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Abstract. To react to unforeseen circumstances or amend abnormal situations in communi-
cation-centric systems, programmers are in charge of “undoing” the interactions which led
to an undesired state. To assist this task, session-based languages can be endowed with
reversibility mechanisms. In this paper we propose a language enriched with programming
facilities to commit session interactions, to roll back the computation to a previous commit
point, and to abort the session. Rollbacks in our language always bring the system to
previous visited states and a rollback cannot bring the system back to a point prior to
the last commit. Programmers are relieved from the burden of ensuring that a rollback
never restores a checkpoint imposed by a session participant different from the rollback
requester. Such undesired situations are prevented at design-time (statically) by relying on
a decidable compliance check at the type level, implemented in MAUDE. We show that
the language satisfies error-freedom and progress of a session.

1. Introduction

Reversible computing [ACG`20, MSG`20] has gained interest for its application to different
fields: from modelling biological/chemical phenomena [KU18], to simulation [PP13], debug-
ging [Eng12, GLM14, LSU22] and modelling fault-tolerant systems [DK05, LLM`13, VS18].
Our interest focuses on this latter application and stems from the fact that reversibility can
be used to rigorously model, implement and revisit programming abstractions for reliable
software systems.

Recent works [BLd17, MP17, MP21, CDG17, TY15] have studied the effect of reversibil-
ity in communication-centric scenarios, as a way to correct faulty computations by bringing
back the system to a previous consistent state. In this setting, processes’ behaviours are
strongly disciplined by their types, prescribing the actions they have to perform within a
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session. A session consists of a structured series of message exchanges, whose flow can be
controlled via conditional choices, branching and recursion. Correctness of communication is
statically guaranteed by a framework based on a (session) type discipline [HLV`16]. None
of the aforementioned works addresses systems in which the participants can explicitly abort
the session, commit a computation and roll it back to a previous checkpoint. In this paper,
we aim at filling this gap. We explain below the distinctive aspects of our checkpoint-based
rollback recovery approach.

Linguistic primitives to explicitly program reversible sessions. We introduce three
primitives to: (i) commit a session, preventing undoing the interactions performed so far
along the session; (ii) roll back a session, restoring the last saved process checkpoints;
(iii) abort a session, to discard the session, and hence all interactions already performed
in it, thus allowing another session of the same protocol to start with possible different
participants. Notice that most proposals in the literature (e.g., [BDd14, BDLd16, BLd17])
only consider an abstract view, as they focus on reversible contracts (i.e., types). Instead,
we focus on programming primitives at process level, and use types for guaranteeing a safe
and consistent system evolution.

Asynchronous commits. Our commit primitive does not require a session-wide synchroni-
sation among all participants, as it is a local decision. However, its effect is on the whole
session, as it affects the other session participants. This means that each participant can
independently decide when to commit. Such flexibility comes at the cost of being error-prone,
especially considering that the programmer has not only to deal with the usual forward
executions, but also with the backward ones. Our type discipline allows for ruling out
programs which may lead to these errors. The key idea of our approach is that a session
participant executing a rollback action is interested in restoring the last checkpoint he/she
has committed. For the success of the rollback recovery it is irrelevant whether the ‘passive’
participants go back to their own last checkpoints. Instead, if the ‘active’ participant is
unable to restore the last checkpoint he/she has created, because it has been replaced by a
checkpoint imposed by another participant, the rollback recovery is considered unsatisfactory.

In our framework, programmers are relieved from the burden of ensuring the satisfaction
of rollbacks, since undesired situations are prevented at design time (statically) by relying on
a compliance check at the type level. To this end, we introduce cherry-pi (checkpoint-based
rollback recovery pi-calculus), a variant of the session-based π-calculus [YV07] enriched with
rollback recovery primitives. A key difference with respect to the standard binary type
discipline is the relaxation of the duality requirement. The types of two session participants
are not required to be dual, but they will be compared with respect to a compliance relation
(as in [BLd18]), which also takes into account the effects of commit and rollback actions.
Such relaxation also involves the requirements concerning selection and branching types,
and those concerning branches of conditional choices. The cherry-pi type system is used
to infer types of session participants, which are then combined together for the compliance
check.

Reversibility in cherry-pi is controlled via two specific primitives: a rollback one telling
when a reverse computation has to take place, and a commit one limiting the scope of a
potential reverse computation. This implies that the calculus is not fully reversible (i.e.,
backward computations are not always enabled), leading to have properties that are relaxed
and different with respect to other reversible calculi [DK04, CKV13, LMS10, TY15].We
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prove that cherry-pi satisfies the following properties: (i) a rollback always brings back
the system to a previous visited state and (ii) it is not possible to bring the computation
back to a point prior to the last checkpoint, which implies that our commits have a
persistent effect. Concerning soundness properties, we prove that (a) our compliance check
is decidable, (b) compliance-checked cherry-pi specifications never lead to communication
errors (e.g., a blocked communication where there is a receiver without the corresponding
sender), and (c) compliance-checked cherry-pi specifications never activate undesirable
rollbacks (according to our notion of rollback recovery mentioned above). Property (b)
resembles the type safety property of session-based calculi (see, e.g., [YV07]), while property
(c) is a new property specifically defined for cherry-pi. The technical development of
property proofs turns out to be more intricate than that of standard properties of session-
based calculi, due to the combined use of type and compliance checking. To demonstrate
feasibility and effectiveness of our rollback recovery approach, we have concretely implemented
the compliance check using the MAUDE [CDE`07] framework (the code is available at
https://github.com/tiezzi/cherry-pi).

Outline. Section 2 illustrates the key idea of our rollback recovery approach. Section 3
introduces the cherry-pi calculus. Section 4 introduces typing and compliance checking.
Section 5 illustrates the MAUDE implementation of the compliance checking. Section 6
presents the properties satisfied by cherry-pi. Section 7 shows the application of the
cherry-pi approach to a speculative execution scenario. Section 8 discusses related work.
Finally, Section 9 concludes the paper with future work. The appendix reports on the
omitted proofs.

This paper is a revised and enhanced version of [MTY23]. In particular:

‚ Sec. 3 has been extended with rules in Fig. 4 and 5, which are omitted in [MTY23], to
provide a complete account of the cherry-pi semantics.

‚ Sec. 4 has been extended with omitted rules (Fig. 7 and 10 are new, while Fig. 9 and
11 have been extended), to provide a full account of the cherry-pi typing discipline.
Moreover, the section includes the proof of Theorem 4.2.

‚ Sec. 6 has been extended by including full proofs of the results regarding the properties of
cherry-pi.

‚ Sec. 7 is new. It shows the cherry-pi approach at work on a new scenario to provide a
better understanding of the practical application of cherry-pi and, in particular, of the
MAUDE implementation of its type semantics.

‚ Sec. 8 has been revised and expanded, including the discussion of more recent related work
and a table (Tab. 1) providing a comparison of the related approaches in the literature.

‚ Finally, more commentary and explanations have been added throughout the paper, and
the whole presentation has been carefully refined.

2. A reversible video on demand service example

We discuss the motivations underlying our work by introducing our running example, a
Video on Demand (VOD) scenario. The key idea is that a rollback requester is satisfied only
if her restored checkpoint was set by herself. In Fig. 1(a), a service (S) offers to a user (U)
videos with two different quality levels, namely high definition (HD) and standard definition
(SD). After the login, U sends her video request, and receives the corresponding price and
metadata (actors, directors, description, etc.) from S. According to this information, U

https://github.com/tiezzi/cherry-pi
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Figure 1: VOD example: (a) a full description without commit actions; (b,d) runs with
undesired rollback; (c) a run with satisfactory rollback.

selects the video quality. Then, she receives, first, a short test video (to check the audio and
video quality in her device) and, finally, the requested video. If the vision of the HD test
video is not satisfactory, U can roll back to her last checkpoint to possibly change the video
quality, instead in the SD case U can abort the session.

Let us now add commit actions as in the run shown in Fig. 1(b). After receiving the
price, U commits, while S commits after the quality selection. In this scenario, however, if U
activates the rollback, she is unable to go back to the checkpoint she set with her commit
action because the actual effect of rollback is to restore the checkpoint set by the commit
action performed by S. Hence, U cannot use the rollback mechanism to undo her video
quality choice and select the SD video.

In the scenario in Fig. 1(c), instead, S commits after sending the price to U. In this case,
no matter who first performed the commit action, the rollback results to be satisfactory.
Also if S commits later, the checkpoint of U remains unchanged, as U performed no other
action between the two commits. This would not be the case if both U and S committed
after the communication of the metadata, as in Fig. 1(d). If S commits before U, no rollback
issue arises, but if U commits first it may happen that her internal decision is taken before S
commits. In this case, U would not be able to go back to the checkpoint set by herself, and
she would be unable to change the video quality.

These undesired rollbacks are caused by bad choices of commit points. We propose
a compliance check that identifies these situations at design time. Notably, our aim is to
provide programming constructs and underlying mechanisms that would be easy to use and
understand for the user. Thus, although it would be possible to define more expressive
constructs, such as commit and rollback actions specifying a label as a parameter (in a way
similar to the approaches introduced in [LMSS11, GLMT17]), we preferred to avoid them as
they would make the system’s behavior more intricate. In fact, such labelled actions would
behave as a sort of goto jump, which can lead to unmanageable spaghetti code.
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C ::= Collaborations
āpxq.P | apxq.P | C1 |C2 request, accept, parallel

P ::= Processes
x!xey.P | x?py : Sq.P output, input

| xŸ l.P | xŹ tl1 : P1, . . . , ln : Pnu selection, branching
| if e then P1 else P2 | X | µX.P | 0 choice, recursion, inact
| commit.P | roll | abort commit, roll, abort

e ::= v | `pe1, e2q | ^pe1, e2q | . . . Expressions

Figure 2: cherry-pi syntax.

3. The cherry-pi calculus

In this section, we introduce cherry-pi, a calculus (extending that in [YV07]) devised for
studying sessions equipped with our checkpoint-based rollback recovery mechanism.

3.1. Syntax. The syntax of the cherry-pi calculus relies on the following base sets: shared
channels (ranged over by a), used to initiate sessions; session channels (ranged over by s),
consisting of pairs of endpoints (ranged over, with a slight abuse of notation, by s, s̄) used
by the two parties to interact within an established session; labels (ranged over by l), used
to select and offer branching choices; values (ranged over by v), including booleans, integers
and strings (whose sorts, ranged over by S, are bool, int and str, respectively), which are
exchanged within a session; variables (ranged over by x, y, z), storing values and session
endpoints; process variables (ranged over by X), used for recursion.

Collaborations, ranged over by C, are given by the grammar in Fig. 2. The key ingredient
of the calculus is the set of actions for controlling the session rollback. Actions commit, roll
and abort are used, respectively, to commit a session (producing a checkpoint for each session
participant), to trigger the session rollback (restoring the last committed checkpoints) or to
abort the whole session. We discuss below the other constructs of the calculus, which are
those typically used for session-based programming [HVK98]. A cherry-pi collaboration is
a collection (more specifically, a parallel composition) of session initiators, i.e. terms ready
to initiate sessions by synchronising on shared channels. A synchronisation of two initiators
āpxq.P and apyq.Q causes the generation of a fresh session channel, whose endpoints replace
variables x and y in order to be used by the triggered processes P and Q, respectively, for
later communications. No subordinate sessions can be initiated within a running session.

When a session is started, each participant executes a process. Processes are built up
from the empty process 0 (which can do nothing) and basic actions by means of action
prefix . (which allows the process on the right of the . operator to proceed once the
action on the left of the . operator is executed), conditional choice if e then else (which
has the usual meaning), and recursion µX. (which behaves as its process argument where
the occurrences of the process variable X are replaced by the recursion process itself).
Actions x!xey and y?pz : Sq denote output and input via session endpoints replacing x and
y, respectively. These communication primitives realise the standard synchronous message
passing, where messages result from the evaluation of expressions, which are defined by
means of standard operators on boolean, integer and string values. Variables that are
arguments of input actions are (statically) typed by sorts. There is no need for statically
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typing the variables occurring as arguments of session initiating actions, as they are always
replaced by session endpoints. Notice that in cherry-pi the exchanged values cannot be
endpoints, meaning that session delegation (i.e., channel-passing) is not considered1. Actions
x Ÿ l and x Ź tl1 : P1, . . . , ln : Pnu denote selection and branching respectively (where
l1, . . . , ln are pairwise distinct).

Example 3.1. Let us consider the VOD example informally introduced in Sec. 2. The
scenario described in Fig. 1(a) with commit actions placed as in Fig. 1(b) is rendered in
cherry-pi as CUS “ loginpxq. PU | loginpyq. PS, where:

PU “ x!xvreqy. x?pxprice : intq. commit. x?pxmeta : strq. if pfevalpxprice, xmetaqq

then xŸ lHD. x?pxtestHD : strq.
pif pfHDpxtestHDqq then x?pxvideoHD : strq.0 else rollq

else xŸ lSD. x?pxtestSD : strq.
pif pfSDpxtestSDqq then x?pxvideoSD : strq.0 else abortq

PS “ y?pyreq : strq. y!xfpricepyreqqy. y!xfmetapyreqqy.
y Ź t lHD : commit. y!xftestHDpyreqqy. y!xfvideoHDpyreqqy.0 ,

lSD : commit. y!xftestSDpyreqqy. y!xfvideoSDpyreqqy.0 u

Notice that expressions used for decisions and computations are abstracted by relations
fnp¨q, whose definitions are left unspecified. Considering the placement of commit actions
depicted in Fig. 1(c), the cherry-pi specification of the service’s process becomes:

y?pyreq : strq. y!xfpricepyreqqy. commit. y!xfmetapyreqqy.
y Ź t lHD : y!xftestHDpyreqqy. y!xfvideoHDpyreqqy.0 ,

lSD : y!xftestSDpyreqqy. y!xfvideoSDpyreqqy.0 u

Finally, considering the placement of commit actions depicted in Fig. 1(d), the cherry-pi
specification of the user’s process becomes:

x!xvreqy. x?pxprice : intq. x?pxmeta : strq. commit. if pfevalpxprice, xmetaqq then . . .

3.2. Semantics. The operational semantics of cherry-pi is defined for runtime terms,
generated by the extended syntax of the calculus in Fig. 3 (new constructs are highlighted
by a grey background). We use k to denote generic session endpoints, i.e. s or s̄, and r to
denote session identifiers, i.e. session endpoints and variables. Those runtime terms that
can be also generated by the grammar in Fig. 2 are called initial collaborations.

At collaboration level, two constructs are introduced:
`

νs : C1

˘

C2 represents a session
along the channel s with associated starting checkpoint C1 (corresponding to the collaboration
that has initialised the session) and code C2; xP1y § P2 represents a log storing the checkpoint
P1 associated to the code P2. At process level, the only difference is that session identifiers
r are used as first argument of communicating actions.

Bindings are defined as follows: āpxq.P , apxq.P , and r?px : Sq.P bind variable x in
P ;

`

νs : C1

˘

C2 binds session endpoints s and s̄ in C2 (in this respect, it acts similarly to
the restriction of π-calculus, but its scope cannot be extended/extruded to avoid involving

1Notably, even if session delegation is not supported, we cannot just consider single binary sessions
avoiding the notion of collaborations. In fact, collaborations allows us to consider non-determinism at the
level of session establishment (e.g., think of a client and two servers providing the same service).
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C ::= āpxq.P | apxq.P | C1 |C2 |
`

νs : C1

˘

C2 | xP1y § P2 Collaborations

P ::= r !xey.P | r?py : Sq.P | rŸ l.P | rŹ tl1 :P1,. . ., ln :Pnu | ¨ ¨ ¨ Processes

Figure 3: cherry-pi runtime syntax (the rest of processes P and expressions e are as in
Fig. 2).

k!xey.P
k!xvy
ÝÝÝÑ P (e Ó v) [P-Snd] k?px : Sq.P

k?pxq
ÝÝÝÑ P [P-Rcv]

k Ÿ l.P
kŸl
ÝÝÑ P [P-Sel] k Ź tl1 :P1, . . . , ln :Pnu

kŹli
ÝÝÝÑ Pi (1ď iďn) [P-Brn]

if e then P1 else P2
τ
ÝÑ P1 (e Ó true)

if e then P1 else P2
τ
ÝÑ P2 (e Ó false)

[P-IfT]

[P-IfF]

commit.P
cmt
ÝÝÑ P [P-Cmt] roll

roll
ÝÝÑ 0 [P-Rll] abort

abt
ÝÝÑ 0 [P-Abt]

Figure 4: cherry-pi semantics: auxiliary labelled relation.

processes that are not part of the session in the rollback effect); and µX.P binds process
variable X in P . The occurrence of a name (where name stand for variable, process variable
and session endpoint) is free if it is not bound; we assume that bound names are pairwise
distinct. Two terms are alpha-equivalent if one can be obtained from the other by consistently
renaming bound names; as usual, we identify terms up to alpha-equivalence. Communication
gives rise to substitutions of variables with values: we denote with P rv{xs the process
obtained by replacing each free occurrence of the variable x in P by the value v. Similarly,
P rQ{Xs (resp. P rk{xs) denotes the process obtained by replacing each free occurrence of X
(resp. x) in P by the process Q (resp. generic session identifier k). The semantics of the
calculus is defined for closed terms, i.e. terms without free variables and process variables.

Not all processes allowed by the extended syntax correspond to meaningful collaborations.
In a general term the processes stored in logs may not be consistent with the computation
that has taken place. We get rid of such malformed terms, as we will only consider those
runtime terms, called reachable collaborations, obtained by means of reductions from initial
collaborations.

The operational semantics of cherry-pi is given in terms of a standard structural
congruence ” (given in Fig. 5) and a reduction relation ↣ given as the union of the
forward reduction relation ↠ and backward reduction relation ù. The definition of the

relation ↠ over closed collaborations relies on an auxiliary labelled relation
ℓ
ÝÑ over processes

that specifies the actions that processes can initially perform and the continuation process
obtained after each such action. We consider all reduction relations closed under structural
congruence. Given a reduction relation R, we will indicate with R` and R˚ respectively
the transitive and the reflexive-transitive closure of R.

The operational rules defining the auxiliary labelled relation are in Fig. 4. Action label
ℓ stands for either k!xvy, k?pxq, kŸ l, kŹ l, cmt , roll , abt , or τ . The meaning of the rules is
straightforward, as they just produce as labels the actions currently enabled in the process.
In doing that, expressions of sending actions and conditional choices are evaluated (auxiliary
function e Ó v says that closed expression e evaluates to value v).
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C1 | C2 ” C2 | C1 pC1 | C2q | C3 ” C1 | pC2 | C3q µX.P ” P rµX.P {Xs

Figure 5: Structural congruence for cherry-pi

The operational rules defining the reduction relation ↣ are reported in Fig. 6. We
comment on salient points. Once a session is created (via a synchronisation along a shared
channel a), its initiating collaboration is stored in the session construct (rule [F-Con]); note
how a fresh session channel s is generated as the result of the interaction. Communication,
branching selection and internal conditional choice proceed as usual, without affecting logs.
Specifically, communication takes place when an output and an input action synchronise
along a session channel (rule [F-Com]); the delivery of the value v (resulting from the
evaluation of the expression argument of the output action, rule [P-Snd]) is expressed by the
application of a substitution rv{xs to the continuation of the receiving process. Branching
selection results from the synchronisation on a label l (rule [F-Lab]); note that only one of
the branches is selected while the remaining ones are discarded (rule [P-Brn]). Internal
conditional choice behaves in a standard way (rule [F-If]); as usual, the choice depends by
the positive (rule [P-IfT]) or negative (rule [P-IfF]) evaluation of the boolean expression
argument of the conditional choice construct. A commit action updates the checkpoint
of a session, by replacing the processes stored in the logs of the two involved parties (rule
[F-Cmt]). Notably, this form of commit is asynchronous as it does not require the passive
participant to explicitly synchronise with the active participant by means of a primitive for
accepting the commit. On the other hand, under the hood, a low-level implementation of
this mechanism would synchronously update the logs of the involved parties. Conversely,
a rollback action restores the processes in the two logs (rule [B-Rll]). The abort action
(rule [B-Abt]), instead, kills the session and restores the collaboration stored in the session
construct formed by the two initiators that have started the session; this allows the initiators
to be involved in new sessions. The other rules simply extend the standard parallel and
restriction rules to forward and backward relations.

Example 3.2. Consider the first cherry-pi specification of the VOD scenario given in Ex. 3.1.
In the initial state CUS of the collaboration, U and S can synchronise in order to initialise
the session, thus evolving to C1

US “
`

νs : CUS

˘

pxPUrs̄{xsy § PUrs̄{xs | xPSrs{ysy § PSrs{ysq.
Let us consider now a possible run of the session. After three reduction steps, U executes

the commit action, obtaining the following runtime term:

C2
US“

`

νs : CUS

˘

pxP 1
Uy § P 1

U | xP
1
Sy § P 1

Sq

P 1
U“ s̄?pxmeta : strq. if pfevalpvprice, xmetaqq then . . . P 1

S “ s!xfmetapvreqqy. y Ź t . . . u

After four further reduction steps, U chooses the HD video quality and S commits as well;
the resulting runtime collaboration is as follows:

C3
US “

`

νs : CUS

˘

pxP 2
U y § P 2

U | xP 2
S y § P 2

S q

P 2
U “ s̄?pxtestHD : strq. if pfHDpxtestHDqq then s̄?pxvideoHD : strq.0 else roll

P 2
S “ s!xftestHDpvreqqy. s!xfvideoHDpvreqqy.0

In the next reductions, U evaluates the test video and decides to revert the session execution,
resulting in C4

US “
`

νs : CUS

˘

pxP 2
U y § roll | xP 2

S y § s!xfvideoHDpvreqqy.0q. The execution of

the roll action restores the checkpoints P 2
U and P 2

S , that is C
4
US ù C3

US. After the rollback,
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āpx1q.P1 | apx2q.P2 ↠
`

νs : pāpx1q.P1 | apx2q.P2q
˘

[F-Con]
pxP1rs̄{x1sy§P1rs̄{x1s | xP2rs{x2sy§P2rs{x2sq

P1
k̄!xvy
ÝÝÝÑ P 1

1 P2
k?pxq
ÝÝÝÑ P 1

2

xQ1y§P1 | xQ2y§P2 ↠ xQ1y§P
1
1 | xQ2y§P

1
2rv{xs

[F-Com]
C1 ↠ C 1

1

C1 |C2 ↠ C 1
1 |C2

[F-Par]

P1
k̄Ÿl
ÝÝÑ P 1

1 P2
kŹl
ÝÝÑ P 1

2

xQ1y§P1 | xQ2y§P2 ↠ xQ1y§P
1
1 | xQ2y§P

1
2

[F-Lab]
C2 ↠ C 1

2
`

νs : C1

˘

C2 ↠
`

νs : C1

˘

C 1
2

[F-Res]

P1
cmt
ÝÝÑ P 1

1

xQ1y § P1 | xQ2y § P2 ↠ xP 1
1y § P 1

1 | xP2y § P2
[F-Cmt] P

τ
ÝÑ P 1

xQy § P ↠ xQy § P 1
[F-If]

P1
roll
ÝÝÑ P 1

1

xQ1y § P1 | xQ2y § P2 ù xQ1y § Q1 | xQ2y § Q2
[B-Rll]

C1 ù C 1
1

C1 |C2 ù C 1
1 |C2

[B-Par]

P1
abt
ÝÝÑ P 1

1
`

νs : C
˘

pxQ1y § P1 | xQ2y § P2q ù C
[B-Abt]

C2 ù C 1
2

`

νs : C1

˘

C2 ù
`

νs : C1

˘

C 1
2

[B-Res]

Figure 6: cherry-pi semantics: forward and backward reduction relations.

U is not able to change the video quality as her own commit point would have permitted; in
fact, it holds C4

US ù{ C2
US.

It is worth noticing that our approach does not guarantee the avoidance of infinite
loops due to taking the same decisions after rollbacks. However, cherry-pi allows the
programmer to specify appropriate conditions to exit from these loops. More specifically,
when a checkpoint is restored, the state of the interaction protocol is reverted at the
committed configuration and, hence, the variables substituted by the undone interactions
(see rule [F-COM] in Fig. 6) are restored as well. Anyway, internal choice decisions result
from the evaluation of expressions that predicate not only on these (protocol) variables, but
also on information concerning the system state and decisions taken by external actors (e.g.,
humans) that is not subject to the reversibility effect. Relying on this kind of information
is possible to make a decision to exit from a loop. These decisions are abstracted in our
example scenarios by means of relations whose definitions are left unspecified. For example,
in the VOD scenario, the selection of the video quality (HD vs. SD) taken by the user
depends on video’s price and metadata (stored in the corresponding protocol variables) but
also on the budget and the personal opinion of the user herself; on the whole, the selection
decision is abstracted by means of the relation fevalpq, which will return a different result
after the rollback even if invoked with the same input data. In fact, despite the interaction
protocol has been reverted, the user remembers that the HD video quality was not a good
choice. There are different ways to keep track of information of a reverted computation.
One could use alternatives [LLM`13] or an external oracle [Vas21]. The management of the
information outside the one stored in the protocol variables is out of the scope of this work;
we leave this for future investigation.
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S ::= bool | int | str Sorts

T ::= !rSs.T | ?rSs.T | Ÿrls.T | Źrl1 : T1, . . . , ln : Tns Session types

| T1 ‘ T2 | t | µt.T | end | err | cmt.T | roll | abt

Figure 7: cherry-pi type syntax.

4. Rollback safety

The operational semantics of cherry-pi provides a description of the functioning of the
primitives for programming the checkpoint-based rollback recovery in a session-based lan-
guage. However, as shown in Ex. 3.2, it does not guarantee high-level properties about the
safe execution of the rollback. To prevent such undesired rollbacks, we propose the use of
compliance checking, to be performed at design time. This check is not done on the full
system specification, but only at the level of session types. In this way, we abstract as sorts
the values exchanged via communication actions at process level. This not only permits
formulating the compliance check more simply but, even more importantly, it ensures that
the semantics produces finite LTSs, thus making the compliance check decidable.

4.1. Session types and typing. The syntax of the cherry-pi session types T is defined
in Fig. 7. Type !rSs.T represents the behaviour of first outputting a value of sort S (i.e.,
bool, int or str), then performing the actions prescribed by type T . Type ?rSs.T is the
dual one, where a value is received instead of sent. Type Ÿrls.T represents the behaviour
that selects the label l and then behaves as T . Type Źrl1 : T1, . . . , ln : Tns describes a
branching behaviour: it waits for one of the n options to be selected, and behaves as type
Ti if the i-th label is selected (external choice). Type T1 ‘ T2 behaves as either T1 or T2

(internal choice). Type µt.T represents a recursive behaviour that starts by doing T and,
when variable t is encountered, recurs to T again. Types end and err represent inaction
and faulty termination, respectively. Type cmt.T represents a commit action followed by
the actions prescribed by type T . Finally, types roll and abt represent rollback and abort
actions. Notably, cherry-pi session types are defined as in [YV07], but session delegation
(i.e., channel-passing) is not supported while there are additional types corresponding to the
reversibility actions. Concerning choice, the type discipline, as in [YV07], supports internal
choice (corresponding to the if-then-else construct at process level) and external choice
(corresponding to a label synchronization via interaction between selection and branching
constructs at process level). Therefore, no other forms of choice are supported and, differently
from other works (e.g., [BDd14, BDLd16, BLd17]), choices are not implicit checkpoints and
rollback is explicitly triggered.

The cherry-pi type system does not perform compliance checks, but only infers the
types of collaboration participants, which will be then checked together according to the
compliance relation. Typing judgements are of the form C § A, where A, called type
associations, is a set of session type associations of the form â : T , where â stands for either
ā or a. Intuitively, C § A indicates that from the collaboration C the type associations in
A are inferred. The definition of the type system for these judgements relies on auxiliary
typing judgements for processes, of the form Θ;Γ $ P § ∆, where Θ, Γ and ∆, called
basis, sorting and typing respectively, are finite partial maps from process variables to type
variables, from variables to sorts, and from variables to types, respectively. Updates of basis
and sorting are denoted, respectively, by Θ ¨X : t and Γ ¨y : S, where X R dompΘq, t R codpΘq
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H;H $P § x : T

āpxq.P § tā : T u
[T-Req]

H;H $P § x : T

apxq.P § ta : T u
[T-Acc]

C1 § A1 C2 § A2

C1 | C2 § A1 YA2
[T-Par]

Figure 8: Typing system for cherry-pi collaborations.

and y R dompΓq. The judgement Θ; Γ $ P § ∆ stands for “under the environment Θ; Γ,
process P has typing ∆”. In its own turn, the typing of processes relies on auxiliary
judgments for expressions, of the form Γ $ e § S. The axioms and rules defining the
typing system for cherry-pi collaborations, processes and expressions are given in Fig. 8, 9,
and 10, respectively. The type system is defined only for initial collaborations, i.e. for
terms generated by the grammar in Fig. 2. Other runtime collaborations are not considered
here, as no check will be performed at runtime. We comment on salient points. Typing
rules at collaboration level simply collect the type associations of session initiators in the
collaboration. Rules at process level instead determine the session type corresponding to
each process, by mapping each process operator to the corresponding type operator. Data
and expression used in communication actions are abstracted as sorts, and a conditional
choice is rendered as an internal non-deterministic choice. Typing rules for expressions are
standard.

Γ $ e § S Θ;Γ $ P § x : T

Θ;Γ $ x!xey.P § x :!rSs.T
[T-Snd]

Θ; Γ ¨ y : S $ P § x : T

Θ;Γ $ x?py : Sq.P § x :?rSs.T
[T-Rcv]

Θ; Γ $ 0 § x : end [T-Inact]
Θ; Γ $ P § x : T

Θ;Γ $ xŸ l.P § x : Ÿrls.T
[T-Sel]

Θ; Γ $ P1 § x : T1 . . . Θ;Γ $ Pn § x : Tn

Θ;Γ $ xŹ tl1 : P1, . . . , ln : Pnu § x : Źrl1 : T1, . . . , ln : Tns
[T-Br]

Γ $ e § bool Θ;Γ $ P1 § x : T1 Θ;Γ $ P2 § x : T2

Θ;Γ $ if e then P1 else P2 § x : T1 ‘ T2
[T-If]

Θ ¨X : t; Γ $ X § t [T-Pvar]
Θ ¨X : t; Γ $ P § T

Θ;Γ $ µX.P § µt.T
[T-Rec]

Θ; Γ $ P § x : T

Θ;Γ $ commit.P § x : cmt.T
[T-Cmt]

Θ; Γ $ roll § x : roll [T-Rll] Θ; Γ $ abort § x : abt [T-Abt]

Figure 9: Typing system for cherry-pi processes.

4.2. Compliance checking. To check compliance between pairs of session parties, we
consider type configurations of the form pT, T 1q : xT̃1y § T2 ∥ xT̃3y § T4, consisting in a pair
pT, T 1q of session types, corresponding to the types of the parties at the initiation of the

session, and in the parallel composition of two pairs xT̃cy § T , where T is the session type of

a party and T̃c is the type of the party’s checkpoint. We use T̃ to denote either a type T ,
representing a checkpoint committed by the party, or T , representing a checkpoint imposed
by the other party. The semantics of type configurations, necessary for the definition of the



2:12 C. A. Mezzina, F. Tiezzi, and N. Yoshida Vol. 21:1

Γ $ true § bool [T-Booltt ] Γ $ false § bool [T-Boolff ]

Γ ¨ x : S $ x § S [T-Var] Γ $ 1 § int [T-Int] Γ $ “a” § str [T-Str]

Γ $ e1 § int Γ $ e2 § int

Γ $ `pe1, e2q § int
[T-Sum]

Γ $ e1 § bool Γ $ e2 § bool

Γ $ ^pe1, e2q § bool
[T-And]

Figure 10: Typing system for cherry-pi expressions (excerpt of rules).

compliance relation, is given in Fig. 11, where label λ stands for either !rSs, ?rSs, Ÿ l, Ź l,
τ , cmt, roll, or abt. We comment on the relevant rules. In case of a commit action, the
checkpoints of both parties are updated, and the one of the passive party (i.e., the party
that has not performed the commit) is marked as ‘imposed’ (rule [TS-Cmt1]). However, if
the passive party did not perform any action from its current checkpoint, this checkpoint
is not overwritten by the active party (rule [TS-Cmt2]), as discussed in Sec. 2 (Fig. 1(c)).
In case of a roll action (rule [TS-Rll1]), the reduction step is performed only if the active
party (i.e., the party that has performed the rollback action) has a non-imposed checkpoint;
otherwise, the configuration cannot proceed with the rollback and reduces to an erroneous
configuration (rule [TS-Rll2]). Finally, in case of abort (rule [TS-Abt1]), the configuration
goes back to the initial state; this allows the type computation to proceed, in order not to
affect the compliance check between the two parties.

On top of the above type semantics, we define the compliance relation, inspired by the
relation in [BDLd16], and prove its decidability.

Definition 4.1 (Compliance). Relation - on configurations is defined as follows: pT, T 1q :

xŨ1y§T1 - xŨ2y§T2 holds if for all U
1
1, T

1
1, U

1
2, T

1
2 such that pT, T 1q : xŨ1y§T1 ∥ xŨ2y§T2 ÞÝÑ

˚

pT, T 1q : xŨ 1
1y § T 1

1 ∥ xŨ 1
2y § T 1

2 ÞÝÑ{ we have that T 1
1 “ T 1

2 “ end. Two types T1 and T2 are
compliant, written T1 - T2, if pT1, T2q : xT1y § T1 - xT2y § T2.

Theorem 4.2. Let T1 and T2 be two session types, checking if T1 - T2 holds is decidable.

Proof. By Def. 4.1, checking T1 - T2 consists in checking that types T 1
1 and T 1

2 of each

configuration pT1, T2q : xŨ 1
1y § T 1

1 ∥ xŨ 1
2y § T 1

2 such that pT1, T2q : xT1y § T1 ∥ xT2y § T2 ÞÝÑ
˚

pT1, T2q : xŨ 1
1y § T 1

1 ∥ xŨ 1
2y § T 1

2 ÞÝÑ{ (i.e., type configurations that are reachable from the
initial one and that cannot further evolve) are end types. Thus, to prove that the compliance
check is decidable we have to show that the number of these reachable configurations is finite.
Let us consider the transition system TS “ xS,Ry associated to the type configuration
t “ pT1, T2q : xT1y § T1 ∥ xT2y § T2 by the reduction semantics of types (Fig. 11): the set
S of states corresponds to the set of type configurations reachable from t, i.e. S “ t t1 |

t ÞÝÑ˚ t1 u, while the set R of system transitions corresponds to set of the type reductions
involving configurations in S, i.e. R “ tpt1, t2q P S ˆ S | t1 ÞÝÑ t2u. Hence, checking
T1 - T2 boils down to check the type configurations corresponding to the leaves (i.e., states
without outgoing transitions) of TS. Specifically, given a leaf of TS corresponding to

pT1, T2q : xṼ1y § V2 ∥ xṼ3y § V4, we have to check if V2 “ V4 “ end. The decidability of
this check therefore depends on the finiteness of TS. This result is ensured by the fact
that: : (i) backward reductions connect states of TS only to previously visited states of TS
(Theorem 6.5), and (ii) our language of types (Fig. 7) corresponds to a CCS-like process
algebra without static operators (i.e., parallel and restriction operators) within recursion
(see [Mil89, Sec. 7.5]).
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!rSs.T
!rSs
ÝÝÑ T [TS-Snd] ?rSs.T

?rSs
ÝÝÑ T [TS-Rcv] Ÿrls.T

Ÿ l
ÝÝÑ T [TS-Sel]

Źrl1 : T1, . . . , ln : Tns
Ź li
ÝÝÑ Ti p1ď iďnq [TS-Br] T rµt.T {ts

λ
ÝÑ T 1

µt.T
λ
ÝÑ T 1

[TS-rec]

T1 ‘ T2
τ
ÝÑ T1 [TS-If1] T1 ‘ T2

τ
ÝÑ T2 [TS-If2]

cmt.T
cmt
ÝÝÑ T [TS-Cmt] roll

roll
ÝÝÑ end [TS-Rll] abt

abt
ÝÝÑ end [TS-Abt]

T1
τ
ÝÑ T 1

1

pT, T 1q : xŨ1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xŨ1y § T 1
1 ∥ xŨ2y § T2

[TS-Tau]

T1
!rSs
ÝÝÑ T 1

1 T2
?rSs
ÝÝÑ T 1

2

pT, T 1q : xŨ1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xŨ1y § T 1
1 ∥ xŨ2y § T 1

2

[TS-Com]

T1
Ÿ l
ÝÝÑ T 1

1 T2
Ź l
ÝÝÑ T 1

2

pT, T 1q : xŨ1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xŨ1y § T 1
1 ∥ xŨ2y § T 1

2

[TS-Lab]

T1
cmt
ÝÝÑ T 1

1 Ũ2 ‰ T2

pT, T 1q : xŨ1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xT 1
1y § T 1

1 ∥ xT2y § T2

[TS-Cmt1]

T1
cmt
ÝÝÑ T 1

1 Ũ2 “ T2

pT, T 1q : xŨ1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xT 1
1y § T 1

1 ∥ xŨ2y § T2

[TS-Cmt2]

T1
roll
ÝÝÑ T 1

1

pT, T 1q : xU1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xU1y § U1 ∥ xŨ2y § U2

[TS-Rll1]

T1
roll
ÝÝÑ T 1

1

pT, T 1q : xU1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xU1y § err ∥ xŨ2y § err
[TS-Rll2]

T1
abt
ÝÝÑ T 1

1

pT, T 1q : xŨ1y § T1 ∥ xŨ2y § T2 ÞÝÑ pT, T 1q : xT y § T ∥ xT 1y § T 1
[TS-Abt1]

Figure 11: Semantics of types and type configurations (symmetric rules for configurations
are omitted).

The compliance relation is used to define the notion of rollback safety.

Definition 4.3 (Rollback safety). Let C be an initial collaboration, then C is rollback safe
(shortened roll-safe) if C § A and for all pairs ā : T1 and a : T2 in A we have T1 - T2.

Example 4.4. Let us consider again the VOD example. As expected, the first cherry-pi
collaboration defined in Ex. 3.1, corresponding to the scenario described in Fig. 1(b), is
not rollback safe, because the types of the two parties are not compliant. Indeed, the
session types TU and TS associated by the type system to the user and the service processes,
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respectively, are as follows:

TU “ !rstrs. ?rints. cmt. ?rstrs. pŸrlHDs. ?rstrs. p ?rstrs. end ‘ roll q

‘ Ÿ rlSDs. ?rstrs. p ?rstrs. end ‘ abt q q

TS “ ?rstrs. !rints. !rstrs. Ź rlHD : cmt. !rstrs. !rstrs. end ,
lSD : cmt. !rstrs. !rstrs. ends

Thus, the resulting initial configuration is pTU, TSq : xTUy § TU ∥ xTSy § TS, which can evolve
to the configuration pTU, TSq : xT y § roll ∥ xUy§!rstrs.end, with T “?rstrs. p?rstrs. end ‘
rollq and U “!rstrs. !rstrs. end. This configuration evolves to pTU, TSq : xT y§err ∥ xUy§err,
which cannot further evolve and is not in a completed state (in fact, type err is different
from end), meaning that TU and TS are not compliant.

In the scenario described in Fig. 1(c), instead, the type of the server process is as follows:
T 1
S “ ?rstrs. !rints. cmt. !rstrs. Ź rlHD : !rstrs. !rstrs. end , lSD : !rstrs. !rstrs. ends and we

have TU - T 1
S. Finally, the types of the processes depicted in Fig. 1(d) are:

T 1
U “ !rstrs. ?rints. ?rstrs. cmt. pŸrlHDs. . . . ‘ ŸrlSDs. . . . q

T 2
S “ ?rstrs. !rints. !rstrs. cmt.Ź rlHD : !rstrs. !rstrs. end, lSD : !rstrs. !rstrs. ends

and we have T 1
U -{ T 2

S . Indeed, the corresponding initial configuration can evolve to the
configuration pT 1

U, T
2
S q : xŸrlHDs. . . .y § roll ∥ xŹrlHD : . . . , lSD : . . .sy§!rstrs.end, which

again evolves to a configuration that is not in a completed state.

5. MAUDE implementation.

To show the feasibility of our approach, we have implemented the semantics of type configu-
rations in Fig. 11 in the MAUDE framework [CDE`07]. MAUDE provides an instantiation
of rewriting logic [Mes92] and it has been used to implement the semantics of several formal
languages [Mes12].

The syntax of cherry-pi types and type configurations is specified by defining algebraic
data types, while transitions and reductions are rendered as rewrites and, hence, inference
rules are given in terms of (conditional) rewrite rules. Since MAUDE specifications are
executable, we have obtained in this way an interpreter for cherry-pi type configurations,
which permits to explore the reductions arising from the initial configuration of two given
session types.

Our implementation consists of two MAUDE modules. The CHERRY-TYPES-SYNTAX
module provides the definition of the sorts that characterise the syntax of cherry-pi types,
such as session types, selection/branching labels, type variables and type configurations. In
particular, basic terms of session types are rendered as constant operations on the sort Type;
e.g., the roll type is defined as

op roll : -> Type .

The other syntactic operators are instead defined as operations with one or more arguments;
e.g., the output type takes as input a Sort and a continuation type:

op ![_]._ : Sort Type -> Type [frozen prec 25] .
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To prevent undesired rewrites inside operator arguments, following the approach in [VM02],
we have declared these operations as frozen. The prec attribute has been used to define
the precedence among operators.

The CHERRY-TYPES-SEMANTICS module provides rewrite rules, and additional op-
erators and equations, to define the cherry-pi type semantics. For example, the operational
rule [TS-Snd] is rendered as follows:

rl [TS-Snd] : ![S].T => {![S]}T .

The correspondence between the operational rule and the rewrite rule is one-to-one; the only
peculiarity is the fact that, since rewrites have no labels, we have made the transition label
part of the resulting term. Reduction rules for type configurations are instead rendered
in terms of conditional rewrite rules with rewrites in their conditions. For example, the
[TS-Com] rule is rendered as:

crl [TS-Com] :

init(T,T’) CT1 > T1 || CT2 > T2 => init(T,T’) CT1 > T1’ || CT2 > T2’

if T1 => {![S]}T1 ’ /\ T2 => {?[S]}T2’ .

Again, there is a close correspondence between the operational rule and the rewrite one.
The compliance check between two session types can be then conveniently realised on

top of the implementation described above by resorting to the MAUDE command search.
This permits indeed to explore the state space of the configurations reachable from an initial
configuration. Specifically, the compliance check between types T1 and T2 is rendered as
follows:

search

init(T1 ,T2) ckp(T1) > T1 || ckp(T2) > T2

=>!

init(T:Type ,T’:Type) CT1:CkpType > T1 ’:Type || CT2:CkpType > T2 ’:Type

such that T1’ =/= end or T2 ’ =/= end .

This command searches for all terminal states (=>!), i.e. states that cannot be rewritten
any more (see ÞÝÑ{ in Def. 4.1), and checks if at least one of the two session types in the
corresponding configurations (T1’ and T2’) is different from the end type. Thus, if this
search has no solution, T1 and T2 are compliant; otherwise, they are not compliant and a
violating configuration is returned.

Example 5.1. Let us consider the cherry-pi types defined in Ex. 4.4 for the scenario
described in Fig. 1(b). In our MAUDE implementation of the type syntax, the session types
TU and TS, and the corresponding initial type configuration, are rendered as follows:

eq Tuser = ![str]. ?[int]. cmt. ?[str].

((sel[’hd]. ?[str]. ((?[ str]. end) (+) roll))

(+) (sel[’sd]. ?[str]. ((?[ str]. end) (+) abt))) .

eq Tservice = ?[str]. ![int]. ![str].

brn[brnEl(’hd, cmt. ![str]. ![str]. end);

brnEl(’sd , cmt. ![str]. ![str]. end)] .

eq InitConfig = init(Tuser ,Tservice)

ckp(Tuser) > Tuser || ckp(Tservice) > Tservice .

where (+) represents the internal choice operator, sel the selection operator, brn the branch-
ing operator, brnEl an option offered in a branching, and ckp a non-imposed checkpoint.
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The compliance between the two session types can be checked by loading the two modules
of our MAUDE implementation, and executing the following command:

search InitConfig

=>!

init(T:Type ,T’:Type) CT1:CkpType > T1:Type || CT2:CkpType > T2:Type

such that T1 =/= end or T2 =/= end .

This search command returns the following solution:

CT1 --> ickp (?[str]. ((?[ str]. end )(+) roll))

T1 --> err

CT2 --> ckp(![ str]. ![str]. end)

T2 --> err

As explained in Ex. 4.4, the two types are not compliant. Indeed, the configuration above is
a terminal state, and T1 and T2 are clearly different from end.

The scenario in Fig. 1(c) is rendered by the following implementation of the service
type:

eq Tservice ’ = ?[str]. ![int]. cmt. ![str].

brn[brnEl(’hd, ![str]. ![str]. end);

brnEl(’sd , ![str]. ![str]. end)] .

In this case, as expected, the search command returns:

No solution.

meaning that types Tuser and Tservice’ are compliant. Finally, the search command
applied to the type configuration related to the scenario depicted in Fig. 1(d) returns a
solution, meaning that in that case the user and service types are not compliant.

6. Properties of cherry-pi

This section presents the results regarding the properties of cherry-pi. The statement of
some properties exploits labelled transitions that permit to easily distinguish the execution
of commit and rollback actions from the other ones. To this end, we can instrument the
reduction semantics of collaborations by means of labels of the form cmt s, roll s and abt s,
indicating the rule used to derive the reduction and the session on which such operation has

been done. When we do not want to distinguish the applied rule we will write C
s
↣ C 1 to

indicate that a reduction is taking plase on session s.

6.1. Useful lemmata. We now introduce a couple of results that will allow us to focus on
one session per time, even if there could be multiple concurrent sessions running together.
The first of such results tells us that reductions taking place on different sessions can be
swapped. Formally:

Lemma 6.1 (Swap Lemma). Let C be a collaboration and s and r two sessions. If

C
s
↣ C1

r
↣ C2 then there exists a collaboration C3 such that C

r
↣ C3

s
↣ C2.

Proof. By case analysis on the reductions
s
↣ and

r
↣.

All the reductions taking place on a session s can be put all together in sequence.
Formally:
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Lemma 6.2. Let C be a collaboration. If C ↣˚ C1, then for any session s in C1 there exists

a collaboration C0 such that C ↣˚ C0
s
↣˚ C1 and s is never used in the trace C ↣˚ C0.

Proof. By induction on the number n of reduction on s. If there are no reductions then the
thesis trivially holds. Otherwise, we can take the very last reduction on s, that is the closest
one to C1 and iteratively apply Lemma 6.1 in order to bring it to the very end. Then we
can conclude by induction on a trace with less occurrences of reductions on s.

Thanks to Lemma 6.2 we can rearrange any trace as a sequence of independent sessions.
Moreover, given an initial collaboration C, for any reachable collaboration C1 and session s

such that C ↣˚ C1
s
↣˚ and s R↣˚, we indicate C1 as the initial collaboration for s. This

will allow us to focus just on a sigle session, say s, and to consider collaboration initial for s
without loosing of generality.

6.2. Rollback properties. We show some properties concerning the reversible behaviour
of cherry-pi related to the interplay between rollback and commit primitives. Notably,
Theorem 6.5 and Lemma 6.6, are an adaptation of typical properties of reversible calculi,
while Lemma 6.7 and Lemma 6.8 are brand new.

The following two lemmata are the key ingredients for proving Theorem 6.5. Specifically,
the former lemma states that an abort leads back to the initial collaboration, while the
latter one states that a rollback leads back to the last committed checkpoint.

Lemma 6.3. Let C be an initial collaboration such that C ↣˚ C1. If C1
abt
ù C2 then

C2 ” C.

Proof. Since C is initial, without losing of generality we can assume C ” āpx1q.P1 | apx2q.P2.
The first reduction of C ↣˚ C1 has to be an application of rule [F-Con], that is

C ↠
`

νs : pāpx1q.P1 | apx2q.P2q
˘

pxP1rs̄{x1sy § P1rs̄{x1s | xP2rs{x2sy § P2rs{x2sq “ C 1

and, by hypothesis, C 1 ↣˚ C1. Now, no matter the shape of processes in C1, by applying

rule [B-Abt], we will go back to C, that is C1
abt
ù C, as desired.

Lemma 6.4. Let C be a reachable collaboration, such that C
cmt
↠ C1. If C1 ↠˚ C2

roll
ù C3

and there is no commit in C1 ↠˚ C2, then C3 ” C1.

Proof. Since C is a reachable collaboration, this implies it has been generated from an initial
collaboration C0. Without losing of generality, similarly to the Lemma 6.3’s proof, we can
assume C ”

`

νs : C0

˘

pxP1y § P2 | xQ1y § Q2q. Therefore, assuming w.l.o.g. that P2 is the

committing process (i.e., P2
cmt
ÝÝÑ P 1

2), we have that C1 “
`

νs : C0

˘

pxP 1
2y § P 1

2 | xQ2y § Q2q.
By hypothesis, there is no commits in C1 ↠˚ C2, and this implies that the log part of C1 will
never change. Hence, we have that C2 ”

`

νs : C0

˘

pxP 1
2y § P | xQ2y § Qq for some processes

P and Q. By applying [B-Rll] we have that C2
roll
ù

`

νs : C0

˘

pxP 1
2y § P 1

2 | xQ2y § Q2q ” C1,
as desired.

The following theorem states that any reachable collaboration is also a forward only
reachable collaboration. This means that all the states a collaboration reaches via mixed
executions (also involving backward reductions) are states that we can reach from the initial
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configuration with just forward reductions. This assures us that if the system goes back it
will reach previous visited states.

Theorem 6.5. Let C0 be an initial collaboration. If C0 ↣˚ C1 then C0 ↠˚ C1.

Proof. By induction on the number n of backward reductions contained into C0 ↣˚ C1. The
base case (n “ 0) trivially holds. In the inductive case, let us take the backward reduction
which is the nearest to C0. That is:

C0 ↠
˚ C 1 ù C2 ↣˚ C1

Depending whether it is an
abt
ù or a

roll
ù we can apply respectively Lemma 6.3 or Lemma 6.4

to obtain a forward trace of the form

C0 ↠
˚ C2 ↣˚ C1

and we can conclude by applying the inductive hypothesis on the obtained trace which
contains less backward moves with respect to the original one.

We now show a variant of the so-called Loop Lemma [DK04]. In a fully reversible
calculus this lemma states that each computational step, either forward or backward, can be
undone. Since reversibility in cherry-pi is controlled, we have to state that if a reversible
step is possible (e.g., a rollback is enabled) then the effects of the rollback can be undone.

Lemma 6.6 (Safe rollback). Let C1 and C2 be reachable collaborations. If C1 ù C2 then
C2 ↠˚ C1.

Proof. Since C1 is a reachable collaboration, we have that there exists an initial collaboration
C0 such that C0 ↣˚ C1. By applying Theorem 6.5 we can rearrange the trace such that it
contains just forward transitions as follows

C0 ↠
˚ C1

If the backward reduction is obtained by applying [B-Abt], by Lemma 6.3 we have C2 ” C0,
from which the thesis trivially follows. Instead, if the backward reduction is obtained
by applying [B-Rll], we proceed by case analysis depending on the presence of commit
reductions in the trace. If they are present, we select the last of such commit, that is we can
decompose the trace in the following way:

C0 ↠
˚ cmt
↠ Ccmt ↠

˚ C1
roll
ù C2

and by applying Lemma 6.4 we have that C2 ↠˚” C1 as desired.
In the case there is no commit in the trace, without losing of generality we can assume

C0 ” āpx1q.P1 | apx2q.P2 and we have:

C0 ↠
`

νs : C0

˘

pxP 1
1y § P 1

1 | xP
1
2y § P 1

2q↠
˚

`

νs : C0

˘

pxP 1
1y § P 2

1 | xP
2
2 y § P 1

2q ” C1

By rule [B-Rll], we have C2 ”
`

νs : C0

˘

pxP 1
1y § P 1

1 | xP
1
2y § P 1

2q. Thus, we can conclude by
noticing that C0 ↠ C2 is the first reduction in C0 ↠˚ C1.

A rollback always brings the system to the last taken checkpoint. We recall that, since
there may be sessions running in parallel, a collaboration may be able to do different rollbacks
within different sessions. Thus, determinism only holds relative to a given session, and
rollback within one session has no effect on any other parallel session.
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Lemma 6.7 (Determinism). Let C be a reachable collaboration. If C
roll
ù C 1 and C

roll
ù C2

then C 1 ” C2.

Proof. Since C is a reachable collaboration, it is has been generated by an initial collaboration
C0 of the form C0 “ āpxq.P1 | apxq.P2, and by Theorem 6.5 we have that C0 ↠˚ C. We
distinguish two cases, whether in the trace there has been at least one commit or not. In the
first case, we can decompose the trace in such a way to single out the last commit as follows:

C0 ↠
˚ Ccmt ↠

˚ C

so that in the reduction Ccmt ↠˚ C there is no commit. If from C the rollbacks C
roll
ù C 1

and C
roll
ù C2 are triggered by the same process, the thesis trivially follows. In the other

case, we have that:

C ”
`

νs : C0

˘

pxQ1y § Q1
1 | xQ2y § Q1

2q

with both Q1
1 and Q1

2 able to trigger a rollback. If the roll action is executed by Q1
1, by

applying rule [B-Rll] we have that
`

νs : C0

˘

pxQ1y § Q1
1 | xQ2y § Q1

2q
roll
ù

`

νs : C0

˘

pxQ1y § Q1 | xQ2y § Q2q ” C 1

If the roll is triggered by Q1
2, , by applying rule [B-Rll] up to structural congruence we

have that
`

νs : C0

˘

pxQ1y § Q1
1 | xQ2y § Q1

2q
roll
ù

`

νs : C0

˘

pxQ1y § Q1 | xQ2y § Q2q ” C2

We can conclude by noticing that C 1 ” C2, as desired.

The last rollback property states that a collaboration cannot go back to a state prior to
the execution of a commit action, that is commits have a persistent effect. Let us note that
recursion does not affect this theorem, since at the beginning of a collaboration computation
there is always a new session establishment, leading to a stack of past configurations. Hence
it is never the case that from a collaboration C you can reach again C via forward steps.

Theorem 6.8 (Commit persistency). Let C be a reachable collaboration. If C
cmt
↠ C 1 then

there exists no C2 such that C 1 ↠˚ roll
ù C2 and C2 ↠` C.

Proof. We proceed by contradiction. Suppose that there exists C2 such that C 1 ↠˚ roll
ù C2

and C2 ↠` C. Since C is a reachable collaboration, thanks to Theorem 6.5 we have

that there exists an initial collaboration C0 such that C0 ↠˚ C
cmt s
↠ C 1. Since a rollback

brings back the collaboration to a point before a commit, this means it has been restored a
checkpoint committed before the last one (by [B-Rll], indeed, only processes stored in logs
can be restored). This implies that there exist at least two different commits in the trace
such that

C0 ↠
˚cmt
↠ Ccmt ↠

˚ C
cmt
↠ C 1 ↠˚ Crl

roll
ù C2

with C2 “ Ccmt. Now, consider the commit performed by C, supposing that it is triggered
by Pc evolving to P 1

c in doing that, we have that:

C ”
`

νs : C0

˘

pxP y § Pc | xQy § Qcq and C 1 “
`

νs : C0

˘

pxP 1
cy § P 1

c | xQcy § Qcq

Now, let us consider the case where C 1 ↠˚ Crl without any commit being present in the
trace, hence:

Crl ”
`

νs : C0

˘

pxP 1
cy § Prl | xQcy § Qrlq
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P1
k!xvy
ÝÝÝÑ P 1

1 ␣P2 ók? ␣P2 óroll

xQ̃1y § P1 | xQ̃2y § P2 ↠ com error
[E-Com1]

P1
k?pxq
ÝÝÝÑ P 1

1 ␣P2 ók! ␣P2 óroll

xQ̃1y § P1 | xQ̃2y § P2 ↠ com error
[E-Com2]

P1
kŸl
ÝÝÑ P 1

1 ␣P2 ókŹl ␣P2 óroll

xQ̃1y § P1 | xQ̃2y § P2 ↠ com error
[E-Lab1]

P1
kŹl
ÝÝÑ P 1

1 ␣P2 ókŸl ␣P2 óroll

xQ̃1y § P1 | xQ̃2y § P2 ↠ com error
[E-Lab2]

P1
cmt
ÝÝÑ P 1

1 Q̃2 ‰ P2

xQ̃1y § P1 | xQ̃2y § P2 ↠ xP 1
1y § P 1

1 | xP2y § P2

[E-Cmt1]

P1
cmt
ÝÝÑ P 1

1 Q̃2 “ P2

xQ̃1y § P1 | xQ̃2y § P2 ↠ xP 1
1y § P 1

1 | xQ̃2y § P2

[E-Cmt2]

P1
roll
ÝÝÑ P 1

1

xQ1y § P1 | xQ̃2y § P2 ù xQ1y § Q1 | xQ̃2y § Q2

[E-Rll1]

P1
roll
ÝÝÑ P 1

1

xQ1y § P1 | xQ̃2y § P2 ↠ roll error
[E-Rll2]

Figure 12: cherry-pi semantics: error reductions.

By hypothesis, from Crl a rollback is possible. Regardless the rollback is triggered by Prl

or Qrl, we have that Crl
roll
ù C 1, hence C 1 ” C2. Now, from C 1 we cannot reach C (i.e.,

C 1 ↠`{ C), as C 1 is derived from C and the rollback can only bring the collaboration back
to C 1. Therefore, we have C2 ↠`{ C, which violates the initial hypothesis.

Let us consider, instead, the case where C 1 ↠˚ Crl with at least a commit being present
in the trace. By applying rule [B-Rll], from Crl the rollback will lead to the last committed

collaboration C 1
cmt such that C 1 ↠˚

cmt s
↠ C 1

cmt ↠
˚ Crl. Hence, C 1

cmt ” C2 and, like in the
previous case, from C 1

cmt we cannot reach C. Again we have C2 ↠`{ C, which violates the
initial hypothesis. Therefore, in each case the initial hypothesis is violated, and hence we
conclude.

6.3. Soundness properties. The second group of properties concerns soundness guarantees.
The definition of these properties requires formally characterising the errors that may
occur in the execution of an unsound collaboration. We rely on error reduction (as in
[CDSY17]) rather than on the usual static characterisation of errors (as, e.g., in [YV07]),
since rollback errors cannot be easily detected statically. In particular, we extend the
syntax of cherry-pi collaborations with the roll error and com error terms, denoting
respectively collaborations in rollback and communication error states:

C ::“ . . . | xP̃1y § P2 | roll error | com error

where P̃ denotes either a checkpoint P committed by the party or a checkpoint P imposed
by the other party of the session.

The semantics of cherry-pi is extended as well by the additional error reduction rules
in Fig. 12, where [E-Cmt1] and [E-Cmt2] replace [F-Cmt], and [E-Rll1] replaces [B-Rll];
moreover, ˜ is used in the checkpoints of the other rules. The error semantics does not affect
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the normal behaviour of cherry-pi specifications, but it is crucial for stating our soundness
theorems. Its definition is based on the notion of barb predicate: P óµ holds if there exists
P 1 such that P ñ P 1 and P 1 can perform an action µ, where µ stands for k?, k! ,kŸ l, kŹ l,
or roll (i.e., input, output, select, branching action along session channel k, or roll action);

ñ is the reflexive and transitive closure of
τ
ÝÑ. The meaning of the error semantics rules is

as follows. A communication error takes place in a collaboration when a session participant
is willing to perform an output but the other participant is ready to perform neither the
corresponding input nor a roll back (rule [E-Com1]) or vice versa (rule [E-Com2]), or one
participant is willing to perform a selection but the corresponding branching is not available
on the other side (rule [E-Lab1]) or viceversa (rule [E-Lab2]). Instead, a rollback error
takes place in a collaboration when a participant is willing to perform a rollback action but
her checkpoint has been imposed by the other participant (rule [E-Rll2]). To enable this
error check, the rules for commit and rollback (rules [E-Cmt1], [E-Cmt2], and [E-Rll1])
have been modified to keep track of imposed overwriting of checkpoints. This information is
not relevant for the runtime execution of processes, but it is necessary for characterising the
rollback errors that our type-based approach prevents.

Besides defining the error semantics, we also need to define erroneous collaborations,
based on the following notion of context: C ::“ r¨s | C |C |

`

νs : C
˘

C.

Definition 6.9 (Erroneous collaborations). A collaboration C is communication (resp.
rollback) erroneous if C “ Crcom errors (resp. C “ Crroll errors).

The key soundness results follow: a rollback safe collaboration never reduces to either a
rollback erroneous collaboration (Theorem 6.10) or a communication erroneous collaboration
(Theorem 6.11).

Theorem 6.10 (Rollback soundness). If C is a roll-safe collaboration, then we have that
C ↣{ ˚ Crroll errors.

Proof (sketch). The proof proceeds by contradiction (the full proof is reported in Appen-
dix A).

Theorem 6.11 (Communication soundness). If C is a roll-safe collaboration, then we have
that C ↣{ ˚ Crcom errors.

Proof (sketch). The proof proceeds by contradiction (the full proof is reported in Appen-
dix A).

We conclude with a progress property of cherry-pi sessions: given a rollback safe
collaboration that can initiate a session, each collaboration reachable from it either is able
to progress on the session with a forward/backward reduction step or has correctly reached
the end of the session. This result follows from Theorems 6.10 and 6.11, and from the fact
that we consider binary sessions without delegation and subordinate sessions.

Theorem 6.12 (Session progress). Let C “ pāpx1q.P1 | apx2q.P2q be a roll-safe collaboration.

If C↣˚C 1 then either C 1↣C2 for some C2 or C 1”
`

νs :C
˘

pxQ̃1y §0 | xQ̃2y §0q for some Q̃1

and Q̃2.

Proof. The proof proceeds by contradiction. Suppose that C is rollback safe and C ↣˚ C 1

with C 1 ↣{ and C 1 ”{
`

νs : C
˘

pxQ̃1y § 0 | xQ̃2y § 0q for any Q̃1 and Q̃2. The only
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Figure 13: Producer-consumer scenario with non-speculative (a) and speculative (b) con-
sumers.

situations that prevents C 1 from progressing are C 1 “ Crroll errors or C 1 “ Crcom errors.
However, from Theorems 6.10 and 6.11, respectively, we have C 1 ‰ Crroll errors and
C 1 ‰ Crcom errors, which is a contradiction.

7. cherry-pi at work on a speculative parallelism scenario

To shed light on the practical effectiveness of cherry-pi and the related notion of rollback
safety, we consider in this section a simple, yet realistic, scenario concerning a form of
speculative execution borrowed from [PRV10]. In this scenario, value speculation is used as a
mechanism for increasing parallelism, hence system performance, by predicting values of data
dependencies between tasks. Whenever a value prediction is incorrect, corrective actions
must be taken in order to re-execute the data consumer code with the correct data value. In
this regard, as shown in [GLMT17] for a shared-memory setting, reversible execution can
permit to relieve programmers from the burden of properly undoing the actions subsequent
to an incorrect prediction. Here, we tailor the scenario to the channel-based communication
model of session-based programming, and show how our rollback safety checking supports
programmers in identifying erroneous rollback recovery settings.

In the producer-consumer scenario depicted in Fig. 13(a) the session participant P

produces a value and the participant C consumes it. The data dependence between P and C

serialises their executions, thus forcing C to wait for the completion of the value production
that requires a fairly long time. In the scenario in Fig. 13(b), instead, C enacts a speculative
behaviour, as it predicts ahead of time the value computed by P from a partial information.
By using the predicted value, C can execute speculatively and concurrently with P. When P

completes the production, C validates the prediction by comparing the actual value computed
by P and the predicted one; if the prediction is precise, we gain performance because the
execution of C and P overlapped in time, otherwise rollback is used to move C and P back to
a state that precedes the speculative behaviour, in order to re-execute C using the correct
value. The behaviours of C and P can be recursively defined in order to repeat the overall
execution once a value is correctly consumed.

The scenario informally described above is rendered in cherry-pi as

startpxq.PC | startpyq.PP
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where the consumer and producer processes are:

PC “ µX. x!xfreqpqy. xŹ t lspec : x?pxpartial : strq. x?pxfinal : strq.
if pfcomparepxpartial, xfinalqq then roll else commit. X ,

lnonSpec : x?pxcomputed : strq. commit. X u

PP “ µY. y?pyreq : strq.
if pfevalpyreqqq then y Ÿ lspec. y!xfpartialpyreqqy. y!xffinalpyreqqy. Y
else y Ÿ lnonSpec. y!xfcomputepyreqqy. Y

The producer evaluates each consumer’s request in order to establish whether to provide
directly the produced value or the partial information for the prediction. In the former case
the consumer commits the session and both participants restart, while in the latter one the
consumer commits or rolls back depending on the result of the comparison between the
predicted value and the produced one.

To check whether the above collaboration is rollback safe, we have to check compliance
between the session types of the two parties. The session types Tc and Tp associated by the
type system to the consumer and the producer processes, respectively, and the corresponding
initial type configuration are as follows (hereafter we use the MAUDE implementation of
the cherry-pi type syntax):

eq Tc = mu X . ![str]. brn[brnEl(’spec , ?[str]. ?[str]. (roll (+) (cmt. X)));

brnEl(’nonSpec , ?[str]. cmt. X)] .

eq Tp = mu Y . ?[str]. ((sel[’spec]. ![str]. ![str]. Y) (+) (sel[’nonSpec ].

![str]. Y)) .

eq CPInitConfig = init(Tc ,Tp) ckp(Tc) > Tc || ckp(Tp) > Tp .

As discussed in Sec. 5, the compliance check for the above type specification is performed by
resorting to the MAUDE command search as follows:

search

CPInitConfig

=>!

init(T:Type ,T’:Type) CT1:CkpType > T1:Type || CT2:CkpType > T2:Type

such that T1 =/= end or T2 =/= end .

The above command returns:

No solution.

meaning that the producer-consumer collaboration is rollback safe. To investigate more in
detail the behaviour of this collaboration, we can generate the transition system associated
to the type configuration CPInitConfig by using the following MAUDE commands:

search CPInitConfig =>* C:Configuration .

show search graph .

The first command searches for all states of the transition, reachable in none, one, or
more steps, while the second command returns the current search graph generated by the
previous search command. A graphical representation of the generated graph is reported in
Fig. 14, where states represent the reachable type configurations (state 0 corresponds to
CPInitConfig) and transitions are labelled by the applied rules (from Figure 11). Notably,
in case a value is correctly consumed, since the commit action is performed at the end of the
recursive step, the type configuration resulting from the commit coincides with the initial
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Figure 14: Transition system of the type configuration CPInitConfig.

one (see transition from state 7 to state 0 in the graph), as both consumer and producer are
ready to repeat their interactions for a new value. In case of incorrect prediction (transition
from state 8 to state 9), instead, the session execution is moved back to the last checkpoint
(transition from state 9 to state 0), corresponding to the successfully consumption of the
previous requested value that, at type level, correspond again to the initial type configuration.
Indeed, as previously discussed, no commit occurs during the speculative consumption, hence
no checkpoint has been created after the one recorded at the end of the previous recursive
step. It is worth noticing that in case the prediction of the first produced value is wrong,
and hence no commit action is performed by the consumer yet, according to the cherry-pi
semantics the checkpoint corresponds to the beginning of the session.

Let us consider now a variant of the above scenario where the producer commits each time
a value production is completed, which could apparently seem a reasonable behaviour from
the producer side. The session type Tp’ of such a producer process and the corresponding
initial type configuration are as follows:

eq Tp ’ = mu Y . ?[str]. ((sel[’spec]. ![str]. ![str]. cmt. Y)

(+) (sel[’nonSpec ]. ![str]. cmt. Y)) .

eq CPInitConfig ’ = init(Tc ,Tp ’) ckp(Tc) > Tc || ckp(Tp ’) > Tp’ .
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Figure 15: Transition system of the type configuration CPInitConfig’.

This time the collaboration is not rollback safe. Indeed, the compliance check returns two
solutions:

Solution 1 (state 16)

CT1 --> ickp(roll)

T1 --> err

CT2 --> ckp(mu Y . ?[str]. ((sel[’spec]. ![str]. ![str]. cmt. Y)

(+) sel[’nonSpec ]. ![str]. cmt. Y))

T2 --> err

Solution 2 (state 17)

CT1 --> ickp(roll (+)cmt. mu X . ![str]. brn[brnEl(’nonSpec , ?[str]. cmt. X);

brnEl(’spec , ?[str]. ?[str]. (roll (+)cmt. X))])

T1 --> err

CT2 --> ckp(mu Y . ?[str]. ((sel[’spec]. ![str]. ![str]. cmt. Y)

(+) sel[’nonSpec ]. ![str]. cmt. Y))

T2 --> err

corresponding to two erroneous configurations. The overall behaviour is graphically depicted
by the transition system in Fig. 15, where state 0 corresponds to CPInitConfig’ and states
16 and 17 are the two erroneous configurations above. While the commit action in the
non-speculative case (transitions from state 7 to state 10, and from state 9 to state 0), does
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not affect the compliance between the two session participants, the other commit action
(transitions from state 8 to state 12, and from state 11 to state 13), overwrites the checkpoint
set by the consumer, making it impossible to re-execute the consumer with the correct value.
This situation, undesirable for the consumer, is detected by our compliance check.

8. Related work

In the literature we can distinguish three ways of dealing with rollback: either using explicit
rollbacks and implicit commits [LMSS11], or by using explicit commits and spontaneous
aborts [DK05, dVKH10], or by just considering implicit rollbacks and commits [FV05,
SKM17]. Differently from these works, we have introduced a way to control reversibility by
both triggering it and limiting its scope. Reversibility is triggered via an explicit rollback
primitive (as in [LMSS11]), while explicit commits limit the scope of potential future
reverse executions (as in [DK05, dVKH10]). Differently from [DK05, dVKH10], commit
does not require any synchronisation, as it is a local decision. This could lead to run-time
misbehaviours where a process willing to roll back to its last checkpoint reaches a point
which has been imposed by another participant of the session. Our type discipline rules out
such cases.

Reversibility in behavioural types has been studied in different formalisms: con-
tracts [BDd14, BDLd16, BLd17], binary session types [MP17], multiparty session types [MP21,
CDG17, TY15, TY16], and global graphs [MT17, FMT18]. In [BDd14, BDLd16, BLd17]
choices can be seen as implicit checkpoints and the system can go back to a previous choice
and try another branch. In [BDd14] rollback is triggered non-deterministically (e.g., it may
happen at any time during the execution), while in [BDLd16, BLd17] it is triggered by the
system only when the forward computation is stuck (e.g., the client cannot further continue).
In both works reversibility (and rollbacks) is used to achieve a relaxed variant of client-server
compliance: if there exists an execution in which the client is able to terminate then the
client and server are compliant. Hence, reversibility is used as a means to explore different
branches if the current one leads to a deadlock. In [MP17] reversibility is studied in the
context of binary session types. Types information is used at run-time by monitors, for
binary [MP17] and multiparty [MP21] settings, to keep track of the computational history
of the system. allowing to revert any computational step. where global types are enriched
with computational history. There, reversibility is uncontrolled, and each computational
step can be undone. In [CDG17] global types are enriched with history information, and
choices are seen as labelled checkpoints. The information about checkpoints is projected into
local types. At any moment, the party who decided which branch to take in a choice may
decide to revert it, forcing the entire system to go back to a point prior to the choice. Hence,
rollback is confined inside choices and it is spontaneous meaning that the former can be
programmed while the latter cannot. Checkpoints are not seen as commits, and a rollback
can bring the system to a state prior to several checkpoints. In [TY15] an uncontrolled
reversible variant of session π-calculus is presented, while [TY16] studies different notions
of reversibility for both binary and multiparty single sessions. In [MT17, FMT18, FMT20]
global graphs are extended with conditions on branches. These conditions at runtime can
trigger coordinated rollbacks to revert a distributed choice. Reversibility is confined into
branches of a distributed choice and not all the computational steps are reversible; inputs,
in fact, are irreversible unless they are inside an ongoing loop. To trigger a rollback several
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Work Formalism Commit Rollback Confined
[LMSS11] Process Calculi I E N
[DK05] Process Calculi E I Y

[dVKH10] Process Calculi E I N
[BDd14, BDLd16, BLd17] Contracts I I Y

[MP17, MP21] Session Types I I N
[CDG17] Session Types I I Y

[MT17, FMT18, FMT20] Global Graphs I E Y
[Vid23] Process Calculi E E N
[FV05] Actor Model E E Y
[SKM17] Actor Model I I Y
Our work Actor Model & E E N

Session Types

Table 1: Approaches in the literature; commits and rollbacks can be either implicit (I) or
explicit (E); reversibility can be confined (Y) or not (N).

conditions and constraints about loops have to be satisfied. Hence, in order to trigger a
rollback a runtime condition should be satisfied.

The closest work in the literature to ours is [Vid23] where a checkpoint rollback facility
is studied on top a reversible actor based language. Here, checkpoint and rollbacks primitives
are explicit, as in our approach. Also, the proposed approach scales with dynamically created
processes (e.g., spawning), while we do not deal with this issue. On the other hand, [Vid23]
does not deal with ruling out undesired behaviours. Reversibility, in terms of transactional
behaviours, has been investigated in the context of the actor model also in [FV05, SKM17].
While [FV05] introduces a facility to create a global checkpoint among multiple actors,
[SKM17] studies the application of software transactional memory to the actor model. In
[FV05] commits and rollbacks are explicit and confined inside the scope of a stabilisation of
the actor state. On the other hand, in [SKM17] rollbacks and commits are implicit: if at the
end the transaction can commit it does so, otherwise it is rolled back to the very beginning
and re-tried again. Also, in this work reversibility is confined within the transactional scope.
Let us note that [FV05] uses a very fine-grained mechanism to keep track of the causality
graph among all the actors that have interacted with the one who wants to commit. We will
further study this mechanism when adapting our theory to multi-party session types.

Table 1 summarises all the approaches in the literature. We detach from these works in
several ways. Our checkpoint facility is explicit and checkpointing is not confined to choices:
the programmer can decide at any point when to commit. This is because the programmer
may be interested in committing, besides choice points, a series of interactions (e.g., to make
a payment irreversible). Once a commit is taken, the system cannot revert to a state prior
to it. Our rollback is explicit, meaning that it is the programmer who deliberately triggers a
rollback. Our compliance check, which is decidable, resembles those for contracts introduced
in [BDd14, BDLd16, BLd17], which are defined for different rollback recovery approaches
based on implicit checkpoints. Specifically, our compliance relation is similar to the ones
defined in [BDLd16, BLd17] as they consist in requiring that, whenever no reduction is
possible, all client requests and offers have been satisfied. Similarly, in our compliance
notion, two participants are compliant if, whenever they reach a type configuration where
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no reduction is possible, they are in the successful (end) state. Our notion differs from
the others as we do not distinguish client and server roles and, of course, we have different
technicalities as our types (resp. type configurations) differ from retractable contracts (resp.
client/server pairs). The compliance relation in [BDd14], instead, differs from the others
(including ours) as it is coinductively defined. We have not considered this approach for our
definition as it would make the theoretical framework much more complicated and, most of
all, would be less suitable for a MAUDE implementation of the compliance checking.

Concerning the MAUDE implementation of the compliance check, we have followed
the approach of the seminal work by Verdejo and Mart́ı-Oliet [VM02], providing the state-
of-the-art implementation of CCS in MAUDE. Along the same line, many other MAUDE
implementations of formalisms and languages have been proposed, such as BPMN [CFP`18],
Twitlang [MPST17], SCEL [BDVW14], and QFLan [VtBLL18].

9. Concluding remarks

This paper proposes rollback recovery primitives for session-based programming. These
primitives come together with session typing, enabling a design time compliance check
which ensures checkpoint persistency properties (Lemma 6.6 and Theorem 6.8) and session
soundness (Theorems 6.10 and 6.11). Our compliance check has been implemented in
MAUDE.

As future work, we plan to extend our approach to deal with sessions where parties
can interleave interactions performed along different sessions. This requires to deal with
subordinate sessions, which may affect enclosing sessions by performing, e.g., commit
actions that make some interaction of the enclosing sessions irreversible, similarly to nested
transactions [WS92]. To tackle this issue it would be necessary to extend the notion
of compliance relation to take into account possible partial commits (in case of nested
sub-sessions) that could be undone at the top level if a rollback is performed. Also, the
way our checkpoints are taken resembles the Communication Induced Checkpoints (CIC)
approach [EAWJ02]; we leave as future work a thoughtful comparison between these two
mechanisms.

Another possible future work is to adapt our framework to work in asynchronous settings,
like real applications. The first thing to do is to extend our framework with queues (either
a global one or one queue per participant), in order to deal with asynchronous messages.
We could adapt the work of [MP17, MP21] in which uncontrolled reversibility is added to
asynchronous binary and multiparty session types. Adding controlled reversibility atop on
them would require special messages for commit, abort and checkpoint. Such messages
should be handled with priority, or at least one has to assume fairness, otherwise there will
be no guarantee that a commit or a rollback will be performed. We could start from the
asynchronous semantics given in [LMSS11]. Let us note that considering messages with
priority is totally licit, as languages for large scale applications such as Erlang, Elixir and
Akka allow for messages with priority. Starting from this settings and adding a fine-grained
causality tracking mechanism, such as the one of [FV05], is our long-term goal, allowing us
to have a complete theory for a real-world fault-tolerant applications.

Finally, we plan to investigate the practical application of our work to more realistic pro-
gramming languages. Since our proposal has been devised for communication-centric systems,
as a first testing ground we plan to transfer our ideas to a message-passing programming



Vol. 21:1 CHECKPOINT-BASED ROLLBACK RECOVERY IN SESSION-BASED PROGRAMMING 2:29

language based on the π-calculus, e.g. SePi2 [FV13]. The challenge would be not only the
extension of the language with our linguistic primitives to program reversible sessions, but
also extending our results to a setting richer in terms of programming constructs and features.
Then, we will consider programming languages that feature session-based programming, but
are based on paradigms other than the π-calculus, e.g. sessionj 3 [HKP`10], an extension
of Java with session-based constructs. Another direction would be the application of our
approach to Scribble4 [YHNN13], a framework to specify application-level protocols among
communicating systems that supports bindings for several high-level languages.
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[Mes12] José Meseguer. Twenty years of rewriting logic. J. Log. Algebraic Methods Program., 81(7-8):721–
781, 2012. URL: https://doi.org/10.1016/j.jlap.2012.06.003, doi:10.1016/J.JLAP.2012.
06.003.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall, 1989.
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Appendix A. Proofs

The auxiliary lemmata required to prove the soundness results rely on the following defini-
tions:

‚ a process P̃ and a type T̃ are in checkpoint accordance if P̃ “ P implies T̃ “ T , and
P̃ “ P implies T̃ “ T ;

‚ let ℓ a process label, its dual label ℓ̄ is defined as follows: k!xvy “ k?pxq for some x,

k?pxq “ k!xvy for some v, k Ÿ l “ kŹl, k Ź l “ kŸl; this notion of duality straightforwardly
extends to type labels;

‚ the function tlΓp¨q, mapping process labels to type labels under sorting Γ, is defined
as follows: tlΓpk!xvyq “!rSs with Γ $ v § S, tlΓpk?pxqq “?rSs with Γ $ x § S,
tlΓpk Ÿ lq “ Ÿ l, tlΓpk Ź lq “ Ź l, tlΓpcmtq “ cmt, tlΓprollq “ roll, tlΓpabtq “ abt, and
tlΓpτq “ τ .

The following lemma states that each reduction of a reachable collaboration corresponds
to a reduction of its configuration types.

Lemma A.1. Let C “
`

νs : C 1
˘

pxP̃1y § P2 | xQ̃1y § Q2q be a reachable collabora-
tion, with C 1 “ pāpxq.P | apyq.Qq, pH;H $ P § x : T q, pH;H $ Q § y : T 1q, T - T 1,
pΘ1; Γ1 $ P1rx{s̄s § x : T1q, pΘ2; Γ2 $ P2rx{s̄s § x : T2q, pΘ

1
1; Γ

1
1 $ Q1ry{ss § y : U1q,

and pΘ1
2; Γ

1
2 $ Q2ry{ss § y : U2q. If C ↣

`

νs : C 1
˘

pxP̃ 1
1y§P 1

2 | xQ̃
1
1y§Q1

2q then there exist

T 1
1, T

1
2, U

1
1, U

1
2 such that pT, T 1q : xT̃1y §T2 ∥ xŨ1y §U2 ÞÝÑ pT, T 1q : xT̃ 1

1y §T 1
2 ∥ xŨ 1

1y §U 1
2 with

P̃ 1
1 (resp. Q̃1

1) in checkpoint accordance with T̃ 1
1 (resp. Ũ 1

1), pΘ̂1; Γ̂1 $ P 1
1rx{s̄s § x : T 1

1q,

pΘ̂2; Γ̂2 $ P 1
2rx{s̄s § x : T 1

2q, pΘ̂
1
1; Γ̂

1
1 $ Q1

1ry{ss § y : U 1
1q, and pΘ̂

1
2; Γ̂

1
2 $ Q1

2ry{ss § y : U 1
2q.

Proof. We have two cases depending whether the reduction ↣ has forward or backward
direction.

p↣“↠q: From rule [F-Res], we have xP̃1y §P2 | xQ̃1y §Q2 ↠ xP̃ 1
1y §P 1

2 | xQ̃
1
1y §Q1

2. We
prove the result by case analysis on the last rule applied in the inference of the above
reduction.

‚ [F-Com]. In this case we have P2
s̄!xvy
ÝÝÝÑ P 1

2, Q2
s?pzq
ÝÝÝÑ Q2

2, with Q1
2 “ Q2

2rv{zs,

P̃ 1
1 “ P̃1 and Q̃1

1 “ Q̃1. Thus, P2rx{s̄s “ x!xey.P 1
2rx{s̄s for some e such that e Ó v,

and Q2ry{ss “ y?pz : S1q.Q1
2ry{ss. By rule [T-Snd], we have that T2 “!rSs.T

1
2, with

Γ2 $ e § S, (hence Γ2 $ v § S), and Θ2; Γ2 $ P 1
2rx{s̄s § x : T 1

2 (hence Θ̂2 “ Θ2

and Γ̂2 “ Γ2). Similarly, by rule [T-Rcv], we have that U2 “?rS
1s.U 1

2 and Θ1
2; Γ

1
2 ¨ z :

S1 $ Q2
2ry{ss § y : U 1

2 (hence Θ̂1
2 “ Θ1

2 and Γ̂1
2 “ Γ1

2 ¨ z : S1). By rules [TS-Snd]

and [TS-Rcv], we get T2
!rSs
ÝÝÑ T 1

2 and U2
?rS1s
ÝÝÝÑ U2. Now, reasoning by contradiction,

let us suppose that S ‰ S1. Thus, the term pT, T 1q : xT̃1y § T2 ∥ xŨ1y §U2 ÞÝÑ{ , since
no rule in Fig. 11 can be applied. However, since C is a reachable collaboration,
this type configuration is originated from pT, T 1q : xT y § T ∥ xT 1y § T 1. By Def. 4.1,
T - T 1 implies T2 “ U2 “ end, which is a contradiction. Therefore, it holds that
S “ S1. Hence, by applying rule [TS-Com] we can conclude.

‚ [F-Lab], [E-Cmt1] and [E-Cmt2]. Similar to the previous case.

‚ [F-Par]. In this case we have that xP̃1y § P2 ↠ xP̃ 1
1y § P 1

2. Since this transition
involves only one log term, it can be inferred only by applying rule [F-If], from

which we have P2
τ
ÝÑ P 1

2 and P̃ 1
1 “ P̃1. By rule [P-IfT] (the case of rule [P-IfF] is

similar), we have P2rx{s̄s “ if e then P 1
2rx{s̄s else R with e Ó true. By rule [T-If]
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we get T2 “ T 1
2 ‘ V and Θ2; Γ2 $ P 1

2rx{s̄s § x : T 1
2. By rule [TS-If1], T2

τ
ÝÑ T 1

2.
By applying rule [TS-Tau] we can conclude.

p↣“ùq: The reduction can be inferred by applying rule [B-Res] or rule [B-Abt]. Let
us consider the former case, the latter is similar. From rule [B-Res], we have

xP̃1y §P2 | xQ̃1y §Q2 ù xP̃ 1
1y §P 1

2 | xQ̃
1
1y §Q1

2. We prove the result by case analysis
on the last rule applied in the inference of the above reduction.

‚ [B-Rll]. In this case P2
roll
ÝÝÑ P 1

2, P̃
1
1 “ P̃1, Q̃1

1 “ Q̃1 and Q1
2 “ Q1. By rule [P-Rll],

we have P2rx{s̄s “ roll and P 1
2rx{s̄s “ 0. By rule [T-Rll] we get T2 “ roll. By

hypothesis T - T 1, which implies that rule [TS-Rll2] is not applicable, because
by Def. 4.1 an erroneous type configuration cannot be reached. Hence, by rule

[TS-Rll1], T2
roll
ÝÝÑ T 1

2, with T 1
2 “ end. By rule [T-Inact], we have Θ2; Γ2 $

P 1
2rx{s̄s § x : T 1

2. Finally, by applying rule [TS-Rll1] we can conclude.
‚ [B-Par]. Similarly to the forward case.

The following lemma relates collaboration reductions to type reductions when a
roll error is produced.

Lemma A.2. Let C “ pāpxq.P | apyq.Qq such that C § tā : T1, a : T2u and T1 - T2. If

C ↣˚
`

νs : C
˘

pxP1y § P2 | xQ̃1y § Q2q and P2
roll
ÝÝÑ P 1

2, then there exist U1, U2, U
1
1, U

1
2, U

2
1

such that pT1, T2q : xT1y § T1 ∥ xT2y § T2 ÞÝÑ
˚ pT1, T2q : xU1y § U 1

1 ∥ xŨ2y § U 1
2 and U 1

1
roll
ÝÝÑ U2

1 .

Proof. From C § tā : T1, a : T2u, by applying [T-Par], [T-Acc] and [T-Req], we have
that H;H $ P § x : T1 and H;H $ Q § x : T2. By applying rule [F-Con] to the
collaboration C, we obtain C ↠

`

νs : C
˘

pxP rs̄{xsy § P rs̄{xs | xQrs{ysy § Qrs{ysq “ C 1.

Now, by repeatedly applying Lemma A.1, from C 1 ↣˚
`

νs : C
˘

pxP1y § P2 | xQ̃1y § Q2q

we get pT1, T2q : xT1y § T1 ∥ xT2y § T2 ÞÝÑ
˚ pT1, T2q : xU1y § U 1

1 ∥ xŨ2y § U 1
2 for some U1, U2,

U 1
1, U

1
2, with Θ2; Γ2 $ P2rx{s̄s § x : U 1

1. Now, let us consider the transition P2
roll
ÝÝÑ P 1

2.
This can be derived only by the application of rules [P-Rll]. Thus, P2 “ roll, from which
we have P2rx{s̄s “ roll. From Θ2; Γ2 $ roll § x : U 1

1, by rule [T-Rll], we get U 1
1 “ roll.

Therefore, by rule [TS-Rll2], we can conclude U 1
1

roll
ÝÝÑ U2

1 with U2
1 “ end.

The following lemma relates collaboration reductions to type reductions when a
com error is produced.

Lemma A.3. Let C “ pāpxq.P | apyq.Qq such that C § tā : T1, a : T2u and T1 - T2. If

C ↣˚
`

νs : C
˘

pxP̃1y § P2 | xQ̃1y § Q2q, P2
ℓ
ÝÑ P 1

2 and ␣Q2 óℓ̄ with ℓ of the form k!xvy,
k?pxq, k Ÿ l or k Ź l, then there exist U1, U2, U

1
1, U

1
2, U

2
1 such that pT1, T2q : xT1y § T1 ∥

xT2y § T2 ÞÝÑ
˚ pT1, T2q : xŨ1y § U 1

1 ∥ xŨ2y § U 1
2 with P̃1 (resp. Q̃1) in checkpoint accordance

with Ũ1 (resp. Ũ2), U
1
1

tlΓpℓq
ÝÝÝÑ U2

1 , with Γ sorting for typing P 1
2, and for all U2

2 such that

U 1
2

τ
ÝÑ

˚
U2
2 we have U2

2
tlΓpℓq
ÝÝÝÑ{ .

Proof. From C § tā : T1, a : T2u, by applying [T-Par], [T-Acc] and [T-Req], we have
that H;H $ P § x : T1 and H;H $ Q § x : T2. By applying rule [F-Con] to the
collaboration C, we obtain C ↠

`

νs : C
˘

pxP rs̄{xsy § P rs̄{xs | xQrs{ysy § Qrs{ysq “ C 1.

Now, by repeatedly applying Lemma A.1, from C 1 ↣˚
`

νs : C
˘

pxP̃1y § P2 | xQ̃1y § Q2q we

get pT1, T2q : xT1y § T1 ∥ xT2y § T2 ÞÝÑ
˚ pT1, T2q : xŨ1y § U 1

1 ∥ xŨ2y § U 1
2 for some U1, U2, U

1
1,
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U 1
2, with Θ2; Γ2 $ P2rx{s̄s § x : U 1

1 and Θ1
2; Γ

1
2 $ Q2ry{ss § y : U 1

2. Now, let us reason

by case analysis on the rule for deriving the transition P2
ℓ
ÝÑ P 1

2.

Rule [P-Snd]: Thus, P2 “ s̄!xey.P 1
2 and ℓ “ s̄!xvy with e Ó v. From Θ2; Γ2 $ P2rx{s̄s § x :

U 1
1, by rule [T-Snd], we get U 1

1 “!rSs.U
2
1 with Γ $ e § S. Therefore, by rule

[TS-Snd], we get U 1
1

!rSs
ÝÝÑ U2

1 .
Rule [P-Rcv]: Thus, P2 “ s̄?py : Sq.P 1

2 and ℓ “ s̄?pyq. From Θ2; Γ2 $ P2rx{s̄s § x : U 1
1, by

rule [T-Rcv], we get U 1
1 “?rSs.U

2
1 . Therefore, by rule [TS-Rcv], we get U 1

1
?rSs
ÝÝÑ U2

1 .
Rules [P-Sel] and [P-Brn]: Similar to the previous cases.

Finally, from ␣Q2 óℓ̄, following a similarly reasoning, we can conclude U 1
2

τ
ÝÑ

˚ tlΓpℓq
ÝÝÝÑ{ .

The soundness results are as follows.

Theorem 6.10. If C is a roll-safe collaboration, then we have that C ↣{ ˚ Crroll errors.

Proof. The proof proceeds by contradiction. Suppose that there exists an initial collaboration
C that is rollback safe and such that C ↣˚ Crroll errors. The erroneous collaboration
roll error can be only produced by applying rule [E-Rll2]. Thus, to infer at least one
reduction of the sequence C ↣˚ Crroll errors, rule [E-Rll2] must be used. From this, we

have that there exists a runtime collaboration C 1 ” C1rC2s, with C2 “ pxQ1y§P1 | xQ̃2y§P2q,

such that C ↣˚ C 1, P1
roll
ÝÝÑ P 1

1, and C 1 ↠ C1rroll errors ↣˚ Crroll errors. By
rules [F-Con], [F-Res] and [B-Res], and the fact that the scope of operator

`

νs :
˘

is
statically defined (i.e., neither the operational rules nor ” allow scope extension), the term
C2 can only be the argument of the operator

`

νs : C1

˘

, i.e. C1 “ C2 |
`

νs : C1

˘

r¨s, with

C1 “ āpxq.P | apyq.Q for some a, x, y, P and Q. In its own turn, the term
`

νs : C1

˘

C2

can only be generated by applying rule [F-Con] from C1, which must be a subterm of C,
i.e. C ” C1 | C

1
2 for some C 1

2. Since the scope of
`

νs :
˘

operator cannot be extended, all
reductions performed by terms in parallel with it by applying rules [F-Par] and [B-Par] do
not affect the argument of such operator. Therefore, focussing on the subterm C1 of C, by
exploiting rules [F-Par] and [B-Par] we can set apart the reductions in C ↣˚ Crroll errors

involving C1 and its derivatives, thus obtaining C1 ↣˚
`

νs : C1

˘

C2 ↠
`

νs : C1

˘

roll error.

Now, since C is rollback safe, by Def. 4.3 we have that C § A and for all pairs b̄ : V1

and b : V2 in A we have V1 - V2. Since C ” C1 | C
1
2, by rule [T-Par] we obtain C1 § A1

with A1 Ď A. By rules [T-Req] and [T-Acc], we have A1 “ tā : T1, a : T2u. Since A1 is a
subset of A, we have that T1 - T2.

By Lemma A.2, we have that there exist U1, U2, U
1
1, U

1
2, U

2
1 such that pT1, T2q : xT1y§T1 ∥

xT2y§T2 ÞÝÑ
˚ pT1, T2q : xU1y§U 1

1 ∥ xŨ2y§U 1
2 “ t and U 1

1
roll
ÝÝÑ U2

1 . Since U
1
1 can only perform

roll, the only rules that can be applied are [TS-Rll1] and [TS-Rll2]. However, rule [TS-
Rll1] cannot be applied due to the imposed checkpoint U1. Therefore, the only rule that

can be applied is [TS-Rll2], leading to the configuration t1 “ pT1, T2q : xU1y§U2
1 ∥ xŨ2y§U2

2

with U2
1 “ U2

2 “ err. Now, no rule in Fig. 11 allows the term t1 to evolve, i.e. t1 ÞÝÑ{ . Since
T1 - T2, by Def. 4.1 it must hold that U2

1 “ U2
2 “ end. However, U2

1 “ err ‰ end and
U2
2 “ err ‰ end, which is a contradiction.

Theorem 6.11. If C is a roll-safe collaboration, then we have that C ↣{ ˚ Crcom errors.



2:36 C. A. Mezzina, F. Tiezzi, and N. Yoshida Vol. 21:1

Proof. The proof proceeds by contradiction. Suppose that there exists an initial collaboration
C that is rollback safe and such that C ↣˚ Crcom errors. The erroneous collaboration
com error can be produced by applying one of the rules [E-Com1], [E-Com2], [E-Lab1]
and [E-Lab2]. Let us consider the case [E-Com1], the other cases are similar. Proceeding
as in the proof of Theorem 6.10, without loss of generality we can focus on the subterm
C1 “ pāpxq.P | apyq.Qq of C, such that C1 ↣˚

`

νs : C1

˘

C2 ↠
`

νs : C1

˘

com error, with

C2 “ pxQ̃1y § P1 | xQ̃2y § P2q, and C1 § tā : T1, a : T2u, with T1 - T2.
By Lemma A.3, we have that there exist U1, U2, U

1
1, U

1
2, U

2
1 such that pT1, T2q : xT1y§T1 ∥

xT2y§T2 ÞÝÑ
˚ pT1, T2q : xŨ1y§U

1
1 ∥ xŨ2y§U

1
2 “ t with Q̃1 (resp. Q̃2) in checkpoint accordance

with Ũ1 (resp. Ũ2), U
1
1

!rSs
ÝÝÑ U2

1 , and for all U2
2 such that U 1

2
τ
ÝÑ

˚
U2
2 we have U2

2
?rSs
ÝÝÑ{ . Thus,

for all U2
2 as above, we have t ÞÝÑ˚ pT1, T2q : xŨ1y § U 1

1 ∥ xŨ2y § U2
2 “ t1. No rule in Fig. 11

allows the term t1 to evolve, i.e. t1 ÞÝÑ{ , because U 1
1 can only perform !rSs and rule [TS-Com]

cannot be applied since U2
2

?rSs
ÝÝÑ{ . Since T1 - T2, by Def. 4.1 it must hold that U 1

1 “ end.

However, since U 1
1 is able to perform an action (as it holds that U 1

1
!rSs
ÝÝÑ U2

1 ), we get that it
cannot be an end type, i.e. U 1

1 ‰ end, which is a contradiction.
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