
Logical Methods in Computer Science
Volume 21, Issue 1, 2025, pp. 4:1–4:34
https://lmcs.episciences.org/

Submitted May 03, 2023
Published Jan. 14, 2025

REGULAR MODEL CHECKING UPSIDE-DOWN:

AN INVARIANT-BASED APPROACH

JAVIER ESPARZA a, MICHAEL RASKIN b, AND CHRISTOPH WELZEL-MOHR a

aTechnical University of Munich, Boltzmannstraße 3, 85748 Garching b. München
e-mail address: esparza@in.tum.de, welzel@in.tum.de

b LaBRI, University of Bordeaux, CNRS - UMR 5800, F-33405 Talence CEDEX
e-mail address: mraskin@u-bordeaux.fr

Abstract. Regular model checking is a technique for the verification of infinite-state
systems whose configurations can be represented as finite words over a suitable alphabet.
The form we are studying applies to systems whose set of initial configurations is regular,
and whose transition relation is captured by a length-preserving transducer. To verify safety
properties, regular model checking iteratively computes automata recognizing increasingly
larger regular sets of reachable configurations, and checks if they contain unsafe config-
urations. Since this procedure often does not terminate, acceleration, abstraction, and
widening techniques have been developed to compute a regular superset of the reachable
configurations.

In this paper, we develop a complementary procedure. Instead of approaching the set
of reachable configurations from below, we start with the set of all configurations and
approach it from above. We use that the set of reachable configurations is equal to the
intersection of all inductive invariants of the system. Since this intersection is non-regular
in general, we introduce b-invariants, defined as those representable by CNF-formulas
with at most b clauses. We prove that, for every b ≥ 0, the intersection of all inductive
b-invariants is regular, and we construct an automaton recognizing it. We show that
whether this automaton accepts some unsafe configuration is in EXPSPACE for every
b ≥ 0, and PSPACE-complete for b = 1. Finally, we study how large must b be to prove
safety properties of a number of benchmarks.

1. Introduction

Regular model checking (RMC) is a framework for the verification of different classes of
infinite-state systems (see, e.g., the surveys [AJNS04, Abd12, AST18, Abd21]). In its canon-
ical version, RMC is applied to systems satisfying the following conditions: configurations
can be encoded as words, the set of initial configurations is recognized by a finite automaton

Key words and phrases: parameterized verification, finite automata, regular model-checking.
This paper is an extended version of [ERW22b]. In comparison to the proceedings version, this extended

version contains complete and detailed proofs, some additional examples, and a more general notion of
inductive invariants based on interpreting regular descriptions (see Section 4.2). This work was partially
funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 787367 (PaVeS).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-21(1:4)2025
© J. Esparza, M. Raskin, and C. Welzel-Mohr
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-9862-4919
https://orcid.org/0000-0002-6660-5673
https://orcid.org/0000-0001-5583-0640
http://creativecommons.org/about/licenses

4:2 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

I, and the transition relation is recognized by a length-preserving transducer T . RMC
algorithms address the problem of, given a regular set of unsafe configurations, deciding if its
intersection with the set of reachable configurations is empty or not. In the present paper,
we do not consider generalisations to non-length-preserving or non-finite-state-transducer
transitions.

The fundamental building block of current RMC algorithms is an automata-theoretic
construction that, given a non-deterministic automaton (NFA) A recognizing a regular set
of configurations, produces another NFA recognizing the set of immediate successors (or
predecessors) of L(A) with respect to the transition relation represented by T . Therefore,
if some unsafe configuration is reachable, one can find a witness by, starting with the
automaton I for the set of initial configurations, repeatedly adding the set of immediate
successors. However, this approach almost never terminates when all reachable configurations
are safe. Research on RMC has produced many acceleration, abstraction, and widening
techniques to make the iterative computation “jump over the fixpoint” in finite time, and
produce an invariant of the system not satisfied by any unsafe configuration (see, e.g.,
[BJNT00, JN00, DLS01, AJNd02, BLW03, BHV04, BT12, BHRV12, Leg12, CHLR17]).

In this paper, we develop a complementary approach that, starting with the set of
all configurations, computes increasingly smaller regular inductive invariants, i.e., sets of
configurations closed under the reachability relation and containing all initial configurations.
Our main contribution is the definition of a sequence of regular inductive invariants that
converges (in the limit) to the set of reachable configurations, and for which automata can
be directly constructed from I and T .

While some of the previous work (e.g. using abstraction [BHV04]) does include over-
approximation, this comes from replacing automata with smaller more permissive ones
and then using acceleration techniques. In contrast, our work directly constructs regular-
language-described properties that are satisfied by all the reachable configurations of the
original system.

Our starting point is the fact that the set of reachable configurations is equal to the
intersection of all inductive invariants. Since this intersection is non-regular in general, we
introduce b-invariants. An invariant is b-bounded, or just a b-invariant, if for every ℓ ≥ 0,
the configurations of length ℓ satisfying the invariant are those satisfying a Boolean formula
in conjunctive normal form with at most b clauses. The atomic propositions are claims of the
form “at the position i there is character x”. For example, assume that the configurations of
some system are words over the alphabet {a, b, c, d}, and that the configurations of length
five where the second letter is an a or the fourth letter is a b, and the second letter is a b
or the third is a c, constitute an inductive invariant. Then this set of configurations is a
2-invariant, represented by the formula (a2:5 ∨ b4:5) ∧ (b2:5 ∨ d3:5). We prove that, for every
bound b ≥ 0, the intersection of all inductive b-invariants, denoted IndInv b, is regular, and
recognized by a DFA of double exponential size in I and T . As a corollary, we obtain that,
for every b ≥ 0, deciding if IndInv b contains some unsafe configuration is in EXPSPACE.
Moreover, the proof inspires a wider class of regular inductive invariants. Introducing this
class is a central contribution of this paper which is an extended version of [ERW22b]. To
define such an invariant, we pick a finite transducer and a regular language of words, the
invariant being the image of the language under the action of the transducer. Generally,
we pick a single transducer to analyse a given regular transition system, and study the
invariants provided by different regular languages. We show that the EXPSPACE upper
bound still holds for the wider class.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:3

In the second part of the paper, we study the special case b = 1 in more detail. We
exploit that inductive 1-invariants are closed under union (a special feature of the b = 1
case), and prove that deciding whether IndInv1 contains some unsafe configuration is
PSPACE-complete. The proof also shows that IndInv1 can be recognized by an NFA of
single exponential size in I and T .

The index b of a bounded invariant can be seen as a measure of how difficult it is for a
human to understand it. So one is interested in the smallest b such that IndInv b is strong
enough to prove a given property. In the third and final part of the paper, we experimentally
show that for a large number of systems IndInv1 is strong enough to prove useful safety
properties.

Related work. The work closest to ours is [ADHR07], which directly computes an overapprox-
imation of the set of reachable configurations of a parameterized system. Contrary to our
approach, the paper computes one single approximation, instead of a converging sequence of
overapproximations. Further, the method is designed for a model of parameterized systems
with existential or universal guarded commands, while our technique can be applied to
any model analyzable by RMC. Our work is also related to [CHLR17], which computes
an overapproximation using a learning approach, which terminates if the set of reachable
configurations is regular; our paper shows that a natural class of invariants is regular, and
that automata for them can be constructed explicitly from the syntactic description of the
system. This paper generalizes the work of [BEI+20, ERW21a, BIS21, ERW21b] on trap
invariants for parameterized Petri nets. Trap invariants are a special class of 1-bounded
invariants, and the parameterized Petri nets studied in these papers can be modelled in the
RMC framework. An alternative to regular model checking are logical based approaches.
The invisible invariant method synthesizes candidate invariants from examples, which are
then checked for inductiveness [PRZ01]. Our approach does not produce candidates, it
generates invariants by construction. Modern tools like Ivy [PMP+16, MP20] have verified
more complex protocols than the ones in Section 7 using a combination of automation and
human interaction. The best way of achieving this interaction is beyond the scope of this
paper, which focuses on the foundations of regular model checking.

Structure of the paper. Section 2 introduces basic definitions of the RMC framework. Sec-
tion 3 introduces b-bound invariants while Section 4 proves regularity of IndInv b. Sections 5
and 6 prove the PSPACE-completeness result. Sections 7 and 8 contain some experimental
results and conclusions.

2. Preliminaries

Given n,m ∈ N, we let [n,m] denote the set {i ∈ N : n ≤ i ≤ m}.

4:4 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Languages and automata. A language over a finite alphabet Σ is a subset of Σ∗. An
element of a language is called a word; for a word w we denote w[i] its i-th letter. Given a
language L ⊆ Σ∗, we let L denote the language Σ∗ \L. A nondeterministic finite automaton
(NFA) is a tuple A = ⟨Q,Σ,∆, Q0, F ⟩ where Q is a non-empty finite set of states, Σ is an
alphabet, ∆: Q×Σ → 2Q is a transition function, and Q0, F ⊆ Q are sets of initial and final
states, respectively. A run of A on a word w ∈ Σℓ is a sequence q0 q1 . . . qℓ of states such
that q0 ∈ Q0 and qi ∈ ∆(qi−1, w[i]) for every i ∈ [1, ℓ]. A run on w is accepting if qℓ ∈ F ,
and A accepts w if there exists an accepting run of A on w. The language recognized by A,
denoted L(A) or LA, is the set of words accepted by A. We let |A| denote the number of
states of A. The function δA : 2Q × Σ∗ → 2Q is defined inductively as follows: δA(P, ε) = P
and δA(P, aw) = δA(

⋃
p∈P ∆(p, a), w). Observe that A accepts w iff δA(Q0, w) ∩ F ̸= ∅. An

NFA A is deterministic1 (DFA) if |Q0| = 1 and |∆(q, a)| = 1 for every q ∈ Q and a ∈ Σ.

Length-preserving relations and length-preserving transducers. A length-preserving
relation over an alphabet Σ× Γ is a language over the alphabet Σ× Γ. We denote elements
of Σ × Γ as ⟨a, b⟩ or

[
a
b

]
where a ∈ Σ and b ∈ Γ. Given w = w[1] . . . w[ℓ] ∈ Σ∗ and

u = u[1] . . . u[ℓ] ∈ Γ∗, we let ⟨w, u⟩ denote the word ⟨w[1], u[1]⟩ · · · ⟨w[ℓ], u[ℓ]⟩ ∈ (Σ × Γ)∗.
That is, if we write ⟨w, u⟩ then necessarily w and u have the same length. We look at ⟨w, u⟩
as a representation of the pair of words (w, u).

Remark 2.1. Throughout the paper, we consider only length-preserving relations on words,
and so we call them just relations.

The complement of a relation R ⊆ (Σ × Γ)∗ is the relation R := {⟨w, u⟩ ∈ (Σ × Γ)∗ |
⟨w, u⟩ /∈ R}. Sometimes we represent relations by infix operators, like ⇝, and then we
write comp(⇝) to denote the complement. Observe that, by definition, the complement of a
relation is a subset of (Σ×Γ)∗, and so it only contains tuple ⟨w, u⟩ where |w| = |u|. The join
of two relations R1 ⊆ (Σ1×Γ)∗ and R2 ⊆ (Γ×Σ2)

∗, is the relation R1◦R2 ⊆ (Σ1×Σ2)
∗ given

by: ⟨w1, w2⟩ ∈ R1 ◦R2 if there exists w ∈ Γ∗ such that ⟨w1, w⟩ ∈ R1 and ⟨w,w2⟩ ∈ R2. The
post-image of a language L ⊆ Σ∗ under a relation R ⊆ (Σ×Γ)∗ is the language L◦R given by:
w ∈ L ◦R iff there exists u ∈ Σ∗ such that u ∈ L and ⟨u,w⟩ ∈ R. The pre-image of L under
R, denoted R ◦ L, is defined analogously. The projections of a relation R ⊆ (Σ× Γ)∗ onto
its first and second components are the languages R|1 := {w ∈ Σ∗ | ∃u ∈ Γ∗ : ⟨w, u⟩ ∈ R}
and R|2 := {u ∈ Γ∗ | ∃w ∈ Σ∗ : ⟨w, u⟩ ∈ R}. The inverse of a relation R ⊆ (Σ× Γ)∗ is the
relation R−1 := {⟨u,w⟩ ∈ (Γ× Σ)∗ | ⟨w, u⟩ ∈ R}.

A (length-preserving) transducer over Σ× Γ is an NFA with Σ× Γ as alphabet. The
(length-preserving) relation recognized by a transducer T , denoted R(T) or RT , is the set
of tuples ⟨w, u⟩ ∈ (Σ × Γ)∗ accepted by T . A relation is regular if it is recognized by a
transducer. A transducer is deterministic if it is a deterministic NFA.

It is folklore that regular relations are closed under Boolean operations (the operations
are implemented as for regular languages) and composition, also called join, and that the
pre- and post-images of regular languages under regular relations are regular. We sketch the
constructions in the following proposition.

Proposition 2.2. Let Σ,Γ be finite alphabets.

1Sometimes in the literature this is called “deterministic and complete” with determinism being a weaker
property. However, unlike the size gap between NFAs and DFAs, the difference is limited to the presence of a
single “useless” bottom state.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:5

(1) Let T,U be transducers with nT and nU states over alphabets ΣT × Γ and Γ × ΣU ,
respectively. There exists a transducer with O(nTnU) states recognizing R(T) ◦R(U).

(2) Let A,B be NFAs over Σ, respectively Γ, with nA and nB states, respectively, and let
T be a transducer over Σ× Γ with nT states. There exist NFAs with O(nA · nT) and
O(nB · nT) states recognizing L(A) ◦R(T) and R(T) ◦ L(B), respectively.

(3) Let T be a transducer with nT states. There exist NFAs with nT states recognizing
R(T)|1 and R(T)|2.

(4) Let T be a transducer with nT states. There exists a transducer with nT states recognizing
R(T)−1.

Proof. 1) Let T = ⟨QT ,ΣT × Γ,∆T , Q0T , FT ⟩ and TU = ⟨QU ,Γ× ΣU ,∆U , Q0U , FU ⟩. Define
the transducer V := ⟨QT ×QU ,ΣT × ΣU ,∆, Q0T ×Q0U , FT × FU ⟩. For this transducer, we
fix (⟨qT , qU ⟩ , ⟨σT , σU ⟩ , ⟨q′T , q′U ⟩) ∈ ∆ iff there exists γ ∈ Γ such that (qT , ⟨σT , γ⟩ , q′T) ∈ ∆T

and (qU , ⟨γ, σU ⟩ , q′U) ∈ ∆U . We have R(V) = R(T) ◦R(U).

2) Let A = ⟨QA,Σ,∆A, Q0A, FA⟩ and T = ⟨QT ,Σ× Γ,∆T , Q0T , FT ⟩. Define the NFA
A′ = ⟨QA ×QT ,Γ,∆, Q0A ×Q0T , FA × FT ⟩ where (⟨qA, qT ⟩ , γ, ⟨q′A, q′T ⟩) ∈ ∆ iff there exists
σ ∈ Σ such that (qA, σ, q

′
A) ∈ ∆A and (qT , ⟨σ, γ⟩ , q′T) ∈ ∆T . We have L(A′) = L(A) ◦R(T).

The construction for R(T) ◦ L(B) is analogous.

3) Let T = ⟨QT ,Σ× Γ,∆T , Q0T , FT ⟩. Define A1 = ⟨QT ,Σ,∆, Q0T , FT ⟩ where (q, σ, q′) ∈ ∆
iff there exists γ ∈ Γ such that (q, ⟨σ, γ⟩ , q′) ∈ ∆T . We have L(A1) = R|1. The NFA A2 is
defined analogously.

4) Let T = ⟨QT ,Σ× Γ,∆T , Q0T , FT ⟩. Define T−1 = ⟨QT ,Γ× Σ,∆′, Q0T , FT ⟩ where ∆′(q,
⟨a, b⟩) := ∆T (q, ⟨b, a⟩) for all q, a, b.

Regular model checking. Regular model checking (RMC) is a framework for the verifica-
tion of systems with infinitely many configurations. Each configuration is represented as a
finite word over a fixed alphabet Σ. Systems are modelled as regular transition systems of
the following form.

Definition 2.3 (Regular transition systems). A regular transition system (RTS) is a triple
R = ⟨Σ, I, T ⟩ where Σ is an alphabet, I is an NFA over Σ, and T is a transducer over
Σ× Σ.

Words over Σ are called configurations. Configurations accepted by I are called initial,
and pairs of configurations accepted by T are called transitions. We write w ⇝ u to denote
that ⟨w, u⟩ is a transition. Observe that w ⇝ u implies |w| = |u|. Given two configurations

w, u, we say that u is reachable from w if w
∗
⇝ u where

∗
⇝ denotes the reflexive and

transitive closure of ⇝. The set of reachable configurations of R, denoted Reach(R), or
just Reach when there is no confusion, is the set of configurations reachable from the initial
configurations. In the following, we use |R| to refer to |I|+ |T |.

Example 2.4 (Dining philosophers). We model a very simple version of the dining philoso-
phers as an RTS, for use as running example. Philosophers sit at a round table with forks
between them. Philosophers can be thinking (t) or eating (e). Forks can be free (f) or busy
(b). A thinking philosopher whose left and right forks are free can simultaneously grab both
forks—the forks become busy—and start eating. After eating, the philosopher puts both
forks to the table and returns to thinking. The model includes two corner cases: a table
with one philosopher and one fork, which is then both the left and the right fork (unusable

4:6 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

as it would need to be grabbed twice in a single transition), and the empty table with no
philosophers or forks.

We model the system as an RTS R = ⟨Σ, I, T ⟩ over the alphabet Σ = {t, e, f, b}. A
configuration of a table with n philosophers and n forks is represented as a word over Σ of
length 2n. Letters at odd and even positions model the current states of philosophers and
forks (positions start at 1). For example, tftf models a table with two thinking philosophers
and two free forks. The set of initial configurations is L(I) = (tf)∗, and the set of transitions
is

R(T) =
[
t
e

][
f
b

][
x
x

]∗[f
b

] ∣∣∣∣ [
e
t

][
b
f

][
x
x

]∗[b
f

] ∣∣∣∣ [
x
x

]∗([
f
b

][
t
e

][
f
b

] ∣∣∣∣ [
b
f

][
e
t

][
b
f

]) [
x
x

]∗

where
[
x
x

]
stands for the regular expression

([
t
t

] ∣∣∣∣ [
e
e

] ∣∣∣∣ [
f
f

] ∣∣∣∣ [
b
b

])
. The first two terms of R(T)

describe the actions of the first philosopher, and the second the actions of the others. It is not
difficult to show that Reach = (t(f | beb))∗ | ebt((f | beb)t)∗b. These are the configurations
where no two philosophers are using the same fork, and fork states match their adjacent
philosopher states.

Safety verification problem for RTSs. The safety verification problem for RTSs is
defined as follows: Given an RTS R and an NFA U recognizing a set of unsafe configurations,
decide whether Reach(R) ∩ L(U) = ∅ holds. The problem is known to be undecidable.

Example 2.5. A configuration w of an RTS is deadlocked if there is no configuration u
such that w ⇝ u. It is easy to see that the set of deadlocked configurations of the dining
philosophers of Example 2.4 is

Dead = Σ∗f t f Σ∗ ∩ Σ∗b e bΣ∗ ∩ t f Σ∗f ∩ e bΣ∗b .

In other words, these are configurations containing neither f t f not b e b as a cyclic word.
The dining philosophers are deadlock-free iff Reach ∩ Dead = ∅, which is the case (recall
that philosophers can only grab both forks simultaneously).

3. Bounded inductive sets of an RTS

We present an invariant-based approach to the safety verification problem for RTSs. Fix an
RTS R = ⟨Σ, I, T ⟩. We introduce an infinite sequence

Σ∗ = IndInv0 ⊇ IndInv1 ⊇ IndInv2 . . . ⊇ Reach

of effectively regular inductive invariants of R that converges to Reach , i.e., IndInvk is
effectively regular for every k ≥ 1, and Reach =

⋂∞
k=0 IndInvk. Section 3.1 recalls basic

notions about inductive sets and invariants, and Section 3.2 defines the inductive invariant
IndInv b for every b ≥ 0.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:7

3.1. Inductive sets and invariants. Let S ⊆ Σ∗ be a set of configurations. S is inductive
if it is closed under reachability, i.e., if w ∈ S and w ⇝ u implies u ∈ S. Observe that
inductive sets are closed under union and intersection. S is an invariant for length ℓ if
Reach ∩ Σℓ ⊆ S ∩ Σℓ, and an invariant if Reach ⊆ S. Observe that, since T is a length-
preserving transducer, S is an invariant iff it is an invariant for every length. Given two
invariants I1, I2, we say that I1 is stronger than I2 if I1 ⊂ I2.

A set S is an inductive invariant if it is both inductive and an invariant, i.e., if it
contains Reach and is closed under reachability. Every inductive invariant S and every
initial configuration I satisfy I ∈ S. There is a unique smallest inductive invariant w.r.t. set
inclusion, namely the set Reach itself.

Example 3.1. The set I0 = ((t | e)(f | b))∗ is an inductive invariant of the dining philosophers.
Other inductive invariants are

I1 = Σ∗efeΣ∗, I2 = eΣ∗ef, I3 = Σ∗t b tΣ∗, I4 = tΣ∗t b,

I5 = (tΣ eΣ)∗, I6 = (eΣ tΣ)∗.

Taking into account that the table is round, these are the sets of configurations without
any occurrence of efe (I1 and I2) and t b t (I3 and I4) as a cyclic word; as well as without
alternation of t and e throughout the entire configuration (I5 and I6). Note that the latter
condition is vacuously true for an odd number of philosophers.

3.2. Bounded inductive sets. Given a length ℓ ≥ 0, we represent certain sets of con-
figurations as Boolean formulas over a set AP ℓ of atomic propositions. More precisely, a
Boolean formula over AP ℓ describes a set containing some configurations of length ℓ, and
all configurations of other lengths.

The set AP ℓ contains an atomic proposition qj:ℓ for every q ∈ Σ and for j ∈ [1, ℓ].
A formula φ over AP ℓ is a positive Boolean combination of atomic propositions of AP ℓ

and the constants true and false. Formulas are interpreted on configurations. Intuitively,
an atomic proposition qj:ℓ states that either the configuration does not have length ℓ,
or it has length ℓ and its j-th letter is q. Formally, w ∈ Σ∗ satisfies the single atomic
proposition qj:ℓ if either |w| ̸= ℓ or |w| = ℓ and w[j] = q. For non-atomic formulas, i.e.,
φ = true, φ1 ∨ φ2, φ1 ∧ φ2, satisfaction is defined as usual. The language L(φ) ⊆ Σ∗ of a
formula is the set of configurations that satisfy φ. We also say that φ denotes the set L(φ).
A formula is inductive if it denotes an inductive set.

Example 3.2. In the dining philosophers, let φ = (e1:4 ∧ b4:4) ∨ f2:4. We have

L(φ) = ϵ | Σ | Σ2 | Σ3 | e Σ Σ b | Σ f Σ Σ | Σ5Σ∗ .

Observe that an expression like (q1:1 ∧ r1:2) is not a formula because it combines atomic
propositions of two different lengths, which is not allowed. Notice also that ¬qj:ℓ is equivalent
to

∨
r∈Σ\{q} rj:ℓ. Therefore, if we allowed negative atomic propositions, we would still have

the same class of expressible predicates on words of a given length (and we would not obtain
formulas for the same predicates with fewer clauses.) Abusing language, if φ is a formula
over AP ℓ and L(φ) is an (inductive) invariant, then we also say that φ is an (inductive)
invariant. Observe that (inductive) invariants are closed under conjunction and disjunction.

Convention: From now on, “formula” means “positive formula in CNF”.

4:8 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Definition 3.3. Let b ≥ 0. A b-formula is a formula with at most b clauses (with the
convention that true is the only formula with 0 clauses). A set S ⊆ Σ∗ of configurations is
b-bounded if for every length ℓ there exists a b-formula φℓ over AP ℓ such that S∩Σℓ = L(φℓ).
We abbreviate b-bounded sets to just b-sets. We call a b-bounded invariant a b-invariant.

Observe that, since one can always add tautological clauses to a formula without changing
its language, a set S is b-bounded iff for every length ℓ there is a formula φℓ with exactly b
clauses.

Example 3.4. In the dining philosophers, the 1-formulas (t2i−1:ℓ ∨ e2i−1:ℓ) and (f2i:ℓ ∨ b2i:ℓ)
are inductive 1-invariants for every even ℓ ≥ 1 and every i ∈ [1, ℓ/2]. It follows that the set
I0 of Example 3.1 is an intersection of (infinitely many) such inductive 1-invariants. The
same happens for I1, . . . , I6. For example, I1 is the intersection of all inductive 1-invariants
of the form (ti:ℓ ∨ fi:ℓ ∨ bi:ℓ ∨ bi+1:ℓ ∨ ti+1:ℓ ∨ ei+1:ℓ ∨ ti+2:ℓ ∨ fi+2:ℓ ∨ bi+2:ℓ), for all ℓ ≥ 1 and
all i ∈ [1, ℓ− 1]; inductivity is shown by an easy case distinction.

We introduce the inductive invariants studied in the paper.

Definition 3.5. Let R = (Σ, I, T) be an RTS, let w, u ∈ Σ∗ be two configurations of

R, and let b ≥ 0. We say that w is b-potentially-reachable from u, denoted u
∗
⇝b w, if

every inductive b-formula satisfied by u is also satisfied by w. In other words, no inductive
b-set provides an explanation why w should not be reachable from u. Further, we define

IndInv b = {w ∈ Σ∗ | u ∗
⇝b w for some initial configuration u}.

Observe that u
∗
⇝ w implies u

∗
⇝b w for every b ≥ 1. Indeed, if u

∗
⇝ w then, by the

definition of an inductive formula, every inductive formula satisfied by u is also satisfied by
w. Therefore, if w is reachable from u then it is also b-potentially reachable from u for every
b ≥ 0. However, the converse does not necessarily hold.

The following proposition shows that IndInv b is an inductive invariant for every b ≥ 0,
and some fundamental properties.

Proposition 3.6. Let R be an RTS. For every b ≥ 0:

(1) IndInv b is an inductive invariant, and IndInv b ⊆ S for every inductive b-invariant S.
(2) IndInv b ⊇ IndInv b+1.
(3) Reach =

⋂∞
b=0 IndInv b.

Proof. (1) We first show that IndInv b is an inductive invariant.

• IndInv b is inductive. Let w ∈ IndInv b and w ⇝ v. Since w ∈ IndInv b, we have u
∗
⇝b w for

some initial configuration u. We prove u
∗
⇝b v. Let φ be an inductive b-formula satisfied

by u. By definition, φ is also satisfied by w and, since φ is inductive and w ⇝ v, also by v.
• IndInv b ⊇ Reach . Since IndInv b is inductive, it suffices to show that it contains all initial
configurations. This follows immediately from the definition of IndInv b and the fact that
every configuration is b-potentially reachable from itself.

For the second part, let S be an arbitrary b-invariant, and let w ∈ IndInv b. We prove w ∈ S.
Let ℓ be the length of w. Since S is a b-invariant, there exists a b-formula φ over APℓ such
that S ∩Σℓ = L(φ). So it suffices to prove w |= φ. Since w ∈ IndInv b, there exists an initial
configuration u such that every inductive b-formula satisfied by u is also satisfied by w. In
particular, this also holds for φ. Further, since S is an invariant, u |= φ. So w |= φ, and we
are done.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:9

(2) IndInv b ⊇ IndInv b+1 follows from the fact that, by definition, every b-formula is also a
(b+ 1)-formula.

(3) For every ℓ ≥ 0, the set Reach ∩ Σℓ is an inductive invariant for length ℓ. Let φℓ be a
formula over AP ℓ such that L(φℓ) ∩ Σℓ = Reach ∩ Σℓ, and let bℓ be its number of clauses.
(Notice that φℓ always exists because every subset of Σℓ can be expressed as a formula, and
every formula can be put in conjunctive normal form.) Then φℓ is a bℓ-bounded invariant,
and so L(φℓ) ⊇ IndInv bℓ for every ℓ ≥ 0. So we have Reach =

⋂∞
ℓ=0 L(φℓ) ⊇

⋂∞
b=0 IndInv b.

As each IndInv b is an invariant, IndInv b ⊇ Reach for all b, thus
⋂∞

b=0 IndInv b ⊇ Reach and
we are done.

By (1), the invariant IndInv b is as strong as any b-invariant. Notice, however, that IndInv b
needs not be a b-invariant itself. The reason is that b-sets are not closed under intersection.
Indeed, the conjunction of two formulas with b clauses is not always equivalent to a formula
with b clauses, one can only guarantee equivalence to a formula with 2b clauses.

Example 3.7. Recall that the deadlocked configurations of the dining philosophers are

Dead = Σ∗f t f Σ∗ ∩ Σ∗b e bΣ∗ ∩ t f Σ∗f ∩ e bΣ∗b .

We prove IndInv1 ∩Dead = ∅, which implies that the dining philosophers are deadlock-free.
Let C be the set of configurations of ((t | e)(f | b))∗ containing no occurrence of efe or t b t
as a cyclic word, and without alternation of e and t throughout the entire configuration. In
Example 3.1, we showed that C is the intersection of 1-invariants, which implies IndInv1 ⊆ C.
So it suffices to prove C ∩Dead = ∅. For this, let w ∈ C. If |w| ≤ 3 the proof is an easy case
distinction, so assume |w| ≥ 4. We show that w as a cyclic word contains an occurrence of
f t f or b e b, and so it is not a deadlock. If all philosophers are thinking at w, then, since w
contains no occurrence of t b t, it contains an occurrence of f t f .

If some philosopher is eating at w, assume for a contradiction that there is a deadlock.
By this assumption, that philosopher must have a free fork nearby. Without loss of generality,
assume that the fork is the next symbol in the configuration. Then we are looking at a
ef fragment. As efe is forbidden, the next symbol in the configuration has to be t. By
assumption of a deadlock, the next symbol is b. We have obtained eftb fragment; if we
continue, we observe that eating and thinking philosophers always alternate. But this is
forbidden by the last pair of invariants; thus the initial assumption of deadlock must be
false.

Further, for the dining philosophers we have Reach = IndInv3. Apart from some corner
cases (e.g. an unsatisfiable invariant for every odd length), the reason is that the 3-formula

(ti:ℓ ∨ fi:ℓ ∨ bi:ℓ ∨ bi+1:ℓ ∨ ti+1:ℓ ∨ ei+1:ℓ)

∧ (bi+1:ℓ ∨ ti+1:ℓ ∨ ei+1:ℓ ∨ ti+2:ℓ ∨ fi+2:ℓ ∨ bi+2:ℓ)

∧ (ti:ℓ ∨ fi:ℓ ∨ bi:ℓ ∨ fi+1:ℓ ∨ ti+1:ℓ ∨ ei+1:ℓ ∨ ti+2:ℓ ∨ fi+2:ℓ ∨ bi+2:ℓ)

is an inductive 3-invariant for every ℓ ≥ 3 and every i from 1 to ℓ, if we interpret indices
cyclically modulo ℓ. To verify it, observe that any violation has one of ef∗, ∗fe, or ebe at the
positions i through i+ 2. For either of the former two situations to arise anew, the middle
fork needs to be newly freed — requiring the latter situation as a precondition. Conversely,
for the latter situation to arise anew, one of the philosophers need to start eating, picking
up a free fork next to the other philosopher, who needs to be already eating. Thus any
violation of the condition requires a violation on the previous step, too, proving inductivity.

4:10 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

The configurations satisfying this invariant and the inductive 1-invariants I0, . . . , I6 of
Example 3.4 are the reachable configurations Reach = (t(f | beb))∗ | ebt((f | beb)t)∗b.

Note that the 3-invariant does not rely on the 1-invariants for its inductiveness; we always
require the inductive invariants to be inductive on their own independently of each other.
The invariant is weaker than it could be because we have obtained it from forbidding the
patterns ef , fe, and ebe. It happens to include some obviously unreachable configurations
such as ftft (note that the forks and the philosophers are swapped, the initial state for two
philosophers is tftf), but this is not a problem as simpler invariants exclude them.

Example 3.8. We construct an (artificial) family {Rb | b ≥ 1} of RTSs such that IndInv b ⊃
Reach(Rb) = IndInv b+1. Fix some b ≥ 1. Let Rb = {{0, 1} , I, T } with R(T) given by the
union of the languages [

0
0

]k1[1
0

][
0
0

]k2 ([
0
0

] ∣∣∣∣ [
0
1

] ∣∣∣∣ [
1
0

] ∣∣∣∣ [
1
1

])∗

for every k1, k2 ∈ N such that k1 + k2 = b − 1. Then every transition of the RTS is of
the form u · v ⇝ u′ · v′ where |u| = b = |u′|, the word u contains exactly one 1, and
the word u′ contains only 0s. If we choose 0∗ as the set of initial configurations, then no
transition is applicable to any initial configuration, and so Reach = 0∗. We show that
IndInv b ⊃ IndInv b+1 = 0∗ = Reach .

• IndInv b+1 = 0∗. We first claim that, for every i > b, the formula φi =
∧b

j=1 0j : ℓ ∧ 0(i−b) : ℓ

is an inductive b+ 1-invariant. It follows immediately from the definitions that φi is a
b+ 1-invariant. To show that φi is inductive, observe that every configuration w of length
ℓ satisfying φi is of the form w = 0bw′ for some word w′, and so no word u satisfies w ⇝ u.
This proves the claim. Now, the only configurations satisfying φi for every i > b are those
containing only 0s, and so IndInv b+1 = 0∗.

• 0b 1 ∈ IndInv b, and so IndInv b ⊃ Reach . Intuitively, we want to show that every b-set
containing 0b+1 contains some word of the form 0∗10∗, and all such words can reach
0b1, requiring all b-invariants to contain 0b1. It suffices to prove that no inductive b-set

φ =
∧b

i=1 φi separates 0
b+1 and 0b 1, i.e., satisfies 0b+1 |= φ while 0b 1 ̸|= φ. For this, let

us introduce a family of useful words: for every 1 ≤ i ≤ b+ 1, let wi := 0i−1 1 0b−i+1. We
have wi ⇝ 0b 1 and so, since φ is inductive and 0b 1 ̸|= φ, we get wi ̸|= φ. Intuitively, we
exploit the fact that wi differs from 0b+1 in exactly one position. This implies that, for
every i, some clause of φ, say φj , satisfies wi ̸|= φj and therefore contains 0i:b+1 as an
atomic proposition. So we “need” all clauses of the inductive invariant to exclude all wi,
and have none left to exclude 0b 1.

More formally, we conduct an induction on i from 1 to b to prove that there are distinct
j1, . . . , jb such that φji contains the atomic proposition 0i:b+1. Consider the base case:

Pick j1 such that w1 ̸|= φj1 , which exists because w1 ̸|= φ. 0b+1 differs from w1 only in

the first letter, and φj1 is a disjunction of atomic propositions which is satisfied by 0b+1.
This means that φj1 must contain 01:b+1 because it is the only atomic proposition that is

satisfied by 0b+1 but not w1. For the induction step, one observes that wi satisfies the
clauses φj1 , . . . , φji−1 by induction hypothesis. Therefore, φ also contains a new clause
φji such that wi ̸|= φji . With the same reasoning as for the base case one concludes that

0i:b+1 is an atomic proposition in φji . This concludes the induction and, thus, 0b 1 |= φ.

Example 3.9. As a final example, we construct an RTS such that Reach is a regular
language but there is no b such that IndInv b = Reach. Let R = ({0, 1}, I, T } be the RTS

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:11

with L(I) = 0∗ and

R(T) =
[
0
0

]∗ [
1
0

] [
0
0

]∗ ([
0
0

] ∣∣∣∣ [
0
1

] ∣∣∣∣ [
1
0

] ∣∣∣∣ [
1
1

])
.

For every length ℓ, the RTS R behaves like the RTS Rb of Example 3.8 for b = ℓ − 1.
Therefore, we have Reach = 0∗, and so Reach is regular. Further, IndInv b ̸= Reach for every
b ≥ 1 (as they differ when restricted to the length b+ 1).

4. IndInv b is regular for every b ≥ 1

4.1. Encoding b-formulas as b-powerwords. We introduce an encoding of b-formulas.
We start with some examples. Assume R is an RTS with Σ = {a, b, c}. We consider formulas
over AP3, i.e., over the atomic propositions {a1:3, a2:3, a3:3, b1:3, b2:3, b3:3, c1:3, c2:3, c3:3}.

We encode the 1-formula (a1:3 ∨ a2:3) as the word {a} {a} ∅ of length three over the
alphabet 2Σ. Intuitively, {a} {a} ∅ stands for the words of length 3 that have an a in their
first or second position. Similarly, we encode (a1:3 ∨ b1:3 ∨ b3:3) as {a, b} ∅ {b}. Intuitively,
{a, b} ∅ {b} stands for the set of words of length 3 that have a or b as the first letter, or b as
the third letter. Since 2Σ is the powerset of Σ, we call words over 2Σ powerwords.

Consider now the 2-formula (a1:3∨b1:3∨a2:3)∧(b1:3∨b3:3∨c3:3). We put the encodings of
its clauses “on top of each other”. Since the encodings of (a1:3∨b1:3∨a2:3) and (b1:3∨b3:3∨c3:3)
are {a, b} {a} ∅ and {b} ∅ {b, c}, respectively, we encode the formula as the word[

{a, b}
{b}

][
{a}
∅

][
∅

{b, c}

]

of length three over the alphabet 2Σ × 2Σ = (2Σ)2. We call such a word a 2-powerword.
Similarly, we encode a b-formula over AP3 as a b-powerword of length three over the
alphabet (2Σ)b. In the following, we overload φ to denote both a formula and its encoding
as a b-powerword, and, for example, write

φ =

X11

· · ·
Xb1

 · · ·
X1ℓ

· · ·
Xbℓ

 instead of φ =

b∧
i=1

ℓ∨
j=1

∨
a∈Xij

ai:ℓ

where Xij ⊆ Σ. Intuitively, each row Xi1 · · ·Xiℓ encodes one clause of φ. We also write

φ = φ[1] · · ·φ[ℓ] where φ[i] ∈ (2Σ)b denotes the i-th letter of the b-powerword encoding φ.
Now we show a simple lemma, which, however, provides the key to our results. For every

fixed b, the satisfaction relation w |= φ between configurations and b-formulas is regular:

Lemma 4.1. Let Σ be an alphabet, b ≥ 1, and Γ = (2Σ)b. There exists a deterministic
transducer Vb over the alphabet Σ× Γ with 2b states such that L(V) = {⟨w,φ⟩ ∈ (Σ× Γ)∗ |
w |= φ}.

Proof. A configuration w = w[1]w[2] · · ·w[ℓ] satisfies a b-formula

φ =

X11

. . .
Xb1

X12

. . .
Xb2

 · · ·
X1ℓ

. . .
Xbℓ


where Xi,j ⊆ Γ iff for every index 1 ≤ i ≤ b there exists a position 1 ≤ j ≤ ℓ in the word
w such that w[j] ∈ Xij . We define a transducer Vb over Σ× Γ that accepts ⟨w,φ⟩ iff this

4:12 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

condition holds. The transducer reads the word
w[1]

X11

. . .
Xb1



w[2]

X12

. . .
Xb2

 · · ·

w[ℓ]

X1ℓ

. . .
Xbℓ


storing in its state the set of indices i ∈ {1, . . . , b} for which the position j has already been
found. So the states of the transducer are the subsets of {1, . . . , b}, and, given two states
S, S′, there is a transition from S to S′ labeled by the tuple ⟨a,X1, . . . , Xb⟩ iff S ⊆ S′ and
a ∈ Xi holds for every i ∈ S′ \ S. The initial state is the empty set, indicating that no
position has been found yet, and the unique final state is the set {1, . . . , b}, indicating that
all positions have been found.

4.2. Representations and interpreters. The transducer Vb of Lemma 4.1 recognizes the
satisfaction relation w |= φ between configurations and b-formulas. We generalize this idea.
Consider an arbitrary transducer V over the alphabet Σ × Γ, where Γ is some arbitrary
alphabet. Now, look at a word W ∈ Γ∗ (we use capital letters W,V,U, . . . to denote such
words) as a representation of the set of configurations {w ∈ Σ∗ | ⟨w,W ⟩ ∈ L(V)}. Intuitively,
W is a name standing for this set of configurations, and the transducer V interprets the
meaning of W . For this reason, we call V an interpreter.

Definition 4.2 (Interpretation). Let R = ⟨Σ, I, T ⟩ be a regular transition system. An
interpretation is a pair ⟨Γ,V⟩ where Γ is an alphabet and V is a deterministic transducer over
Σ× Γ, called the interpreter2. We call words over Γ representations, and use capital letters
W,V,U, . . . to denote them. W ∈ Γ∗ represents or stands for the set of all configurations
w ∈ Σ∗ such that ⟨w,W ⟩ is accepted by V. We write w |=V W to denote that w is one the
words represented by W .

Example 4.3. The transducer of Lemma 4.1 is a particular interpreter with alphabet
Γ = (2Σ)b. For example, for b = 2 the transducer interprets the word[

{a, b}
{b}

][
{a}
∅

][
∅

{b, c}

]

as the set of configurations that satisfy the formula (a1:3 ∨ b1:3 ∨ a2:3) ∧ (b1:3 ∨ b3:3 ∨ c3:3).

In the rest of the section, we define the set IndInvV for an arbitrary interpreter V, and
prove that it is regular. Instantiating V as the transducer Vb of Lemma 4.1, we obtain as a
corollary that IndInv b is regular for every b ≥ 1. In order to define IndInvV , observe that
an interpreter V may interpret some representations as inductive sets of configurations, and
others as non-inductive sets. We define the set of all representations that are inductive.

Definition 4.4. Let R = ⟨Σ, I, T ⟩ be a regular transition system and let V be an interpreter.
A representation W ∈ Γ∗ is inductive if u⇝ w and u |=V W implies w |=V W . We define
the set

IndV = {W ∈ Γ∗ | for every u,w ∈ Σ∗, if u⇝ w and u |=V W , then w |=V W} .

We write u
∗
⇝V w, and say that w is potentially reachable from u with respect to V if for

every inductive representation W ∈ IndV , if u |=V W , then w |=V W too. Further, we define

IndInvV := {w ∈ Σ∗ | u ∗
⇝V w for some initial configuration u}.

2Observe that we require the transducer to be deterministic (as is the case in Lemma 4.1).

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:13

We have the following fact:

Fact 4.5. IndInvV ⊇ Reach for every interpreter V, i.e., IndInvV is an overapproximation
of the set of reachable configurations.

Proof. If w ∈ Reach, then v
∗
⇝ w holds for some initial configuration v. We prove v

∗
⇝V w,

which implies w ∈ IndInvV . Since v
∗
⇝ w, every inductive set containing v contains w as

well. So, in particular, for every W ∈ IndV , if v |=V W , then w |=V W .

To illustrate the virtue of this generalization, consider another interpretation for the RTS
from Example 3.9. Abstractly speaking, we consider a set of atomic propositions and enforce
that none of these propositions is true. The interpreter V for this is

M

H

M,H

where M are all pairs ⟨σ, U⟩ with σ /∈ U while H are all pairs with σ ∈ U . One can quickly
verify that here {1}∗ ⊆ IndV and, thus, Reach = 0∗ = IndInvV as there is no 1 in any
configuration – a fact that is true initially, and, since then there is no transition applicable,
throughout every step.

In the rest of the section, we prove that IndInvV is an effectively regular set of con-
figurations for any interpreter V. As a first step, we show that IndV is a regular set of
representations. This follows immediately from the following proposition, proving that the
complement of IndV is regular.

Lemma 4.6. Let R = ⟨Σ, I, T ⟩ be an RTS where T has nT states, and let V be an interpreter
with nV states. One can effectively compute an NFA with at most nT · n2

V states recognizing

the set of representations IndV .

Proof. Let IdΓ = {⟨W,W ⟩ | W ∈ Γ∗} be the identity relation on Γ. By definition of IndV ,
we have

IndV

= {W ∈ Γ∗ | ∃u,w ∈ Σ∗ s.t. u⇝ w, u |=V W and w ̸|=V W}
=
{
W ∈ Γ∗ | ∃u,w ∈ Σ∗ s.t. ⟨u,w⟩ ∈ RT , ⟨u,W ⟩ ∈ RV , ⟨w,W ⟩ ∈ RV

}
=
{
W ∈ Γ∗ | ∃u,w ∈ Σ∗ s.t. ⟨W,u⟩ ∈ RV

−1, ⟨u,w⟩ ∈ R(T), ⟨w,W ⟩ ∈ RV
}

=
{
W ∈ Γ∗ | ⟨W,W ⟩ ∈ R−1

V ◦R(T) ◦RV
}

=
((
RV

−1 ◦R(T) ◦RV
)
∩ IdΓ

)∣∣
1
.

Since V is deterministic, there are transducers for R(V) and comp(R(V)) with O(nV) states.
Applying Proposition 2.2(1) twice and Proposition 2.2(3), we obtain an NFA for IndV with
at most nT · n2

V states.

Using standard automata constructions, we get immediately:

Lemma 4.7. Let R = ⟨Σ, I, T ⟩ be an RTS where T has nT states, and let V be an interpreter

with nV states. One can effectively compute an DFA with at most 2nT ·n2
V states recognizing

the set of representations IndV .

4:14 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

We prove that the potential reachability relation is effectively regular, that is, the relation is
recognized by a transducer that can be effectively constructed from T and V. Again, we
show that its complement is regular.

Lemma 4.8. Let R = ⟨Σ, I, T ⟩ be a regular transition system with nT states, and let V be
an interpreter with nV states. One can effectively compute a nondeterministic transducer

with at most n2
V · 2nT ·n2

V states recognizing comp(
∗
⇝V).

Proof. By definition, we have

comp(
∗
⇝V)

= {⟨u,w⟩ ∈ (Σ× Σ)∗ | ∃W ∈ IndV s.t. u |=V W and w ̸|=V W}

=
{
⟨u,w⟩ ∈ (Σ× Σ)∗ | ∃W ∈ IndV s.t. ⟨u,W ⟩ ∈ RV and ⟨W,w⟩ ∈ R−1

V

}
.

Let S = {⟨W,W ⟩ | W ∈ IndV}. We then have comp(
∗
⇝V) =

(
RV ◦ S ◦ comp(R−1

V)
)
. Since

V is deterministic, there is a transducer for comp(R−1
V) with O(nV) states. Further, by

Lemma 4.6 there is a DFA for IndV with at most 2nT ·n2
V states, and so a transducer for S with

the same number of states. Applying Proposition 2.2, we can construct a nondeterministic

transducer for comp(
∗
⇝V) with at most n2

V · 2nT ·n2
V states.

Again, we get:

Lemma 4.9. Let R = ⟨Σ, I, T ⟩ be a regular transition system with nT states, and let V be
an interpreter with nV states. One can effectively compute a deterministic transducer with

at most 22
log(n2

V)·nT ·n2
V states recognizing

∗
⇝V .

We combine the previous results to show that, given an RTS R and an interpretation V , the
set IndInvV of potentially reachable configurations is recognized by an NFA with double
exponentially many states in T and V.

Theorem 4.10. Let R = ⟨Σ, I, T ⟩ be an RTS, and let V be an interpretation. Let nI , nT ,
and nV be the number of states of I, T , and V, respectively. Then IndInvV is recognized by

an NFA with at most nI · 22
log(n2

V)·nT ·n2
V states.

Proof. We have IndInvV = LI ◦ (∗
⇝V) by the definition of IndInvV . By Lemma 4.9,

∗
⇝V is

recognized by a deterministic transducer with 22
log(n2

V)·nT ·n2
V states. Apply Proposition 2.2.

We apply Theorem 4.10 to the interpreter of b-formulas given in Lemma 4.7, and obtain:

Corollary 4.11. Let R = ⟨Σ, I, T ⟩ be an RTS. Let b ≥ 1, and let f(nT , b) := 2 · nT log nT ·
2b+1. Then IndInv b (Definition 3.5) is recognized by a DFA with at most nI · 22

f(nT ,b)
states.

Proof. By Lemma 4.7, there is a deterministic transducer with at most 22
(2nT lognT ·nV)

states

recognizing
∗
⇝V . So, there is a deterministic transducer with at most 22

f(nT ,b)
states for

∗
⇝b.

Apply Proposition 2.2(2).

Given an instance R, U of the safety verification problem and a fixed b ≥ 0, if the set
IndInv b satisfies IndInv b ∩ L(U) = ∅, then R is safe. By Corollary 4.11, deciding whether
IndInv b ∩ L(U) = ∅ is in EXSPACE for every fixed b. Indeed, the theorem and its proof
show that there is a DFA recognizing IndInv b ∩ L(U) such that one can guess an accepting

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:15

path of it, state by state, using exponential space. Indeed, for fixed b, the interpreter
of Lemma 4.1 has a constant number of states nV . Therefore, storing one state of the
transducer of Lemma 4.9 takes polynomial space, and storing one state of the transducer of
Theorem 4.10 takes exponential space. Currently, we do not know if there is a b such that
the problem is EXSPACE-complete for every b′ ≥ b. In the next two sections, we show that
for b = 1 the problem is actually PSPACE-complete.

5. Deciding IndInv1 ∩ L(U) = ∅ is in PSPACE

We give a non-deterministic polynomial-space algorithm that decides IndInv1 ∩ L(U) = ∅.
As a byproduct, we show that IndInv1 is recognized by an NFA with a single exponential
number of states.

As a running example for the following construction we are introducing a basic token
passing protocol: There is a line of agents. Any single agent either holds a token (t) or not
(n). The initial language is t n∗; that is, initially there is exactly one token. The transitions
of the system allow the token to be passed down the line or, if the token already is at the
last position, to be passed back to the front. One can understand this protocol as a token
passing algorithm in a circle of agents. The transducer for the transitions looks as follows:

q0

q1 q2 q3

q4 q5

[
n
n

]
[
t
n

]

[
t
n

]

[
n
t

]
[
n
n

] [
n
n

]

[
n
n

][
n
t

]
[
t
n

]

We fix an RTS R = (Σ, I, T) for the rest of the section. 1-formulas have a special
property: since the disjunction of two clauses is again a clause, the disjunction of two
1-formulas is again a 1-formula. This allows us to define the separator of a configuration w.

Definition 5.1. The separator of a configuration w, denoted Sepw, is the union of all
inductive 1-sets not containing w.

We characterize membership of w in IndInv1 in terms of its separator:

Lemma 5.2. For every configuration w, its separator Sepw is an inductive 1-set. Further
w ∈ IndInv1 iff Sepw is not an invariant.

Proof. Since inductive sets are closed under union, Sepw is inductive. Since the disjunction
of two clauses is again a clause, the union of two 1-sets of configurations is also a 1-set, and
so Sepw is an inductive 1-set. For the last part, we prove that w /∈ IndInv1 iff Sepw is an
invariant. Assume first w /∈ IndInv1. Then some inductive 1-invariant does not contain w.
Since, by definition, Sepw contains this invariant, Sepw is also an invariant. Assume now
that Sepw is an invariant. Then Sepw is an inductive 1-invariant, and so Sepw ⊇ IndInv1.
Since w /∈ Sepw, we get w /∈ IndInv1.

4:16 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Our plan for the rest of the section is as follows:

• We introduce the notion of a separation table for a configuration. (Definition 5.3)
• We show that, given a configuration w and a separation table τ for w, we can construct a
1-formula φSepτ

w
such that L(φSepτ

w
) = Sepw. (Lemma 5.4)

• We use this result to define a transducer Tsep over Σ× 2Σ that accepts a word ⟨w,φ⟩ iff
φ = φSepτ

w
. (Proposition 5.6)

• We use Tsep and Proposition 2.2 to define an NFA over Σ that accepts a configuration w
iff Sepw is not an invariant, and so, by Lemma 5.2, iff w ∈ IndInv1. (Theorem 5.11)

We present a characterization of Sepw in terms of tables. Given a transition s⇝ t, we call s
and t the source and target of the transition, respectively. A table of length ℓ is a sequence
τ = s1 ⇝ t1, . . . , sn ⇝ tn of transitions of R (not necessarily distinct), all of length ℓ.3 We
define the separation tables of a configuration w.

Definition 5.3. Let w be a configuration and let τ = s1 ⇝ t1, . . . , sn ⇝ tn be a table, both
of length ℓ. For every j ∈ [1, ℓ], let In(w, τ)[j] = {w[j], s1[j], . . . , sn[j]} be the set of letters
at position j of w and of the source configurations s1, . . . , sn of the table.

• τ is consistent with w if for every i ∈ [1, n], j ∈ [1, ℓ], either ti[j] = w[j] or ti[j] = si′ [j] for
some i′ < i.
(Intuitively: τ is consistent with w if for every position and every target configuration
of the table, the letter of the target at that position is either the letter of w, or the
letter of some earlier source configuration, with the choice for different positions made
independently.)

• τ is complete for w if every table τ, s⇝ t consistent with w satisfies s[j] ∈ In(w, τ)[j] for
every j ∈ [1, ℓ].
(Intuitively: τ is complete for w if it cannot be extended by a transition that maintains
consistency and introduces a new letter.)

A table is a separation table of w if it is consistent with and complete for w.

Overall, a separation table represents the following logic. We want an inductive 1-
invariant that does not contain w. We think of the words that must be outside the invariant.
As a 1-set is defined via a disjunction of atomic propositions, effectively the question is
which letters are excluded at each position. Naturally, all the letters of w are excluded for
their corresponding positions. Moreover, any transition preimage of a word constructed of
excluded letters also has to be an excluded word due to the inductive property. Letters of
such a preimage are also excluded at their corresponding positions. Note that this means
that we use the transitions backwards: we start with w, then try to add something that
can reach w in one step, etc. For instance in the running example this manifests as follows:
Consider the (reachable) configuration n t n n n n for our running example. The largest
statement that is not satisfied by this configuration is {t} {n} {t} {t} {t} {t} since it
contains at every position all letters but the one that is at the same position in the original
configuration. We now demonstrate how this statement is refined to become inductive. For
this, we show a series of statements and transitions below such that the transition refines
the previous statement to the next. In the following table we mark statements with • and
the refining transitions with ▷. Moreover, we mark in red the atoms of the statements that
are removed in each step and in the transitions the reason why they are removed.

3We call it a table because we visualize s1, t1, . . . , sn, tn as a matrix with 2n rows and ℓ columns.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:17

• {t} {n} {t} {t} {t} {t}
▷

[
t
n

] [
n
t

] [
n
n

] [
n
n

] [
n
n

] [
n
n

]
• ∅ ∅ {t} {t} {t} {t}
▷

[
n
t

] [
n
n

] [
n
n

] [
n
n

] [
n
n

] [
t
n

]
• ∅ ∅ {t} {t} {t} ∅
▷

[
n
n

] [
n
n

] [
n
n

] [
n
n

] [
t
n

] [
n
t

]
• ∅ ∅ {t} {t} ∅ ∅
▷

[
n
n

] [
n
n

] [
n
n

] [
t
n

] [
n
t

] [
n
n

]
• ∅ ∅ {t} ∅ ∅ ∅
▷

[
n
n

] [
n
n

] [
t
n

] [
n
t

] [
n
n

] [
n
n

]
• ∅ ∅ ∅ ∅ ∅ ∅

Consistency with w means that the table contains the transitions implementing this
approach. Completeness means that there are no transitions left to add to exclude more
letters. Strictly speaking, we do not require each transition in the table to exclude a new
letter, but adding transitions without excluding any new letters is useless.

For our running example a separation table for the configuration n t n n n n is

▷
[
t
n

] [
n
t

] [
n
n

] [
n
n

] [
n
n

] [
n
n

]
▷

[
n
t

] [
n
n

] [
n
n

] [
n
n

] [
n
n

] [
t
n

]
▷

[
n
n

] [
n
n

] [
n
n

] [
n
n

] [
t
n

] [
n
t

]
▷

[
n
n

] [
n
n

] [
n
n

] [
t
n

] [
n
t

] [
n
n

]
▷

[
n
n

] [
n
n

] [
t
n

] [
n
t

] [
n
n

] [
n
n

]
Observe that every configuration w has at least one separation table. If there are no

transitions with target w, then the empty table with no transitions is a separation table.
Otherwise, starting with any transition s⇝ w, we repeatedly add a transition, maintaining
consistency and introducing at least one new letter until no such transition exists. Lack
of such transitions implies completeness of the table. This procedure terminates—there
are only finitely many transitions between configurations of a fixed length—and yields a
separation table.

The next lemma shows how to compute a 1-formula φSepτ
w
such that L(φSepτ

w
) = Sepw

from any separation table τ of w.

Lemma 5.4. Let τ be any separation table for a configuration w of length ℓ. Then Sepw
is the set of all configurations z ∈ Σℓ such that z[j] /∈ In(w, τ)[j] for some j ∈ [1, ℓ]. In
particular, Sepw is the language of the 1-formula

φSepτ
w
:=

ℓ∨
j=1

 ∨
a/∈In(w,τ)[j]

aj:ℓ


or, in the powerword encoding, of the formula

φSepτ
w
= In(w, τ)[1] · · · In(w, τ)[ℓ] .

Before we prove this lemma, observe that the separation table for our running example from
before would give φSepτ

n t n n n n
as the powerword ∅ ∅ ∅ ∅ ∅ ∅: In particular, the first letter is

∅ because it does not contain n as the configuration starts with the letter n but it also does
not contain t as the first transition “removes” it.

4:18 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Proof. We claim that φSepτ
w
denotes an inductive 1-set not containing w. That φSepτ

w
denotes

a 1-set not containing w follows immediately from the definition. To see that φSepτ
w
denotes

an inductive set, assume there is a transition s ⇝ t such that s |= φSepτ
w
and t ̸|= φSepτ

w
.

Since t ̸|= φSepτ
w
, all the letters of t are excluded at their corresponding positions, thus the

transition s⇝ t can be added to the table τ yielding the table τ, s⇝ t consistent with w.
Since s |= φSepτ

w
, τ is not complete, contradicting the assumption.

Let us now prove that φSepτ
w
denotes the largest inductive 1-set not containing w. Using

the powerword encoding, it is enough to prove that for every position j and every letter
x ∈ In(w, τ)[j], each inductive 1-set specified by a powerword containing x at position j
contains the word w.

Consider the prefixes of τ : the empty sequence τ0, and the sequences τ1 = s1 ⇝ t1,
τ2 = s1 ⇝ t1, s2 ⇝ t2, up to τn = τ = s1 ⇝ t1, . . . , sn ⇝ tn. All of them are tables consistent
with w. By construction, for every j, we have In(w, τ0)[j] ⊆ In(w, τ1)[j] ⊆ . . . ⊆ In(w, τn)[j].
We prove by induction on k that, for each position j and each letter x ∈ In(w, τk)[j], each
inductive 1-set specified by a powerword containing x at position j contains the word w.
The base is obvious as x ∈ In(w, τ0)[j] means x = w[j].

To prove the induction step, consider some index k, position j, and letter x ∈ In(w, τk)[j]\
In(w, τk−1). By definition of In(w, τk), this means that x = sk[j] (recall that sk ⇝ tk is the
last transition in τk, and this transition is not present in τk−1). Consider any inductive 1-set
S containing the language of xj:ℓ. As sk ∈ S and S is inductive, tk ∈ S holds. Hence, for
some j′, the 1-set S contains the language of the atomic proposition tk[j

′]j′:ℓ. By consistency
of τ , the letter tk[j

′] is in the set In(w, τk−1)[j]. Thus consider x′ = tk[j
′] and apply the

induction hypothesis to x′ at position j′. We obtain w ∈ S.
We have proven that φSepτ

w
denotes a maximal inductive 1-set not containing w, i.e.

Sepw.

We construct a transducer over the alphabet Σ× 2Σ that transduces a configuration w into
the formula φSepτ

w
of a table τ consistent with and complete for w. For this, we need the

consistency and completeness summaries of a table.
The basic motivation is: locally, there is only a polynomial-size list of options how a

transition can look like, and we can always reuse a fragment of a transition with a different
continuation as long as transducer states match. So what we most care about is which
transitions of the RTS-transition transducer become available at each position, and in which
order.

To certify completeness, we need to check a claim about all transitions accepted by the
transition transducer; we apply the subset construction and record its execution. We keep
track of two sets of states: reachable at all, and reachable while also adding at least one new
excluded letter.

Definition 5.5. Let τ = s1 ⇝ t1, . . . , sn ⇝ tn be a separation table for a configuration w.
The consistency summary is the result of applying the following procedure to τ :

• Replace each pair of rows si ⇝ ti by a sequence of states providing an accepting run of T
on it.
(This produces a table with n rows and ℓ+ 1 columns, whose entries are states of T .)

• In each column, keep the first occurrence of each state, removing the rest.
(The result is a sequence of columns; the columns of the sequence may have possibly
different lengths.)

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:19

The completeness summary is the sequence (Q0, Q
′
0), (Q1, Q

′
1) . . . (Qℓ, Q

′
ℓ) of pairs of sets of

states of T , defined inductively as follows for every j ∈ [0, ℓ]:

• Q0 is the set of initial states and Q′
0 is empty.

• Qj+1 is the set of states reachable from Qj by means of letters [a, b] such that b ∈ In(w, τ).
• Q′

j+1 is the set of states reachable from Q′
j by means of letters [a, b] such that b ∈ In(w, τ),

or reachable from Qj by means of letters [a, b] such that a /∈ In(w, τ) and b ∈ In(w, τ).

To get to the consistency summary of our running example, we start with the accepting
runs of the transitions in the separation table and get

▷ q0 q2 q3 q3 q3 q3 q3
▷ q0 q4 q4 q4 q4 q4 q5
▷ q0 q1 q1 q1 q1 q2 q3
▷ q0 q1 q1 q1 q2 q3 q3
▷ q0 q1 q1 q2 q3 q3 q3

By removing all but the first occurrence of each state in each column we get

▷ q0 q2 q3 q3 q3 q3 q3
▷ q4 q4 q4 q4 q4 q5
▷ q1 q1 q1 q1 q2
▷ q2
▷ q2

Since the statement that arises from this table is ∅ ∅ ∅ ∅ ∅ ∅ the completeness summary
becomes

⟨{q0} , ∅⟩ ⟨{q1, q2, q4} , ∅⟩
〈
Q′′, ∅

〉 〈
Q′′, ∅

〉 〈
Q′′, ∅

〉 〈
Q′′, ∅

〉
where Q′′ = {q1, q2, q3, q4, q5} immediately.

Observe that the consistency summary is a sequence α = α[1] . . . α[ℓ] where α[i] is a
sequence of distinct states of T , i.e., an element of QnT

T , and the completeness summary
is a sequence β = β[1] . . . β[ℓ] where β[i] is a pair of sets of states of T , i.e., an element of
2QT × 2QT . We prove:

Proposition 5.6. There exists a transducer Tsep over the alphabet Σ× 2Σ satisfying the
following properties:

• The states of Tsep are elements of (QT ∪ {□})nT × (2QT × 2QT) where nT is the number
of states of T .

• There is a polynomial time algorithm that, given two states q, q′ of Tsep and a letter
⟨a,X⟩ ∈ Σ× 2Σ decides whether the triple (q, ⟨a,X⟩ , q′) is a transition of Tsep.

• Tsep recognizes a word ⟨w,φ⟩ over Σ× 2Σ iff φ = φSepτ
w
.

Proof. The proof is long. We introduce local separation refinements in Definition 5.7, and
give an algorithm for computing them in Lemma 5.8. We then show that they can be
combined into increasingly longer fragment separation refinements (Definition 5.9 and
Lemma 5.10). Equipped with these results, we then prove the Proposition.

Definition 5.7. A local separation refinement for a letter c ∈ Σ is a sequence of transitions
λ = (q1, (a1, b1), q

′
1),. . .,(qn, (an, bn), q

′
n) of T such that for every i ∈ [1, n], either bi = c or

bi = ai′ for some i′ < i. The states q1, . . . , qn and q′1, . . . , q
′
n are called incoming and outgoing

states, respectively. The first-appearance lists of λ are the result of removing from q1, . . . , qn
and q′1, . . . , q

′
n all elements qi (q

′
i) such that qk = qi (q

′
k = q′i) for some k < i.

4:20 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Observe that the condition on bi corresponds to consistency with the configuration
(restricted to a single position).

Lemma 5.8. There is a polynomial time algorithm taking an RTS R = ⟨Σ, I, T ⟩, a letter
c ∈ Σ, and two lists of distinct states of T as input. The algorithm outputs a local separation
refinement for c whose first-appearance lists are equal to the input lists. The algorithm
produces empty output if no such refinement exists.

Proof. The algorithm starts with the empty sequence of transitions, and repeatedly adds
transitions until the local separation refinement is constructed. The algorithm keeps track of
the transitions, the source letters, and the lists of incoming states and outgoing states of the
sequence of transitions constructed so far. We call them the sets of used transitions, and
source letters, and the lists of used incoming states, and outgoing states. Initially all these
sets and lists are empty. At each moment in time, a target letter is permissible if it is either
equal to c, or it has been already used as a source letter. The main loop of the algorithm
repeatedly proceeds as follows. First, it checks whether there is a still unused transition
with a permissible target letter, and whose incoming and outgoing states have already been
used (as incoming and outgoing states, respectively). If so, the transition is added to the
current sequence. Otherwise, the algorithm checks if there is an unused transition, whose
incoming states and outgoing states have already been used, or are equal to the next states
in the input lists. If so, the transition is added to the current sequence. The incoming and
the outgoing states are added to the corresponding lists of used states if they are not already
present.

If a loop iteration fails to add a new transition, then the loop terminates. If, after
termination, the lists of used incoming and outgoing states are equal to the input lists, then
the algorithm returns the current sequence of transitions, otherwise it returns nothing.

Each iteration of the algorithm runs in polynomial time. Since each iteration but the
last adds one transition to the sequence, the algorithm runs in polynomial time.

We now show that if the algorithm returns a sequence, then that sequence is a local
separation refinement for c satisfying the conditions. By construction, after each iteration
the current sequence is a local separation refinement; further, the lists of used incoming
and outgoing states are first appearances lists, and prefixes of the input lists. Finally, the
algorithm returns a sequence only if the lists of used incoming and outgoing states coincide
with the input lists.

It remains to show that if there exists a separation refinement for c satisfying the
conditions, then the algorithm returns a sequence. Assume there is a such a refinement,
but the algorithm terminated without returning a sequence. Note that if after termination
all transitions of the refinement have been used, then all incoming and outgoing states of
the input lists have been used too, and so the algorithm would have returned a sequence.
So at least one transition of the refinement, was not used by the algorithm. Consider the
first such transition, say (q, (a, b), q′). Since all the previous transitions of the refinement
(and possibly some others) were used, after termination all incoming and outgoing states
of the input lists before q and q′ have been used too, and b has become permissible. Then
during the last iteration of the main loop the algorithm was able to use (q, (a, b), q′), but
terminated instead, a contradiction.

This concludes the proof of the lemma.

We obtain separation refinements for a word w by combining local separation refinements
for its letters, as follows.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:21

Definition 5.9. A run fragment of an automaton is a run of the automaton obtained by
replacing the set of initial states with the set of all states. (In other words, the condition of
starting in an initial state is dropped.) The states starting and ending a run fragment are
called the incoming and outgoing states of the fragment, respectively.

A fragment separation refinement τ for a word w of length ℓ is a table of ℓ columns τ [1],
. . .,τ [ℓ], where each column is a local separation refinement of the same length. Moreover,
the sequences of outgoing and incoming states of adjacent columns coincide; i.e. for each
j ∈ [1, ℓ] the i-th outgoing state of the j-th column is equal to the i-th incoming state of the
j + 1-th column. The incoming and outgoing states of τ are the incoming states of τ [1] and
the outgoing states of τ [ℓ], respectively.

We can also split a fragment separation refinement τ into rows τ1, . . . , τn. Each row τi is
a run fragment of T . We prove that fragment separation refinements can be concatenated.

Lemma 5.10. Let τw and τz be fragment separation refinements for words w and z such
that the first-appearance list of outgoing states of τw and the first-appearance list of incoming
states of τz coincide. There exists a fragment separation refinement τwz for wz with the
same sets of used source letters (and therefore the same sets of permissible letters) at the
corresponding positions. Further, τwz has the same first-appearance list of incoming states
as τw, and the same first-appearances list of outgoing states as τz.

Proof. We construct τwz row by row. For this we repeatedly choose a row of τw and a row
of τz such that the outgoing state of τw and the incoming state of τz coincide, concatenate
them, and add the result to τwz. Rows can be chosen multiple times.

We show how to choose the rows of τw and τz so that the final result is a fragment
separation refinement of τwz satisfying the conditions of the lemma. It suffices to show how
to choose the rows so that they satisfy the following two constraints:

(1) A row of τw or τz can be chosen only if each previous row has been chosen at least once.
(Note that once a row is chosen once, it can be chosen again without restrictions.)

(2) All rows of τw and τz are eventually chosen.

In particular, this ensures that τwz has the same first-appearance list of incoming states as
τw, and the same first-appearances list of outgoing states as τz.

We proceed as follows. At each step, we consider all triples (q,A,B) where A is a row of
τw with outgoing state q and B is a row of τz with incoming state q. (We also formally add
a triple (∞,∞,∞) where each component has to be used last.) We choose any triple such
that the addition of AB to τwz respects the order in the first-appearance lists of incoming
states of τw and outgoing states of τz. This guarantees that the resulting table satisfies
condition 1. It suffices to show that all triples will be used.

Assume the contrary. Let σ be the common list of first-appearances of outgoing states of
τw and incoming states of τz. Consider the earliest non-chosen rows A and B (it is possible
that one of them is ∞, but if ∞ is used, then every row has been used in both refinements).
Let q be the outgoing state of A and r be the incoming state of B. We have q ̸= r, because
otherwise the procedure can choose (q = r,A,B). Without loss of generality, assume that q
precedes r in σ. Then τz has a row C before B with incoming state q. Since B is the earliest
non-chosen row, C can be chosen. So the triple (q, A,C) can be chosen, contradicting that
A is the earliest non-chosen row. This concludes the proof of the lemma.

We now proceed to prove Proposition 5.6. Let us first construct the transducer Tsep. Recall
that a state of the transducer is a pair q = (α, β) where α ∈ (QT ∪{□})nT , β ∈ (2QT × 2QT),

4:22 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

and nT is the number of states of T . In every reachable state of Tsep, α will be a permutation
of a subset of QT followed by some number of □ symbols. We look at these permutations as
first-appearance lists, and so we call α the first-appearance list of q. The second component
β is the completeness summary letter of q (see Definition 5.5).

A state q = (α, β) is initial iff

• all the states of QT appearing in α are initial; and
• β = (QT,0, ∅) where QT,0 are the initial states of T .

and final iff

• all the states of QT appearing in α are final; and
• the second set of β contains no final states.

Let us now define the algorithm recognizing the transitions of Tsep. Given two states
q = (α, β), q′ = (α′, β′) and a letter c, the algorithm either outputs a set of letters X,
meaning that (q, ⟨a,X⟩ , q′) is a transition, or rejects. The algorithm takes α, α′ and c, and
uses the algorithm from the Lemma 5.8 to construct a local separation refinement for c, if
any exists. If no such refinement exists, the algorithm rejects. Otherwise, the algorithm
assigns to X the complement of the set of permissible letters of this refinement, and checks
whetherβ, β′ satisfy the definition of a completeness summary (Definition 5.5) with respect
to X. If they do, then the set X is returned. Clearly, the algorithm runs in polynomial time.

It remains to show that Tsep accepts a word ⟨w,φ⟩ over Σ× 2Σ iff φ = φSepτ
w
.

Assume φ = φSepτ
w
. Let τ be a separation table for w. By Lemma 5.4, we have

φ = In(w, τ)[1] · · · In(w, τ)[ℓ]. By the definition of Tsep, the transducer has a run on ⟨w,φ⟩
whose sequence of visited states are the consistency and completeness summaries of τ for w,
and the run is accepting.

Assume now that Tsep has an accepting run on ⟨w,φ⟩. We have to show that φ = φSepτ
w
.

It suffices to show that from the run we can construct a separation table for w, since all
separation tables produce the same formula defining Sepw. The procedure to construct a
separation table from an accepting run goes as follows4. First, the procedure constructs
for each transition in the run a local separation refinement, applying Lemma 5.8. Then
it repeatedly applies Lemma 5.10 to produce one fragment separation refinement for the
complete run. Since, by the definition of Tsep, all states in the initial (resp. final) first-
appearance list are initial (resp. final), the rows of the joint fragment separation refinement
are accepting runs of T , and so transitions of the RTS. Thus we obtain a sequence of
transitions, i.e. a table. The table is consistent with the word w, because this is a local
property ensured by local separation refinements and preserved during the fragment merging.
To show that the table is complete for w, observe that, in the completeness summary, for
each pair (Qj , Q

′
j), Qj is the set of all the states reachable by reading a sequence of pairs of

letters with target letter permissible for their positions, and Q′
j is the subset where at least

one of the used source letters read in the process was not permissible. By the definition
of the final states of Tsep, no states of Q′

ℓ are final states of T . Therefore, no transition of
the regular transition system can add a new permissible letter, which is the completeness
condition.

This concludes the proof of Proposition 5.6. We now prove our main technical result:

4Note that this procedure is an inefficient proof of existence, there is no need to run it as a part of the
algorithm.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:23

Theorem 5.11. Let R = ⟨Σ, I, T ⟩ be an RTS. There exists an NFA A1 over Σ satisfying
the following properties:

• The states of A1 are elements of (QT ∪ {□})nT × (2QT × 2QT)× {0, 1} ×QI .
• There is a polynomial time algorithm that, given two states q, q′ of A1 and a letter a ∈ Σ
decides whether the triple (q, a, q′) is a transition of A1.

• L(A1) = IndInv1

Proof. Let Tsep be the transducer over the alphabet Σ×2Σ of Proposition 5.6. By Lemma 5.2,
w ∈ IndInv1 iff there exists a 1-formula φ such that ⟨w,φ⟩ ∈ L(Tsep) and φ is not an invariant,
that is, there exists u ∈ L(I) such that u ̸|= φ. By Lemma 4.1, there is a deterministic
transducer V with two states, say {0, 1}, recognizing the pairs ⟨φ, u⟩ such that u ̸|= φ. So
we get

IndInv1 = {w ∈ Σ∗ | ∃φ ∈ (2Σ)∗, u ∈ Σ∗ s.t. ⟨w,φ⟩ ∈ R(Tsep), ⟨φ, u⟩ ∈ L(V), u ∈ L(I)}
= (R(Tsep) ◦ L(V) ◦ L(I))|1.

The automaton A1 is obtained from Proposition 2.2.

Observe that a state of A1 can be stored using space linear in I and T . This yields:

Corollary 5.12. Deciding IndInv1 ∩ L(U) = ∅ is in PSPACE.

Proof. Guess a configuration w and an accepting run of A1 and U on w, step by step.
By Proposition 5.6, this can be done in polynomial space. Apply then NPSPACE =
PSPACE.

6. Deciding IndInv1 ∩ L(U) = ∅ is PSPACE-hard.

This section presents the proof of the following lemma:

Lemma 6.1. Given an RTS R and an NFA U , deciding IndInv1 ∩ L(U) = ∅ is PSPACE-
hard.

We reduce from the problem of deciding whether a bounded Turing machine of size n
that can only use n tape cells accepts when started on the empty tape. This problem
(very similar to the acceptance problem for linearly bounded automata) is known to be
PSPACE-complete. Given such a machine, we construct a deterministic RTS R which,
loosely speaking, satisfies the following properties: 1) the execution of R from an initial
configuration of length Θ(t · n) simulates the first t steps of the computation of the Turing
machine, and 2) IndInv1 coincides with the set of reachable configurations.

The proof is divided in several parts. We first introduce some notations on Turing
machines. Then, we define the RTS R, first informally and then formally. Finally, we
conduct the reduction.

4:24 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Turing machines. We fix some notations on Turing machines. A Turing machine M
consists of

• a set of states Q,
• an initial state q0 ∈ Q and a final state qf ∈ Q,
• an input alphabet Σ and a tape alphabet Γ ⊋ Σ,
• a dedicated blank symbol B ∈ Γ \ Σ, and
• a transition function δ : Q× Γ → Q× Γ× {L,R}.
Let M be any deterministic linearly bounded Turing machine M, meaning that M only
uses |M| tape cells. We construct an instance R,U of the safety verification problem, of
size O(n), such that M accepts the empty word if and only if IndInv1 ∩ L(U) ̸= ∅.

Let n denote the size of M (and so the number of tape cells) plus 1. We represent a
configuration of M as a word α ∈ (Γ ∪Q)n containing exactly one letter in Q. That is, by
definition α = β q η where β ∈ Γ∗, q ∈ Q, and η ∈ Γ+. If α is the current configuration of
M, then M is in the state q, the content of the tape is β η, and the head of M reads the
first letter of η. Observe that β η has length |M|. The initial configuration α0 is q0B

n−1,
that is, the tape is initially empty.

Since M is deterministic, there is exactly one sequence of configurations α0 ⊢ α1 ⊢
α2 ⊢ . . . where ⊢ is used to describe that αi+1 is the successor configuration of αi. For
simplicity, we also allow ⊢ to connect two identical configurations if their state is the final qf .
Consequently, this sequence of configurations is infinite; either because M loops or because
M “stutters” in a final configuration.

Description of the RTS. We construct an RTS that simulates the execution of M on the
empty word. The alphabet of the RTS consists of Γ ∪ (Γ×Q), and two auxiliary symbols •
and □. Using these symbols, the execution of the Turing machine can be encoded as the
infinite word

• α0 • α1 • α2 • · · ·
The symbol • separates the individual configurations of the Turing machine. The set of
initial configurations of the RTS contains for every m ≥ 0 the configuration

α0 • □n • □n • . . . • □n︸ ︷︷ ︸
m times

.

Intuitively, an initial configuration of the RTS consist of a sequence of m+ 1 “pages”. Each
page has space to “write” a configuration of the Turing machine. The first page is already
filled with the initial configuration of the Turing machine, the others are still “empty”.
The transitions of the RTS repeatedly replace the □-symbols, from left to right, by the
correct letters of the successor configurations α1, α2, . . . , αm of the Turing machine. That is,
repeated application of the transducer eventually reaches the configurations

• α0 • □n • □n • . . . • □n

• α0 • α1 • □n • . . . • □n

• α0 • α1 • α2 • . . . • □n

· · ·
• α0 • α1 • α2 • . . . • αm

(with other configurations in between). Note that the symbol at the position i+n+1 of a word
in this sequence is determined by the symbols at positions i− 1, i, i+ 1 of the previous word.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:25

In particular, one can define a (partial) function ∆: ({•} ∪ Γ ∪ (Q× Γ))3 → Γ ∪ (Q × Γ)
which gives the letter at position i + n + 1, given the values of the symbols at positions
i − 1, i, i + 1. (The function is partial because there are inputs that do not represent a
sensible situation; e.g., inputs which contain more than one element of Q× Γ.)

The transducer of the RTS non-deterministically guesses a position i, stores the elements
at positions i− 1, i, i+ 1, and counts to the position i+ n+ 1 where it changes □ to the
value dictated by ∆.5 This transducer can be realized with polynomially many states with
respect to M. By construction, every reachable configuration of the RTS that does not
contain any □-symbol is a prefix of • α0 • α1 • α2 • α3 • Therefore, M accepts the
empty word iff the RTS reaches any configuration containing some occurrence of qf and no
occurrence of □.

Characterizing IndInv1. We prove that a configuration of the RTS with no occurrence of
□ is reachable iff it belongs to IndInv1. Therefore, M accepts the empty word iff IndInv1
contains a configuration with no occurrence of □ and some occurrence of qf .

By the definition of the RTS, it suffices to show that every configuration w ∈ IndInv1 is
of the form

• α0 • . . . • αi−1 • β□k • □n • . . . • □n (6.1)

for some i ≥ 1 and k ≤ n where β is the prefix of αi of length n− k. Intuitively, these are
the configurations reached by the RTS during the process of “writing down” the execution
of the Turing machine from the corresponding initial configuration of the RTS by “filling
the □s”.

The proof hinges on the introduction of a few formulas from IndInv1. To this end, we
first observe that every transition of the RTS only changes □ symbols to other symbols.
Therefore, one can immediately see that, for example, the formula that consists of the single
atomic proposition B3:ℓ is an inductive 1-invariant, and so an element of IndInv1 for every
ℓ. The reason is that every configuration satisfying B3:ℓ has B as its third letter, and no
transition of the RTS can change it. The same applies for all formulas of the form ak:ℓ such
that a ̸= □, and so, in particular, for all the formulas

•1:ℓ q02:ℓ B3:ℓ . . . Bn+1:ℓ •n+2:ℓ

So every configuration of IndInv1 has • α0 • as a prefix (note that α0 = q0B
n−1).

Recall the function ∆ defined above, and assume ∆(abc) = d where a, b, c, d ∈ {•} ∪ Γ∪
(Q× Γ). We claim that the formula

φ = ai−1:ℓ ∧ bi:ℓ ∧ ci+1:ℓ → (di+n+1:ℓ ∨□i+n+1:ℓ)

is an inductive 1-invariant for all i > 1. Observe first that φ has indeed one single clause
(after applying standard equivalences) . Further, since the transducer can only change one
single □ to a letter different from □, the formula φ is also inductive. Finally, an inspection
of the initial configurations of the RTS shows that they all satisfy φ, which proves the
claim. Let w be any configuration of a length ℓ satisfying the left-hand-side of φ. The
only transition that is applicable to w changes the i+ n+ 1-th letter from □ to di+n+1 : ℓ.
Therefore, in all configurations of IndInv1 of a length at least i+n+1, the letter at position
i+ n+ 1 is either □ or d. It follows that every configuration with a prefix that does not

5One can eliminate this non-deterministic guess by marking the position that is n+1 steps before the first
□ and moving this marker further one step in each transition. The remaining arguments work analogously.
We choose to avoid this improvement for readability.

4:26 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

contain □ in IndInv1 is of the form (6.1). Using this and fixing U to accept configurations
without any □ but at least one occurrence of qf ends the proof.

7. How large must the bound b be?

The index b needed to prove a property (i.e., the least b such that IndInv b implies the
property) can be seen as a measure of how difficult it is for a human to understand the proof.
We use the experimental setup of [BEI+20, ERW21a, BIS21, ERW21b], where systems are
encoded as WS1S formulas and MONA [EKM98] is used as a computation engine, to show that
b = 1 is enough for a substantial number of benchmarks used in the RMC literature. Note
that our goal is to evaluate the complexity of invariants needed for systems from diverse
domains, not to present a tool ready to verify complex systems.

Our set of benchmarks consists of problems studied in [CHLR17, ADHR07, BEI+20,
ERW21a, BIS21, ERW21b]. In a first step, we use MONA to construct a minimal DFA for
IndInv1. For this, we write a WS1S formula Ψ1(w) expressing that, for every 1-formula
φ, if φ is an inductive invariant, then w satisfies φ. MONA yields a minimal DFA for the
configurations w satisfying Ψ1, which is precisely IndInv1. We then construct the formula
Ψ1(w) ∧ Unsafe(w), and use MONA to check if it is satisfiable6. All files containing the
MONA formulas and the results are provided in [ERW22a]. The results are shown in Figure 1.
The first column gives the name of the example. In the second and third column, we give
the number of states of the minimal DFA for LI and LT , which we also compute via MONA.
In the next column, we give the size of the minimal DFA for IndInv1. The fifth column
reports whether a property is implied by IndInv1 (indicated by ✓) or not (indicated by ×).
For the cache coherence protocols, we replace ✓ with k/m to state that k of m custom safety
properties can be established. The last column gives the total running time of MONA7. As we
can see, IndInv1 is strong enough to satisfy 46 out of 59 properties.

In the second step, we have studied some of the cases in which IndInv1 is not strong
enough. A direct computation of the automaton for IndInv2 from a formula Ψ2(w) using MONA
fails. (A computation based on the automata construction of Section 3 might yield better
results and will be part of our future work.) Using a combination of the automatic invariant
computation method of [BEI+20, ERW21a, BIS21, ERW21b] and manual inspection of the
returned invariants, we can report some results for some examples.

Examples for IndInv b with b > 1. Figure 1 contains two versions of the dining philosophers
in which philosophers take one fork at a time. All philosophers but one are right-handed,
i.e., take their right fork first, and the remaining philosopher is left-handed. If the forks
“know” which philosopher has taken them (i.e., if they have states bℓ and br indicating that
the left or the right philosopher has the fork), then deadlock-freedom can be proved using
IndInv1. If the states of the forks are just “free” and “busy”, then proving deadlock-freedom
requires IndInv3, and in fact Reach = IndInv3 holds. We show how to establish this using
the technique of [ERW21b] and some additional reasoning in Appendix A.

The Berkeley and Dragon cache coherence protocols are considered as parameterized
systems in [Del03]. For both examples, IndInv1 is too coarse to establish all desired

6The second formula Ψ1(w) ∧ Unsafe(w) being unsatisfiable suffices for verification purposes, but we use
Ψ1(w) to obtain information on the size of the minimal DFA.

7As reported by MONA.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:27

Figure 1: Experimental results of using IndInv1 as abstraction of the set of reachable
configurations.

System |LI | |LT | |IndInv1| Properties time (ms)

Bakery 5 9 8
deadlock ✓
mutual exclusion ✓

< 1

Burns 5 9 6
deadlock ✓
mutual exclusion ✓

< 1

Dijkstra 6 24 22
deadlock ✓
mutual exclusion ✓

1920

Dijkstra (ring) 6 17 17
deadlock ✓
mutual exclusion × 2

D. cryptographers 6 69 11
one cryptographer paid ✓
no cryptographer paid ✓

5

Herman, linear 6 7 6
deadlock ×
at least one token ✓

< 1

Herman, ring 6 7 7
deadlock ✓
at least one token ✓

< 1

Israeli-Jafon 6 21 7
deadlock ✓
at least one token ✓

< 1

Token passing 6 7 7 at most one token ✓ < 1

Lehmann-Rabin 5 15 13 deadlock ✓ 1

LR phils. 6 14 15 deadlock × 2

LR phils.(with bℓ and br) 5 14 9 deadlock ✓ 1

Atomic D. phil. 5 12 20 deadlock ✓ 5

Mux array 6 7 8
deadlock ✓
mutual exclusion × < 1

Res. allocator 5 9 8
deadlock ✓
mutual exclusion × < 1

Berkeley 5 19 9
deadlock ✓
custom properties 2/3

1

Dragon 5 26 11
deadlock ✓
custom properties 6/7

3

Firefly 5 18 7
deadlock ✓
custom properties 0/4

1

Illinois 5 25 14
deadlock ✓
custom properties 0/2

1

MESI 5 13 7
deadlock ✓
custom properties 2/2

< 1

MOESI 5 13 10
deadlock ✓
custom properties 7/7

1

Synapse 5 16 7
deadlock ✓
custom properties 2/2

1

consistency assertions. In Appendix B, we describe the formalization of both examples and
show that IndInv2 suffices to obtain the missing assertions.

8. Conclusion

We have introduced a regular model checking paradigm that approaches the set of reachable
configurations from above. As already observed in [ADHR07, CHLR17], such an approach
does not require widening or acceleration techniques, as is the case when approaching from

4:28 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

below. The main novelty with respect to [ADHR07, CHLR17] is the discovery of a natural
sequence of regular invariants converging to the set of reachable configurations.

Our new paradigm raises several questions. The first one is the exact computational
complexity of checking emptiness of the intersection IndInv b and the unsafe configurations.
We have shown PSPACE-completeness for b = 1, and we conjecture that the problem is
already EXPSPACE-complete for all b ≥ 2. We also think that the CEGAR techniques
used in [ERW21b, ERW21a] can be extended to the RMC setting, allowing one to compute
intermediate regular invariants between IndInv b and IndInv b+1. Another interesting research
venue is the combination with acceleration or widening techniques, and the application of
learning algorithms, like the one of [CHLR17]. Currently these techniques try to compute
some inductive regular invariant, or perhaps one described by small automata, which may
lead to invariants difficult to interpret by humans. A better approach might be to stratify
the search, looking first for invariants for small values of b.

Acknowledgments

We are grateful to Ahmed Bouajjani for fruitful discussions. We thank the anonymous
reviewers of this and the earlier versions of the paper for their valuable suggestions on
presentation.

References

[Abd12] Parosh Aziz Abdulla. Regular model checking. Int. J. Softw. Tools Technol. Transf., 14(2):109–118,
2012. doi:10.1007/S10009-011-0216-8.

[Abd21] Parosh Aziz Abdulla. Regular model checking: Evolution and perspectives. In Ernst-Rüdiger
Olderog, Bernhard Steffen, and Wang Yi, editors, Model Checking, Synthesis, and Learning -
Essays Dedicated to Bengt Jonsson on The Occasion of His 60th Birthday, volume 13030 of Lecture
Notes in Computer Science, pages 78–96. Springer, 2021. doi:10.1007/978-3-030-91384-7_5.

[ADHR07] Parosh Aziz Abdulla, Giorgio Delzanno, Noomene Ben Henda, and Ahmed Rezine. Regular
model checking without transducers (On efficient verification of parameterized systems). In Orna
Grumberg and Michael Huth, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April
1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science, pages 721–736. Springer,
2007. doi:10.1007/978-3-540-71209-1_56.

[AJNd02] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Julien d’Orso. Regular model checking
made simple and efficient. In Lubos Brim, Petr Jancar, Mojmı́r Kret́ınský, and Antońın Kucera,
editors, CONCUR 2002 - Concurrency Theory, 13th International Conference, Brno, Czech
Republic, August 20-23, 2002, Proceedings, volume 2421 of Lecture Notes in Computer Science,
pages 116–130. Springer, 2002. doi:10.1007/3-540-45694-5_9.

[AJNS04] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson, and Mayank Saksena. A survey of regular
model checking. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Proceedings,
volume 3170 of Lecture Notes in Computer Science, pages 35–48. Springer, 2004. doi:10.1007/
978-3-540-28644-8_3.

[AST18] Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. Model checking parameterized
systems. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors,
Handbook of Model Checking, pages 685–725. Springer, 2018. doi:10.1007/978-3-319-10575-8\
_21.

https://doi.org/10.1007/S10009-011-0216-8
https://doi.org/10.1007/978-3-030-91384-7_5
https://doi.org/10.1007/978-3-540-71209-1_56
https://doi.org/10.1007/3-540-45694-5_9
https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:29

[BEI+20] Marius Bozga, Javier Esparza, Radu Iosif, Joseph Sifakis, and Christoph Welzel. Structural
invariants for the verification of systems with parameterized architectures. In Armin Biere and
David Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems - 26th
International Conference, TACAS 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings,
Part I, volume 12078 of Lecture Notes in Computer Science, pages 228–246. Springer, 2020.
doi:10.1007/978-3-030-45190-5_13.

[BHRV12] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomás Vojnar. Abstract regular
(tree) model checking. Int. J. Softw. Tools Technol. Transf., 14(2):167–191, 2012. doi:10.1007/
S10009-011-0205-Y.

[BHV04] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Abstract regular model checking. In
Rajeev Alur and Doron A. Peled, editors, Computer Aided Verification, 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings, volume 3114 of Lecture
Notes in Computer Science, pages 372–386. Springer, 2004. doi:10.1007/978-3-540-27813-9\
_29.

[BIS21] Marius Bozga, Radu Iosif, and Joseph Sifakis. Checking deadlock-freedom of parametric
component-based systems. J. Log. Algebraic Methods Program., 119:100621, 2021. doi:10.1016/
J.JLAMP.2020.100621.

[BJNT00] Ahmed Bouajjani, Bengt Jonsson, Marcus Nilsson, and Tayssir Touili. Regular model checking. In
E. Allen Emerson and A. Prasad Sistla, editors, Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture
Notes in Computer Science, pages 403–418. Springer, 2000. doi:10.1007/10722167_31.

[BLW03] Bernard Boigelot, Axel Legay, and Pierre Wolper. Iterating transducers in the large (extended
abstract). In Warren A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verification,
15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,
volume 2725 of Lecture Notes in Computer Science, pages 223–235. Springer, 2003. doi:10.1007/
978-3-540-45069-6_24.

[BT12] Ahmed Bouajjani and Tayssir Touili. Widening techniques for regular tree model checking. Int. J.
Softw. Tools Technol. Transf., 14(2):145–165, 2012. doi:10.1007/S10009-011-0208-8.

[CHLR17] Yu-Fang Chen, Chih-Duo Hong, Anthony W. Lin, and Philipp Rümmer. Learning to prove safety
over parameterised concurrent systems. In Daryl Stewart and Georg Weissenbacher, editors, 2017
Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017,
pages 76–83. IEEE, 2017. doi:10.23919/FMCAD.2017.8102244.

[Del03] Giorgio Delzanno. Constraint-based verification of parameterized cache coherence protocols.
Formal Methods Syst. Des., 23(3):257–301, 2003. doi:10.1023/A:1026276129010.

[DLS01] Dennis Dams, Yassine Lakhnech, and Martin Steffen. Iterating transducers. In Gérard Berry,
Hubert Comon, and Alain Finkel, editors, Computer Aided Verification, 13th International
Conference, CAV 2001, Paris, France, July 18-22, 2001, Proceedings, volume 2102 of Lecture
Notes in Computer Science, pages 286–297. Springer, 2001. doi:10.1007/3-540-44585-4_27.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Møller. MONA 1.x: New techniques for WS1S and
WS2S. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, 10th International
Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998, Proceedings, volume 1427
of Lecture Notes in Computer Science, pages 516–520. Springer, 1998. doi:10.1007/BFB0028773.

[ERW21a] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. Abduction of trap invariants in
parameterized systems. In GandALF, volume 346 of EPTCS, pages 1–17, 2021.

[ERW21b] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. Computing parameterized invariants of
parameterized Petri nets. In Didier Buchs and Josep Carmona, editors, Application and Theory
of Petri Nets and Concurrency - 42nd International Conference, PETRI NETS 2021, Virtual
Event, June 23-25, 2021, Proceedings, volume 12734 of Lecture Notes in Computer Science, pages
141–163. Springer, 2021. doi:10.1007/978-3-030-76983-3_8.

[ERW22a] Javier Esparza, Mikhail Raskin, and Christoph Welzel. Repository of examples. https://doi.
org/10.5281/zenodo.6483615, April 2022. doi:10.5281/zenodo.6483615.

[ERW22b] Javier Esparza, Mikhail A. Raskin, and Christoph Welzel. Regular model checking upside-down:
An invariant-based approach. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022,

https://doi.org/10.1007/978-3-030-45190-5_13
https://doi.org/10.1007/S10009-011-0205-Y
https://doi.org/10.1007/S10009-011-0205-Y
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1007/978-3-540-27813-9_29
https://doi.org/10.1016/J.JLAMP.2020.100621
https://doi.org/10.1016/J.JLAMP.2020.100621
https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/978-3-540-45069-6_24
https://doi.org/10.1007/S10009-011-0208-8
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.1023/A:1026276129010
https://doi.org/10.1007/3-540-44585-4_27
https://doi.org/10.1007/BFB0028773
https://doi.org/10.1007/978-3-030-76983-3_8
https://doi.org/10.5281/zenodo.6483615
https://doi.org/10.5281/zenodo.6483615
https://doi.org/10.5281/zenodo.6483615

4:30 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

Warsaw, Poland, volume 243 of LIPIcs, pages 23:1–23:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.CONCUR.2022.23.

[JN00] Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations for verifying infinite-
state systems. In Susanne Graf and Michael I. Schwartzbach, editors, Tools and Algorithms for
Construction and Analysis of Systems, 6th International Conference, TACAS 2000, Held as Part
of the European Joint Conferences on the Theory and Practice of Software, ETAPS 2000, Berlin,
Germany, March 25 - April 2, 2000, Proceedings, volume 1785 of Lecture Notes in Computer
Science, pages 220–234. Springer, 2000. doi:10.1007/3-540-46419-0_16.

[Leg12] Axel Legay. Extrapolating (omega-)regular model checking. Int. J. Softw. Tools Technol. Transf.,
14(2):119–143, 2012. doi:10.1007/S10009-011-0209-7.

[MP20] Kenneth L. McMillan and Oded Padon. Ivy: A multi-modal verification tool for distributed
algorithms. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification, 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part II, volume 12225 of Lecture Notes in Computer Science, pages 190–202. Springer, 2020.
doi:10.1007/978-3-030-53291-8_12.

[PMP+16] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy:
safety verification by interactive generalization. In Chandra Krintz and Emery D. Berger, editors,
Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 614–630. ACM,
2016. doi:10.1145/2908080.2908118.

[PRZ01] Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. Automatic deductive verification with invisible
invariants. In Tiziana Margaria and Wang Yi, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 7th International Conference, TACAS 2001 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2001 Genova, Italy, April
2-6, 2001, Proceedings, volume 2031 of Lecture Notes in Computer Science, pages 82–97. Springer,
2001. doi:10.1007/3-540-45319-9_7.

https://doi.org/10.4230/LIPICS.CONCUR.2022.23
https://doi.org/10.1007/3-540-46419-0_16
https://doi.org/10.1007/S10009-011-0209-7
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/3-540-45319-9_7

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:31

Appendix A. Dining philosophers with one left-handed philosopher

We sketch the formalization of the case in which the states of the forks are only “free” and
“busy”. Consider an RTS with Σ = {f, b, t, h, e}. The state h represents philosophers who
already grabbed the first fork and wait for the second one. All other states are used as
before. The philosopher at index 1 takes first the fork at index 2 and then the fork at index
n, while any other philosopher i > 1 first takes the fork at index i− 1 and then the fork at
index i+ 1 (modulo n). We modelled right-handed philosophers as taking the lower-index
fork first as this looks like we are facing the philosopher. Naturally, the opposite choice of
notation would not lead to substantial changes. For example, both reversing the direction
and single-position cyclic shifts preserve regularity of languages.

In [ERW21b] the absence of deadlocks in this example is shown via only a few inductive
assertions. These assertions can be equivalently expressed as 3-invariants. Moreover, these
assertions are actually enough to completely characterize Reach in this example. To this end,
observe that, analogously to Example 2.4, Reach is completely characterized by the absence
of a few invalid patterns. These patterns separate into three cases: First, a philosopher
should use some fork, but this fork is still considered free. Second, two philosophers are in
states that require the same fork. Third, no adjacent philosopher currently uses some fork,
yet this fork is busy. As long as neither of these violations happens, the configuration can
be reached from the initial configuration with the philosophers picking up the forks they
should be using in an arbitrary order, absence of the second forbidden pattern guarantees
the lack of conflicts. Afterwards, the correct set of forks will be in use.

More formally, we get

• Σ (Σ Σ)∗ f (h | e) Σ (Σ Σ)∗, (Σ Σ)+ e f (Σ Σ)∗, (e | h) f (Σ Σ)∗, e (Σ Σ)∗ f ,
• (Σ Σ)+ e Σ (h | e) Σ (Σ Σ)∗, (e | h) Σ (e | h) Σ (Σ Σ)∗, e Σ (Σ Σ)∗ e Σ,
• t b t Σ (Σ Σ)∗, (t | h) Σ (Σ Σ)∗ (t | h) b, (Σ Σ)+ (t | h) b t Σ (Σ Σ)∗.

The absence of these patterns can be established with the following languages of inductive
1-invariants and inductive 3-invariants:

[
{e}

][
∅
]
(
[
∅
][
∅
]
)∗

[
{e}

][
{f}

] {t, h}
{t, h}

∅

∅
∅
∅


(∅

∅
∅

∅
∅
∅


)∗  ∅

{t, h}
{t, h}

{b}
∅

{b}


[
{e, h}

][
{f}

][
{e, h}

][
∅
]
(
[
∅
][
∅
]
)∗

{t}
{t}
∅

{b}
∅

{b}

 ∅
{t}
{t}

∅
∅
∅


(∅

∅
∅

∅
∅
∅


)∗

[
∅
][
∅
]
(
[
∅
][
∅
]
)∗

[
{e}

][
{f}

][
{e, h}

][
∅
]
(
[
∅
][
∅
]
)∗

∅
∅
∅

∅
∅
∅


(∅

∅
∅

∅
∅
∅


)∗ {t, h}

{t, h}
∅

 ∅
{b}
{b}

{t}
∅

{t}

∅
∅
∅


(∅

∅
∅

∅
∅
∅


)∗

Consequently, IndInv3 and Reach coincide for this example, as the invariants forbid every-
thing that is not reachable. This immediately implies that IndInv3 proves deadlock-freedom
since the system actually is deadlock-free.

However, IndInv2 is insufficient to prove deadlock-freedom: assume there exists some
inductive 2-invariant I that invalidates that D = h b t f e b can be reached. Then, I must
separate all elements from Reach and all configurations D′ with D′ ⇝∗ D because it is
inductive. In particular, D′ = t b e b e b and the reachable configuration t b h b e b. Hence,
one clause of I contains h3:6. Consider the following pair of configurations: D′′ = t f h f t f
and C = t b h f t f . I must separate D′′ from C since D′′ ⇝ t b e f t f ⇝ t b e b h f ⇝
t f t f h f ⇝ h b t f h f ⇝ D while C ∈ Reach. Since D′′ |= h3:6, this separation is based
on the second clause of I which must contain b2:6. This means t b h f e b |= I. Since I is

4:32 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

inductive and t b h f e b⇝ t b e b e b⇝ t f t f e b⇝ h b t f e b = D, the assumption that
I exists is wrong. Consequently, D cannot be excluded via inductive 2-invariants.

Appendix B. IndInv2 for cache coherence protocols Berkeley and Dragon

For both protocols, we follow the specification of [Del03].

Berkeley. In the Berkeley cache coherence protocol, each cell is in one of four different
states: invalid (i), unowned (u), exclusive (e), and shared (s). Initially, all cells are invalid.
Consequently, the language of initial configurations is i∗. For the transitions, we consider a
few different events. The first one is that the memory is read, and the corresponding cell
does provide some value of it; i.e., the cell is not in the state i. In this case, nothing changes:([

i
i

] ∣∣∣ [
u
u

] ∣∣∣ [
e
e

] ∣∣∣ [
s
s

])∗ ([
u
u

] ∣∣∣ [
e
e

] ∣∣∣ [
s
s

]) ([
i
i

] ∣∣∣ [
u
u

] ∣∣∣ [
e
e

] ∣∣∣ [
s
s

])∗
.

If, on the other hand, a value is read from some cell that is in the state i, then this
memory cell fetches the information without claiming ownership; i.e., moves into the state u.
Every other memory cell observes this process. Thus, cells that previously were in e move
to s to account for the fact that another memory cell holds the same information.([

i
i

] ∣∣∣ [
u
u

] ∣∣∣ [
e
s

] ∣∣∣ [
s
s

])∗ ([
i
u

]) ([
i
i

] ∣∣∣ [
u
u

] ∣∣∣ [
e
s

] ∣∣∣ [
s
s

])∗
.

If a value is written to a cell that was invalid before, then this cell claims exclusive
ownership; that is, all other cells are invalidated.([

i
i

] ∣∣∣ [
u
i

] ∣∣∣ [
e
i

] ∣∣∣ [
s
i

])∗ ([
i
e

]) ([
i
i

] ∣∣∣ [
u
i

] ∣∣∣ [
e
i

] ∣∣∣ [
s
i

])∗
.

If a cell already has exclusive ownership of this information, there is nothing to be done.
If the cell has only shared ownership of the value, all other cells that claim shared ownership
are invalidated. ([

i
i

] ∣∣∣ [
u
i

] ∣∣∣ [
e
e

] ∣∣∣ [
s
i

])∗ ([
u
e

] ∣∣∣ [
s
e

]) ([
i
i

] ∣∣∣ [
u
i

] ∣∣∣ [
e
e

] ∣∣∣ [
s
i

])∗
.

Finally, the cache can decide to drop data at any moment in time. Thus, any cell might
move into the state i.([

i
i

] ∣∣∣ [
u
u

] ∣∣∣ [
e
e

] ∣∣∣ [
s
s

])∗ ([
u
i

] ∣∣∣ [
e
i

] ∣∣∣ [
s
i

]) ([
i
i

] ∣∣∣ [
u
u

] ∣∣∣ [
e
e

] ∣∣∣ [
s
s

])∗
.

We pose now the question whether a configuration can be reached, where two different
cells are claiming exclusive access to the same data. The corresponding set U corresponds
to Σ∗ e Σ∗ e Σ∗. As shown in Figure 1, IndInv1 does not prove this property. Let us see
why. Assume there is an inductive 1-invariant I which invalidates the bad word b = e e;
that is, b ̸|= I. Observe now that we can reach b in one step from b′ = u e and b′′ = e u.
Consequently, I cannot be satisfied by b′ or b′′ either. Otherwise, since I is inductive, we
already get b |= I. This means, I must not contain e1:2, e2:2, u1:2 nor u2:2. This, however,
makes I unsatisfiable for the actually reachable configuration u u.

Using an adapted version of the semi-automatic approach of [ERW21b] and some
additional reasoning led us to the following language of inductive 2-invariants which exclude
all configurations from U : [

∅
∅

]∗ [
{i, s, u}

{i}

] [
∅
∅

]∗ [
{i}

{i, s, u}

] [
∅
∅

]∗
.

Vol. 21:1 REGULAR MODEL CHECKING UPSIDE-DOWN:AN INVARIANT-BASED APPROACH 4:33

Since IndInv2 is the strongest inductive 2-invariant, and the provided 2-invariant excludes
all the configurations from U , IndInv2 also excludes all the configurations from U . Thus,
IndInv2 is strong enough to prove the property.

Dragon. The Dragon protocol distinguishes five states. As before, we have states for
invalid cells (i), cells that maintain an exclusive copy of the data (e), and cells that have a
(potentially) shared copy of the data (s). In contrast to before, the Dragon protocol does
not invalidate other copies of some data when it is updated. Instead two new states which
mirror e and s are introduced but, additionally, indicate that the data might have changed.
We refer to these states as ê and ŝ, respectively. Regardless, we initialize all cells as invalid;
i.e., we have the initial language i∗.

Assume a read from a “valid” cell; that is, some cell that is not in the state i. In that
case, nothing changes:([

i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗ ([
e
e

]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ]) ([
i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗
.

If a read occurs from an invalid cell – while all cells are invalid – the accessed cell
becomes an exclusive reference: [

i
i

]∗ [
i
e

] [
i
i

]∗
.

If not all cells are invalid but a read occurs for an invalid cell, then this cell obtains a copy
of the data, having now a shared reference to the data. Moreover, all exclusive references;
i.e., cells in the states e or ê, move to their shared counterparts (s and ŝ, respectively).([

i
i

]∣∣∣[es]∣∣∣[ss]∣∣∣[êŝ]∣∣∣[ŝŝ])∗ [
i
s

] ([
i
i

]∣∣∣[es]∣∣∣[ss]∣∣∣[êŝ]∣∣∣[ŝŝ])∗
.

It is possible here that, although all cells are invalid, the changing cell becomes only shared.
Since this configuration can also be reached from the configuration where there are exactly
two cells in state s and all others in i by one cell moving from its shared state to its invalid
state, this does not change the set of actually reachable configurations and, consequently, is
immaterial for the correctness analysis.

Writing a cell in the state ê does not change anything. On the other hand, writing a
cell in the state e moves that cell into the state ê:([

i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗ [
ê
ê

] ([
i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗

and ([
i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗ [
e
ê

] ([
i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗
.

A write operation on a cell that is the only one in state s or ŝ results in a change to ê.
If there are other cells in either state, one moves to ŝ while all others move to s.([

i
i

]∣∣∣[ee]∣∣∣[êê])∗ [
ŝ
ê

] ([
i
i

]∣∣∣[ee]∣∣∣[êê])∗
,([

i
i

]∣∣∣[ee]∣∣∣[êê])∗ [
s
ê

] ([
i
i

]∣∣∣[ee]∣∣∣[êê])∗

and ([
i
i

]∣∣∣∣[ee]
∣∣∣∣[êê]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ ([
s
s

]∣∣∣∣[ŝs]
) ([

i
i

]∣∣∣∣[ee]
∣∣∣∣[êê]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ ([
s
ŝ

]∣∣∣∣[ŝŝ]
) ([

i
i

]∣∣∣∣[ee]
∣∣∣∣[êê]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗

|
([

i
i

]∣∣∣∣[ee]
∣∣∣∣[êê]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ ([
s
ŝ

]∣∣∣∣[ŝŝ]
) ([

i
i

]∣∣∣∣[ee]
∣∣∣∣[êê]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ ([
s
s

]∣∣∣∣[ŝs]
) ([

i
i

]∣∣∣∣[ee]
∣∣∣∣[êê]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗
.

4:34 J. Esparza, M. Raskin, and C. Welzel-Mohr Vol. 21:1

If a value is written to a previously invalid cell, then either this cell moves to ê (assuming
all other cells are i as well), while an occurrence of another cell with this value causes the
written cell to become ŝ and all other cells to move to the state s.[

i
i

]∗ [
i
ê

] [
i
i

]∗
and ([

i
i

]∣∣∣∣[es]
∣∣∣∣[ês]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ [
i
ŝ

] ([
i
i

]∣∣∣∣[es]
∣∣∣∣[ês]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ ([
ê
s

]∣∣∣∣[ss]
∣∣∣∣[ŝs]

∣∣∣∣[es]
) ([

i
i

]∣∣∣∣[es]
∣∣∣∣[ês]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗

|
([

i
i

]∣∣∣∣[es]
∣∣∣∣[ês]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ ([
ê
s

]∣∣∣∣[ss]
∣∣∣∣[ŝs]

∣∣∣∣[es]
) ([

i
i

]∣∣∣∣[es]
∣∣∣∣[ês]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗ [
i
ŝ

] ([
i
i

]∣∣∣∣[es]
∣∣∣∣[ês]

∣∣∣∣[ss]
∣∣∣∣[ŝs]

)∗
.

Finally, any cell might drop its content at any point.([
i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗ ([
e
i

]∣∣∣[êi]∣∣∣[ŝi]∣∣∣[si]) ([
i
i

]∣∣∣[ee]∣∣∣[ss]∣∣∣[êê]∣∣∣[ŝŝ])∗
.

We are interested now to establish that the language Σ∗ ê Σ∗ ê Σ∗ cannot be reached.
The proof that IndInv1 is insufficient to exclude all configurations of Σ∗ ê Σ∗ ê Σ∗ is
straightforward: Observe that both s ê and ê s can reach ê ê in one step. In consequence,
analogously to the argument used for the Berkeley protocol, any inductive 1-invariant cannot
distinguish between the reachable s s and the unreachable ê ê.

On the other hand, the language[
∅
∅

]∗ [
{ŝ, i, s}

{i}

] [
∅
∅

]∗ [
{i}

{ŝ, i, s}

] [
∅
∅

]∗
of inductive 2-invariants (which arose, again, from an adapted version of the semi-automatic
approach of [ERW21b]) induces an abstraction disjoint from Σ∗ ê Σ∗ ê Σ∗. Consequently,
IndInv2 does as well.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Bounded inductive sets of an RTS
	3.1. Inductive sets and invariants
	3.2. Bounded inductive sets.

	4. Ind_b is regular for every b≥1
	4.1. Encoding b-formulas as b-powerwords.
	4.2. Representations and interpreters

	5. Deciding Ind_1 ∩ U = ∅ is in PSPACE
	6. Deciding Ind_1 ∩ U = ∅ is PSPACE-hard.
	7. How large must the bound b be?
	8. Conclusion
	Acknowledgments
	References
	Appendix A. Dining philosophers with one left-handed philosopher
	Appendix B. IndInv₂ for cache coherence protocols Berkeley and Dragon

