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Abstract. String diagrams are pictorial representations for morphisms of symmetric
monoidal categories. They constitute an intuitive and expressive graphical syntax, which
has found application in a very diverse range of fields including concurrency theory,
quantum computing, control theory, machine learning, linguistics, and digital circuits.
Rewriting theory for string diagrams relies on a combinatorial interpretation as double-
pushout rewriting of certain hypergraphs. As previously studied, there is a ‘tension’ in this
interpretation: in order to make it sound and complete, we either need to add structure on
string diagrams (in particular, Frobenius algebra structure) or pose restrictions on double-
pushout rewriting (resulting in ‘convex’ rewriting). From the string diagram viewpoint,
imposing a full Frobenius structure may not always be natural or desirable in applications,
which motivates our study of a weaker requirement: commutative monoid structure. In
this work we characterise string diagram rewriting modulo commutative monoid equations,
via a sound and complete interpretation in a suitable notion of double-pushout rewriting of
hypergraphs.

1. Introduction

String diagrams are a graphical language for morphisms of categories. Their use has been
popularised in the context of monoidal categories, by the seminal works of Kelly, Laplaza,
Joyal, and Street [KL80, JS91]. In more recent years, string diagrams have found applications
in diverse fields, including quantum computation [KvdWV22], digital [GJL17] and electrical
circuits [BS21, BPSZ19], machine learning [CGG+22], concurrency theory [BHP+19], control
theory [BE15, BSZ21], and linguistics [SCC13] among others. Compared to traditional
syntax, string diagrams allow one to neatly visualise resource-exchange and message-passing
between different parts of a system, which is pivotal in studying the subtle interactions
that arise in concurrent processes and quantum computation, for example. Moreover, we
can reason with string diagrams both combinatorially and as syntactic, inductively defined
objects, which enables forms of compositional analysis typical of programming language
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semantics. We refer to [PZ23] for a recent survey of string diagrams in computer science,
and [Sel11, HM23] for a survey of diagrammatic languages to account for various kinds of
categorical structures.

A cornerstone of string diagrammatic approaches is the possibility of performing diagram-
matic reasoning : transforming a string diagram according to a certain rewrite rule, which
replaces a sub-diagram with a different one. A set of such rules, which typically preserve the
semantics of the model, may represent for instance a compilation procedure [MG19], the
realisation of a specification [BSZ21], a refinement of system behaviour [BHPS17].

Compared to traditional term rewriting, a mathematical theory of string diagram
rewriting poses new challenges. Formally, string diagrams are graphical representations of
morphisms in a category, typically assumed in applications to be a symmetric monoidal
category (SMC). In order to perform a rewrite step, we need to match the left-hand side of
a rewrite rule to a sub-diagram of a given string diagram. For instance, consider the rewrite
rule as on the left below, and the string diagram on the right.

m
e ⇒

m
e

Morally, there is a match for the rule in the string diagram. The issue is that, strictly
speaking, such a match does not happen on the nose: we need first to apply the laws of
SMCs in order to transform the string diagram into an equivalent one, with the wires into m
uncrossed. At this point we have clearly isolated the sub-diagram and are able to perform
the rewrite step.

m
e =

m
e

⇒

As seen in this example, string diagram rewriting is performed modulo certain structural
laws, which reflect the categorical structure in which the string diagrams live. However,
from a practical viewpoint, this form of rewriting is not really feasible, as each rewrite step
would require us to inspect all string diagrams equivalent to a given one looking for redexes.

This issue can be solved via an interpretation of string diagrams as certain hypergraphs,
and of string diagram rewriting as double-pushout rewriting (DPO) [CMR+97] of such
hypergraphs. We refer to [BGK+22a, BGK+22b, BGK+22c] for a systematic introduction
to this approach. In a nutshell, the benefit of working with such an interpretation is that
an equivalence class of string diagrams corresponds to just one hypergraph, meaning that
our search for redexes is drastically simplified. However, there is a mismatch: if we want to
rewrite string diagrams in a SMC, then soundness is only ensured by adopting a restricted
notion of DPO rewriting, called convex DPO rewriting [BGK+16]. Conversely, if we want to
work with arbitrary DPO rewriting steps, then the corresponding notion of string diagram
rewriting does not rewrite only modulo the laws of SMCs, but requires a special commutative
Frobenius algebra on each object of the category. Recall that a Frobenius algebra consists of
a commutative monoid and a commutative comonoid, interacting with each other via the
so-called Frobenius law [CW87].

When modelling a certain class of systems with string diagrams, assuming that such
Frobenius structure exists is not always reasonable, or desirable. A first class of such
examples are matrix-like semantic structures, which are axiomatised by bialgebra equations—
see e.g. [Zan15] for a survey. It is known that if the monoid and the comonoid both obey
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the Frobenius and the bialgebra laws, then the equational theory trivialises, cf. [FZ18, Ex.
4.3]. A second important class are semantic structures for probability theory, which usually
feature a commutative comonoid structure, but no Frobenius equations — introducing
Frobenius structure amounts to allowing unnormalised probabilities, cf. [JKZ21, Fri20].
These categories, sometimes called CD-categories, also play a special role in the study of
algebraic theories, because they model the cartesian handling of variables [BSZ18].

All these models motivate the study of rewriting for intermediate structures between
plain symmetric monoidal and those equipped with Frobenius algebras. More specifically,
we focus on string diagrams in categories where each object comes with a commutative
monoid structure. From a rewriting viewpoint, this case is particularly significant because
symmetries in a SMC may always create redexes for the commutativity axiom of the monoid
multiplication, yielding a non-terminating rewrite system:

⇒ = ⇒ ⇒ . . .

Therefore, rather than taking commutativity as a rewrite rule, we need to find an alternative
representation of string diagrams (and of string diagram rewriting) that is invariant modulo
the axioms of commutative monoids (and the laws of SMCs), which is the focus of this paper.
Our contribution is two-fold:

• we identify which class of hypergraphs provides an adequate interpretation of string
diagrams in a SMC with commutative monoid structure, and organise them into a SMC.
This characterisation will take the form of an isomorphism between the SMC of string
diagrams and the SMC of hypergraphs.1

• We identify which notion of double-pushout hypergraph rewriting interprets string diagram
rewriting modulo the axioms of commutative monoids in a sound and complete way.

Note that all of the theory developed in this work can be easily dualised to obtain a framework
for rewriting modulo commutative comonoid structure, which justifies the title and makes it
relevant also for the aforementioned CD-categories.
Synopsis. Section 2 recalls background on string diagrams and hypergraphs. Section 3
shows the hypergraph characterisation of string diagrams with a chosen commutative monoid
structure. Section 4 shows how string diagram rewriting may be characterised in terms
of DPO hypergraph rewriting. We summarise our work and suggest future directions in
Section 5.

This work extends the conference paper [MPZ23b]. It contains additional details,
examples, and all the missing proofs, some of which have also been simplified. Additionally,
whereas [MPZ23b] only considers single-sorted theories (props), here we develop our approach
in the more general case of multi-sorted theories (coloured props).

2. Preliminaries

We recall some basic definitions, using the same terminology as [BGK+22a]. For a systematic
treatment of coloured props, we refer the reader to [HR15], and for an introduction to string
diagrams to [PZ23].

1Simultaneously to a preprint of our work [MPZ23a], a preprint of [FL23], showing a result closely related
to this first of our contributions, also appeared on ArXiv. We comment on their relation in Section 5.
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(a; b); c ≡ a; (b; c), idw; a ≡ a ≡ a; idv, (a⊕ b)⊕ c ≡ a⊕ (b⊕ c), idϵ ⊕ a ≡ a ≡ a⊕ idϵ,
idw ⊕ idv ≡ idwv, σw,v;σv,w ≡ idwv, (a⊕ idw);σw,v ≡ σw,u; (idw ⊕ a)
(a; c)⊕ (b; d) ≡ (a⊕ b); (c⊕ d), (σw,v ⊕ idu); (idv ⊕ σw,u) ≡ σw,vu,

Figure 1: Laws of symmetric monoidal categories, for morphisms of a C-coloured prop.

Definition 2.1 (Theories). A symmetric monoidal theory is a tuple (Σ, C, E), where C is a
finite set of colours, Σ is a monoidal signature and E is a set of equations. The signature Σ
is a set of operations o : w → v with a fixed arity w ∈ C⋆ and coarity v ∈ C⋆, and E is a set
of equations, i.e. pairs ⟨l, r⟩ of Σ-terms l, r : v → w with the same arity and coarity (note
that we use ϵ below to denote the empty word). Σ-terms are freely obtained by combining
operations in Σ, a unit idc : c → c for each c ∈ C and a symmetry σc,d : cd → dc for each
c, d ∈ C, by sequential (;) and parallel (⊕) composition. That means, given terms a : w1 → w2,
b : w2 → w3, a

′ : v1 → v2, one constructs new terms a; b : w1 → w3 and a⊕ a′ : w1v1 → w2v2.

Definition 2.2 (Props). A C-coloured prop is a symmetric monoidal category (SMC) where
the set of objects is C⋆ and the monoidal product ⊕ on objects is word concatenation.
C-coloured props form a category PropC with morphisms the identity-on-objects symmetric
monoidal functors. Similarly, we can form a category Prop where objects are C-coloured
props of any colour C and morphisms are strict symmetric monoidal functors.

Coloured props on a singleton colour set {•} are often referred to simply as props. The
set of objects of a prop is {•}⋆, which may regarded as the set N of natural numbers, with
unit 0 and monoidal product given by addition.

Given an SMT (Σ, C, E), one can freely construct a C-coloured prop SΣ,C,E with mor-
phisms the Σ-terms quotiented by the laws of symmetric monoidal categories (Figure 1) and
by the equations in E. We write SΣ,C for empty E. Details of this construction can be found
in [BCR18, Appendix A] or [Zan15, Chapter 2].

We shall adopt the graphical notation of string diagrams [JS91] for the morphisms

of SΣ,C. A morphism a : w1 → w2 is pictured as a w2w1

. Compositions via ; and ⊕
are drawn respectively as horizontal and vertical juxtaposition, that means, a; b is drawn

a b
w1 w3w2 and a1⊕a2 is drawn

a
w1 v1

a′
w2 v2

. There are specific diagrams for the symmetric

monoidal structure, namely w for the identity idw : w → w, and w

v

v

w
for the symmetry

σw,v : wv → vw, for w, u ∈ C⋆. These are definable from the basic identities and symmetries
for colours in C using the pasting rules for ; and ⊕ (see [PZ23]).

Example 2.3. The initial object in PropC is the C-coloured prop PermC whose morphisms
w → v are permutations of w into v (thus morphisms exist only when the word v is an
anagram of the word w). PermC is freely generated by the monoidal theory (∅, C, ∅).

Remark 2.4. Coproducts in PropC and in Prop behave a bit differently, and it is convenient
for later developments to recall both constructions. In Prop, the coproduct C+C′ of a
C-coloured prop C and a C′-coloured prop C′ is constructed just as in the category SmCat
of symmetric monoidal categories, by taking (C ⊎ C′)⋆ as set of objects and combinations of
C- and C′-morphisms by ; and ⊕ as morphisms. In case C = S(Σ,C,E) and C′ = S(Σ′,C′,E′) are
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freely generated by SMTs, then C+C′ = S(Σ⊎Σ′,C⊎C′,E⊎E′). This is just a mild generalisation
of the analogous observation for (single-coloured) props in [Zan15, Prop. 2.8].

Coproducts in PropC are constructed similarly, the fundamental difference being that
all props are C-coloured, and when taking a coproduct C +C′ we thus identify the sets
of objects of C and of C′. Formally, C +C′ can be defined as a certain pushout object
C+PermC C′ in Prop:

PermC

!1
��

!2 //

⌜

C

��
C′ // C+PermC C′

where the maps !1 and !2 are given by initiality of PermC in PropC (see Example 2.3).
Intuitively, in C +PermC C′ one identifies the ‘copy’ of PermC in C with the one in C′,
meaning that objects, identity and symmetry morphisms are identified.

Example 2.5 (Monoids and Functions). The C-coloured prop CMonC of commutative
C-monoids is particularly relevant to our development. It is freely generated from the

signature containing µc : cc→ c (multiplication) depicted as c
c

c , and ηc : ϵ→ c (unit)

depicted as c for each colour c ∈ C, and the following equations, expressing associativity,
unitality and commutativity of these operations, respectively:

c

cc

c
=

c

cc

c

c
c = c = c

c
c

c

c

= c
c

c

Then, we obtain a monoid structure over composite objects uw, given inductively by

u
u

wu

w

w

u

w

Notice that this is a coproduct of coloured props (in Prop, cf. Remark 2.4) with CMonC =
Σc∈CCMonc.

An important particular case is the (single-colour) prop CMon := CMon{•} of com-
mutative monoids. The importance of this prop stems from the fact that it presents the
prop F of functions—see e.g. [Lac04]. Recall that F has morphisms f : m→ n the functions
from the set {0, . . . ,m− 1} to {0, . . . , n− 1}, with the monoidal product on functions given
by their disjoint union.

Cospans are another central concept of this paper. When interpreting string diagrams
as hypergraphs, it is fundamental to record the information of what wires are available for
composition on the left and right hand side of the diagram: this is achieved by considering
cospans of hypergraphs, with the cospan structure indicating which nodes constitute the left
and the right interface of the hypergraph.

Definition 2.6 (Cospan). A cospan in some category C is a pair f : X → A, g : Y → A of

morphisms of C with the same codomain, which we write as X
f−→ A

g←− Y . An isomorphism

between cospans X
f−→ A

g←− Y and X
f ′−→ A′ g′←− Y is an isomorphism h : A→ A′ of C such

that h ◦ f = f ′ and h ◦ g = g′.

Cospans over categories with enough structure form a symmetric monoidal category.
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Definition 2.7 (SMC of cospans). Given a category C with finite colimits, let Csp(C) be the
category with the same objects as C and morphisms X → Y isomorphism classes of cospans
X −→ A←− Y , for any object A (called the carrier of the cospan). Composition of cospans

X
f−→ A

h←− Z and Z
h−→ B

i←− Y is defined by pushout of the span formed by the middle legs,

i.e., it is the (isomorphism class of the) cospan X
f ;p−−→ Q

i;q←− Y where A
p−→ Q

q←− B is the

pushout of A
h←− Z

i−→B. Csp(C) is symmetric monoidal with the monoidal unit being the
initial object 0 ∈ C and the monoidal product given by the coproduct in C of the two maps
of each cospan.

Hypergraphs [Ber85] generalise graphs by replacing edges with ordered and directed
hyperedges, which may have lists of source and target nodes instead of just individual
ones. Hypergraphs and hypergraph homomorphisms form a category Hyp. As observed
in [BGK+22a], this category may also be defined as a presheaf topos—this is particularly
convenient for calculating (co)limits and to ensure that it is adhesive [LS05], a fundamental
property for DPO rewriting. For this reason, we define Hyp as the functor category FI,
where I has objects the pairs of natural numbers (k, l) ∈ N× N and an extra object ⋆, with
k + l morphisms from (k, l) to ⋆, for all k, l ∈ N. A hypergraph G is therefore given by
a set G⋆ of nodes, and sets Gk,l of hyperedges for each (k, l) ∈ N × N, with source maps
si : Gk,l → G⋆ for 1 ≤ i ≤ k and target maps tj : Gk,l → G⋆, 1 ≤ j ≤ l. A monoidal
signature (Σ, C) yields a directed hypergraph G(Σ,C) with a node for each c ∈ C and a
hyperedge for every Σ-operation o : w → v, whose source and target lists of nodes are given
respectively by the arity w ∈ C⋆ and the coarity v ∈ C⋆ of o. We can use this observation to
define the category of (Σ, C)-labelled hypergraphs as follows.

Definition 2.8. The slice category Hyp ↓ G(Σ,C) is called the category of (Σ, C)-labelled
hypergraphs and denoted by HypΣ,C .

Remark 2.9. As proven in [BGK+22a], morphisms in a prop freely generated by a signature
(Σ, C) may be faithfully interpreted as certain cospans of (Σ, C)-labelled hypergraphs, where
the domain of the cospan legs are discrete hypergraphs (i.e., sets), used to represent the left
and right interfaces of the string diagram—see Example 3.1 below.

That sets can be seen as discrete hypergraphs extends to a faithful, coproduct-preserving
functor D : F → HypΣ,C mapping every object i ∈ Ob(F) = N to the hypergraph with
set of nodes i = {0, . . . , i − 1} and mapping each function to the induced hypergraph
homomorphism. The prop CspD

(
HypΣ,C

)
used to interpret string diagrams in [BGK+22a]

is defined as the full subcategory of Csp(HypΣ,C) (cf. Definition 2.7) whose objects are
discrete hypergraphs. Note that we will reserve the term discrete cospan (of hypergraphs)
for a cospan whose apex is also discrete. Finally, notice that, when Σ = ∅, the cospans of
hypergraphs in Csp(HypΣ,C) do not have any hyperedges and the resulting prop is equivalent
to that of cospans of sets—we will use this fact in Section 3.2 below.

3. The Combinatorial Interpretation

When referring to “string diagrams with a chosen commutative monoid structure”, we mean
morphisms of the C-coloured prop SΣ,C+CMonC , the coproduct of the free C-coloured props
over signature Σ and CMonC . Intuitively, such morphisms are obtained by freely combining
Σ-terms with terms of the theory of commutative monoids, then quotienting by the laws
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of symmetric monoidal categories and those of CMon. The aim of this section is give a
combinatorial characterisation of string diagrams in SΣ,C +CMonC . Specifically, we prove
that the freely generated coloured props with a chosen commutative monoid structure are
isomorphic to a category of cospans of hypergraphs with certain restrictions (Theorem 3.21
below).

3.1. Right-monogamous cospans. As shown in [BGK+22b], the standard interpretation
of string diagrams in a prop as cospans of hypergraphs is not full. In order to characterise
the image of the interpretation, it is necessary to restrict ourselves to a class of so-called
acyclic and monogamous cospans.

Example 3.1. The cospan below on the right interprets the diagram on the left. Intuitively,
nodes represent the wires and hyperedges the operations of the corresponding diagram. We
use blue frames to indicate the left and the right interface of a cospan, indexes to indicate
how the cospan legs are defined, rounded rectangles to represent hyperedges, and black dots
to represent vertices (with the colour inscribed inside when there is more than one). As
explained in Remark 2.9 above, its left and right interface are discrete hypergraphs, i.e. sets.

f
c0 c2

c1

e c2

d

c1 7→ c2

c2

c2 c2
c2

c1

c0

n0

n1

n2

m0
n2,m0n1

n4

n0
f e

d

c0

c1

m1

m1
c1

Notice that every node is the source and target of a single hyperedge. This is the requirement
we will need to relax below, in order to accommodate commutative monoids.

In order to prove our result for coloured props with a chosen commutative monoid
structure, we relax this notion to right-monogamous cospans, which we now introduce.

Definition 3.2 (Degree of a node [BGK+22b]). The in-degree of a node v in hypergraph H
is the number of pairs (h, i) where h is a hyperedge with v as its ith target. Similarly, the
out-degree of v is the number of pairs (h, j) where h is a hyperedge with v as its jth source.

Definition 3.3 (Terminal node). We say that a node v of a hypergraph H is terminal if its
out-degree is 0, i.e., if there are no hyperedges of H with source v.

Given v
f−→ H

g←− w in CspD(HypΣ,C), we call inputs of H the set in(H), defined as the
image of f and outputs, the set out(H) defined as the image of g.

Definition 3.4 (Right-monogamy). We say that a cospan v
f−→ H

g←− w is right-monogamous
if g is mono and out(H) is the set of terminal nodes of H.

Compared to monogamy [BGK+22b], right-monogamy does not impose any requirement
on f , and only constraints the out-degree of nodes (not the in-degree).

Acyclicity is a standard condition which forbids (directed) loops in a hypergraph and
was already present in [BGK+22b, Definition 20] to characterise string diagrams for plain
symmetric monoidal categories. We also need it here.
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Definition 3.5 (Acyclicity). Given a hypergraph G and two nodes or hyperedges a and b, a
path from a to b in G is an alternating list p = [p1, ..., pn], p1 = a, pn = b of hyperedges and
nodes such that for all hyperedges pi, the nodes pi−1 and pi+1 are a source and target for pi
when they are defined (i.e. when i > 1 and i < n, respectively). A hypergraph is said to be
acyclic if it has no path containing the same node twice. Similarly, we say that a cospan
v −→ G←− w is acyclic if G is acyclic.

Equivalently to the previous definition, we can define acyclicity in terms of hyperedges,
since the existence of a path containing the same node twice is equivalent to the the existence
of a path containing the same hyperedge twice.

Example 3.6. The cospan depicted below is right-monogamous and acyclic.

c2

c2

c3

c1

c3

c3

c2

c1

c0

n0
n1
n2
n3
n4

m0

n3,m0n1, n2

n4

n0
d f

e

c0

(3.1)

Proposition 3.7. Let u −→ G ←− v, v −→ H ←− w, v1 −→ G1 ←− w1 and v2 −→ G2 ←− w2 be
right-monogamous acyclic cospans in CspD(HypΣ,C). Then

• Identities and symmetries in CspD(HypΣ,C) are right-monogamous and acyclic;
• (u −→ G←− v); (v −→ H ←− w) is right-monogamous acyclic;
• (v1 −→ G1 ←− w1)⊕ (v2 −→ G2 ←− w2) is right-monogamous acyclic.

Proof. Entirely analogous to the monogamous case, proven in [BGK+22b, Lemmas 15-
17].

Thus, acyclic right-monogamous cospans form a coloured sub-prop of CspD
(
HypΣ,C

)
,

which we write RMACspD
(
HypΣ,C

)
.

3.2. Commutative monoids and discrete right-monogamous cospans. The notion
of right-monogamy is justified by its connection to commutative monoids, crystallised in the
following result.

Proposition 3.8. CMonC ∼= RMACspD
(
Hyp∅,C

)
.

For the single-colour case, the fundamental observation is that the prop of right-
monogamous acyclic cospans of ∅-labelled hypergraphs is isomorphic to F. Indeed, as
explained in Remark 2.9, Csp(HypΣ,C) is equivalent to that of cospans of sets, so that

right-monogamous cospans of this category coincide with cospans of the form m
f−→ n

id←− n
and can thus be thought of simply as maps of finite sets, i.e., morphisms in F. We prove this
in Lemma 3.9 below. Paired with the fact that CMon ∼= F (cf. Example 2.5), this will show

that CMon ∼= RMACspD

(
Hyp∅,{•}

)
. The general (multicolour) result then follows from

decomposing RMACspD
(
Hyp∅,C

)
into a coproduct of single-colour props, in Lemma 3.10.

Note that, since cospans of sets can also be seen as discrete cospans of hypergraphs (cf.
Remark 2.9), we can define right-monogamous cospans of sets in the same way.
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Lemma 3.9. Given a right-monogamous cospan m
f−→ n

g←− n in Csp(F), there exists a

unique cospan m
f∗−→ n

id←− n isomorphic to it.

Proof. Since g is an isomorphism (a permutation on n), we can denote its inverse by g−1.
We define f∗ as f ; g−1 = g−1 ◦ f , which makes the following diagram commute:

n

m n

n

g−1

f

f∗

g

id

(3.2)

Since g−1 is also an isomorphism, the two cospans in (3.2) are indeed isomorphic. For

uniqueness, suppose there is another cospan m
h−→ n

id←− n isomorphic to m
f−→ n

g←− n. But,
then, there must exist ψ such that the following diagram commutes:

n

m n

n

ψ

f∗

h

id

id

Because id;ψ = id we have ψ = id and thus h = f∗;ψ = f∗; id = f∗.

The following states that RMACspD
(
Hyp∅,C

)
is the coproduct of |C| copies of (isomor-

phic) single-colour props (cf. Remark 2.4).

Lemma 3.10. RMACspD
(
Hyp∅,C

)
is isomorphic to the coproduct

∑
c∈C

RMACspD

(
Hyp∅,{c}

)
in the category PropC.

Proof. We want to show that RMACspD
(
Hyp∅,C

)
satisfies the universal property of the

coproduct
∑

c∈C RMACspD

(
Hyp∅,{c}

)
. First, notice that, for each c ∈ C, there is an obvious

faithful prop morphism [·]c : RMACspD

(
Hyp∅,{c}

)
→ RMACspD

(
Hyp∅,C

)
mapping each

cospan to itself. To prove the universal property of the coproduct, given a C-coloured prop
A and prop morphisms αc for all c ∈ C as in the diagram below

RMACspD

(
Hyp∅,{c}

)
RMACspD

(
Hyp∅,C

)

A

[·]c

αc ∃!β
(3.3)

we want to show that there exists a unique β such that the diagram (3.3) commutes for any

c ∈ C. First, notice that every cospan v
f−→ H

g←− w of RMACspD
(
Hyp∅,C

)
is isomorphic to

one that is the disjoint sum of cospans of each colour: writing n = |C|, we can always find
(unique) isomorphisms π : v1 . . . vn → v and θ : w → w1 . . . wn that rearrange the words v
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and w such that each vi or wi are single colour words, and such that

(v1 . . . vn
f◦π−−→ H

g◦θ←−− w1 . . . wn) = (v1 . . . vn
f◦π−−→

∑
c∈C

Hc
g◦θ←−− w1 . . . wn)

where each Hc has sets of nodes of the single colour c. Here, we are using the fact that,
in any finite commutative free monoid, we can rearrange a word w as the concatenation
vk11 ...v

kn
n with n the cardinality of the set of generators. Thus, we have

(v1 . . . vn
f◦π−−→ H

g◦θ←−− w1 . . . wn) =
∑
c∈C

(vc
fc−→ Hc

gc←− wc)

where the legs of the last cospans are simply the restrictions of f ◦ π and g ◦ θ to each vc or
wc.

This decomposition, the requirements that β be a prop morphism, and that diagram (3.3)
commutes, fully determine β:

β(v
f−→ H

g←− w) = β
(
π−1; (v1 . . . vn

f◦π−−→ H
g◦θ←−− w1 . . . wn); θ

−1
)

= π−1;β

(∑
c∈C

(
vc

fc−→ Hc
gc←− wc

))
; θ−1

= π−1;
⊗
c∈C

β
(
vc

fc−→ Hc
gc←− wc

)
; θ−1

= π−1;
⊗
c∈C

αc

(
vc

fc−→ Hc
gc←− wc

)
; θ−1

where we use the same notation for the symmetries π, θ in all coloured props involved
(since they exist in all of them, and any prop morphism has to preserve them), and where
the product denotes the monoidal product in A. Note that the definition of β does not
actually depend on the choice of π, θ, since these are just used to reorder the interface
before applying their inverse to put them back in the same order. Finally, for any colour c,

β([v
f−→ H

g←− w]c) = π−1;αc(v
f◦π−−→ H

g◦θ←−− w); θ−1 = αc(v
f−→ H

g←− w), since αc is a prop
morphism. So the diagram above does commute for any colour c.

We are now ready to prove the main result of the section.

Proof of Proposition 3.8. The first step is to notice that the coloured version follows from
the single-colour case and the facts that CMonC is isomorphic to the coproduct of C copies of
Cmon and RMACspD

(
Hyp∅,C

)
is isomorphic to the coproduct

∑
c∈C RMACspD

(
Hyp∅,{•}

)
by Lemma 3.10. Thus, we only have to show that CMon ∼= RMACspD

(
Hyp∅,{c}

)
for an

arbitrary single colour c. But the morphisms of RMACspD

(
Hyp∅,{c}

)
are just discrete

cospans, i.e. cospans of sets (since there are no hyperedges). Thus RMACspD

(
Hyp∅,{c}

)
∼=

RMCsp(F).
Recall that we also know that CMon ∼= F (see Example 2.5). Therefore, it suffices to

show that there exists an isomorphism H : F→ RMCsp(F) to prove the desired result. We
construct this isomorphism explicitly in the following way:

• H(m) = m for all m ∈ Ob(F)
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• H(f) = m
f−→ n

id←− n, for all morphisms f : m→ n in F
First, H is well-defined, as any cospan in its image is clearly right-monogamous. Furthermore,
H is identity-on-objects, and it maps the identity idm : m → m to the identity cospan

m
id−→ m

id←− m, and the symmetry σnm : m+n→ n+m to the cospan m+n
σm,n−−−→ n+m

id←−
n + m. Finally, the composition (m

f−→ n
id←− n); (n

g−→ t
id←− t) is obtained by taking a

pushout, which gives m
g◦f−−→ t

id←− t; the monoidal product (m1
f1−→ n1

id←− n1)
⊕

(m2
f2−→

n2
id←− n2) is obtained by taking a coproduct, which is simply a disjoint union in F, giving

(m1 +m2
f1+f2−−−−→ n1 + n2

id←− n1 + n2). Thus H preserves composition and monoidal product,
and is a morphism of props. We now show it is full and faithful.

Suppose H(f1) = H(f2) for f1 : m1 → n1 and f2 : m2 → n2. Then m1
f1−→ n1

id←− n1

and m2
f2−→ n2

id←− n2 are isomorphic and m1 = m2 and n1 = n2. Furthermore, we have a
commutative diagram

n1

m1 n1

n1

ψ

f1

f2

id

id

where ψ is an iso. Hence id;ψ = id and therefore ψ = id and f1 = f2. This shows that H is
faithful.

Finally, every m
f−→ n

g←− n in RMCsp(F) is isomorphic to m
f∗−→ n

id←− n, for some f∗ by

Lemma 3.9, giving H(f∗) = m
f∗−→ n

id←− n. Therefore, H is full.

3.3. The general case. Our next goal, and the core result of this section, is extending
Proposition 3.8 to the case where Σ is non-empty, i.e., an isomorphism between SΣ,C +
CMonC and RMACspD

(
HypΣ,C

)
. This will allow us to refer to RMACspD

(
HypΣ,C

)
as

the combinatorial characterisation of string diagrams in SΣ,C +CMonC, and study their
rewriting as DPO-rewriting in RMACspD

(
HypΣ,C

)
in Section 4.

In order to relate SΣ,C + CMonC and RMACspD
(
HypΣ,C

)
, we will use a strategy

analogous to the one used in [BGK+22b] for theories with plain symmetric monoidal
structure. In essence, we want to show that RMACspD

(
HypΣ,C

)
has the universal property

of the coproduct. Consider

SΣ,C
J·K−→ RMACspD

(
HypΣ,C

) |·|←− CMon

where

• J·K : SΣ,C → RMACspD
(
HypΣ,C

)
is the C-coloured prop morphism defined in [BGK+22b]

(monogamous cospans are, in particular, right-monogamous); on each generating operation
o : c1 . . . ck → d1 . . . dl of Σ (where ci, bj ∈ C) it is given by

7→
c1

J·K c1

o

dlck

d1
...

...

c1

ck

...
dl

d1
...o

...
...ck

d1

dl
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• | · | : CMonC → RMACspD
(
HypΣ,C

)
is defined by composing the isomorphism of

Proposition 3.8 with the obvious morphism RMACspD
(
Hyp∅,C

)
→ RMACspD

(
HypΣ,C

)
.

We can describe it explicitly, by interpreting the generators of CMonC as follows, for each
c ∈ C:

c

c
cc cc7→ 7→c

c

c
c

|·| |·|

where the legs of each cospan are the only possible maps of the appropriate type.

To prove our main result we will need to rely on the faithfulness of the prop morphism
J·K : SΣ,C → RMACspD

(
HypΣ,C

)
. In other words, we need to rely on the fact that plain

string diagrams are mapped faithfully to cospans of hypergraphs and that they are precisely
the monogamous acyclic such cospans.

Proposition 3.11. J·K : SΣ,C → RMACspD
(
HypΣ,C

)
is a faithful C-coloured prop morphism

whose image consists precisely of the monogamous acyclic cospans.

Proof. See Appendix A.

Note [Zan17, Corollary 3.4] and [BGK+16, Proposition 3.4] provide results analogue to
our Proposition 3.11. However, the argument used in those proofs is incomplete, as pointed
out in [FL23]. This is why we supply a different argument, based on a similar characterisation
by Joyal and Street [JS91, Theorem 2.3]. Their formalisation of string diagrams is in terms
of certain graphs instead of hypergraphs, but the result is equivalent—we elaborate on the
correspondence in Appendix A.

We will need an analogous result for the combinatorial interpretation of CMonC .

Proposition 3.12. | · | : CMonC → RMACspD
(
HypΣ,C

)
is a faithful C-coloured prop

morphism whose image are precisely the discrete right-monogamous acyclic cospans.

Proof. It is the composition of the isomorphism of Proposition 3.8 and the obvious morphism
RMACspD

(
Hyp∅,C

)
→ RMACspD

(
HypΣ,C

)
, which is faithful.

To show that RMACspD
(
HypΣ,C

)
has the universal property of the coproduct, the

fundamental step is investigating how right-monogamous acyclic cospans can be factorised
into a composite cospanM0;D0; . . . ;Ml;Dl that alternates between monogamous acyclic
cospans, i.e., in the image J·K : SΣ,C → RMACspD

(
HypΣ,C

)
, and discrete right-monogamous

acyclic cospans, i.e., in the image of | · | : CMonC → RMACspD
(
HypΣ,C

)
.

As we saw, the hypergraphs that correspond to plain string diagrams, i.e. morphisms
of SΣ,C are monogamous: nodes are precisely the target and source of one hyperedge.
The commutative monoid structure relaxes this requirement for targets. For our last
decomposition, we would like to identify nodes that can only appear in the hypergraph
representation of diagrams that contain some occurrence of the commutative monoid structure
(multiplication or unit), that is, nodes that do not simply represent plain wires. The following
definition formalises this idea.

Definition 3.13 (Left-amonogamous nodes). Let v −→ G ←− w be a right-monogamous
acyclic cospan. We say that a node in G is left-amonogamous if:

• it is in in(G) and its in-degree is not equal to 0, or
• it is not in in(G) and its in-degree is not equal to 1.
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Example 3.14. In the cospan (3.1), the nodes with colours c2 and c3 are left-amonogamous,
while others are not.

As explained above, we want to factorise right-monogamous acyclic cospans into a
compositeM0;D0; . . . ;Ml;Dl, alternating between monogamous acyclic cospans and discrete
right-monogamous acyclic cospans. The index of each factor roughly indicates the maximum
number of left-amonogamous nodes on a path preceding it. To make this idea precise,
we require the two notions below, for nodes (corresponding to discrete right-monogamous
cospans) and for hyperedges (corresponding to monogamous cospans).

Definition 3.15 (Order of nodes and level of hyperedges). Let v −→ G ←− w be a right-
monogamous acyclic cospan. We define the order of a node n as the largest number of
left-amonogamous nodes preceding it (including itself) on a path leading to n. The level of
an hyperedge h is the minimum of

• the order of any node in out(G) that is its successor, or
• the order of any left-amonogamous node that is its target, minus 1.

Example 3.16. In the cospan (3.1), hyperedges A and C are level-0 hyperedges, and
hyperedge B is a level-1 hyperedge.

Recall that we want to obtain a factorisation of any cospan into an alternating composi-
tion of discrete right-monogamous cospans—corresponding to diagrams with no generating
boxes from the chosen signature—and monogamous cospans—corresponding to plain string
diagrams over the chosen signature. We will do this by induction on the maximum level
of hyperedges, effectively stripping the necessary cospans (discrete right-monogamous and
monogamous) at each level as we move from left to right.

The following lemma will be used at each induction step: here, we require the de-
composition to not only alternate between monogamous and discrete right-monogamous
cospans, but to also keep track of the order of terminal nodes. Diagrammatically, we want a
decomposition of a right-monogamous cospan into the following form:

d
v w2

w1

u1 g′m u2

with m corresponding to a monogamous cospan, and d to a discrete right-monogamous
one, and g′ is the rest of the decomposition. Here, the w1-labelled wires correspond to the
terminal order-0 nodes of the overall composite diagram. Keeping track of where terminal
nodes of each order are located is an important technical complication that will be needed
to prove that the map that we construct out of RMACspD

(
HypΣ,C

)
is a monoidal functor

which satisfies the universal property of the coproduct SΣ,C+CMonC . Recall that, following
Proposition 3.8, we refer abusively to permutations π : w → w below as cospans, assuming

implicitly that we mean the cospan w
π−→ w

id←− w. Finally, we use the term in-connection

of a node x in a given cospan v
f−→ G

g←− w, for any hyperedge h that has x as target in G,
or for any boundary node of v that is mapped to x by f . In diagrammatic terms, nodes
without any in-connections correspond to occurrences of the unit c .

Lemma 3.17 (level-0 decomposition). Let G = (v
f−→ G

g←− w) be a right-monogamous
acyclic cospan whose order-0 terminal nodes are the first |w1| nodes of w. Then there
exists a decomposition of G as M; (idw1 ⊕ (D;G′)), where (A) M is monogamous acyclic
and contains precisely all the level-0 hyperedges; (B) D is discrete right-monogamous and
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contains precisely all order-1 left-amonogamous nodes; (C) G′ is right-monogamous acyclic
and has no left-amonogamous nodes without any in-connections.

Moreover, any two such factorisations differ only by permutations of the terminal nodes
of the factors, i.e., if G = M; (idw1 ⊕ (D;G′)) = M′; (idw1 ⊕ (D′;G′′)), then there exists
permutations π, θ such thatM′ =M;π, π; (idw1 ⊕ (D′;G′)) = idw1 ⊕ (D;G′), and D′ = D; θ,
θ;G′′ = G′.

Proof. LetM = (v
f−→M

h←− w1u1) first, where

• we define M to be the hypergraph whose hyperedges are exactly the level-0 hyperedges of
G; its nodes are all monogamous sources and targets of level-0 hyperedges, as well as a
new node called f(x) for each letter x in v such that f(x) is not the source of any level-0
hyperedge (i.e., a copy of each node in v whose image is left-amonogamous), and a new
node called (e, j) for every pair of a hyperedge e with a degree-1 left-amonogamous node
as its j-th target (whose colour is the same as that target).
• For e some hyperedge of M (i.e., some level-0 hyperedge of G), the sources of e in M are
the same as those of e in G, and its j-th target is the same as the j-th target of e in G if
that target is monogamous, or simply the new node (e, j) otherwise.
• To define the right leg h of the cospan, we establish an arbitrary ordering of the |u1|
terminal nodes of M which are not terminal in G. From this ordering, we can construct a
map h : w1u1 →M which coincides with g on w1 (identified with the terminal nodes of
G by assumption). Note that the cospanM is unique up to this choice of ordering, and
any permutation of these nodes will give a valid decomposition, as in the statement of the
lemma.

We now construct D = (u1
p−→ D

q←− u2), where

• D is the discrete hypergraph containing only the order-1 left amonogamous nodes of G
(and no hyperedges, by definition). Fixing some ordering of these nodes, we obtain the
word u2.
• The left leg p of the cospan is uniquely defined (up to the chosen ordering above) to
connect all left-amonogamous nodes of order-1 in G to the corresponding nodes in M .
The right leg q of the same cospan is uniquely defined by the ordering chosen above. Once
again, this is unique up to some permutation, as stated in the lemma.

Finally, let G′ = (u2
f ′−→ G′ g′←− w2) be the last cospan, which we define below.

• G′ has all remaining hyperedges; its nodes are those of G which are not in M , plus the
nodes of D.
• Its source and target maps are restrictions of those of G to the remaining hyperedges.
• The left leg f ′ of the cospan G′ is the inverse of q (which is not only monic, but one-to-one,
by construction), and the right leg is the restriction of g to the terminal nodes of G′.

Note that G′ is right-monogamous because G was. Moreover, it does not have any left-
amonogamous nodes without any in-connections (occurrences of the black unit, in diagram-
matic terms) because these are left-amonogamous nodes of order-1, which are all in D, by
construction.
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Example 3.18. Taking the level-0 decomposition of the cospan appearing in Example 3.6
gives the following three cospans:

c2

c2

c3

c1

c3

c1

c0k0
k1
k2
k3
k4

n0

k4

k0
d

e

c0

c3c2

m0, n0m0

f

c2

c2

c2

c2

l0
l1
l2
l3
l4

c2

c2

k1, l3
k2, l4

c3

c2

c2

c2

c2

c2

l5

c3
k3, l0

l1

l2

l5
l6 c2

l6

c2

m1

c2
l1, . . . , l6,m1

l0,m0
c3

m0

c3

M D G′

We see that the first cospan corresponds toM in the notation of Lemma 3.17: it contains
precisely the two level-0 hyperedges (d and e). Note that this cospan is monogamous,
requiring the creation of new nodes for each target of d and e, as well as new nodes to
split the amonogamous nodes into multiple occurrences of monogamous ones. The second
component corresponds to D in the lemma’s notation and merges nodes 6-11 together into
the single order-1 node of the original cospan. Finally, the third cospan corresponds to G′
and contains the only remaining hyperedge of order > 0 and node of order > 1.

Note that the non-uniqueness of the decomposition comes from two distinct sources: 1)
arbitrary ordering of nodes on the boundaries of cospans, and 2) the commutativity of the
monoid multiplication which implies that it can absord any permutation of the wires that it
merges. We can now iterate level-0 decomposition to factorise any cospan of hypergraph
into successive levels.

Lemma 3.19 (Factorisation into levels). Any right-monogamous acyclic cospan G = v −→
G←− w can be factored intoM0;

(
idu0⊕(D0; . . . ;Ml; (idul⊕Dl) . . . )

)
;π for some permutation

π and where, for each i, (A) Mi is monogamous acyclic and contains precisely the level
i hyperedges of G, and (B) Di is discrete right-monogamous, contains all order i+ 1 left-
amonogamous nodes and all order-i terminal nodes of G.
Proof. First, let ui be the set of order-i terminal nodes of G. We then define the permutation
π to be a reordering of w into u0u1 . . . ulw

′, where the order-k terminal nodes correspond to
uk.

We can now prove the lemma using induction on the highest order of left-amonogamous
nodes in G;π−1, using Lemma 3.17 (level-0 decomposition).

For the base case we note that any right-monogamous acyclic cospan without any
left-amonogamous nodes is simply monogamous acyclic.

For the induction hypothesis, we assume that the statement holds for all the right-
monogamous acyclic cospans with the maximum order of left-amonogamous nodes strictly
less than r, where r is a positive integer. For the inductive case, suppose that G;π−1 is a
cospan whose highest order of left-amonogamous nodes is r. Then, by Lemma 3.17 (level-0
decomposition), it can be factored into G;π−1 =M0; (idu0 ⊕ (D0;G′)) where the first cospan
is monogamous acyclic and contains all level 0 hyperedges of G, and D0 is discrete right
monogamous with all order 1 left-amonogamous nodes of G;π−1 and u0 all order 0 terminal
nodes of G;π−1. Now, every node in G′ corresponding to an order i left-amonogamous
node in G;π−1, is now an order i − 1 left-amonogamous. Thus, the highest order of left-
amonogamous nodes in G′ is r − 1 and, by the induction hypothesis, G′ can be factored
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intoM1;
(
idu1 ⊕ (D1; . . . ;Ml; (idul ⊕Dl) . . . )

)
as in the statement of the lemma. Therefore,

the compositeM0;
(
idu0 ⊕ (D0; . . . ;Ml; (idul ⊕Dl) . . . )

)
=M0; (idu0 ⊕ (D0;G′)) = G;π−1

satisfies conditions (A) and (B) of the lemma andM0;
(
idu0⊕(D0; . . . ;Ml; (idul⊕Dl) . . . )

)
;π

is the factorisation we are looking for.

We will also need the following simpler form of the factorisation into levels, which
matches closely the leading intuition of a factorisation into an alternating composition of
monogamous and discrete right-monogamous cospans.

Corollary 3.20. Any right-monogamous acyclic cospan G = v −→ G←− w can be factorised
into an alternating sequence of monogamous cospans and discrete right-monogamous cospans,
i.e., asM0;D0; . . . ;Ml;Dl.

Moreover any two such factorisations differ only by permutations of the terminal nodes
of each factor, i.e., ifM0;D0 . . . ;Ml;Dl =M′

0;D′
0; . . . ;M′

l;D′
l, there exists permutations

πi, θi such thatM′
i =Mi;πi, πD′

i = Di and D′
i = Di; θi, θiM ′

i+1 =Mi+1.

Proof. Since identities can be seen as monogamous cospans or discrete right-monogamous,
and a permutation can be seen as discrete right-monogamous cospan, if we can get a
factorisation of G into levels as in Lemma 3.19, we also obtain a factorisation as in the
statement of this lemma.

Finally, we can prove by induction, using the second part of the statement of Lemma 3.17
that any two such factorisations differ only by some permutation of the factors.

We are now able to conclude with our characterisation theorem.

Theorem 3.21. There exists an isomorphism ⟪·⟫ : SΣ,C+CMonC → RMACspD
(
HypΣ,C

)
.

Proof. Let us define ⟪·⟫ as copairing of the faithful C-coloured prop morphisms J·K : SΣ,C →
RMACspD

(
HypΣ,C

)
and |·| : CMonC → RMACspD

(
HypΣ,C

)
. It suffices to show that the

prop RMACspD
(
HypΣ,C

)
satisfies the universal property of the coproduct SΣ,C +CMonC :

SΣ,C RMACspD
(
HypΣ,C

)
CMonC

A

J·K

α
∃!γ

|·|

β

Given a C-coloured prop A and C-coloured prop morphisms α : SΣ,C → A , β : CMonC → A,
we need to prove there exists a unique prop-morphism γ : RMACspD

(
HypΣ,C

)
→ A, such

that the diagram above commutes. Now, since coloured prop morphisms are identity-on-
objects functors, it is sufficient to consider what happens to the morphisms. The diagram
above needs to commute, so for any morphism s in SΣ,C and for any morphism c in
CMonC we want γ(JsK) = α(s) and γ(|c|) = β(c). But, by Corollary 3.20, any cospan G in
RMACspD

(
HypΣ,C

)
can be factorised as an alternating sequence of monogamous cospans

and discrete right-monogamous cospans, i.e., as G = M0;D0 . . . ;Ml;Dl. Moreover, by
Proposition 3.11, we can find si in SΣ such thatMi = JsiK. Similarly, by Proposition 3.12,
we can find ci in CMonC such that Di = |ci|. Then, to make the diagram above commute,
let γ(G) = γ (M0;D0; . . . ;Ml;Dl) = α(s0)β(c0) . . . α(sl)β(cl). This defines γ uniquely since
both J·K and |·| are faithful, once again by Proposition 3.11 and Proposition 3.12 respectively.
We now verify that γ is well-defined, functorial, and monoidal.

Well-definedness. Since the factorisation of G into levels is not unique, we need to show
that γ is well-defined, i.e., that any two such factorisations will define the same value of
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γ(G). Consider another factorisation G =M′
0;D′

0; . . . ;M′
l;D′

l obtained from Corollary 3.20.
Then there exists permutations πi, θi such thatM′

i =Mi;πi, πiD′
i = Di and D′

i = Di; θi,
θiM′

i+1 =Mi+1. In addition,M′
i = Js′iK for some s′i in SΣ, D′

i = |c′i| for some c′i in CMonC .
To show well-definedness of γ, we will use the following facts:

(1) since SΣ,C ,CMonC , and A are C-coloured props, they all contain a copy of the prop of
permutations so we will abuse notation slightly and use the same names to refer to the
same permutation in all of them;

(2) prop morphisms preserve permutations so that α(π) = β(π) = γ(π) = JπK = |π| = π for
any permutation π;

(3) by definition of γ it is clear that γ(G;π) = γ(G);π and γ(π;G) = π; γ(G).
Now, we have

γ(M0;D0; . . . ;Ml;Dl) = γ(M0); γ(D0); . . . ; γ(Ml); γ(Dl)
= γ(M0); γ(π0;D′

0); . . . ; γ(Ml); γ(πl;D′
l)

= γ(M0);π0; γ(D′
0); . . . ; γ(Ml);πl; γ(D′

l)

= γ(M0;π0); γ(D′
0); . . . ; γ(Ml;πl); γ(D′

l)

= γ(M′
0); γ(D′

0); . . . ; γ(M′
l); γ(D′

l)

= γ(M′
0;D′

0; . . . ;M′
l;D′

l)

Monoidal functoriality. First, γ preserves monoidal products, as the decomposition of a
monoidal product is obtained by taking a monoidal product of monogamous acyclic cospans,
and a monoidal product of discrete right monogamous cospans, for each level separately.
Second, consider two cospans G = w −→ G ←− v and H = v −→ G ←− u. We can factorise
H asM0;D0; . . . ;Ml;Dl. Hence, if we can show that γ(G;M;D) = γ(G); γ(M;D), forM
monogamous and D discrete right-monogamous, a simple induction will allow us to conclude
that γ(G;H) = γ(G); γ(H). In fact, to show the induction step, it is enough to show that
γ(G; (M⊕ idu′)) = γ(G); γ(M⊕ idu′) where M consists of a single hyperedge h, with k
source nodes and l target nodes such that |u′| = |u| − k+ l—we can recover the general case
of all monogamous cospans by performing another induction on the number of hyperedges
inM.

Now, we need to understand to what level in G; (M⊕ idu′) the single hyperedge h of
M belongs. By the definition of the level of hyperedges (Definition 3.15), h will belong
to level i of in G; (M⊕ idu′) if the node with the largest order in the first k terminal
nodes of G is i. If we assume without loss of generality (as we can always post-compose
with a permutation to achieve this), that the terminal nodes of G are ordered by order
size, this implies that the factorisation of G; (M⊕ idu′) into levels is G≤i; (M⊕G>i) where
G>i and G≤i are obtained from the factorisationM0;

(
idu0 ⊕ (D0; . . . ;Ml; (idul ⊕Dl) . . . )

)
of G (from Lemma 3.19) as follows: G≤i := M0;

(
idu0 ⊕ (D0; . . . ;Mi) . . .

)
and G>i :=

Di;Mi+1;
(
idui+1 ⊕ (Di+1; . . . ;Ml; (idul ⊕ Dl) . . . )

)
. Note that, by construction, we have

G = G≤i; (idui ⊕ G>i). Thus

G; (M⊕ idu′) = G≤i; (idui ⊕ G>i); (M⊕ idu′)
= G≤i;

(
(idui ;M)⊕ (G>i; idu′)

)
= G≤i; (M⊕G>i)

by the interchange and unitality axioms of symmetric monoidal categories (see Fig. 1).
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The intuition now is that we are able to slide the hyperedge h back to level i into the
decomposition of G and that the operation of sliding back—which only uses the monoidal
product and composition with identities—is preserved by γ. This will be sufficient to prove
functoriality of γ. We have

γ(G; (M⊕ idu′)) = γ(G≤i; (M⊕G>i))
= γ(G≤i); γ(M⊕G>i)
= γ(G≤i);

(
γ(M)⊕ γ(G>i)

)
= γ(G≤i);

(
γ(idui)⊕ γ(G>i)

)
;
(
γ(M)⊕ γ(idu′)

)
where the second equality holds because G≤i; (M⊕G>i) is the factorisation of G;M through
which we define γ; the third equality holds because γ preserves monoidal products and the
remaining equalities use the interchange and unitality laws of symmetric monoidal categories
as above. Finally, by definition of γ, γ(G≤i); (γ(idui) ⊕ γ(G>i)) = γ(G) and, since γ also
preserves monoidal products, we can conclude that γ(G; (M⊕ idu′)) = γ(G); γ(M⊕ idu′))
as we wanted to show.

4. Characterisation of String Diagram Rewriting

Now that we have a characterisation theorem for SΣ,C +CMonC , we are ready to interpret
rewriting modulo commutative monoid structure as DPO rewriting, and to show that such
a correspondence is sound and complete.

We first recall the notion of sub-diagram. Formally, a sub-diagram c of some larger string
diagram d : v → w can be defined as a sub-term (modulo the laws of symmetric monoidal
categories) of d. It is not difficult to show by induction that we can always find some u ∈ Σ∗

and diagrams c1, c2 such that d = c1; (idu ⊕ l); c2, that is, such that d decomposes as

c
wv

v′ w′d
v w =

u

c2c1 (4.1)

In fact, we could also take this decomposition as a definition of sub-diagrams. We can now
recall the formal notion of string diagram rewriting.

Definition 4.1 (String Diagram Rewriting Modulo Commutative Monoids). Let d, e : v → w
and l, r : v′ → w′ be pairs of morphisms in SΣ,C +CMonC. We say that d rewrites into e
modulo commutative monoid structure according to the rewrite rule R = ⟨l, r⟩, notation
d⇒R e, if, in SΣ,C +CMonC , we have:

l
wv

v′ w′d
v w =

u

c2c1
r

wv
v′ w′ev w =

u

c2c1 (4.2)

In the plain symmetric monoidal case, not all sub-hypergraphs of the cospan repre-
sentation of a string diagram d correspond to sub-diagrams of d. Those that do have the
additional property of being convex [BGK+22b].

Definition 4.2 (Convex sub-hypergraph). A sub-hypergraph H ⊆ G is convex if, for any
nodes v, v′ in H and any path p from v to v′ in G, every hyperedge in p is also in H.
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Example 4.3. Taking Example 3.6 as reference, the sub-hypergraph on the left below is
convex, while the one on the right is not:

c2c0 d
c2

c1

c0 d

Moreover, unlike in the monogamous case, convex sub-hypergraphs of right-monogamous
cospans do not uniquely identify a sub-diagram of the corresponding diagram. This is because
specifying a sub-hypergraph does not uniquely fix the legs of the cospan corresponding to
the sub-diagram, as the following example illustrates.

Example 4.4. Consider the diagram below (C = {c0, c1}) with its corresponding cospan
representation:

d

c0

c0

c0
c1 c1c1 c0 c1

n0 n0

c0

c1

c0
c0

m0
c1

n0

d

Given the convex sub-hypergraph L := c0 d c1 , there are several possible choices of

cospans, depending on where we attach the second leg of the monoid multiplication that
appears in the corresponding string diagram:

c0 c1

m0 n0
c0 c1

m0 n0
d or

c0

c1m0

n0
c0 c1

m0 m1, n0
d

c1
m1

As we have said, this situation differs from the plain symmetric monoidal case [BGK+22b],
where v′ −→ L ←− w′ is unique, given L. With commutative monoids, the non-uniqueness
comes from having to choose whether we include the monoid structure nodes in the cospan
v′ −→ L←− w′ or in the context (the surrounding cospans in the decomposition).

As studied in [BGK+22a, BGK+22b], rewriting of string diagrams may be interpreted
as DPO rewriting of the corresponding hypergraphs. The relevant notion is the one of DPO
rewriting ‘with interfaces’ (originally used for a single interface in [EK04], and adapted for
two interfaces in [BGK+16]), which ensures preservation of the interfaces described by the
cospan structure.

Definition 4.5 (DPO Rewriting (with interfaces)). Consider a DPO rewrite rule R =

L
[a1,a2]←−−−− v′w′ [b1,b2]−−−−→ R given by cospans v′

a1−→ L
a2←− w′ and v′

b1−→ R
b2←− w′ in HypΣ,C .

We say that the cospan v
q1−→ D

q2←− w rewrites to v
p1−→ E

p2←−
w with rule R, written (v → D ← w) ↪→R (v −→ E ←− w),
if there is a cospan v′w′ → C ← vw (called the pushout
complement) making the diagram on the right commute
with the two squares being pushouts.

L

f ��

v′w′

��⌝ ⌜

[a1,a2]oo [b1,b2] // R

��
D Coo // E

vw

OO

[p1,p2]

::

[q1,q2]

dd

However, unless string diagram rewriting happens modulo the laws of Frobenius algebras,
not all DPO rewrites are sound for string diagram rewriting: some pushout complements
may yield as outcome of the rewriting hypergraphs that are not in the image of any
string diagram [BGK+22b]. To avoid these situations, [BGK+22b] introduced the notion of
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boundary complements and convex matching. The former guarantees that inputs can only
be connected to outputs and vice-versa, while the latter are matches that do not contain
directed paths from outputs to inputs, i.e., monomorphisms whose image is convex. However,

L

f
��

(†)

v′w′a=[a1,a2]oo

c=[c1,c2]��
⌝

G L⊥
g

oo

vw
[b1,b2]

gg

[d1,d2]

OO

these notions were designed for monogamous hy-
pergraphs, and string diagram rewriting modulo
symmetric monoidal structure. In order to cap-
ture the correct notion of DPO rewriting for right-
monogamous hypergraphs, and rewriting modulo
commutative monoid structure, we need to relax
the first slightly to that of weak boundary comple-
ments.

Definition 4.6 (Weak boundary complement). For right-monogamous acyclic cospans

v′
a1−→ L

a2←− w′ and v
b1−→ G

b2←− w and a morphism f : L → G, a pushout complement as
on the right above is called a weak boundary complement if: (A) given two nodes in L
that are mapped to the same node in G by f , they must be in the image of a2; (B) c1 is
mono; (C) no two nodes are both in the image of c1 and c2; (D) there exist d1 : v → L⊥ and

d2 : w → L⊥ making the above diagram commute and such that vw′ [c2,d1]−−−−→ L⊥ [c1,d2]←−−−− wv′
is right-monogamous.

Intuitively, the complement L⊥ is G with an L-shaped hole, which we can picture as
follows:

l

l⊥

wv
v′ w′g

v w
=

l⊥

wv

v′w′

where g : v → w, l : v′ → w′, and l⊥ : vw′ → wv′ are diagrams for the cospans v −→ G ←−
w,v′ −→ L ←− w′, and vw′ −→ L⊥ ←− wv′ respectively, i.e. such that ⟪g⟫ = (v −→ G ←−
w),⟪l⟫ = v′ −→ L←− w′, and ⟪l⊥⟫ = vw′ −→ L⊥ ←− wv′. (Recall that ⟪·⟫ : SΣ,C +CMonC →
RMACspD

(
HypΣ,C

)
is the isomorphism established by Theorem 3.21; we will use it quite

liberally from now on in order to manipulate cospans as string diagrams when convenient).
Boundary complements restrict the shape that these can take. Let us explain the conditions
of Definition 4.6 in plainer language.

• Condition (A) allows matches to occur in a diagram G that contains the sub-diagram L
potentially with some nodes identified, i.e. wires connected by the monoid multiplication
(see Example 4.8 below. However, these can only occur as terminal nodes, that is, in the
image of a2, the right boundary of the subdiagram L.
• Plain boundary complements [BGK+22b] require c1, c2 to be jointly monic. This enforces
two distinct properties: it prevents nodes from the left and right boundaries of the match
to be identified, and it prevents nodes from within each of the two boundary sides to
be identified. Here, we need to relax the second condition to allow nodes in the right
boundary of the match to be identified. This is what conditions (B) and (C) give us.
• Condition (D) forces the boundary of the complement, both with the subdiagram L and
those of the larger diagram G, to be right-monogamous. In other words, we want the

cospan vw′ [c2,d1]−−−−→ L⊥ [c1,d2]←−−−− wv′ depicted above to be right-monogamous.
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The last ingredient we require is the same as in [BGK+22b]: we require the match to
be convex.

Definition 4.7 (Convex matching [BGK+22b]). f : L→ G in HypΣ,C is a convex match if
its image is a convex sub-hypergraph of G.

Example 4.8. Consider the diagram below

d
c0 c1

c1
c1

c0 in
d

=
d

c0
c0

c1

c1

c0
c0

c1

c0
c0

c1

c1
c0

c1

c0

c1

As cospans of hypergraphs, this corresponds to the convex matching below:

c1

c0

c0

c0 c1

c1

c0
c1 c0d

d

i0 j0
j1

f f(i0)

f(i1) f(i1), f(j0), f(j1)

c0
i1

with the following weak boundary complement:

c0

c0 c1

c1

c0
c0

n0

n1
m0

c1

c0

n0

c0

m0
n1

c0

c0

i0

i1

d1 d2

c1 c2

i1

i0
j0, j1

c1

c1

j0

j1

Note that, contrary to boundary complements in the symmetric monoidal case
[BGK+22b], weak boundary complements are not necessarily unique if they exist.

Definition 4.9 (Weakly Convex DPO Rewriting). We call a DPO rewriting step as in
Definition 4.5 weakly convex if f : L → D is a convex matching and v′w′ → C is a weak
boundary complement in the leftmost pushout square.

We can now conclude the soundness and completeness of weakly convex DPO rewriting
for string diagrams with commutative monoid structure.

Theorem 4.10. Let R = ⟨l, r⟩ be a rewrite rule on SΣ,C +CMonC. Then,

d⇒R e iff ⟪d⟫ ↪→⟪R⟫ ⟪e⟫
Proof. For the direction from left to right we proceed as follows. From the definition of
rewriting, and given the assumption d⇒R e, we have equalities as in (4.2). We now interpret
the string diagrams involved, obtaining right-monogamous cospans:(

v
q1−→ D

q2←− w
)
:= ⟪d⟫

(
v

p1−→ E
p2←− w

)
:= ⟪e⟫(

v′
a1−→ L

a2←− w′
)
:= ⟪l⟫

(
v′

b1−→ R
b2←− w′

)
:= ⟪r⟫(

v
x1−→ C1

x2←− uv′
)
:= ⟪c1⟫

(
uw′ y1−→ C2

y2←− w
)
:= ⟪c2⟫
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From the last two cospans above, by simply rearranging nodes on the interface from the left
to the right and viceversa, we obtain:

v′u
x̃1−→ C̃1

x̃2←− v uw′ ỹ1−→ C̃2
ỹ2←− w

We now define a cospan v′w′ −→ C ←− vw as:

(
v′w′ z1−→ i+ k + j

z2←− v′uuw′
)
;

 v′u
x̃1−→ C̃1

x̃2←− v⊕
uw′ ỹ1−→ C̃2

ỹ2←− w


where z1 : (v

′w′) → (iv′uw′) is the inclusion map, z2 : (v
′uuw′) → (v′uw′) is defined as

idv′ + µu + idw′ , with µu : uu → u mapping both copies of node x in the word uu to the
single corresponding x in u. Intuitively, v′w′ −→ C ←− vw represents the string diagram where
we have rearranged nodes in v and v′ on the opposite side. One may verify that:(

ϵ −→ D
[q1,q2]←−−−− vw

)
=

(
ϵ −→ L

[a1,a2]←−−−− v′w′
)
; (v′w′ −→ C ←− vw)(

ϵ −→ E
[p1,p2]←−−−− vw

)
=

(
ϵ −→ R

[b1,b2]←−−−− v′w′
)
; (v′w′ −→ C ←− vw)

Recall that composition of cospans is obtained via pushouts, hence the two equalities of (4)
yield a DPO rewriting step ⟪d⟫ ↪→⟪R⟫ ⟪e⟫ as in Definition 4.5. Since l is simply a sub-string
diagram of d, the mapping from L to D is a convex match. Furthermore, note that no two
nodes from v′u can be identified with each other, hence v′ → C is mono, and no node from
v′ can be identified with any node in w′ or w. As w → C is trivially mono, we have that C
is indeed a weak boundary complement.

Now we deal with the converse implication. Assume ⟪d⟫ ↪→⟪R⟫ ⟪e⟫, where ⟪d⟫, ⟪e⟫, ⟪l⟫,
and ⟪r⟫ are defined as the cospans in (4). By assumption, and since composition of cospans is

performed via pushouts, there exists a weak boundary complement v′w′ [c1,c2]−−−−→ L⊥ [d1,d2]←−−−− vw
such that

⟪d⟫ = (ϵ −→ v′
µi←− v′v′); (idv′ ⊕ ⟪l⟫); (v′w′ [c1,c2]−−−−→ L⊥ [d1,d2]←−−−− vw)

⟪e⟫ = (ϵ −→ v′
µv′←−− v′v′); (idv′ ⊕ ⟪r⟫); (v′w′ [c1,c2]−−−−→ L⊥ [d1,d2]←−−−− vw)

We now would like to decompose the cospan vw′ [c2,d1]−−−−→ L⊥ [c1,d2]←−−−− wv′ into

(vw′ −→ C1 ←− uv′w′) ; (uv′w′ idu⊕σw′
v′−−−−−→ uw′v′ ←− uw′v′) ; (uw′v′ −→ C2 ←− wv′)

for some u ∈ Σ∗, right-monogamous cospans v −→ C1 ←− v′u and w′u −→ C2 ←− w, and where
σw

′
v′ : v′w′ → w′v′ the map that swaps the two components v′ and w′.

For this purpose, let C1 be the hypergraph whose set of hyperedges and nodes are all
those that are on some path preceding a node in the image of v′ but not on a path starting
from a node in the image of w′; let C2 be a hypergraph whose hyperedges and nodes are
those that are on a path starting from any of the nodes in C1 (in L⊥ that is) or in the image
of w′. Note that these conditions are not exhaustive: the remaining nodes and hyperedges
can be either in C1 or C2 with no consequence (we don’t require C1 and C2 to be unique in
any way). For both of these, let the source and target maps be the appropriate restrictions
of the source and target maps of L⊥. For the cospans, the left leg of v −→ C1 ←− v′u is c2; its
right leg is the map which restricts to d2 on v′ and is the identity on the u-nodes shared
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between C1 and C2 (for some fixed ordering of them to identify them with the word u). The
right leg of w′u −→ C2 ←− w is c1; its left leg is the identity on the u shared nodes between C1

and C2 as before, and restricts to d1 on the image of w′. We have thus built a decomposition

of vw′ [c2,d1]−−−−→ L⊥ [c1,d2]←−−−− wv′ as

(vw′ −→ C1 ←− uv′w′) ; (uv′w′ idk⊕σw′
v′−−−−−→ uw′v′ ←− uw′v′) ; (uw′v′ −→ C2 ←− wv′)

By fullness of ⟪·⟫ we have c1, c2 such that ⟪c1⟫ = v −→ C1 ←− v′u and ⟪c2⟫ = w′u −→
C2 ←− w; moreover we have, by construction:

⟪d⟫ = (idn ⊕ (ϵ −→ v′
µv′←−− v′v′)

)
;⟪

wv

v′w′

u
c2c1

v′
l

v′
v′ ⟫ ;

(
idw ⊕ v′v′

µv′−−→ v′ ←− ϵ)
)

⟪e⟫ = (idv ⊕ (ϵ −→ v′
µv′←−− v′v′)

)
;⟪

wv

v′w′

u
c2c1

v′
r

v′
v′ ⟫ ;

(
idw ⊕ (v′v′

µv′−−→ v′ ←− ϵ)
)

Computing these cospans, we obtain

⟪d⟫ = ⟪c1⟫ ; (⟪idu⟫⊕ ⟪l⟫); ⟪c2⟫ and ⟪e⟫ = ⟪c1⟫ ; (⟪idu⟫⊕ ⟪r⟫); ⟪c2⟫
By monoidal functoriality of ⟪·⟫, we have ⟪d⟫=⟪c1; (idu ⊕ l); c2⟫ and ⟪e⟫=⟪c1; (idu ⊕ r); c2⟫.
Finally, since ⟪·⟫ is faithful, we can conclude that d = c1; (idu⊕ l); c2 and e = c1; (idu⊕r); c2.
This is precisely what it means to apply the rule ⟨l, r⟩ to d, so that d⇒R e as we wanted to
prove.

5. Conclusions and Future Work

The main contribution of this work is twofold. First, with Theorem 3.21, we identified
a combinatorial representation of string diagrams modulo commutative monoid structure.
This correspondence relies on introducing a notion of right monogamous cospans, which is
intermediate between the ‘vanilla’ cospans characterising string diagrams modulo Frobenius
structure, and the monogamous cospans characterising string diagrams modulo symmetric
monoidal structure. The characterisation result relies on a factorisation result for right
monogamous cospans, and requires some sophistication: compared with similar theorems
in [BGK+22a, BGK+22b] the increased complexity is due to the fact that there is additional
structure to consider both on the side of string diagrams (in contrast with [BGK+22b,
Theorem 25], which only accounts for symmetric monoidal structure) and on the side
of hypergraphs (in contrast with [BGK+22a, Theorem 4.1], which accounts for generic
hypergraph without monogamy conditions).

Note that the work of Fritz and Liang [FL23], which appeared at the same time as a
preprint of our work [MPZ23a], provides a result dual to Theorem 3.21: instead of monoids,
they consider props with a chosen commutative comonoid structure—called ‘CD-categories’
or ‘gs-categories’. On the side of hypergraphs, instead of restricting monogamy to right-
monogamy, they consider left-monogamy, which is essentially the dual notion. Moreover,
their result is more general than our first characterisation theorem, since it proves the
2-categorical universal property of the free gs-monoidal category over a chosen signature,
and does not require the target gs-monoidal categories in the associated equivalence to
be strict [FL23, Theorem 4.1]. The combinatorial heart of their proof relies on stripping
‘pieces’ (discard, copy, or hyperedge) of a given left-monogamous cospan of hypergraph
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from the right and showing that any two equivalent cospans can be stripped of the same
pieces in the same order. This is not dissimilar to our factorisation into levels, though
Fritz and Liang induct over a certain measure of complexity of diagrams that is different
from our approach. Along the same lines, Corradini and Gadducci had constructed the free
(single-coloured) gs-monoidal signature over some signature [CG99, Theorem 23], but their
proof contains a subtle gap, as pointed out by Fritz and Liang [FL23, Section 4]. Since our
proof uses a different approach and does not rely on the same problematic assumption, it is
not susceptible to the same issue.

The second contribution of our paper, Theorem 4.10, showed a correspondence between
string diagrams rewriting modulo commutative monoid structure and a certain variant of
DPO hypergraph rewriting. In order to ensure soundness and completeness, we introduced
a suitable restriction of DPO rewriting, called weakly convex to echo the convex rewriting
characterising string diagrams in a symmetric monoidal category [BGK+22b]. A subtlety of
this result was identifying a suitably weak notion of boundary complement. Even though weak
boundary complements are not unique ‘on-the-nose’ as the boundary complements considered
in the more restrictive setting of convex rewriting, they are sufficiently well-behaved for the
purpose of establishing the correspondence with string diagram rewriting.

Going forward, other interesting directions to pursue are the study of confluence as
in [BGK+22c], now in the presence of commutative (co)monoids. We are also interested in
characterising notions of rewriting modulo structures intermediate between commutative
monoid and Frobenius algebra—comparison with the very recent work on rewriting in traced
comonoid structure [GK23] seems particularly promising in this regard. In terms of case
studies, as mentioned in the introduction, our work paves the way for the study of rewriting
for theories which do not host a Frobenius structure, yet include commutative (co)monoids.
Crucially, the equations of commutative (co)monoids immediately lead to non-terminating
rewrite systems if taken naively as rewrite rules. Categories of matrix-like structures, based
on bialgebra or Hopf algebras, well-known to be incompatible with the axioms of Frobenius
algebras (see eg. [Zan15] for an overview), would seem to be a particularly fitting candidate
for further investigation.
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France, 2015.

[Zan17] Fabio Zanasi. Rewriting in free hypergraph categories. In GaM@ETAPS, volume 263 of EPTCS,
pages 16–30, 2017.



Vol. 21:1 REWRITING FOR SMCS WITH COMMUTATIVE (CO)MONOID STRUCTURE 12:27

Appendix A. String diagrams for SMCs

As explained in the main body of the paper, Joyal and Street have shown that the morphisms
of the free SMC over a given signature can be described as certain graphs, thereby justifying
drawing them as string diagrams [JS91, Theorem 2.3]. We recall here the more precise
statement of their result and show how their graphs correspond precisely to monogamous
acyclic cospans of hypergraphs. This will allow us to show Proposition 3.11.

Definition A.1. A JS-graph is a directed acyclic graph2 with an anchored boundary and a
valuation.

A boundary is a distinguished set of nodes of degree one. The boundary nodes with
out-degree one are called the inputs of G, and those of in-degree one are its outputs.
Non-boundary nodes are called inner nodes.

The domain (resp. codomain) of a JS-graph is the set of edges connected to an input
(resp. output) node. Such a graph is anchored when its domain and codomain are each
linearly ordered3.

Finally, a valuation is an assignment of colours of C to each edge of the graph and an
operation of the chosen signature Σ to each inner node of the graph.4

Like cospan of hypergraphs, the graphs of Joyal and Street are defined up to isomorphism.
Their notion of isomorphism is the usual graph isomorphism with the added requirement
that the valuation and the anchoring of boundary edges be preserved. This is equivalent to
the fact that we only consider cospans of hypergraphs up to isomorphism.

The composition G;H of two JS-graphs G and H such that the codomain of G matches
that of H is described as follows by Joyal and Street: the graph is obtained from the disjoint
union of G and H by identifying the output nodes of G and the input nodes of H; the
inner nodes and edges are those of G and H, except for the edges of G which have target
a boundary node, and the edges of H which have sources a boundary node; these edges
pair up via the corresponding boundary node, each pair corresponding an edge to G;H; as
paired edges have equal values, we obtain a valuation on G;H.

JS-graphs can also be composed in parallel. Joyal and Street define the monoidal product
G1 ⊗G2 as the disjoint union of the two graphs, with boundary nodes those of G1 and G2,
whose valuation restricts to G1 and G2 to give their valuations.

JS-graphs with the operations of composition and monoidal product define a symmetric
monoidal category whose objects are words over the generating colours C and morphisms
are JS-graphs with domain and codomain given by the valuation at their domain and
codomain [JS91, Section 2]. In fact, JS-graphs whose nodes are valued in the chosen
signature Σ and whose edges are valued in the chosen set of colours C form a C-coloured
prop, which we call JSGraphΣ,C .

Joyal and Street have shown that JS-graphs are string diagrams for the free SMC on a
given set of colours and signature. The following is a simple reformulation in our language
of [JS91, Theorem 2.3].

Theorem A.2. There is an isomorphism G of coloured props between SΣ,C and JSGraphΣ,C.

2Joyal and Street use the terms oriented instead of directed, and progressive instead of acyclic. We
renamed terminology to match the one used in the main text of our paper. Their graphs also allow for
multiple edges and self-loops.

3The authors also require the graph to be polarised, that is, the input and output nodes are each linearly
ordered, which is implied by the anchored condition.

4The authors call signatures tensor schemes.
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It is not difficult to establish a one-to-one correspondence between JS-graphs and
monogamous acyclic cospans of hypergraphs.

Definition A.3. Given a JS-graph G, let F (G) = (u
f−→ H

g←− v) be the cospan of
hypergraphs such that

• the (k, l)-hyperedges of H are the inner nodes of G with in-degreee k and outdegree l,
with label in Σ given by the corresponding valuation of G;
• the hypernodes of H are the edges of G with colour label given by the corresponding
valuation of G;
• a hypernode x of H is a source of some hyperedge h, if the corresponding edge x in G
has target h in G; similarly, a hypernode x of H is a target of some hyperedge h, if the
corresponding edge x in G has source h in G;
• the map f sends the n-th colour in u to the n-th input node of G; similarly, g maps the
n-th colour in v to the n-th output node of G.

Proposition A.4. F : JSGraphΣ,C → RMACspD
(
HypΣ,C

)
is a faithful morphism of

C-coloured props.

Proof. Given two JS-graphs G and H, by definition of G;H we have that F (G;H) is
isomorphic to the cospan of hypergraphs obtained by composing (via pushout) the two
cospans F (G) and F (H): indeed, it is the disjoint sum of the two hypergraphs, with the
boundary nodes identified. Similarly, F (G1)⊗ F (G2) is clearly isomorphic to F (G1 ⊗G2).

Let G and G′ be two JS-graphs with the same boundary, such that F (G) is isomorphic
to F (G′) as cospans of hypergraphs—call f this isomorphism. We write f⋆ for its action
on nodes and fk,l for its action on hyperedges. Let us define an isomorphism g = (gV , gE)
between G and G′ from this data. First, gV sends an inner node x of G with in-degree
k and out-degree l to fk,l(x) (since x is a hyperedge of F (G) by definition), which is a
hyperedge of F (G′) and therefore a node of G′ by definition of F (G′). On boundary nodes
gV is the identity. Then, gE maps an edge e of G to f⋆(e) (since e is a hypernode of F (G)
by definition), which is a hypernode of F (G′) and therefore an edge of G′ by definition of
F (G′). This does define a homomorphism: if e is an edge of G with source x and target
x′, then gE(e) = f⋆(e) has source fk,l(x) = gV (x) and target fk′,l′(x

′) = gV (x
′) as required,

because f is a hypergraph-homomorphism. Moreover, g trivially maps boundary nodes to
boundary nodes, and preserves valuations because f preserves labels.

Finally, gE is one-to-one since f⋆ is, and gV is also one-to-one since it is the disjoint
sum of all fk,l for all pairs (k, l) of in-degrees and-out-degrees of nodes of G, and each fk,l is
assumed one-to-one too. Thus F is faithful.

As a result, using Joyal and Street’s characterisation of string diagrams as JS-graphs
(Theorem A.2), we can show that J·K : SΣ,C → RMACspD

(
HypΣ,C

)
is a faithful C-coloured

prop morphism whose image consists precisely of the monogamous acyclic cospans.

Proof of Proposition 3.11. Recall the isomorphism G of Theorem A.2. Because SΣ,C is free,
G is fully characterised by its image on elements of Σ: each generator o ∈ Σm,n is mapped
to a JS-graph with a single inner node with value o, m input nodes and n output nodes.
Clearly, JoK = FG(o), and therefore more generally we have J·K = FG. Since J·K is the
composite of two faithful morphisms, it is also faithful. Finally, the image of J·K are precisely
the monogamous acyclic cospans of hypergraphs, as can be checked on generators once
again.
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