
Logical Methods in Computer Science
Volume 21, Issue 1, 2025, pp. 11:1–11:33
https://lmcs.episciences.org/

Submitted Feb. 12, 2024
Published Jan. 30, 2025

RANDOM DETERMINISTIC AUTOMATA

WITH ONE ADDED TRANSITION

ARNAUD CARAYOL a, PHILIPPE DUCHON b, FLORENT KOECHLIN c,
AND CYRIL NICAUD a

aUniv Gustave Eiffel, CNRS UMR 8049, LIGM, F-77454 Marne-la-Vallée, France
e-mail address: arnaud.carayol@univ-eiffel.fr, cyril.nicaud@univ-eiffel.fr

bUniv. Bordeaux, CNRS UMR 5800, LaBRI, F-33400 Talence, France
e-mail address: duchon@labri.fr

cUniv. Sorbonne Paris Nord, LIPN, CNRS UMR 7030, F-93430 Villetaneuse, France
e-mail address: koechlin@lipn.fr

Abstract. Every language recognized by a non-deterministic finite automaton can be
recognized by a deterministic automaton, at the cost of a potential increase of the number
of states, which in the worst case can go from n states to 2n states. In this article, we
investigate this classical result in a probabilistic setting where we take a deterministic
automaton with n states uniformly at random and add just one random transition. These
automata are almost deterministic in the sense that only one state has a non-deterministic
choice when reading an input letter. In our model, each state has a fixed probability
to be final. We prove that for any d ≥ 1, with non-negligible probability the minimal
(deterministic) automaton of the language recognized by such an automaton has more than
nd states; as a byproduct, the expected size of its minimal automaton grows faster than
any polynomial. Our result also holds when each state is final with some probability that
depends on n, as long as it is not too close to 0 and 1, at distance at least Ω(1√

n
) to be

precise, therefore allowing models with a sublinear number of final states in expectation.

1. Introduction

A fundamental result in automata theory is that deterministic complete finite state automata
recognize the same languages as non-deterministic finite state automata. This result can
be established using the classical (accessible) subset construction [RS59, MF71, HU79]:
starting with a non-deterministic automaton with n states, one can build a deterministic
automaton with at most 2n states that recognizes the same language. This upper bound
is tight; there are regular languages recognized by an n-state non-deterministic automaton
whose minimal automaton, i.e. the smallest deterministic and complete automaton that
recognizes the language, has 2n states. The number of states of the minimal automaton of a
regular language is called its state complexity. Figure 1 shows two n-state non-deterministic

Key words and phrases: Random finite automata, average case complexity, discrete probabilities.
This article is the extended and revised version of the article [CDKN23] published in the proceedings of

the conference STACS’23 .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-21(1:11)2025
© A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0009-0008-2763-2821
https://orcid.org/0009-0009-4735-0781
https://orcid.org/0000-0002-5576-4847
https://orcid.org/0000-0002-8770-0119
http://creativecommons.org/about/licenses

11:2 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

automata with somewhat similar shape, but whose languages Lℓ and Lr have very different
state complexities. In both automata, there is only one non-deterministic choice, at the
initial state.

1 2 3 · · · n

a, b

a a, b a, b a, b
1 2 3 · · · n

a, b

a a a a

Figure 1: On the left, a non-deterministic automaton with n states recognizing the language
Lℓ = Σ∗aΣn−2. On the right, a non-deterministic automaton with n states
recognizing the language Lr = Σ∗an−1. The minimal automaton of Lℓ has 2n−1

states, whereas the one of Lr has n states.

In this article, we address the following question: if we take a random n-state deter-
ministic automaton and add just one random transition, what can be said about the state
complexity of the resulting recognized language? Does it hugely increase as for Lℓ, or does
it remain small as for Lr?

From [BDS12], we know that with high probability, the state complexity of the language
recognized by a n-state deterministic automaton taken uniformly at random is linear. This
is important as it implies that the corresponding distribution on regular languages is not
degenerated: this contrasts with the case of random regular expressions where the expected
state complexity of the described regular languages is constant [KNR21], which means that
the induced distribution on regular languages is concentrated on a finite number of languages.

To be more precise, our formal setting in this article is the following. Let Σ = {a, b, . . .}
be a finite alphabet with k ≥ 2 letters. For any n ≥ 1, we consider the uniform distribution
on deterministic and complete automata on Σ, with {1, . . . , n} as their set of states; the
initial state is picked uniformly at random, and the action of the letters on the set of states
are k uniform and independent random mappings. We also pick uniformly at random and

independently two states p and q, and add a transition p
a−→ q, if it is not already there.

Finally each state is final with a given fixed probability f ∈ (0, 1), independently. Hence
in this model, the expected number of final states of an almost deterministic automaton is
f × n. Our results still hold if we allow the probability f of being final to depend on the
size n of the automaton, provided that fn has a distance to 0 and 1 in Ω(1√

n
). This allows

us to consider probabilistic models in which random automata have an expected number of
final states that is as low as Θ(

√
n).

Our main result is that for any d ≥ 1 there exists a constant cd > 0 such that the state
complexity of the language of such a random almost deterministic automaton is greater than
nd with probability at least cd, for n sufficiently large. That is, for any polynomial P , there is
a non-negligible probability that the state complexity of the language of a random automaton
is greater than P (n): we will say that the state complexity is super-polynomial with visible
probability. As a direct consequence, the expected state complexity is super-polynomial.

It should be noted that with the same random models for deterministic automata, one
cannot hope to replace visible probability in our results with a probability that converges
to 1 (i.e., with high probability). Indeed random automata have, with high probability, a
constant fraction of states that are not accessible from the initial state [Gru73]; if the source

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:3

of the added transition is not accessible from the initial state, the added transition does
not impact the recognized language, whose state complexity is therefore at most equal to n.
Thus, we make no effort in the present article to optimize our probabilistic lower bounds.
See the conclusion for a more advanced discussion on this topic.
Related work. A subclass of almost deterministic automata has already been considered
in [BM08] to study the worst-case complexity class for the non-deterministic minimization
problem for NFAs.

The study of random deterministic automata can be traced back to the work of Grusho
on the size of the accessible part [Gru73]: he established that, with high probability, a
constant proportion of the states are accessible from the initial state. He also shows that
with high probability there is a unique terminal strongly connected component1 (SCC) of
size approximately νkn, for some νk > 1

2 that only depends on the size k of the alphabet.
More structural results on the underlying graph of a random deterministic automaton were
established in the work of Carayol and Nicaud [CN12], with a local limit law for the size of the
accessible part and an application to random generation of accessible determistic automata.
More recently, Cai and Devroye gave in [CD17], a fine-grained analysis of what is happening
outside the large strongly connected component. In [ABBPL20], Addario-Berry, Balle and
Perarnau gave a precise analysis of the diameter of a random deterministic automaton,
showing in particular that it is logarithmic. We will use some of these results in this article,
for instance that there is a unique largest terminal strongly connected component with high
probability. To deal with the restriction to states accessible from the initial state in the
powerset construction, we also use a result of [CD17] which yields that, with high probability,
there are no cycles of length Ω(log n) outside this terminal strongly connected component.

All these results on random automata focus on the underlying graph of the transition
structures, without saying much about the recognized languages, or on the average complexity
of textbook algorithms on automata. Some results were established in this direction: the
probability that a random accessible automaton is minimal was studied by Bassino, David
and Sportiello [BDS12], the analysis of minimization algorithms by Bassino, David and
Nicaud [BDN12, Dav12], etc.

In another direction, more recently, several articles studied the synchronization of ran-
dom automata [Ber16, Nic19], until the very recent work of Chapuy and Perarnau [CP23],
establishing that most deterministic automata are synchronizing, with a word of length
O(
√
n log n) and Martinsson [Mar23] established that for any ϵ > 0, there exists a synchro-

nizing word of length O(ϵ−1√n log n) with probability at least 1− ϵ. We refer the interested
reader to the survey of Nicaud [Nic14] for an overview on random deterministic automata.

To our knowledge, there is no well-established random model for non-deterministic
automata. It is not an easy task to obtain a satisfactory model: for instance, the uniform
distribution is degenerated and produces languages with state complexity one or two with
high probability (see the discussion in Section 10). Applying the powerset construction to
the mirror of a random deterministic automaton was studied by De Felice and Nicaud [FN13,
FN16], in order to analyze the average case complexity of Brzozowski’s state minimization
algorithm. As in the present article, they studied the determinization procedure of random
automata, but for a model that is very different from ours: they consider the mirror of a
uniform random deterministic automaton, obtained by reversing the transitions and swapping
the initial and final states. In particular, with high probability, there is a linear number

1A strongly connected component (SCC) is a set of vertices, maximal for inclusion, in which every vertex
is reachable for each other vertex. A SCC is terminal if no edge leave the SCC.

11:4 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

of states having a non-deterministic choice in their setting. Another natural model would
be to use a critical Erdős-Rényi [ER60] digraph for each letter, which would also result in
a linear number of states having a non-deterministic choice. In this article, we choose a
random model with the minimum amount of non-determinism by adding just one transition
to a uniform deterministic automaton, and establish that we likely have a combinatorial
explosion already in this case.

This article is the full version of the extended abstract published in the proceedings of
the STACS conference [CDKN23]. It contains all the omitted proofs. We also introduce the
notion of templates in Section 4 to simply handle computation under natural conditional
properties on automata, and reshape completely the most technical part, Section 5, to exhibit
an approximation by classical Galton-Watson processes. This last approach is interesting on
its own for future works on random automata.

2. Definitions and notations

The cardinality of a finite set E is denoted by |E|. For any n ≥ 1, let [n] = {1, . . . , n}. If
x, y ∈ R with x ≤ y, let [[x, y]] = [x, y] ∩ Z be the set of integers that are between x and y.
Let E be a set equipped with a size function s from E to Z≥0, and let En denote the elements
of E having size n. A property X on E (that is, a subset of E viewed as the set of elements
for which the property holds) holds with visible probability if there exists some constant
c > 0 such that, for n sufficiently large, En is non-empty and P(X) ≥ c for the uniform
distribution on En. By a slight abuse of notation, if X is a random variable E → Z≥0 we say
that for the uniform distribution on E , X is super-polynomial with visible probability when
for any d ≥ 1, there exists a constant cd > 0, such that for n sufficiently large, En ≠ ∅ and
P(X ≥ nd) ≥ cd.

For any real number λ > 0, we denote by Poi(λ) the Poisson random variable of

parameter λ, whose support is Z≥0 and defined by P(Poi(λ) = k) = λk

k! e
−λ, for all k ∈ Z≥0.

Recall that if u and v are two words on an ordered alphabet Σ, u is smaller than v
for the length-lexicographic order if |u| < |v| or they have same length and u <lex v for the
lexicographic order.

Throughout the article, the set of states of an automaton with n states will always be
[n], with the exception of the powerset construction recalled just below. The alphabet will
always be Σ = {a, b}, except in the statement of our main theorem, where we allow larger
alphabets as it is trivially generalized to this case. Hence, in our setting, a deterministic
(and complete) automaton is just a tuple (n, δ, F), where F ⊆ [n] is the set of final states
and δ is the transition function, a mapping from [n] × Σ to [n]. We will often write

s
α−→ t instead of δ(s, α) = t, for s, t ∈ [n] and α ∈ Σ, and call this an α-transition or

a transition. The transition function is classically extended to sets of states by setting
δ(X,α) = {δ(s, α) : s ∈ X}, for X ⊆ [n], and to words by setting inductively δ(s, w) = s if
w is the empty word ε and δ(s, wα) = δ(δ(s, w), α). We will not need to specify the initial
state until the end of the proof of Theorem 3.1; when we finally do, it will be generated
uniformly at random and independently in [n]. Final states are only used in the last part of
our proof, so to ease the presentation, we define a deterministic (and complete) transition
structure as being an automaton with neither initial nor final states: it is given by a pair
(n, δ) where n is the number of states and δ is the transition function.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:5

An almost deterministic automaton (n, δ, F, p
a−→ q) is a deterministic automaton (n, δ, F)

in which we add the additional a-transition p
a−→ q. Similarly, an almost deterministic

transition structure (n, δ, p
a−→ q) is a deterministic transition structure (n, δ) in which we add

the additional a-transition p
a−→ q. For any α ∈ Σ and any r ∈ [n], the transition function

γ of an almost deterministic automaton (n, δ, F, p
a−→ q) (or almost deterministic transition

structure) is therefore defined by γ(r, α) = {δ(r, α)} if (r, α) ̸= (p, a) and γ(p, a) = {δ(p, a), q}.
These automata or transition structures can be deterministic, in the case where δ(p, a) = q.

The powerset automaton B of an almost deterministic automaton A = (n, δ, F, p
a−→ q),

with a transition function γ, is a deterministic automaton B with states in 2[n] and transition
function γ extended to sets, as defined above. If we add an initial state i0 to A, the initial
state of B is {i0} and B recognizes the same language as A when a state X of B is final if
and only if at least one of its element is final in A. This construction can be restricted to
the states of B that are accessible from the initial state {i0} while still recognizing the same
language; we call this automaton the accessible powerset automaton of A.

Recall that two states r and s in a deterministic automaton A are equivalent if the
languages recognized by moving the initial state to r or to s are equal. The minimal
automaton of a regular language L is the deterministic complete automaton with the smallest
number of states that recognizes L. The number of states of the minimal automaton of L is
called the state complexity of L. We will use the following classical property, which follows
from the fact that the minimal DFA is obtained by merging equivalent states in any DFA
accepting the language [HU79, Theorem 3.11]:

Proposition 2.1. If there is a set of accessible states X in a deterministic automaton A
such that the states of X are pairwise non-equivalent, then A has state complexity at least
|X|.

3. Main statement and proof outline

Our main result is that the state complexity of the language recognized by a random almost
deterministic automaton is super-polynomial with visible probability, when for each n, each
state is final, independently, with some probability fn that is not too close to either 0 or 1,
as precised in the statement:

Theorem 3.1. Let Σ be an alphabet with at least two letters. Let fn be a map from Z≥1

to (0, 1) such that there exists a constant α > 0 such that fn ≥ α√
n
and 1 − fn ≥ α√

n
for

n sufficiently large. Consider an almost deterministic n-state transition structure A on Σ
taken uniformly at random. Each state of A is then taken to be final with probability fn,
independently of everything else. Then, with visible probability, the language recognized by A
has super-polynomial state complexity.

First, we observe that if Γ ⊆ Σ are two non-empty alphabets and if L is a regular
language on Σ, then the state complexity of L is at least the state complexity of L ∩ Γ∗. As
a consequence, it is sufficient to establish Theorem 3.1 for a two-letter alphabet, and from
now on, we fix Σ = {a, b}.

The proof of Theorem 3.1 consists in identifying a structure and several constraints
(see Figure 2) that guarantee that when performing the accessible powerset construction
and adding a random set of final states, we have sufficiently many pairwise non-equivalent

11:6 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

p

L1

L2

...

|Lh| ∈ Θ(
√
n)

h
-b
a
ck
w
a
rd

su
b
st
ru
ct
u
re

r

a

•
a

•
b

•
a

•
b

•
a

•
b

•
a

b

fo
rw

a
rd

tr
ee

qa
p1

w
p2

aw

w

•

b

•
b

•
b

•
b

•

b

•
b

•
b

•
b

•
b

•

b

•
b

•
b

•
b

•
b

•

b

three b-threads

the added random transition

Figure 2: Illustration of the proof sketch of Theorem 3.1. On the left, the h-backward
substructure from p that is detailed in Section 5. It has size Θ(

√
n) and contains

Θ(
√
n) extremal leaves (i.e. leaves in its last level h) to be valid. In the center,

the forward tree from r, described in Section 6; it is a breadth-first traversal that
is valid if it hits an extremal leaf of the backward substructure before

√
n states

are examined. On the right the b-threads introduced in Section 7, obtained by
reading b’s from the pi’s; they are valid if they are made of previously unseen
states and are pairwise disjoint until they cycle back on themselves, forming a
b-cycle of length in [[

√
n, 2
√
n]].

states. At each step, we add a new constraint on top of those we already have, and we have
to ensure that these constraints are still satisfied by sufficiently many almost deterministic
transition structures. A convenient way to sketch the proof is to consider that we start
with n states and no transition, and add random transitions when needed, on the fly. More
precisely, our proofs can be seen as the description of an algorithm that tries to expose the
required structure by performing two types of queries on the set of still unknown transitions:
either we ask what the destination of a given transition is, or we ask for all the transitions
that have a given state as their destination. Thus, at any point in the algorithm, conditioned
on the results of all previous queries, the destinations of all still unexplored transitions are
independent and uniform among the set of states for which we have not performed the second
type of query. These constraints and associated conditional probabilities are formalized in a
unified way in Section 4, introducing and using the notion of templates.

We use this to handle the computations and establish that our algorithm has a non-
negligible probability of success. We also have two random states p and q and the transition

p
a−→ q will be added at some point. Let d ≥ 1. We describe the main steps of the proof

below. In this high level description, recall that δ refers to the transition function of the
deterministic base of the almost deterministic automaton being generated.

(1) Generate r = δ(p, a), the target of the a-transition starting from p in the deterministic
transition structure. With visible probability, r ̸= q and there is a word w of length
Θ(log n) such that δ(r, w) = p, which can be found by generating O(

√
n) random

transitions. We also assume that the b-transition starting at p is still unset. This step is

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:7

the most technical, we explore backward from p and forward from r until we reach a
common state.

(2) Assuming such a w is found, we iteratively generate the transitions starting from q and
following the word w(aw)d−1, and ask for the target of each such transition to be a state
that was not previously seen in the whole process. This happens with visible probability.

(3) Let p0 = p and pi = δ(q, w(aw)i−1) for i ∈ [d]. At this point, if we add the transition

p
a−→ q, and denote δ̂ the resulting non-deterministic transition function, we have

δ̂({p}, (aw)d) = {p0, p1, . . . , pd}, and the outgoing b-transitions of the pi’s are still unset.
Then, for each pi, we iteratively generate the b-transitions δ(pi, b), δ(pi, bb), . . . until we
cycle after λi steps. This process is considered successful if we do not use an already set
b-transition and if the d+ 1 cycles are pairwise disjoint. We furthermore require that
the λi’s are all in [[2

√
n, 3
√
n]]. All these properties happen with visible probability.

(4) The set {p0, . . . , pd} is now composed of d+ 1 different states, and reading b’s from each
pi eventually ends in a b-cycle of length ℓi. Given the λi’s, each ℓi is a uniform element
of [λi], and they are independent. Our precise requirements ensure that once met, the
ℓi’s are uniform and independent elements of [[

√
n, 2
√
n]]. We now require that the ℓi’s

are pairwise coprime, which also happens with visible probability.
(5) If everything worked so far, we can guarantee that {p} is accessible in the subset

construction, still with visible probability: we use the fact that with high probability, all
cycles with length in Ω(log n) are accessible in a random deterministic automaton [CD17].
By construction the cycle around p labeled aw built at Step (1) has length Θ(log n),
hence p is accessible with high probability.

(6) Hence, at this stage, in the accessible powerset construction applied to the almost

deterministic transition structure there is a b-cycle of length
∏d

i=0 ℓi = Ω(n
d+1
2). We

now randomly determine which states are final. If we consider a b-cycle alone in
the automaton, of length Ω(

√
n), its states are pairwise non-equivalent with visible

probability as soon as the probability fn that a state is final is not too close to either
0 or 1, which we assumed in our model. This property happens to be preserved when
building the product automaton for the union of one-letter cycles, provided their lengths
are pairwise coprime. Consequently, the large b-cycles in the powerset construction are
made of pairwise non-equivalent states with visible probability.

The first steps of the proof sketch are depicted in Figure 2. More details and notations will
be introduced in the next section.

We also state the following consequence for the expected state complexity of a random
almost deterministic automaton. Note this corollary is weaker than the result of Theorem 3.1.
Indeed, as its state complexity could be up to 2n, a negligible proportion of automata could
still contribute sufficiently to have a super-polynomial expected state complexity.

Corollary 3.2. Under the conditions of Theorem 3.1, the expected state complexity of the
language recognized by A grows faster than any polynomial in n.

Proof. Let S be the random variable that maps a random automaton to the state complexity
of the language it recognizes. By Theorem 3.1, for n sufficiently large, P(S ≥ nd) ≥ cd n

d

for some cd > 0. Hence, E[S] ≥ nd P(S ≥ nd) ≥ cd n
d, concluding the proof.

11:8 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

4. Templates

In this section we introduce the notion of templates, which will be used to describe families
of transition structures and will allow to handle the computations of conditional probabilities
in a unified way.

A template T is a pair (n, λ), where λ is a function from [n]× Σ to 2[n], the subsets of
[n], such that for every (x, α) ∈ [n]× Σ, λ(x, α) is non-empty.

From their definition, templates could be identified as non-deterministic and complete
transition structures, but we only use them to encode restrictions. For α ∈ Σ and x ∈ [n],
λ(x, α) is seen as the set of allowed targets for the α-transition outgoing from x.

We say that a transition structure A = (n, δ) satisfies a template T = (n, λ), denoted
by A |= T , if for all (x, α) ∈ [n]×Σ, δ(x, α) ∈ λ(x, α). In particular, if |λ(x, α)| = 1 for each
(x, α) ∈ [n]× Σ, then T = (n, λ) can be identified with the unique transition structure that
satisfies T .

The next lemma is used throughout the article to work with the uniform distribution on
transition structures conditioned on satisfying a template. It is obtained by direct counting.

Lemma 4.1. Conditioned on satisfying the template T = (n, λ), the uniform distribution
on n-state transition structures (n, δ) is distributed the same way as generating the image of
each δ(x, α) uniformly at random and independently in λ(x, α).

In the sequel we define several sets of templates to capture the required properties at
every step, following the informal description given in Section 3. Without going into the
details at the moment, which will be given as needed, we will define:

• Bn(p) as the templates that force the required conditions on the backward exploration
from state p, defined in Section 5;
• Cn(p) as the templates built from Bn(p) that furthermore force the existence of a small
cycle around p, defined in Section 6;
• Tn(p, q) as the templates built from Cn(p) that furthermore force the existence of the
path starting at q and of the b-threads, as depicted in Figure 2 and defined in Section 7.

5. Backward substructure of a random transition structure

This section studies the shape of the backward substructure at logarithmic depth from a
state p ∈ [n] in a random transition structure of size n. The backward substructure at depth
h from a vertex p, formally defined in Subsection 5.1, is obtained by restricting the transition
structure to the vertices that can reach p in at most h steps.

More precisely, we study the backward substructure at depth h := ⌈log2
√
n ⌉ and we

want to show that with visible probability in a random transition structure, this backward
substructure contains at most d1

√
n vertices with at least d2

√
n vertices at depth exactly h,

for some positive constants d1 and d2. This result is formally stated in Proposition 5.6 and
its proof is the aim of this section.

For a fixed maximal depth m, Cai and Devroye [CD17] studied the stochastic process
giving the number of vertices at depth at most m in a random transition structure of size n
by providing a perfect coupling with a Galton-Watson process whose offspring distribution is
Bin(2n, 1/n). As we work at logarithmic depth ⌈log2

√
n ⌉, we are not able to provide such

a tight description. However, inspired by their approach, we introduce in Subsection 5.2
a stochastic process Gh that builds what we called backward multi-trees. Under certain

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:9

natural restrictions, a backward multi-tree of height h can encode a backward structure
of depth h. In Lemma 5.2, we show that for every backward-structure of size at most n

3 ,
the probability that a random structure of size n has this backward structure at depth h is
lower-bounded by the probability that the process Gh produces a multi-tree that encodes
this backward structure.

Thanks to this reduction, it only remains to show that with visible probability the
process Gh produces a multi-tree encoding a backward structure satisfying the restrictions
on its total size and the number of nodes at depth h required in Proposition 5.6. A key
ingredient in obtaining this result is that the process Gh is constructed in such a way that if
we only consider the number of vertices at each depth and not the structure of the multi-tree,
we are in fact studying a Galton-Watson process with offspring distribution Poi(2). This
model is well-studied and we derive the results necessary for our purpose in Subsection 5.3,
using standard techniques.

5.1. Backward substructure. Let A be a n-state deterministic transition structure and
p ∈ [n]. For any state x ∈ [n], let d−p (x) denote the backward distance from p to x, that

is, the length of a shortest path from x to p in A. By convention, d−p (x) = +∞ if p is not
reachable from x. For t ≥ 0, the t-th backward layer of A from p is the set Lt(A, p) (simply
denoted by Lt or Lt(A) when the context is clear) consisting of the states at backward
distance t from p: Lt(A, p) = {x : d−p (x) = t}.

For any integer h ≥ 0, we define the h-backward substructure Bh of A from p as the
incomplete deterministic transition structure obtained by selecting the states at backward
distance at most h from p and the transitions that are part of their shortest paths to p.
Formally, if A = (n, δ), then Bh = (n, γ), where γ is the partial transition function defined by
γ(x, α) = y if and only if δ(x, α) = y and d−p (x) ≤ h and d−p (y) = d−p (x)− 1. The backward

support of Bh, denoted SupportB(Bh) is ∪hk=0Lk, the set of states of Bh which are either the
source or target of a transition, or just {p} in the special case of h = 0. When there is no
ambiguity on h and p, we sometimes write SupportB(A) instead of SupportB(Bh).

For any n ≥ 1, any p ∈ [n] and any h ≥ 0, denote by Bn,h(p) the set of all possible
h-backward substructures from p obtained from a n-state deterministic transition structure.

The template associated to Bh = (n, γ) ∈ Bn,h(p) is the template T = (n, λ) defined for
every x ∈ [n] and α ∈ Σ by:

(1) If γ(x, α) is defined, then λ(x, α) = {γ(x, α)}.
(2) If γ(x, α) is undefined and x ∈ SupportB(Bh), then λ(x, α) = [n] \ ∪d

−
p (x)−1

k=0 Lk.

(3) Otherwise, if x /∈ SupportB(Bh), then λ(x, α) = [n] \ ∪h−1
k=0Lk.

This template is defined to precisely capture all n-state transition structures admitting
Bh as h-backward substructure.

Lemma 5.1. If T is the template associated to Bh = (n, γ) ∈ Bn,h(p), then a n-state
transition structure A satisfies T if and only if its h-backward substructure is Bh.

Proof. Suppose thatA = (n, δ) satisfies T . A direct induction shows that for all t ∈ {0, . . . , h}
we have Lt(A) = Lt(Bh). Moreover, if x ∈ Lt for t ∈ {1, . . . , h}, then the conditions of
Case (2) in the definition of T yields that δ(x, α) ∈ Lt−1 if and only if γ(x, α) is defined,
yielding δ(x, α) = γ(x, α) as we must be in Case (1). Hence the h-backward substructure of
A is Bh.

Conversely, if the h-backward structure of A is Bh, then for every (x, α) ∈ [n]× Σ:

11:10 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

(1) If γ(x, α) is defined, then δ(x, α) = γ(x, α), thus δ(x, α) ∈ λ(x, α).

(2) If γ(x, α) is undefined and x ∈ SupportB(Bh), then δ(x, α) cannot be in ∪d−1
k=0Lk, where

d = d−p (x) in Bh, otherwise it would create a shorter path from x to p in A, and Bh
would not be its h-backward substructure.

(3) If x /∈ SupportB(Bh), using the same argument, δ(x, α) cannot be in ∪h−1
k=0Lk.

This concludes the proof.

Following the statement of Lemma 5.1, we write A |= Bh when A satisfies the template
associated with Bh. We further extend the notation to sets X of backward substructures:
A |= X if A satisfies at least one element of X. Lemma 5.1 also allows us to define
SupportB(T) = SupportB(Bh), when T is the template associated with Bh ∈ Bn,h(p).

5.2. Backward multi-trees, trees and processes. We define backward multi-trees which
are general trees and identify a subclass called backward trees that naturally encode backward
substructures. Using this view, we can consider a simpler stochastic process that produces
backward multi-trees instead of backward-substructures. In Lemma 5.2, we show that this
stochastic process can be used to give a lower-bound on the probability that a given backward
substructure appears in a random transition structure.

A n-backward multi-tree rooted at p is a finite general2 tree whose root is labeled by p
and whose other nodes are labeled by pairs (x, α) ∈ [n]× Σ. By a slight abuse of notation,
if a node N is labeled by (x, α), we say that x is the state that labels N or that x labels N .
The name multi-tree underlines the fact that a state can label several nodes in the tree.

A n-backward tree is a n-backward multi-tree whose nodes are labeled by pairwise
distinct states. In particular, its labels are pairwise distinct. The notions of backward
multi-tree and of backward tree are illustrated in Figure 3, for n = 8.

1

2, a 3, b

2, b 4, a 4, a

1

2, a 4, b

3, a 6, b 7, a

1

2 4

3 6 7

a b

a b a

5

8

Figure 3: On the left, a backward multi-tree which is not a backward tree because, for
instance, the state 2 labels two nodes. In the center, a backward multi-tree which
is a tree with its corresponding backward substructure on the right.

A n-backward tree T of depth at most h can be very simply transformed into a h-
backward substructure with n states, by starting with no transition then changing every

child→parent relation (x, α)→ (y, β) into the transition x
α−→ y, and (x, α)→ p into x

α−→ p:
each letter is moved from its node’s label to the edge linking it to its parent, and the unused
states are added with no outgoing transition. We denote by Λ this map from a n-backward
tree to a n-state backward substructure.

2In a general tree, the children of each node are not ordered.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:11

We say that a n-backward multi-tree T matches a backward substructure B when T is
a tree and Λ(T) = B. Let Tn denote the set of n-backward multi-trees that are trees, and
let Tn,h(p) be the set of backward trees that match a h-backward substructure at p:

Tn,h(p) := {T ∈ Tn : Λ(T) ∈ Bn,h(p)}.

Observe that a backward substructure can be matched by a backward tree if and only if
every state in its support has exactly one outgoing transition, except p which has none. We
say that such a backward substructure is a tree.

For n ≥ 1 and p ∈ [n], we define a stochastic process (Gt)t≥0, called the backward
multi-tree process of parameters n and p, which produces random n-backward multi-trees as
follows. At time t = 0, the tree consists of a unique root node labeled p, which is at depth 0.
For t ≥ 0, the tree Gt+1 is built from Gt in the following way. For every node N at depth t
in Gt, we draw independent Poisson random variables Xx,α of parameter 1

n , one for every
x ∈ [n] and for every α ∈ Σ. If Xx,α > 0, then we add Xx,α children labeled (x, α) to N , at
depth t+ 1.

The following lemma justifies the introduction of the multi-tree process (Gt)t≥0 as we
will use it to lift some visible properties of a backward tree generated by this process to the
visible properties of the backward substructure of a random transition structures.

Lemma 5.2. Let B ∈ Bn,h(p) such that |SupportB(B)| < n
3 and the h-th layer of B is not

empty. Let An denote a uniform random transition structure with n states, and (Gt)t≥0 be
the backward tree process of parameters n and p. Then P(An |= B) ≥ P(Gh matches B).

Proof. If B is not a tree then P(Gh matches B) = 0 and the inequality trivially holds. So we
assume that B is a tree for the remainder of the proof.

Let T denote the template associated with B. We proceed by induction on the depth
h of B = (n, γ). The claim trivially holds if h = 0. For the induction step, assume the

claim is true for depth h and consider a backward substructure B of depth h + 1. Let B̂
be the associated backward substructure of depth h, which just consists in removing the
outgoing transitions from the states of Lh+1(B). Observe that B̂ is also a tree, thus we have

P(Gh matches B̂) > 0.

Let T̂ denote the template associated with B̂. As |SupportB(B̂)| ≤ |SupportB(B)| ≤ n
3 ,

by induction hypothesis we have P(An |= T̂) ≥ P(Gh matches B̂).

p

d
ep

th
h
−

1

d
ep

th
h

d
ep

th
h
+

1

s states

|Lh| = r states

|Lh+1| = z states

← z transitions

from Lh+1 to Lh

Figure 4: An illustration for the values of r, s and z in the proof of Lemma 5.2.

11:12 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

Let r = |Lh(B)| = |Lh(B̂)|, s = | ∪h−1
k=0 Lk| and z = |Lh+1(B)|. Observe that since B is a

tree, z is also the number of transitions from Lh+1 to Lh in B. They are the transitions we

removed to build B̂.
A transition structure A = (n, δ) that satisfies T̂ = (n, λ̂) also satisfies T if and only

if for every x /∈ SupportB(B̂) and every α ∈ Σ we have (i) if γ(x, α) is defined in B then

δ(x, α) = γ(x, α), and (ii) if γ(x, α) is undefined in B then δ(x, α) /∈ SupportB(B̂). Since

A |= T̂ , for every x /∈ SupportB(B̂) and every α ∈ Σ, λ̂(x, α) = [n] \ ∪h−1
k=0Lk, hence

|λ̂(x, α)| = n−s. Out of these n−s possible targets, only one is possible for the z transitions
of Case (i) and n− r − s are possible for the 2(n− r − s)− z transitions of Case (ii). Since

the other transitions have the same constraints in T and in T̂ , by Lemma 4.1 we have

P(An |= T | An |= T̂) = 1

(n− s)z
×
(
n− r − s

n− s

)2(n−s−r)−z

,

We rewrite this probability the following way:

P(An |= T | An |= T̂) = 1

(n− r − s)z
×
(
1− r

n− s

)2(n−s−r)

.

On the other hand, by construction of the process and since P(Poi(1n) = 0) = e−1/n and

P(Poi(1n) = 1) = 1
ne

−1/n, considering the 2nr possible transitions that ends in one of the r

vertices of the last layer in B̂:

P(Gh+1 matches B | Gh matches B̂) =
(
1

n
e−1/n

)z

×
(
e−1/n

)2nr−z
=

e−2r

nz
.

Let R be the ratio of these two probabilities, we have

R =
P(An |= T | An |= T̂)

P(Gh+1 matches B | Gh matches B̂)
≥
(
1− r

n− s

)2(n−s−r)

e2r.

As − log(1− x) ≥ x for x ∈ (0, 1), we have

logR ≥ 2(n− s) log

(
1− r

n− s

)
+

2r2

n− s
+ 2r.

A basic study of the function x 7→ log(1 − x) + x + 3
4x

2 yields that for all x ∈ [0, 13], we

have log(1− x) ≥ −x− 3
4x

2. Moreover, r + s
3 ≤ r + s = |SupportB(B)| ≤ n

3 , hence r ≤ n−s
3 .

Therefore, we have

logR ≥ −2(n− s)

(
r

n− s
+

3r2

4(n− s)2

)
+

2r2

n− s
+ 2r =

r2

2(n− s)
≥ 0.

This yields that P(An |= T | An |= T̂) ≥ P(Gh+1 matches B | Gh matches B̂). Therefore,

P (An |= T) = P
(
An |= T and An |= T̂

)
= P

(
An |= T | An |= T̂

)
P
(
An |= T̂

)
≥ P

(
Gh+1 matches B | Gh matches B̂

)
P
(
Gh matches B̂

)
= P

(
Gh+1 matches B and Gh matches B̂

)
= P (Gh+1 matches B) ,

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:13

concluding the proof by induction.

5.3. Results in Galton-Watson processes of offspring distribution Poi(2). Let
(Gt)t≥0 be a backward multi-tree process of parameters n and p. To each Gt we associate the
quantity Zt, defined as its number of nodes at depth t. Since the sum of |Σ| · n independent
Poisson random variables of parameter 1

n is a Poisson random variable of parameter |Σ|
and |Σ| = 2, each node at depth t in Gt gives birth to Poi(2) children at time t+ 1. Hence
(Zt)t≥0 is exactly a Galton-Watson process of offspring distribution Poi(2), which is a well
studied branching process [Har63]. We tailor classical results on Galton-Watson processes
to our needs as follows.

Theorem 5.3. Let (Zt)t≥0 be a Galton-Watson process of offspring distribution Poi(2).
There exist positive real numbers c, c1, c2, c3 and a positive integer t0 such that,

P

(
∀t ≥ t0, c12

t ≤ Zt ≤ c22
t and

t−1∑
k=0

Zk ≤ c32
t

)
≥ c.

Proof. As the expected value of the offspring law is 2 and its variance is finite, the sequence
of random variables (Wt)t≥0 defined by Wt = 2−tZt almost surely converges to a random
variable W with E[W] = 1 (see [Har63, Theorem 8.1, p.13]). Since E[W] > 0, there must
exist a constant d > 0 such that P(|W − d| < d

4) > 0: we can cover R≥0 with a countable

number of intervals (34d,
5
4d), and W is in at least one of them with positive probability.

For t0 ≥ 1 and x > 0, we consider the following events:

• event At0 :
⋂∞

t=t0
|Wt −W | < d

4 ,

• event B : |W − d| < d
4 ,

• event Ct0,x :
∑t0−1

t=0 Zt ≤ x(2t0 − 1).

Our choice of d yields that c := P(B) is positive. As (Wt)t≥0 converges almost surely to
W , limt0→∞ P(At0) = 1. So we can fix a value for t0 such that P(At0) ≥ 1− c

4 . For this t0,
limx→∞ P(Ct0,x) = 1, so we can choose some value for x such that P(Ct0,x) ≥ 1 − c

4 . For

these choices of t0 and x, this yields, by the union bound, using X for the complement of X:

P (At0 ∩B ∩ Ct0,x) ≥ 1− P
(
At0

)
− P

(
B
)
− P

(
Ct0,x

)
≥ c

2
> 0.

We finalize the proof as follows. Assume that the events At0 , B and Ct0,x occur simultaneously.

For all t ≥ t0, we have |Wt − d| ≤ |Wt −W |+ |W − d| ≤ d
4 + d

4 ≤
d
2 . Hence, for all t ≥ t0,

d
22

t ≤ Zt ≤ 3d
2 2

t, and we can take c1 =
d
2 and c2 =

3d
2 . Furthermore, for t > t0, we have:

t−1∑
k=0

Zk =

t0−1∑
k=0

Zk +

t−1∑
k=t0

Zk ≤ x(2t0 − 1) +
3d

2

t−1∑
k=t0

2k,

which is at most c32
t for c3 = max{x, 3d/2}, concluding the proof.

Lemma 5.4. Let (Zt)t≥0 be a Galton-Watson process of offspring distribution Poi(2). The

probability that
∑t

i=0 Zi ≥ 23t/2 tends to 0 as t tends to infinity.

Proof. For all t ≥ 0, we have E[Zt] = 2t. By linearity of expectation, E[
∑t

i=0 Zi] = 2t+1 − 1.

Hence by Markov inequality, for all i ≥ 0, P(
∑t

i=0 Zi ≥ 23t/2) ≤ (2t+1−1)

23t/2
which tends to 0

as t tends to infinity, concluding the proof.

11:14 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

5.4. Main result on backward substructures. The aim of this section is to conclude
our work on backward substructures, by proving Proposition 5.6 stated below.

Let D denote the set of backward multi-trees in which no node has two children with
the same label. For instance in Figure 3, the multi-tree on the left is not in D as (3, b) has
two children with same label (4, a). We first show that with high probability the multi-tree
produced by the process is in D.

Lemma 5.5. Let (Gt)t≥0 be the backward multi-tree process of parameters n and p. With
high probability, Gh ∈ D for h := ⌈log2

√
n ⌉.

Proof. A node has children with the same label if and only if at least one of the Poi(1/n)
used to construct its children values at least two.

The probability that such a random variable is at least two is 1 − e−1/n(1 + 1/n) =
1/n2+o(1/n2). Thus if we consider a sequence of o(n2) such random variables, the probability
that at least one of them reaches two or more is o(1) by the union bound.

Let (ξi)i≥1 be a sequence of i.i.d. Poi(1/n) random variables used for the construction

of Gh. By the union bound, as P
(
|Gh| ≥ 23h/2 and Gh /∈ D

)
≤ P

(
|Gh| ≥ 23h/2

)
we have

P (Gh /∈ D) ≤ P
(
|Gh| ≥ 23h/2

)
+ P

(
∃i ∈ {1, . . . , 2n ⌊23h/2⌋}, ξi ≥ 2

)
.

The first probability tends to 0 by Lemma 5.4. The second probability also tends to 0 by
the above remark and the fact that n⌊23h/2⌋ = Θ(n7/4). This concludes the proof.

For a multi-tree in D, we define a notion of shape which intuitively corresponds to
drawing the multi-tree in the plane with the children ordered lexicographically and then
in removing all the labels. By definition of D, all children of a node have different labels,
hence this embedding is uniquely defined. The proof of Proposition 5.6 below consists in
showing that for a fixed shape S, given it has shape S, the probability that Gh is a tree can
be bounded from below by some constant τ independently of the shape S. We will then
conclude by the law of total probabilities.

Proposition 5.6. There exists cB, d1, d2 > 0 such that, for any n sufficiently large and any
p ∈ [n], the h-backward substructure B from p of depth h = ⌈log2

√
n ⌉ of a uniform random

n-states transition structure is such that |SupportB(B)| ≤ d1
√
n and |Lh(B)| ≥ d2

√
n with

probability at least cB.

Proof. We choose some values for c, c1, c2, c3 and t0 that work with Theorem 5.3. We set
d1 = 2(c2 + c3) and d2 = c1. Let (Gt)t≥0 be a backward multi-tree process of parameters n
and p, and let (Zt)t≥0 denote the number of nodes at depth t in Gt (and therefore in all Gt′
for t′ ≥ t).

Let Gh denote the set defined by:

Gh =

{
G ∈ D : c12

h ≤ Zh(G) ≤ c22
h and

h−1∑
k=0

Zk(G) ≤ c32
h

}
.

For n sufficiently large, h ≥ t0 and Theorem 5.3 applies. Hence, together with Lemma 5.5,
for n sufficiently large we have

P(Gh ∈ Gh) ≥
c

2
, (5.1)

as the intersection of a property with visible probability and a property with high probability.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:15

We start by showing that there is a visible probability that Gh belongs to Gh and is a
tree. To do so, we introduce the notion of shape of a backward multi-tree and bound from
below the probability at fixed shape.

To any G ∈ D we associate its shape s(G), a tuple of non-negative integers which is
inductively defined as follows:

• if G is reduced to a root node, then s(G) = (0),
• otherwise, if (Gi)i=1,...,k denote its k children ordered by their root labels (using the
lexicographic order), then s(G) = (k)⊗ s(G1)⊗ s(G2)⊗ · · · ⊗ s(Gk), where ⊗ denote the
concatenation of tuples: (x1, . . . , xm)⊗ (y1, . . . , yr) = (x1, . . . , xm, y1, . . . , yr).

So we compute s(G) by producing the sequence of the number of children in a depth-first
traversal of G, where the children of a node are taken in lexicographic order of their labels.
There is no ambiguity as in an element of D, two siblings always have different labels. If
G /∈ D, we set s(G) = ⊥ to indicate that no shape is defined.

The label sequence of G ∈ D, denoted by ℓ(G) is computed as s(G), except that we
collect the labels of the nodes instead of their numbers of children. One can readily verify
that if both s(G) and ℓ(G) are given, there is a unique element of D that matches them,
which is G: informally s(G) encodes the tree structure, and the nodes are labeled with ℓ(G)
using a depth-first traversal. Let Sh = {s(G) : G ∈ Gh} be the set of shapes of elements of
Gh. Observe that if s(G) ∈ Sh, then by definition G ∈ D (otherwise s(G) = ⊥); moreover,
the shape of G determines the size of its layers, and therefore G ∈ Gh. Hence s(G) ∈ Sh if
and only if G ∈ Gh.

The probability that Gh = G is the same for any G having the same shape S ∈ Sh.
Indeed, by direct induction on the steps of the depth-first traversal, each time we generate the
k children of the current node, the value of k being given by s(G), we draw 2n independent
Poi(1/n) out of which exactly k must value 1 and 2n− k must value 0. This happens with
probability that only depends on k, hence only on s(G).

So we can compute the probability that Gh is a backward tree, given its shape S, by a
counting argument. Indeed, to construct a backward tree with shape S = (s1, . . . , st), we
first need to choose the states labeling the s1 children of the root (which is always labeled

by p) and for each child assign a letter in Σ. This represents
(
n−1
s1

)
2s1 choices. Then we

need to choose the s2 states labeling the s2 children of the first child of the root. These s2
states must be chosen in amongst the n− 1− s1 not used so far. For each of these states,
which is uniquely identified by its label, we must choose a letter in Σ for a total number of(
n−1−s1

s2

)
2s2 choices (observe that the formula is also correct if s2 = 0). By repeating this

argument in the form of a direct induction, we have that the number of ways to build a
backward tree of shape S = (s1, . . . , st) is

Tn(S) :=
(
n− 1

s1

)
2s1 ×

(
n− 1− s1

s2

)
2s2 × · · · ×

(
n− 1−

∑t−1
i=1 si

st

)
2st .

On the other hand, the number of way of labeling S to obtain an element of D is

Dn(S) :=
(
2n

s1

)
×
(
2n

s2

)
× · · · ×

(
2n

st

)
,

as the only constraint is that the children of a node have different labels, amongst the 2n
possible ones. Recalling that Tn denotes the set of n-backward trees, we just established

that P (Gh ∈ Tn | s(Gh) = S) = Tn(S)
Dn(S) . We can easily bound from below as follows, using

11:16 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

m = 1 +
∑t

i=1 si to denote the number of nodes:

Tn(S) ≥ 2m−1 (n−m)m−1∏t
i=1 si!

and Dn(S) ≤
(2n)m−1∏t

i=1 si!
.

Therefore, we have

P (Gh ∈ Tn | s(Gh) = S) ≥
(
1− m

n

)m
.

In particular, if S has at most d1
√
n nodes, then for n sufficiently large we have

P (Gh ∈ Tn | s(Gh) = S) ≥
1

2
exp(−d21), (5.2)

as limn(1− d1/
√
n)d1

√
n = e−d21 .

We can now finalize the proof by bounding from below the probability that Gh is a
n-backward tree and in Gh as follows, for n sufficiently large. We first partition the elements
of Gh according to their shape:

P (Gh ∈ Gh ∩ Tn) =
∑
S∈Sh

P (s(Gh) = S and Gh ∈ Tn)

=
∑
S∈Sh

P (Gh ∈ Tn | s(Gh) = S)P (s(Gh) = S) .

As Sh is the set of shapes of the elements of Gh, all the G such that s(G) ∈ Sh has at most
(c2 + c3)2

h ≤ 2(c2 + c3)
√
n = d1

√
n nodes, Equation (5.2) applies and yields:

P (Gh ∈ Gh ∩ Tn) ≥
e−d21

2

∑
S∈Sh

P (s(Gh) = S) =
e−d21

2
P (Gh ∈ Gh) .

By Equation (5.1), if we set cB = ce−d21

4 , then for n sufficiently large Gh ∈ Gh ∩ Tn with
probability at least cB.

Recall that for G ∈ T, Λ(G) denote the associated backward substructure. Let Bh ⊆
Bn,h(p) denote the set of backward substructures B such that |SupportB(B)| ≤ d1

√
n and

|Lh(B)| ≥ d2
√
n. As every structure in Λ(Gh ∩ Tn) is in Bh, we have

P (An |= Bh) ≥ P (An |= Λ(Gh ∩ Tn)) =
∑

G∈Gh∩Tn

P (An |= Λ(G)) .

We used the fact that, by Lemma 5.1, two different elements of Gh ∩ Tn cannot be the
h-backward substructures of the same transition structure.

Moreover, by Lemma 5.2, for G ∈ Tn we have

P (An |= Λ(G)) ≥ P (Gh matches Λ(G)) = P (Gh = G) .
Therefore,

P (An |= Bh) ≥
∑

G∈Gh∩Tn

P (Gh = G) = P (Gh ∈ Gh ∩ Tn) ≥ cB.

This concludes the proof.

For any n ≥ 1 and p ∈ [n], let Bn(p) (or simply Bn when there is no ambiguity on p)
denote the set of templates associated with the ⌈log2

√
n ⌉-backward substructures B from p

of the n-state transition structures such that |SupportB(B)| ≤ d1
√
n and |Lh(B)| ≥ d2

√
n.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:17

6. Forward tree and short cycle around p

In this section, we continue the construction started in Section 5 by performing a forward
exploration starting from δ(p, a) in a random transition structure that satisfies Bn(p).

More precisely, let T ∈ Bn(p) of depth h = ⌈log2
√
n ⌉. For a transition structure

A = (n, δ) that satisfies T , we perform a breadth-first traversal of A from r := δ(p, a):
the states are discovered in order r0 = δ(r, ε), r1 = δ(r, a), r2 = δ(r, b), r3 = δ(r, aa),
r4 = δ(r, ab), . . . , where the words are taken in length-lexicographic order. This process
halts as soon as one of the following events happens:

(1) ri ∈ Lh, where Lh is the h-th layer of T , i.e. the states x of A such that d−p (x) = h;
(2) ri ∈ SupportB(Bh) \ Lh, which is only possible for r0 = δ(p, a), as A satisfies T ;
(3) ri = rj with j < i, i.e. we have a collision with a state already seen during the process;
(4) i = ⌈

√
n ⌉, we force the process to halt after

√
n steps.

We call this process the forward process from p, and say that it is a success if it halts because
Case (1) is triggered and it is a failure otherwise. It is deterministic for a given A, and we
will consider its probability of success for random transition structures.

Lemma 6.1. There exists a constant cF > 0 such that, for n sufficiently large, for any
p ∈ [n], and for any T ∈ Bn(p), the forward process from p of a uniform random n-state
transition structure conditioned to satisfy T is a success with probability at least cF.

Proof. Let Bh be the h-backward substructure from p associated to T . By Lemma 4.1, in a
random transition structure A that satisfies T , δ(p, a) is a uniform random element of [n],
and for every x /∈ SupportB(T) and every α ∈ Σ, δ(x, α) is a uniform random element of
ST := Lh(Bh) ∪ ([n] \ SupportB(Bh)), every choice being made independently.

We simulate the evolution of the process by generating the target of the transitions one
by one according to the restrictions induced by T , when needed, in the order of the traversal.

First, we want to upper bound the probability that the process fails because we reach
the threshold of

√
n steps, i.e. it halts because of Case (4). As the first transition considered

is δ(p, a), and the process immediately fails when δ(p, a) ∈ SupportB(BH) \ Lh, it continues

with probability 1− |SupportB(Bh)\Lh|
n .

For 1 ≤ i ≤ ⌈
√
n ⌉ − 1, if r0, . . . , ri−1 avoided the halting conditions, then ri, which is a

uniform element of ST , also avoids the halting conditions with probability 1− i+|Lh|
|ST | , as it

must be different from the previous rj ’s and not belong to Lh. By independence, it yields
that the probability πn that the process halts because of Case (4) is

πn =

(
1− |SupportB(Bh) \ Lh|

n

) ⌈
√
n ⌉−1∏
i=1

(
1− i+ |Lh|

|ST |

)
≤
(
1− |Lh|

n

)⌈
√
n ⌉−1

.

As T ∈ Bn(p), we have |Lh| ≥ d2
√
n and thus πn ≤ (1 − d2/

√
n)

√
n−1. Moreover, since

limn(1 − d2/
√
n)

√
n−1 = exp(−d2), for n large enough we have πn ≤ κ by choosing, for

instance, κ := 1
2(1 + exp(−d2)) ∈ (0, 1).

Secondly, if we condition the process to halt at some step i < ⌈
√
n⌉ then ri is chosen

uniformly at random in {r0, . . . , ri−1} ∪ Lh. Hence, given it halts at step i, the probability
of success is

|Lh|
i+ |Lh|

≥ d2
√
n√

n+ d1
√
n
=

d2
1 + d1

.

11:18 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

Finally, since this lower bound does not depend on i, the probability that it halts because of
Case (1), i.e. the process is a success, is at least d2

1+d1
times the probability that the process

halts before ⌈
√
n⌉ steps. Hence, it is at least cF = d2

1+d1
(1−κ) > 0, concluding the proof.

Let (ui)i≥0 denote the sequence of words on Σ in the length lexicographic order, so that
u0 = ε, u1 = a, u2 = b, u3 = aa, . . . For any n-state transition structure A = (n, δ) that
satisfies a template T = (n, γ) of Bn(p) and whose forward process is successful and halts,
at step i, we associate the template TA = (n, λ) as follows. For any x ∈ [n] and α ∈ Σ,

• for all j < i and all α ∈ {a, b} such that ujα belongs {u0, . . . , ui}, λ(x, α) = {δ(x, α)}
with x = δ(p, auj),
• otherwise, λ(x, α) = γ(x, α).

In other words, starting from the template T , we force the targets of all the transitions
explored during the forward process. It is direct to establish that every transition structure
that satisfies A has the same ⌈log2

√
n ⌉-backward substructure than A and exactly the same

forward process, which is successful.
Let Cn(p) denote the set of templates TA for the transition structures A that satisfy

T ∈ Bn(p) and that have a successful forward process from p. For such a transition structure
A whose process halts after i steps, define SupportC(A) = SupportB(A) ∪ {δ(p, auj) : 0 ≤
j < i} be the set of states visited during the backward construction and the forward process.

The next lemma is a direct consequence of Lemma 5.1 and of the way we constrained
the forward tree in the construction of TA.

Lemma 6.2. Two n-state transition structures A = (n, δ) and A′ = (n, δ′) satisfy the same
template T ∈ Cn(p) if and only if A and A′ have same ⌈log2

√
n ⌉-backward substructure

and the forward processes from p of both A and A′ halt successfully at the same step i, with
δ(p, auj) = δ′(p, auj) for every j ∈ {0, . . . , i− 1}.

For TA ∈ Cn(p) a template associated to a transition structure A = (n, δ) whose forward
process from p halts successfully after i steps, we let SupportC(TA) = SupportC(A) denote
the set SupportB(A) ∪ {δ(p, auj) : 0 ≤ j < i}, which we call the cycle support of TA (or of
A). We added the states discovered during the process to SupportB(A).

Finally, observe that the last step of a successful process builds a cycle around p as
δ(p, aui) ∈ Lh and as there is a path from any state of Lh to p, by construction. Let v be
the smallest word for the length-lexicographic order that labels a path from δ(p, aui) ∈ Lh

to p, then auiv labels a cycle around p in A. Define wA(p) := uiv, or just wA if p is clear
from the context.

Moreover, this word only depends on TA since it only uses transitions determined by the
template, by construction of the backward and forward traversals: two transition structures
A and A′ satisfying the same T ∈ Cn(p) are such that wA = wA′ . So we can define this
word for a given T ∈ Cn(p) as wT := wA with no ambiguity.

The properties we need in the sequel are summarized in the next statement.

Proposition 6.3. There exists c > 0 such that for n sufficiently large and p ∈ [n], a random
n-state transition structure satisfies Cn(p) with probability at least c.

Furthermore, any transition structure A that satisfies a template T = (n, λ) ∈ Cn(p)
admits a cycle around p labeled by the word awT , which only visits states in SupportC(T)
and has length between h and 2h, where h = ⌈log2

√
n ⌉. We also have |SupportC(T)| ≤ (d1+

1)
√
n, and for any x /∈ SupportC(T) and any α ∈ Σ, λ(x, α) = Lh(T)∪ ([n] \ SupportB(T)).

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:19

Proof. As both the h-backward substructure construction and the forward process are
deterministic, a given n-state transition structure can satisfy at most one template in Cn(p).
Hence, if we partition according to the elements of Cn(p), the law of total probabilities and
Lemma 6.1 yield the first statement of the proposition.

The second part is a consequence of the construction of TA and of the fact that if the
forward process is successful, it halts before

√
n states are discovered, and thus after building

a forward tree of depth at most h.

7. Forming the b-cycles

From now on, we fix some integer d ≥ 1. In this section, we consider a random transition
structure conditioned to satisfying a template T ∈ Cn(p) with cycle around p labeled by
aw, with w := wT and |w| ∈ Θ(log n). The statements of this part articulate as follows.

We consider the path P = q
w
⇝ p1

aw
⇝ p2 ⇝ · · ·

aw
⇝ pd depicted in Figure 2. We first

establish in Lemma 7.1 that with high probability it does not intersect the support of the
template T and it does not go twice through the same state.

Starting at state x, we grow what we call a b-thread by successively drawing the outgoing
b-transitions until we cycle back. Then in Lemma 7.2, we show that with visible probability
we can grow a b-thread from p and each pi such that these threads have size in O(

√
n), do

not intersect the support of the template T nor the path P and are pairwise disjoint.
If we condition the cycles formed by the b-threads to have length in [[

√
n, 2
√
n]], we

furthermore establish that these lengths are uniformly drawn in this interval and that it still
happens with visible probability in Proposition 7.4.

7.1. Growing the b-threads. Let A = (n, δ) be a n-state transition structure that satisfies
a template T ∈ Cn(p), for some p ∈ [n]. For any q ∈ [n], we associate to A its starting
states tuple s(A, q) which is either a tuple of d+ 1 states, or ⊥ in case the construction of
the tuple failed. To build s(A, q) consider the path labeled in A that starts at state q and
labeled by the word

u = wA(awA)
d−1

where awA labels the cycle around p in A defined in the previous sections. The word u has
length |u| = d|wA|+ d− 1, and go through all the states xi := δ(q, vi), where vi is the prefix
of length i of u and 0 ≤ i ≤ |u|. Letting Xq(A) = {xi : 0 ≤ i ≤ |u|}, the construction fails
when Xq(A)∩ SupportC(A) ̸= ∅ or |Xq(A)| < |u|+1; in other words, it fails if the path uses
a state of SupportC(A) or if it goes twice through the same state. If the construction fails,
we set s(A, q) = ⊥, otherwise

s(A, q) :=
(
p, δ(q, wA), δ

(
q, wA(awA)

1
)
, . . . , δ

(
q, wA(awA)

d−1
))

.

Lemma 7.1. For any ϵ > 0, for any n sufficiently large, for all p ∈ [n], if q is chosen
uniformly at random in [n], then for any T ∈ Cn(p) we have

P (s(A, q) ̸= ⊥ | A |= T) ≥ 1− ϵ.

Proof. Observe that the construction immediately fails for A |= T if the starting state
of the path x0 = q is in SupportC(T), as SupportC(A) = SupportC(T). This happens
with probability |SupportC(T)|/n as q is chosen uniformly at random in [n]. As stated in
Proposition 6.3, in a random A satisfying T , the transitions starting from x ̸∈ SupportC(T)

11:20 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

must arrive in S := Lh(T) ∪ ([n] \ SupportB(T)). Furthermore their targets are all chosen
uniformly at random and independently in S, according to Lemma 4.1. For i ∈ {0, . . . , |u|},
let Yi := SupportC(T) ∪ {x0, . . . , xi}. Observe that for any i ∈ {1, . . . , |u|}, if the path for
the first i− 1 letters of u did not produce a failure, the target of a transition starting from
xi−1 is an element of S taken uniformly at random. Hence, we have, as |SupportC(T)∩S| ≤
|SupportC(T)|:

P(xi /∈ Yi−1 | ∀j ≤ i− 1, xj /∈ Yj−1) ≥ 1− |SupportC(T)|+ i

|S|
≥ 1− |SupportC(T)|+ |u|

|S|
.

Combining with the probability that x0 = q /∈ SupportC(T) this yields

P(s(A, q) ̸= ⊥ | A |= T) ≥
(
1− |SupportC(T)|+ |u|

|S|

)|u|+1

.

By Proposition 6.3, |u| ≤ 2⌈log2
√
n ⌉ and |SupportB(T)| ≤ |SupportC(T)| ≤ (d1 + 1)

√
n, so

that |S| ≥ n− (d1 + 1)
√
n and we have

P(s(A, q) ̸= ⊥ | A |= T) ≥
(
1− (d1 + 1)

√
n+ 2⌈log2

√
n ⌉

n− (d1 + 1)
√
n

)2⌈log2
√
n ⌉+1

.

This concludes the proof, as it tends to 1 when n tends to infinity.

If A satisfies T and s(A, q) ̸= ⊥, we write s(A, q) = (p0, p1, . . . , pd), with p0 = p by

construction. Let ui denote the i-th letter of the word u and let also Pq(A) = x0
u1−→ x1

u2−→
· · ·

u|u|−−→ x|u| denote the path labeled by u = u1u2 · · ·u|u| and starting from x0 = q. Recall
that Xq(A) is the set of states of Pq(A).

We consider the thread process of A which, if successful, consists in building in order
the sets Ei = {δ(pi, bj) : j ≥ 0} for i ∈ {0, . . . , d} as follows. For i from 0 to d we start with
Ei = {pi} and then iteratively add δ(pi, b

j) for j ≥ 0 until:

(1) δ(pi, b
j) ∈ ∪i−1

k=0Ek, in which case the process halts and is a failure;

(2) or δ(pi, b
j) ∈ SupportC(T) ∪Xq(A), in which case the process halts and is a failure;

(3) or δ(pi, b
j) ∈ Ei, in which case the process halts and is a failure if |Ei| /∈ [[2

√
n, 3
√
n]]. If

not there are two cases: if i < d the process starts building Ei+1, and if i = d it halts
with a success, as all the b-threads are successfully built.

Define λ(A, q) = (|E0|, |E1|, . . . , |Ed|) the tuple of the b-threads’ lengths if the process is
successful and λ(A, q) = ⊥ if it fails. Observe that if successful, then the Ei’s are pairwise
disjoint, and do not intersect SupportC(T) ∪Xq(A).

The following statement is a variation on the classical Birthday Problem.

Lemma 7.2. There exists cλ > 0 such that for any n sufficiently large, for any p ∈ [n], for

any T ∈ Cn(p) and for any path P = x0
u1−→ x1

u2−→ . . .
u|u|−−→ x|u| labeled by u = wT (awT)

d−1

such that the xi’s are pairwise distinct and not in SupportC(T) we have

P (λ(A, x0) ̸= ⊥ | A |= T and Px0(A) = P) ≥ cλ.

Proof. Conditioning by A |= T and Px0(A) = P is exactly conditioning on satisfying the
template TP = (n, γP) obtained from T = (n, γ) by setting γP(xi, ui+1) = {xi+1} for all
i ∈ {0, . . . , |u| − 1}, and γP(x, α) = γ(x, α) for all other transitions.

Let S := Lh(T) ∪ ([n] \ SupportC(T)). For every i ∈ {1, . . . , d}, by construction
pi = xi|awT |−1 and γP(pi, b) = γ(pi, b) = S since a labels the transition outgoing from pi in

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:21

P for i < d − 1 and pd is the end of P. Also, γP(p0, b) = γ(p0, b) = γ(p, b) = [n], as the

template gives no constraint on p
b−→.

So during the thread process, as long as we are adding a new state x = δ(pi, b
j) in Ei,

the transition δ(x, b) is a uniform element of S (or of [n] if i = j = 0), independently of the
previous steps. Hence if we are not in the case i = j = 0, out of the |S| possibilities, ri :=
| ∪i−1

k=0 Ek| possibilities trigger a failure because of Condition (1), s := |S ∩ SupportC(T)|+
|Xq(A)| possibilities trigger a failure because of Condition (2), and j possibilities complete
the process for Ei because we cycle back on a previously seen element of Ei. So for i ≥ 1 and
t < 3

√
n, the probability πi(t) that neither Condition (1) nor Condition (2) were triggered

and |Ei| = t, conditioned on the fact that Ej were successfully built for all j < i is

πi(t) =
|S| − ri − s

|S|︸ ︷︷ ︸
choice of δ(pi,b)

× |S| − ri − s− 1

|S|︸ ︷︷ ︸
choice of δ(pi,b2)

× · · · × |S| − ri − s− (t− 2)

|S|︸ ︷︷ ︸
choice of δ(pi,bt−1)

× t

|S|︸︷︷︸
cycling back

.

Hence

πi(t) =
t

|S|

t−2∏
j=0

(
1− ri + s+ j

|S|

)
.

For 2
√
n ≤ t ≤ 3

√
n we have

πi(t) ≥
t

|S|

(
1− ri + s+ 3

√
n

|S|

)3
√
n

.

Moreover, as at most d threads have been completed so far, ri ≤ 3d
√
n, and for n sufficiently

large, |Xq(A)| ≤
√
n and thus s ≤ (d1 + 2)

√
n, by Proposition 5.6. Observe that we also

have |S| ≥ n− (d1+1)
√
n, which is greater than 1

2n for n sufficiently large. Therefore, using
µ := 2d1 + 6d+ 10 and the fact that limm(1− µ/m)m = exp(−µ), we have

πi(t) ≥
t

|S|

(
1− µ√

n

)3
√
n

≥ te−3µ

2n
.

This yields that

⌊3
√
n⌋∑

t=⌈2
√
n⌉

πi(t) ≥
e−3µ

2n

⌊3
√
n⌋∑

t=⌈2
√
n⌉

t ≥ e−3µ

2n

(
⌊3
√
n⌋ − ⌈2

√
n ⌉+ 1

)
⌈2
√
n⌉.

As the limit of the right hand term is e−3µ > 0, there exists κ > 0 such that, for n sufficiently

large we have
∑⌊3

√
n⌋

t=⌈2
√
n⌉ πi(t) ≥ κ.

For the case i = 0, as r0 = 0 and γP(p0, b) = [n], we have almost the same formula:

π0(t) =
t

|S|

(
1− s

n

) t−2∏
j=1

(
1− s+ j

|S|

)
.

With the same technique as before, we can find some positive constant κ0 such that∑⌊3
√
n⌋

t=⌈2
√
n⌉ π0(t) ≥ κ0, for n sufficiently large. Combining the results we obtain that

P (λx0(A) ̸= ⊥ | A |= T and Px0(A) = P) ≥ κ0 κ
d,

concluding the proof.

11:22 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

We now write the conditions in terms of templates, by naming the states encountered
during the thread process and forcing the associated transitions. For n ≥ 1 and p, q ∈ [n],
let Tn(p, q) denote the set of templates T = (n, γ) such that:

• T satisfies a template T̂ = (n, γ̃) of Cn(p), with a cycle around p labeled by the word awT .

Hence SupportC(T) = SupportC(T̂) and, to simplify the notations, define w := wT = wT̂ .

• We write x0 = q and for u = w(aw)d−1 = u1u2 · · ·u|u|, there exist pairwise distinct states
x1, x2, . . . , x|u| in [n] \ SupportC(T) such that for all i ∈ {0, . . . , |u| − 1}, γ(xi, ui+1) =
{xi+1}. This determines the path starting at q and labeled by u of any A that satisfies T .
Let Xq(T) = {xi : 0 ≤ i ≤ |u|}.
• We write p0,1 = p and pi,1 = xi|aw|−1 for 1 ≤ i ≤ d. For any i ∈ {0, . . . , d}, there exists an

integer λi such that 2
√
n ≤ λi ≤ 3

√
n and states pi,2, . . . , pi,λi

in [n] \ (SupportC(T) ∪
Xq(T)) such that:
– The pi,j ’s are pairwise distinct.
– For all i ∈ {0, . . . , d}, for all j ∈ {1, . . . , λj − 1}, γ(pi,j , b) = {pi,j+1}. This determines

the b-threads starting from p0,1, . . . , pd,1. Let Ei = {pi,j : j ∈ [λi]}.
– For all i ∈ {0, . . . , d}, γ(pi,λi

, b) = Ei, to ensure we cycle back in each b-thread.
• For every other transition (x, α) we have γ(x, α) = γ̂(x, α).

As the construction follows the constructions of the path and of the b-threads, we readily
have that A |= Tn(p, q) if and only if A |= Cp(n) and λ(A, q) ̸= ⊥. As the constructions
are deterministic, for given p, q ∈ [n], a given n-state transition structure A cannot satisfy
more than one template of Tn(p, q). Moreover, all the transition structures A that satisfy
a given T ∈ Tn(p, q) have same λ(A, q) = (λ0, λ1, . . . , λd), which we can therefore write
λ(T , q) with no ambiguity.

Proposition 7.3. There exists cT > 0 such that, for n sufficiently large and for p ∈ [n], if
q is a uniform random element of [n] and A is a uniform n-state transition structure, taken
independently, then P (A |= Tn(p, q)) ≥ cT.

Proof. We partition Tn(p, q) according to the possible valid paths as follows. For given
T ∈ Tn(p, q), the path Pq(A) is the same for every A that satisfies T , so we can define
Pq(T) := Pq(A) for any such A. Let Pq(n) denote the set of all possible paths:

Pq(n) = {Pq(T) : T ∈ Tn(p, q)}.
We have

P (A |= Tn(p, q)) =
∑

P∈Pq(n)

∑
T ∈Tn(p,q)

P (A |= T and Pq(T) = P) .

Recall that A |= Tn(p, q) if and only if A |= Cp(n) and λ(A, q) ̸= ⊥. This yields

P (A |= Tn(p, q)) =
∑

P∈Pq(n)

∑
T ∈Cp(n)

P (A |= T and λ(A, q) ̸= ⊥ and Pq(T) = P) .

For any T ∈ Cp(n) and any P ∈ Pq(n), by Lemma 7.2, for n sufficiently large we have

P (A |= T and λ(A, q) ̸= ⊥ and Pq(T) = P) ≥ cλ P(A |= T and Pq(T) = P).
By definition of sq(A), a given transition structure that satisfies T ∈ Cp(n) has a path in
Pq(n) if and only if sq(A) ̸= ⊥. Thus∑

P∈Pq(n)

P(A |= T and Pq(T) = P) = P(A |= T and sq(A) ̸= ⊥).

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:23

Moreover, taking ϵ = 1
2 in Lemma 7.1, for n sufficiently large we have

P(A |= T and sq(A) ̸= ⊥) ≥
1

2
P(A |= T).

Putting all together yields

P (A |= Tn(p, q)) ≥
cλ
2

∑
T ∈Cp(n)

P(A |= T) = cλ
2
P(A |= Cp(n)).

This concludes the proof by Proposition 6.3.

Let T ∈ Tn(p, q) with λ(T , q) = (λ0, . . . , λd). If A |= T then at the end of each b-thread
from pi,1, the b-transition outgoing from pi,λi

ends in an element pi,j of Ei, forming a b-cycle
of length ℓi = λi− j +1. Let ℓ(A, p, q) be the d+1-tuple of the b-cycle lengths (ℓ0, . . . , ℓd) if
all its coordinates are in [[

√
n, 2
√
n]], and ℓ(A, p, q) = ⊥ otherwise. We also set ℓ(A, p, q) = ⊥

if A does not satisfy Tn(p, q). If ℓ(A, p, q) = (ℓ0, . . . , ℓd), we define ℓi(A) := ℓi to directly
access its coordinates.

Proposition 7.4. There exists cℓ > 0 such that for n sufficiently large and p ∈ [n], if q is
taken uniformly in [n] and A is a uniform n-state transition structure taken independently
then P (ℓ(A, p, q) ̸= ⊥) ≥ cℓ. Moreover, conditioned on ℓ(A, p, q) ̸= ⊥, the random variables
ℓi are independent uniform integers of [[

√
n, 2
√
n]].

Proof. By definition, we have ℓ(A, p, q) ̸= ⊥ only for transition structures A such that
A |= Tn(p, q). Let T ∈ Tn(p, q), let sq(T) = (p0, p1, . . . , pd) denote its tuple of starting
states and let λq(T) = (λ0, . . . , λp) denote its tuple of b-thread lengths. If A = (n, δ) is a
random transition structure conditioned on satisfying T , then, by definition of Tn(p, q), for
every i ∈ {0, . . . , d}, δ(pi, bλi) is a uniform element of Ei = {δ(pi, bj) : j ≥ 0}, with |Ei| = λi,

and they are all independent. Hence each b-cycle length ℓ̂i is a uniform random integer in
[λi], and they are all independent.

By definition of Tn(p, q), for every i ∈ {0, . . . , d}, we have 2
√
n ≤ λi ≤ 3

√
n. In

particular [[
√
n, 2
√
n]] ⊆ [[1, λi]], and the probability that a uniform element of [[1, λi]] is in

[[
√
n, 2
√
n]] is at least 1

4 (it is lower-bounded by a quantity that tends to 1
3). Hence the

probability that all the ℓ̂i’s are in the valid range [[
√
n, 2
√
n]] is at least 4−d−1. Since this

lower bound does not depend on T ∈ Tn(p, q), this proves by the law of total probabilities
that

P (ℓ(A, p, q) ̸= ⊥) =
∑

T ∈Tn(p,q)

P (ℓ(A, p, q) ̸= ⊥ | A |= T)P(A |= T) ≥ 4−d−1P(A |= Tn(p, q)).

By Proposition 7.3, this yields P (ℓ(A, p, q) ̸= ⊥) ≥ cℓ, with cℓ = 4−d−1cT.
The second part of the statement is just a consequence of the fact that a uniform element

of [λi] conditioned to be in [[
√
n, 2
√
n]] is a uniform element of [[

√
n, 2
√
n]]. And as direct

computation shows, the independence is preserved if we consider all the ℓi’s together.

Proposition 7.4 is our main probabilistic result on random transition structures. It
states that our global construction succeeds with visible probability and produces d + 1
b-cycles of uniform and independent length in [[

√
n, 2
√
n]]. These cycles are linked to p in

a way that can be exploited during the accessible subset construction when we add the

transition p
a−→ q.

11:24 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

8. Super-polynomial growth of the subset construction

A uniform n-state almost deterministic transition structure A = (n, δ, p
a−→ q) is obtained

by choosing δ, p and q uniformly at random and independently. If we furthermore choose
the starting state i0 uniformly at random and independently, we can use Proposition 7.4 to
establish that the accessible subset construction has a super-polynomial number of states
with visible probability. This is the focus of this section.

First, Grusho [Gru73] established that with high probability a uniform n-state transition
structure has a unique terminal strongly connected component. When there is only one such
strongly connected component, it is necessarily accessible from any state. We also rely on a
result of Cai and Devroye [CD17, Theorem 2], which ensures that with high probability there
are no cycles of length larger than 1

4 log2 n outside this unique terminal strongly connected
component. More precisely, they show that the length of the longest cycle outside the unique
terminal strongly connected component of a random n-state transition structure is in Op(1)
with the notations of [JLR00]. By [JLR00, Remark 1.3], this in particular implies that for
any ω(n)→∞, all the cycles outside the accessible part have length at most ω(n) with high
probability.

Observe that if A |= Tn(p, q), then it has a word awA that labels a cycle around p of
length at most h = ⌈log2

√
n ⌉. By Proposition 7.4, this happens with visible probability.

The conjunction of a high-probability event with a visible event being a visible event, we
directly have the following lemma.

Lemma 8.1. If A is a n-state transition structure, and p, q, i0 are states in [n], all being
taken uniformly at random and independently in their respective sets, then with visible
probability, ℓ(A, p, q) ̸= ⊥ and p is accessible from i0.

At this point, to prove our first theorem, on the accessible powerset construction applied
to a random transition structure with an added transition, we need a result of probabilistic
number theory. Tóth in [Tót02] generalizes the folklore result that two independent random
numbers in [N] are coprime with probability that tends to 6

π2 to a fixed number of independent
random numbers.

Theorem 8.2 [Tót02]. For any k ≥ 2, there exists some constant Ak > 0 such that k
integers taken uniformly at random and independently in [N] are pairwise coprime with
probability that tends to Ak as N tends to infinity, with

Ak =
∏

p prime

(
1 +

k

p− 1

)(
1− 1

p

)k

.

This theorem was proven using probabilistic arguments in [CB03, Theorem 3.3]. We
adapt this proof to obtain the following corollary.

Corollary 8.3. For any d ≥ 1, d+ 1 integers taken uniformly at random and independently
in [[
√
n, 2
√
n]] are pairwise coprime with probability that tends to Ad+1 as n tends to infinity.

Proof. For any real x > 0, let Px be the set of prime numbers smaller than or equal to x:
Px = {p ∈ Z≥1 : p ≤ x and p prime}. For any n ≥ 2, let in and xn be defined by

in = max{i ∈ Z≥0 :
∏
p∈Pi

p ≤ 3
√
n} and xn =

∏
p∈Pin

p.

Observe that (in)n≥2 and (xn)n≥2 both tend to infinity as n tends to infinity.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:25

We now follow the idea of Cai and Bach [CB03]. We consider the uniform distribution
on [[
√
n, 2
√
n]]d+1 and define the following events:

• En: the d+ 1 integers are pairwise coprime,
• for all prime p, Gp

n: at most one of the d+ 1 integers is divisible by p,
• for all prime p, Bp

n: at least two of the d+ 1 integers are divisible by p.

Notice that Gp
n is the complement of Bp

n, and that En =
⋂

p≤2
√
n

p prime

Gp
n. By separating the

cases p ≤ in and p > in, let us introduce the events Rn =
⋂

p≤in
p prime

Gp
n and Sn =

⋂
p>in

p prime
Gp

n,

so that En = Rn ∩ Sn, and Sn =
⋃

p>in
p prime

Bp
n. Immediately, P(En) ≤ P(Rn), and as

P(Rn ∩ Sn) ≥ P(Rn)− P(Sn), we have, using the union bound:

P
(⋂

p≤in
p prime

Gp
n

)
−
∑
p>in

p prime

P (Bp
n) ≤ P (En) ≤ P

(⋂
p≤in

p prime

Gp
n

)
. (8.1)

The end of the proof consists in two steps. First, we show that
∑

p>in
p prime

P (Bp
n) tends to 0.

Then we show that P
(⋂

p≤in
p prime

Gp
n

)
tends to Ad+1. In an integer interval of lengthm there are

at most m/p+ 1 multiples of p ≥ 2. Hence, by the union bound, if mn = ⌊2
√
n⌋ − ⌈

√
n⌉+ 1

denote the length of [[
√
n, 2
√
n]]:

∑
p>in

p prime

P (Bp
n) ≤

(
d+ 1

2

) ⌊2
√
n⌋∑

p=in+1
p prime

(
1

p
+

1

mn

)2

≤
(
d+ 1

2

) ∑
p≥in+1

9

p2
,

as 2mn ≥ p. The sum
∑

p≥in+1 p
−2 is the remainder of order in →∞ of a convergent series,

hence

lim
n→∞

∑
p>in

P (Bp
n) = 0.

For n ≥ 1, let In := [[an, bn]] be the largest interval of the form [[ixn + 1, jxn]] that is
included in [[

√
n, 2
√
n]]:

an = min{ixn + 1 : i ∈ Z≥0 and ixn + 1 ≥
√
n},

bn = max{jxn : j ∈ Z≥0 and jxn ≤ 2
√
n}.

Observe that In ̸= ∅ for n sufficiently large, as after some point 3
√
n is less than

√
n/3.

For any non-empty integer interval I, we denote by XI the random variable uniformly
distributed on I. Observe that for any set of prime numbers {p1, . . . , pt} ∈ Pin , the number

of multiples in In of the product p1 . . . pt is exactly bn−an+1
p1···pt . Then we have, by direct

counting

P (∀i ∈ [t], pi divides XIn) = P (p1 · · · pt divides XIn) =
1

p1 . . . pt
=

t∏
i=1

P (pi divides XIn) .

Hence we built In so that there is no rounding effects, to avoid slight alterations of the
probabilities and get the independency. Moreover, for given p ≤ in, the probability that none
of the coordinates of a uniform random element of In is divisible by p is (1− 1/p)d+1, and

11:26 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

that exactly one of them is divisible by p is (d+1)(1− 1/p)d/p = (1− 1/p)d+1(d+1)/(p− 1).
Hence, if we condition the integer vector to be in Id+1

n we have:

P
(⋂

p≤in
p prime

Gp
n | Id+1

n

)
=

∏
p≤in

p prime

(
1− 1

p

)d+1(
1 +

d+ 1

p− 1

)
.

As
(
1− 1

p

)d+1 (
1 + d+1

p−1

)
= 1 + O(p−2), the product has a limit as n, hence in, tends to

infinity, which we call Ad+1 as in [Tót02]. Finally, observe that since we chose xn ≤ 3
√
n, for

a uniform vector of [[
√
n, 2
√
n]]d+1 we have

P
(
Id+1
n

)
≥
(
mn − 2xn

mn

)d+1

≥
(
1− 2

n1/6

)d+1

.

Therefore, P
(
Id+1
n

)
= 1−O(n−1/6). By the law of total probabilities we have

P
(⋂

p≤in
p prime

Gp
n

)
= P

(⋂
p≤in

p prime

Gp
n | Id+1

n

)
P
(
Id+1
n

)
+ P

(⋂
p≤in

p prime

Gp
n ∩ Id+1

n

)
.

This concludes the proof by Equation (8.1) since

P
(⋂

p≤in
p prime

Gp
n | Id+1

n

)
P
(
Id+1
n

)
−−−→
n→∞

Ad+1,

and

P
(⋂

p≤in
p prime

Gp
n ∩ Id+1

n

)
≤ P

(
Id+1
n

)
= O(n−1/6) −−−→

n→∞
0.

This concludes the proof.

If A = (n, δ, p
a−→ q) is an almost deterministic transition structure, let D(A) denote

its powerset transition structure, and let D(A, i0) denote its accessible powerset transition
structure from the unique initial state i0 ∈ [n]. Observe that if ℓ(A, p, q) ̸= ⊥, then
A |= Cp(n), and the word awA labels a cycle around p. Hence, using the word au = (awA)

d,
as in Section 6, we have δ({p}, au) = {p0, p1, . . . , pd}, where (p0, . . . , pd) = s(A, q) is the
starting states tuple of A. Hence, if A satisfies a template in Tp,q(n), for every j ≥ 0, we have
δ({p0, p1, . . . , pd}, bj) = {δ(p0, bj), . . . , δ(pd, bj)}. For j large enough, all the δ(pi, b

j)’s are in
the cyclic part of their respective b-thread, forming a b-cycle of length lcm(ℓ0(A), . . . , ℓd(A))
in D(A). Let Cb(A) denote this b-cycle, which is defined when ℓ(A, p, q) ̸= ⊥.

Theorem 8.4. Let ν be a positive integer. For the uniform distribution of almost deter-
ministic transition structures with n-states with an added initial state taken uniformly at
random and independently, the accessible powerset transition structure has more than nν

states with visible probability.
As a consequence, an algorithm that builds the accessible powerset automaton of a

random almost deterministic automaton has super-polynomial average time complexity.

Proof. Let A = (n, δ, p
a−→ q) be an almost deterministic transition structure such that

ℓ(A, p, q) ̸= ⊥, and p is accessible from i0 ∈ [n], which acts as its initial state. Then there
exists a word v ∈ Σ∗ such that δ({i0}, v) = {p}, as v can be chosen so that the path

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:27

labeled by v starting from i0 is simple and does not encounter p twice, and as p is the
only state with a non-deterministic transition. As a consequence, for u = wA(awA)

d−1,
we have δ({i0}, vau) = {p0, p1, . . . , pd}, and therefore, Cb(A) is in D(A, i0). Recall that
|Cb(A)| = lcm(ℓ0(A), . . . , ℓd(A)), we have

P
(
|D(A, i0)| ≥ n(d+1)/2

)
≥ P

(
ℓ(A, p, q) ̸= ⊥ and |D(A)| ≥ n(d+1)/2

)
≥ P

(
ℓ(A, p, q) ̸= ⊥ and lcm(ℓ0(A), . . . , ℓd(A)) ≥ n(d+1)/2

)
By Proposition 7.4, given ℓ(A, p, q) ̸= ⊥, (ℓ0(A), . . . , ℓd(A)) is a uniform random element of
[[
√
n, 2
√
n]]d+1. Hence Corollary 8.3 applies and yields that for some c > 0 and n sufficiently

large,

P
(
lcm(ℓ0(A), . . . , ℓd(A)) ≥ n(d+1)/2 | ℓ(A, p, q) ̸= ⊥

)
≥ c.

Therefore, we have

P
(
|D(A)| ≥ n(d+1)/2

)
≥ c P(ℓ(A, p, q) ̸= ⊥),

Hence by Proposition 7.4, |D(A)| ≥ n(d+1)/2 with visible probability. Since p is accessible
with high probability, we have, as in Lemma 8.1, that both properties hold with visible
probability. This concludes the proof.

9. State complexity

We are now ready to randomly select which states are final, and to state a result on languages
instead of on transition structures, by studying the state complexity of a language recognized
by a random almost deterministic automaton.

In our model, for every n, each state is final with fixed probability fn, which may depend
on n as long as it is not too close to either 0 or 1: we require that fn and 1 − fn are in
Ω(1√

n
). Using a variant of the Birthday Problem again, this ensures that a uniform random

set of states of size Θ(
√
n) contains both final and non-final states with visible probability.

In the proof of Theorem 8.4, we exhibited the existence with visible probability of d+ 1
occurrences of b-cycles in a random almost deterministic transition structure, yielding a
large b-cycle when applying the powerset construction. We will focus on b-cycles in the
sequel, as it turns out to be sufficient to prove our main result. We rely on the notion of
primitive words, which we now recall.

Let Γ be a nonempty finite alphabet. If w ∈ Γℓ is a word of length ℓ, we write
w = w0 · · ·wℓ−1 and use the convention that all indices are taken modulo ℓ: for instance wℓ

is the letter w0. A nonempty word w is primitive if it is not a non-trivial power of another
word: it cannot be written w = zk for some word z and some k ≥ 2. If w is primitive, it is
easily seen that every circular permutation of w is also primitive. See [Lot97] for a more
detailed account on primitive words.

Primitive words appear in our proof with the following observation. If C = (c0, . . . , cℓ−1)
is a b-cycle of states starting at c0, its associated binary word is the size-ℓ word v = v0 . . . vℓ−1

of {0, 1}ℓ where vi = 1 if and only if ci is a final state. Recall that if we start the same cycle
elsewhere, at ci, the associated word v′ = vi · · · vℓv0 · · · vi−1 is primitive if and only if v is
primitive: reading the associated binary word from any starting state preserves primitivity.

11:28 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

A b-cycle is said to be primitive if one (equivalently, all) of its associated words is (are)
primitive. Our study is based on the following statement.

Lemma 9.1. Let A be a deterministic automaton on Σ and α ∈ Σ. If C is a primitive
α-cycle of A, then the states of C are pairwise non-equivalent: the state complexity of the
language recognized by A is at least |C|, the number of states in C.

Proof. Let A = (n, δ) and let p and q be two different states of C. Let x and y be the
associated binary words of C starting at p and q, respectively. Let k be the smallest positive
integer such that δ(p, αk) = q and let u be the prefix of length k of x, and v be the associated
suffix: x = uv. Then y = vu. Assume by contradiction that p and q are equivalent. This
implies that x = y, as the automata obtained by placing the initial states either on p or q
recognize the same elements of {α}∗. Hence uv = vu, and therefore u and v are the power
of the same word by a classical result on primitive words [Lot97, Prop. 1.3.2 page 8]. This
is in contradiction with the fact that C is primitive.

9.1. A composition of binary primitive words. If w(1) and w(2) are two non-empty
words of respective lengths ℓ1 and ℓ2 on the binary alphabet {0, 1}, we denote by w(1)⊙w(2)

the word w of length ℓ = lcm(ℓ1, ℓ2) given by wi = 1 if and only if w
(1)
i = 1 or w

(2)
i = 1

(recall that the indices are taken modulo the length of the word). We will see in the sequel
that this operation naturally happens when extending the notion of state equivalence from
each b-cycle to the corresponding b-cycle in the powerset construction.

Lemma 9.2. Let w(1) and w(2) be two primitive words on {0, 1} of lengths at least 2 that

are coprime. Then the word w(1) ⊙ w(2) is primitive.

Proof. Let w = w(1)⊙w(2). Assume by contradiction that there exists some word z and some
k ≥ 2 such that w = zk. Letting p be a prime number that divides k, we have w = (zk/p)p.
This yields that p divides ℓ = lcm(ℓ1, ℓ2) = ℓ1 × ℓ2 and that for every non-negative integer i,
wi = wi+ℓ/p (indices taken modulo ℓ). Obviously, p divides either ℓ1 or ℓ2, but not both as
they are coprime. By symmetry, assume that it divides ℓ1: ℓ1 = pr and ℓ/p = rℓ2.

Since w(2) has length at least 2 and is primitive, there exists an index i0 ∈ {0, . . . , ℓ2−1}
such that w

(2)
i0

= 0. Define ij = i0 + jℓ2, for any j ≥ 0. As indices in w(2) are taken modulo

ℓ2, we have w
(2)
ij

= 0 for all j ≥ 0. Therefore, w
(1)
ij

= 1 if and only if wij = 1, so that

wij = w
(1)
ij

for all j ≥ 0. As wij = wij+ℓ/p and ℓ/p = rℓ2, this yields that w
(1)
ij

= w
(1)
ij+rℓ2

for

all j ≥ 0. Moreover, rℓ2 is not a multiple of ℓ1: let α ≥ 1 be the largest integer such that pα

divides ℓ1 = pr, then pα does not divide rℓ2, since p does not divide ℓ2.
Let s := rℓ2 mod ℓ1, we just established that s ̸= 0, so we have the non-trivial relation

w
(1)
ij

= w
(1)
ij+s for all j ≥ 0. Recall that ij = i0 + jℓ2. As ℓ1 and ℓ2 are coprime, the ij ’s take

all the values modulo ℓ1 when j ranges from 0 to ℓ1 − 1. Hence, for all k ∈ {0, . . . , ℓ1 − 1},
w

(1)
k = w

(1)
k+s, for some 0 < s < ℓ1. This is a contradiction with the fact that w(1) is primitive,

concluding the proof.

Remark 9.3. Lemma 9.2 does not hold if the lengths are not coprime. For instance, if
w(1) = 011111 and w(2) = 1011, then w(1) ⊙ w(2) = 1 . . . 1︸ ︷︷ ︸

12 times

, which is not primitive.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:29

9.2. Primitivity of random words. From a probabilistic point of view, it is well
known [Lot97] that a uniform random word is primitive with exponentially high prob-
ability. We rely on the following finer result.

Lemma 9.4 [FN16]. Let µ be a probability measure on {0, 1}n such that µ(0n) = µ(1n) = 0
and such that two words with the same number of 0’s have same probability. Then the
probability that a word is not primitive under µ is at most 2

n .

We adapt it to our needs as follows:

Corollary 9.5. Let fn be a sequence of real numbers in (0, 1) such that fn = Ω(1√
n
) and

1− fn = Ω(1√
n
). Consider the distribution on random words of length n where each letter is

chosen independently to be 1 with probability fn and 0 with probability 1− fn. There exists
c > 0 such that, for n sufficiently large and for any integer ℓ ≥

√
n, a random binary word

of length ℓ is primitive with probability at least c.

Proof. Let X be the event that w = 0ℓ or w = 1ℓ. We have P(X) = f ℓ
n + (1− fn)

ℓ. Since
changing the 0’s in 1’s and the 1’s in 0’s preserves primitivity, we can assume by symmetry
that fn ≤ 1

2 . By hypothesis, there exists some constant β > 0 such that β√
n
≤ fn and

β√
n
≤ 1− fn hence, as fn ≤ 1

2 , we have

f ℓ
n ≤

1

2
√
n
and (1− fn)

ℓ ≤
(
1− β√

n

)√
n

.

Since (1− β√
n
)
√
n = e−β +O(1√

n
), there exists some constant δ < 1 such that P(X) ≤ δ, for

n sufficiently large.
Let W be a random word under our distribution. For any w ∈ {0, 1}ℓ, the conditional

probability that W values w given that W /∈ {0ℓ, 1ℓ} is

P(W = w | X) =

{
0 if w = 0ℓ or w = 1ℓ,
P(W=w)
1−P(X) otherwise.

Hence we are in the settings of Lemma 9.4, and the probability that w is not primitive,
given that w /∈ {0ℓ, 1ℓ} is at most 2

ℓ . Moreover, we have:

P(w not primitive) = P(X) + P(w not primitive | X)P(X) ≤ δ +
2

ℓ
,

where δ + 2
ℓ < 1, for n large enough. This concludes the proof.

9.3. Finalizing the proof of Theorem 3.1. If A = (n, δ) is a transition structure such
that ℓ(A, p, q) ̸= ⊥, recall that Cb(A) is the b-cycle of its powerset construction D(A) starting
from its set of starting states P = {p0, . . . , pd}. Let j0 be a positive integer such that δ(pi, b

j0)
is in the b-cycle of its b-thread for all i ∈ {0, . . . , d}, and let P0 = (δ(p0, b

j0), . . . , δ(pd, b
j0)).

We use a tuple for P0 as it is easier for the upcoming arguments, but since the b-threads of A
are pairwise disjoint, and since we only read b’s from P0 in the sequel, they can be identified

with the associated sets of D(A). Let us write c
(i)
j = δ(pi, b

j0+j) for all i ∈ {0, . . . , d} and all

j ≥ 0. The b-cycle Ci of the i-th b-thread has length ℓi, so if j = j′ mod ℓi, then c
(i)
j = c

(i)
j′ .

Moreover, the b-cycle Cb(A) is made of the (c
(0)
j , . . . , c

(d)
j) for j ≥ 0.

11:30 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

We now consider a set of final state F ⊆ [n]. For this F , and for every i ∈ {0, . . . , d},
let w(i) denote the binary word associated to Ci, starting at c

(i)
0 . Let w denote the binary

word associated with Cb(A), starting at P0. Since a state X in the powerset construction is
final if and only if one of its state is in F , by a direct induction we have

w = w(0) ⊙ w(1) ⊙ . . .⊙ w(d).

This is depicted in Figure 5 for two b-threads.

0 1 2 3
b b b

b

α β γ
b b

b

0, α 1, β 2, γ 3, α 0, β 1, γ

3, γ 2, β 1, α 0, γ 3, β 2, α

b b b b b

b

bbbbb

b

Figure 5: On the left, two primitive b-cycles (accepting states are denoted by double circles)
whose associated words are 0011 (top) and 001 (bottom), starting at 0 and α,
respectively. On the right, the b-cycle of {0, α} of associated word 0011⊙ 001 =
001101111011, which is primitive by Lemma 9.2.

To finish the proof of Theorem 3.1, we follow the proof of Theorem 8.4 and add the
independent choice of which states are final. By Corollary 9.5, all the b-cycles used to build
Cb(A) are also primitive, still with visible probability. Hence by Lemma 9.2, the product cycle
Cb(A) is also primitive with visible probability. This concludes the proof by Lemma 9.1.

10. Remark on dense random DFAs

In this short section, we illustrate the degenerate nature of dense random NFAs by considering
the model with a unique initial state and in which each transition is added independently
with a fixed probability p ∈ (0, 1). A uniform dense random NFA (with one initial state)
corresponds to p = 1

2 . The following proof is very similar to the analysis of the diameter of
random dense undirected graphs [Bol01, Corollary 10.11].

Consider a random n-state NFA A under this model, with initial state i0 and transition
function δ. Let w = w0w1 be any word of length 2 on Σ and let q be any state of A. We
bound from above the probability that q /∈ δ(i0, w) as follows :

P (q /∈ δ(i0, w)) = P (∀r ∈ [n], r /∈ δ(i0, w0) or q /∈ δ(r, w1))

≤ P (∀r ∈ [n] \ {i0}, r /∈ δ(i0, w0) or q /∈ δ(r, w1))

=
∏

r∈[n]\{i0}

P (r /∈ δ(i0, w0) or q /∈ δ(r, w1))

=
∏

r∈[n]\{i0}

(1− P (r ∈ δ(i0, w0) and q ∈ δ(r, w1)))

=
∏

r∈[n]\{i0}

(1− p2) = (1− p2)n−1.

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:31

Thus, by the union bound we obtain that with high probability, the image of {i0} by any
word of length 2 is the set of all states of A. We therefore obtain the following statement,
which establishes the degeneracy of the dense model.

Proposition 10.1. The accessible subset automaton of a random n-state dense NFA with
one initial state has at most |Σ|+ 2 states with high probability. Hence, with high probability,
the state complexity of the language is bounded by a constant independent of n and p.

11. Conclusion and discussion

Our main theorem states that the state complexity of a random almost deterministic
automaton is greater than nd with probability at least cd > 0 for n sufficiently large. One
can wonder how small the constant cd is and for which sizes the lower-bound holds. As we
said in the introduction, we did not try to estimate cd nor did we try to optimize its value
in this article. Since the powerset construction quickly generates very large automata which
would need to be minimized, a proper experimental study does not seem feasible. However,
we did generate 1000 almost deterministic transition structures with n = 100 states and
apply the accessible powerset construction: in 78.6% of the 1000 cases the output had more
than n3 states. This would lead us to guess that even if the constant c3 that can be derived
from our proof is very small, combinatorial explosion does occur frequently in practice.

Also, as noticed above, in our settings it is certain that the property does not hold with
high probability, as there is an asymptotically constant probability that the source of the
added transition is not accessible. However, this probability is roughly 20.4%, not too far
from what we obtained in our experiment on size-100 structures: it is very possible that if
we condition the source of the added transition to be accessible, then our result holds with
high probability. However, our proof techniques, based on an intensive use of the Birthday
Problem cannot prove this: completely new ideas are necessary to establish such a result.

It is natural to ask whether our result could be strengthen from super-polynomial size
to exponential size. We do not know if this generalization holds, but it seems out of reach of
the techniques developed in this paper.

Another natural direction is to consider the case when there are few final states, as
Θ(
√
n) final states may be considered too large for a random deterministic automaton. The

extreme case is to allow exactly one final state by choosing it uniformly at random. If we do
so, our analysis using primitive words fails: with high probability the b-cycles we built have
no final state at all, and neither has the associated b-cycle C in the powerset construction.
However, we are confident that our techniques can be used to capture this distribution: by
studying the paths ending in this final state, we should be able to find for each b-cycle Ci
a word wi that maps exactly one state to the final state, and such that the wi’s are all
different. This would be enough to establish that the states of C are pairwise non-equivalent
and prove the conjecture. Completely formalizing and proving this idea is an ongoing work.

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable feedback. This
work was partially supported by the French ANR grant ASPAG (ANR-17-CE40-0017).

11:32 A. Carayol, P. Duchon, F. Koechlin, and C. Nicaud Vol. 21:1

References

[ABBPL20] Louigi Addario-Berry, Borja Balle, and Guillem Perarnau Llobet. Diameter and stationary
distribution of random r-out digraphs. Electronic journal of combinatorics, 27(P3. 28):1–41,
2020. doi:10.37236/9485.

[BDN12] Frédérique Bassino, Julien David, and Cyril Nicaud. Average case analysis of Moore’s state min-
imization algorithm. Algorithmica, 63(1-2):509–531, 2012. doi:10.1007/s00453-011-9557-7.

[BDS12] Frédérique Bassino, Julien David, and Andrea Sportiello. Asymptotic enumeration of minimal
automata. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on
Theoretical Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris,
France, volume 14 of LIPIcs, pages 88–99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2012. doi:10.4230/LIPIcs.STACS.2012.88.

[Ber16] Mikhail V. Berlinkov. On the probability of being synchronizable. In Sathish Govindarajan and
Anil Maheshwari, editors, Algorithms and Discrete Applied Mathematics - Second International
Conference, CALDAM 2016, Thiruvananthapuram, India, February 18-20, 2016, Proceedings,
volume 9602 of Lecture Notes in Computer Science, pages 73–84. Springer, 2016. doi:10.1007/
978-3-319-29221-2_7.

[BM08] Henrik Björklund and Wim Martens. The tractability frontier for NFA minimization. In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track
B: Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography
Foundations, volume 5126 of Lecture Notes in Computer Science, pages 27–38. Springer, 2008.
doi:10.1007/978-3-540-70583-3_3.

[Bol01] Béla Bollobás. Random graphs. Number 73 in Cambridge studies in advanced mathematics.
Cambridge University Press, 2 edition, 2001. doi:10.1017/CBO9780511814068.

[CB03] Jin-yi Cai and Eric Bach. On testing for zero polynomials by a set of points with bounded
precision. Theor. Comput. Sci., 296(1):15–25, 2003. doi:10.1016/S0304-3975(02)00429-2.

[CD17] Xing Shi Cai and Luc Devroye. The graph structure of a deterministic automaton chosen at
random. Random Structures & Algorithms, 51(3):428–458, 2017. doi:10.1002/rsa.20707.

[CDKN23] Arnaud Carayol, Philippe Duchon, Florent Koechlin, and Cyril Nicaud. One drop of non-
determinism in a random deterministic automaton. In Petra Berenbrink, Patricia Bouyer, Anuj
Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical
Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume
254 of LIPIcs, pages 19:1–19:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.STACS.2023.19.

[CN12] Arnaud Carayol and Cyril Nicaud. Distribution of the number of accessible states in a random
deterministic automaton. In Christoph Dürr and Thomas Wilke, editors, 29th International
Symposium on Theoretical Aspects of Computer Science, STACS 2012, February 29th - March
3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 194–205. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.194.

[CP23] Guillaume Chapuy and Guillem Perarnau. Short synchronizing words for random automata. In
Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 581–604. SIAM,
2023. doi:10.1137/1.9781611977554.CH26.

[Dav12] Julien David. Average complexity of Moore’s and Hopcroft’s algorithms. Theor. Comput. Sci.,
417:50–65, 2012. doi:10.1016/j.tcs.2011.10.011.

[ER60] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17–60, 1960.

[FN13] Sven De Felice and Cyril Nicaud. Brzozowski algorithm is generically super-polynomial for
deterministic automata. In Marie-Pierre Béal and Olivier Carton, editors, Developments in
Language Theory - 17th International Conference, DLT 2013, Marne-la-Vallée, France, June
18-21, 2013. Proceedings, volume 7907 of Lecture Notes in Computer Science, pages 179–190.
Springer, 2013. doi:10.1007/978-3-642-38771-5_17.

[FN16] Sven De Felice and Cyril Nicaud. Average case analysis of Brzozowski’s algorithm. Int. J. Found.
Comput. Sci., 27(2):109–126, 2016. doi:10.1142/S0129054116400025.

https://doi.org/10.37236/9485
https://doi.org/10.1007/s00453-011-9557-7
https://doi.org/10.4230/LIPIcs.STACS.2012.88
https://doi.org/10.1007/978-3-319-29221-2_7
https://doi.org/10.1007/978-3-319-29221-2_7
https://doi.org/10.1007/978-3-540-70583-3_3
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1016/S0304-3975(02)00429-2
https://doi.org/10.1002/rsa.20707
https://doi.org/10.4230/LIPICS.STACS.2023.19
https://doi.org/10.4230/LIPIcs.STACS.2012.194
https://doi.org/10.1137/1.9781611977554.CH26
https://doi.org/10.1016/j.tcs.2011.10.011
https://doi.org/10.1007/978-3-642-38771-5_17
https://doi.org/10.1142/S0129054116400025

Vol. 21:1 RANDOM DETERMINISTIC AUTOMATA WITH ONE ADDED TRANSITION 11:33

[Gru73] Aleksandr Aleksandrovich Grusho. Limit distributions of certain characteristics of random
automaton graphs. Mathematical Notes of the Academy of Sciences of the USSR, 14(1):633–637,
1973.

[Har63] Theodore E. Harris. The theory of branching processes. Die Grundlehren der Mathematischen
Wissenschaften, Bd. 119. Springer-Verlag, Berlin, 1963.

[HU79] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[JLR00] Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Graphs. John Wiley & Sons,
2000. doi:10.1002/9781118032718.

[KNR21] Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. Simplifications of uniform expres-
sions specified by systems. Int. J. Found. Comput. Sci., 32(6):733–760, 2021. doi:10.1142/
S0129054121420065.

[Lot97] Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cambridge University
Press, 2 edition, 1997. doi:10.1017/CBO9780511566097.

[Mar23] Anders Martinsson. Synchronizing random automata through repeated ’a’ inputs, 2023. arXiv:
2306.09040.

[MF71] Albert R Meyer and Michael J Fischer. Economy of description by automata, grammars, and
formal systems. In 12th Annual Symposium on Switching and Automata Theory (SWAT 1971),
pages 188–191. IEEE Computer Society, 1971.

[Nic14] Cyril Nicaud. Random deterministic automata. In Erzsébet Csuhaj-Varjú, Martin Dietzfel-

binger, and Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 -
39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Pro-
ceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 5–23. Springer, 2014.
doi:10.1007/978-3-662-44522-8_2.

[Nic19] Cyril Nicaud. The Černý Conjecture Holds with High Probability. J. Autom. Lang. Comb.,
24(2-4):343–365, 2019. doi:10.25596/jalc-2019-343.

[RS59] Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM J. Res.
Dev., 3(2):114–125, 1959. doi:10.1147/RD.32.0114.

[Tót02] László Tóth. The probability that k positive integers are pairwise relatively prime. Fibonacci
Quart, 40:13–18, 2002. doi:10.1080/00150517.2002.12428676.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1002/9781118032718
https://doi.org/10.1142/S0129054121420065
https://doi.org/10.1142/S0129054121420065
https://doi.org/10.1017/CBO9780511566097
http://arxiv.org/abs/2306.09040
http://arxiv.org/abs/2306.09040
https://doi.org/10.1007/978-3-662-44522-8_2
https://doi.org/10.25596/jalc-2019-343
https://doi.org/10.1147/RD.32.0114
https://doi.org/10.1080/00150517.2002.12428676

	1. Introduction
	2. Definitions and notations
	3. Main statement and proof outline
	4. Templates
	5. Backward substructure of a random transition structure
	5.1. Backward substructure
	5.2. Backward multi-trees, trees and processes
	5.3. Results in Galton-Watson processes of offspring distribution Poi(2)
	5.4. Main result on backward substructures

	6. Forward tree and short cycle around p
	7. Forming the b-cycles
	7.1. Growing the b-threads

	8. Super-polynomial growth of the subset construction
	9. State complexity
	9.1. A composition of binary primitive words
	9.2. Primitivity of random words
	9.3. Finalizing the proof of Theorem 3.1

	10. Remark on dense random DFAs
	11. Conclusion and discussion
	Acknowledgment
	References

