2 ▷ m
′ ∈ MPath(Y,B)

Y ′×Y , we know that λ(s′, s, r) ∈ Y ′ × Y ×X · (pr2 ▷ m′)(s′, s, η(r)) =

λ(s′, s, r) ∈ Y ′ × Y ×X · m(s′, η(r)(s)) is measurable from which it follows that φ is
measurable. Moreover it is clear that η′(X × Y ) ⊆ ∥η∥BB is bounded in B and hence
η′ ∈ Path(X × Y,B) as announced.

The linearity and ω-continuity of fl are clear so we check its measurability. Let Y ′ ∈ Ar
and let η ∈ Path(Y ′,Path(X,Path(Y,B))), we must prove that

fl ◦ η ∈ Path(Y ′,Path(X × Y,B)) .

So let Y ′′ ∈ Ar and let p ∈ MPath(X×Y,B)
Y ′′ . Let φ′ = ⟨φ,ψ⟩ ∈ Ar(Y ′′, X ×Y ) and m ∈ MB

Y ′′

be such that p = φ′ ▷ m, we have that

φ′′ = λ(s′′, s′) ∈ Y ′′ × Y ′ · p(s′′, fl(η(s′)))
= λ(s′′, s′) ∈ Y ′′ × Y ′ ·m(s′′, fl(η(s′))(φ(s′′), ψ(s′′)))

= λ(s′′, s′) ∈ Y ′′ × Y ′ ·m(s′′, η(s′)(φ(s′′))(ψ(s′′)))
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is measurable because

φ′′ = λ(s′′, s′) ∈ Y ′′ × Y ′ · (φ ▷ (ψ ▷ m))(s′′, η(s′))

and by our assumption about η. Last notice that ∥fl(η)∥ = ∥η∥ which shows that fl ∈
MCones(Path(X,Path(Y,B)),Path(X × Y,B)).

As to the converse direction, given η ∈ Path(X × Y,B) let fl′(η) = λr ∈ X · λs ∈
Y · η(r, s), we must first prove that fl′(η) ∈ Path(X,Path(Y,B)), we just check measurability,

boundedness being obvious. Let p ∈ MPath(Y,B)
Y ′ for some Y ′ ∈ Ar. Let φ ∈ Ar(Y ′, Y ) and

m ∈ MB
Y ′ be such that p = φ ▷ m, we must prove that ψ = λ(s′, r) ∈ Y ′ ×X ·p(s′, fl′(η)(r)) =

λ(s′, r) ∈ Y ′ ×X ·m(s′, η(r, φ(s′))) is measurable. This follows from the fact that φ and
λ(s′, r, s) ∈ Y ′ ×X × Y ·m(s′, η(r, s)) are measurable, the latter by our assumption about
η.

Checking that fl′ is a morphism in MCones follows exactly the same pattern as for

fl, using the obvious bijection between MPath(X,Path(Y,B))
Y ′ and MPath(X×Y,B)

Y ′ induced by the

fact that Ar is cartesian. Finally the observation that fl′ = fl−1 shows that fl is an iso in
MCones.

Remark 3.20. So a test on the space of C-valued and X-parameterized paths is provided
by a test m ∈ MC

Y — itself parameterized by a space Y ∈ Ar — and a “variable argument”
which is a measurable function φ from Y to the space X. When φ is not a constant function,
the value of (φ ▷ m)(s, γ) = m(s, γ(φ(s))) depends in general on s when γ is not a constant
path, even if the function m : Y × C → R≥0 does not depend on its first argument. This
definition of tests in the cones of paths plays a crucial role in the proof of Lemma 3.19.

Imagine that we want to use a simpler notion of tests, with MC ⊆ C ′, that is, assume
that our tests do not have the further parameter taken in a Y ∈ Ar. The first difficulty we
face consists in finding a suitable definition for MPath(X,C). The simplest option consists
in taking all the r ▷ m where r ∈ X and m ∈ MC , defined by (r ▷ m)(β) = m(β(r)). This
choice fulfills all the expected separation properties. With this definition, an element of
Path(Y,Path(X,C)) is the same thing as a bounded function γ : Y ×X → B such that, for

each m ∈ MC , the function λs ∈ Y ·m(β(s, r)) : Y → R≥0 is measurable for all r ∈ X and
the function λr ∈ X ·m(β(s, r)) : X → R≥0 is measurable for all s ∈ Y . Let us assume that
C = FMeas(Z) for some Z ∈ Ar, let φ : Y ×X → Z be a function, and let γ : Y ×X → C be
given by γ(s, r) = δZ(φ(s, r)). Saying that γ ∈ Path(Y,Path(X,C)) means that the function
φ is separately measurable in both arguments, a condition which is strictly weaker than
measurability on Y ×X in general. On the other hand, with our definition of measurability
tests for Path(X,C), Lemma 3.19 tells us that γ ∈ Path(Y,Path(X,C)) iff φ is measurable
Y ×X → Z for the very simple reason that Y ×X ∈ Ar. Notice that we have equipped P ,
the cone of measurable paths from X to C, with two different measurability structures: the
original one made of all tests φ ▷ m where φ ∈ Ar(Y,X) and m ∈ MC

Y , and the simplified
one, made of tests φ ▷ m where φ ∈ Ar(Y,X) is a constant function and m ∈ MC

Y . The two
measurable cones obtained in that way are not isomorphic12 in MCones since the associated
measurable paths are distinct as we have seen. This complements Remarks 3.16 and 3.14.

We will meet a completely similar definition of tests for the space B ⊸ C of linear,
continuous and integrable functions from B to C in Section 5.

12More precisely, the identity function between these two cones is not an isomorphism.
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4. Integrable cones

We now introduce the main novelties of this paper, which are the definition of the integral
of a measurable path wrt. a finite measure, the notion of integrable cone, and the notion of
linear, continuous, measurable and integral preserving functions between integrable cones.

The following definition is quite similar to Definition 2.1 in [Pet38] of the integral of a
function valued in a topological vector space. Our integrals are valued in cones instead of
vector spaces.

Definition 4.1. Let B be a measurable cone, X ∈ Ar, β ∈ Path(X,B) and µ ∈ FMeas(X).

An integral of β over µ is an element x of B such that, for all m ∈ MB
0 , one has

m(x) =

∫
m(β(r))µ(dr) .

Notice indeed that m ◦ β : X → R≥0 is a bounded measurable function so that the integral
above is well defined and belongs to R≥0 (remember that the measure µ is finite). Notice
also that by (Mssep) if such an integral x exists, it is unique, so we can introduce a notation
for it, we write

x =

∫
β(r)µ(dr) .

When we want to stress the cone B where this integral is computed we denote it as∫ B
β(r)µ(dr) and when we want to insist on the measurable space on which the integral is

computed we write
∫
X β(r)µ(dr) or

∫
r∈X β(r)µ(dr).

Lemma 4.2. If β ∈ Path(X,B) is integrable over µ ∈ FMeas(X) then∥∥∥∥∫
X
β(r)µ(dr)

∥∥∥∥
B

≤ ∥β∥Path(X,B) ∥µ∥FMeas(X) .

Proof. Let x =
∫
β(r)µ(dr). If x = 0 there is nothing to prove so assume that x ̸= 0. Let

ε > 0 and let m ∈ MB
0 \ {0} be such that ∥x∥ ≤ ε+ m(x)

∥m∥ , that is

∥x∥ ≤ ε+
1

∥m∥

∫
m(β(r))µ(dr) .

For each r ∈ X we have m(β(r)) ≤ ∥m∥ ∥β(r)∥ ≤ ∥m∥ ∥β∥. Our contention follows from
∥µ∥ = µ(X) =

∫
µ(dr).

Definition 4.3. A measurable cone is integrable if, for all X ∈ Ar, each β ∈ Path(X,B) has

an integral in B over each measure µ ∈ FMeas(X). When this is the case we use IB
X for the

uniquely defined function Path(X,B)× FMeas(X) → B such that IB
X(β, µ) =

∫
β(r)µ(dr).

Remark 4.4. A very natural question is whether there are measurable cones which are not
integrable. We strongly conjecture that such cones do exist but we have not yet tried to
exhibit some.

The fundamental example of an integrable cone is the measurable cone of finite measures
described in Section 3.2.1.

Theorem 4.5. For each measurable space X, the measurable cone FMeas(X) is integrable.

This is just a reformulation of the standard integration of a kernel.
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Proof. Let Y ∈ Ar, κ ∈ Path(Y,FMeas(X)), which means that κ is a bounded kernel Y ⇝ X,

and let ν ∈ FMeas(Y ), which means that ν is a finite measure. We define µ : σX → R≥0 by

∀U ∈ σX µ(U) =

∫
κ(s, U)ν(ds) ∈ R≥0 .

The fact that µ defined in that way is a finite measure is completely standard in measure

theory and µ is the integral of κ by the very definition of MFMeas(X)
0 .

In the sequel we assume that B is an integrable cone. We state and prove some basic
expected properties of integration.

Lemma 4.6. Let φ : Y ×X → R≥0 be measurable and bounded and let κ : Y → FMeas(X)

be a bounded kernel. Then the function λs ∈ Y ·
∫
φ(s, r)κ(s, dr) is measurable.

Proof. The property is obvious when φ is simple13, and the result follows from the monotone
convergence theorem by the fact that each R≥0-measurable function is the lub of a increasing
sequence of simple functions.

Lemma 4.7. For each X ∈ Ar, the map IB
X is bilinear, continuous and measurable.

This means that IB
X : Path(X,B) & FMeas(X) → B is continuous, separately linear in

each of its two arguments and that for each Y ∈ Ar, η ∈ Path(Y,Path(X,B)) and κ ∈
Path(Y,FMeas(X)), the function β = IB

X ◦ ⟨η, κ⟩ : Y → B is a measurable path.

Proof. Separate linearity in both argumets results from the linearity of integration and
from (Mssep) satisfied by B, let us prove separate continuity (which implies continuity
by Lemma 2.19). Let (βn)n∈N be an increasing sequence in BPath(X,B) and let µ ∈
FMeas(X). The sequence (IB

X(βn, µ) ∈ B)n∈N is increasing by linearity of IB
X and for all

n ∈ N we have
∥∥IB

X(βn, µ)
∥∥ ≤ ∥βn∥ ∥µ∥ ≤ ∥µ∥ so that supn∈N IB

X(βn, µ) ∈ B exists. Let

β = supn∈N βn ∈ BPath(X,B), that is ∀r ∈ X β(r) = supn∈N βn(r). Let m ∈ MB
0 , since

(m ◦ βn)n∈N is an increasing sequence of measurable functions by linearity of m and since
m ◦ β = supn∈Nm ◦ βn (pointwise) by continuity of m, we have∫

m(β(r))µ(dr) = sup
n∈N

∫
m(βn(r))µ(dr)

by the monotone convergence theorem. That is m(IB
X(β, µ)) = supn∈Nm(IB

X(βn, µ)) =
m(supn∈N IB

X(βn, µ)) by continuity of m. By (Mssep) we get IB
X(β, µ) = supn∈N IB

X(βn, µ)
as required.

Let β ∈ Path(X,B) and let (µn ∈ BFMeas(X))n∈N be an increasing sequence with lub
µ. It is a standard fact that for each measurable and bounded φ : X → R≥0 the sequence
(
∫
φ(r)µn(dr))n∈N is increasing and has

∫
φ(r)µ(dr) as lub: this is due to the fact that∫

φ(r)µ(dr) = supk∈N
∫
φk(r)µ(dr) where (φk ≤ φ)k∈N is an increasing family of simple

functions whose pointwise lub is φ, and to the fact that
∫
ψ(r)µ(dr) = supn∈N

∫
ψ(r)µn(dr)

holds trivially when ψ is simple. As above the sequence (IB
X(β, µn))n∈N is increasing with

∀n ∈ N
∥∥IB

X(β, µn)
∥∥ ≤ ∥β∥ ∥µ∥ and therefore has a lub supn∈N IB

X(β, µn) ∈ B. Letm ∈ MB
0 ,

13A R-valued measurable function is simple iff it ranges in a finite subset of R.
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we have

m(sup
n∈N

IB
X(β, µn)) = sup

n∈N
m(IB

X(β, µn))

= sup
n∈N

∫
m(β(r))µn(dr)

=

∫
m(β(r))µ(dr)

= m(IB
X(β, µ))

and the announced continuity follows by (Mssep) in B.
Now we prove measurability, so let Y ∈ Ar, η ∈ Path(Y,Path(X,B)) and let κ ∈

Path(Y,FMeas(X)), we prove that the function β = IB
X ◦ ⟨η, κ⟩ : Y → B belongs to

Path(Y,B). The fact that β(X) is bounded results from Lemma 4.2. Let Y ′ ∈ Ar and

m ∈ MB
Y ′ , we have

λ(s′, s) ∈ Y ′ × Y ·m(s′, β(s)) = λ(s′, s) ∈ Y ′ × Y ·m(s′, IB
X(η(s), κ(s)))

= λ(s′, s) ∈ Y ′ × Y ·
∫
m(s′, η(s, r))κ(s, dr)

and this function is measurable by Lemma 4.6 and by our assumption about η.

Lemma 4.8 (Change of variable). Let X,Y ∈ Ar, β ∈ Path(X,B), ν ∈ FMeas(Y ) and

φ ∈ Ar(Y,X). We have ∫
s∈Y

β(φ(s))ν(ds) =

∫
r∈X

β(r)φ∗(ν)(dr) .

In other words IB
X is extranatural in X.

Proof. By the usual change of variable formula, through the use of measurability tests
m ∈ MB

0 and (Mssep) for B.

Lemma 4.9. If B is an integrable cone and α ∈ R is such that α > 0 then the measurable
cone αB is integrable, and has the same integrals as B.

We can define now the category which is at the core of the present study.

Definition 4.10. The category ICones has integrable cones as objects and an element of
ICones(B,C) is an f ∈ MCones(B,C) such that, for all X ∈ Ar and all β ∈ Path(X,B)

and µ ∈ FMeas(X) one has

f
(∫

β(r)µ(dr)
)
=

∫
f(β(r))µ(dr) .

This property of f will be called integral preservation and when it holds we often simply say
that f is integrable.

Notice that the right hand term of the above equation is well defined because f ◦ β ∈
Path(X,C) by our assumption on f . It is obvious that we define a category in that way.

Lemma 4.11. The functor FMeas : Ar → MCones introduced in Lemma 3.17 is a functor
Ar → ICones.
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Proof. Let φ ∈ Ar(X,Y ) and κ ∈ Path(Y ′,FMeas(X)) be a bounded kernel. Given µ′ ∈
FMeas(Y ′) and V ∈ σY we have

φ∗

(∫
κ(s′)µ′(ds′)

)
(V ) =

(∫
κ(s′)µ′(ds′)

)
(φ−1(V ))

=

∫
κ(s′, φ−1(V ))µ′(ds′) by def. of integration in FMeas(X)

=

∫
φ∗(κ(s

′))(V )µ′(ds′)

=
(∫

φ∗(κ(s
′))µ′(ds′)

)
(V ) by def. of integration in FMeas(Y )

so that φ∗ preserves integrals.

4.1. Integrable cones as quasi-Borel spaces with additional structure. In this
section, we assume, as in Remark 3.1, that Ar has only two objects R and 0.

Then every integrable cone C can be seen as a QBS [VKS19] by letting MC (which is
by definition the set of all QBS-morphisms from R to C) be the set of all maps α : R → C
such that for all m ∈ MC

R , the map λ(r, s) ·m(α(r), s) from R× R to R is measurable.
There is a well-defined notion of S-finite measure (respectively: probability measure,

sub-probability measure) on QBSs. The operation that maps a QBS Q to the set of all
S-finite (respectively: probability, sub-probability) measures on Q defines a commutative
strong monad on the category of QBSs [HKS+18, end of §2] (this is similar to the Giry
monad on the category of measurable spaces and measurable maps). For each S-finite
measure µ on an integrable cone C, there exists at most one element y ∈ C such that for all
m ∈ MC

0 , m(y) =
∫
x∈C m(x)µ(dx). If this element exists (which is always the case if µ is

finite and has a bounded support), we will denote it by
∫
x∈C xµ(dx). One can check that

for each integrable cone C, this construction makes the unit ball BC into an algebra over
the monad of sub-probability measures on QBSs.

In this situation a map f : C → B between two integrable cones is a morphism in
ICones if and only if:

• it is a morphism of QBSs,
• it preserves S-finite integrals: for each S-finite measure µ on C, if

∫
x∈C xµ(dx) exists (as

an element of C), then ∫
x∈C

f(x)µ(dx) = f
(∫

x∈C
xµ(dx)

)
,

• and it is non-expansive: for all x ∈ C, ∥f(x)∥ ≤ ∥x∥.
In particular, for each morphism f ∈ ICones(B,C), the restriction of f to BB is a morphism
of algebras: this was one of our main guidelines in the design of integrable cones.

However, it is not clear whether or not each morphism of algebras from BB to BC
is the restriction of some morphism in ICones(B,C) (which would make ICones a full
subcategory of the category of algebras over the monad of sub-probability measures on
QBSs). It is also not clear whether the construction of Section 9.2 (which will define a
fixpoint operator on integrable cones) can be replicated in the category of algebras over
the monad of sub-probability measures on QBSs. Indeed, we conjecture that in both cases



1:28 T. Ehrhard and G. Geoffroy Vol. 21:1

the answer is no. On the other hand, integrable cones are not quite algebras over the
monad of S-finite measures, because the would-be monad multiplication (namely, S-finite
integration) is only partially defined. We do not know whether there exists a monad on (a
full subcategory of) QBSs such that ICones is equivalent to the category of algebras over
this monad.

4.2. The integrable cone of paths and a Fubini theorem for cones.

Theorem 4.12. For each X ∈ Ar and each integrable cone B, the measurable cone
Path(X,B) is integrable.

Proof. Let Y ∈ Ar, η ∈ Path(Y,Path(X,B)) and ν ∈ FMeas(Y ), we define β : X → B by

β(r) =
∫
η(s)(r)ν(ds), in other words the integral of a path of paths is defined pointwise.

For each r ∈ X we have

∥β(r)∥ =

∥∥∥∥∫ η(s)(r)ν(ds)

∥∥∥∥
≤ ∥λs ∈ Y · η(s)(r)∥ ∥ν∥ by Lemma 4.2

≤ ∥η∥ ∥ν∥
so β is a bounded function. This function is a measurable path by Lemma 4.7 so β belongs

to Path(X,B). Let p ∈ MPath(X,B)
0 so that p = r ▷ m for some r ∈ X and m ∈ MB

0 , we
have

p(β) = m(β(r))

= m
(∫

η(s)(r)ν(ds)
)

=

∫
m(η(s)(r))ν(ds)

=

∫
p(η(s))ν(ds) by definition of p

and hence β =
∫
η(s)ν(ds).

Theorem 4.13. The operation Path, extended to morphisms by pre- and post-composition,
is a functor Arop × ICones → ICones. In other words, given f ∈ ICones(B,C) and
φ ∈ Ar(Y,X), we have

Path(φ, f) = λβ ∈ Path(X,B) · (f ◦ β ◦ φ) ∈ ICones(Path(X,B),Path(Y,C)) .

Proof. Functoriality is obvious. We check first measurability of Path(φ, f) so let Y ′ ∈ Ar and
let η ∈ Path(Y ′,Path(X,B)), we must check that Path(φ, f) ◦ η ∈ Path(Y ′,Path(Y,C)). Let

Y ′′ ∈ Ar and p ∈ MPath(Y,C)
Y ′′ , we check that ψ = λ(s′′, s′) ∈ Y ′′ × Y ′ ·p(s′′,Path(φ, f)(η(s′)))

is measurable. So let ρ ∈ Ar(Y ′′, Y ) and m ∈ MC
Y ′′ be such that p = ρ ▷ m. Give s′′ ∈ Y ′′

and s′ ∈ Y ′, we set

ψ(s′′, s′) = m(s′′,Path(φ, f)(η(s′))(ρ(s′′)))

= m(s′′, f(η(s′)(φ(ρ(s′′)))))

= m(s′′, f(fl(η)(s′, φ(ρ(s′′)))))
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and the map ψ is measurable by Lemma 3.19 because f ◦ fl(η) ∈ Path(Y ′ ×X,C) and

φ ◦ ρ is measurable. We prove that Path(φ, f) preserves integrals. Let Y ′ ∈ Ar, η ∈
Path(Y ′,Path(X,B)), ν ′ ∈ FMeas(Y ′) and let s ∈ Y . We have

Path(φ, f)
(∫ Path(X,B)

s′∈Y ′
η(s′)ν ′(ds′)

)
(s) = f

((∫ Path(X,B)

s′∈Y ′
η(s′)ν ′(ds′)

)
(φ(s))

)
= f

(∫ B

s′∈Y ′
η(s′)(φ(s))ν ′(ds′)

)
by def. of integration in Path(X,B)

=

∫ C

s′∈Y ′
f(η(s′)(φ(s)))ν ′(ds′) since f preserves integrals

=
(∫ Path(Y,C)

s′∈Y ′
Path(φ, f)(η(s′))ν ′(ds′)

)
(s)

which proves our contention.

Lemma 4.14. The bijection flX,Y defined in Lemma 3.19, as well as its inverse, preserve
integrals and hence

flX,Y ∈ ICones(Path(X,Path(Y,B)),Path(X × Y,B))

is an iso in ICones.

Proof. Results straightforwardly from the “pointwise” definition of integration in the cones
of paths.

Theorem 4.15 (Fubini). Let X,Y ∈ Ar, η ∈ Path(X,Path(Y,B)), µ ∈ FMeas(X) and

ν ∈ FMeas(Y ). We have∫
Y

(∫
X
η(r)µ(dr)

)
(s)ν(ds) =

∫
X×Y

fl(η)(t)(µ× ν)(dt)

Proof. Denoting by x1 and x2 these two elements of B it suffices to prove that for each
m ∈ MB

0 one has m(x1) = m(x2). Setting η
′ = fl(η) we have

x1 =

∫
Y

(∫
X
η′(r, s)µ(dr)

)
ν(ds) x2 =

∫
X×Y

η′(t)(µ× ν)(dt)

and the equation follows by application of the usual Fubini theorem to the bounded non-
negative measurable function m ◦ η′ and to the finite measures µ and ν. Notice that in the
expression of x2 the variable t ranges over pairs.

4.3. The category of integrable cones. We start with proving that the category ICones
of Definition 4.10 has all (projective) limits. This is not only a very pleasant property of the
probabilistic model of LL that we are defining14, it will play a crucial role in our definition
of the tensor product and of the exponentials.

Theorem 4.16. The category ICones is complete.

14Which is not so common among models of LL; there is however a price to pay, it is very likely that the
category ICones has no ∗-autonomous structure.
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There is a faithful forgetful functor ICones → Set which maps each integrable cone C
to C, considered as a set, and each morphism to itself; we will see that this functor actually
creates all the small limits in ICones.

Proof. We prove first that ICones has all small products. We use implicitly Theorem 2.18
at several places. Let (Ci)i∈I be a collection of integrable cones and let P = &i∈I Ci

which is the product of the Ci’s in Cones. Given X ∈ Ar, i ∈ I and m ∈ MCi
X we

define ini(m) : X × P → R≥0 by ini(m)(r,−→x ) = m(r, xi). We set M = (MX)X∈Ar where

MX = {ini(m) | i ∈ I and m ∈ MCi
X }. With the notations above, given −→x ∈ P , the function

λr ∈ X · ini(m)(r,−→x ) = λr ∈ X ·m(r, xi) is measurable since MCi satisfies (Msmeas).
Let φ ∈ Ar(Y,X), we have ini(m) ◦ (φ × P ) = ini(m ◦ (φ × Ci)) ∈ MY since

m ◦ (φ× Ci) ∈ MCi
Y by (Mscomp) in Ci.

Let
−−→
x(1),

−−→
x(2) ∈ P be such that ∀p ∈ M0 p(

−−→
x(1)) = p(

−−→
x(2)). Then for each i ∈ I we

have x(1)i = x(2)i by (Mssep) holding in Ci and hence
−−→
x(1) =

−−→
x(2).

Let −→x ∈ P \ {0} and ε > 0. Since ∥−→x ∥ = supi∈I ∥xi∥ there is i ∈ I such that

∥−→x ∥ ≤ ∥xi∥+ε/2 and xi ≠ 0. We can findm ∈ MCi
0 \{0} such that ∥xi∥ ≤ m(xi)/ ∥m∥+ε/2.

Let p = ini(m) ∈ M0, notice that ∥p∥ = ∥mi∥ since for each x ∈ BCi the family −→y defined
by yi = x and yj = 0 if j ̸= i satisfies −→y ∈ BP . So we have ∥−→x ∥ ≤ p(−→x )/ ∥p∥ + ε which
shows that M satisfies (Msnorm).

So the pair (P,M) is a measurable cone C = &i∈I Ci, we prove that it is integrable. An
element of Path(X,C) is a family (γi ∈ Path(X,Ci))i∈I such that (∥γi∥)i∈I is bounded and,

given µ ∈ FMeas(X), the family

−→x =
(∫

γi(r)µ(dr)
)
i∈I

is in P by Lemma 4.2 and is the integral of γ over µ by definition of MC .
With the same notations as above, for each i ∈ I, the map pri ◦ γ is a measurable path

since, given Y ∈ Ar and m ∈ MCi
Y one has λ(s, r) ∈ Y ×X · ini(m)(s, γ(r)) = λ(s, r) ∈

Y ×X · m(s, pri(γ(r)). The fact that pri ∈ ICones(C,Ci) results from the definition of
integration in C.

Let (fi ∈ ICones(D,Ci))i∈I , then we know that f = ⟨fi⟩i∈I ∈ Cones(D,C). Let

δ ∈ Path(X,D), we prove that f ◦ δ ∈ Path(X,C) so let i ∈ I and m ∈ MCi
Y . We have

λ(s, r) ∈ Y ×X · ini(m)(s, f(δ(r))) = λ(s, r) ∈ Y ×X ·m(s, fi(δ(r))) and this latter map is
measurable for each i ∈ I thus proving that f ◦ δ is measurable. Using the same notations,
let furthermore µ ∈ FMeas(X), we have

f
(∫

δ(r)µ(dr)
)
=

(
fi

(∫
δ(r)µ(dr)

))
i∈I

=
(∫

fi(δ(r))µ(dr))
)
i∈I

since each fi preserves integrals

=

∫
f(δ(r))µ(dr)

which shows that f ∈ ICones(D,C) as required. This proves that ICones has all small
products.
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We prove now that ICones has equalizers, so let f, g ∈ ICones(C,D). Let (P, e ∈
Cones(P,C)) be the equalizer of f and g in Cones, see Theorem 2.20. Remember that if
x, y ∈ P satisfy x ≤C y then y − x ∈ P .

We define MX as the set of all p : X × P → R≥0 such that there is m ∈ MC
X satisfying

∀x ∈ P ∀r ∈ X p(r, x) = m(r, x). Then it is clear that p ∈ (P ′)X and we actually identify
MX with MC

X although several elements of the latter can induce the same element of the
former. We prove that (MX)X∈Ar defines a measurability structure on P , the only non
trivial property being (Msnorm). Let x ∈ P \ {0} and ε > 0. Let ε′ > 0 be such that
ε′ ≤ ε and ε′ < ∥x∥ (remember that we have assumed that x ̸= 0 and hence ∥x∥ > 0).
Applying (Msnorm) in C we can find m ∈ MC

0 \ {0} such that ∥x∥ = ∥x∥C satisfies

∥x∥ ≤ m(x)/ ∥m∥C + ε′ where we have added the superscript to ∥m∥ to insist on the fact

that it is computed in C, that is ∥m∥C = supy∈BC m(y). By our assumption that ε′ < ∥x∥
we must have m(x) ̸= 0. By definition of ∥ ∥P we have BP = P ∩ BC ⊆ BC and hence

∥m∥P = supy∈BP m(y) ≤ supy∈BC m(y) = ∥m∥C (and ∥m∥P ̸= 0 since m(x) ̸= 0 and x ∈ P )
and hence

∥x∥P = ∥x∥C ≤ m(x)

∥m∥C
+ ε′ ≤ m(x)

∥m∥P
+ ε

since ∥m∥P ≤ ∥m∥C and ε′ ≤ ε, and since this holds for all ε > 0, it follows that P satisfies
(Msnorm).

So we have defined a measurable cone E = (P,M), we check that it is integrable. Let
X ∈ Ar, β ∈ Path(X,E) and µ ∈ FMeas(X), we have

f
(∫

β(r)µ(dr)
)
=

∫
f(β(r))µ(dr) =

∫
g(β(r))µ(dr) = g

(∫
β(r)µ(dr)

)
since β ranges in E = P and f and g preserve integrals. Hence

∫
β(r)µ(dr) ∈ E and this

element of E is the integral of β over µ by definition of ME .
We check now that (E, e) is the equalizer of f, g in ICones. The inclusion e ∈

Cones(E,C) is measurable E → C by definition of the measurability structure of E
which is essentially the same as that of C and preserves integrals because the integral in E
is defined as in C.

We already know that f e = g e. Let H be an integrable cone and h ∈ ICones(H,C) be
such that f h = g h. Let h0 be the unique element of Cones(H,E) such that h = e h0. Let
X ∈ Ar and γ ∈ Path(X,H) be a measurable path of H. Let Y ∈ Ar and m ∈ ME

Y so that

actuallym ∈ MC
Y . We have λ(s, r) ∈ Y ×X ·m(s, h0(γ(r))) = λ(s, r) ∈ Y ×X ·m(s, h(γ(r)))

which is measurable since h is. With the same notation, taking also µ in FMeas(X), we have

h0

(∫ H

γ(r)µ(dr)
)
= h

(∫ H

γ(r)µ(dr)
)

by definition of h0

=

∫ C

h(γ(r))µ(dr) since h preserves integrals

=

∫ E

h0(γ(r))µ(dr)

and hence h0 ∈ ICones(H,E). Since h = e h0 and is unique with this property in Cones,
it has the same properties in ICones.

This shows that ICones has all small limits.
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Lemma 4.17. Let C be an integrable cone, S be a set, and let f : C → S be a bijection.
There is an integrable cone structure on S such that f is an iso in ICones.

This structure is not unique a priori (other choices for the measurability structure are
possible in general), but this is not an issue for the use that we will make of this lemma.

Proof. By Lemma 2.23 we can equip S with a cone structure such that f ∈ Cones(C, S)
(we use S for the cone obtained by equipping S with this structure), and hence f is
an iso in Cones since f is a bijection. Let X ∈ Ar and let m ∈ MC

X . We define
f∗(m) : X × S → R≥0 by f∗(m)(r, z) = m(r, f−1(z)). We set MX = {f∗(m) | m ∈
MC

X}. In view of the definition of the algebraic structure and of the norm of S, it is
clear that (MX)X∈Ar is a measurability structure on S, we still use S for denoting this
measurable cone and we observe that f is an iso from C to S in MCones. It is also easy
to check that Path(X,S) = {f ◦ γ | γ ∈ Path(X,C)}. This cone S is integrable: given
µ ∈ FMeas(X) and γ ∈ Path(X,S), we have f−1 ◦ γ ∈ Path(X,C) and hence the integral
x =

∫
C f

−1(γ(r))µ(dr) ∈ C exists. Then for each p = f∗(m) ∈ MS
0 where m ∈ MC

0 ,

we have p(f(x)) = m(x) =
∫
R≥0

m(f−1(γ(r)))µ(dr) =
∫
R≥0

p(γ(r))µ(dr) which shows that∫
S γ(r)µ(dr) exists and is f(x). It follows also trivially that f preserves integrals.

Theorem 4.18. In the category ICones the object 1 is a coseparator and a separator15 and
ICones is well-powered.

Proof. Let f ̸= g ∈ ICones(C,D) and let x ∈ C be such that f(x) ̸= g(x). By (Mssep)
there is m ∈ MC

0 such that m(f(x)) ̸= m(g(x)) and since m ∈ ICones(C, 1) (using the
definition of integrals) this shows that 1 is a coseparator.

Given x ∈ C we check that the function x̂ : R≥0 → C defined by x̂(λ) = λx belongs
to ICones(1, C). It is clearly linear and continuous. Let β ∈ Path(X, 1) for some X ∈ Ar.
This simply means that β is a measurable and bounded function X → R≥0, we must check
that x̂ ◦ β ∈ Path(X,C) so let Y ∈ Ar and m ∈ MC

Y , we have

λ(s, r) ∈ Y ×X ·m(s, x̂(β(r))) = λ(s, r) ∈ Y ×X ·m(s, β(r)x)

= λ(s, r) ∈ Y ×X · β(r)m(s, x)

which is measurable by measurability of multiplication. With the same notations and using
moreover some µ ∈ FMeas(X) we must prove that

x̂
(∫ 1

β(r)µ(dr)
)
=

∫ C

x̂(β(r))µ(dr) .

15In the literature one also finds the words generator and cogenerator for such objects.
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Remember that the second member of this equation is well defined since we have shown
that x̂ ◦ β ∈ Path(X,C). To check the equation, let m ∈ MC

0 , we have

m
(
x̂
(∫ 1

β(r)µ(dr)
))

= m
((∫ 1

β(r)µ(dr)
)
x
)

=
(∫ 1

β(r)µ(dr)
)
m(x)

=

∫ 1

β(r)m(x)µ(dr)

=

∫ 1

m(x̂(β(r)))µ(dr)

= m
(∫ C

x̂(β(r))µ(dr)
)
.

So x̂ ∈ ICones(1, C) as contended. Since x̂(1) = x this shows that 1 is a separator.
Let D be a subobject of C; more precisely let h ∈ ICones(D,C) be a mono. This

implies that h is injective because 1 is a separator. Let S = h(D) ⊆ C. By Lemma 4.17,
there is an integrable cone D′ such that D′ = S (as sets) and f , the corestriction of h to
S, is an iso in ICones from D to D′. Moreover the inclusion e of S into the set C satisfies
e = h ◦ f−1 and hence e ∈ ICones(D′, C).

We have proven that, in the slice category ICones/C, each subobject (D,h) of C is
isomorphic to a subobject (D′, h′) of C such that h′ is an inclusion (that is ∀y ∈ D′ h′(y) = y).
Notice finally that that the class of subobjects (D′, h′) of C such that h′ is an inclusion is a
set because Ar is a set16. Consider indeed a subset S of C. The class of all structures of
measurable cones D′ whose underlying set is S is contained in

SS×S (contains all possible additions)

×SR≥0×S (contains all possible scalar multiplications)

×RS
≥0 (contains all possible norms)

×
∏

X∈Ar

P
(
RX×S
≥0

)
(contains all possible measurability structures)

which is a set F(S) because Ar is small. Now the class of all subobjects (D′, h′) of C
such that h′ is an inclusion is contained in {(S, F ) | S ⊆ C and F ∈ F(S)}, which is a
set. This shows that the class of subobjects of C is essentially small, that is ICones is
well-powered.

Theorem 4.19. If C is a locally small category and R : ICones → C is a functor which
preserves all limits, then R has a left adjoint.

Proof. Apply the special adjoint functor theorem.

Remark 4.20. This implies in particular that the forgetful functor ICones → MCones
(which obviously preserves all limits) has a left adjoint, meaning that each measurable cone
can be “completed with integrals”.

16It is only here that we use this assumption but it is essential.
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4.4. Colimits and coproducts.

Theorem 4.21. The category ICones has all small colimits.

Proof. Let I be a small category, we use IConesI for the category whose objects are the
functors I → ICones and the morphisms are the natural transformations, which is locally
small since I is small. Then we have a “diagonal” functor ∆ : ICones → IConesI which
maps each object of ICones to the corresponding constant functor and each morphism to
the identity natural transformation. It is easily checked that ∆ preserves all limits and
hence it has a left adjoint by Theorem 4.19. By definition of an adjunction, this functor
maps each functor I → ICones to its colimit which shows that ICones is cocomplete.

This theorem does not give any insight on the structure of these colimits17, so it is reasonable
to have at least a closer look at coproducts.

Coproducts of cones. Let I be a set, without any restrictions on its cardinality for the time
being. Let (Pi)i∈I be a family of cones. Let P be the set of all families −→x = (xi)i∈I ∈

∏
i∈I Pi

such that
∑

i∈I ∥xi∥ < ∞. Notice that for such a family −→x , the set {i ∈ I | xi ≠ 0} is
countable. We turn P into a cone by defining the operations componentwise and by setting
∥−→x ∥ =

∑
i∈I ∥xi∥. The induced cone order relation on P is the pointwise order and ω-

completeness is easily proven (by commutations of lubs with sums in R≥0). In Cones, this
cone P is the coproduct of the Pi’s with obvious injections ini ∈ Cones(Pi, P ) mapping x to
the family −→x such that xi = x and xj = 0 for j ̸= i. Given a family (fi ∈ Cones(Pi, Q))i∈I
the unique map [fi]i∈I ∈ Cones(P,Q) such that ∀j ∈ I [fi]i∈I inj = fj is given by

[fi]i∈I (
−→x ) =

∑
i∈I

fi(xi) .

This sum converges because for each finite J ⊆ I one has∥∥∥∥∥∑
i∈J

fi(xi)

∥∥∥∥∥ ≤
∑
i∈J

∥fi(xi)∥ ≤
∑
i∈J

∥xi∥ = ∥x∥

and this map [fi]i∈I is easily seen to be linear and continuous. We use ⊕i∈I Pi for the cone
P defined in that way.

Lemma 4.22. For each cone Q the cones (⊕i∈I Pi)⊸ Q and &i∈I (Pi⊸ Q) are isomorphic
in Cones.

Proof. The fact that ⊕i∈I Pi is the coproduct of the Pi’s means that the function

B((⊕
i∈I

Pi)⊸ Q) → B( &
i∈I

(Pi⊸ Q))

which maps f to (f ini)i∈I is a bijection. It is linear and continuous by linearity and continuity
of composition of morphisms. So this bijection is an isomorphism.

In particular (⊕i∈I Pi)
′ ≃ &i∈I P

′
i . Given

−→
x′ ∈ &i∈I P

′
i the associated linear and continuous

form fun(
−→
x′ ) on ⊕i∈I Pi is given by

fun(
−→
x′ )(−→x ) = ⟨−→x ,

−→
x′ ⟩ =

∑
i∈I

⟨xi, x′i⟩ ≤ ∥−→x ∥
∥∥∥−→x′∥∥∥ .

17In particular it would be interesting to have a more explicit description of coequalizers.
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We use these observations in the sequel.

Coproduct of measurable cones. Let (Ci)i∈I be a family of measurable cones. Let
P = ⊕i∈I Ci. Let M = (MX)X∈Ar where MX is the set of all p ∈ (P ′)X such that

there is a family of coefficients (λi ∈ R≥0)i∈I with λr ∈ X · λip(r)i ∈ MCi
X , identifying

P ′ with &i∈I Ci
′ as explained above. In other words p ∈ MX means that there are

families −→m = (mi ∈ MCi
X )i∈I and

−→
λ = (λi ∈ R≥0)i∈I such that, for all r ∈ X, the family

(λi ∥mi(r)∥)i∈I is bounded by 1, and we have p(r) = fun(
−→
λ−→m(r)) (where

−→
λ−→x = (λixi)i∈I).

Remember indeed from (Msmeas) that, for each measurable cone C, it is assumed that
each m ∈ MC

X satisfies that m(r, x) ∈ [0, 1] for all r ∈ X and x ∈ BC.

Remark 4.23. These coefficients λi ∈ R≥0 are necessary because in the definition of
measurable cones, we make very weak assumptions about the sets of measurability tests,
in particular we do not assume that they are closed under multiplication by nonnegative
coefficients ≤ 1. Such assumptions — and stronger ones, for instance, as suggested by one
of the reviewers, we could require these sets of tests to be cones with operations defined
pointwise — would be quite meaningful, but would require to check additional conditions
in the proofs, for artificial reasons. The sets of measurability tests of a cone C should be
understood as a kind of “predual” of the cone of paths FMeas(X,C), in the sense that the
criterion for a bounded map X → C to belong to this cone is the measurability of the
(suitably defined) composition of this map with all measurability tests.

We prove that M is a measurability structure on P . Given p ∈ MX and −→x ∈ P the
map λr ∈ X · p(r)(−→x ) is measurable by the monotone convergence theorem because the set
{i ∈ I | xi ̸= 0} is countable so the condition (Msmeas) holds. The conditions (Mscomp)
and (Mssep) obviously hold, let us check (Msnorm). Let −→x ∈ P \ {0} and let ε > 0.
Let J = {i ∈ I | xi ≠ 0} which is countable and let (i(n))n∈N be an enumeration of this
set (assuming that it is infinite; the case where it is finite is simpler). For each n ∈ N let

mn ∈ MCi(n)

X be such that mn ̸= 0 and∥∥xi(n)∥∥Ci(n)
≤
mn(xi(n))

∥mn∥
+

ε

2n+1
.

Let p ∈ M0 be given by p(−→y ) =
∑

n∈N
mn(yi(n))

∥mn∥ . We have p(y) ≤
∑

n∈N
∥∥yi(n)∥∥ ≤ 1 and

hence 0 < ∥p∥ ≤ 1. So we have

∥−→x ∥ =
∑
n∈N

∥∥xi(n)∥∥ ≤
∑
n∈N

mn(xi(n))

∥mn∥
+

∑
n∈N

ε

2n+1
= p(−→x ) + ε ≤ p(−→x )

∥p∥
+ ε

proving our contention. We have shown that C = (P,M) is a measurable cone that we
denote as ⊕i∈I Ci.

Theorem 4.24. For each j ∈ I one has (inj ∈ MCones(Cj ,⊕i∈I Ci))i∈I .
If I is countable then (⊕i∈I Ci, (ini)i∈I) is the coproduct of the Ci’s in MCones. If more-

over the Ci’s are integrable then so is ⊕i∈I Ci, the ini’s preserve integrals and (⊕i∈I Ci, (ini)i∈I
is the coproduct of the Ci’s in ICones.

Proof. The measurability of the ini’s is easy to prove.
We assume that I is countable. Let (fi ∈ MCones(Ci, D))i∈I , we have already defined

f = [fi]i∈I ∈ Cones(⊕i∈I Ci, D) and we must prove that this function is measurable. Let
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X ∈ Ar and γ ∈ Path(X,⊕i∈I Ci), we prove that f ◦ γ ∈ Path(X,D) so let Y ∈ Ar and

q ∈ MD
Y , we have

λ(s, r) ∈ Y ×X · q(s, f(γ(r))) = λ(s, r) ∈ Y ×X · q
(
s,
∑
i∈I

fi(γ(r)i)
)

= λ(s, r) ∈ Y ×X ·
∑
i∈I

q(s, fi(γ(r)i))

which is measurable by the monotone convergence theorem since I is countable.
Assume moreover that the Ci’s are integrable and let µ ∈ FMeas(X). For each i ∈ I

we have λr ∈ X · γ(r)i ∈ Path(X,Ci) because, for each Y ∈ Ar and m ∈ MCi
Y we know

that λ(s, r) ∈ Y ×X · p(s, γ(r)) is measurable, where p = fun(−→m) with mj = m if i = j and
mj = 0 otherwise18. Therefore we can define −→x ∈

∏
i∈I Ci by xi =

∫
γ(r)iµ(dr).

Given p = fun(
−→
λ−→m) ∈ MC

0 , the map p ◦ γ : X → R≥0 is bounded and measurable, and
we have∫

p(γ(r))µ(dr) =

∫ (∑
i∈I

λimi(γ(r)i)
)
µ(dr)

=
∑
i∈I

∫
λimi(γ(r)i)µ(dr) by the monotone convergence theorem,

since I is countable

=
∑
i∈I

λimi

(∫
γ(r)iµ(dr)

)
by definition of integrals

= p(−→x ) .

By (Msnorm) holding in C as shown above, this proves that ∥−→x ∥ <∞ and hence −→x ∈ C
and the computation above shows also that −→x =

∫
γ(r)µ(dr) and hence the cone C is

integrable. The proof that it is the coproduct of the Ci’s in ICones is routine.

Even if I is not countable we know that (Ci)i∈I has a coproduct in ICones by Theorem 4.21,
but we don’t know yet how to describe it concretely.

5. Internal linear hom and the tensor product

The main goal of this section is to define a tensor product of two integrable cones, to prove
that this operation is functorial and that ICones can be equipped with a structure of
symmetric monoidal category (SMC) which is closed (SMCC).

Remark 5.1. Of course we first tried to define the tensor product concretely as one usually
does in algebra, using some quotient. However the complicated interaction between the
algebraic and the order theoretic properties of cones made the resulting description ineffective
for proving basic properties expected from a tensor product. Now that we know that the
tensor product exists for abstract reasons, and has the required structures and properties,

18It is harmless to assume that 0 ∈ MB
X for each measurable cone B and X ∈ Ar: if B is a measurable

cone and C = (B,M) where MX = MB
X ∪ {0} then C is a measurable cone and B and C are isomorphic in

MCones, see Remark 3.14. And similarly in the category of integrable cones.
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the quest for a reasonably simple concrete description can be undertaken with a more relaxed
mind.

We define first the integrable cone C ⊸ D of linear, continuous, measurable and
integrable morphisms C → D. There are two good reasons for doing so.

• The definition of this object is easy and natural.
• Building this object will be necessary for proving that the SMC we define is closed.

Moreover, it is easy to prove that the associated internal hom functor C ⊸ : ICones →
ICones preserves all limits. Then, thanks to Theorem 4.19 this functor has a left adjoint
⊗C : ICones → ICones, and this operation is also functorial wrt. C because ⊸ is a

functor IConesop × ICones → ICones (thanks to a standard result in category theory),
and we have a natural bijection of sets ICones(B⊗C,D) → ICones(B,C ⊸ D).

Last we prove that this natural bijection is actually an isomorphism (B⊗C ⊸ D) →
(B⊸ (C ⊸ D)) in ICones and we show how to derive the SMC structure of ICones from
this property.

We are convinced that this method is exactly the one described axiomatically in [EK66].
However we do not prove explicitly that ICones is closed in the sense of that paper and do
not apply explicitly its results, first for the sake of self-containedness and also because, due
to the concrete features of our category (basically: our morphisms are functions) the direct
approach remains tractable.

Another approach, equivalent but conceptually more elegant, would have been to describe
first ICones as a multicategory, introducing from the beginning a notion of multilinear
morphism on ICones in a completely standard way. Then the tensor product would have
been defined by a familiar universal property wrt. bilinear morphisms.

5.1. The cone of linear morphisms. Let C and D be objects of ICones and let P be
the set of all f : C → D such that, for some ε > 0, one has εf ∈ ICones(C,D), equipped
with the same algebraic structure as C ⊸ D (see Lemma 2.13). This makes sense since
the algebraic laws of the cone C ⊸ D preserve measurability and since integration is
linear. Moreover given an increasing sequence (fn)n∈N of measurable and integral preserving
elements of C ⊸ D such that ∥fn∥ ≤ 1 (remember that ∥f∥ = supx∈BC ∥f(x)∥), the linear
and continuous map f = supn∈N fn is measurable and preserves integrals by the monotone
convergence theorem, as we show now.

Let γ ∈ Path(X,C) be a measurable path and let m ∈ MD
Y for some Y ∈ Ar. The

function φ = λ(s, r) ∈ Y ×X ·m(s, f(γ(r)) : Y ×X → [0, 1] satisfies φ(s, r) = supn∈N φn

where (φn = λ(s, r) ∈ Y ×X ·m(s, fn(γ(r)))n∈N is an increasing sequence of measurable
functions by measurability of the fn’s and linearity and continuity of m in its second
parameter, so φ is measurable which shows that f is measurable. Next, with the same
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notations and taking moreover some µ ∈ FMeas(X) we have, for each m ∈ MD
0 ,

m
(
f
(∫ C

γ(r)µ(dr))
))

= m
(
sup
n∈N

fn

(∫ C

γ(r)µ(dr)
))

= m
(
sup
n∈N

∫ D

fn(γ(r))µ(dr)
)

= sup
n∈N

m
(∫ D

fn(γ(r))µ(dr)
)

by cont. of m

= sup
n∈N

∫ 1

m(fn(γ(r)))µ(dr) by def. of integration in D

=

∫ 1

sup
n∈N

m(fn(γ(r)))µ(dr) by the monotone conv. th.

=

∫ 1

m(f(γ(r)))µ(dr) by continuity of m

= m
(∫ D

f(γ(r))µ(dr)
)

by def. of integration in D

and hence f preserves integrals by (Mssep).
Given γ ∈ Path(X,C) and m ∈ MD

X we define γ ▷ m = λ(r, f) ∈ X ×P ·m(r, f(γ(r))) :

X × P → R≥0. For each r ∈ X the function l = (γ ▷ m)(r, ) : C ⊸ D → R≥0 is
linear and continuous by linearity and continuity of m in its second argument. We define
MX = {γ ▷ m | γ ∈ Path(X,C) and m ∈ MD

X}.

Remark 5.2. We use the same notations for measurability tests on the cone of linear,
continuous and integrable morphisms as for the cone of measurable paths in Section 3.2.2 for
two reasons. The first one is that these tests are defined in a very similar way, the second
one is Theorem 6.1 which allows to see measurable paths as linear, continuous and integrable
maps.

We check that the family (MX) is a measurability structure on the cone P = (C ⊸ D).

▶ (Msmeas) Let f ∈ BP , γ ∈ Path(X,C) and m ∈ MD
X , then the map φ = λr ∈

X · m(r, f(γ(r))) is measurable because f ◦ γ ∈ Path(X,D) by measurability of f and

hence λ(s, r) ∈ X ×X ·m(s, f(γ(r))) : X ×X → [0, 1] is measurable from which follows
the measurability of φ. The fact that φ ranges in [0, 1] results from the assumption that
∥f∥ ≤ 1.

▶ (Mscomp) Let γ ∈ Path(X,C) and m ∈ MD
X , and let φ ∈ Ar(Y,X) for some Y ∈ Ar.

Then we have (γ ▷ m) ◦ (φ× P ) = λ(s, f) ∈ Y × P ·m(φ(s), f(γ(φ(s))))) = (γ ◦ φ) ▷ (m ◦
(φ×D)) and since γ ◦ φ ∈ Path(Y,C) by Lemma 3.10 and m ◦ (φ×D) ∈ MD

Y by property

(Mscomp) satisfied in D, we have (γ ▷ m) ◦ (φ× P ) ∈ MY .

▶ (Mssep) Let f1, f2 ∈ P and assume that for all x ∈ C andm ∈ MD
0 one has (x ▷ m)(f1) =

(x ▷ m)(f2), that is m(f1(x)) = m(f2(x)). By (Mssep) in D we have f1(x) = f2(x), and
since this holds for all x ∈ C we have f1 = f2.

▶ (Msnorm) Let f ∈ P \ {0}. Let ε > 0, we can assume without loss of generality that
ε < 2 ∥f∥. By definition of ∥f∥ there is x ∈ BC such that ∥f∥ ≤ ∥f(x)∥+ ε/3 and hence
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∥f∥ < ∥f(x)∥ + ε/2. This implies in particular that f(x) ̸= 0 by our assumption that
ε < 2 ∥f∥. By (Msnorm) in D there is m ∈ MD

0 \ {0} such that

∥f(x)∥ ≤ m(f(x))/ ∥m∥+min(ε/2, ∥f∥ − ε/2) .

If m(f(x)) = 0 we have ∥f(x)∥ ≤ ∥f∥ − ε/2 which is not possible since ∥f∥ < ∥f(x)∥+ ε/2,
so (x ▷ m)(f) = m(f(x)) ̸= 0. This implies in particular that ∥x ▷ m∥ ≠ 0. We have
∥x ▷ m∥ = supg∈BP m(g(x)) ≤ ∥m∥ supg∈BP ∥g(x)∥ ≤ ∥m∥ since x ∈ BC, and hence

∥f∥ ≤ ∥f(x)∥+ ε/2 ≤ m(f(x))

∥m∥
+ ε =

(x ▷ m)(f)

∥m∥
+ ε

≤ (x ▷ m)(f)

∥x ▷ m∥
+ ε since 0 < ∥x ▷ m∥ ≤ ∥m∥ .

So we have defined a measurable cone that we denote as C ⊸ D.
We will need a technical lemma whose intuitive meaning is interesting per se: a linear

morphisms valued in a cone of paths is the same thing as a path valued in the measurable
cone of linear morphisms just defined. This lemma will be essential for proving that the
measurable cone C ⊸ D is integrable.

Lemma 5.3. There is an argument swapping isomorphism

sw ∈ MCones(C ⊸ Path(X,D),Path(X,C ⊸ D)

which maps f to λr ∈ X · λx ∈ C · f(x)(r).

This iso preserves integrals, but this property is not required for what follows.

Proof. Let f ∈ C ⊸ Path(X,D). If r ∈ X, the map g = λx ∈ C · f(x)(r) : C → D is
linear and continuous because f is, and the algebraic operations and the lubs are computed
pointwise in Path(X,D), we prove that g is measurable. Let Y, Y ′ ∈ Ar, γ ∈ Path(Y,C) and

m ∈ MD
Y ′ , we set φ = λ(s′, s) ∈ Y ′ × Y ·m(s′, g(γ(s))) = λ(s′, s) ∈ Y ′ × Y ·m(s′, f(γ(s))(r)).

Notice that, identifying r with the constant r-valued measurable function Y ′ → X, we have

r ▷ m ∈ MPath(X,D)
Y ′ and φ = λ(s′, s) ∈ Y ′ × Y · (r ▷ m)(s′, f(γ(s))) which is measurable

because f ◦ γ ∈ Path(Y,Path(X,D)) since f ∈ C ⊸ Path(X,D). This shows that g is

measurable, we prove that g preserves integrals so let moreover ν ∈ FMeas(Y ), we have

g
(∫ C

s∈Y
γ(s)ν(ds)

)
= f

(∫ C

s∈Y
γ(s)ν(ds)

)
(r)

=
(∫ Path(X,D)

s∈Y
f(γ(s))ν(ds)

)
(r) since f preserves integrals.

=

∫ D

s∈Y
f(γ(s))(r)ν(ds)

=

∫ D

s∈Y
g(γ(s))ν(ds) .

since integrals in Path(X,D) are computed pointwise. This shows that g = sw(f)(r) ∈
C ⊸ D for all r ∈ X.

We prove next that η = sw(f) belongs to Path(X,C ⊸ D) so let Y ∈ Ar and p ∈
MC⊸D

Y . Let γ ∈ Path(Y,C) and m ∈ MD
Y be such that p = γ ▷ m. The function
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φ = λ(s, r) ∈ Y ×X · p(s, η(r)) satisfies

φ = λ(s, r) ∈ Y ×X ·m(s, η(r)(γ(s)))

= λ(s, r) ∈ Y ×X ·m(s, f(γ(s))(r)) .

We know that δ = f ◦ γ ◦ pr1 ∈ Path(Y ×X,Path(X,D)) because γ ◦ pr1 ∈ Path(Y ×X,C)

and f ∈ MCones(C,Path(X,D)). Let m′ ∈ MD
Y×X be defined by m′(s, r, y) = m(s, y),

we have pr2 ▷ m
′ ∈ MPath(X,D)

Y×X and hence φ′ = λ(s, r) ∈ Y ×X · (pr2 ▷ m′)(s, r, δ(s, r)) is
measurable. But

φ′(s, r) = m′(s, r, δ(s, r)(pr2(s, r))) = m(s, f(γ(s))(r)) = φ(s, r)

so that φ is measurable, this shows that sw(f) ∈ Path(X,C ⊸ D). The linearity and

continuity of sw are obvious (the algebraic operations and lubs are defined pointwise) as
well as the fact that ∥sw∥ ≤ 1. Its measurability relies on the obvious bijection between

MC⊸Path(X,D)
Y ′ and MPath(X,C⊸D)

Y ′ which maps γ ▷ (φ ▷ m) to φ ▷ (γ ▷ m) for all Y ′ ∈ Ar

(with γ ∈ Path(Y ′, C), φ ∈ Ar(Y ′, X) and m ∈ MD
Y ′). We have proven that sw is a

morphism in MCones.
Conversely given η ∈ Path(X,C ⊸ D) we define f = sw′(η) = λx ∈ C ·λr ∈ X · η(r)(x)

and prove first that f ∈ C ⊸ Path(X,D). Let x ∈ C and δ = f(x) : X → D. If r ∈ X we

have η(r) ≤ ∥η∥ and hence ∥δ(r)∥ = ∥η(r)(x)∥ ≤ ∥η∥ ∥x∥ which shows that the function δ is
bounded. Let Y ∈ Ar and m ∈ MD

Y , we set φ = λ(s, r) ∈ Y ×X ·m(s, δ(r)). For s ∈ Y
and r ∈ X, we have

φ(s, r) = m(s, δ(r)) = m(s, η(r)(x)) = (x ▷ m)(s, η(r))

where we identify x with the path γ ∈ Path(Y,C) such that γ(s) = x, so that x ▷ m ∈ MC⊸D
Y .

It follows that φ is measurable and hence δ ∈ Path(X,D).

Linearity of f is obvious and continuity results from the fact that lubs in Path(X,D)

are computed pointwise. Let γ ∈ Path(Y,C) for some Y ∈ Ar, we must prove next that

f ◦ γ ∈ Path(Y,Path(X,D)). Let Y ′ ∈ Ar and p ∈ MPath(X,D)
Y ′ , we must prove that

ψ = λ(s′, s) ∈ Y ′ × Y · p(s′, f(γ(s))) is measurable. Let φ ∈ Ar(Y ′, X) and m ∈ MD
Y ′ be

such that p = φ ▷ m. For s′ ∈ Y ′ and s ∈ Y we have

ψ(s′, s) = m(s′, f(γ(s))(φ(s′))

= m(s′, η(φ(s′))(γ(s)))

= ((γ ◦ pr2) ▷ (m ◦ (pr1 ×D)))(s′, s, η ◦ φ)

and hence ψ is measurable since η ◦ φ is a measurable path. This shows that f is measurable,
we prove last that f preserves integrals. So let γ ∈ Path(Y,C) and µ ∈ FMeas(Y ). Given
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r ∈ X we have

f
(∫ C

s∈Y
γ(s)µ(ds)

)
(r) = η(r)

(∫ C

s∈Y
γ(s)µ(ds)

)
=

∫ D

s∈Y
η(r)(γ(s))µ(ds) since η(r) ∈ C ⊸ D

=

∫ D

s∈Y
f(γ(s))(r)µ(ds) by definition of f

=
(∫ Path(X,D)

s∈Y
f(γ(s))µ(ds)

)
(r)

since integrals in Path(X,D) are computed pointwise.
The proof that sw′ is a morphism in MCones follows the same pattern as for sw.

Lemma 5.4. The measurable cone C ⊸ D is integrable.

Proof. Let X ∈ Ar, η ∈ Path(X,C ⊸ D) and µ ∈ FMeas(X). Let

f = λx ∈ C ·
∫ D

η(r)(x)µ(dr) = λx ∈ C ·
∫ D

sw(η)(x)(r)µ(dr) .

This function is well defined since for each x ∈ C one has sw(η)(x) ∈ Path(X,D) by

Lemma 5.3 so that the integral
∫
sw(η)(x)(r)µ(dr) ∈ D is well defined. The fact that

f : C → D is linear and continuous results from the linearity of integration and from the
monotone convergence theorem. Let us check that f is measurable so let Y ∈ Ar and let
γ ∈ Path(Y,C), we must prove that

λs ∈ Y ·
∫ D

sw(η)(γ(s))(r)µ(dr) ∈ Path(Y,D)

so let Y ′ ∈ Ar and m ∈ MD
Y ′ , we must check that the function

ψ = λ(s′, s) ∈ Y ′ × Y ·m
(
s′,

∫ D

sw(η)(γ(s))(r)µ(dr)
)

= λ(s′, s) ∈ Y ′ × Y ·
∫ R≥0

m(s′, sw(η)(γ(s))(r))µ(dr)

is measurable. We know that the function λ(s′, s, r) ∈ Y ′ × Y ×X ·m(s′, sw(η)(γ(s))(r))
is measurable and bounded because sw(η) ◦ γ ∈ Path(Y,Path(X,D)) by Lemma 5.3 and

we get the announced measurability by Lemma 4.7 (in the special case where κ is the
kernel constantly equal to µ). Next we prove that f preserves integrals, so let moreover
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ν ∈ FMeas(Y ), we have

f
(∫ C

s∈Y
γ(s)ν(ds)

)
=

∫ D

r∈X
η(r)

(∫ C

s∈Y
γ(s)ν(ds)

)
µ(dr)

=

∫ D

r∈X

(∫ D

s∈Y
η(r)(γ(s))ν(ds)

)
µ(dr) since η(r) ∈ C ⊸ D

=

∫ D

r∈X

(∫ D

s∈Y
sw(η)(γ(s))(r)ν(ds)

)
µ(dr)

=

∫ D

s∈Y

(∫ D

r∈X
sw(η)(γ(s))(r)µ(dr)

)
ν(ds)

by Th. 4.15 (Fubini), since sw(η) ◦ γ ∈ Path(Y,Path(X,D))

=

∫ D

s∈Y
f(γ(s))ν(ds) .

This completes the proof that f ∈ C ⊸ D as contended.
Let p ∈ MC⊸D

0 . Let x ∈ C and m ∈ MD
0 be such that p = x ▷ m, we have

p(f) = m
(∫ D

η(r)(x)µ(dr)
)

=

∫
m(η(r)(x))µ(dr)

=

∫
p(η(r))µ(dr) ,

so η is integrable over µ, and
∫ C⊸D

η(r)µ(dr) = f .

This is the right place to insert a lemma very similar to Lemma 5.3 which will be useful for
exhibiting the symmetry of our tensor product.

Lemma 5.5. There is an argument swapping natural isomorphism

sw ∈ ICones(B1⊸ (B2⊸ C), B2⊸ (B1⊸ C))

which maps f to λx1 ∈ B1 · λ2 ∈ B2 · f(x1)(x2).

Proof. One checks that

sw ∈ MCones(B1⊸ (B2⊸ C), B2⊸ (B1⊸ C))

as in the proof of 5.3, and this morphism preserves integrals because integrals are computed
pointwise in D⊸ E for all integrable cones D and E and by the Fubini theorem because
all the considered measures are finite.

5.2. Bilinear maps. After the linear function space C ⊸ D that we have just defined, the
next concept deeply related to the tensor product is of course the concept of bilinear map
that we introduce now.

Definition 5.6. Let C1, C2, D be integrable cones, we define formally

C1, C2⊸ D = C1⊸ (C2⊸ D)

and call this integrable cone the cone of integrable bilinear and continuous maps C1, C2 → D.
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Indeed, thanks to Lemma 2.19, an element of C1, C2⊸ D can be seen as a function
f : C1 & C2 → D which is separately linear and ω-continuous. Measurability of f is
expressed equivalently by saying that given (Xi ∈ Ar)i=1,2 and (γi ∈ Path(Xi, Ci))i=1,2 the

map λ(r1, r2) ∈ X1 ×X2 · f(γ1(r1), γ2(r2)) : X1 ×X2 → D is a measurable path or that,
given X ∈ Ar and (γi ∈ Path(X,Ci))i=1,2, the map λr ∈ X · f(γ1(r), γ2(r)) is a measurable

path. Preservation of integrals means that, given moreover (µi ∈ FMeas(Xi))i=1,2, we have

f
(∫ C1

γ1(r1)µ1(dr1),

∫ C2

γ2(r2)µ2(dr2)
)
=

∫∫ D

f(γ1(r1), γ2(r2))µ1(dr1)µ2(dr2)

where we can use the double integral symbol by Theorem 4.15.
Continuing to spell out the definition above of the integrable cone C1, C2⊸ D, we see

that, given X ∈ Ar, an element of MC1,C2⊸D
X is a

γ1, γ2 ▷ m = λ(r, f) ∈ X × (C1, C2⊸ D) ·m(r, f(γ1(r), γ2(r))

where (γi ∈ Path(X,Ci))i=1,2 and m ∈ MD
X . Last the integral of a measurable path

η ∈ Path(X, (C1, C2⊸ D)) over µ ∈ FMeas(X) is characterized by(∫
η(r)µ(dr)

)
(x1, x2) =

∫
η(r)(x1, x2)µ(dr) .

5.3. The linear hom functor. In order to define the tensor product as a left adjoint, we
need to consider the operation ⊸ as an operation on morphisms of ICones, not only
on objects. We define this operation and prove that it preserves all limits in its second
argument.

Definition 5.7. Let g ∈ ICones(D1, D2) and h ∈ ICones(C2, C1). The function h⊸ g :
C1⊸ D1 → C2⊸ D2 is defined by (h⊸ g)(f) = g f h.

Proposition 5.8. If g ∈ ICones(D1, D2) and h ∈ ICones(C2, C1) then h ⊸ g ∈
ICones(C1⊸ D1, C2⊸ D2).

Proof. The linearity and continuity of h⊸ g result from the same properties satisfied by g
and h. The fact that ∥h⊸ g∥ ≤ 1 results from the fact that ∥g∥ , ∥h∥ ≤ 1, so let us check
that h⊸ g is measurable. Let η1 ∈ Path(X,C1⊸ D1) for some X ∈ Ar. We must prove

that (h ⊸ g) ◦ η1 ∈ Path(X,C2⊸ D2) so let p ∈ MC2⊸D2
Y for some Y ∈ Ar, we must

prove that

φ = λ(s, r) ∈ Y ×X · p(s, (h⊸ g)(η1(r)))

is measurable. Let γ ∈ Path(Y,C2) and m ∈ MD2
Y be such that p = γ ▷ m. For s ∈ Y and

r ∈ X we have

φ(s, r) = m(s, g(η1(r)(h(γ(s)))) = m(s, g(δ1(s)(r))) = m(s, g(fl(δ1)(s, r)))

where δ1 = sw−1(η1) ◦ h ◦ γ ∈ Path(Y,Path(X,D1)) by Lemma 5.3 and hence g ◦ fl(δ1) ∈
Path(Y ×X,D2) by Lemma 3.19 so that φ is measurable. We need last to prove that h⊸ g
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preserves integrals so let moreover µ ∈ FMeas(X), we have

(h⊸ g)
(∫ C1⊸D1

η1(r)µ(dr)
)
= λx ∈ C2 · g

((∫ C1⊸D1

η1(r)µ(dr)
)
(h(x))

)
= λx ∈ C2 · g

(∫ D1

η1(r)(h(x))µ(dr)
)

= λx ∈ C2 ·
∫ D2

g
(
η1(r)(h(x))

)
µ(dr)

= λx ∈ C2 ·
∫ D2

(h⊸ g)(η1(r))(x)µ(dr)

=

∫ C2⊸D2

(h⊸ g)(η1(r))µ(dr) .

So we have defined a functor ⊸ : IConesop × ICones → ICones. We identify 1⊸
with the identity functor: we make no distinction between x ∈ C and the function x̂ ∈ 1⊸ C
(this notation is introduced in the proof of Theorem 4.18).

Theorem 5.9. For each integrable cone C, the functor C ⊸ has a left adjoint.

Proof. By Theorem 4.19 it suffices to prove that C ⊸ preserves all limits.

▶ Products. Let (Di)i∈I be a family of measurable cones and let D = &i∈I Di as described
in the proof of Theorem 4.16. We have a morphism

k = ⟨C ⊸ pri⟩i∈I ∈ ICones(C ⊸ D, &
i∈I

(C ⊸ Di))

and we must prove that k is an iso. It is clearly injective, to prove surjectivity, let
−→
f =

(fi ∈ C ⊸ Di)i∈I ∈ &i∈I (C ⊸ Di) so that (∥fi∥)i∈I is bounded in R≥0 and hence for each

x ∈ C the family (∥fi(x)∥)i∈I is bounded. So we can define a function f : C → D by
f(x) = (fi(x))i∈I . This function is clearly linear and continuous. To prove measurability,
take γ ∈ Path(X,C) for some X ∈ Ar and p ∈ MD

Y for some Y ∈ Ar. This means that

p = ini(m) for some i ∈ I and m ∈ MDi
Y . Then λ(s, r) ∈ Y ×X · p(s, f(γ(r))) = λ(s, r) ∈

Y × X ·m(s, fi(γ(r))) is measurable because fi is. Last let moreover µ ∈ FMeas(X), we

have f(
∫ C

γ(r)µ(dr)) =
∫ D

f(γ(r))µ(dr) by definition of f and of integration in D. This
shows that f ∈ C ⊸ D and hence that k is a bijection since fi = pri f for each i ∈ I and

hence
−→
f = k(f).

We prove that k−1 ∈ ICones(&i∈I (C ⊸ Di) , C ⊸ D). Linearity and continuity follow
from the fact that all operations are defined componentwise in &i∈I (C ⊸ Di). Next, given
−→
f ∈ B(&i∈I (C ⊸ Di)), we have∥∥∥k−1(

−→
f )

∥∥∥ = sup
x∈BC

∥∥∥k−1(
−→
f )(x)

∥∥∥
= sup

x∈BC
sup
i∈I

∥fi(x)∥

= sup
i∈I

sup
x∈BC

∥fi(x)∥

= sup
i∈I

∥fi∥ ≤ 1 .
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Next we prove that k−1 is measurable so let η ∈ Path(X,&i∈I (C ⊸ Di)) for some X ∈ Ar,

we must prove that η′ = k−1 ◦ η ∈ Path(X,C ⊸ D). Notice that for all r ∈ X we can

write η(r) = (ηi(r))i∈I where ηi = pri ◦ η ∈ Path(X,C ⊸ Di) for each i ∈ I. Let Y ∈ Ar,

γ ∈ Path(Y,C) and p ∈ MD
Y , so that p = ini(m) for some i ∈ I and m ∈ MDi

Y . We have

λ(s, r) ∈ Y × X · (γ ▷ p)(s, η′(r)) = λ(s, r) ∈ Y × X · mi(s, ηi(r)) which is measurable
since each ηi is a measurable path. Last let moreover µ ∈ FMeas(X), we must prove that

g1 = k−1(
∫ &i∈I(C⊸Di) η(r)µ(dr)) and g2 =

∫ C⊸D
k−1(η(r))µ(dr) are the same function. Let

x ∈ C, we have g1(x) = (
∫ Di ηi(r)(x)µ(dr))i∈I = g2(x). This ends the proof that k is an iso

in ICones and hence that C ⊸ preserves all products.

▶ Equalizers. Let f, g ∈ ICones(D1, D2) and let (E, e) be the corresponding equalizer in
ICones, as described in the proof of Theorem 4.16. Then we have (C ⊸ f) (C ⊸ e) =
(C ⊸ g) (C ⊸ e) by functoriality of C ⊸ and it will be sufficient to prove that (C ⊸
E,C ⊸ e) has the universal property of an equalizer. Let H be an integrable cone and
h ∈ ICones(H,C ⊸ D1) be such that (C ⊸ f) h = (C ⊸ g) h. Identifying h with
its “uncurried” version h′ ∈ H,C ⊸ D1, the integrable bilinear and continuous map (see

Section 5.2) given by h′(z, x) = h(z)(x), we have f ◦ h′ = g ◦ h′. In other words h′

ranges in E ⊆ D1, allowing to define h′0 ∈ H,C ⊸ E which is the same function as h′

and is bilinear continuous and integrable by definition of E (which inherits the norm, the
measurability and integrability structure of C). We use h0 for the corresponding element of
ICones(H,C ⊸ E), so that h = (C ⊸ e)h0. The fact that h0 is unique with this property
results from the fact that C ⊸ e is a mono (it is actually the inclusion of C ⊸ E into
C ⊸ D1 resulting from the inclusion e of E into D1). This shows that (C ⊸ E,C ⊸ e) is
the equalizer of C ⊸ f and C ⊸ g and ends the proof that C ⊸ preserves all limits.

Lemma 5.10. Let X ∈ Ar and let B,C,D be measurable cones. Let f be an element
of ICones(B,Path(X,C ⊸ D)). Then f ′ = λ(y, r, x) ∈ C ×X × B · f(x, r, y) belongs to
ICones(C,Path(X,B⊸ D)).

Proof. This results from the following sequence of isos in ICones:

B⊸ Path(X,C ⊸ D)

≃ B⊸ (C ⊸ Path(X,D)) by Lemma 5.3 and functoriality of C ⊸

= B,C ⊸ Path(X,D)

≃ C,B⊸ Path(X,D) by Section 5.2.

5.4. The tensor product of integrable cones. Let C be an integrable cone. We denote
by ⊗C the left adjoint of the functor C ⊸ , see Theorem 5.9. Because ⊸ is a
functor IConesop × ICones → ICones (see Section 5.3), we know by the adjunction with
a parameter theorem ([Mac71], Chapter IV, Section 7, Theorem 3), that the so defined
operation19 ⊗ can uniquely be extended in a bifunctor ⊗ : ICones2 → ICones in such a
way that the bijection

ΦB,C,D : ICones(B⊗C,D) → ICones(B,C ⊸ D)

19According to one of the reviewers of this paper, this tensor product can be understood as the adaptation
to the setting of integrable cones of the standard projective tensor product of locally convex spaces.
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given by the adjunction for each C is natural in B,C,D. We define

τB,C = ΦB,C,B⊗C(IdB⊗C) ∈ ICones(B,C ⊸ B⊗C) = B(B,C ⊸ B⊗C)

and, for x ∈ B and y ∈ C we use the notation x⊗ y = τB,C(x, y). By naturality of Φ we
have that, for each f ∈ B⊗C ⊸ D,

ΦB,C,D(f) = f ◦ τB,C . (5.1)

The next lemma is the key observation for proving that the above bijection is a cone
isomorphism.

Lemma 5.11. Let X ∈ Ar and B,C be integrable cones. Let η : X → B⊗C ⊸ 1 be a
function. One has η ∈ Path(X,B⊗C ⊸ 1) as soon as

• η(X) ⊆ B⊗C ⊸ 1 is bounded
• and for all Y ∈ Ar, β ∈ Path(Y,B) and γ ∈ Path(Y,C), the function λ(s, r) ∈ Y ×X ·
η(r)(β(s)⊗ γ(s)) : Y ×X → R≥0 is measurable.

Proof. Let η′ : B × C × X → R≥0 be defined by η′(x, y, r) = η(r)(x⊗ y). We have
η′ ∈ ICones(B,C ⊸ Path(X, 1)) by our assumptions. Let us check that η′ indeed preserves
integrals. Let Y,Z ∈ Ar, µ ∈ FMeas(Y ), ν ∈ FMeas(Z), β ∈ Path(Y,B), γ ∈ Path(Z,C),

and m = MPath(X,1)
0 (i.e. there is r ∈ X such that m(ξ) = ξ(r) for all ξ ∈ Path(X, 1)). Then

m
(
η′
(∫

β(s)µ(ds),

∫
γ(t)ν(dt)

))
= η′

(∫
β(s)µ(ds),

∫
γ(t)ν(dt)

)
(r)

= η(r)
((∫

β(s)µ(ds)
)
⊗
(∫

γ(t)ν(dt)
))

=

∫∫
η(r)(β(s)⊗ γ(t))µ(ds)ν(dt) since τ preserves integrals

=

∫∫
m(η′(β(s), γ(t)))µ(ds)ν(dt)

= m
(∫∫

η′(β(s), γ(t))µ(ds)ν(dt)
)
.

Let

η′′ = Φ−1
B,C,Path(X,1)(η

′) ∈ ICones(B⊗C,Path(X, 1)) = ICones(B⊗C,Path(X, 1⊸ 1))

up to a trivial ICones iso and so by Lemma 5.10 there is a h ∈ ICones(1,Path(X,B⊗C ⊸
1)) such that h(1)(r)(z) = η′′(z)(r) for all z ∈ B⊗C and r ∈ X. So we have h(1)(r)(x⊗ y) =
η(r)(x⊗ y) and hence η(r) = h(1)(r) since both are elements of B⊗C ⊸ 1. Since this
holds for all r ∈ X we have proven that η = h(1) and hence η ∈ Path(X,B⊗C ⊸ 1) as
contended.

Now we can prove the main property of our tensor product which will allow us to prove that
it has a structure of monoidal product on ICones.

Theorem 5.12. For each integrable cones B,C,D, the function ΦB,C,D is an isomorphism
of integrable cones from B⊗C ⊸ D to B⊸ (C ⊸ D) = (B,C ⊸ D).

Proof. By linearity and ω-continuity of composition on the left, the function ΦB,C,D —
characterized by (5.1) — is a linear and continuous map ΦB,C,D : B⊗C ⊸ D → B,C ⊸ D
which satisfies ∥ΦB,C,D(f)∥ ≤ ∥f∥ for all f ∈ B⊗C ⊸ D. This latter property is due to
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the fact that if f ∈ B⊗C ⊸ D satisfies ∥f∥ ≤ 1 then f ∈ ICones(B⊗C,D) and hence
ΦB,C,D(f) ∈ ICones(B,C ⊸ D) so that ∥ΦB,C,D(f)∥ ≤ 1 and hence for an arbitrary f ∈
B⊗C ⊸ D such that f ̸= 0 we have ∥(1/ ∥f∥)f∥ ≤ 1 and hence ∥ΦB,C,D((1/ ∥f∥)f)∥ ≤ 1
which is exactly our contention, which trivially also holds when f = 0.

Let us prove that ΦB,C,D is measurable, so let X ∈ Ar and η ∈ Path(X,B⊗C ⊸ D),

we must prove that ΦB,C,D ◦ η ∈ Path(X, (B,C ⊸ D)). So let Y ∈ Ar and p ∈ MB,C⊸D
Y ,

which means that p = β, γ ▷ m for some β ∈ Path(Y,B), γ ∈ Path(Y,C) and m ∈ MD
Y . We

have

λ(s, r) ∈ Y ×X · p(s,ΦB,C,D(η(r))) = λ(s, r) ∈ Y ×X · p(s, η(r) ◦ τB,C)

= λ(s, r) ∈ Y ×X ·m(s, η(r)(β(s)⊗ γ(s)))

which is measurable because β⊗ γ ∈ Path(Y,B⊗C) (defining β⊗ γ by (β⊗ γ)(s) =

β(s)⊗ γ(s)) by measurability of τ , and by our assumption that η is a measurable path.
Altogether we have proven that

ΦB,C,D ∈ MCones((B⊗C ⊸ D), (B,C ⊸ D))

and we prove now that this morphism preserves integrals, so let moreover µ ∈ FMeas(X),
we have

ΦB,C,D

(∫
η(r)µ(dr)

)
= λ(x, y) ∈ B × C ·

(∫
η(r)µ(dr)

)
(x⊗ y)

= λ(x, y) ∈ B × C ·
(∫

η(r)(x⊗ y)µ(dr)
)

= λ(x, y) ∈ B × C ·
(∫

ΦB,C,D(η(r))(x, y)µ(dr)
)

=

∫
ΦB,C,D(η(r))µ(dr) .

This shows that ΦB,C,D ∈ ICones((B⊗C ⊸ D), (B,C ⊸ D)) and we show now that this
morphism is an iso.

We know that this function is bijective, let us use ΨB,C,D for its inverse, which is linear and
continuous by Lemma 2.8. Since ΨB,C,D : ICones(B,C ⊸ D) → ICones(B⊗C,D), we
have ∥ΨB,C,D(g)∥ ≤ ∥g∥ for all g ∈ B,C ⊸ D, using also the linearity of ΨB,C,D. We prove
that ΨB,C,D is measurable. Let X ∈ Ar and η ∈ Path(X, (B,C ⊸ D)), we must prove that

ΨB,C,D ◦ η ∈ Path(X, (B⊗C ⊸ D)). Without loss of generality we assume that ∥η∥ ≤ 1.

Let Y ∈ Ar and p ∈ MB⊗C⊸D
Y , we must check that λ(s, r) ∈ Y ×X · p(s,ΨB,C,D(η(r))) is

measurable. There is θ ∈ Path(Y,B⊗C) and m ∈ MD
Y such that p = θ ▷ m, and we must

check that λ(s, r) ∈ Y ×X ·m(s,ΨB,C,D(η(r))(θ(s))) is measurable. For this, since Ar is
cartesian, it suffices to prove that

λ(s, s′, r) ∈ Y × Y ×X ·m(s,ΨB,C,D(η(r))(θ(s
′)))

is measurable. Since θ ∈ Path(Y,B⊗C) it suffices to prove that

η′ = λ(s, r, z) ∈ Y ×X ×B⊗C ·m(s,ΨB,C,D(η(r))(z)) ∈ Path(Y ×X,B⊗C ⊸ 1)

and to this end we apply Lemma 5.11. The boundedness assumption is satisfied because
∥η∥ ≤ 1 and hence ∥ΨB,C,D(η(r))∥ ≤ 1 for each r ∈ X. So let Y ′ ∈ Ar, β ∈ Path(Y ′, B)
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and γ ∈ Path(Y ′, C). We have

λ(s′, s, r) ∈ Y ′ × Y ×X · η′(s, r)(β(s′)⊗ γ(s′))

= λ(s′, s, r) ∈ Y ′ × Y ×X ·m(s,ΨB,C,D(η(r))(β(s
′)⊗ γ(s′)))

= λ(s′, s, r) ∈ Y ′ × Y ×X ·m(s, η(r)(β(s′), γ(s′)))

which is measurable by our assumption about η. Last we must prove that ΨB,C,D preserves
integrals. Using the same path η let furthermore µ ∈ FMeas(X), we must prove that

g1 = ΨB,C,D

(∫
η(r)µ(dr)

)
∈ B⊗C ⊸ D

and g2 =

∫
ΨB,C,D(η(r))µ(dr) ∈ B⊗C ⊸ D

are equal. Since ΦB,C,D preserves integrals we have ΦB,C,D(g1) = ΦB,C,D(g2) and the
required property follows from the injectivity of ΦB,C,D.

Theorem 5.13. For each x ∈ B and y ∈ C we have ∥x⊗ y∥ = ∥x∥ ∥y∥.

Proof. Since τB,C ∈ ICones(B,C ⊸ B⊗C) we have ∥x⊗ y∥ ≤ ∥x∥ ∥y∥, we just have to
prove the converse. If x = 0 or y = 0 our contention trivially holds so we can assume without
loss of generality that ∥x∥ = ∥y∥ = 1 and let ε > 0. By Proposition 3.11 there is x′ ∈ BB′

and y′ ∈ BC ′ such that ⟨x, x′⟩ ≥ 1 − ε/2 and ⟨y, y′⟩ ≥ 1 − ε/2. Let g : B × C → R≥0

be defined by g(x0, y0) = ⟨x0, x′⟩⟨y0, y′⟩. Then g ∈ B,C ⊸ 1 and moreover ∥g∥ ≤ 1. Let

z′ = Φ−1
B,C,1(g) ∈ B(B⊗C)′, we have

∥x⊗ y∥ ≥ ⟨x⊗ y, z′⟩
= ⟨x, x′⟩⟨y, y′⟩

≥
(
1− ε

2

)2
> 1− ε

so that ∥x⊗ y∥ ≥ 1.

5.5. The symmetric monoidal structure of ICones. We want now to exploit Theo-
rem 5.12 to show that the category ICones can be endowed with a symmetric monoidal
structure whose monoidal functor is our tensor product ⊗.

One very convenient tool for proving the associated coherence diagrams will be Proposi-
tion 5.14 which uses binary trees given by the following syntax: ∗ is a tree (a leaf) and if t1
and t2 are trees then ⟨t1, t2⟩ is a tree. We use Tn for the set of trees which have n leaves (for
n ∈ N+).

These trees are used to specify arbitrary “tensor expressions” as follows. If n ∈
N+,

−→
B = (Bi)

n
i=1 is a sequence of objects of ICones and t ∈ Tn, we define an object

t⊗(
−→
B ) of ICones by a straightforward induction, for instance ⟨∗, ⟨∗, ∗⟩⟩⊗(B1, B2, B3) =

B1⊗ (B1⊗B2). In the same way, given −→x = (xi ∈ Bi)
n
i=1 one defines t⊗(−→x ) ∈ t⊗(

−→
B ), for

instance ⟨∗, ⟨∗, ∗⟩⟩⊗(x1, x2, x3) = x1⊗ (x1⊗x2).

Proposition 5.14. Let n ∈ N+, B1, . . . , Bn, C be integrable cones and t ∈ Tn. Let f, g ∈
ICones(t⊗(

−→
B ), C). If, for all (xi ∈ Bi)

n
i=1 one has f(t⊗(−→x )) = g(t⊗(−→x )), then f = g.
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Proof. By induction on the structure of t. The base case t = ∗ being trivial, assume that
t = ⟨t1, t2⟩ with (ti ∈ Tni)i=1,2 and n1 + n2 = n (notice that n1, n2 < n) so that we can

write
−→
B = (B1

1 , . . . , B
1
n1
, B2

1 , . . . , B
2
n2
) = (

−→
B1,

−→
B2) and we have t⊗(

−→
B ) = D1⊗D2 where

(Di = t⊗i (
−→
Bi))i=1,2. With these notations, we have f, g ∈ ICones(D1⊗D2, C) and so it

suffices to prove that ΦD1,D2,C(f) = ΦD1,D2,C(g) ∈ ICones(D1, D2 ⊸ C). By inductive

hypothesis, it suffices to prove that for all
−→
x1 = (x1i ∈ B1

i )
n1
i=1, one has ΦD1,D2,C(f)(t

⊗
1 (

−→
x1)) =

ΦD1,D2,C(g)(t
⊗
1 (

−→
x1)) ∈ ICones(B2, C) (the fact that both morphisms have norm ≤ 1 is true

but not essential), and so, by inductive hypothesis again, it suffices to prove that for all
−→
x2 = (x2i ∈ B2

i )
n2
i=1, one has ΦD1,D2,C(f)(t

⊗
1 (

−→
x1))(t⊗2 (

−→
x2)) = ΦD1,D2,C(g)(t

⊗
1 (

−→
x1))(t⊗2 (

−→
x2)) ∈ C

which results from ΦD1,D2,C(f)(t
⊗
1 (

−→
x1))(t⊗2 (

−→
x2)) = f(t⊗1 (

−→
x1)⊗ t⊗2 (

−→
x2)) = f(t⊗(−→x )) and

similarly for g, and from our assumption about f and g.

Theorem 5.15. The category ICones, equipped with the bifunctor ⊗ and unit 1 has a
structure of symmetric monoidal category, and this SMC is closed.

Proof. Let us deal first with the associator. We have two natural bijections

ICones((B1⊗B2)⊗B3, C)

ICones(B1⊗B2, B3⊸ C)

ICones(B1, B2⊸ (B3⊸ C))

ΦB1 ⊗B2,B3,C

ΦB1,B2,B3⊸C

and — notice that here we use Theorem 5.12 in a crucial way —

ICones(B1⊗ (B2⊗B3), C)

ICones(B1, B2⊗B3⊸ C)

ICones(B1, B2⊸ (B3⊸ C))

ΦB1,B2 ⊗B3,C

ICones(B1,ΦB2,B3,C
)

that we call respectively ΨB1,B2,B3,C and Ψ′
B1,B2,B3,C

so that (ΨB1,B2,B3,C)
−1 ◦ Ψ′

B1,B2,B3,C

is a natural bijection ICones(B1⊗ (B2⊗B3), C) → ICones((B1⊗B2)⊗B3, C) and hence,
setting C = B1⊗ (B2⊗B3), we know by Lemma 1.1 that

αB1,B2,B3 = (ΨB1,B2,B3,C)
−1(Ψ′

B1,B2,B3,C(IdC)) ∈ ICones((B1⊗B2)⊗B3, B1⊗ (B2⊗B3))

is a natural iso. Moreover the definition of the natural iso Φ implies that for all x1 ∈ B1,
x2 ∈ B2 and x3 ∈ B3, one has

αB1,B2,B3((x1⊗x2)⊗x3) = x1⊗ (x2⊗x3) (5.2)

Indeed Ψ′
B1,B2,B3,B1 ⊗ (B2 ⊗B3)

(IdC) is

f = λx1 ∈ B1 · λx2 ∈ B2 · λx3 ∈ B3 · x1⊗ (x2⊗x3)

and αB1,B2,B3 must satisfy ΨB1,B2,B3,C(αB1,B2,B3) = f which is exactly Equation (5.2).
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Similarly one defines natural isos λB ∈ ICones(1⊗B,B) (using the obvious natural
bijection ICones(1, B⊸ C) → ICones(B,C)), ρB ∈ ICones(B⊗ 1, C) (using the obvious
natural iso (1⊸ C) → C in ICones) and γB1,B2 ∈ ICones(B1⊗B2, B2⊗B1)) (using the
natural iso of Lemma 5.5). These isos satisfy the following equations

∀x ∈ B, ∀u ∈ R≥0 λB(u⊗x) = ux = ρB(x⊗u) (5.3)

∀x1 ∈ B1, ∀x2 ∈ B2 γB1,B2(x1⊗x2) = x2⊗x1 . (5.4)

The required coherence diagrams are easily proven using Equations (5.2), (5.3) and (5.4)
combined with Proposition 5.14. In that way, we have endowed ICones with an SMC
structure whose monoidal product is our tensor product ⊗. The natural isomorphism Φ tells
us moreover that this SMC is closed.

6. Categorical properties of integration

From now on all the cones we consider are integrable cones, unless otherwise specified. We
use letters B, C, D and E, possibly with subscripts, to denote such cones.

In Lemma 4.11 we have defined the functor FMeas : Ar → ICones which maps each
X ∈ Ar to the integrable cone FMeas(X) of finite non-negative measures on X and acts on
measurable functions by the standard push-forward operation, FMeas(φ) = φ∗.

Notice that for each X ∈ Ar we have a specific element δX ∈ Path(X,FMeas(X)) such

that δX(r) is the Dirac mass at r ∈ X, the measure defined by

δX(r)(U) =

{
1 if r ∈ U

0 otherwise.

The boundedness of δX is obvious and its measurability results from the observation that if

m = Ũ (for some U ∈ σX) we have m ◦ δX = χU (the characteristic function of U) which is
measurable.

Theorem 6.1. For each X ∈ Ar and integrable cone B, one has

IB
X ∈ ICones(Path(X,B),FMeas(X)⊸ B)

and IB
X (this notation is introduced in Definition 4.3) is an isomorphism which is natural in

X and in B (between functors Arop × ICones → ICones).

This means that IB
X is bilinear continuous and measurable, and preserves integrals on

both sides, and that, considered as a linear morphism acting on Path(X,B), it is an iso in
ICones.

Proof. For the first statement we just have to prove preservation of integrals in both
arguments since bilinearity, continuity and measurability have already been proven in
Lemma 4.7. So let Y ∈ Ar, ν ∈ FMeas(Y ), η ∈ Path(Y,Path(X,B)) and µ ∈ FMeas(X), we
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have

IB
X

(∫ Path(X,B)

s∈Y
η(s)ν(ds), µ

)
=

∫ B

r∈X

(∫ Path(X,B)

s∈Y
η(s)ν(ds)

)
(r)µ(dr)

=

∫ B

r∈X

(∫ B

s∈Y
η(s)(r)ν(ds)

)
µ(dr)

=

∫ B

s∈Y

(∫ B

r∈X
η(s)(r)µ(dr)

)
ν(ds) by Theorem 4.15

=

∫
IB
X(η(s), µ)ν(ds) .

Next let β ∈ Path(X,B) and κ ∈ Path(Y,FMeas(X)), we have

IB
X

(
β,

∫ FMeas(X)

s∈Y
κ(s)ν(ds)

)
=

∫ B

r∈X
β(r)

(∫ FMeas(X)

s∈Y
κ(s)ν(ds)

)
(dr)

where one should remember that the value of the integral
∫
κ(s)ν(ds) is the finite measure

on X which maps U ∈ σX to
∫
κ(s, U)ν(ds) ∈ R≥0. We claim that x1 = x2 where

x1 =

∫ B

r∈X
β(r)

(∫ FMeas(X)

s∈Y
κ(s)ν(ds)

)
(dr) x2 =

∫ B

s∈Y

(∫ B

r∈X
β(r)κ(s, dr)

)
ν(ds) .

Upon applying to both members an element of MB
0 and using (Mssep) for B we can assume

that B = 1. By the monotone convergence theorem and the fact that each measurable
function is the lub of a monotone sequence of simple measurable functions, we can assume
that β is simple, and by linearity of integrals we can assume that β = χU for some U ∈ σX .
Then we have x1 =

∫
κ(s, U)ν(ds) = x2.

Now we define a function KB
X : FMeas(X)⊸ B → Path(X,B) by setting

KB
X(f) = f ◦ δX ,

which belongs indeed to Path(X,B) because δX is a bounded measurable path. Lin-

earity and continuity of KB
X result from linearity and continuity of composition. We

prove measurability so let Y ∈ Ar and η ∈ Path(Y,FMeas(X)⊸ B), we contend that

KB
X ◦ η ∈ Path(Y,Path(X,B)). So let Y ′ ∈ Ar and let p ∈ MPath(X,B)

Y ′ , we must prove that

ψ = λ(s′, s) ∈ Y ′ × Y · p(s′,KB
X(η(s)))

is measurable. Let φ ∈ Ar(Y ′, X) and m ∈ MB
Y ′ be such that p = φ ▷ m, we have

ψ = λ(s′, s) ∈ Y ′ × Y ·m(s′,KB
X(η(s))(φ(s′)))

= λ(s′, s) ∈ Y ′ × Y ·m(s′, η(s)(δX(φ(s′))))

= λ(s′, s) ∈ Y ′ × Y · (((δX ◦ φ) ▷ m)(s′, η(s))

which is measurable since (δX ◦ φ) ▷ m ∈ MFMeas(X)⊸B
Y ′ and η ∈ Path(Y,FMeas(X)⊸ B).
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We prove that KB
X preserves integrals so let moreover ν ∈ FMeas(Y ), we have

KB
X

(∫ FMeas(X)⊸B

s∈Y
η(s)ν(ds)

)
= λr ∈ X ·

∫ B

s∈Y
η(s)(δX(r))ν(ds)

= λr ∈ X ·
∫ B

s∈Y
KB

X(η(s))(r)ν(ds)

=

∫ Path(X,B)

s∈Y
KB

X(η(s))ν(ds)

so that KB
X ∈ ICones(FMeas(X)⊸ B,Path(X,B)).

Let f ∈ FMeas(X)⊸ B, we have

IB
X(KB

X(f)) = λµ ∈ FMeas(X) ·
∫ B

r∈X
f(δX(r))µ(dr)

= λµ ∈ FMeas(X) · f
(∫ FMeas(X)

r∈X
δX(r)µ(dr)

)
since f preserves integrals

= λµ ∈ FMeas(X) · f(µ) = f

and let β ∈ Path(X,B), we have

KB
X(IB

r∈X(β)) = λr ∈ X ·
(∫ B

r′∈X
β(r′)δX(r, dr′)

)
= β .

Checking naturality is routine.

Theorem 6.2. Let X ∈ Ar, B be an object of ICones and f1, f2 ∈ ICones(FMeas(X), B).
If, for all r ∈ X, one has f1(δ

X(r)) = f2(δ
X(r)) then f1 = f2.

Proof. This results from Theorem 6.1.

Remark 6.3. In other words the Dirac measures δX(r) are “dense” in the integrable cone
FMeas(X), in the sense that two ICones morphisms which take the same values on Dirac
measures are equal. This property is one of the main benefits of integrability of cones and it
does not hold in MCones as shown in Remark 2.7.

It is easy to check that for each X ∈ Ar the functor Path(X, ) : ICones → ICones
preserves all limits. It follows by Theorem 4.19 that it has a left adjoint. We provide an
explicit description of this adjoint. We define the functor FMeas⊗ : Ar× ICones → ICones
by FMeas⊗(X,B) = FMeas(X)⊗B and similarly for morphisms.

Theorem 6.4. For each X ∈ Ar we have FMeas⊗(X, ) ⊣ Path(X, )

Proof. We have the following sequence of natural bijections:

ICones(FMeas(X)⊗B,C)

≃ ICones(B⊗FMeas(X), C) by symmetry of ⊗ , Th. 5.15

≃ ICones(B,FMeas(X)⊸ C) since ICones is an SMCC, Th. 5.15

≃ ICones(B,Path(X,C)) by Theorem 6.1.
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6.1. The category of substochastic kernels as a full subcategory of ICones.
If X,Y ∈ Ar, a substochastic kernel from X to Y is an element of Skern(X,Y ) =
BPath(X,FMeas(Y )): this is an equivalent characterization of this standard measure theory
and probability notion. Then Skern is the category whose objects are those or Ar and:

• the identity at X is δX ∈ Skern(X,X)
• and given κ1 ∈ Skern(X1, X2) and κ2 ∈ Skern(X2, X3), their composite κ = κ2 κ1 is
given by

κ(r1)(U3) =

∫ 1

r2∈X2

κ2(r2, U3)κ1(r1, dr2)

for U3 ∈ σX3 , that is κ(r1) = IFMeas(X3)
X2

(κ2)(κ1(r1)): this formula is a continuous general-
ization of the product of substochastic matrices.

As is well known the category of measurable spaces and substochastic kernels can be presented
as the Kleisli category of the Giry monad (or more precisely, of the Panangaden monad
since we consider substochastic kernels instead of stochastic kernels), but this point of view
does not apply to our case because the set of objects of our small category Ar has no reason
to be stable under the action of the Panangaden monad.

If κ ∈ Skern(X,Y ), we set Klin(κ) = IFMeas(Y )
X (κ) ∈ ICones(FMeas(X),FMeas(Y ))

defining a functor Klin : Skern → ICones which maps X ∈ Ar to FMeas(X). Remember
that we use FMeas for the functor Ar → ICones defined on morphisms by FMeas(φ) =
φ∗ = Klin(δY ◦ φ) ∈ ICones(FMeas(X),FMeas(Y )) for φ ∈ Ar(X,Y ).

Theorem 6.5. The functor Klin : Skern → ICones is full and faithful.

Proof. By Theorem 6.1.

Remark 6.6. So we can consider the category of measurable spaces (at least those sorted
out by Ar) and substochastic kernels as a full subcategory of ICones and again, this is a
major consequence of the assumption that linear morphisms must preserve integrals. This
has to be compared with QBSs which form a cartesian closed category which contain the
category of measurable spaces and measurable functions (or a full subcategory thereof such
as our Ar) as a full subcategory through the Yoneda embedding.

In Section 9.1.1 we will see that, under very reasonable assumptions about its objects,
Ar arises as a full subcategory of ICones!, the category of !-coalgebras for an exponential
comonad ! based on stable and measurable functions, or on analytical morphisms.

Theorem 6.7. There is an iso in ICones(FMeas(0), 1) and, given X,Y ∈ Ar, there is an
iso in

ICones(FMeas(X × Y ),FMeas(X)⊗FMeas(Y ))

which is natural in X and Y on the category Ar. These isos turn FMeas into a strong
monoidal functor (Ar,×) → (ICones,⊗).

Proof. Remember first that FMeas is a functor Ar → ICones which acts on morphisms by
push-forward (see Lemma 4.11).

The first statement is obvious since a finite measure on a one element space is the
same thing as an element of R≥0 whose norm is its value, and in that case our definition of
measurability and integrals coincide with the usual ones.
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Given an object B of ICones we have the following sequence of natural bijections
between functors Arop ×Arop × ICones → Set

ICones(FMeas(X × Y ), B) ≃ BFMeas(X × Y )⊸ B

≃ BPath(X × Y,B) by Theorem 6.1

≃ BPath(X, (Path(Y,B))) by Lemma 3.19

≃ BFMeas(X)⊸ (FMeas(Y )⊸ B) by Theorem 6.1

≃ ICones(FMeas(X), (FMeas(Y )⊸ B))

≃ ICones(FMeas(X)⊗FMeas(Y ), B)

because ICones is an SMCC and so by Lemma 1.1 we have a natural transformation

ψX,Y ∈ ICones(FMeas(X)⊗FMeas(Y ),FMeas(X × Y ))

between functors Ar×Ar → ICones and this natural transformation is completely charac-
terized by ψX,Y (µ⊗ ν) = µ× ν by the definition of the iso fl used in Lemma 3.19. Using
this characterization as well as Proposition 5.14, it is easy to prove that this natural iso-
morphism (together with its 0-ary version) turns FMeas into a monoidal functor from the
cartesian category Ar to the monoidal category ICones. The proof uses also the fact
that (φ1 × φ2)∗(µ1 × µ2) = (φ1)∗(µ1)× (ψ2)∗(µ2) for µi ∈ FMeasXi and φi ∈ Ar(Xi, Yi) for
i = 1, 2.

Remark 6.8. This is yet another highly desirable property of the tensor product which
results from the preservation of integrals by linear morphisms. It means that an element
π of FMeas(X)⊗FMeas(Y ) whose norm is 1 can be considered as the joint probability
distribution of two (not necessarily independent) random variables valued in X and Y
respectively. The case where π = µ⊗ ν corresponds to the situation where the random
variables are independent, of associated distributions µ and ν.

7. Stable and measurable functions

We start studying the non-linear maps between integrable cones and we will consider actually
two kinds of non-linear morphisms:

• the stable and measurable morphisms in the present section
• and the analytic ones in Section 8.

The first ones were introduced in [EPT18b] in a weaker setting (no general notion of
integration was considered in that paper). The second ones are naturally derived from the
monoidal structure of ICones and from the ω-completeness of cones. The two notions are
deeply connected: analytic morphisms are in particular stable, and some properties proven
in Section 7 will be useful in Section 8. We will also see in Remark 9.6 that there are stable
functions which are not analytic, the fundamental reason for that being that the definition
of stability does not refer to integrals. In the discrete probability setting of probabilistic
coherence spaces (see Section 10), it has been proved that the two notions are equivalent,
see [Cru18].

Stable morphisms satisfy a strong form of monotonicity, which, in ordinary real analysis,
can be expressed in terms of derivatives: ∀n ∈ N f (n)(x) ≥ 0 (absolute monotonicity).
Because we are working in the setting of cones, we use iterated differences instead of
derivatives, following an idea first introduced by Bernstein in 1914.
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The definition of these iterated differences uses a notion of local cone introduced
in [EPT18b] and that we recall now. This construction could be rephrased in terms of
summability structure [Ehr23], but this is not necessary for our purpose here.

7.1. The local cone. One major feature of stable functions20 from an integrable cone B to
an integrable cone C is that, contrarily to linear morphisms, they will be defined, in general,
only on the closed “unit ball” BB of B, see Remark 2.5. A typical example is the already
mentioned function f : B1 = [0, 1] → 1 given by f(x) = 1−

√
1− x, see Remark 2.5. To deal

with such a function BB → C and its strong monotonicity properties at a given x ∈ BB, it
will be important to be able to consider the set U of all u ∈ B such that x+ u ∈ BB, or
rather of all elements of BB of shape λu for such an u and for λ ∈ R≥0: we will see that U
can itself be considered as a cone, the local cone of B at x.

Let B be an integrable cone and x ∈ BB. Let

P = {u ∈ B | ∃ε > 0 x+ εu ∈ BB} .
Then P is a precone whose 0 element is the 0 of B. Indeed if u1, u2 ∈ P there is ε > 0 such
that (x+ εui ∈ BB)i=1,2 and hence

x+
ε

2
(u1 + u2) =

1

2
(x+ εu1) +

1

2
(x+ εu2) ∈ BB

so that u1 + u2 ∈ P . The fact that u ∈ P ⇒ ∀λ ∈ R≥0 λu ∈ P is clear. The condition
(Cancel) and (Pos) result easily from the fact that they hold in B.

We can equip P with a map (sometimes called a gauge) N : P → R≥0 defined by

N(u) = (sup{λ > 0 | x+ λu ∈ BB})−1 = inf{λ−1 | λ > 0 and x+ λu ∈ BB}

Lemma 7.1. The function N is a norm on P and, equipped with this norm, P is a cone
whose 0 element and algebraic operations are those of B.

Proof. Assume that N(u) = 0, this means that ∀λ ∈ R≥0 ∥x+ λu∥ ≤ 1 and hence ∀λ ∈
R≥0 λ ∥u∥ ≤ 1 so that u = 0. Let u1, u2 ∈ P and let ε > 0. We can find λ1, λ2 > 0 such

that x+ λiui ∈ BB and λ−1
i ≤ N(ui) + ε/2 for i = 1, 2. We have

λ1
λ1 + λ2

(x+ λ2u2) +
λ2

λ1 + λ2
(x+ λ1u1) ∈ BB

so that

x+
λ1λ2
λ1 + λ2

(u1 + u2) ∈ BB

so that N(u1 + u2) ≤ ( λ1λ2
λ1+λ2

)−1 = λ−1
1 + λ−1

2 ≤ N(u1) +N(u2) + ε. Since this holds for all

ε > 0 we have N(u1 + u2) ≤ N(u1) +N(u2). The property (Normp) is easy, let us prove
(Normc). Observe first that, for u, v ∈ P , we have u ≤P v iff u ≤B v. Let (un)n∈N be an
increasing sequence in P such that ∀n ∈ N N(un) ≤ 1. Then we have ∀n ∈ N x+ un ∈ BB
and hence the sequence (x+ un)n∈N is an increasing sequence in BB and so it has a lub in
BB which coincides with x+ u where u is the lub of (un)n∈N in B. Thus we have u ∈ P
and N(u) ≤ 1. Last observe that u is a fortiori the lub of the un’s in P .

20This will be also the case of analytic morphisms in Section 8.
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We use now the standard notation ∥ ∥ for that norm. Notice that

BP = {u ∈ B | x+ u ∈ BB}
and also that ∥u∥B ≤ ∥u∥, for all u ∈ P .

For eachX ∈ Ar we defineMX as the set of all test functions λr ∈ X ·λu ∈ P ·m(r, u) for
the elementsm of MB

X (such an element of MX will still be denoted bym even if two different
elements of MB

X possibly induce the same test). The fact that ∀r ∈ X, u ∈ BP m(r, u) ≤ 1
whenever m ∈ MX results from BP ⊆ BB.

Then it is straightforward to check that (P, (MX)X∈Ar) is a measurable cone, that we
denote as Bx and call the local cone of B at x and it is also clear that this measurable cone
is integrable, the integral of a path in Bx being defined exactly as in B.

It is important to keep in mind the meaning of the norm in this local cone, which is
most usefully described as follows.

Lemma 7.2. Let x ∈ BB and u ∈ Bx \ {0}. Then we have x + ∥u∥−1
Bx
u ∈ BB and

x+ λu /∈ BB for all λ > ∥u∥−1
Bx

.

Proof. By definition of the norm in Bx and by the ω-closedness of BB.

Example 7.3. Let B = 1 so that 1 = R≥0 and B1 = [0, 1]. If x ∈ [0, 1] we have two cases:
if x = 1 then Bx = 0 and if x < 1 we have Bx = R≥0. If u ∈ Bx \ {0} (which implies x < 1)

then the largest λ > 0 such that x+ λu ∈ [0, 1] is 1−x
u and hence ∥u∥Bx

= u
1−x = 1

1−x ∥u∥B
so the local cone Bx can be seen as an homothetic image of B by a factor 1

1−x which goes

to ∞ when x gets closer to the border 1 of the unit ball [0, 1]. This very simple example
gives an intuition of what happens in general, with the difference that Bx has no reason to
be always homothetic to B, think for instance of the case where B = 1 & 1 and x = (1, 0):
then Bx is isomorphic to 1.

7.2. The integrable cone of stable and measurable functions. Given n ∈ N, we
use P−(n) (resp. P+(n)) for the set of all subsets I of {1, . . . , n} such that n−#I is odd
(resp. even). In particular {1, . . . , n} ∈ P+(n).

Lemma 7.4. Let n ∈ N, j ∈ {1, . . . , n+ 1} and ε ∈ {−,+}. Given I ∈ Pε(n), the set

injj(I) = {i ∈ I | i < j} ∪ {j} ∪ {i+ 1 | i ∈ I and i ≥ j}
belongs to Pε(n + 1) and injj defines a bijection between Pε(n) and the set of all J ⊆
{1, . . . , n+ 1} such that J ∈ Pε(n+ 1) and j ∈ J .

This is obvious.

Definition 7.5. Let P and Q be cones, a function f : BP → Q is totally monotonic if for
each n ∈ N and each x, u1, . . . , un ∈ P such that x+

∑n
i=1 ui ∈ BP one has∑

I∈P−(n)

f(x+
∑
i∈I

ui) ≤
∑

I∈P+(n)

f(x+
∑
i∈I

ui) . (7.1)

For n = 1 this condition means that f is increasing. For n = 2 we have P−(2) =
{{1}, {2}} and P+(2) = {{1, 2}, ∅}, so Condition (7.1) means

f(x+ u1) + f(x+ u2) ≤ f(x+ u1 + u2) + f(x)
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that is, assuming that f is increasing,

f(x+ u1)− f(x) ≤ f(x+ u1 + u2)− f(x+ u2)

in other words, the map x 7→ f(x + u1) − f(x) is increasing (where it is defined). For
n = 3 we have P−(3) = {{1, 2}, {2, 3}, {1, 3}, ∅} and P+(3) = {{1, 2, 3}, {1}, {2}, {3}}, so
Condition (7.1) means:

f(x+ u1 + u2) + f(x+ u2 + u3) + f(x+ u1 + u3) + f(x)

≤ f(x+ u1 + u2 + u3) + f(x+ u1) + f(x+ u2) + f(x+ u3) .

Remark 7.6. This kind of definition appears in many places in the literature in real analysis,
differential equations, Laplace transforms etc. The corresponding conditions, first considered
by Hausdorff, are then usually expressed in terms of derivatives: for instance a function f
from some open interval I of R to R is absolutely monotonic (resp. completely monotonic) if

it is C∞ and satisfies f (n)(x) ≥ 0 (resp. (−1)nf (n)(x) ≥ 0) for all x ∈ I and n ∈ N. Bernstein
introduces in [Ber14], in the case of real functions of one real parameter, iterated differences
allowing to characterize absolutely monotonic functions — which in turn can be shown to
be analytic — by a condition which is equivalent to (7.1). We use the expression “totally
monotonic” for this extension to cones of Bernstein’s definition to avoid confusion with
“completely monotonic” and “absolutely monotonic”.

This definition arose in denotational semantics during the work of the first author
reported in [EPT18b], when the authors of that paper tried to build a cartesian closed
category whose objects are Selinger’s cones, ordered by the cone order (x ≤ y if there is a
z such that x + z = y). A careful analysis of these constraints (which are actually quite
strong) leads unavoidably to the conclusion that the morphisms of the sought CCC should
be totally monotonic. We will see in Section 7.4 how total monotonicity leads indeed to
cartesian closedness.

Definition 7.7. Let P and Q be cones. A function f : BP → Q is stable if f is totally
monotonic, bounded and ω-continuous (see Definition 2.2).

Remark 7.8. This terminology is motivated by the fact that stable functions (in the sense
of Berry [Ber78]) on Girard’s coherence spaces [Gir86] can be characterized by a property
completely similar to total monotonicity. We have the intuition that our stable morphisms
on cones are a quantitative analog of the notion of stable function introduced in “qualitative”
denotational semantics.

Example 7.9. Let B = FMeas({0, 1}) so that B = R2
≥0 with the norm given by ∥x∥ = x0+x1.

Then for each −→a ∈ RN×N
≥0 which satisfies ∀t ∈ [0, 1]

∑
p,q∈N ap,qt

p(1− t)q ≤ 1, the function

f : BB → R≥0 defined by f(x) =
∑

p,q∈N ap,qx
p
0x

q
1 is totally monotonic. An example of

such a function is f(x) =
∑∞

n=1 2
nxn0x

n
1 since for x ∈ BB one has x0x1 ≤ 1

4 . One might
think that f is convex since all its iterated partial derivatives are ≥ 0 everywhere, but this
is not true since for instance f(0, 1) = f(1, 0) = 0 whereas f(12 ,

1
2) = 1. In general, total

monotonicity of functions defined by power series with one or more parameters as in this
example correspond to the fact that all the partial derivatives are everywhere ≥ 0, which is
related simply to convexity only in the one parameter case.

Definition 7.10. Let C,D be measurable cones. A stable function f : BC → D is
measurable if for each X ∈ Ar and γ ∈ BPath(X,C) one has f ◦ γ ∈ Path(X,D).
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Lemma 7.11. The set of stable and measurable functions C → D, equipped with algebraic
operations defined pointwise, is a precone.

This is straightforward, we use P for this precone. We need first to understand the order
on stable functions induced by the addition operation of P . As usual, this order relation is
simply denoted as ≤ of ≤P .

Lemma 7.12. Let f, g ∈ P . One has f ≤ g iff for each n ∈ N and each x, u1, . . . , un ∈ BC
such that x+

∑n
i=1 ui ∈ BC one has∑

I∈P−(n)

g(x+
∑
i∈I

ui) +
∑

I∈P+(n)

f(x+
∑
i∈I

ui)

≤
∑

I∈P+(n)

g(x+
∑
i∈I

ui) +
∑

I∈P−(n)

f(x+
∑
i∈I

ui) .

Proof. Assume first that f ≤ g and let h = g − f . Notice that since addition is defined
pointwise in P we have h(x) = g(x)− f(x) for all x ∈ BC, and by definition of the order
relation of P , this function h is stable. Given n ∈ N and x, u1, . . . , un ∈ BC such that
x+

∑n
i=1 ui ∈ BC we have∑

I∈P−(n)

h(x+
∑
i∈I

ui) ≤
∑

I∈P+(n)

h(x+
∑
i∈I

ui)

and the announced inequality follows. Conversely if the property expressed in the lemma
holds we have in particular ∀x ∈ BP f(x) ≤ g(x) (take n = 0) and so we can define a
function h : BC → D by h(x) = g(x)− f(x) and this function is totally monotonic. This
function is ω-continuous by Lemma 2.10 and is measurable because subtraction is measurable
on R2.

Remark 7.13. Notice that if f ≤ g (still for the cone order relation of P , characterized by
Lemma 7.12) then f(x) ≤ g(x) for all x ∈ BB, but the converse is not true. As an example
take f(x) = x and g(x) = 1, defining two stable functions (for B = C = 1) which do not
satisfy f ≤P g but are such that f(x) ≤ g(x) holds for all x ∈ [0, 1]. It is natural to call this
order relation on stable functions the stable order in reference to [Ber78, Gir86] where the
stable order behaves in a very similar way, and admits a similar characterization, in terms
of differences.

We equip this precone P with the norm ∥f∥ = supx∈BC ∥f(x)∥ which is well defined by
our assumptions that stable functions are bounded.

Lemma 7.14. Let (fn ∈ BP )n∈N be an increasing sequence (for the stable order). Then
f : BC → D defined by f(x) = supn∈N fn(x) is bounded, totally monotonic, ω-continuous
and measurable, that is, f ∈ P . This map f is the lub of the fn’s in P .

Proof sketch. Total monotonicity follows from ω-continuity of addition, ω-continuity is
straightforward and measurability results from the monotone convergence theorem. The fact
that f is the lub of the fn’s results from the fact that it is defined as a pointwise lub.

So P is a cone that we equip with a measurability structure M defined as in C ⊸ D: a
p ∈ MX is a function p = γ ▷ m where γ ∈ Path(X,C) and m ∈ MD

Y , given by

γ ▷ m = λ(r, f) ∈ X × P ·m(r, f(γ(r))) .



Vol. 21:1 INTEGRATION IN CONES 1:59

Then we check that M satisfies the required conditions exactly as we did for C ⊸ D in
Section 5.1. We have defined a measurable cone C ⇒s D that we prove now to be integrable.

Let X ∈ Ar and η ∈ Path(X,C ⇒s D), and let µ ∈ FMeas(X). We define a function
f : BC → D by

f(x) =

∫
r∈X

η(r)(x)µ(dr) .

This integral is well defined because, for each x ∈ BB, the function λr ∈ X · η(r)(x) is
measurable and bounded since η is a measurable path. The function f is totally monotonic
by bilinearity of integration, ω-continuous by the monotone convergence theorem, we check
that it is measurable. Let Y ∈ Ar and γ ∈ Path(Y,C), we have

f ◦ γ = λs ∈ Y ·
∫
r∈X

η(r)(γ(s))µ(dr)

and we must prove that f ◦ γ ∈ Path(Y,D), so let Y ′ ∈ Ar and m ∈ MD
Y ′ , we have

λ(s′, s) ∈ Y ′ × Y ·m(s′, (f ◦ γ)(s)) = λ(s′, s) ∈ Y ′ × Y ·m
(
s′,

∫
r∈X

η(r)(γ(s))µ(dr)
)

= λ(s′, s) ∈ Y ′ × Y ·
∫
r∈X

m(s′, η(r)(γ(s)))µ(dr)

which is measurable because λ(s′, s, r) ∈ Y ′ × Y ×X ·m(s′, η(r)(γ(s))) is measurable by our
assumption about η and by Lemma 4.6. This shows that f ∈ C ⇒s D. Let p ∈ MC⇒D

0 so

that p = x ▷ m for some x ∈ C and m ∈ MD
0 , we have

p(f) = m
(∫

r∈X
η(r)(x)µ(dr)

)
=

∫
r∈X

m(η(r)(x))µ(dr)

=

∫
r∈X

p(η(r))µ(dr)

so that f is the integral of η over µ, this shows that C ⇒s D is an integrable cone.

7.3. Finite differences. We introduce a natural difference operator on totally monotonic
functions which provides an inductive characterization of total monotonicity that we will use
to prove two basic properties of totally monotonic functions, Lemmas 7.26 and 7.27, which
will show useful to establish a property which is not completely obvious: the composition
of two stable functions is stable. In the setting of complete and absolute monotonicity in
real analysis, the corresponding property can be obtained by means of the Faà di Bruno
formula (higher derivative of composite of functions) as mentioned in [LN83], Section 7. Our
notion of total monotonicity being defined in terms of iterated differences, we need a specific
reasoning.

Given −→u ∈ Bn such that
∑n

i=1 ui ∈ BB we use B−→u for the local cone B∑n
i=1 ui

(see

Section 7.1).
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Let B,C be cones, f : BB → C be a function, n ∈ N and u1, . . . , un ∈ B such that∑n
i=1 ui ∈ BB we define

∆εf(−→u ) : BB−→u → C

x 7→
∑

I∈Pε(n)

f(x+
∑
i∈I

ui)

for ε ∈ {−,+} and if f is totally monotonic we set

∆f(−→u ) = ∆+f(−→u )−∆−f(−→u ) : BB−→u → C ,

the difference being computed pointwise. Notice that for n = 0 (so that −→u = ( )) we have
∆f(( )) = f since P+(0) = {∅} and P−(0) = ∅.

Definition 7.15. Let f ∈ BB → C be a function and let n ∈ N. We say that f is
n-increasing from B to C if

• n = 0 and f is increasing
• or n > 0, f is increasing and, for all u ∈ BB the function ∆f(u) : BBu → C (which maps
x to f(x+ u)− f(x)) is (n− 1)-increasing from Bu to C.

Lemma 7.16. Let f ∈ BB → C be a function which is n-increasing for all n ∈ N. Then
for all u ∈ BB, the function ∆f(u) : BBu → C is n-increasing for all n ∈ N.

Proof. Immediate consequence of the definition of n-increasing functions.

Lemma 7.17. Let f : B → C be totally monotonic. For u, u1, . . . , un ∈ B and x ∈ BBu,−→u ,

one has ∆εf(u,−→u )(x) = ∆εf(−→u )(x+ u) + ∆−εf(−→u )(x) for ε ∈ {+,−}. Moreover

∆f(−→u )(x) ≤ ∆f(−→u )(x+ u) and ∆f(u,−→u ) = ∆(∆f(−→u ))(u) .

Proof. Let −→v = (u,−→u ), of length n+ 1. We have

∆εf(−→v )(x) =
∑

I∈Pε(n+1)

f(x+
∑
i∈I

vi) =
∑

I∈Pε(n+1)
1∈I

f(x+
∑
i∈I

vi) +
∑

I∈Pε(n+1)
1/∈I

f(x+
∑
i∈I

vi) .

Now observe that∑
I∈Pε(n+1)

1/∈I

f(x+
∑
i∈I

vi) =
∑

I∈P−ε(n)

f(x+
∑
i∈I

ui) = ∆−εf(−→u )(x)

by definition of −→v and, using Lemma 7.4, observe also that∑
I∈Pε(n+1)

1∈I

f(x+
∑
i∈I

vi) =
∑

I∈Pε(n)

f(x+ u+
∑
i∈I

ui) = ∆εf(−→u )(x+ u) .

So we have ∆εf(u,−→u )(x) = ∆εf(−→u )(x+ u) + ∆−εf(−→u )(x). Since f is totally monotonic,
we have

∆−f(u,−→u )(x) ≤ ∆+f(u,−→u )(x)

and hence

∆−f(−→u )(x+ u)−∆−f(−→u )(x) ≤ ∆+f(−→u )(x+ u)−∆+f(−→u )(x)
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both subtractions being defined since f is increasing. Therefore ∆f(−→u )(x) ≤ ∆f(−→u )(x+ u).
Moreover

∆f(u,−→u )(x) = ∆+f(u,−→u )(x)−∆−f(u,−→u )(x)
= (∆+f(−→u )(x+ u) + ∆−f(−→u )(x))− (∆−f(−→u )(x+ u) + ∆+f(−→u )(x))
= (∆+f(−→u )(x+ u)−∆−f(−→u )(x+ u))− (∆+f(−→u )(x)−∆−f(−→u )(x))
= ∆f(−→u )(x+ u)−∆f(−→u )(x)
= ∆(∆f(−→u ))(u)(x) .

Lemma 7.18. If a function f ∈ BB → C is totally monotonic, then for each u ∈ BB, the
function ∆f(u) : BBu → C is totally monotonic.

Proof. Let −→u ∈ BBu, notice that (Bu)−→u = Bu,−→u . Let x ∈ BBu,−→u . We have

∆ε(∆f(u))(−→u )(x) = ∆εf(−→u )(x+ u)−∆εf(−→u )(x)

where the subtraction makes sense because f is increasing. By our assumption on f we have

∆−f(u,−→u )(x) ≤ ∆+f(u,−→u )(x)

that is

∆−f(−→u )(x+ u) + ∆+f(−→u )(x) ≤ ∆+f(−→u )(x+ u) + ∆−f(−→u )(x)

by Lemma 7.17, and hence

∆−(∆f(u))(−→u )(x) ≤ ∆+(∆f(u))(−→u )(x)

Theorem 7.19. A function f ∈ BB → C is totally monotonic iff it is n-increasing for all
n ∈ N.

Proof. Remember that f is totally monotonic iff for all n ∈ N, all −→u ∈ Bn and x ∈ B−→u we
have ∆−f(−→u )(x) ≤ ∆+f(−→u )(x).

We prove first by induction on k ∈ N that for all f ∈ BB → C, if f is totally monotonic
then f is k-increasing.

For k = 0, we have to prove that f is increasing, which results from total monotonicity
applied with n = 1.

For k > 0 we have to prove that f is increasing (which results from total monotonicity
applied with n = 1) and that for all u ∈ BB the function ∆f(u) : BBu → C is (k − 1)-
increasing, for which, by inductive hypothesis, it suffices to prove that ∆f(u) is totally
monotonic, and this property results from Lemma 7.18.

Conversely, we prove by induction on n ∈ N that, for each f ∈ BB → C, if f is
k-increasing for all k ∈ N then for all −→u ∈ BBn and x ∈ BB−→u , one has ∆−f(−→u )(x) ≤
∆+f(−→u )(x). For n = 0 there is nothing to prove so assume that n > 0. Let (u,−→u ) ∈ BBn

and let x ∈ BBu,−→u . Notice that −→u ∈ BBn−1 and x ∈ BB−→u . Since ∆f(u) is k-increasing for

all k ∈ N by Lemma 7.16, we know by applying the inductive hypothesis to ∆f(u) that

∆−(∆f(u))(−→u )(x) ≤ ∆+(∆f(u))(−→u )(x)

that is

∆−f(−→u )(x+ u)−∆−f(−→u )(x) ≤ ∆+f(−→u )(x+ u)−∆+f(−→u )(x)
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which implies

∆−f(−→u )(x+ u) + ∆+f(−→u )(x) ≤ ∆+f(−→u )(x+ u) + ∆−f(−→u )(x)

that is ∆−f(u,−→u )(x) ≤ ∆+f(u,−→u )(x) by Lemma 7.17, as expected.

Lemma 7.20. Let f : BB → C be totally monotonic and −→u ∈ Bn be such that
∑n

i=1 ui ∈ BB.
Then the functions ∆+f(−→u ),∆−f(−→u ),∆f(−→u ) : BB−→u → C are totally monotonic.

Proof. The total monotonicity of ∆εf(−→u ) results from the easy observation that if g : BB →
BC and u ∈ BB then the map gu : BBu → C defined by gu(x) = g(x + u) is also totally
monotonic, and each sum of totally monotonic functions is totally monotonic.

The total monotonicity of ∆f(−→u ) results from Theorem 7.19.

Lemma 7.21. Let f : BB → C be totally monotonic. Then for each −→u ∈ Bn such that∑n
i=1 ui ∈ BB and x ∈ B−→u we have ∆f(−→u )(x) ≤ f(x+

∑n
i=1 ui).

Proof. By induction on n. The base case n = 0 is trivial since then ∆f(−→u )(x) = f(x). For the
inductive case, let (u,−→u ) ∈ Bn+1 with u+

∑n
i=1 ui ∈ BB and x ∈ Bu,−→u , that is x+u ∈ B−→u .

We have ∆f(u,−→u )(x) = ∆f(−→u )(x+ u)−∆f(−→u )(x) ≤ ∆f(−→u )(x+ u) ≤ f(x+ u+
∑n

i=1 ui)
by inductive hypothesis.

Lemma 7.22. Let f : BB → C be a totally monotonic function. Let n ∈ N, u, v ∈ BB and
−→u ∈ BBn, and assume that u+ v +

∑n
i=1 ui ∈ BB. Then for each x ∈ BB−→u we have

∆f(−→u )(x+ u) = ∆f(−→u )(x) + ∆f(u,−→u )(x)
∆f(u+ v,−→u )(x) = ∆f(u,−→u )(x) + ∆f(v,−→u )(x+ u) .

Proof. The first equation results from ∆f(u,−→u ) = ∆(∆f(−→u ))(u), see Lemma 7.18. For the
second equation take x ∈ BBu+v,−→u . Let n be the length of −→u . Setting −→v = (u,−→u ) and
−→w = (v,−→u ) (both of length n+ 1), we have

∆f(−→v )(x) + ∆f(−→w )(x+ u) =
∑

I∈P+(n+1)

f(x+
∑
i∈I

vi)−
∑

I∈P−(n+1)

f(x+
∑
i∈I

vi)

+
∑

I∈P+(n+1)

f(x+ u+
∑
i∈I

wi)−
∑

I∈P−(n+1)

f(x+ u+
∑
i∈I

wi)

=
∑

I∈P−(n)

f(x+
∑
i∈I

ui) +
∑

I∈P+(n)

f(x+ u+
∑
i∈I

ui)

− (
∑

I∈P+(n)

f(x+
∑
i∈I

ui) +
∑

I∈P−(n)

f(x+ u+
∑
i∈I

ui))

+
∑

I∈P−(n)

f(x+ u+
∑
i∈I

ui) +
∑

I∈P+(n)

f(x+ u+ v +
∑
i∈I

ui)

− (
∑

I∈P+(n)

f(x+ u+
∑
i∈I

ui) +
∑

I∈P−(n)

f(x+ u+ v +
∑
i∈I

ui))

=
∑

I∈P+(n)

f(x+ u+ v +
∑
i∈I

ui) +
∑

I∈P−(n)

f(x+
∑
i∈I

ui)

− (
∑

I∈P+(n)

f(x+
∑
i∈I

ui) +
∑

I∈P−(n)

f(x+ u+ v +
∑
i∈I

ui)) .
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Lemma 7.23. Let f : BB → C be totally monotonic. Let n ∈ N, u ∈ B and −→u ,−→v ∈ Bn,
and assume that u+

∑n
i=1(ui + vi) ∈ BB. Then for each x ∈ BBu,−→u ,−→v we have

∆f(−→u +−→v )(x+ u) = ∆f(−→u )(x) + ∆f(u,−→u +−→v )(x)
+ ∆f(v1, u2 + v2, . . . , un + vn)(x+ u1)

+ ∆f(u1, v2, u3 + v3, . . . , un + vn)(x+ u2) + · · ·
+∆f(u1, . . . , un−1, vn)(x+ un) .

Proof. Simple computations using Lemma 7.22.

Let SnB be the cone defined by SnB = Bn+1 with operations defined pointwise and norm
defined by ∥(x,−→u )∥SnB = ∥x+

∑n
i=1 ui∥B. It is easy to check that one actually defines a

cone in that way.

Remark 7.24. This cone is not the (n+1)-fold coproduct of B with itself. Take indeed B =
1 & 1 and n = 1, then ∥((1, 0), (0, 1)∥S1B = ∥(1, 1)∥B = 1 whereas ∥((1, 0), (0, 1)∥B⊕B = 2.

Neither is it the (n+ 1)-fold product of B; it is actually (isomorphic to)

n+1︷ ︸︸ ︷
1 & · · · & 1⊸ B.

This construct is at the origin of coherent differentiation [Ehr23].

Lemma 7.25. If f : BB → C is totally monotonic, the map (x,−→u ) → ∆f(−→u )(x) is
increasing BSnB → C.

Proof. Follows easily from Theorem 7.19.

Now we can state and prove the main lemma which allows to prove that totally monotonic
functions are closed under composition. Remember that even in the setting of completely
and absolutely monotonic functions (where derivatives instead of differences are used), the
corresponding result is not completely trivial as it requires the use of the Faà di Bruno
formula.

Lemma 7.26. Let n ∈ N, f, h1, . . . , hn : BB → C and g : BC → D be totally monotonic
functions such that ∀x ∈ BB f(x) +

∑n
i=1 hi(x) ∈ BC. Then the function k : BB → D

defined by k(x) = ∆g(h1(x), . . . , hn(x))(f(x)) is totally monotonic.

Proof. With the notations and conventions of the statement, we prove by induction on p
that, for all p ∈ N, for all n ∈ N, for all f, h1, . . . , hn, g which are totally monotonic and
satisfy ∀x ∈ BB f(x) +

∑n
i=1 hi(x) ∈ BC, the function k is p-increasing.

For p = 0, the property results from Lemma 7.25.
We assume the property for p and prove it for p+ 1. Let u ∈ BB we have to prove that

the function ∆k(u) is p-increasing from Bu to D. Let x ∈ BBu, we have

∆k(u)(x) = ∆g(h1(x+ u), . . . , hn(x+ u))(f(x+ u))−∆g(h1(x), . . . , hn(x))(f(x))

= ∆g(h1(x) + ∆h1(u)(x), . . . , hn(x) + ∆hn(u)(x))(f(x) + ∆f(u)(x))

−∆g(h1(x), . . . , hn(x))(f(x)) by definition of ∆hi(u)

= ∆g(∆f(u)(x), h1(x) + ∆h1(u)(x), . . . , hn(x) + ∆hn(u)(x))(f(x))

+ ∆g(∆h1(u)(x), h2(x) + ∆h2(u)(x), . . . , hn(x) + ∆hn(u)(x))(f(x) + h1(x))

+ ∆g(h1(x),∆h2(u)(x), h3(x) + ∆h3(u)(x), . . . ,

hn(x) + ∆hn(u)(x))(f(x) + h2(x))

+ · · ·+∆g(h1(x), . . . , hn−1(x),∆hn(u)(x))(f(x) + hn(x))
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by Lemma 7.23, observing that the first term of the sum which appears in Lemma 7.23 is
annihilated by the subtraction above.

We can apply the inductive hypothesis to each of the terms of this sum. Let us consider
for instance the first of these expressions:

∆g(∆f(u)(x), h1(x) + ∆h1(u)(x), . . . , hn(x) + ∆hn(u)(x))(f(x)) .

We know that the functions h′1, . . . , h
′
n+1 defined by h′1(x) = ∆f(u)(x), h′2(x) = h1(x) +

∆h1(u)(x) = h1(x+u),. . . , h
′
n+1(x) = hn(x)+∆hn(u)(x) = hn(x+u) are totally monotonic

from Bu to C: this results from Lemma 7.20. Moreover we have

∀x ∈ BB f(x) +

n+1∑
i=1

h′i(x) = f(x+ u) +

n∑
i=1

hi(x+ u) ∈ BC .

Therefore the inductive hypothesis applies and we know that the function

x 7→ ∆g(∆f(u)(x), h1(x) + ∆h1(u)(x), . . . , hp(x) + ∆hp(u)(x))(f(x))

is p-increasing. The same reasoning applies to all terms and hence the function ∆k(u) is
p-increasing from BBu to C, as contended.

Lemma 7.27. Let f : B ×BC → D be linear in its first argument and totally monotonic in
its second argument. Then, when restricted to BB×BC, the function f is totally monotonic.

Proof. Let n ∈ N, (x, y), (u1, v1), . . . , (un, vn) ∈ B × C be such that (x, y) +
∑n

i=1(ui, vi) ∈
BB × BC. For ε ∈ {+,−}, we have

∆εf((u1, v1), . . . , (un, vn))(x, y) =
∑

I∈Pε(n)

f(x+
∑
i∈I

ui, y +
∑
i∈I

vi)

=
∑

I∈Pε(n)

f(x, y +
∑
i∈I

vi) +
∑

I∈Pε(n)

∑
j∈I

f(uj , y +
∑
i∈I

vi)

by linearity of f in its first argument. By total monotonicity of f in its second argument we
have ∑

I∈P+(n)

f(x, y +
∑
i∈I

vi) ≥
∑

I∈P−(n)

f(x, y +
∑
i∈I

vi) .

Next, assuming that n > 0, we have∑
I∈Pε(n)

∑
j∈I

f(uj , y +
∑
i∈I

vi) =
n∑

j=1

∑
I∈Pε(n)

j∈I

f(uj , y +
∑
i∈I

vi)

=

n∑
j=1

∑
I∈Pε(n−1)

f(uj , y +
∑

i∈injj(I)

vi) by Lemma 7.4

=

n∑
j=1

∑
I∈Pε(n−1)

f(uj , y + vj +
∑
i∈I

v(j)i)

where (v(j)i)
n−1
i=1 is defined by

v(j)i =

{
vi if i < j

vi+1 if i ≥ j .
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By our assumption that f is totally monotonic in its second argument we have, for each
j = 1, . . . , n, ∑

I∈P+(n−1)

f(uj , y + vj +
∑
i∈I

v(j)i) ≥
∑

I∈P−(n−1)

f(uj , y + vj +
∑
i∈I

v(j)i)

from which it follows that∑
I∈P+(n)

∑
j∈I

f(uj , y +
∑
i∈I

vi) ≥
∑

I∈P−(n)

∑
j∈I

f(uj , y +
∑
i∈I

vi)

and hence

∆+f((u1, v1), . . . , (un, vn))(x, y) ≥ ∆−f((u1, v1), . . . , (un, vn))(x, y)

for n > 0. This inequation also holds trivially for n = 0.

An immediate consequence of this lemma is the following observation which will be useful in
Section 8.

Lemma 7.28. Let f :
∏n

i=1Bi → C be linear in each of its n arguments. Then the restriction
of f to

∏n
i=1 BBi is totally monotonic B&n

i=1Bi → C.

Proof. Simple induction on n using Lemma 7.27.

Remark 7.29. In this statement, and other similar ones, we restrict f to the unit ball not
for deep reason but only because the notion of totally monotonic function has been defined
on unit balls, see Definition 7.5.

7.4. The cartesian closed category of integrable cones and stable and measurable
functions. A quite remarkable property of total monotonicity is that it gives rise to cartesian
closed categories, as we will see in this section. We do not know if this phenomenon has
been observed before [EPT18b].

Let SCones(B,C) be the set of all stable and measurable functions from B to C whose
norm is ≤ 1.

Theorem 7.30. If f ∈ SCones(B,C) and g ∈ SCones(C,D) then g ◦ f ∈ SCones(B,D).

Proof. The only non-obvious fact is that g ◦ f is totally monotonic, which is obtained by
Lemma 7.26 (applied with n = 0).

So we have defined a category SCones whose objects are the integrable cones, and the
morphisms are the stable and measurable functions.

Lemma 7.31. ICones(B,C) ⊆ SCones(B,C).

Proof. Indeed linearity clearly implies total monotonicity.

So we have a functor Ders : ICones → SCones which acts as the identity on objects and
morphisms. We can consider this functor as a forgetful functor since it forgets linearity,
whence its name: in LL the purpose of the dereliction rules allows to forget the linearity of
morphisms. The functor Ders is obviously faithful but of course not full: see Examples 2.4
and 7.9 which provide nonlinear totally monotonic functions.

Theorem 7.32. The category SCones has all products and is cartesian closed.



1:66 T. Ehrhard and G. Geoffroy Vol. 21:1

Proof. If (Bi)i∈I is a family of integrable cones, we have already defined B = &i∈I Bi which
is the categorical product of the Bi’s in ICones (when equipped with the projections pri ∈
ICones(B,Bi)). So Der

s(pri) ∈ SCones(B,Bi) for each i ∈ I. Let (fi ∈ SCones(C,Bi))i∈I ,
we define f : BC → BB by f(x) = (fi(x))i∈I which is well defined by our assumption that
∀i ∈ I ∥fi∥ ≤ 1. Then f is easily seen to be stable because all the operations of B, as well
as its cone order relation, are defined componentwise. Measurability of f is proven as in the
proof of Theorem 4.16. This shows that B is the categorical product of the Bi’s in SCones.

Let B and C be integrable cones. We have defined in Section 7.2 the integrable cone
B ⇒s C of stable and measurable functions B → C, we show that it is the internal hom of
B and C in SCones. We define Ev : B((B ⇒s C) & B) → C by Ev(f, x) = f(x). The total
monotonicity of Ev results from Lemma 7.27. We have

B((B ⇒s C) & B) = B(B ⇒s C)× BB

by definition of the norm in the categorical product. It follows that ∥Ev∥ ≤ 1. We prove
that Ev is measurable so let X ∈ Ar and δ ∈ BPath(X, ((B ⇒s C) & B)) which means

that δ = ⟨η, β⟩ with η ∈ BPath(X,B ⇒s C) and β ∈ BPath(X,B), we must prove that

Ev ◦ δ ∈ Path(X,C) so let Y ∈ Ar and m ∈ MC
Y . We must prove that

φ = λ(s, r) ∈ Y ×X ·m(s,Ev(δ(r))) = λ(s, r) ∈ Y ×X ·m(s, η(r)(β(r)))

is measurable. We have p = (β ◦ pr2) ▷ (m ◦ pr1) ∈ MB⇒sC
Y×X and by our assumption about η

we know that

λ(r, s, r′) ∈ X × Y ×X · p(s, r, η(r′)) = λ(r, s, r′) ∈ X × Y ×X ·m(s, η(r′)(β(r)))

is measurable and hence so is φ and we have shown that Ev ∈ SCones((B ⇒s C) & B,C).
We prove that (B ⇒s C,Ev) is the internal hom of B,C in the cartesian category

SCones. So let f ∈ SCones(D & B,C). For each given z ∈ BD we see easily that
g = λx ∈ BB · f(z, x) ∈ BB ⇒s C, it remains to check that g ∈ SCones(D,B ⇒s C). Let
us first check that g is totally monotonic so let n ∈ N and z, w1, . . . , wn ∈ D be such that
z +

∑n
i=1wi ∈ BD. We must prove that

h− =
∑

I∈P−(n)

g(z +
∑
i∈I

wi) ≤
∑

I∈P+(n)

g(z +
∑
i∈I

wi) = h+

in B ⇒s C. We use the characterization of the cone order in that cone given by Lemma 7.12.

So let k ∈ N and let x, u1, . . . , uk ∈ B be such that x+
∑k

j=1 uj ∈ BB. We must prove that

y− =
∑

J∈P−(k)

h+(x+
∑
i∈J

uj) +
∑

J∈P+(k)

h−(x+
∑
i∈J

uj)

≤
∑

J∈P+(k)

h+(x+
∑
i∈J

uj) +
∑

J∈P−(k)

h−(x+
∑
i∈J

uj) = y+
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in C. We have

y− =
∑

I∈P+(n)
J∈P−(k)

g(z +
∑
i∈I

wi, x+
∑
i∈J

uj) +
∑

I∈P−(n)
J∈P+(k)

g(z +
∑
i∈I

wi, x+
∑
i∈J

uj)

y+ =
∑

I∈P+(n)
J∈P+(k)

g(z +
∑
i∈I

wi, x+
∑
i∈J

uj) +
∑

I∈P−(n)
J∈P−(k)

g(z +
∑
i∈I

wi, x+
∑
i∈J

uj)

Notice that (P+(n)× P−(k)) ∩ (P−(n)× P+(k)) = ∅ and that there is a bijection

(P+(n)× P−(k)) ∪ (P−(n)× P+(k)) → P−(n+ k)

(I, J) 7→ I ∪ (J + n)

and similarly that (P+(n)× P+(k)) ∩ (P−(n)× P−(k)) = ∅ and that there is a bijection

(P+(n)× P+(k)) ∪ (P−(n)× P−(k)) → P+(n+ k)

(I, J) 7→ I ∪ (J + n) .

We define a sequence (w′
l, u

′
l)
n+k
l=1 of elements of D ×B as follows:

(w′
l, u

′
l) =

{
(wl, 0) if l ∈ {1, . . . , n}
(0, ul−n) if l ∈ {n+ 1, . . . , n+ k} .

so that (z, x) +
∑n+k

l=1 (w
′
l, u

′
l) ∈ BD × BB. With these notations, we have

y− =
∑

K∈P−(n+k)

g((z, x) +
∑
l∈K

(w′
l, u

′
l))

y+ =
∑

K∈P+(n+k)

g((z, x) +
∑
l∈K

(w′
l, u

′
l))

and hence y− ≤ y+ since g is totally monotonic.
The ω-continuity of g results from Lemma 7.14. We prove that g is measurable so let

X ∈ Ar and δ ∈ BPath(X,D), we must prove that g ◦ δ ∈ Path(X,B ⇒s C) so let Y ∈ Ar

and p ∈ MB⇒sC
Y . Let β ∈ BPath(Y,B) and m ∈ MC

Y be such that p = β ▷ m, we have

λ(s, r) ∈ Y ×X · p(s, g(δ(r))) = λ(s, r) ∈ Y ×X ·m(s, g(δ(r))(β(s)))

= λ(s, r) ∈ Y ×X ·m(s, f(δ(r), β(s)))

and this map is measurable because ⟨δ ◦ pr2, β ◦ pr1⟩ ∈ BPath(Y ×X,D & B) and by mea-

surability of f .

Remark 7.33. Note that contrarily to ICones it is very likely that the category SCones
does not have all equalizers and therefore is not complete. For instance we have f, g :
SCones(1, 1) given by f(x) = x and g(x) = x2, and the set of all x ∈ B1 = [0, 1] such that
f(x) = g(x) is {0, 1} which does not look like a cone. It would be interesting to understand
if the set of solutions of such an equation could be considered as some kind of manifold,
with a local structure of integrable cone, as in differential geometry. The same observation
applies to the category ACones studied in Section 8.
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So we have a functor ⇒s : SConesop×SCones → SCones mapping (B,C) to B ⇒s

C and f ∈ SCones(B′, B), g ∈ SCones(C,C ′)) to f ⇒s g ∈ SCones(B ⇒s C,B
′ ⇒s C

′)
which is given by (f ⇒s g)(h) = g ◦ h ◦ f . Observe that if g ∈ ICones(C,C ′) we have
f ⇒s g ∈ ICones(B ⇒s C,B

′ ⇒s C
′) so that in the sequel we consider only ⇒s as a

functor IConesop × ICones → ICones (using implicitly a pre-composition with Ders).

Theorem 7.34. The functor Ders : ICones → SCones preserves all limits.

Proof. By Theorem 4.19 it suffices to prove that Ders preserves all products and all equalizers.
Since products are defined in the same way in both categories, the first property is obvious,
let us check the second one.

Let B,C be objects of ICones and f, g ∈ ICones(B,C), we have already defined the
equalizer (E, e ∈ ICones(E,B)) of f, g in the proof of Theorem 4.16. We just have to check
that (E, e) is the equalizer of f, g in SCones as well. So let H be an integrable cone and
h ∈ SCones(H,B) be such that f ◦ h = g ◦ h. This simply means that h(BH) ⊆ BE
from which it follows that h ∈ SCones(H,E) because the cone order relation of E is the
restriction of that of B to E ⊆ B (and similarly for the measurability structure). Let us call
h′ this version of h ranging in BE instead of BB, so that h = e ◦ h′. It is obvious that h′ is
the only morphism in SCones having this property.

The study of the exponential induced by this cartesian closed structure on the category
ICones is developed in Section 9.

8. Analytic and integrable functions on cones

Our goal now is to associate with ICones another cartesian closed category based on a
notion of morphisms which are analytic in the sense that they are limits of polynomial
functions. These analytic functions are actually stable and measurable, but their definition
is based on a notion of multilinear maps21 in ICones which preserve integrals so that
analytic functions have an implicit “integral preservation” property22 that general stable
and measurable functions don’t have.

8.1. The cone of multilinear and symmetric functions. The basic ingredient for
defining our analytic functions is the notion of multilinear morphisms. More precisely, they
will allow first to define homogeneous polynomial functions (obtained by applying an n-linear
function to “diagonal” tuples (x, . . . , x)), and then analytic functions as converging sums
thereof.

Definition 8.1. Let B1, . . . , Bn, C be integrable cones. A function f :
∏n

i=1Bi → C is said
to be multilinear and continuous if it is linear and continuous, separately, with respect to
each of its n arguments.

21As in [KT18] but without the support of complex analysis.
22A property that we don’t really know yet how to express simply and directly in terms of the functions;

of course it is not plain integral preservation which cannot be expected from non-linear maps. We know that
it is a property of the analytic functions themselves because the symmetric multilinear functions of their
Taylor expansion at 0 are associated with analytic functions in a unambiguous way by means of standard
polarization formulas as we shall see.
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Observe that when this holds, f is bounded (use for instance Lemma 2.11 and monoidal
closedness in a proof by induction on n). One says that f is symmetric if B1 = · · · = Bn = B
and, for all σ ∈ Sn (the group of permutations on {1, . . . , n}), one has

∀x1, . . . , xn ∈ B f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) .

One says that f is measurable if for all X ∈ Ar and (βi ∈ Path(X,Bi))
n
i=1, one has

f ◦ ⟨β1, . . . , βn⟩ ∈ Path(X,C). Lastly, one says that f is integrable (or that it preserves

integrals) if it is separately integrable with respect to each of its arguments.

The multilinear, continuous, symmetric, measurable and integrable functions Bn → C
are easily seen to form a cone Symn(B,C) with operations defined pointwise and norm
defined by

∥f∥ = sup{∥f(x1, . . . , xn)∥ | x1, . . . , xn ∈ BB} .

We equip this cone with a measurability structure (MSymn(B,C)
X )X∈Ar where MSymn(B,C)

X

is the set of all p =
−→
β ▷ m where

−→
β = (βi ∈ Path(X,B))ni=1 and m ∈ MC

X , given by

p(f) = λr ∈ X ·m(r, f(β1(r), . . . , βn(r))). The order relation in this cone is the pointwise
order as easily checked.

Notice last that this cone is integrable. Let indeed X ∈ Ar, µ ∈ FMeas(X) and

η ∈ Path(X,Symn(B,C)) and let us define a function f : Bn → C by

f(x1, . . . , xn) =

∫
η(r)(x1, . . . , xn)µ(dr)

then it is easy to check as usual that f is well defined, f ∈ Symn(B,C) and that f =∫
η(r)µ(dr).

Remark 8.2. This integrable cone is a “subcone” of the integrable cone B⊗ · · ·⊗B⊸ C,
but we have not developed the notion of subcone in the present paper.

Remark 8.3. We could define Symn(B,C) more abstractly as follows: first, generalizing
Definition 5.6, we define the integrable cone of n-linear morphisms (B1, . . . , Bn⊸ C) =
(B1⊸ · · · ⊸ Bn⊸ C), then we observe that, when B1 = · · · = Bn = B, for each permu-
tation σ ∈ Sn there is an automorphism on that cone which acts by permutation of the
arguments of n-linear functions, and we define Symn(B,C) as the equalizer of all these
automorphisms using the completeness of ICones. Of course we would have obtained the
same object of ICones (possibly up to an isomorphism), but the explicit description above
will be useful.

8.2. The cone of homogeneous polynomial functions. As announced, this is the next
basic concept in the definition of analytic functions.

Definition 8.4. An n-homogeneous polynomial function from B to C is a function f : B → C
such that there exists h ∈ Symn(B,C) satisfying

∀x ∈ B f(x) = h(x, . . . , x) .

Then h is called a linearization of f . We use Hpol
n
(B,C) for the set of n-homogeneous

polynomial functions from B to C and set Mn(h) = f .
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Notice that we would define exactly the same class of functions without requiring h to
be symmetric. We make this choice only to reduce the number of notions at hand.

Lemma 8.5. If f ∈ Hpol
n
(B,C) then the restriction of f to BB is totally monotonic.

Proof. Let h be a linearization of f . By Lemma 7.28 we know that the restriction of h to
BBn → C is totally monotonic, and since the diagonal map d : B → Bn is linear of norm
≤ 1, the map f = h ◦ d is totally monotonic.

Lemma 8.6. An n-homogeneous polynomial function f has exactly one linearization Lnf .
Moreover

∥Lnf∥ ≤ nn

n!
∥f∥

where ∥f∥ = supx∈BB ∥f(x)∥.

Notice that we also have ∥f∥ ≤ ∥Lnf∥ so that we could interpret this lemma as expressing
that the norms of Symn(B,C) and Hpol

n
(B,C) are equivalent and that these two cones

are isomorphic in a weak sense (remember that in ICones, isomorphisms must have norm
≤ 1).

Proof. Let f : B → C be an n-homogeneous polynomial and let h ∈ Symn(B,C) be a

linearization of f . By Lemma 8.5 we can define a function h′ : Bn → C by

h′(x1, . . . , xn) =
1

n!

( ∑
I∈P+(n)

f(
∑
i∈I

xi)−
∑

I∈P−(n)

f(
∑
i∈I

xi)
)
=

1

n!
∆f(x1, . . . , xn)(0)

and the usual proof of the polarization theorem shows that necessarily h′ = h. So Lnf = h
is completely determined by f , proving our contention.

Next, given x1, . . . , xn ∈ BB, we have

∥h(x1, . . . , xn)∥ ≤ 1

n!

∥∥∥∥∥f(
n∑

i=1

xi)

∥∥∥∥∥ by Lemma 7.21

=
nn

n!

∥∥∥∥∥h( 1n
n∑

i=1

xi, . . . ,
1

n

n∑
i=1

xi)

∥∥∥∥∥
=
nn

n!

∥∥∥∥∥f( 1n
n∑

i=1

xi)

∥∥∥∥∥
≤ nn

n!
∥f∥

since
∥∥ 1
n

∑n
i=1 xi

∥∥ ≤ 1.

The set Hpol
n
(B,C) is canonically a precone. Indeed if f, g ∈ Hpol

n
(B,C) then f + g

(defined pointwise) belongs to Hpol
n
(B,C) because clearly f + g = Mn(Lnf + Lng) and we

know that Lnf+Lng ∈ Symn(B,C). Multiplication by a scalar in R≥0 is dealt with similarly.
Notice that this reasoning also shows that the maps Ln : Hpol

n
(B,C) → Symn(B,C) and

Mn : Symn(B,C) → Hpol
n
(B,C) are linear.

We define ∥ ∥Hpol
n
(B,C) as usual by ∥f∥Hpol

n
(B,C) = supx∈BB ∥f(x)∥C so that clearly

∥f∥Hpol
n
(B,C) ≤ ∥Lnf∥Symn(B,C). Equipped with this norm, Hpol

n
(B,C) is a cone: the
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only non obvious property is completeness, so let (fk ∈ BHpol
n
(B,C))∞k=1 be an increasing

sequence and let f : B → C be the pointwise lub of this sequence which is well defined since
for each x ∈ B we have

∥fk(x)∥ ≤ ∥Lnfk∥ ∥x∥n ≤ nn

n!
∥fk∥ ∥x∥n ≤ nn

n!
∥x∥n .

The sequence (Lnfk)
∞
k=1 is increasing in nn

n! BSymn(B,C) and has therefore a lub h ∈
BSymn(B,C) and remember that this lub is defined pointwise on Bn. It follows that

f = Mn(h) ∈ Hpol
n
(B,C) and that we have

∀x ∈ B f(x) = sup
k
fk(x) .

Since ∀k fk ≤ f by monotonicity of Mn it follows that f = supk fk. Last observe that
∥f∥ ≤ 1 which ends the proof of ω-completeness of BHpol

n
(B,C).

So we have shown that Hpol
n
(B,C) is a cone, and also that the linear maps Ln and

Mn are ω-continuous.

Remark 8.7. It is important to notice that, contrarily to Symn(B,C), the cone order
relation of Hpol

n
(B,C) is not the pointwise order. As an example take n = 2, B = 1 & 1,

C = 1, and consider f, g ∈ Hpol
n
(B,C) given by f(x, y) = 2xy and g(x, y) = x2+ y2. Then

L2f((x1, y1), (x2, y2)) =
1

2
(f(x1 + x2, y1 + y2)− f(x1, y1)− f(x2, y2)))

= x1y2 + x2y1

and similarly L2g((x1, y1), (x2, y2)) = x1x2 + y1y2 and therefore we do not have L2f ≤ L2g
(we have L2f((1, 0), (0, 1)) = 1 and L2g((1, 0), (0, 1)) = 0) whereas ∀(x, y) ∈ 1 & 1 =
R≥0 × R≥0 f(x, y) ≤ g(x, y).

Given X ∈ Ar, β ∈ Path(X,B) and m ∈ MC
X we define β ▷ m : X ×Hpol

n
(B,C) →

R≥0 as usual by (β ▷ m)(r, f) = m(r, f(β(r))) for all f ∈ Hpol
n
(B,C). Notice that

λr ∈ X ·m(r, f(β(r))) = λr ∈ X ·m(r, Lnf(β(r)
n
))

and this function is measurable because Lnf ∈ Symn(B,C), which implies that Lnf ◦
⟨β, . . . , β⟩ ∈ Path(X,C). Then it is easily checked that setting MX = {β ▷ m | β ∈
Path(X,B) and m ∈ MC

X} we define a measurability structure on Hpol
n
(B,C) so that

E = (Hpol
n
(B,C), (MX)X∈Ar) is a measurable cone that we denote as Hpoln(B,C).

Lemma 8.8. Ln ∈ MCones(Hpol
n
(B,C), n

n

n! Symn(B,C)).

Proof. In view of what we know about Ln, it suffices to prove that Ln : Hpoln(B,C) →
Symn(B,C) is measurable so let X ∈ Ar and η ∈ Path(X,Hpoln(B,C)), we must check

that Ln ◦ η ∈ Path(X,Symn(B,C)). Let Y ∈ Ar and p ∈ MSymn(B,C)
Y . We have p =

−→
β ▷ m

where
−→
β ∈ Path(Y,B)n and m ∈ MB

Y so that

λ(s, r) ∈ Y ×X · p(s, Ln(η(r))) = λ(s, r) ∈ Y ×X ·m(s, Ln(η(r))(
−→
β (s)))

which, coming back to the characterization of Ln explicitly provided in the proof of Lemma 8.6,
is measurable by measurability of addition and subtraction in R and linearity of m(s, ).
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Theorem 8.9. Hpoln(B,C) is an integrable cone and

Ln ∈ ICones(Hpol
n
(B,C),

nn

n!
Symn(B,C)) .

Proof. We prove integrability of E = Hpoln(B,C) so let X ∈ Ar, η ∈ Path(X,E) and

µ ∈ FMeas(X), we define f : B → C by f(x) =
∫
η(r)(x)µ(dr) using the fact that C is an

integrable cone. Since Ln is measurable we can define h : Bn → C by

h(−→x ) =
∫

Ln(η(r))(
−→x )µ(dr) .

which is clearly symmetric. It is n-linear, ω-continuous, measurable by Lemma 4.7, and
integrable by the first statement of Theorem 6.1. So we have h ∈ Symn(B,C) and

h(x, . . . , x) =
∫
η(r)(x)µ(dx) = f(x) for all x ∈ B which proves that f ∈ Hpoln(B,C).

Last let p ∈ MHpoln(B,C)
0 so that p = x ▷ m for some x ∈ B and m ∈ MC

0 . We have
p(f) = m(f(x)) = m(

∫
η(r)(x)µ(dx)) =

∫
m(η(r)(x))µ(dr) by definition of an integral in

C. So p(f) =
∫
p(η(r))µ(dr) by definition of p, which shows that f is the integral of η in

Hpoln(B,C) and hence that this measurable cone is also integrable.
The integrability of Ln results from its definition and from the fact that integrals

commute with finite sums and differences.

8.3. The cone of analytic functions. We can finally define and study our analytic
functions.

Definition 8.10. A function f : BB → C is analytic if it is bounded, and there is a sequence
(fn ∈ Hpol

n
(B,C))n∈N such that

∀x ∈ BB f(x) =
∞∑
n=0

fn(x) . (8.1)

Such a sequence (fn)n∈N is called a homogeneous polynomial decomposition of f .

Notice that the precise meaning of (8.1) is that, for all x ∈ BB, the increasing sequence

(
∑N

n=0 fn(x))N∈N is bounded in C (in the sense of the norm) and has f(x) as lub.

Lemma 8.11. If f : BB → C is analytic, then f has exactly one homogeneous polynomial
decomposition.

Proof. Let (fn)n∈N be a homogeneous polynomial decomposition of an analytic f that we
can assume without loss of generality to range in BC since f is bounded. Let x′ ∈ B′ and
x ∈ BB. Let

φ : [0, 1] → R≥0

t 7→ x′(f(tx)) .

We have φ(t) =
∑∞

n=0 x
′(fn(x))t

n by linearity and continuity of x′ and hence

∀n ∈ N x′(fn(x)) =
1

n!
φ(n)(0) =

1

n!

dn

dtn
x′(f(tx)) |t=0

so that if (gn)n∈N is another homogeneous polynomial decomposition of f we have x′(fn(x)) =
x′(gn(x)) for all x, n and x′. Since this holds in particular for all x′ = m ∈ MB

0 our claim is
proven by (Mssep).
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If f : BB → C is analytic, we use Pn(f) for the nth component of its unique homogeneous

polynomial decomposition and we set D
(n)
0 = n!(Ln ◦ Pn) so that D

(n)
0 f ∈ Symn(B,C) and

we have

f(x) =
∞∑
n=0

1

n!
D
(n)
0 f(xn)

which can be understood as the Taylor expansion of f , motivating the notation: D
(n)
0 f can

be understood as the nth derivative of f at 0, which is an n-linear symmetric function.
As usual we say that f is measurable if, for all X ∈ Ar and β ∈ Path(X,B), one has

f ◦ β ∈ Path(X,C).
We define now a cone of analytic and measurable functions BB → C so let P be the

set of these functions. We define the algebraic operations on P pointwise: if f, g ∈ P then
f+g ∈ P since (f+g)(x) = f(x)+g(x) =

∑∞
n=0(Pnf(x)+Png(x)) by continuity of addition.

Notice that if f, g ∈ P then

f ≤ g ⇔ ∀n ∈ N D
(n)
0 f ≤ D

(n)
0 g .

since f ≤ g means that ∀x ∈ BB f(x) ≤ g(x) and λx ∈ BB · (g(x)− f(x)) ∈ P . Each map

D
(n)
0 : P → Symn(B,C) is linear by Lemmas 8.6 and 8.11.

We set as usual

∥f∥ = sup{∥f(x)∥ | x ∈ BB}

and define in that way a cone. Let indeed (fk)k∈N be an increasing sequence in BP . For each

k, n ∈ N we have
∥∥∥D(n)

0 fk
∥∥∥ ≤ nn by Lemma 8.8 and the sequence (D

(n)
0 fk)k∈N is increasing

and hence has a lub hn ∈ Symn(B,C) and we have

∀x1, . . . , xn ∈ B hn(x1, . . . , xn) = sup
k∈N

D
(n)
0 fk(x1, . . . , xn) .

In particular we can define the homogeneous polynomial map fn = Mn(
1
n!hn), which means

fn(x) =
1

n!
hn(x

n) = sup
k∈N

1

n!
D
(n)
0 fk(xn) .

Let f : BB → C be defined by f(x) = supk∈N f
k(x), we have

f(x) = sup
k∈N

fk(x)

= sup
k∈N

∑
n=0

1

n!
D
(n)
0 fk(xn)

=
∑
n=0

sup
k∈N

1

n!
D
(n)
0 fk(xn)

=
∞∑
n=0

fn(x)

which shows that f is analytic and is the lub (fk)k∈N in BP since f is clearly measurable
(as usual by the monotone convergence theorem).

Then we define a family M = (MX)X∈Ar of sets of measurability tests by stipulating
that p ∈ MX if p = β ▷ m where β ∈ BPath(X,B) and m ∈ MC

X , and, if f ∈ P and r ∈ X
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then p(r, f) = m(r, f(β(r))). It is easily checked that (P,M) is a measurable cone, that we
denote as B ⇒a C.

We check that B ⇒a C is integrable so let η ∈ Path(X,B ⇒a C) for some X ∈ Ar and

let µ ∈ FMeas(X). We define a function f : BB → C by

∀x ∈ BB f(x) =

∫ C

X
η(r)(x)µ(dr) .

This function is well defined because for each given x ∈ BB one has λr ∈ X · η(r)(x) ∈
Path(X,C). For each r ∈ X we can write

η(r)(x) =

∞∑
n=0

1

n!
D
(n)
0 (η(r))(xn)

and hence

f(x) =
∞∑
n=0

1

n!

∫ C

X
D
(n)
0 (η(r))(xn)µ(dr) =

∞∑
n=0

1

n!

(∫ Symn(B,C)

X
D
(n)
0 (η(r))µ(dr)

)
(xn)

by definition of integrals in the integrable cone Symn(B,C), and hence f ∈ B ⇒a C. Let

p = (x ▷ m) ∈ MB⇒aC
0 where x ∈ B and m ∈ MC

0 , we have

p(f) = m(f(x))

= m
( ∞∑

n=0

1

n!

∫
D
(n)
0 (η(r))(xn)µ(dr)

)
=

∞∑
n=0

1

n!
m
(∫

D
(n)
0 (η(r))(xn)µ(dr)

)
by lin. and cont. of m

=
∞∑
n=0

1

n!

∫
m(D

(n)
0 (η(r))(xn))µ(dr) by def. of integrals in C

=

∫ ( ∞∑
n=0

1

n!
m(D

(n)
0 (η(r))(xn))

)
µ(dr) by the monotone convergence th.

=

∫
m
( ∞∑

n=0

1

n!
D
(n)
0 (η(r))(xn)

)
µ(dr)

=

∫
m(η(r)(x))µ(dr) =

∫
p(η(r))µ(dr)

which shows that f =
∫
η(r)µ(dr), and hence the measurable cone B ⇒a C is integrable.

Lemma 8.12. For each n ∈ N, the function Pn : B ⇒a C → Hpoln(B,C) is linear,
continuous, measurable, integrable and has norm ≤ 1.

Proof. Linearity and continuity result straightforwardly from the fact that the homogeneous
polynomial decomposition (fn = Pn(f))n∈N of f is uniquely determined by its defining
property:

∀x ∈ BB f(x) =
∑
n∈N

fn(x) .
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Let η ∈ Path(X,B ⇒a C), we must check next that Pn ◦ η ∈ Path(X,Hpoln(B,C)) so let

Y ∈ Ar, β ∈ Path(Y,B) and m ∈ MC
Y , we must prove that

θ = λ(s, r) ∈ Y ×X · (β ▷ m)(s,Pn(η(r)))

= λ(s, r) ∈ Y ×X ·m(s,Pn(η(r))(β(s)))

is measurable Y ×X → R≥0. This results from the fact that

θ(s, r) =
1

n!

dn

dtn
m(s, η(r, tβ(s))) |t=0

and from the measurability and smoothness wrt. t of the map (s, r, t) 7→ m(s, η(r, tφ(s))).
Indeed the following is standard: if Z is a measurable space then if a function Z×[0, 1) → R≥0

is measurable, and smooth in its second argument, then so is its derivative wrt. its second
argument.

Last we check integrability of Pn so let moreover µ ∈ FMeas(X), and let p ∈ MHpoln(B,C)
0

so that p = x ▷ m for some x ∈ B and m ∈ MC
0 , we have

p
(
Pn

(∫ Hpoln(B,C)

Y
η(s)µ(ds)

))
=

1

n!

dn

dtn
m
(∫ C

Y
η(s, tx)µ(ds)

)
|t=0

=
1

n!

( dn
dtn

∫
Y
m(η(s, tx))µ(ds)

)
|t=0

=
1

n!

∫
Y

dn

dtn
m(η(s, tx)) |t=0 µ(ds)

=

∫
Y
p(Pn(η(s)))µ(ds)

by standard properties of integration. The fact that ∥Pn∥ ≤ 1 results from the obvious fact
that Pnf(x) ≤ f(x) for all x ∈ BB.

Theorem 8.13. For all n ∈ N we have D
(n)
0 ∈ ICones(B ⇒a C, n

nSymn(B,C)).

Proof. Remember that D
(n)
0 = n!(Ln ◦ Pn) and apply Theorem 8.9 and Lemma 8.12.

Theorem 8.14. Each analytic function is stable and measurable.

Proof. Immediate consequence of the definition of analytic functions and of Lemma 8.5.

Remark 8.15. The converse is not true, as shown by Remark 9.6. Indeed since the stable
and measurable function cont introduced in Remark 2.7 is actually linear, if cont were

analytic we would have D
(1)
0 cont = cont and D

(n)
0 cont = 0 if n ̸= 1 which is not possible

since cont does not preserve integrals.

8.4. The category of integrable cones and analytic functions. Our goal in this section
is to show that integrable cones, together with analytic functions as morphisms, form a
category which is cartesian closed.
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8.4.1. Composing analytic functions. We start with a special case of composition that we can
think of as the restriction of an analytic function to a local cone in the sense of Section 7.1.

Theorem 8.16. Let x ∈ BB and let f ∈ B ⇒a C. Then the function g : BBx → C defined
by g(u) = f(x+ u) is analytic, that is g ∈ Bx ⇒a C.

Proof. Given u ∈ BBx we have

g(u) = f(x+ u)

=

∞∑
n=0

1

n!
D
(n)
0 f(x+ un)

=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
D
(n)
0 f(un−k, xk)

=
∞∑
n=0

n∑
k=0

1

k!(n− k)!
D
(n)
0 f(un−k, xk)

=
∞∑
k=0

∞∑
n=k

1

k!(n− k)!
D
(n)
0 f(un−k, xk)

=
∞∑
k=0

∞∑
l=0

1

k!l!
D
(l+k)
0 f(ul, xk)

=
∞∑
l=0

1

l!

∞∑
k=0

1

k!
D
(l+k)
0 f(ul, xk)

so it suffices to show that for each l ∈ N the function gl : BBx → C defined by

gl(u) =

∞∑
k=0

1

k!
D
(l+k)
0 f(ul, xk)

satisfies gl(u) = φl(u
l) for some φl ∈ Syml(Bx, C). We show that we can set

φl(
−→u ) =

∞∑
k=0

1

k!
D
(l+k)
0 f(−→u , xk)

for all −→u = (u1, . . . , ul) ∈ Bx
l. So let −→u = (u1, . . . , ul) ∈ Bx

l and let λ ≥ maxli=1 ∥ui∥Bx
be

such that λ > 0 so that for each i we have 1
λui ∈ BBx.

For N ∈ N let φN
l (−→u ) =

∑N
k=0

1
k!D

(l+k)
0 f(−→u , xk) so that φN

l ∈ Syml(Bx, C); actually

we even have φN
l ∈ Syml(B,C). Observe that, setting u = 1

lλ

∑l
i=1 ui ∈ BBx we have

ui ≤ lλu for each i = 1, . . . , l so that

φN
l (−→u ) ≤ φN

l (lλu
l
) = (lλ)lφN

l (ul)

≤ (lλ)lg(u) = (lλ)lf(x+ u)

so that
∥∥φN

l (−→u )
∥∥
C

≤ (lλ)l ∥f∥ and since neither l nor λ depend on N the sequence

(φN
l (−→u ))N∈N is increasing in (lλ)lBC, it has a lub which is φl(

−→u ) which is therefore well-

defined and belongs to (lλ)lBC. The fact that the map φl : Bx → C defined in that way
is l-linear symmetric and ω-continuous results from the ω-continuity of addition, scalar
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multiplication and from the basic properties of lubs. The measurability and integrability of
φl result as usual from the monotone convergence theorem.

Let f ∈ BB ⇒a C and g ∈ C ⇒a D, since g(BB) ⊆ BC, the function g ◦ f : BB → D is
well defined and bounded. We assume first that f(0) = 0 so that the first term of the Taylor
expansion of f vanishes and we have

g(f(x)) =

∞∑
n=0

1

n!
D
(n)
0 g

( ∞∑
k=1

1

k!
D
(k)
0 f(xk)

n)
=

∞∑
n=0

1

n!

∑
σ:[n]→N+

n!

σ!
D
(n)
0 g(D

(σ(1))
0 f(xσ(1)), . . . ,D

(σ(n))
0 f(xσ(n)))

by multilinearity and continuity of the D
(n)
0 f ’s, with the notation σ! =

∏n
i=1 σ(i)!. If n, l ∈ N

we define L(n, l) as the set of all σ : [n] = {1, . . . , n} → N+ such that
∑n

i=1 σ(i) = l. This
set is finite and empty as soon as n > l (it is for obtaining this effect that we have assumed
that f(0) = 0). We have

g(f(x)) =
∞∑
l=0

1

l!

l∑
n=0

∑
σ∈L(n,l)

l!

σ!
D
(n)
0 f(D

(σ(1))
0 g(xσ(1)), . . . ,D

(σ(n))
0 g(xσ(n))) .

For each l ∈ N, the function

hl : B
l → D

(x1, . . . , xl) 7→
l∑

n=0

∑
σ∈L(n,l)

l!

σ!
D
(l)
0 f(D

(σ(1))
0 g(x1, . . . , xσ(1)), . . . ,D

(σ(n))
0 g(xl−σ(n)+1, . . . , xl))

is l-linear, measurable and integrable as a finite sum of such functions, however it is not
necessarily symmetric (for instance, for l = 4, this sum contains the expression
4!

(2!)2
D

(2)
0 f(D

(2)
0 g(x1, x2),D

(2)
0 g(x3, x4))), but not

4!
(2!)2

D
(2)
0 f(D

(2)
0 g(x1, x3),D

(2)
0 g(x2, x4))), so

we set

kl(
−→x ) = 1

l!

∑
θ∈Sl

hl(xθ(1), . . . , xθ(l))

and kl is again a finite sum of l-linear, measurable and integrable functions and hence
obviously belongs to Syml(B,D), and we have

g(f(x)) =

∞∑
l=0

1

l!
kl(x

l)

for each x ∈ BB which proves that g ◦ f is analytic since this function is obviously bounded.
Now we don’t assume anymore that f(0) = 0, and we define an obviously analytic function

f0 ∈ BB → BCf(0) by f0(x) = f(x)− f(0). By Lemma 8.16 the function g0 : BCf(0) → D

given by g0(v) = g(f(0) + v) is analytic and hence g ◦ f = g0 ◦ f0 is analytic since f0(0) = 0.
The measurability of g ◦ f is obvious so g ◦ f ∈ B ⇒a D.

This shows that we have defined a category ACones whose objects are the integrable
cones and where a morphism from B to C is a f ∈ B ⇒a C such that ∥f∥ ≤ 1. We aim now
at proving that this category is cartesian closed.
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Lemma 8.17. For all measurable cones B,C we have ICones(B,C) ⊆ ACones(B,C).

This is obvious and shows that there is a forgetful faithful functor Dera : ICones → ACones
which acts as the identity on objects and morphisms.

Proposition 8.18. The category ACones has all (small) products.

Proof. We already know that each family (Bi)i∈I of integrable cones has a product B =

&i∈I Bi in ICones with projections (pri ∈ ICones(B,Bi))i∈I . We show that B is also the
product of the family (Bi)i∈I with projections (Dera(pri))i∈I in ACones. Remember that
an element of B is a family (xi ∈ Bi)i∈I such that the family (∥xi∥Bi

)i∈I is bounded in R≥0.
So let (fi ∈ ACones(C,Bi))i∈I , it suffices to prove that the function f : BC → B

given by f(y) = (fi(y))i∈I belongs to ACones(C,B). The fact that ∀y ∈ BC f(y) ∈ BB
results from the definition of the norm of B and from the fact that ∀i ∈ I ∥fi∥ ≤ 1. The
measurability of f results trivially from its definition and from the definition of MB. We

know that fi(y) =
∑∞

n=0
1
n!D

(n)
0 fi(y

n). For each n ∈ N the map φn : Cn → B defined

by φn(
−→y ) = (D

(n)
0 fi(

−→y ))i∈I belongs to Symn(C,B) since we know that
∥∥∥D(n)

0 f
∥∥∥ ≤ nn by

Theorem 8.13. It follows that f is analytic since f(y) =
∑∞

n=0
1
n!φn(y

n).

Theorem 8.19. The category ACones is cartesian closed.

Proof. We already know that B ⇒a C is an integrable cone and we have an obvious function

Ev : (B ⇒a C) & B = (B ⇒a C)×B → C

(f, x) 7→ f(x)

which satisfies ∥Ev∥ ≤ 1, we show that it is measurable. Let θ ∈ Path(X, (B ⇒a C) & B)

for some X ∈ Ar, so that θ = ⟨η, β⟩ where η ∈ Path(X,B ⇒a C) and β ∈ Path(X,B), we

must prove that Ev ◦ ⟨η, β⟩ ∈ Path(X,C) so let m ∈ MC
Y for some Y ∈ Ar, we must prove

that the function φ = λ(s, r) ∈ Y ×X ·m(s, η(r)(β(r))) : Y ×X → R≥0 is measurable. We

build p = (β ◦ pr1) ▷ (m ◦ pr2) ∈ MB⇒aC
X×Y and since η ∈ Path(d,B ⇒a C) the map

ψ = λ(r1, s, r2) ∈ X × Y ×X · p(r1, s, η(r2))
= λ(r1, s, r2) ∈ X × Y ×X ·m(s, η(r2)(β(r1)))

is measurable which shows that φ = λ(s, r) ∈ Y ×X · ψ(r, s, r) is measurable.
We prove that Ev is analytic. We have

Ev(f, x) = f(x)

=

∞∑
n=0

1

n!
D
(n)
0 f(xn)

=
∞∑
n=0

1

n!
φn((f, x)

n+1
)

=

∞∑
n=0

1

(n+ 1)!
(n+ 1)φn((f, x)

n+1
)
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where φn : ((B ⇒a C) & B)n+1 → C is given by

φn((f1, x1), . . . , (fn+1, xn+1)) =
1

n+ 1

n+1∑
i=1

D
(n)
0 fi(x1, . . . , xi−1, xi+1, . . . , xn+1)

and therefore belongs to Symn+1(B,C); the measurability of φn follows from that of D
(n)
0 f .

If follows that Ev is analytic, with

D
(0)
0 Ev() = 0

D
(n+1)
0 Ev((f1, x1), . . . , (fn+1, xn+1)) =

n+1∑
i=1

D
(n)
0 fi(x1, . . . , xi−1, xi+1, . . . , xn+1) .

Now we deal with the Curry transpose of analytic functions. So let D be an integrable
cone and let f ∈ ACones(D & B,C). Given z ∈ BD let fz : BB → C be given by
fz(x) = f(z, x). We know that fz ∈ B ⇒a C by Theorem 8.16 applied at (z, 0) ∈ BD & B
and by precomposing the obtained “local” analytic function g : (D & B)(z,0) → C defined

by g(w, y) = f(z + w, y) with the obviously analytic function x 7→ (0, x): this composition
of functions coincides with fz.

We are left with proving that the function g : BD → B ⇒a C defined by g(z) = fz
belongs to ACones(D,B ⇒a C). It is obvious that ∥g∥ ≤ 1 so let us check that g
is measurable. Let δ ∈ Path(X,D), we must prove that g ◦ δ ∈ Path(X,B ⇒a C) so let

Y ∈ Ar and p ∈ MB⇒aC
Y , we must prove that the function φ = λ(s, r) ∈ Y ×X ·p(s, g(δ(r))) :

Y ×X → R≥0 is measurable. We have p = β ▷ m where β ∈ Path(Y,B) and m ∈ MD
Y so

that φ = λ(s, r) ∈ Y × X ·m(s, g(δ(r))(β(s))) = λ(s, r) ∈ Y × X ·m(s, f(δ(r), β(s))) is
measurable because f is measurable and λ(r, s) ∈ Y ×X ·(δ(r), β(s)) ∈ Path(Y ×X,D & B).
We are left with proving that g is analytic. For z ∈ BD we have

g(z) = λx ∈ BB · f(z, x)

= λx ∈ BB ·
∞∑
n=0

1

n!
D
(n)
0 f((z, x)

n
)

=
∞∑
n=0

1

n!
λx ∈ BB · D(n)

0 f((z, 0) + (0, x)
n
)

=

∞∑
n=0

1

n!
λx ∈ BB ·

n∑
k=0

(
n

k

)
D
(n)
0 f((z, 0)

k
, (0, x)

n−k
)

=

∞∑
n=0

n∑
k=0

1

k!(n− k)!
λx ∈ BB · D(n)

0 f((z, 0)
k
, (0, x)

n−k
)

=

∞∑
k=0

1

k!

∞∑
l=0

1

l!
λx ∈ BB · D(k+l)

0 f((z, 0)
k
, (0, x)

l
) =

∞∑
k=0

1

k!
hk(z

k)

where

hk(z1, . . . , zk) =
∞∑
l=0

1

l!
λx ∈ BB · D(k+l)

0 f((z1, 0), . . . , (zk, 0), (0, x)
l
)
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is well defined for all z1, . . . , zk ∈ D. Indeed, as usual it suffices to take some λ > 0 such

that λ ≥ ∥zi∥D for i = 1, . . . , k and observe that for all N ∈ N one has, setting z =
∑k

i=1 zi
so that 1

kλz ∈ BD,

N∑
l=0

1

l!
λx ∈ BB · D(k+l)

0 f((z1, 0), . . . , (zk, 0), (0, x)
l
) ≤ hk(z

k)

= (kλ)khk(
1

kλ
zk)

≤ k!(kλ)kg(
1

kλ
z) .

The map hk is multilinear by ω-continuity of the algebraic operations in each cone, it is

obviously symmetric by the symmetry of the D
(n)
0 f . Its ω-continuity follows from that of

the D
(n)
0 f and from commutations of lubs. Last, measurability and integrability follow as

usual from the monotone convergence theorem. So we have hk ∈ Symn(D,B ⇒a C) and
this shows that g is analytic.

To prove that ACones is cartesian closed it suffices to prove that g is the unique
morphism in ACones(D,B ⇒a C) such that

Ev ◦ (g & IdB) = f

which results straightforwardly from the fact that Ev is defined exactly as in Set.

Theorem 8.20. The functor Dera : ICones → ACones preserves all limits.

Proof. Preservation of categorical products resulting easily from the construction of products
in ACones (Proposition 8.18) and in ICones (Theorem 4.16), let us deal with equalizers.
So let f, g ∈ ICones(B,C) and let (E, e) be their equalizer in ICones: remember that
E = {x ∈ B | f(x) = g(x)} and that e ∈ ICones(E,B) is the obvious injection. Let
h ∈ ACones(D,B) be such that f ◦ h = g ◦ h. This means that h(BD) ⊆ BE. We know
that

h(z) =

∞∑
n=0

1

n!
hn(z)

where hn ∈ Hpoln(D,B) is fully characterized by

∀x′ ∈ B′ x′(hn(z)) =
dn

dtn
x′(h(tz)) |t=0 , (8.2)

see the proof of Lemma 8.11. We contend that f ◦ hn = g ◦ hn so let z ∈ BD and let
p ∈ MC

0 , we have

p(f(hn(z))) =
dn

dtn
p(f(h(tz)))) |t=0 ,

by Equation (8.2) applied with x′ = p f ∈ B′ and hence p(f(hn(z))) = p(g(hn(z))) which
proves our contention by (Mssep). This shows that hn(BD) ⊆ BE. Therefore since the
operator Ln is defined in terms of addition, subtraction and multiplication by non-negative
real numbers we have Lnhn ∈ Symn(B,E) – measurability and integrability follow from
the fact that measurability tests and integrals in E are defined as in B. Finally this shows

that D
(n)
0 h ∈ Symn(B,E) and hence h ∈ ACones(D,E) which shows that (E, e) is the

equalizer of f, g in ACones.
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9. The linear-non-linear adjunction, in the stable and analytic cases

From now on we use C to denote one of the two cartesian closed categories SCones
and ACones, which are both locally small. In both cases we use Der to denote the
functor ICones → C (which was denoted by Ders when C = SCones and by Dera when
C = ACones).

Remember that Der preserves all limits, see Theorems 7.34 and 8.20.
For that reason the two categories ICones and C can be related by a linear-non-linear
adjunction in the sense of [Mel09], and hence form a categorical model of Intuitionistic LL.
We describe directly the associated Seely category.

Let E : C → ICones be the left adjoint of Der, which exists by Theorem 4.19, and let us
introduce the notation ΘB,C : ICones(EB,C) → C(B,DerC) = C(B,C) for the associated
natural bijection (remember that DerC = C).

Remark 9.1. Just as for the tensor product (see Remark 5.1), we have no concrete
description of the E functor for the time being.

We use (!, der, dig) for the induced comonad on ICones whose Kleisli category is
(equivalent to) C since

ICones!(B,C) = ICones(!B,C)

= ICones(E DerB,C)

≃ C(DerB,DerC)
= C(B,C) .

Notice that actually !B = EB and similarly for morphisms. The notation der for the
counit of this comonad comes from the dereliction rule of LL, and the notation dig for the
comultiplication comes from the LL digging derived rule.

Let nlB = ΘB,EB(IdEB) ∈ C(B, !B) be the unit of the adjunction, which is the “universal
nonlinear map” on B in the sense that for each integrable cone C and each f ∈ C(B,C) one
has f = φ ◦ nlB for a unique φ ∈ ICones(!B,C), namely φ = (ΘB,C)

−1(f) (dropping the
Der symbol since this functor acts as the identity on objects and morphisms considered as
functions). So that for h ∈ ICones(!B,C), one has

ΘB,C(h) = h ◦ nlB .

For each x ∈ BB we set x! = nlB(x) ∈ BEB so that, for f ∈ C(B,C) we have f(x) =
(ΘB,C)

−1(f)(x!).
The next lemma is similar to Proposition 5.14.

Lemma 9.2. Let n ≥ 1, let B1, . . . , Bn, C be objects of ICones and f and g be elements
of ICones(!B1⊗ · · ·⊗ !Bn, C) such that f(x1

!⊗ · · ·⊗xn
!) = g(x1

!⊗ · · ·⊗xn
!) for all (xi ∈

BBi)
n
i=1. Then f = g.

Proof. By induction on n. For n = 1 this comes from the fact that f(x) = (ΘB1,C)
−1f(x!)

for all x ∈ BB so that our assumption entails f = g.
For n > 1, we have cur(f), cur(g) ∈ ICones(!B1, !B2⊗ · · ·⊗ !Bn ⊸ C). For each

x1 ∈ BB1, the two functions cur(f)(x1
!), cur(g)(x1

!) ∈ ICones(!B2⊗ · · ·⊗ !Bn, C) satisfy

∀x2 ∈ BB2, . . . , xn ∈ BBn cur(f)(x1
!)(x2

!⊗ · · ·⊗xn
!) = cur(g)(x1

!)(x2
!⊗ · · ·⊗xn

!)

and hence cur(f)(x1
!) = cur(g)(x1

!) by inductive hypothesis. As in the base case we get
f = g.
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The counit derB ∈ ICones(!B,B) of the comonad ! is also the counit of the adjunction.
It satisfies therefore

∀x ∈ BB derB(x
!) = x .

The comultiplication digB ∈ ICones(!B, !!B) = ICones(EDerB,EDer EDerB) is defined
by digB = E(nlB) so that we have

∀x ∈ BB digB(x
!) = x!! .

since by naturality of nlB we have Der(E(nlB)) ◦ nlB = nlDer(EB) ◦ nlB in C.

Lemma 9.3. Let f ∈ ICones(B,C) and x ∈ BB. We have (!f)(x!) = f(x)!.

Proof. We have (!f)(x!) = (E(Der f))(x!) = ((Der(E(Der f))) ◦ nlDerB)(x) where the compo-

sition is taken in C. By naturality we get (!f)(x!) = (nlDerC ◦ Der f)(x) = f(x)!.

Consider the two functors L,R : IConesop × IConesop × ICones → ICones defined on
objects by L(B,C,D) = (B ⇒ (C ⊸ D)) and R(B,C,D) = (C ⊸ (B ⇒ D)), and similarly
on morphisms.

Lemma 9.4. Let B,C,D be integrable cones. There is an isomorphism in ICones from
L(B,C,D) = (B ⇒ (C ⊸ D)) to R(B,C,D) = (C ⊸ (B ⇒ D)) which is natural in B, C
and D.

Proof sketch. This needs a separate proof in each case C = SCones and C = ACones,
which follows a pattern that we have seen many times. The natural isomorphism maps
f ∈ B ⇒ (C ⊸ D) to λy ∈ C · λx ∈ BB · f(x, y).

Then we have

ICones(!(B1 & B2), C) ≃ C(B1 & B2, C)

≃ C(B1, B2 ⇒ C)

≃ ICones(!B1, B2 ⇒ C)

≃ ICones(1, !B1⊸ (B2 ⇒ C))

≃ ICones(1, B2 ⇒ (!B1⊸ C)) by Lemma 9.4

≃ C(⊤, B2 ⇒ (!B1⊸ C))

≃ C(B2, (!B1⊸ C))

≃ ICones(!B2, (!B1⊸ C))

≃ ICones(!B2⊗ !B1, C)

≃ ICones(!B1⊗ !B2, C)

by a sequence of natural bijections and hence by Lemma 1.1 we have a natural isomorphism
m2

B1,B2
in

ICones(!B1⊗ !B2, !(B1 & B2))

which satisfies

m2
B1,B2

(x1
!⊗x2

!) = ⟨x1, x2⟩! .

Notice that this equation fully characterizes m2
B1,B2

by Lemma 9.2.

Similarly we define an iso m0 ∈ ICones(1, !⊤) which is such that m0(t) = t 0! for all
t ∈ R≥0. Then one can prove using Lemma 1.1 again that ! is a strong monoidal comonad.
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Theorem 9.5. Equipped with the strong monoidal comonad !, the category ICones is a
Seely category in the sense of [Mel09].

Proof. Using Lemma 9.2 it is easy to prove the remaining properties, which regard ! and
its associated morphisms. As an example let us prove that the following diagram commutes.

!B1⊗ !B2 !(B1 & B2)

!!(B1 & B2)

!!B1⊗ !!B2 !(!B1 & !B2)

m2
B1,B2

digB1
⊗ digB2

digB1&B2

!⟨!pr1,!pr2⟩
m2

!B1,!B2

Given (xi ∈ BBi)i=1,2, we have

m2
!B1,!B2

((digB1
⊗ digB2

)(x1
!⊗x2

!)) = m2
!B1,!B2

(x1
!!⊗x2

!!)

= ⟨x1!, x2!⟩
!

and

!⟨!pr1, !pr2⟩(digB1&B2
(m2

B1,B2
(x1

!⊗x2
!))) = !⟨!pr1, !pr2⟩(digB1&B2

(⟨x1, x2⟩!))

= !⟨!pr1, !pr2⟩(⟨x1, x2⟩
!!)

= (⟨!pr1, !pr2⟩(⟨x1, x2⟩
!))

!

= ⟨(!pr1)(⟨x1, x2⟩
!), (!pr2)(⟨x1, x2⟩

!)⟩!

= ⟨x1!, x2!⟩
!

Remark 9.6. Assume that C = SCones and that, as in Remark 3.1 and Section 4.1, Ar is
the category whose only objects are R and 0 (the one element measurable space), and all
measurable functions as morphisms. Then the underlying set of FMeas(R) is the set of all
finite measures on R.

Consider, as in Remark 2.7, the map cont : FMeas(R) → FMeas(R) which extracts the
continuous part of each measure on R. In addition to being linear and ω-continuous, this
map is also measurable (because the map µ 7→ dµ

dλ is measurable [Kal17, Theorem 1.28]).
However, as noted in Remark 2.7, this map does not commute with integrals and is therefore
not a morphism in ICones.

Nevertheless, cont is a morphism in SCones, so there exists f ∈ ICones(!FMeas(R),
FMeas(R)) such that cont(µ) = f(µ!). It would be interesting to understand how this
function f works to get some insight on the internal structure of the stable exponential,
which is defined in a rather implicit way (by the special adjoint functor theorem).

9.1. The coalgebra structure of FMeas(X). In this section we derive additional conse-
quences of the integrability condition on cones and linear morphisms. First, we show that for
each X ∈ Ar, the integrable cone FMeas(X) has a structure of !-coalgebra. The definition of
this coalgebra structure strongly uses the fact that !FMeas(X) is an integrable cone, that is,
all measurable paths valued in that cone have an integral wrt. each subprobability measure
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on the measurable space (belonging to Ar) where it is defined. This is typically a property
which was not available in [EPT18b].

Let X ∈ Ar. In Section 6 we defined the Dirac path δX ∈ BPath(X,FMeas(X)) which

maps r ∈ X to δX(r), the Dirac measure at r. Since morphisms in C are measurable we
have

nlFMeas(X) ◦ δX ∈ BPath(X, !FMeas(X))

and we define

hX = I !FMeas(X)
X (nlFMeas(X) ◦ δX) ∈ ICones(FMeas(X), !FMeas(X))

using Theorem 6.1. In other words hX is defined by

hX(µ) =

∫
r∈X

δX(r)
!
µ(dr)

and satisfies hX(δX(r)) = δX(r)
!
.

Theorem 9.7. Equipped with hX , the object FMeas(X) of ICones is a coalgebra of the
comonad ! . Moreover for each φ ∈ Ar(X,Y ), we have

FMeas(φ) = φ∗ ∈ ICones!(FMeas(X),FMeas(Y ))

so that FMeas is a functor Ar → ICones!.

Proof. We must first prove: derFMeas(X) hX = IdFMeas(X) ∈ ICones(FMeas(X),FMeas(X)).

By Theorem 6.2 this results from the fact that for all r ∈ X one has (derFMeas(X) hX)(δX(r)) =

derFMeas(X)(δ
X(r)

!
) = δX(r).

Next we must prove that f1 = f2 ∈ ICones(FMeas(X), !!(FMeas(X))) where

f1 = digFMeas(X) hX and f2 = !hX hX .

Let r ∈ X, we have

f1(δ
X(r)) = dig!FMeas(X)(δ

X(r)
!
) = δX(r)

!!

f2(δ
X(r)) = !hX(δX(r)

!
) = (hX(δX(r)))

!

by Lemma 9.3. And hence f2(δ
X(r)) = δX(r)

!!
so that f1 = f2 by Theorem 6.2.

Let now φ ∈ Ar(X,Y ), we must prove that f1 = f2 where f1 = hY φ∗ and f2 = !(φ∗) hX .

Let r ∈ X, we have f1(δ
X(r)) = hY (δ

Y (φ(r)) = δY (φ(r))
!
and f2(δ

X(r)) = !(φ∗)(δ
X(r)

!
) =

(φ∗(δ
X(r)))

!
= δY (φ(r))

!
by Lemma 9.3 and so f1 = f2 by Theorem 6.2. This proves the

second part of the theorem.

Remark 9.8. One of the main goals in introducing integrable cones was precisely to get
this additional structure for each cone FMeas(X) (notably because this structure is required
in order to interpret call-by-value languages). It means more specifically that for each f ∈
C(FMeas(X), B) = ICones(!FMeas(X), B) we can define g = f hX ∈ ICones(FMeas(X), B)
such that

∀µ ∈ FMeas(X) g(µ) =

∫
r∈X

f(δX(r))µ(dr)

which is a “linearization” of f allowing to interpret the sampling operation of probabilistic
programming languages: one samples a r ∈ X (a real number if X = R) according to the
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distribution µ and feeds the program f with the value r represented as the Dirac measure
δX(r). This Dirac measure represents, in our semantics, the real number r considered as
a value. This observation strongly supports the idea of taking the objects or Ar (such as
the real line, or the set of natural numbers) as our basic data-types and the measurable
functions φ ∈ Ar(X,Y ) as the basic functions of our programming language, through the
functor FMeas : Ar → ICones: remember that FMeas(φ)(δX(r)) = φ∗(δ

X(r)) = δX(φ(r)).
From the viewpoint of LL this means that each X ∈ Ar can be seen as a positive type,

that is, a type equipped with structural rules allowing to erase and duplicate its values, see
for instance [Gir91, LR03, ET19]. Another way to understand hX is to see it as a storage
operator in the sense of [Kri94], that is, FMeas(X) is a data-type. This idea will be confirmed
in Section 9.1.1 where we will see that FMeas is a full and faithful functor from Ar to
ICones!.

Example 9.9. A typical probabilistic programming language that we can interpret in the
model ICones (we assume that R ∈ Ar) is the probabilistic version of PCF presented
in [EPT18b] (to which we refer for more details and examples), which features continuous
data-types and can be extended in various ways. Such a language could feature a type ρ of
real numbers, a constant unif such that Γ ⊢ unif : ρ corresponding to the uniform probability
distribution on the interval [0, 1] etc. All the types of this language, which are given by the
following grammar

σ, τ · · · := ρ | σ ⇒ τ | · · ·
are interpreted as objects of ICones: JρK = FMeas(R), Jσ ⇒ τK = JσK ⇒ JτK, etc. A
term M such that Γ ⊢ M : τ where Γ = (x1 : σ1, . . . , xk : σk) is a typing context, will
then be interpreted as a stable and measurable morphism, or as an analytic morphism
JMKΓ ∈ ICones!(Jσ1K & · · · & JσkK, JτK). So if Γ, x : ρ ⊢M : σ has a free variable of type ρ
and Γ ⊢ N : ρ, we should consider that N represents a (sub)probability distribution JNKΓ on
R and we may want to sample a real number r along this distribution and feed M with the
resulting real value that M will use as many times as it wants : this value will be represented
as the Dirac measure δR(r). In our language, the corresponding construct is a simple let
which allows to deal with the ground type ρ in a call-by-value way23:

Γ ⊢ let(x,N,M) : τ

and the semantics of this construct is

Jlet(x,N,M)KΓ =

∫ JτK

r∈R
JMKΓ(δR(r))JNKΓ(dr)

which is well defined since JMKΓ is stable and measurable (or analytic), the function
λr ∈ R · δR(r) belongs to BPath(R,FMeas(R)) and the cone JτK is integrable. The constant
unif is interpreted as the probability measure on R which maps a measurable set U to the
Lebesgue measure of U ∩ [0, 1]. For each r ∈ R, the language has a constant r of type ρ
and JrKΓ = δR(r) ∈ BFMeas(R) (in each context Γ). Our language will also have constructs

log(M), sqrt(M) etc. corresponding to the usual functions which are all measurable, and
typed for instance by

Γ ⊢M : ρ

Γ ⊢ log(M) : ρ

23This idea was already central in [EPT14, EPT18a, ET19], in the discrete setting of probabilistic
coherence spaces.



1:86 T. Ehrhard and G. Geoffroy Vol. 21:1

with semantics given by push-forward: Jlog(M)KΓ = log∗(JMKΓ). So for instance we can
define a closed term N such that ⊢ N : ρ by

N = let(x, unif, let(y, unif,mult(sqrt(mult(−2., log(x))), cos(mult(6.28 · · ·, y)))))

and then JNK is the normal distribution N (0, 1) defined by the Box Muller method, and we
can define a term N ′ with two free variable x and s for N (x, s) as

N ′ = let(y,N, plus(mult(s, y), x)))

such that x : ρ, s : ρ ⊢ N ′ : ρ. Then JN ′[4.2/x, 0.7/s]K = JN ′Kx:ρ,s:ρ(δR(4.2), δR(0.7)) ∈
FMeas(R) is the measure N (4.2, 0.7).

9.1.1. The category of measurable functions as a full subcategory of the Eilenberg Moore
category. So we have extended the operation FMeas on the measurable spaces of Ar into a
functor Ar → ICones! which acts on morphisms by push-forward. This functor is clearly
faithful, we prove that, under very reasonable assumptions about Ar, it is also full, which is
quite a remarkable fact: the Eilenberg-Moore category of ! contains Ar as a full subcategory.
Again, integration is an essential ingredient in the proof of this result.

A Polish space is a complete metric space which has a countable dense subset.
We will need two lemmas which are folklore in measure theory.

Lemma 9.10. Let X be a Polish space, equipped with its standard Borel σ-algebra σX . Let
µ be a probability measure on X and assume that ∀U ∈ σX µ(U) ∈ {0, 1}. Then µ is a
Dirac measure.

Proof. Given r ∈ X and ε ≥ 0 we use B(r, ε) ⊆ X for the closed ball of radius ε centered at
r. Let D be a countable dense subset of X. Let F ⊆ X be closed and such that µ(F ) = 1
and let ε > 0, we have F ⊆

⋃
r∈D∩F B(r, ε) and hence 1 = µ(F ) ≤

∑
r∈D∩F µ(B(r, ε)) and

hence ∃r ∈ D ∩ F µ(B(r, ε)) = 1. We define a sequence (rn)n∈N of elements of D such
that ∀n ∈ N µ(B(rn, 2

−n)) = 1 as follows. We obtain r0 by applying the property above
with F = X and ε = 1. We get rn+1 by applying the property above with F = B(rn, 2

−n)

and ε = 2−(n+1). Then the sequence (rn)n∈N is Cauchy and has therefore a limit r and
we have {r} =

⋂
n∈NB(rn, 2

−n) so that µ({r}) = infn∈N µ(B(rn, 2
−n)) = 1 since µ is a

measure. It follows that µ(U) = 0 for each measurable U such that r /∈ U since we must
have µ({r} ∪ U) = 1 and hence µ = δX(r).

Lemma 9.11. If X and Y are measurable spaces such that the σ-algebra of Y contains all
singletons (this is true in particular if Y is a Polish space), and if κ is a kernel from X to Y
such that for all r ∈ X the measure κ(r) is a Dirac measure on Y , then there is a uniquely
defined measurable function φ : X → Y such that κ = δY ◦ φ.

This is obvious.

Theorem 9.12. Let X,Y ∈ Ar be such that Y is a Polish space and let f be a morphism from
FMeas(X) to FMeas(Y ) in ICones. Then f is a coalgebra morphism from (FMeas(X), hX)
to (FMeas(Y ), hY ) iff there is a φ ∈ Ar(X,Y ) such that f = FMeas(φ) = φ∗.

As a consequence, if we assume that X is a Polish space for all X ∈ Ar, then Ar is a
full subcategory of the Eilenberg Moore category of the comonad ! through the FMeas functor.
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Most measurable spaces which appear in probability theory are Polish spaces: discrete
spaces, the real line, countable products and measurable subspaces of Polish spaces (and
hence the Cantor Space and the Baire Space, the Hilbert Cube etc.) are Polish spaces. So
the restriction to Polish spaces is not a serious one.

Proof. Saying that f is a coalgebra morphism means that the following diagram commutes
in ICones:

FMeas(X) FMeas(Y )

!FMeas(X) !FMeas(Y )

f

hX hY

!f

which, by Theorem 6.2, is equivalent to

(f(δX(r)))
!
= !f(hX(δX(r)) = hY (f(δ

X(r)) =

∫ !FMeas(Y )

s∈Y
δY (s)

!
f(δX(r))(ds) (9.1)

for all r ∈ X, and this equation trivially holds if f = φ∗. Assume conversely that f
satisfies (9.1). Let V be a measurable subset of Y and let g ∈ C(FMeas(Y ), 1) be defined by
g(ν) = ν(V )2 and let g0 = (ΘFMeas(Y ),1)

−1(g) ∈ ICones(!FMeas(Y ), 1) which is characterized

by ∀ν ∈ FMeas(Y ) g(ν) = g0(ν
!). We have g0(f(δ

X(r))
!
) = g(f(δX(r))) = f(δX(r))(V )2

and, since g0 preserves integrals,

f(δX(r))(V )2 = g0

(∫ !FMeas(Y )

s∈Y
δY (s)

!
f(δX(r))(ds)

)
by Equation (9.1)

=

∫
s∈Y

g0(δ
Y (s)

!
)f(δX(r))(ds)

=

∫
s∈Y

δY (s)(V )2f(δX(r))(ds)

=

∫
s∈Y

δY (s)(V )f(δX(r))(ds)

= f(δX(r))(V )

so we have f(δX(r))(V ) ∈ {0, 1} for all V ∈ σY . Let g ∈ C(FMeas(Y ), 1) be defined now by

g(ν) = 1 and let g0 = (ΘFMeas(Y ),1)
−1(g) ∈ ICones(!FMeas(Y ), 1), we have g0(f(δ

X(r))
!
) =

g(f(δX(r))) = 1 and, since g0 preserves integrals,

1 = g0

(∫ !FMeas(Y )

s∈Y
δY (s)

!
f(δX(r))(ds)

)
=

∫
s∈Y

g0(δ
Y (s)

!
)f(δX(r))(ds)

=

∫
s∈Y

f(δX(r))(ds)

= f(δX(r))(Y )

and hence the measure f(δX(r)) is a Dirac measure by Lemma 9.10 and it follows that
f = FMeas(φ) = φ∗ for a uniquely determined φ ∈ Ar(X,Y ) by Lemma 9.11.
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9.2. Fixpoint operators in the cartesian closed category. Remember that C is a CCC
having the following property:

The objects of C are integrable cones. In particular, for each object B of
C, the set BB has a structure of ω-cpo by the condition (Normc), with 0
as least element. And each f ∈ C(B,B) is in particular an increasing and
ω-continuous function BB → BB and therefore has a least fixpoint which is
sup∞n=0 f

n(0) ∈ BB.

It is completely standard to apply this property to the map Z ∈ C((B ⇒ B) ⇒ B, (B ⇒ B) ⇒
B) given by

Z(F )(f) = f(F (f))

which is well-defined and belongs to C((B ⇒ B) ⇒ B, (B ⇒ B) ⇒ B) by cartesian closedness
of C. The least fixpoint Y of Z is an element of C(B ⇒ B,B) which is easily seen to satisfy

Y(f) =
∞
sup
n=0

fn(0)

and is therefore a least fixpoint operator that we have proven here to be a morphism in C,
that is, a stable and measurable or an analytic map depending on the considered category C.
This morphism Y is the key ingredient to interpret recursively defined functional programs
in the CCC C.

Example 9.13. The function f : [0, 1] → [0, 1] given by f(x) = 1
2 +

1
4x

2 belongs to C(1, 1)
so it has a least fixpoint x ∈ [0, 1] which must satisfy x2− 4x+2 = 0 and is therefore 2−

√
2.

Of course, when a ∈ R≥0 and a > 0, the function x 7→ x+a from R≥0 to R≥0 has no fixpoint,
but this is not a contradiction because it does not restrict to a function [0, 1] → [0, 1].

10. Probabilistic coherence spaces as integrable cones

So far we have seen several ways of building integrable cones: as spaces of measures, or of
paths, as products and tensor products, as spaces of analytic maps etc. As announced in
Example 2.4 we describe here another source of integrable cones: the probabilistic coherence
spaces. Intuitively, they form a model of LL based on discrete but not necessarily finite
probabilities. So their definition does not require measure theory.

We use R≥0 for the completed real half-line, that is R≥0 = R ∪ {∞}, considered as a
semi-ring with multiplication satisfying 0∞ = 0, which is the only possible choice since we
want multiplication to be ω-continuous.

Let I be a set. If i ∈ I we use e(i) for the element of (R≥0)
I such that e(i)j = δi,j .

If P ⊆ R≥0
I
we define P⊥ ⊆ R≥0

I
by

P⊥ = {x′ ∈ (R≥0)
I | ∀x ∈ P

∑
i∈I

xix
′
i ≤ 1}

and we use the notation ⟨x, x′⟩ =
∑

i∈I xix
′
i. As usual we have P ⊆ Q ⇒ Q⊥ ⇒ P⊥ and

P ⊆ P⊥⊥, and as a consequence P⊥ = P⊥⊥⊥. In other words, it is equivalent to say that
P = P⊥⊥ or to say that P = Q⊥ for some Q.

Theorem 10.1. Let P ⊆ R≥0
I
, one has P = P⊥⊥ iff the following conditions hold

• P is convex (that is, if x, y ∈ P and λ ∈ [0, 1] then λx+ (1− λ)y ∈ P)
• P is down-closed for the product order
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• and, for each sequence (x(n))n∈N of element of P which is increasing for the pointwise

order, the pointwise lub ∈ R≥0
I
of this sequence belongs to P.

A proof is outlined in [Gir04] and a complete proof can be found in [Ehr22].

Definition 10.2. A probabilistic coherence space (PCS) is a pair X = (|X |,PX ) where |X |
is a set which is at most countable24 and PX ⊆ (R≥0)

|X | satisfies

• PX = PX⊥⊥

• for all a ∈ |X | there is x ∈ PX such that xa > 0
• and for all a ∈ |X | the set {xa | x ∈ PX} ⊆ R≥0 is bounded.

The 2nd and 3rd conditions are required to keep the coefficients finite and are dual of each
other.

Given two sets I, J , a vector u ∈ R≥0
I
and a matrix w ∈ R≥0

I×J
, we define w ·u ∈ R≥0

J

by

w · u =
(∑

i∈I
wi,jui

)
j∈J

and then, given v ∈ R≥0
J
, observe that

⟨w · u, v⟩ = ⟨w, u ⊗ v⟩ =
∑

i∈I,j∈J
wi,juivj ∈ R≥0

where u ⊗ v ∈ R≥0
I×J

is defined by (u ⊗ v)i,j = uivj (we use this notation here to avoid
confusions with the tensor operations we have introduced for integrable cones).

Given w1 ∈ R≥0
I1×I2 and w2 ∈ R≥0

I2×I3 , one defines w2w1 ∈ R≥0
I1×I3 (product of

matrices written in reversed order) by

(w2w1)i1,i3 =
∑
i2∈I2

(w1)i1,i2(w2)i2,i3 .

It is easily checked that, given PCSs X and Y , one defines a PCS X ⊸ Y by |X ⊸ Y| =
|X | × |Y| and

P(X ⊸ Y) = {t ∈ (R≥0)
|X⊸Y| | ∀x ∈ PX t · x ∈ PY} .

Indeed one can check that

P(X ⊸ Y) = {x ⊗ y′ | x ∈ PX and y′ ∈ PX⊥}⊥ .
Then given s ∈ P(X ⊸ Y) and t ∈ P(Y ⊸ Z) one has

t s ∈ P(X ⊸ Z)

and the diagonal matrix Id = (δa,a′)(a,a′)∈|X⊸X| belongs to P(X ⊸ X ). This defines the
category Pcoh of probabilistic coherence spaces.

Let t ∈ Pcoh(X ,Y). We use fun(t) : PX → PY for the function defined by fun(t)(x) =
t · x.

The orthogonal (or linear negation) X⊥ of a PCS X is defined by |X⊥ | = |X | and
P(X⊥) = (PX )⊥ so that X⊥⊥ = X . We use ⊥ for the PCS such that |⊥| = {∗} and

P⊥ = [0, 1]. Setting 1 = ⊥⊥ we have obviously 1 = ⊥ and X⊥ is trivially isomorphic to

24This countability assumption is crucial in the present setting, again because of our use of the monotone
convergence theorem.
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X ⊸ ⊥. Under this iso, the function fun(x′) : PX → [0, 1] associated with x′ ∈ PX⊥ is
given by fun(x′)(x) = ⟨x, x′⟩.

This linear negation is a functor Pcohop → Pcoh, mapping t ∈ Pcoh(X ,Y) to it
transpose t⊥ defined by (t⊥)b,a = ta,b.

Each PCS X induces a measurable cone ic(X ) defined by ic(X ) = {λx | x ∈ PX and λ ∈
R≥0} with algebraic operations defined in the obvious pointwise way. Notice that if t ∈
Pcoh(X ,Y) we can extend fun(t) to a function ic(X ) → ic(Y) by setting fun(t)(x) =

λ−1 fun(t)(λx) for each λ > 1 such that λx ∈ PX (the function does not depend on the
choice of λ).

The norm of this cone is defined by

∥x∥ic(X ) = sup
x′∈Bic(X )′

⟨x, x′⟩ = inf{λ > 0 | x ∈ λPX}

so that Bic(X ) = PX . The measurability structure of ic(X ) is given by Mic(X )
0 = {fun(x′) |

x′ ∈ PX⊥} and Mic(X )
X is the set of all constant functions from X ∈ Ar to Mic(X )

0 .

Lemma 10.3. Let X be a PCS and let P ⊆ (R≥0)
|X | be such that PX = P⊥. Then

∥x∥ic(X ) = sup
x′∈P

⟨x, x′⟩ .

The proof is easy. Notice that for each a ∈ |X | one has e(a) ∈ ic(X ) by the second condition

in the definition of a PCS, and that ∥e(a)∥ is not necessarily equal to 1.

Lemma 10.4. Let X be a PCS and X ∈ Ar. A function β : X → ic(X ) is a measurable

path of the measurable cone ic(X ) iff β(X) is bounded and, for all a ∈ |X |, the function
λr ∈ X · β(r)a : X → R≥0 is measurable.

Proof. The ⇒ direction results from the observation that, for each a ∈ |X | there is a
λ > 0 such that λe(a) ∈ PX⊥ . For the ⇐ direction let β : X → PX be such that the
function λr ∈ X · β(r)a is measurable for all a ∈ |X |. Let x′ ∈ PX⊥ , we must prove that
φ = λr ∈ X · ⟨β(r), x′⟩ is measurable. Since |X | is countable, this results from the monotone
convergence theorem and from the fact that

φ(r) =
∑
a∈|X |

β(r)ax
′
a .

Theorem 10.5. For each PCS X the measurable cone ic(X ) is integrable.

Proof. Let β : X → PX be a measurable path (by Lemma 10.4 this is equivalent to saying
that βa = λr ∈ X · β(r)a is measurable X → R≥0 for all a ∈ |X | since ∀r ∈ X ∥β(r)∥ ≤ 1).

Let µ ∈ FMeas(X). We define x ∈ (R≥0)
|X | by

xa =

∫
βa(r)µ(dr)
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which is a well defined element of R≥0 since the function βa is bounded by definition of a
PCS. Let x′ ∈ PX⊥ , we have, applying the monotone convergence theorem,

⟨x, x′⟩ =
∑
a∈|X |

(∫
βa(r)µ(dr)

)
x′a

=
∑
a∈|X |

∫ (
βa(r))x

′
a

)
µ(dr)

=

∫
⟨β(r), x′⟩µ(dr) ≤ ∥µ∥

so if λ > 0 is such that λ ∥µ∥ ≤ 1 we get ⟨λx, x′⟩ ≤ 1 for all x′ ∈ PX⊥ so that x ∈ ic(X ).

The equation ⟨x, x′⟩ =
∫
⟨β(r), x′⟩µ(dr) which holds for all x′ ∈ PX⊥ shows that x is the

integral of β over µ by definition of Mic(X ).

Theorem 10.6. If t ∈ P(X ⊸ Y) then fun(t) ∈ ICones(ic(X ), ic(Y)) and extended to
morphisms in that way, the operation ic is a full and faithful functor Pcoh → ICones.

Proof. The fact that fun(t) is linear and continuous is easy (the proof can be found in [DE11]
for instance). Measurability and integral preservation of fun(t) boil down again to the
monotone convergence theorem. Faithfulness results from the fact that t is completely
determined by the action of fun(t) on the elements e(a) of ic(X ) (for all a ∈ |X |; remember

that indeed ∀a ∈ |X | e(a) ∈ ic(X )). Last let f ∈ ICones(ic(X ), ic(Y)). We define t ∈
(R≥0)

|X⊸Y| by ta,b = f(e(a))b. Given x ∈ PX and y′ ∈ PY⊥ we have

⟨t · x, y′⟩ =
∑

a∈|X |,b∈|Y|

ta,bxay
′
b

=
∑

a∈|X |,b∈|Y|

f(e(a))bxay
′
b

=
∑
b∈|Y|

f(x)by
′
b by linearity and continuity of f

= ⟨f(x), y′⟩ ≤ 1

since ∥f∥ ≤ 1, which shows that t · x ∈ PY and hence t ∈ Pcoh(X ,Y). The equation
⟨t · x, y′⟩ = ⟨f(x), y′⟩ for all y′ ∈ PY⊥ also shows that t · x = f(x) and hence the functor ic
is full.

We use X ⊗ Y for the tensor product operation in Pcoh, that is |X ⊗ Y| = |X | × |Y| and
P(X ⊗ Y) = {x ⊗ y | x ∈ PX and y ∈ PY}⊥⊥ =

(
X ⊸ Y⊥)⊥ .

Theorem 10.7. If X ,Y are PCSs then fun is an iso from the integrable cone ic(X ⊸ Y) to
the integrable cone ic(X )⊸ ic(Y) in ICones, and this iso is natural in X and Y.

Proof sketch. We know by Theorem 10.6 that fun is an iso of cones. We need to prove that
fun and fun−1 are measurable and that fun preserve integrals (then fun−1 also preserves
integrals by injectivity of fun).

Let X ∈ Ar and η ∈ Path(X, ic(X ⊸ Y)), we show that

fun ◦ η ∈ Path(X, ic(X )⊸ ic(Y))
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so let Y ∈ Ar, β ∈ Path(Y, ic(X )) and m ∈ Mic(Y)
Y meaning that m = fun(y′) for some

y′ ∈ PY⊥ , we have, for all (s, r) ∈ Y ×X,

(β ▷ m)(s, fun(η(r))) = ⟨fun(η(r))(β(s)), y′⟩
= ⟨η(r) · β(s), y′⟩

=
∑

(a,b)∈|X |×|Y|

η(r)a,bβ(s)ay
′
b

and the function λ(s, r) ∈ Y ×X · (β ▷ m)(s, fun(η(r))) is measurable as a countable sum of
measurable functions. Conversely let now η ∈ Path(X, ic(X )⊸ ic(Y)), we must prove that

fun−1 ◦ η ∈ Path(X, ic(X ⊸ Y)) so let Y ∈ Ar and p ∈ Mic(X⊸Y)
Y , that is p = fun(z) for

some z ∈ P(X ⊸ Y)⊥ = P(X ⊗ Y⊥), we have

λ(s, r) ∈ Y ×X · p(s, fun−1(η(r))) = λ(s, r) ∈ Y ×X · ⟨z, fun−1(η(r))⟩

= λ(s, r) ∈ Y ×X ·
∑

(a,b)∈|X |×|Y|

za,bη(r)(e(a))b

which is measurable as a countable sum of measurable functions since we know that for all
a, b the function λr ∈ X · η(e(a))b is measurable by our assumption that η is a measurable
path.

The fact that fun preserves integrals results from the pointwise definition of integration
in ic(X )⊸ ic(Y).

Theorem 10.8. There is a natural isomorphism φX ,Y ∈ ICones(ic(X )⊗ ic(Y), ic(X ⊗ Y)).

Proof sketch. The map λ(x, y) ∈ ic(X ) × ic(Y) · x ⊗ y is easily seen to be bilinear, ω-
continuous, measurable and separately integrable so that we have an associated φX ,Y ∈
ICones(ic(X )⊗ ic(Y), ic(X ⊗ Y)) characterized by φX ,Y(x⊗ y) = x ⊗ y. We define now
ψX ,Y : ic(X ⊗ Y) → ic(X )⊗ ic(Y). First, given (a, b) ∈ |X ⊗ Y| we set ψX ,Y(e(a, b)) =
e(a)⊗ e(b). Next given z ∈ ic(X ⊗ Y) such that supp(z) = {(a, b) ∈ |X ⊗ Y| | z(a,b) ̸= 0} is

finite we set ψX ,Y(z) =
∑

(a,b)∈|X⊗Y| z(a,b)e(a)⊗ e(b) which is a well defined finite sum in the

cone ic(X )⊗ ic(Y). We contend that

∥ψX ,Y(z)∥ic(X )⊗ ic(Y) ≤ ∥z∥ic(X⊗Y)

so let ε > 0 and assume without loss of generality that ∥z∥ ≤ 1. By Proposition 3.11
there is g ∈ Bic(X )⊗ ic(Y)⊸ ⊥ such that ∥ψX ,Y(z)∥ic(X )⊗ ic(Y) ≤ g(ψX ,Y(z)) + ε. Let

h ∈ B(ic(X )⊸ (ic(Y)⊸ ⊥)) be the the bilinear morphism associated to g by the iso of
Theorem 5.12. We have

g(ψX ,Y(z)) =
∑

(a,b)∈|X ⊗Y|

z(a,b)g(e(a)⊗ e(b))

=
∑

(a,b)∈|X ⊗Y|

z(a,b)h(e(a), e(b)) ≤ 1

because (h(e(a), e(b)))(a,b)∈|X ⊗Y| ∈ P(X ⊗ Y)⊥ by Theorem 10.7 and by our assumption
that ∥z∥ ≤ 1. So we have ∥ψX ,Y(z)∥ic(X )⊗ ic(Y) ≤ 1 + ε and since this holds for all ε > 0

our contention is proven. Now let z be any element of ic(X ⊗ Y) and assume again that
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∥z∥ ≤ 1. Let (In)n∈N be an increasing sequence of finite sets such that
⋃
In = |X | × |Y| and

let z(n) ∈ ic(X ⊗ Y) be defined by

z(n)(a,b) =

{
z(a,b) if (a, b) ∈ In

0 otherwise.

so that the sequence (z(n))n∈N is increasing and has z as lub in ic(X ⊗ Y). The sequence

(ψX ,Y(z(n)))n∈N is increasing and all its elements have norm ≤ 1 since each z(n) has finite
support and norm ≤ 1 and hence it has a lub in ic(X )⊗ ic(Y). It is easy to check that this

lub does not depend on the choice of the In’s, so we can set ψX ,Y(z) = supn∈N ψX ,Y(z(n))
so that actually

ψX ,Y(z) =
∑

(a,b)∈|X |×|Y|

za,be(a)⊗ e(b) .

The proof that ψX ,Y ∈ ICones(ic((X ⊗ Y)), ic(X )⊗ ic(Y)) follows the standard pattern
and it is obvious that it is the inverse of φX ,Y .

10.1. More constructions. We outline very briefly the additive and exponential construc-
tions on PCSs. The categorical product X = &i∈I Xi of a family (Xi)i∈I of PCSs can be

described by |X | =
⋃

i∈I{i} × |Xi| and x ∈ (R≥0)
|X | belongs to PX if ∀i ∈ I pri · x ∈ PXi

where pri ∈ (R≥0)
|X |×|Xi| is given by (pri)(j,a),b = δi,jδa,b, so that pri ∈ P(X ,Xi) for each

i ∈ I. Then it is easy to check that (X , (pri)i∈I) is the categorical product of the family
(Xi)i∈I in Pcoh and that there is a natural isomorphism from &i∈I ic(Xi) to ic(X ).

For the coproduct Y = ⊕i∈I Xi we can take Y = (&i∈I X⊥
i )⊥ so that |Y| = |X |, and

PY = {x ∈ PX |
∑

i∈I ∥pri · x∥ ≤ 1}, equipped with injections ini = pr⊥i ∈ Pcoh(Xi,Y). So

for instance the coproduct 1⊕ 1 has {0, 1} as web, and P(1⊕ 1) = {u ∈ R2
≥0 | u0 + u1 ≤ 1}.

For the exponential, we introduce the following notations. Given u ∈ (R≥0)
I we define

u! ∈ (R≥0)
Mfin(I) by u!m = um =

∏
i∈I u

m(i)
i . Given a PCS X we define a PCS !X by

|!X| = Mfin(|X |) and P(!X ) = {x! | x ∈ PX}⊥⊥ so that t ∈ Pcoh(!X ,Y) means exactly

that t ∈ (R≥0)
Mfin(|X |)×|Y| and

t̂(x) =
( ∑

m∈Mfin(|X |)

tm,bx
m
)
b∈|Y|

∈ PY

from which it is not hard to derive that the integrable cones ic(!X ⊸ Y) and ic(X ) ⇒a ic(Y)
are isomorphic.

Remark 10.9. There is a morphism φX ∈ ICones(!aic(X ), ic(!X )) for all PCSs X such
that φX (x

!a) = x! for all x ∈ PX . This morphism is similar to the one of Theorem 10.8, we
conjecture that it is an iso.
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10.2. Example: the Cantor Space as an equalizer of Pcoh morphisms. Since ICones
is a complete category, the equalizer of two parallel Pcoh morphisms is an integrable cone.
As we shall see now, this cone needs not be a PCS which means that, contrarily to the
larger category ICones, the category Pcoh is not complete. This example also shows that
interesting “non discrete” cones arise as limits of diagrams in Pcoh.

Consider the PCS S such that |S| = {0, 1}<ω is the set of finite sequences of 0’s and 1’s

and where x ∈ (R≥0)
|S| belongs to PS if, for each u ⊆ |S| which is an antichain (meaning

that if s, s′ ∈ u then s ≤ s′ ⇒ s = s′ where ≤ is the prefix order), one has
∑

s∈u xs ≤ 1.

Since PS = A⊥ where A is the set of all characteristic functions of antichains, S is a PCS
(the second and third conditions of Definition 10.2 result from the observation that each
singleton is an antichain). Notice that

∥x∥S = sup
x′∈A

⟨x, x′⟩ (10.1)

by Lemma 10.3.
The PCS S is the “least solution” (in the sense explained in [DE11, ET19]) of the

equation S = 1 & (S ⊕ S).
There is a morphism θ ∈ Pcoh(S,S) which is given by

θs,t =

{
1 if s = ta for some a ∈ {0, 1}
0 otherwise

where we use simple juxtaposition for concatenation. Indeed given an antichain u and
x ∈ PS we have ∑

t∈u
(θ · x)t =

∑
s∈v

xs ≤ 1

where v = {sa | s ∈ u and a ∈ {0, 1}} is an antichain since u is an antichain. Let C be the
integrable cone which is the equalizer of θ and IdS , considered as morphisms of ICones
through the full and faithful functor ic.

Theorem 10.10. The integrable cone C is isomorphic to FMeas(C) where C is the Cantor
Space equipped with the Borel sets of its usual topology (the product topology of {0, 1}ω where
{0, 1} has the discrete topology).

Proof. We have

C = {x ∈ ic(S) | θ · x = x} ,

that is, an element of C is an x ∈ (R≥0)
|S| such that x ∈ PS and

∀s ∈ |S| xs = xs0 + xs1 .

Given s ∈ |S| we set ↑s = {α ∈ C | s < α} ⊆ C, which is a clopen of C. Let U be an open
subset of C, the set ↓U of all s ∈ |S| which are minimal (for the prefix order) such that
↑s ⊆ U is an antichain, and we have

U =
⋃

{↑s | s ∈ ↓U} (10.2)

by definition of the topology of C. Given x ∈ ic(S) we define a functionmeas(x) : O(C) → R≥0

on the open sets of C by

meas(x)(U) =
∑
s∈↓U

xs
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and we have meas(x)(U) ≤ ∥x∥ by our assumption that x ∈ ic(S). This function meas(x) is

additive (that is meas(x)(
⋃

i∈I Ui) =
∑

i∈I meas(x)(Ui) for each countable family (Ui)i∈I of
pairwise disjoint open subsets of C). And so meas(x) extends to a uniquely defined finite
measure on the Borel sets of the Cantor Space, that is to an element of FMeas(C). Notice
that meas : ic(S) → FMeas(C) is linear and satisfies ∥meas(x)∥ = x⟨⟩ ≤ ∥x∥ where ⟨⟩ ∈ |S| is
the empty sequence.

Let µ ∈ FMeas(C), we define rep(µ) ∈ (R≥0)
|S| by rep(µ)s = µ(↑s). Given an antichain

u ⊆ |S| notice that the clopens (↑s)s∈u are pairwise disjoint and that U =
⋃

s∈u ↑s is open
and hence measurable, so, since µ is a measure, we have∑

s∈u
rep(µ)s =

∑
s∈u

µ(↑s) = µ
( ⋃
s∈u

↑s
)
= µ(U) ≤ µ(C) .

Since this holds for each antichain u we have shown that rep(µ) ∈ PS. Notice that for each
s ∈ |S| we have ↑s = ↑s0∪↑s1 and that this union is disjoint, so that µ(↑s) = µ(↑s0)+µ(↑s1)
since µ is a measure, that is rep(µ) ∈ C. Notice also that the function rep is linear and
satisfies rep(µ) ≤ ∥µ∥ since for each antichain u ⊆ |S| one has

∑
s∈u rep(µ)s =

∑
s∈u µ(↑s) =

µ(
⋃

s∈u ↑s) ≤ µ(C) = ∥µ∥.
We prove that the functions meas and rep are inverse of each other. Let first x ∈ C, we

have, for all s ∈ |S|,
rep(meas(x))s = meas(x)(↑s) = xs

since ↓↑s = {s}. Let now µ ∈ FMeas(C) and let U ∈ O(C) we have

meas(rep(µ))(U) =
∑
s∈↓U

rep(µ)s =
∑
s∈↓U

µ(↑s) = µ(U)

by Formula (10.2). It follows that meas(rep(µ)) = µ.
It follows that meas and rep define an order isomorphism between FMeas(C) and C

and therefore are ω-continuous (this uses also the fact that ∥meas(x)∥ = ∥x∥ since ∥x∥ =
∥rep(meas(x))∥ ≤ ∥meas(x)∥ and similarly ∥rep(µ)∥ = ∥µ∥).

The fact that the map meas : ic(S) → FMeas(C) is linear is measurable and inte-
grable results as usual from the monotone convergence theorem. So we have meas ∈
ICones(ic(S),FMeas(C)) and hence by restriction meas ∈ ICones(C,FMeas(C)) since
∥meas(x)∥ = meas(x)(C) ≤ ∥x∥ for all x ∈ C. Again, checking that rep is measurable
and integrable is routine; as an example let us prove the last property so let X ∈ Ar and let
κ ∈ Path(X,FMeas(C)). Let m ∈ MC

0 , that is m = fun(x′) for some x′ ∈ PS⊥ . We have

m
(∫ C

rep(κ(r))µ(dr)
)
=

∑
s∈|S|

x′s

(∫ ic(S)

rep(κ(r))µ(dr)
)
s

=
∑
s∈|S|

x′s

∫
rep(κ(r))sµ(dr)

=

∫ ( ∑
s∈|S|

x′sκ(r)(↑s)
)
µ(dr)

=

∫
m(rep(κ(r)))µ(dr) .

By Formula (10.1) we have ∥rep∥ ≤ 1 and hence rep ∈ ICones(FMeas(C), C).
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Conclusion

Elaborating on earlier work by the first author (together with Michele Pagani and Chris-
tine Tasson) on a denotational semantics based on measurable cones and by the second author
on a notion of convex QBS where integration is the fundamental algebraic operation [Geo21],
we have developed a theory of integration for measurable cones, introducing the category
of integrable cones and of linear morphisms preserving integrals. We have shown that this
category is a model of Intuitionistic LL featuring two exponential comonads; for defining the
tensor product and the exponentials we have used the special adjoint functor theorem which
avoids providing explicit combinatorial constructions of these objects.

The construction is parameterized by a small full subcategory Ar of the category of
measurable spaces and measurable functions. The model obtained in that way has many
pleasant properties.

• It contains the category of probabilistic coherence spaces as a full subcategory.
• It contains the category whose objects are those of Ar and whose morphisms are the
substochastic kernels as a full subcategory.

• For both exponentials, the associated Eilenberg Moore category contains Ar as a full
subcategory, if we assume that all the objects of Ar are standard Borel spaces which
btw. is a very natural and harmless requirement.

The two latter properties strongly rely on the fact that the morphisms of the underlying linear
category preserve integrals. The last one means that Ar can be considered as a category of
basic data-types (the objects of Ar) and basic operations on them (the morphisms of Ar).

In future work we will explain how this model can be used for interpreting call-by-value
or even call-by-push-value probabilistic functional programming languages with continuous
data-types (interpreted as the aforementioned coalgebras) as well as recursive types.
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editors, Automata, Languages and Programming, Fifth Colloquium, Udine, Italy, July 17-21,
1978, Proceedings, volume 62 of Lecture Notes in Computer Science, pages 72–89. Springer, 1978.
doi:10.1007/3-540-08860-1_7.
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Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 275–284. ACM, 2018.
doi:10.1145/3209108.3209198.

https://doi.org/10.1007/BF01563654
https://doi.org/10.1007/3-540-08860-1_7
https://doi.org/10.1145/3209108.3209198


Vol. 21:1 INTEGRATION IN CONES 1:97

[DE11] Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Information and Computation, 209(6):966–991, 2011. doi:10.1016/J.
IC.2011.02.001.

[DH00] Vincent Danos and Russell Harmer. Probabilistic Game Semantics. In 15th Annual IEEE Sympo-
sium on Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000, pages 204–
213. IEEE Computer Society, 2000. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=6908, doi:10.1109/LICS.2000.855770.

[Ehr16] Thomas Ehrhard. Call-By-Push-Value from a Linear Logic Point of View. In Peter Thiemann,
editor, Programming Languages and Systems - 25th European Symposium on Programming, ESOP
2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in
Computer Science, pages 202–228. Springer, 2016. doi:10.1007/978-3-662-49498-1\_9.

[Ehr20] Thomas Ehrhard. Cones as a model of intuitionistic linear logic. In Holger Hermanns, Lijun Zhang,
Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 370–383. ACM, 2020.
doi:10.1145/3373718.3394758.

[Ehr22] Thomas Ehrhard. Differentials and distances in probabilistic coherence spaces. Logical Methods in
Computer Science, 18(3), 2022. doi:10.46298/lmcs-18(3:2)2022.

[Ehr23] Thomas Ehrhard. Coherent differentiation. Mathematical Structures in Computer Science,
33(4–5):259–310, 2023. doi:10.1017/S0960129523000129.
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