
Logical Methods in Computer Science
Volume 21, Issue 1, 2025, pp. 13:1–13:59
https://lmcs.episciences.org/

Submitted May 14, 2020
Published Feb. 06, 2025

BISIMILARITY IN FRESH-REGISTER AUTOMATA

ANDRZEJ S. MURAWSKI a, STEVEN J. RAMSAY b, AND NIKOS TZEVELEKOS c

aUniversity of Oxford, UK

bUniversity of Bristol, UK

cQueen Mary University of London, UK

Abstract. Register automata are a basic model of computation over infinite alphabets.
Fresh-register automata extend register automata with the capability to generate fresh
symbols in order to model computational scenarios involving name creation. This paper
investigates the complexity of the bisimilarity problem for classes of register and fresh-
register automata. We examine all main disciplines that have appeared in the literature:
general register assignments; assignments where duplicate register values are disallowed;
and assignments without duplicates in which registers cannot be empty. In the general
case, we show that the problem is EXPTIME-complete.

However, the absence of duplicate values in registers enables us to identify inherent
symmetries inside the associated bisimulation relations, which can be used to establish a
polynomial bound on the depth of Attacker-winning strategies. Furthermore, they enable a
highly succinct representation of the corresponding bisimulations. By exploiting results
from group theory and computational group theory, we can then show membership in
PSPACE and NP respectively for the latter two register disciplines. In each case, we find
that freshness does not affect the complexity class of the problem.

The results allow us to close a complexity gap for language equivalence of deterministic
register automata. We show that deterministic language inequivalence for the no-duplicates
fragment is NP-complete, which disproves an old conjecture of Sakamoto.

Finally, we discover that, unlike in the finite-alphabet case, the addition of pushdown
store makes bisimilarity undecidable, even in the case of visibly pushdown storage.

1. Introduction

Register automata are one of the simplest models of computation over infinite alphabets.
They consist of finite-state control and finitely many registers for storing elements from the
infinite alphabet. Since their introduction by Kaminski and Francez [KF94] as a candidate

Key words and phrases: Register automata, bisimilarity, computational group theory, automata over infinite
alphabets.
This is a revised and extended version of a paper that appeared in LICS’15 [MRT15].
This research was funded in whole or in part by the UK Engineering and Physical Sciences Research Council
(EP/J019577/1, EP/L022478/1) and the Royal Academy of Engineering (RF 10216/111). For the purpose of
Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript
(AAM) version arising from this submission.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-21(1:13)2025
© A. S. Murawski, S. J. Ramsay, and N. Tzevelekos
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-4725-410X
https://orcid.org/0000-0002-0825-8386
https://orcid.org/0000-0001-8509-8059
http://creativecommons.org/about/licenses


13:2 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

formalism for capturing regularity in the infinite-alphabet setting, they have been actively
researched especially in the database and verification communities: selected applications
include the study of markup languages [NSV04] and run-time verification [GDPT13]. While
register automata can detect symbols that are currently not stored in registers (local
freshness), the bounded number of registers means that they are not in general capable of
recognising inputs that are genuinely fresh in the sense that they occur in the computation for
the first time (global freshness). Because such a feature is desirable in many contexts, notably
dynamic resource allocation, the formalism has been extended in [Tze11] to fresh-register
automata, which do account for global freshness. This paper is concerned with the problem
of bisimilarity testing for register and fresh-register automata.

Bisimulation is a fundamental notion of equivalence in computer science. Its central role
is, in part, derived from the fact that it is intensional and yet very robust. Consequently, the
algorithmics of bisimilarity have attracted a lot of attention from researchers interested in
the theory and practice of equivalence checking. When the set of observable actions available
to a system is finite, a lot is already known about the complexity of the problem for specific
classes of systems, although tight bounds are often difficult to obtain in the infinite-state
cases [Srb08]. In this paper we prove a number of bounds on the complexity of bisimulation
equivalence checking. We note that in this setting language equivalence is known to be
undecidable [NSV04].

Our results are expressed using a unified framework that comprises all variations that
have appeared in the literature. They differ in the allowed register assignment discipline,
which turns out to affect complexity. Assignments are allowed to be

(S) : single, if the contents of all registers are required to be distinct; or
(M): multiple, if we allow for duplicate values.

Furthermore, registers are required to

(F ): always be filled; or
(#0): initially allowed to be empty; or
(#): allowed to be erased and filled during a run1.

The complexity of bisimilarity checking for each combination is summarised in the table
below, where we use the suffix “-c” to denote completeness for this class and “-s” to denote
solvability only. The results hold regardless of whether one considers register or fresh-register
automata.

(M#) (M#0) (MF ) (S#) (S#0) (SF )
EXP-c EXP-c EXP-c EXP-c PSPACE-c NP-s

Our work thus provides a practical motivation for modelling systems with single assign-
ment whenever possible — if the system does not need to erase the contents of registers
mid-run, the corresponding equivalence problems are lower in the complexity hierarchy.

We start by giving coarse, exponential-time upper bounds for all the classes of system
considered by showing how any such bisimilarity problem can be reduced to one for finite-state
automata at exponential cost. For all the multiple assignment machines this bound is tight
and, for single assignment, tightness depends upon whether or not erasing is allowed. The
implied significance of being able to erase the contents of registers is explained by our proof
that the bisimulation games associated with such systems can simulate the computations of

1Empty content is “#”. A full definition of each of the automaton variants is given in Section 2.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:3

alternating Turing machines running in polynomial space. Here we set up an encoding of
the tape, determined by the presence or absence of content in certain registers, and erasing
of registers corresponds to writing of tape cells.

Once erasure is forbidden under single assignments, we obtain better bounds by investi-
gating the structure of the associated bisimulation relations. Such relations are generally
infinite, but only the relationship between the register assignments in two configurations
is relevant to bisimilarity, and so we work with a finite, though exponentially large, class
of symbolic relations built over partial permutations (to link register indices). Due to
the inherent symmetry and transitivity of bisimilarity, each such relation forms an inverse
semigroup under function composition. Also, crucially, the relations are upward closed
in the information order. Although, taken separately, neither of the preceding facts leads
to an exponential leap in succinctness of representation, taken together they reveal an
interconnected system of (total) permutation groups underlying each relation. What is more,
in any play of the associated bisimulation game, the number of registers that are empty
must monotonically decrease. This, together with an application of Babai’s result on the
length of subgroup chains in symmetric groups [Bab86], allows us to show that any violation
of bisimilarity can be detected after polynomially many rounds of the bisimulation game.
Consequently, in this case, we are able to decide bisimilarity in polynomial space.

From a conceptual point of view, the use of group theory helps us capture symmetries
in bisimulation relations, express them in a succinct and structured way and manipulate
them effectively. We regard the use of group-theoretic techniques in this context to be
the technical highlight of the paper, and hope that it will inspire further fruitful interplay
between automata over infinite alphabets and computational group theory.

The polynomial bound mentioned above enables us to close a complexity gap (between
NP and PSPACE) in the study of deterministic language equivalence. Namely, we show
that the language inequivalence problem for deterministic RA(S#0) is in NP, and thus
NP-complete, refuting a conjecture by Sakamoto [Sak98].

Further, if registers are additionally required to be filled (SF ), we can exhibit very
compact representations of the relevant bisimulation relations. The fact that permutation
groups have small generating sets [MN87] allows us then to design a representation for
symbolic bisimulations that is at most polynomial in size. Furthermore, by exploiting
polynomial-time membership testing for permutation groups given in terms of their generators
[FHL80], we show that such a representation can be guessed and verified by a nondeterministic
Turing machine in polynomial time.

Finally, we consider bisimilarity for visibly pushdown register automata (VPDRA)
under the SF register discipline, and we show that the problem here is already undecidable.
Since VPDRA(SF ) are a particularly weak variant, this result implies undecidability for
all PDRA considered in [MRT14]. In contrast, for finite alphabets, (strong) bisimilarity
of pushdown automata is known to be decidable [Sén05] but non-elementary [BGKM13],
with ACKERMANN being the best upper bound [JS19]. In the visibly pushdown case, the
problem is EXPTIME-complete [Srb06].

Related Work. The complexity of bisimilarity problems has been studied extensively
in the finite-alphabet setting and the current state of the art for infinite-state systems is
summarised nicely in [Srb08]. Recent papers concerning the complexity of decision problems
for register automata have, until now, not considered bisimulation equivalence. However,
there are several related complexity results in the concurrency literature.



13:4 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

In his PhD thesis, Pistore [Pis99], gives an exponential-time algorithm for bisimilarity
of HD-automata [MP97]. Since Pistore shows that bisimulation relations for HD-automata
have many of the algebraic properties2 as the relations we study here, it seems likely that
our algorithm could be adapted to show that the bisimilarity problem for HD-automata is
in NP. Indeed, a compact representation of symmetries using generators for such a purpose
was envisaged by [CM10].

Jonsson and Parrow [JP93] and Boreale and Trevisan [BT00] consider bisimilarity over
a class of data-independent processes. These processes are terms built over an infinite
alphabet, but the behaviour of such a process does not depend upon the data from which
it is built. In the latter work, the authors also consider a class of value-passing processes,
whose behaviour may depend upon the result of comparing data for equality. They show
that if such processes can be defined recursively then the problem is EXPTIME-complete.
Since value passing can be seen as a purely functional proxy for multiple register assignments,
this result neatly reflects our findings for RA(M#). Finally, decidability of bisimilarity
for FRA(S#0) was proven in [Tze11], albeit without a proper study of its complexity (the
procedure given in loc. cit. can be shown to run in nondeterministic exponential time).

Finally, in a recent follow-up paper [MRT18], we showed that the language equivalence
problem for deterministic RA(SF ) is in P, in contrast to NP-completeness for RA(S#0),
established in the present paper. For RA(SF ), this still leaves a complexity gap between
NL and P.

It would be interesting to see to what extent our decidability and complexity results can
be generalised, e.g. in settings with ordered infinite alphabets or nominal automata [BKL14].

Structure. In Section 2 we introduce the preliminaries and prove all of the EXPTIME
bounds in Section 3. Then we start the presentation of other results with register automata,
as the addition of global freshness requires non-trivial modifications. In Section 4 we
show bounds for the (S#0) problems and apply the techniques to deterministic language
equivalence in Section 5. Section 6 covers further improvements for the (SF ) case. In
Section 7 we generalise our techniques to fresh-register automata and, finally, consider the
pushdown case in Section 8.

2. Preliminaries

We introduce some basic notation. Given a relation R ⊆ X × Y , we define dom(R) = {x ∈
X | ∃y.(x, y) ∈ R} and rng(R) = {y ∈ Y | ∃x.(x, y) ∈ R}. For natural numbers i ≤ j, we
write [i, j] for the set {i, i+ 1, . . . , j}. P(X) stands for the powerset of X.

2.1. Bisimilarity. We define bisimulations generally with respect to a labelled transition
system. As we shall see, the particular systems that we will be concerned with in this paper
are the configuration graphs of various classes of (fresh-) register automata.

Definition 2.1. A labelled transition system (LTS) is a tuple S = (C,Act ,→), where C
is a set of configurations, Act is a set of action labels, and → ⊆ C×Act × C is a transition

relation. For ℓ ∈ Act , we use
ℓ−→ to refer to → ∩ (C× {ℓ} × C).

2E.g. the active names of [Pis99] are comparable to our characteristic sets.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:5

A binary relation R ⊆ C × C is a bisimulation if for each (κ1, κ2) ∈ R and each
ℓ ∈ Act , we have:

(1) if κ1
ℓ−→ κ′1, then there is some κ2

ℓ−→ κ′2 with (κ′1, κ
′
2) ∈ R;

(2) if κ2
ℓ−→ κ′2, then there is some κ1

ℓ−→ κ′1 with (κ′1, κ
′
2) ∈ R.

We say that κ1 and κ2 are bisimilar, written κ1 ∼ κ2, just if there is some bisimulation R
with (κ1, κ2) ∈ R.

Let us recall that bisimilarity has a very natural game-theoretic account. Given two
configurations, one can consider a bisimulation game involving two players, traditionally
called Attacker and Defender respectively. They play rounds in which Attacker fires a
transition from one of the configurations and Defender has to follow with an identically
labelled transition from the other configuration. In the first round, the chosen transitions
must lead from the configurations to be tested for bisimilarity, while, in each subsequent
round, they must start at the configurations reached after the preceding round. Defender
loses if he cannot find a matching transition. In this framework, bisimilarity corresponds
to the existence of a winning strategy for Defender. The process of playing a bisimulation
game naturally favours Attacker as the decision maker but, thanks to the forcing technique
of [JS08], it is possible to construct transition systems in which Defender effectively ends up
making choices.

2.2. Fresh-register automata. We will be interested in testing bisimilarity of configu-
rations generated by machines with registers and pushdown stack in the infinite-alphabet
setting, i.e. as Act we shall use the set Σ × D for a finite alphabet Σ (with its elements
sometimes called tags) and an infinite alphabet D (with its elements sometimes called
names), cf. data words [NSV04].

Definition 2.2. An r-fresh-register automaton (r-FRA) is a tuple A = ⟨Q,Σ, δ⟩, where:
• Q is a finite set of states;
• Σ is a finite set of tags;
• δ ⊆ Q×Σ× (P([1, r])∪{⊛})× [0, r]×P([1, r])×Q is the transition relation, with elements

written as q
t,X,i,Z−−−−→ q′. We assume that in any such transition i /∈ Z.

Finally an r-register automaton (r-RA) is a special case of an r-FRA such that all its

transitions q
t,X,i,Z−−−−→ q′ satisfy X ̸= ⊛.

An r-register assignment is a mapping of register indices to letters from the infinite
alphabet D and the special symbol #, i.e. a function:

ρ : [1, r]→ D ⊎ {#}.
The # symbol is used to represent the fact that a register is empty, i.e. contains no
letter from D. Consequently, by slight abuse of notation, for any r-register assignment
ρ we will be writing rng(ρ) for the set ρ([1, r]) ∩ D, and dom(ρ) for ρ−1(rng(ρ)), where
ρ−1 = {(d, i) | d ∈ D ∧ (i, d) ∈ ρ}. Finally, we shall use two kinds of assignment update. For
any d ∈ D, i ∈ [0, r], Z ⊆ [1, r] and assignment ρ we set:

ρ[i 7→ d] =

{
{(i, d)} ∪ {(j, ρ(j)) | j ∈ [1, n] \ {i}} if i ̸= 0

ρ otherwise,

ρ[Z 7→ #] = {(j,#) | j ∈ Z} ∪ {(j, ρ(j)) | j ∈ [1, n] \ Z}.



13:6 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Note that, in the former case, no update takes place when i = 0 but we keep the update
notation for notational convenience.

The meaning of a transition q
t,X,i,Z−−−−→ q′ is described as follows. The components t and

X are a precondition: for the transition to be applicable, it must be that the next letter of
the input has shape (t, a) for some a ∈ D and, moreover:

• if X ⊆ [1, r] then a is already stored in exactly those registers named by X;
• if X = ⊛ then a is (globally) fresh: it has so far not appeared in the computation of A.
If the transition applies then taking it results in changes being made to the current register
assignment, namely: a is written into register i (unless i = 0, in which case it is not written
at all) and all registers named by Z have their contents erased.

Definition 2.3. A configuration κ of an r-FRA A is a triple (q, ρ,H) consisting of a
state q ∈ Q, an r-register assignment ρ and a finite set H ⊆ D, called the history, such that

rng(ρ) ⊆ H. If q1
t,X,i,Z−−−−→ q2 is a transition of A, then a configuration (q1, ρ1, H1) can make

a transition to a configuration (q2, ρ2, H2) accepting input (t, d), written (q1, ρ1, H1)
(t,d)−−→

(q2, ρ2, H2), just if:

• X = {j | ρ1(j) = d}, or X = ⊛ and d /∈ H;
• ρ2 = ρ1[i 7→ d][Z 7→ #];
• H2 = H1 ∪ {d}.
We will sometimes write the set of configurations of A by CA and the induced transition
relation by →A. We let S(A) be the LTS ⟨CA, Σ×D, →A⟩.

On the other hand, a configuration κ of an r-RA A is a pair (q, ρ) of a state q ∈ Q and
an r-register assignment ρ. The LTS ⟨CA, Σ×D, →A⟩ is defined precisely as above, albeit

excluding histories and fresh transitions. More precisely, if q1
t,X,i,Z−−−−→ q2 is a transition of A,

then (q1, ρ1)
(t,d)−−→ (q2, ρ2) just if X = {j | ρ1(j) = d} and ρ2 = ρ1[i 7→ d][Z 7→ #].

We define several specific classes of fresh-register automata that we will study in this work
by considering configurations and transitions restricted according to the register assignment
discipline followed.

Duplication in assignment. We consider two register storage policies, namely single assign-
ment (S) or multiple assignment (M). In single assignment, we restrict register assignments
to be injective on non-empty registers, i.e. for all i, j ∈ [1, r], ρ(i) = ρ(j) just if i = j or
ρ(i) = # = ρ(j). In multiple assignment there is no such restriction. To ensure that all
configurations respect the register assignment discipline, in the (S) case every transition

q1
t,X,i,Z−−−−→ q2 is required to satisfy the following condition: if X ⊆ [1, r] then |X| ≤ 1 and if

X ̸= ∅ then i = 0. This simply corresponds to the fact that d ∈ D matches the content of at
most one register and, if d is already stored in a register, it will not be written back to any
(other) register.

Emptiness of registers. We consider the automaton’s ability to process empty registers. We
say that either all registers must always be filled (F ), that registers may be initially empty
(#0) or that the contents of registers may be erased (#) during a run. Under condition
(F ), r-register assignments are restricted so that # /∈ ρ([1, r]). Under conditions (F ) and

(#0), every transition q1
t,X,i,Z−−−−→ q2 must have Z = ∅. Condition (#) imposes no specific

restrictions.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:7

We describe particular classes by the acronym FRA(XY ) in which

X ∈{M, S} and Y ∈{F, #0, #}.
The class FRA(XY ) refers to specialisations of Definitions 2.2, 2.3 to transitions and register
assignments satisfying the constraints imposed by X and Y . For instance, FRA(S#0)-
configurations are functions from [1, r] to D∪{#} that are injective on non-empty registers,

and every transition of such a machine is of the form q1
t,X,i,Z−−−−→ q2 with X ∈ {⊛, ∅}∪{{j} | j ∈

[1, r]} and Z = ∅ such that X = {j} implies i = 0. In a similar manner, we define the classes
RA(XY ).

Remark 2.4. The class RA(MF ) follows the register assignment discipline of the register
automata defined by Segoufin [Seg06]. The class RA(M#0) follow the register assignment
discipline of the M -Automata defined by Kaminski and Francez [KF94] and the class of
RA(S#0) follows the assignment discipline of the finite memory automata considered in
the same paper. The class RA(SF ) contain automata that follow the register assignment
discipline of the machines considered by Nevin, Schwentick and Vianu [NSV04]. The class
FRA(S#0) follow the register assignment discipline of the automata defined in [Tze11].
We note that the automata from [KF94, NSV04, Tze11] mentioned above are a little more
restrictive in that every name encountered by the automaton must be stored in some register,
i.e. i ̸= 0.3

In this paper we are concerned with the following family of decision problems.

Definition 2.5. Let X ∈{M, S} and Y ∈{F, #0, #}.
• The problem ∼-FRA(XY ) is: given an FRA(XY ) A and configurations κ1 = (q1, ρ1, H)
and κ2 = (q2, ρ2, H), does κ1 ∼ κ2 hold in S(A)?
• The problem ∼-RA(XY ) is: given an RA(XY ) A and configurations κ1 and κ2 , does
κ1 ∼ κ2 hold in S(A)?

We shall relate the various classes of bisimilarity problems that we study by their
complexity. We write P1 ≤ P2 to denote that there is a polynomial-time many-one reduction
from problem P1 to problem P2.

Lemma 2.6. The considered bisimilarity problems can be related as in Figure 1.

Proof. First note that, for all XY , any RA(XY ) A can be trivially seen as an FRA(XY )
A′ (i.e. A′ has the same components as A). We claim that, for any pair (q1, ρ1), (q2, ρ2) of
RA-configurations of A,

(q1, ρ1) ∼ (q2, ρ2) ⇐⇒ (q1, ρ1, H) ∼ (q2, ρ2, H) (∗)
where H = rng(ρ1) ∪ rng(ρ2) and (q1, ρ1, H), (q2, ρ2, H) are configurations of A′. Indeed, we
can show that the relation between A- and A′-configurations given by:

R = { ((q, ρ), (q, ρ,H)) | rng(ρ) ⊆ H }
is a bisimulation, from which we obtain (∗).

3In the conference version of the paper, we added this restriction to the definitions of F and #0. Also, the
definition of S was slightly different therein: we stipulated that X ⊆ {i}, i.e. we allowed an input letter
already present in a register to be unnecessarily overwritten with itself rather than simply preserved (as in
the current version). These differences between the conference version and the current one were triggered by
reviewers’ suggestions and do not affect any of the results.



13:8 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

We next show the FRA-bisimilarity reductions; the RA-bisimilarity reductions are shown
in a similar (simpler) way.

Observe that, for any X ∈ {S,M}, ∼-FRA(XF ) ≤ ∼-FRA(X#0) ≤ ∼-FRA(X#).
This is because any FRA(XF ) can be viewed trivially as an FRA(X#0) in which all registers
begin filled and, similarly, any FRA(X#0) can be viewed trivially as an FRA(X#) in which
no registers are ever erased.

Now, given an r-FRA(S#) A and two configurations κ1 and κ2 we construct a 2r-
FRA(MF ) A′ and configurations κ̂1 and κ̂2 in which every register k of A is simulated
by two registers 2k − 1 and 2k of A′. The representation scheme is as follows: if registers
2k − 1 and 2k of A′ contain the same letter then register k of A is empty, otherwise the
register k in A contains exactly the contents of register 2k in A′. Additionally, the content
of odd-numbered registers in κ̂1, κ̂2 will be the same, which will make it easy to simulate
erasures: to simulate the erasure of register k in A it will suffice to copy the content of
register 2k − 1 into 2k in A′.

The states of A′ are the states of A augmented by an additional state qiτ for every q ∈ Q,
i ∈ [1, r] and every τ ∈ δ. The extra states subscripted with τ will be used to simulate
potential erasures caused by τ .

Each transition τ = q
t,X,i,Z−−−−→ q′ of A, in which X ⊆ [1, r] and |X| ≤ 1, is simulated by

a sequence of transitions of A′ with the following shape:

q q1τ q2τ · · · q
r
τ q′

t,2X,2i,∅

t,{1},2,∅

t,{1},0,∅

t,{1,2},0,∅

t,{2r−1},2r,∅

t,{2r−1},0,∅

t,{2r−1,2r},0,∅

where 2X is a shorthand for {2x |x ∈ X}. For each j ∈ [1, r] the solid (upper) arrow
labelled (t, {2k− 1}, 2k, ∅) exists just if k ∈ Z: this transition models erasure of a non-empty
register. The dashed arrow labelled (t, {2k − 1}, 0, ∅) exists just if k /∈ Z: it models lack
of erasure for non-empty register k, but we add these transitions so that A′ can behave
uniformly regardless of whether erasures are needed or not. The solid (lower) arrow labelled
(t, {2k− 1, 2k}, 0, ∅) applies in case register k is empty (we do nothing, regardless of whether

k ∈ Z or not). On the other hand, each transition τ = q
t,⊛,i,Z−−−−→ q′ of A is simulated by the

following sequence of transitions of A′:

q q1τ q2τ · · · q
r
τ q′

t,⊛,2i,∅

t,{1},2,∅

t,{1},0,∅

t,{1,2},0,∅

t,{2r−1},2r,∅

t,{2r−1},0,∅

t,{2r−1,2r},0,∅

where solid and dashed arrows are as above.
We say that a pair of configurations (q1, ρ̂1), (q2, ρ̂2) of A′ represents a pair of configu-

rations (q1, ρ1), (q2, ρ2) of A just if ρ̂1 is a representation of ρ1 and ρ̂2 is a representation of
ρ2 as discussed above and, furthermore:

• for all k ∈ [1, r], i ∈ [1, 2r], j ∈ {1, 2}: if ρ̂j(2k − 1) = ρ̂j(i) then i ∈ {2k − 1, 2k}



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:9

∼-FRA(SF )≤∼-FRA(S#0)≤∼-FRA(S#)≤∼-FRA(MF )≤∼-FRA(M#0)≤∼-FRA(M#)
≤ ≤ ≤ ≤ ≤ ≤

∼-RA(SF ) ≤ ∼-RA(S#0) ≤ ∼-RA(S#) ≤ ∼-RA(MF ) ≤ ∼-RA(M#0) ≤ ∼-RA(M#)

Figure 1: Relationship between the main bisimilarity problems considered in this work.

• for all k ∈ [1, r]: ρ̂1(2k − 1) = ρ̂2(2k − 1)

These latter two properties can easily be seen to be an invariant of configurations reachable
from any pair that initially satisfy it, since transitions of A′ only write to even numbered
registers 2k and only with a fresh letter or the contents of the adjacent register 2k − 1.

By construction, the automaton A′ faithfully simulates the original in the following
sense, given configurations (q1, ρ1), (q2, ρ2) of A and A′ representations ρ̂1 of ρ1 and ρ̂2 of
ρ2: (q1, ρ1) ∼ (q2, ρ2) in S(A) iff (q1, ρ̂1) ∼ (q2, ρ̂2) in S(A′).

2.3. Groups and permutations. Next we introduce notation related to groups and
semigroups. Their use will be intstrumental to improving upon our initial EXPTIME
bounds. Group-theoretic arguments and computational procedures based on them will be
employed in Sections 4, 5, 6 to study register automata, and in Section 7 in the fresh-register
case.

For any S ⊆ [1, n], we shall write SS for the group of permutations on S, and ISS for
the inverse semigroup of partial permutations on S. For economy, we write Sn for S[1,n];
and ISn for IS [1,n]. For partial permutations σ and τ , we write σ; τ for their relational
composition:

σ; τ = { (i, j) | ∃k.σ(i) = k ∧ τ(k) = j }.
Given i, j ∈ [1, n], we write (i j) for the permutation swapping i and j, that is, (i j) =
{(i, j), (j, i)} ∪ {(k, k) ∈ [1, n]2 | k ̸= i, j}.

2.4. Update notation. We shall be applying updates to partial permutations σ ∈ ISn,
by adding new mappings [i 7→ j] or pre- or post-composing them with swappings (i j). For
notational convenience it is useful to have i, j ∈ [0, n], but extra care is needed when i = 0
or j = 0. Given σ ∈ ISn and i, j ∈ [0, n], we let:

σ[i 7→ j] =


{(i, j)} ∪ {(i′, j′) ∈ σ | i′ ̸= i ∧ j′ ̸= j} if i, j ∈ [1, n]

{(i′, j′) ∈ σ | j′ ̸= j} if i = 0 and j ̸= 0

{(i′, j′) ∈ σ | i′ ̸= i} if i ̸= 0 and j = 0

σ if i = j = 0

σ[i↔ j] =

{
(i j);σ if i, j ∈ [1, n]

σ if i = 0 or j = 0

[i↔ j]σ =

{
σ; (i j) if i, j ∈ [1, n]

σ if i = 0 or j = 0



13:10 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Similarly, given S ⊆ [1, n] and i, j ∈ [0, n], we let:

S[i↔ j] =

{
{(i j)(k) | k ∈ S} if i, j ∈ [1, n]

S otherwise
S[j] =

{
S ∪ {j} if j ∈ [1, n]

S otherwise

Lemma 2.7. Given σ, τ ∈ ISn and i, j, ix, i
′
x ∈ [0, n] (for x = 1, 2, 3):

• σ[i 7→ j]−1 = σ−1[j 7→ i] and (σ[i↔ j])−1 = [i↔ j]σ−1

• dom(σ[i↔ j]) = dom(σ)[i↔ j] and rng([i↔ j]σ) = rng(σ)[i↔ j]
• ([i2 ↔ i′2]σ)[i1 ↔ i′1] = [i2 ↔ i′2](σ[i1 ↔ i′1])
• ([i2 ↔ i′2]σ[i1 ↔ i′1]); ([i3 ↔ i′3]τ [i2 ↔ i′2]) = [i3 ↔ i′3](σ; τ)[i1 ↔ i′1]
• (σ[i1 7→ i2]); (τ [i2 7→ i3]) ⊆ (σ; τ)[i1 7→ i3].

Proof. We only look at the last claim and leave the remaining ones as exercises. Given a
partial permutation π on an arbitrary finite set X, and x, y ∈ X, let us write:

π⟨x 7→ y⟩ = {(x, y)} ∪ {(x′, y′) | x ̸= x′ ∧ x ̸= x′}.
Given π, π′ and x, y, z ∈ X, we can show that

(π⟨x 7→ y⟩); (π′⟨y 7→ z⟩) ⊆ (π;π′)⟨x 7→ z⟩. (2.1)

Back to the claim, for any σ ∈ ISn and i, j ∈ [0, n], setting σ̂ = σ ∪ {(0, 0)} and viewing it
as a partial permutation on [0, n], we have that σ[i 7→ j] = (σ̂⟨i 7→ j⟩) ∩ [1, n]2. Hence:

(σ[i1 7→ i2]); (τ [i2 7→ i3]) = (σ̂⟨i1 7→ i2⟩ ∩ [1, n]2); (τ̂⟨i2 7→ i3⟩ ∩ [1, n]2)

⊆ (σ̂⟨i1 7→ i2⟩; τ̂⟨i2 7→ i3⟩) ∩ [1, n]2

⊆ (σ̂; τ̂)⟨i1 7→ i3⟩ ∩ [1, n]2 by (2.1)

and the latter is (σ; τ)[i1 7→ i3], as required.

3. Bisimilarity problems complete for EXPTIME

In this section we show that the upper four classes in our two hierachies of automata all
have bisimilarity problems that are complete for exponential time.

Theorem 3.1. All of the problems ∼-RA(S#), ∼-RA(MF ), ∼-RA(M#0), ∼-RA(M#),
∼-FRA(S#), ∼-FRA(MF ), ∼-FRA(M#0) and ∼-FRA(M#) are EXPTIME-complete.

Proof. The result follows immediately from Propositions 3.4 and 3.9 and Lemma 2.6.

Our argument proceeds by showing that ∼-FRA(M#) is in EXPTIME (Proposition
3.4) and ∼-RA(S#) is already EXPTIME-hard (Proposition 3.9). In the latter case, we
shall rely on alternating linear bounded automata, whose acceptance problem is known to
be EXPTIME-complete [CKS81].

Definition 3.2. An alternating linear bounded automaton (ALBA) is a tuple

A = ⟨Γ, Q∀, Q∃, q0, qacc, qrej, δ⟩.
We let Q = Q∀⊎Q∃⊎{qacc}⊎{qrej} and call it the set of states, assuming the four constituent
subsets are pairwise disjoint. The components are:

• a finite tape alphabet Γ containing end-of-tape markers ◁ and ▷;
• disjoint finite sets of universal states Q∀ and existential states Q∃;



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:11

• distinguished initial state q0 ∈ Q;
• distinct accepting and rejecting states qacc ̸= qrej;
• a transition function δ : (Q \ {qacc, qrej}) × Γ → P(Q × Γ × {−1, +1}), satisfying the
following properties:

(i) if (q′, a, z) ∈ δ(q, ▷) then a = ▷ and z = +1;
(ii) if (q′, a, z) ∈ δ(q, ◁) then a = ◁ and z = −1;
(iii) if (q′, a, z) ∈ δ(q, b) then b ∈ Γ \ {◁, ▷} implies a ∈ Γ \ {◁, ▷}.

A configuration of such a machine is a triple c = (q, k, t) with q a state, t the current
tape contents and k ≥ 0 the index of the cell currently under the head of the machine. We
assume that the tape contents are of the form

▷ a1 · · · an ◁

for some letters ai ∈ Γ \ {◁, ▷}. We write t(k) for the content of cell k of tape t. We say
that a configuration (q, k, t) is accepting (respectively rejecting, universal, existential)
just if q = qacc (respectively q = qrej, q ∈ Q∀, q ∈ Q∃).

A configuration (q1, k1, t1) can make a transition to a successor (q2, k2, t2) just if
there is a ∈ Γ and z ∈ {−1,+1} such that (q2, a, z) ∈ δ(q1, t1(k1)) and k2 = k1 + z and
t2 = t1[k1 7→ a].

Given an input w ∈ Γ \ {◁, ▷}, a computation tree on w for such a machine is an
unordered tree labelled by configurations which additionally satisfies the following conditions:

• The tree is rooted at (q0, 0, ▷w◁).
• If a universal configuration c labels some node of the tree then this node has one child for
each possible successor to c.
• If an existential configuration c labels some node of the tree then this node has exactly
one child which can be any successor to c.

A computation tree is accepting if it is finite and all of its leaves are accepting. We say that
an input w is accepted just if there is an accepting computation tree on w.

Definition 3.3. The problem ALBA-Mem is, given an ALBA M and an input w, to
determine whether w is accepted byM.

As mentioned above, ALBA-Mem is EXPTIME-complete [CKS81].

3.1. EXPTIME algorithm. Given an instance of the r-register FRA(M#) bisimilarity
problem, the main idea is to consider a bounded version of the associated bisimulation game
that uses a finite subset N ⊆ D of size 2r + 2 as the alphabet. One can then determine
the winner using an alternating algorithm running in polynomial space. This finite set of
names is sufficient in order to faithfully capture the full bisimulation game, though a careful
discipline is required when making moves with names that are not in the current sets of
registers. Such names need to be sourced from the set N , in effect re-using names that have
appeared before in the game. The crux of the argument is showing that such re-use does
not affect the outcome of the (full) game.

Proposition 3.4. ∼-FRA(M#) is in EXPTIME.

Given an instance ⟨A, (q01, ρ01, H0), (q02, ρ02, H0)⟩ of the bisimilarity problem for
FRA(M#), where A = ⟨Q,Σ, δ⟩ has r registers, we first consider a restricted bisimilarity
problem concerning configurations that contain names from a bounded subset of D. Let us



13:12 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

pick a set N ⊆ D of cardinality 2r + 2, with a fixed enumeration N = {d1, d2, . . . , d2r+2},
such that:

(1) H0 ⊆ N , if |H0| < 2r + 2;
(2) rng(ρ01) ∪ rng(ρ02) ⊆ N ⊆ H0, otherwise.

In the former case, N is a superset of H0, while in the latter it is a subset. In either case, N
includes all names in ρ01, ρ02. We also let the set of N-configurations:

CA,N = {(q, ρ,H) ∈ CA | H ⊊ N}
contain all configurations involving names from N and whose histories are strictly included
in N . Given ρ1, ρ2, H with rng(ρ1) ∪ rng(ρ2) ⊆ H ⊆ N (and hence rng(ρ1) ∪ rng(ρ2) ⊊ N),
we will sometimes refer to the following trimmed version of H:

⌈H⌉Nρ1,ρ2 =

{
H if H ⊊ N

H \ {min(N \ (rng(ρ1) ∪ rng(ρ2))} otherwise (i.e. if H = N)

In the second case, ⌈H⌉Nρ1,ρ2 is obtained from H by deleting the first name (according to the
enumeration of N) that is not present in ρ1 or ρ2. Intuitively, the removed name will be
recycled and available to simulate global freshness later.

We can now define a notion of bisimilarity adapted to N -configurations.

Definition 3.5. Given A and N as above, a binary relation R ⊆ CA,N × CA,N is an
N-bisimulation if for each ((q1, ρ1, H1), (q2, ρ2, H2)) ∈ R we have H1 = H2(= H) and for
all (t, d) with d ∈ N :

(1) if (q1, ρ1, H)
(t,d)−−→ (q′1, ρ

′
1, H

′) and one of the following conditions holds:
(a) d ∈ rng(ρ1) ∪ rng(ρ2),
(b) rng(ρ1) ∪ rng(ρ2) ⊊ H and d = min(H \ (rng(ρ1) ∪ rng(ρ2))),
(c) d = min(N \H),

then (q2, ρ2, H)
(t,d)−−→ (q′2, ρ

′
2, H

′) and ((q′1, ρ
′
1, ⌈H ′⌉Nρ′1,ρ′2), (q

′
2, ρ

′
2, ⌈H ′⌉Nρ′1,ρ′2)) ∈ R;

(2) dual conditions hold for (q2, ρ2, H)
(t,d)−−→ (q′2, ρ

′
2, H

′).

We say that κ1 and κ2 are N-bisimilar, written κ1 ∼N κ2, just if there is some N -
bisimulation R with (κ1, κ2) ∈ R.

Remark 3.6. The idea behind N -bisimulations is that 2r + 2 names suffice in order to
decide the bisimilarity problem. Given a pair of configurations ((q1, ρ1, H), (q2, ρ2, H)), the
specific names in ρ1, ρ2, H are immaterial; instead, of importance are:

• the sets of the registers in ρ1 and ρ2 containing the same names;
• whether the register assignments contain all names that are included in H.

2r + 1 names are sufficient for encoding the above information. By allowing 2r + 2 names
in total, we are then able to represent the full bisimulation game using only configurations
from CA,N .

To see this, suppose we are at a pair ((q1, ρ1, H), (q2, ρ2, H)) ∈ CA,N in the (full)

bisimulation game and WLOG Attacker chooses to play on the Left, say some (q1, ρ1, H)
(t,d)−−→

(q′1, ρ
′
1, H

′). While there may be infinitely many possible choices for d, we can narrow them
down to finitely many. We can partition D as:

D = (rng(ρ1) ∪ rng(ρ2)) ⊎ (H \ (rng(ρ1) ∪ rng(ρ2))) ⊎ (D \H)

and, for each block, only consider a finite number of representatives:



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:13

INPUT: FRA(M#) A, N, q01, ρ01, q02, ρ02, Ĥ0

q1, ρ1, q2, ρ2, H := q01, ρ01, q02, ρ02, Ĥ0

repeat

• existentially choose i ∈ {1, 2} and valid (qi, ρi, H)
(t,d)−−→ (q′i, ρ

′
i, H

′),
or REJECT in the absence of any such choice;

• universally choose valid (q3−i, ρ3−i, H)
(t,d)−−→ (q′3−i, ρ

′
3−i, H

′),
or ACCEPT in the absence of any such choice;

• q1, ρ1, q2, ρ2, H := q′1, ρ
′
1, q

′
2, ρ

′
2, ⌈H ′⌉Nρ′1,ρ′2

Figure 2: Alternating algorithm determining whether Attacker wins the N -bisimulation
game.

(a) For rng(ρ1) ∪ rng(ρ2) we consider all elements.
(b) For H \ (rng(ρ1)∪ rng(ρ2)) we can restrict our attention to the least d in H \ (rng(ρ1)∪

rng(ρ2)) and ignore all others, as the specific choice of d from this set has no bearing
on the outcome of the bisimulation game.

(c) For D \H, similarly to the previous case, the specific choice of d is not important, so
we may as well pick d to be the least element in N \H (which is not empty as H ⊊ N).

These three cases precisely correspond to cases (a-c) in Definition 3.5. Our analysis above
would allow us to capture bisimilarity using N -configurations, if target configurations like
(q′1, ρ

′
1, H

′) were still in CA,N . This does not always hold, as case (c) can lead us to H ′ = N .

In this case, we use ⌈H ′⌉Nρ′1,ρ′2 instead of H ′ so as to remain in CA,N . Since N has at least 2

more names than ρ′1 and ρ′2 combined, we can always pick a name from N \(rng(ρ′1)∪rng(ρ′2))
to remove from H ′ = N so that ⌈H ′⌉Nρ′1,ρ′2 \ (rng(ρ

′
1) ∪ rng(ρ′2)) remains non-empty. Such a

choice will not affect the outcome of the bisimulation game.

Lemma 3.7. Given A, (q01, ρ01, H0), (q02, ρ02, H0) and N as above, let Ĥ0 = ⌈H0∩N⌉Nρ01,ρ02 .
Then, (q01, ρ01, H0) ∼ (q02, ρ02, H0) iff (q01, ρ01, Ĥ0) ∼N (q02, ρ02, Ĥ0).

It suffices to demonstrate that N -bisimilarity can be decided in alternating polynomial
space, using the fact that APSPACE = EXPTIME.

Lemma 3.8. Given A, N and (q01, ρ01, Ĥ0), (q02, ρ02, Ĥ0) as above, we can decide

(q01, ρ01, Ĥ0) ̸∼N (q02, ρ02, Ĥ0)

with an alternating algorithm using space O(r log r + log(|Q|)).

Proof. We use the algorithm in Figure 2, which simply plays the N -bisimulation game,
exploring existentially a strategy for Attacker. It accepts as soon as Defender cannot
defend himself. Consequently, the algorithm accepts iff (q01, ρ01, Ĥ0) ̸∼N (q02, ρ02, Ĥ0).
Moreover, the space it uses consists of q1, q2, the assignments ρ1, ρ2 (each bounded in space
by r log(2r+ 2)), and the history H (bounded in space by (2r+ 2)). Thus, the overall space
used is O(r log r + log(|Q|)).



13:14 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

▷ 0 0 1 0 1 1 1 0 0 ◁

0 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

d0 # d1 # d2 d3 # # d4 d5 # d6 # d7 # # d8 # d9

Figure 3: Encoding of a bounded tape of length 9 (top) using 18 registers (bottom, registers
2-19). The first register stores an auxiliary name which is used in the reduction of
ALBA-Mem to ∼-RA(S#).

3.2. EXPTIME hardness. Further down the hierachy, we show that ∼-RA(S#) is
EXPTIME-hard by reduction from ALBA-Mem. The idea is to use the registers of
this class of automata to represent the tape content of ALBA’s.

For the purposes of the argument, we will assume without loss of generality that we
examine ALBA’s such that Γ \ {◁, ▷} = {0, 1} and, for all (q, a), |δ(q, a)| ≤ 2. Thus all
choices presented by the alternation are binary. Starting from an instance of the ALBA-
Mem problem ⟨M, w⟩, we construct a bisimulation problem for RA(S#) in which two
configurations are bisimilar iffM accepts w. From the ALBAM we construct an RA(S#)
A that simulates it, with the binary tape content ofM encoded by the register assignment
of A. We assume that cells numbered 0 and |w|+ 1 contain end-markers and, to each tape
cell k ∈ [1, |w|], assign a corresponding pair of registers (2k and 2k + 1, to be exact) with
exactly one of them being full and the other one being empty (i.e. containing #). Then, cell
k will have 0 written on it iff register 2k is empty, and it has 1 written on it iff register 2k+1
is empty. This is depicted in Figure 3. At every step of the bisimulation game, we arrange
for Defender to choose transitions from existential states (using Defender forcing [JS08]) and
for Attacker to make choices from universal states. Without loss of generality, for technical
convenience, we will assume that the given ALBA does not diverge, i.e. it generates only
finite computation paths (Theorem 2.6(b) [CKS81]).

Proposition 3.9. ∼-RA(S#) is EXPTIME-hard.

Given an instance ⟨M, w⟩ of the ALBA-Mem problem, we construct a 2|w|+1 register
RA(S#) Aw

M whose induced bisimulation game simulates the computations ofM. A config-
uration of a computation ofM will be represented, in duplicate, by a pair of configurations
of Aw

M, which together make up a single configuration of the bisimulation game. These
configurations will track the current state ofM and the current position of the head ofM in
their state and the current tape contents ofM will be represented by their current register
assignment Aw

M. We will not require the use of any tags (cf. data words) in our construction,
so we assume that Σ is a unary alphabet and omit this component in transitions.

Tape encoding. The first register is used to help implement a simulation of alternation and
will never be empty. The last 2|w| registers of Aw

M will be used to encode the (non-endmarker)
tape content ofM according to the following scheme: the tape cell k ∈ [1, |w|]

• contains 0 iff register 2k is empty iff register 2k + 1 contains a name;
• and it contains 1 iff register 2k contains a name iff register 2k + 1 is empty.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:15

p1

ℓ

��

ℓ

��

ℓ

))

p2
ℓ

��

ℓ

��
·

ℓ1

��

ℓ2

��

·
ℓ2

��

ℓ1

��

·ℓ1

ss

ℓ2

��
q1 q′1 q2 q′2

Figure 4: Defender forcing gadget DF(p1, p2, ℓ, ℓ1, ℓ2, q1, q2, q
′
1, q

′
2). Labels ℓ1 and ℓ2 must be

semantically distinct.

States. The set of states of Aw
M is built from the states ofM, tape cell indices, tape letters,

and special tags L, R:

Q′ = (Q× [0, |w|+ 1]× {L,R}) ⊎Qaux,

where Qaux is a polynomially-sized set of auxiliary states whose role will be explained later
on. Thus, each state p ∈ Q′ \Qaux is a tuple (q, k, C) where q ∈ Q and:

• k is an index representing the position of the head of the tape ofM,
• and C ∈ {L,R} is a tag allowing us to have two copies of each state.

Given p ∈ Q′ \Qaux and x ∈ {L,R}, we write p[x] for the tuple p with its final component
replaced by x. Taking an encoding ρI of w, our construction of Aw

M shall ensure that
configurations ((q0, 0, L), ρI) and ((q0, 0, R), ρI) are bisimilar iffM accepts w.

We motivate the construction by looking at the bisimulation game that it induces.
A configuration in that game is a pair of configurations ((p1, ρ1), (p2, ρ2)) of Aw

M. Our
construction shall impose the following invariant at each round of the induced bisimulation
game. If the game is at configuration ((p1, ρ1), (p2, ρ2)) then:

ρ1 = ρ2 ∧ (p1 = p2 ∨ ∃p.p1 = p[L] ∧ p2 = p[R]).

The idea is that when the two configurations are of the form ((q, k, C), ρ), with C ∈ {L,R},
the play is simulating a configuration ofM which is in state q, with the head over tape cell
k and the tape contents itself encoded by the last 2|w| registers of ρ.
Defender forcing. In order to describe the transition relation of the automaton we will
make use of a gadget to implement defender forcing. Since the configurations of the induced
bisimulation game are guaranteed, by the invariant, to have the same register contents, we
are able to instantiate the general construction of [JS08], in which Attacker is punished
for making choices inconsistent with Defender’s wishes by allowing Defender to move his
configuration into a configuration identical with that of Attacker.

The gadget is shown in Figure 4. The states denoted by dots are the ones constituting the
set Qaux. The gadget DF(p[L], p[R], ℓ, ℓ1, ℓ2, p

′[L], p′[R], p′′[L], p′′[R]) ensures that, when the
game configuration consists of two automata configurations of shape (p[L], ρ) and (p[R], ρ),
then Defender can force the play so that the game enters a configuration consisting of
either two automata configurations of shape (p′[L], ρ′) and (p′[R], ρ′), or two automata
configurations of shape (p′′[L], ρ′′) and (p′′[R], ρ′′), where ρ′ (respectively ρ′′) is determined
by transition labels ℓ and ℓ1 (respectively ℓ and ℓ2). It is by this defender forcing gadget



13:16 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

that we will be able to ensure that the two players correctly simulate existential choices
made byM, essentially by allowing Defender to make the choice.

Transitions. We describe the transitions of Aw
M as part of a general description of how the

induced bisimulation game simulatesM. Recall that a configuration of the form ((q, k, C), ρ)
is used to simulateM in operating in state q with the head over cell k of tape encoded by
ρ. Simulating a transition ofM from this configuration requires reading and updating the
tape, but also universally/existentially choosing the successor state.

Given a state (q, k, C) of Aw
M and a ∈ Γ, we do a case analysis on |δ(q, a)|. If |δ(q, a)| = 0

then there are no transitions to add. Otherwise, we proceed as follows. Let us fix transition
labels A = ({1}, 0, ∅) and B = (∅, 1, ∅); these only involve the auxiliary register 1 and are
semantically disjoint (from any given configuration, they cannot accept the same d). Below,
where we use states denoted by dots, these are sourced from Qaux.

I. δ(q, a) = {(q′, b, z)}. In this case, it suffices to decode the tape content, update it, and
move to the next state. For reasons of uniformity, we will always employ two transitions
at this step. The decoding and updating of the tape is split into two cases, depending
on whether the head of the machine being simulated is over an endmarker or not. If
k ∈ {0, |w|+ 1} then the head is over an endmarker, and the content of cell k is completely
determined by k, and not updated. Hence, in such cases we use transitions of the shape

(q, k, C)
A−→ · A−→ (q′, k + z, C).

It is also useful to define labels ℓ▷ = ℓ′▷ = ℓ◁ = ℓ′◁ = A.
Otherwise, k ∈ [1, |w|] and the head is over a cell which is encoded in the way described

above. To decode and update it, we use transitions:

(q, k, C)
ℓa−→ ·

ℓ′b−→ (q′, k + z, C)

where ℓa allows us to decode a from the simulating registers (and reset them), and ℓb to
update them with b. According to our encoding scheme:

ℓ0 = ({2k + 1}, 0, {2k + 1}) ℓ′0 = (∅, 2k + 1, ∅)
ℓ1 = ({2k}, 0, {2k}) ℓ′1 = (∅, 2k, ∅)

Thus, for instance, if ab = 00 then we use transitions

(q, k, C)
{2k+1},0,{2k+1}−−−−−−−−−−−→ · ∅,2k+1,∅−−−−−→ (q′, k + z, C)

so the first transition will read a name from register 2k + 1 (representing 0 in position k of
the tape) and set that register to #. The next transition will update register 2k + 1 storing
a new name d′ (representing 0 again).

II. δ(q, a) = {(q1, b1, z1), (q2, b2, z2)}. We consider whether q is a universal or existential
move. In the former case, we add transitions:

(q1, k + z1, C)
ℓ′b1←−− · A←− · ℓa←− (q, k, C)

ℓa−→ · B−→ ·
ℓ′b2−−→ (q2, k + z2, C)

If, on the other hand, q is existential, we use an instance of the Defender forcing gadget:

DF((q, k, L), (q, k,R), ℓa, ℓ⃗b1 , ℓ⃗b2 , (q1, k + z1, L), (q1, k + z1, R), (q2, k + z2, L), (q2, k + z2, R))

where, by abuse of notation, ℓ⃗b1 , ℓ⃗b2 are sequences of labels defined below.

ℓ⃗b1 = A; ℓ′b1 ℓ⃗b2 = B; ℓ′b2



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:17

We note that the use of A and B ensures disjointness so that the gadget can be applied.
This ensures that Defender can steer the simulation into her choice whilst maintaining the
invariant about the shape of configurations.

Accepting and rejecting states. If the simulation reaches an accepting state then
Defender should win. We organise for this to happen by forbidding any transition out of
any state of shape (qacc, k, C). In this way, any two configurations that are both in states of
this form are trivially bisimilar since neither can perform an action. Conversely, Attacker
should win if the simulation reaches a rejecting state. We organise for this to happen by
transitions of the following shape:

(qrej, k, L)
{1},0,∅−−−−→ (qrej, k, L)

Notice that such transitions only occur in those states that are tagged L. By construction,
when the simulation arrives at a rejecting state, one configuration will in such a state tagged
with L and the other with R and it follows that the two configurations will not be bisimilar.

Lemma 3.10. Given an ALBAM and input w,M accepts w iff ((q0, 0, L), ρI) ∼ ((q0, 0, R),
ρI) in S(Aw

M), where ρI is a register assignment encoding w in the way described above.

Proof. By construction and our assumption that all ALBA computations terminate, there
are only two ways Defender can win a play of the associated bisimulation game.

(i) By Attacker choosing a move in the Defender forcing gadget that results in a punishment
response from Defender so that every game configuration that follows in the play is of
shape ((p, ρ), (p, ρ)), i.e. the components are trivially bisimilar.

(ii) By the play reaching a game configuration in which the two component configurations
are of the shape ((q, k, L), ρ) and ((q, k,R), ρ) for q = qacc, which are bisimilar by
construction.

In the forward direction, assume thatM accepts w. Then there is a computation tree T
for w in which every leaf is accepting. Hence Defender can win every play of the corresponding
bisimulation game by using T as a representation of a winning strategy. In particular, for any
given play there are two possibilities. If Attacker plays badly inside a Defender forcing gadget
and is punished then the result is (i) above. Otherwise, as long as Defender makes choices
consistent with T then every play will eventually reach a configuration which simulatesM
in accepting state qacc. By construction, the corresponding game configuration must have
component configurations of shape ((qacc, k, L), ρ) and ((qacc, k, R), ρ) and Defender wins as
described in (ii).

In the backward direction, assume that Defender has a winning strategy W for the
bisimulation game. Then, since this strategy must specify which transition to choose when
simulating a computation from an existential state and because we assume that the given
ALBA terminates, the strategy can be used to build a finite computation tree T forM on
w. Since, by construction, Attacker can always avoid being punished whilst playing in a
defender forcing gadget, it follows that W must allow Defender to win any such play by the
criterion (ii). Hence, every simulation which follows W ends in an accepting state and it
follows that every leaf of T is accepting.



13:18 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

4. PSPACE-completeness for RAs with single assignment without erasure
(RA(S#0))

We next prove that the EXPTIME bound can be improved if duplicate values and erasures
are forbidden. We handle register automata first to expose the flavour of our technique. The
main result is given below, it follows from Propositions 4.19 and 4.20.

Theorem 4.1. ∼-RA(S#0) is PSPACE-complete.

Simplified notation. Recall that, in any transition q1
t,X,i,Z−−−−→ q2 of an r-RA(S#0), we have

that X ⊆ [1, r], |X| ≤ 1, Z = ∅, and X ̸= ∅ implies i = 0. These restrictions allow for a
simpler notation for transitions, with δ ⊆ Q× Σ× ([1, r] ∪ {i • | i ∈ [0, r] })×Q:

(a) we write each transition q1
t,{i},0,∅−−−−−→ q2 as q1

t,i−→ q2, where i ∈ [1, r];

(b) and each transition q1
t,∅,i,∅−−−→ q2 as q1

t,i•−−→ q2, where i ∈ [0, r].

Thus, transitions of type (a) correspond to the automaton reading an input (t, a) where a
is the name in the i-th register; while in (b) transitions the automaton reads (t, a) if a is
locally fresh, that is, it does not appear in the registers, and in this case a will be stored in
register i (for i ∈ [1, r]) or not stored in any register (i = 0).

Composition of assignments. Recall that register assignments in the S case are injective
on non-empty registers, we will refer to them as assignments of type S. In what follows
we will be composing r-register assignments ρ1, ρ2 of type S to obtain partial permutations
capturing the positions of their common names.

Definition 4.2. Given an r-register assignment ρ of type S, let us define its inverse by

ρ−1 = {(d, i) ∈ D × [1, r] | ρ(i) = d},
i.e. as the inverse of ρ ∩ ([1, r]×D).

We can observe that, if ρ1, ρ2 are r-register assignments of type S then ρ1; ρ
−1
2 is a

partial permutation. One can show that updates of assignments and permutations are
related as follows.

Lemma 4.3. Given r-register assignments ρ1, ρ2 of type S, d ∈ D and i, j ∈ [0, r] such that

(d ∈ rng(ρ1) =⇒ d = ρ1(i)) ∧ (d ∈ rng(ρ2) =⇒ d = ρ2(j)),

we have (ρ1; ρ
−1
2 )[i 7→ j] = ρ1[i 7→ d]; ρ2[j 7→ d]−1.

4.1. Symbolic bisimulations. We attack the bisimulation problem symbolically, i.e. by
abstracting actual names in the bisimulation game to the indices of the registers where
these names reside. This will lead us to consider groups of finite permutations and inverse
semigroups of partial finite permutations. In symbolic bisimulations we shall consider pairs
(q, S) of a state q and a set of register indices S ⊆ [1, r], as representing configurations of
the form (q, ρ) where dom(ρ) = S. In this way, the locations of the empty registers [1, r] \ S
are made explicit. Configurations in a symbolic bisimulation relation will consist of triples
of the form (q1, S1, σ, q2, S2) where (qi, Si) will be as above, while σ ∈ ISr shall be a partial
permutation matching register indices in S1 to indices in S2. Such tuples will represent



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:19

concrete configuration pairs of the form ((q1, ρ1), (q2, ρ2)) where the σ = ρ1; ρ
−1
2 : in words,

σ contains all pairs of registers that contain the same name in ρ1 and ρ2 respectively.

Definition 4.4. Let A = ⟨Q,Σ, δ⟩ be an r-RA(S#0). We first set:

U0 = Q× P([1, r])× ISr ×Q× P([1, r])
U = { (q1, S1, σ, q2, S2) ∈ U0 | σ ⊆ S1 × S2 }

A symbolic simulation on A is a relation R ⊆ U , with membership (q1, S1, σ, q2, S2) ∈ R
often written infix (q1, S1)Rσ (q2, S2), such that all (q1, S1, σ, q2, S2) ∈ R satisfy the following
symbolic simulation conditions (SyS):4

• for all q1
t,i−→ q′1,

– if i ∈ dom(σ) then there is some q2
t,σ(i)−−−→ q′2 with (q′1, S1)Rσ (q

′
2, S2),

– if i ∈ S1 \ dom(σ) then there is some q2
t,j•−−→ q′2 with (q′1, S1)Rσ[i 7→j] (q

′
2, S2[j]);

• for all q1
t,i•−−→ q′1,

– there is some q2
t,j•−−→ q′2 with (q′1, S1[i])Rσ[i 7→j] (q

′
2, S2[j]),

– for all j ∈ S2 \ rng(σ), there is some q2
t,j−→ q′2 with (q′1, S1[i])Rσ[i 7→j] (q

′
2, S2).

We let the inverse of R be

R−1 = { (q2, S2, σ
−1, q1, S1) | (q1, S1, σ, q2, S2) ∈ R }

and call R a symbolic bisimulation if both R and R−1 are symbolic simulations. We

let symbolic bisimilarity, denoted
s∼, be the union of all symbolic bisimulations. We say

that (q1, ρ1) and (q2, ρ2) are symbolic bisimilar if (q1, dom(ρ1), ρ1; ρ
−1
2 , q2, dom(ρ2)) ∈

s∼, i.e.
(q1, dom(ρ1))

s∼ρ1;ρ
−1
2

(q2, dom(ρ2)). We will then also write (q1, ρ1)
s∼ (q2, ρ2).

Symbolic bisimulation provides a means to finitely represent an otherwise infinite
bisimulation relation. The following result proves that this representation is precise. Its
proof is based on a case analysis showing that symbolic bisimulation rules capture concrete
ones, and vice versa.

Lemma 4.5. Given configurations (q1, ρ1), (q2, ρ2) of an r-RA(S#0), (q1, ρ1) ∼ (q2, ρ2) ⇐⇒
(q1, ρ1)

s∼ (q2, ρ2).

It will be useful to approximate symbolic bisimilarity by a sequence of indexed bisim-

ilarity relations
i∼ ⊆ U defined inductively as follows. First, we let

0∼ be the whole of

U . Then, for all i ∈ ω, (q1, S1, τ, q2, S2) ∈
i+1∼ just if (q1, S1, τ, q2, S2) and (q2, S2, τ

−1, q1, S1)

both satisfy the (SyS) conditions in
i∼. We can show the following.

Lemma 4.6. For all i ∈ ω,
i+1∼ ⊆ i∼ and (

⋂
i∈ω

i∼) = s∼.

Remark 4.7. Given Lemmata 4.5 and 4.6, to obtain a polynomial-space algorithm for
bisimilarity, it suffices to obtain a polynomial-space algorithm for symbolic bisimilarity. For
the latter, it is enough to establish that symbolic bisimulation games can be decided in
polynomially many rounds. In other words, it suffices to show that there is polynomial

bound B (dependent on the examined A) such that
B∼ =

s∼.

4We say that (q1, S1, σ, q2, S2) satisfies the (SyS) conditions in R.



13:20 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Our next aim is to show that
s∼ and each

i∼ are closed under composition and extension

of partial permutations. Such a closure for
i∼ will allow us to polynomially bound the

convergence of indexed bisimilarities by finding within them strict chains of subgroups

(cf. Lemma 4.16). The closure of
s∼, on the other hand, will help us represent

s∼ succinctly
by appropriate choices of representatives (cf. Section 6).

Given S1, S2 ⊆ [1, r] and σ, σ′ ∈ ISr we write σ ≤S1,S2 σ′ just if σ ⊆ σ′ ⊆ S1 × S2.
Moroever, given X ⊆ S ⊆ [1, r], we write idX for the partial map from S to S that acts as
identity on X (and is undefined otherwise). For any R ⊆ U , we define its closure Cl(R) to
be the smallest relation R′ containing R and closed under the following rules.

(q, S, idS , q, S) ∈ R′ (Id)
(q1, S1, σ1, q2, S2) ∈ R′ (q2, S2, σ2, q3, S3) ∈ R′

(q1, S1, σ1;σ2, q3, S3) ∈ R′ (Tr)

(q1, S1, σ, q2, S2) ∈ R′

(q2, S2, σ−1, q1, S1) ∈ R′ (Sym)
(q1, S1, σ, q2, S2) ∈ R′ σ ≤S1,S2 σ′

(q1, S1, σ′, q2, S2) ∈ R′ (Ext)

We say that R is closed in case Cl(R) = R.
Much of the following development relies upon the fact that bisimilarity and indexed

bisimilarity are closed. Intuitively, this amounts to showing that the (SyS) conditions are
compatible with the rules above, i.e. if their premises satisfy the conditions then so do the
conclusions. The interesting cases are (Tr) and (Ext). For the former, the argument is a
symbolic version of showing that (bi)simulation is transitive. The case of (Ext) is subtler,
as we need to argue that it is sound to relate previously unrelated registers.

Lemma 4.8. Let P,R ⊆ U . If all g ∈ R ∪R−1 satisfy the (SyS) conditions in P then all
g ∈ Cl(R) satisfy the (SyS) conditions in Cl(P ).

Corollary 4.9. (Closures) Bisimilarity and indexed bisimilarity for RA(S#0) are both
closed:

(1)
s∼ = Cl(

s∼) ;
(2) for all i ∈ ω:

i∼ = Cl(
i∼).

Proof. For 1 note that
s∼ = (

s∼)
−1

and all its elements satisfy the (SyS) conditions in
s∼.

Hence, by Lemma 4.8 we have that Cl(
s∼) is a symbolic bisimulation, i.e. Cl(

s∼) ⊆ s∼. The
result then follows. For 2 we proceed by induction on i. When i = 0 then the result follows

from the fact that
0∼ is the universal relation. For the inductive case, note first that

i+1∼ is

symmetric by construction and all g ∈ i+1∼ satisfy the (SyS) conditions in
i∼. Hence, by

Lemma 4.8, all elements of Cl(
i+1∼ ) satisfy the (SyS) conditions in Cl(

i∼). By IH, Cl(
i∼) = i∼

so Cl(
i+1∼ ) ⊆ i+1∼ , as required.

4.2. Bounding indexed bisimilarity convergence using permutation groups. To
bound the rate of convergence of indexed bisimilarities we study the strict sub-chains:

{ i∼ | (i+1∼ ∩ US1,S2) ⊊ (
i∼ ∩ US1,S2)} (4.1)

that we obtain for a given pair of sets S1, S2 ⊆ [1, r], where:

US1,S2 = {(q1, S′
1, σ, q2, S

′
2) ∈ U | S1 = S′

1, S2 = S′
2}.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:21

Our aim is to find a bound for i in (4.1), independent of S1, S2. To this end, below we

introduce two auxiliary notions that will help us identify some structure within the
i∼

relations. In particular, we shall study self-symmetries, which lead to group-theoretic

considerations and enable us to relate the evolution of
i∼ to descending subgroup chains.

Definition 4.10. Let p ∈ Q,S ⊆ [1, r] and R ⊆ U be closed. We define:

• the characteristic set of (p, S) in R as: Xp
S(R) =

⋂
{X ⊆ S | (p, S) RidX (p, S)},

• the characteristic group of (p, S) in R as: GpS(R) = {σ ⊆ Xp
S(R)×Xp

S(R) | (p, S) Rσ

(p, S)}.

Note that R1 ⊆ R2 implies Xp
S(R1) ⊇ Xp

S(R2). We are going to show (in Lemma 4.16)

that changes in
j∼ ∩ US1,S2 (as j increases) can be traced back to either expansion of a

characteristic set Xp
S(

j∼) (S ∈ {S1, S2}), or shrinkage of some GpS(
j∼) (S ∈ {S1, S2}) or

disappearance of all tuples (q1, S1, σ, q2, S2) for some q1, q2 ∈ Q. The number of changes of
each kind can be bounded by a polynomial. In the second case, we shall rely on the fact

that each GpS(
j∼) is indeed a group (Lemma 4.15) and on the following result which concerns

subgroup chains in a group G:

G = G0 > G1 > · · · > Gm = I

in which I is the trivial identity group and, for all i ∈ [0,m− 1], Gi+1 is a strict subgroup
of Gi.

Theorem 4.11 [Bab86]. For n ≥ 2, the length of every subgroup chain in S[1,n] is at most
2n− 3.

Remark 4.12. The above result provides a linear bound, which we will be using in
subsequent calculations. Note, though, that the existence of a quadratic bound follows easily
from Lagrange’s theorem. In particular, it implies |Gi| ≥ 2|Gi+1| (0 ≤ i < m) and, thus,
|G| ≥ 2m. Consequently, m ≤ log2(|G|) ≤ log2(n!) ≤ n log2(n) ≤ n2.

Before tackling Lemma 4.15, we prove an auxiliary lemma.

Lemma 4.13. Let p, S,R be as above. Suppose (p, S) Rσ (q, S), then:

• dom(σ) ⊇ Xp
S(R) and rng(σ) ⊇ Xq

S(R).
• Setting σ′ = σ ∩ (Xp

S(R) × Xq
S(R)), we have dom(σ′) = Xp

S(R), rng(σ′) = Xq
S(R) and

(p, S) Rσ′ (q, S). In particular, (p, S) Rid
X

p
S
(R)

(p, S).

Remark 4.14. The above Lemma shows that R ∩ US,S can be generated from elements of
the form (p, S) Rσ (q, S), where σ is a bijection between Xp

S(R) and Xq
S(R), using up-closure

under ≤S,S . That is, (p, S) Rσ′ (q, S) iff there exists a bijection σ : Xp
S(R)→ Xq

S(R) such
that σ ≤S,S σ′ and (p, S) Rσ (q, S).

Lemma 4.15. GpS(R) is a group (under composition). In particular, it is a subgroup of
SXp

S(R).

Proof. By the last part of Lemma 4.13, we have idXp
S(R) ∈ G

p
S . Now let σ ∈ GpS(R), i.e.

(p, S) Rσ (p, S) with σ ⊆ Xp
S(R)×Xp

S(R). By first part of Lemma 4.13, we have σ ∈ SXp
S(R).

Moreover, (p, S) Rσ−1 (p, S), by closure of R, hence σ−1 ∈ GpS(R). Finally, if σ′ ∈ GpS(R),
again using closure of R, we get σ;σ′ ∈ GpS(R).



13:22 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

We can now use the above structure in indexed bisimilarities to bound their rate of
convergence.

Lemma 4.16. Given S1, S2 ⊆ [1, r], the sub-chain { i∼ | (i+1∼ ∩ US1,S2) ⊊ (
i∼ ∩ US1,S2)} has

size O(|Q|2 + r2|Q|).

Proof. Fix S1, S2 ⊆ [1, r]. We argue that { i∼ | (i+1∼ ∩ US1,S2) ⊊ (
i∼ ∩ US1,S2)} has length at

most |Q|2 + 4r2|Q| − 2r|Q|.
Let us say that two configurations (q1, S1) and (q2, S2) are separated in

i∼ just if there

is no σ such that (q1, S1)
i∼σ (q2, S2); we say they are unseparated otherwise. We claim that

if (
i+1∼ ∩ US1,S2) ⊊ (

i∼ ∩ US1,S2) then:

(i) there is some q ∈ Q and S ∈ {S1, S2} such that Xq
S(

i+1∼ ) ⊋ Xq
S(

i∼),
(ii) or there is some q ∈ Q and S ∈ {S1, S2} such that GqS(

i+1∼ ) is a strict subgroup of

GqS(
i∼),

(iii) or there are configurations (q1, S1), (q2, S2) that are unseparated in
i∼ and become

separated in
i+1∼ .

We argue as follows. If (
i+1∼ ∩ US1,S2) ⊊ (

i∼ ∩ US1,S2) then there are some p, q ∈ Q and σ such

that (q1, S1)
i∼σ (q2, S2) but (q1, S1) ̸

i+1∼ σ (q2, S2). Note that, in such a case it follows that also

(q1, S1)
i∼σ′ (q2, S2) and (q1, S1) ̸

i+1∼ σ′ (q2, S2), where σ
′ = σ∩(Xq1

S1
(
i∼)×Xq2

S2
(
i∼)), by closure of

i∼ (Tr for id
X

q1
S1

(
i∼)

and id
X

q2
S2

(
i∼)
) and

i+1∼ (contraposition with (Ext)). Hence, we assume wlog

that dom(σ) = Xq1
S1
(
i∼) and rng(σ) = Xq2

S2
(
i∼). Now, suppose that, for all q ∈ Q, S ∈ {S1, S2},

Xq
S(

i+1∼ ) = Xq
S(

i∼) and no previously unseparated pair of configurations become separated in
i+1∼ . It follows from (q1, S1) ̸

i+1∼ σ (q2, S2) that there is some τ such that (q1, S1)
i+1∼ τ (q2, S2)

and thus σ; τ−1 ∈ Gq1S1
(
i∼) but σ; τ−1 /∈ Gq1S1

(
i+1∼ ). Hence Gq1S1

(
i∼) > Gq1S1

(
i+1∼ ).

To bound the length of the chain { i∼ | (i+1∼ ∩ US1,S2) ⊊ (
i∼ ∩ US1,S2)}, observe that

we always have Xq
S(

i+1∼ ) ⊇ Xq
S(

i∼) because of
i+1∼ ⊆ i∼. Thus, (i) may happen at most

2r|Q| times inside the chain. If (i) does not hold then Xq
S(

i+1∼ ) = Xq
S(

i∼) for all q and

S ∈ {S1, S2}. For fixed Xq
S(

i∼), by Theorem 4.11, (ii) may happen at most 2r − 2 times
(we include the case r = 1), which gives an upper bound of 2r|Q|(2r − 2) for the number
of such changes inside the whole chain (under the assumption that the changes are not
of type (i), which have already been counted). Finally, the remaining changes must be of
type (iii) and may happen at most |Q|2 times across the whole chain. Overall, we obtain
2r|Q|+ 2r|Q|(2r − 2) + |Q|2 = |Q|2 + 4r2|Q| − 2r|Q| as a bound on the length of the given
chain.

Note that it does not quite follow from the above result that the sequence (
i∼) converges

in polynomially many steps, because there are exponentially many pairs (S1, S2). Next we
shall establish such a bound by studying more closely the overlap in evolutions of different
(S1, S2).

Lemma 4.17. Let ℓ be the bound from Lemma 4.16 and B = (2r + 1)ℓ. Then, for any

S1, S2,
B∼ ∩ US1,S2

=
s∼ ∩ US1,S2

.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:23

Proposition 4.18. For any RA(S#0) bisimulation problem, if there is a winning strategy
for Attacker then there is one of depth O(r|Q|2 + r3|Q|).

Proof. We first observe that bisimulation strategies and their corresponding symbolic bisim-
ulation strategies have the same depth. Thus, it suffices to bound symbolic strategies for
Attacker. The O(r|Q|2 + r3|Q|) bound follows from the preceding Lemma.

Proposition 4.19. ∼-RA(S#0) is in PSPACE.

Proof. Thanks to the bound obtained in Lemma 4.17, to decide symbolic bisimilarity it
suffices to play the corresponding symbolic bisimulation game for polynomially many steps.
The existence of a winning strategy can then be established by an alternating Turing machine
running in polynomial time, analogously to Figure 2. The PSPACE bound follows from
APTIME=PSPACE.

4.3. PSPACE hardness. For PSPACE-hardness, we reduce from the well-known PSPACE-
complete problem of checking validity of totally quantified boolean formulas in prenex
conjunctive normal form. One possibility is to decompose this reduction via the acceptance
problem for ALBA that are not allowed to overwrite non-blank tape cells –write-once ALBA.
Given an instance of QBF, one can construct a write-once ALBA with enough space on its
tape to store the formula and a truth assignment, which it guesses by alternating moves
according to the quantifiers, and then verifies deterministically. Then our reduction of
Section 3.2 applies to obtain an instance of the bisimilarity problem for RA(S#) but,
because the ALBA is write-once, so the corresponding RA obeys S#0. However, there is a
more straightforward, direct reduction, which we present below.

In our construction, universal quantification and selection of conjuncts is performed by
Attacker. For existential quantification and disjunctions, we rely on Defender Forcing. The
choices of truth values by both players are recorded in registers by using, for each variable
xi, registers 2i, 2i+ 1, both initialised to #. If a player chooses true for xi, we fill register 2i
leaving 2i+ 1 empty; we do the opposite otherwise. This makes it possible to arrange for
bisimilarity/non-bisimilarity (as appropriate) in the final stage of the game, depending on
whether the resulting literal is negated.

Proposition 4.20. ∼-RA(S#0) is PSPACE-hard.

Proof. We reduce from TQBF, i.e. the problem of deciding whether a formula Φ of the shape
□1x1 · · ·□hxh.ϕ(x0, · · · , xh) (with ϕ in conjunctive normal form and each □ a quantifier) is
true.

We shall construct a (2h + 1)-register RA(S#0) and configurations κL, κR such that
κL ∼ κR if and only if Φ is true. We will not require the use of any tags in our construction,
so we assume that Σ is a unary alphabet and omit this component in transitions. We pick
some name d0. For C ∈ {L,R}, we shall have

κC = ((q1, C), ρ0)

with ρ0(1) = d0 and ρ0(i) = # for all other i.
The first register is used to let Attacker/Defender make choices. Registers 2, · · · , 2h+ 1

will represent truth-value assignments. Registers 2i, 2i + 1 will be used to represent the
value of xi (i = 1, · · · , h) subject to the following conditions:

• register 2i is filled if and only if the value of xi is true,



13:24 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

• register 2i+ 1 is filled if and only if the value of xi is false.

The values will be selected by Attacker (when □i = ∀) or Defender (when □i = ∃). Formally,
if □i = ∀ then we add the following transitions, where A = 1 and B = 1•,

(qi, L)

A

zz

B

$$

(qi, R)

A

zz

B

$$
(qTi , L) (qFi , L) (qTi , R) (qFi , R)

which allows Attacker to force the play from ((qi, L), (qi, R)) into either ((qTi , L), (q
T
i , R)) or

((qFi , L), (q
F
i , R)). On the other hand, if □i = ∃ then we add (cf. Figure 4):

DF((qi, L), (qi, R), A,A,B, (qTi , L), (q
T
i , R), (qFi , L), (q

F
i , R))

We follow up the above transitions with register-setting ones:

(qTi , L)
(2i)•

%%

(qFi , L)
(2i+1)•

yy

(qTi , R)
(2i)•

%%

(qFi , R)
(2i+1)•

yy
(qi+1, L) (qi+1, R)

The above handles quantification. To represent the formula ϕ = ϕ1 ∧ · · · ∧ ϕk, we allow
Attacker to force the play from ((qh+1, L), (qh+1, R)) into any of ((q(h+1)l, L), (q(h+1)l, R))

for l = 1, · · · , k using e.g. transition sequences with labels from {A,B}k−1.
Now assume ϕl = ϕl1 ∨ · · · ∨ ϕlnl

, where ϕlm = Xi or ϕlm = ¬Xi (m = 1, · · · , nl). To
represent ϕl, we iterate the DF circuit nl − 1 times so that Defender can force the play from
((q(h+2)l, L), (q(h+2)l, R)) into any of ((q(h+3)lm, L), (q(h+3)lm, R)) for m = 1, · · · , nl.

Finally, we need to handle the formulas ϕlm.

• If ϕlm = Xi we add

(q(h+3)lm, L)

2i+1
��

(q(h+3)lm, R)

end

• If ϕlm = ¬Xi we add

(q(h+3)lm, L)

2i
��

(q(h+3)lm, R)

end

Note that the outgoing transitions are added only for states tagged with L. They give
Attacker a chance to win if ϕlm does not hold after Defender’s choices.

Overall the construction yields a winning strategy for Defender if and only if the given
formula is true.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:25

5. Language equivalence for RA(S#0)

The results of the previous section can be used to close an existing complexity gap for
deterministic language equivalence of register automata. Recall that, in the non-deterministic
case, language equivalence (even universality) is undecidable [NSV04]. In the deterministic
case, however, the problem can be solved in polynomial space. Sakamoto [Sak98] conjectured
that the language inequivalence problem is not in NP. Below we refute the conjecture,
showing that, for RA(S#0), the complexity of deterministic language inequivalence actually
matches that of nonemptiness [SI00]. Because we discuss language equivalence, in this
section we assume that RA(S#0) are given as ⟨Q,Σ, q0, ρ0, δ, F ⟩, where q0 ∈ Q is the initial
state, ρ0 is an initial register assignment conforming to the S#0 policy, and F ⊆ Q is a set
of accepting states.

We call an r-RA(S#0) A deterministic if, for all states q of A:

(i) for all (t, i) ∈ Σ× [1, r] there is at most one transition of the form q
t,i−→ q′, and

(ii) for all t ∈ Σ there is at most one transition of the form q
t,i•−−→ q′ for i ∈ [0, r].

On the other hand, an LTS is deterministic if, for all κ ∈ C and ℓ ∈ Act , there is at most

one transition κ
ℓ−→ κ′. Note that if A is deterministic then so is its transition system S(A).5

Then, from Proposition 4.18, one obtains the following.

Lemma 5.1. Let Ai = ⟨Qi,Σ, q0i, ρ0i, δi, Fi⟩ be a deterministic ri-RA(S#0) (i = 1, 2),
r = max(r1, r2) and N = |Q1|+ |Q2|. If L(A1) ̸= L(A2) then there is some w ∈ (L(A1) ∪
L(A2)) \ (L(A1) ∩ L(A2)) with |w| ∈ O(rN2 + r3N).

Proof. We view A1,A2 as r-RA(S#0)s with some unused registers and consider the r-
RA(S#0)

A = ⟨Q1 ⊎Q2 ⊎ {q0} ⊎ {qs}, q0,Σ, {(i,#) | i ∈ [1, r]}, δ1 ∪ δ2 ∪ δs ∪ δ′s ∪ δF , ∅⟩,

where q0 is a “blind” initial state, qs is a sink state, δs = {q t,i−→ qs | δ(q) ↾ (t, i) = ∅} ∪
{q t,1•−−→ qs | δ(q) ↾ (t, i•) = ∅} adds any missing outgoing transitions to δ = δ1 ∪ δ2,

δ′s = {qs
t,i−→ qs | t ∈ Σ ∧ i ∈ [1, r]} ∪ {qs

t,1•−−→ qs | t ∈ Σ} is a set of sink transitions, and

δF = {q tF ,i−−→ q0 | i ∈ [1, r] ∧ q ∈ F1 ∪ F1} ∪ {q
tF ,1•−−−→ q0 | q ∈ F1 ∪ F2} is a set of “final”

transitions for some newly introduced constant tF .
Assume WLOG that L(A1) ̸⊆ L(A2). Then, there is some transition path for A1 from

(q01, ρ01) to some q1 ∈ F1 that, when simulated by A2 from (q02, ρ02), does not lead in F2.
For A, this means that (q01, ρ01) and (q02, ρ02) are not bisimilar: Attacker can lead the
game to a configuration pair ((q1, ρ1), (q2, ρ2)), with q2 ∈ (Q2 \ F2) ∪ {qs}, where he wins
by playing some (tF , a) from (q1, ρ1). By Proposition 4.18, Attacker has some strategy
T of depth O(rN2 + r3N) for winning the same game. We observe that, because A is
saturated with sink transitions, the latter can only be achieved by Attacker being able to
play a final transition with label (tF , a) in one part of the game. Suppose the happens in the
part starting from (q01, ρ01) and let w (tF , a) be the string accepted by the corresponding
transition path, so w ∈ L(A1). By determinacy of A2, w /∈ L(A2).

Theorem 5.2. Language inequivalence for deterministic RA(S#0) is NP-complete.

5The converse may fail due to transitions of A not being fireable in S(A).



13:26 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Proof. Membership in NP is achieved via Lemma 5.1. NP-hardness follows from NP-
completeness of language non-emptiness for deterministic RA(S#0) [SI00].

6. NP bound for single assignment with filled registers (RA(SF ))

In Section 4 we showed, in the setting with single assignment and no erasures (denoted by
RA(S#0)) the bisimilarity problem was solvable in polynomial space. Here we show that a
further improvement is possible in the RA(SF ) case, i.e. if the registers are required to be
filled from the very start. We shall show an NP upper bound.

We start off with a series of results aiming to identify succinct (polynomial-size) sets of

generators for
s∼, which we shall call generating systems. In Section 4 we already found that

parts of
s∼ exhibit group-theoretic structure. Namely, Lemma 4.15 shows that, for any p ∈ Q

and S ⊆ [1, r], GpS(
s∼) = {σ ∩ (Xp

S ×Xp
S) | (p, S)

s∼σ (p, S)} is a group, where Xp
S(

s∼) ⊆ S is
the characteristic set of (p, S).

Note that, for RA(SF ), we only have the case S = [1, r]. Furthermore,
s∼ will be

the only closed relation that we shall consider. For these reasons, we write simply Xp for

characteristic set Xp
[1,r](

s∼) and Gp for group Gp[1,r](
s∼).

The group-theoretic structure implies that Gp can be generated by linearly many
generators with respect to r.

Lemma 6.1 [MN87]. Every subgroup of Sn has a generating set with at most max(2, ⌊n2 ⌋)
elements.

To handle the more general case (p, S)
s∼σ (q, S) of different states, consider

Kp,q = {σ ∩ (Xp ×Xq) | (p, [1, r]) s∼σ (q, [1, r])}.
Observe that, for σ1, σ2 ∈ Kp,q, we have σ2 = (σ2;σ

−1
1 );σ1, because σ

−1
1 ;σ1 = idXq . Moreover,

σ2;σ
−1
1 ∈ Gp, so σ2 has been obtained from σ1 and an element of Gp. Consequently, in

presence of generators of Gp, one member of Kp,q suffices to generate the whole of Kp,q by
composition. This observation motivates the following definition of a generating system.

Definition 6.2. A generating system G consists of:

• a partitioning of Q into P1, · · · , Pk;
• for each partition Pi, a single representative pi ∈ Pi and:
– a characteristic set Xpi ⊆ [1, r];
– a set Gpi , of up to max(2, ⌊ r2⌋) permutations σ ∈ SXpi ;
– for each q ∈ Pi \ {pi}, a partial permutation raypiq ∈ IS [1,r] such that dom(raypiq ) = Xpi ;

for technical convenience, we also add raypipi = idXpi .

We write rep(G) for the set {p1, · · · , pk} of representatives.

A generating system is used to generate a relation gen(G) ⊆ (Q× {[1, r]} × ISr ×Q×
{[1, r]}) as follows. First, set

BASEG = {(pi, [1, r], σ, pi, [1, r]) | pi ∈ rep(G), σ ∈ Gpi}
∪ {(pi, [1, r], raypiq , q, [1, r]) | pi ∈ rep(G), q ∈ Pi}

and then take gen(G) = Cl(BASEG).

Lemma 6.3. There exists a generating system G such that gen(G) = s∼.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:27

Proof. We partition Q into equivalence classes defined by: p ∼ q if and only if there exists σ

such that (p, [1, r], σ, q, [1, r]) ∈ s∼. For each equivalence class Pi, we pick a single member pi
arbitrarily and let Gpi consist of the generators of Gpi provided by Lemma 6.1. Consider

q ∈ Pi \ {pi}. Because q ∈ Pi, there exists σ such that (pi, [1, r], σ, q, [1, r]) ∈
s∼. Then we

can take raypiq = σ ∩ (Xpi × [1, r]). By the previous discussion, this delivers the sought
generating system.

Lemma 6.4. For any generating system G, membership in gen(G) can be determined in
polynomial time.

Proof. To determine whether (q1, [1, r], σ, q2, [1, r]) ∈ gen(G), we proceed as follows. If q1, q2
belong to different partitions we return NO. Suppose q1, q2 ∈ Pi. Recall that BASEG contains
(pi, [1, r], ray

pi
qj , qj , [1, r]) with dom(raypiqj ) = Xpi . Then (q1, [1, r], σ, q2, [1, r]) ∈ gen(G) is

equivalent to (pi, [1, r], σ
′, pi, [1, r]) ∈ gen(G), where σ′ = raypiq1 ;σ; (ray

pi
q2)

−1. This is in turn
equivalent to σ′ ∩ (Xpi ×Xpi) being generated from permutations in Gpi . That the latter
problem is solvable in polynomial time is a well-known result in computational group
theory [FHL80].

Theorem 6.5. ∼-RA(SF ) is in NP.

Proof. First we guess a generating system G and verify whether gen(G) is a bisimulation.
By Lemma 6.3, there exists at least one generating system with this property. Because
generating systems involve polynomially many components of polynomial size, they can be
guessed in polynomial time. Next, in order to check whether the guessed generating system
generates a bisimulation, we need to verify the (SyS) conditions (for S1 = S2 = [1, r]) for
each of the polynomially many elements of BASEG . Note that this will involve polynomially
many membership tests for gen(G), each of which can be performed in polynomial time
by Lemma 6.4. If the guess leads to a non-bisimulation, we return NO. Otherwise, we use
another membership test for gen(G) to check whether the given instance of the bisimilarity
problem belongs to gen(G). We return the outcome of that test as the final result.

Remark 6.6. Note that symbolic bisimulations are based on partial finite permutations,
which form inverse semigroups. Consequently, inverse semigroup-theoretic structure could
seem the most natural kind of structure with which to approach our problems. Unfortunately,
inverse semigroups do not admit analogous results.

• There exist inverse subsemigroups of ISn that require
(
n
n
2

)
≈ 2n

√
2
πn generators, e.g.

{idX |X⊆ [1, n], |X|= n
2 }.

• It is possible to show that the membership problem for inverse subsemigroups of ISn is
PSPACE-complete, sharpening a result of Kozen [Koz77]. We present the argument in
Appendix D.

Consequently, we were forced to look a bit deeper, and base generating systems on groups.

Remark 6.7. Note that we do not have a matching lower bound for RA(SF ), which raises
the intriguing prospect that there may still be scope for improvement in this case. A closely
related problem to ∼-RA(SF ) is graph automorphism (GA), i.e. given a graph G decide
whether it has a non-trivial automorphism. While it is easy to see that GA is in NP, it is not
known whether it is in P or, for that matter, in coNP. We can reduce graph-automorphism to
the following problem in our setting: given a DRA(SF ) A (without locally fresh transitions)
and a configuration (q, ρ), is there a non-identity permutation π such that (q, ρ) ∼ (q, ρ ◦ π)?



13:28 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

This observation introduces a possible barrier to methods we can pursue to efficiently solve
∼-RA(SF ), such as partition refinement, which aim to construct a representation of the
whole bisimilarity relation.

7. Fresh-register automata with single assignment without erasure
(FRA(S#0))

In this section we examine the problems tackled in Sections 4-6 albeit in the general case
of FRAs. We would like to apply the same techniques, aiming to produce the same upper
bounds, yet the FRA setting raises significant additional challenges. Our approach for RAs
relied on symbolic bisimulations and the group-theoretic structure that emanated from them.
While we can express bisimilarity in FRAs symbolically following [Tze11], we shall see that
such symbolic bisimulations do not support the group-theoretic representations. The reason
is the treatment of the history of the computation, which affects bisimilarity in subtle ways,
especially in the initial stages of the bisimulation game. In those stages, global and local
freshness can inter-simulate another, under certain conditions, which leads us to extending
our symbolic representations beyond the r names that each system can have in its registers.

Simplified notation. We extend the simplified notation for RA(S#0) by including transition

labels for global freshness. Recall that, in any transition q1
t,X,i,Z−−−−→ q2 of an r-FRA(S#0),

we have that X ∈ {⊛, ∅} ∪ {{j} | j ∈ [1, r]}, Z = ∅ and X = {j} implies i = 0. We thus
follow a simpler notation for transitions, with δ ⊆ Q× Σ× ([1, r] ∪ {i•, i⊛ | i ∈ [0, r] })×Q:

(a) we write each transition q1
t,{i},0,∅−−−−−→ q2 as q1

t,i−→ q2;

(b) and each q1
t,∅,i,∅−−−→ q2 as q1

t,i•−−→ q2;

(c) and each q1
t,⊛,i,∅−−−−→ q2 as q1

t,i⊛−−→ q2.

(a),(b) are as in RA(S#0). In (c), the automaton reads (t, a) if a is globally fresh, i.e. it has

not appeared in the history so far, and stores it in register i. Formally, q
t,i⊛−−→ q′ can induce

a transition (q, ρ,H)
t,a−→ (q′, ρ[i 7→ a], H ∪ {a}) just if a /∈ H.6

Assignment pre-updates. Recall the operations we introduced in Section 2.4 on partial
bijections and in particular the pre-composing of generalised swaps (i.e. [i ↔ j] with
i, j ∈ [0, r]). We extend this operation to register assignments by setting:

ρ[i↔ j] =

{
(i j); ρ if i, j ∈ [1, r]

ρ otherwise

We can then show the following.

Lemma 7.1. Given r-register assignments ρ1, ρ2 (of S-type) and i, i′, j, j′ ∈ [0, r]:

(1) [j ↔ j′](ρ1; ρ
−1
2 )[i↔ i′] = ρ1[i↔ i′]; ρ2[j ↔ j′]−1;

(2) for any a ∈ D such that a ∈ rng(ρ1) =⇒ a = ρ1(i
′) and a ∈ rng(ρ2) =⇒ a = ρ2(j

′)
we have [j ↔ j′]((ρ1; ρ

−1
2 )[i′ 7→ j′])[i↔ i′] = ρ1[i

′ 7→ a][i↔ i′]; ρ2[j
′ 7→ a][j ↔ j′]−1.

6The latter condition above is slightly different but equivalent to that used in [Tze11]. In loc. cit., the names
of ρ are not necessarily included in H and hence in this rule one stipulates that a /∈ rng(ρ) ∪H.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:29

7.1. Symbolic bisimulation. Recall that, in the case of RAs, we were able to capture
bisimilarity symbolically by using tuples of the form (q1, S1, σ, q2, S2), whereby Sk represented
dom(ρk) of the actual configuration (qk, ρk) being represented (for k = 1, 2), and partial
bijection σ : S1 → S2 captured the matching names of ρ1 and ρ2. Moving to FRAs, the
first obstacle we face is that actual configurations contain the full history of names and
have therefore unbounded size. For bisimulation purposes, though, keeping track of the
whole history, or its size, is not necessary. In fact, history only plays a role in globally fresh
transitions and one can easily see that the rule

“Every globally fresh transition from q1 must be matched by a globally or a
locally fresh transition from q2.”

is sound for simulation of globally fresh transitions.
However, global freshness leads to complications in the simulation of locally fresh

transitions. For example, consider configurations (q1, ρ1, H), (q2, ρ2, H) with H = {d1, d2}
and a transition q1

t,1•−−→ q′1. We look at three scenarios:

(1) If rng(ρ1) = {d1, d2}, then the transition from q1 can be matched by some q2
t,1⊛−−→ q′2, as

the local names of q1 coincide with all the names in H.
(2) If rng(ρ1) = {d1} and ρ2 = {(1, d2)}, then the transition from q1 cannot be matched by

some q2
t,1⊛−−→ q′2 alone, unless there is also a transition q2

t,1−→ q′′2 (to capture the fact

that q1
t,1•−−→ q′1 can produce d2).

(3) On the other hand, if rng(ρ1) = rng(ρ2) = {d1} then q2 must use a locally fresh transition
in order to match the transition from q1 (as the latter can produce d2).

More generally, if |H| > 2r then there will be some d ∈ H \ (rng(ρ1) ∪ rng(ρ2)), which
makes impossible for locally fresh transitions in one system to be matched by globally fresh
transitions in the other one.

Thus, under certain circumstances which include the fact that |H| ≤ 2r, local freshness
can be captured by global freshness and some known-name transitions. To accommodate this
feature, we will design symbolic bisimulations with an additional component h ∈ [0, 2r]∪{∞}
that will abstract the size of |H|. The value h =∞ will signify that |H| > 2r and therefore
local-fresh cannot be matched by global-fresh. On the other hand, h ≤ 2r will mean that
|H| = h ≤ 2r and therefore extra cases need to be considered for fresh transitions. For
h ≤ 2r, we will consider symbolic configurations (qi, Si) (i = 1, 2) where Si ⊆ [1, 3r] and
h = |Si|, related by bijections σ : S1 → S2.

• The component Si ∩ [1, r] of Si will still represent the domain of ρi.
• The complementary part Si \ [1, r] will represent the remaining names, those that have
passed but no longer reside in ρi (i.e. H \ rng(ρi)), in some canonical fashion.

Effectively, the above will allow us to symbolically represent the history of each FRA, up to
the size 2r, in an ordered way. It will also offer us a way to decide the simulation game for

locally fresh transitions. Let us suppose that one system performs a transition q1
t,i•−−→ q′1:

1. Such a transition can capture any name d that is represented in some i′ ∈ S1 \ [1, r]. If
σ(i′) ∈ [1, r] then the other system has the name in its registers and can (only) capture it

by some q2
t,σ(i′)−−−−→ q′2.



13:30 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

2. If σ(i′) ∈ S2 \ [1, r] then the name is historical and the other system does not currently
have it in its registers. It is therefore obliged to simulate by some locally fresh transition

q2
t,j•−−→ q′2.

3. The transition can also capture any name d that is not in H and, in this case, the other

system can capture it by any q2
t,j•/j⊛−−−−→ q′2. Moreover, such a simulation step would

increase the size of h by one.

We therefore formulate symbolic bisimulation as follows.

Definition 7.2. Let A = ⟨Q,Σ, δ⟩ be an r-FRA(S#0). We first set:

U0 = Q×P([1, 3r])×IS3r×Q×P([1, 3r])× ([0, 2r]∪{∞})

U = {(q1, S1, σ, q2, S2, h) ∈ U0 | σ ⊆ S1 × S2 ∧ (h ≤ 2r =⇒ |σ| = |S1| = |S2| = h)

∧ (h =∞ =⇒ σ ∈ ISr ∧ S1, S2 ⊆ [1, r])}
A symbolic simulation on A is a relation R ⊆ U , with membership (q1, S1, σ, q2, S2, h) ∈ R
often written (q1, S1)R

h
σ (q2, S2), such that all (q1, S1, σ, q2, S2, h) ∈ R satisfy the following

fresh symbolic simulation conditions (FSyS):7,8

(a) for all q1
t,i−→ q′1,

1. if σ(i) ∈ [1, r] then there is q2
t,σ(i)−−−→ q′2 with (q′1, S1)R

h
σ (q

′
2, S2),

2. if σ(i) = j′ ∈ [r+1, 3r] then there is q2
t,j•−−→ q′2 with (q′1, S1)R

h
[j↔j′]σ (q

′
2, S2[j ↔ j′]),

3. if i ∈ S1 \ dom(σ) then there is q2
t,j•−−→ q′2 with (q′1, S1)R

h
σ[i 7→j] (q

′
2, S2[j]);

(b) for all q1
t,i•−−→ q′1, i

′ ∈ S1 \ [1, r] and j ∈ S2 \ rng(σ),
1. if σ(i′) ∈ [1, r] then there is q2

t,σ(i′)−−−−→ q′2 with (q′1, S1[i↔ i′])Rh
σ[i↔i′] (q

′
2, S2),

2. if σ(i′) = j′ ∈ [r+1, 3r] then there is q2
t,j•−−→ q′2 with

(q′1, S1[i↔ i′])Rh
[j↔j′]σ[i↔i′] (q

′
2, S2[j ↔ j′]),

3. there exists q2
t,j−→ q′2 with (q′1, S1[i])R

h
σ[i 7→j] (q

′
2, S2);

(c) for all q1
t,ℓ1−−→ q′1 with ℓ1 ∈ {i•, i⊛} there is some q2

t,ℓ2−−→ q′2 with ℓ2 ∈ {j•, j⊛} and,
1. if h < 2r then, taking i′ = min([r+1, 3r] \ S1) and j′ = min([r+1, 3r] \ S2), we have

(q′1, S1[i
′][i↔ i′])Rh+1

[i↔i′](σ[i′ 7→j′])[j↔j′] (q
′
2, S2[j

′][j ↔ j′]);

2. if h = 2r then (q′1, S1[i] ∩ [1, r])R∞
σ[i 7→j]∩[1,r]2 (q

′
2, S2[j] ∩ [1, r]);

3. if h =∞ then (q′1, S1[i])R
∞
σ[i 7→j] (q

′
2, S2[j]) and if ℓ1 = i• then ℓ2 = j•.

Define the inverse of R by:

R−1 = { (q2, S2, σ
−1, q1, S1, h) | (q1, S1, σ, q2, S2, h) ∈ R }

and call R a symbolic bisimulation if both R and R−1 are symbolic simulations. We let

s-bisimilarity, denoted
s∼, be the union of all symbolic bisimulations.

We define a sequence of indexed bisimilarity relations
i∼ ⊆ U inductively as follows. We

7We say that (q1, S1, σ, q2, S2, h) satisfies the (FSyS) conditions in R.
8Note how the (FSyS) conditions are divided with respect to the value of h: conditions (a2), (b1), (b2), (c1)
and (c2) all require h ≤ 2r; while conditions (a3), (b3) and (c3) are for h = ∞. On the other hand, (a1)
applies to all h.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:31

let
0∼ be the whole of U . Then, for all i ∈ ω and h ∈ [0, 2r]∪{∞}, (q1, S1) (

i+1∼ )hτ (q2, S2) just

if both (q1, S1, τ, q2, S2, h) and (q2, S2, τ
−1, q1, S1, h) satisfy the (FSyS) conditions in

i∼.

Let κi = (qi, ρi, H) (i = 1, 2) be configurations with common history H and let n = |H|.
Their symbolic representation will depend on n. We take symb(κ1, κ2) ⊆ U to be:

symb(κ1, κ2) =

{
{(q1, dom(ρ̂1), ρ̂1; ρ̂

−1
2 , q2, dom(ρ̂2), n) ∈ U | θ(ρ̂1, ρ̂2)} n ≤ 2r

{(q1, dom(ρ1), ρ1; ρ
−1
2 , q2, dom(ρ2),∞)} n > 2r

where θ(ρ̂1, ρ̂2) is the condition stipulating that ρ̂i range over all 3r-register assignments of
type S#0 such that rng(ρ̂i) = H and ρ̂i ↾ [1, r] = ρi, for i = 1, 2. In particular, symb(κ1, κ2)
is singleton in case n > 2r but not necessarily so if n ≤ 2r. The following lemma ensures
that, with respect to bisimilarity, the specific choice of element from symb(κ1, κ2) is not
important.

Lemma 7.3. For all κ1, κ2 as above, if |H| < 2r then either symb(κ1, κ2) ⊆
s∼ or

symb(κ1, κ2) ∩
s∼ = ∅.

Definition 7.4. We say that κ1 and κ2 are s-bisimilar, written κ1
s∼ κ2, if symb(κ1, κ2) ⊆

s∼.
Remark 7.5. The definition of symbolic bisimulation we give here is substantially more
fine-grained than the one in [Tze11]. Although in loc. cit. the symbolic bisimulation
is also given parametrically to the size of the history h (up to the given bound9), for
h ≤ 2r that formulation is simplistic in that it only keeps track of names that reside in
registers of the automata,10 which in turn prohibits us to derive (q1, S1)R

h
σ1;σ2

(q3, S3) from

(q1, S1)R
h
σ1

(q2, S2) and (q2, S2)R
h
σ2

(q3, S3) and apply the group-theoretic approach.

Using the intuition described above about the bounded representation of histories, we
can show the following correspondence. Similarly to Lemma 4.5, the proof of the next lemma
is based on matching concrete and symbolic bisimulations and doing a careful, if somewhat
tedious, case analysis of possible transitions in each case.

Lemma 7.6. Let κ1 and κ2 be configurations of an r-FRA(S#0). Then κ1 ∼ κ2 ⇐⇒ κ1
s∼

κ2.

Lemma 7.7. For all i ∈ ω,
i+1∼ ⊆ i∼ and (

⋂
i∈ω

i∼) = s∼.
Similarly to symbolic bisimulations for RA(S#0), we have the following closure properties.

Given R ⊆ U we split R into components:

R =
∑

h∈[0,2r]∪{∞}
Rh

where Rh = {(q1, S1, σ, q2, S2) | (q1, S1, σ, q2, S2, h) ∈ R}. We now write Cl(R) for the
componentwise closure of R with respect to identity, symmetry, transitivity and extension
of partial permutations, i.e. Cl(R) =

∑
h∈[0,2r]∪{∞}Cl(R

h).

The following lemma will play a key role in the forthcoming technical development. It is
proved similarly to Lemma 4.8, i.e. by showing that the (FSyS) rules are compatible with
the closure rules. While the proof is longer, there is no essential novelty: the approach is
similar, only the case analysis required is more extensive.

9In fact, the bound used in [Tze11] is smaller (2r−1), due to the fact that it examines bisimulation between
configurations with common initial names.
10that is, in (q1, S1)R

h
σ (q2, S2) we always have S1, S2 ⊆ [1, r].



13:32 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Lemma 7.8. Let R,P ⊆ U . If all g ∈ R ∪R−1 satisfy the (FSyS) conditions in P then all
g ∈ Cl(R) satisfy the (FSyS) conditions in Cl(P ).

Proposition 7.9. Symbolic bisimilarity and indexed symbolic bisimilarity for FRA(S#0)
are closed.

(1) Cl(
s∼) = s∼ ;

(2) for all i ∈ ω:
i∼ = Cl(

i∼).

Proof. For Cl(
s∼) = s∼, since s∼ is symmetric and satisfies the (FSyS) conditions in itself,

from the previous lemma we have that Cl(
s∼) satisfies the (FSyS) conditions in itself and is

therefore a symbolic bisimulation. Thus, Cl(
s∼) ⊆ s∼.

For Cl(
i∼) = i∼ we do induction on i. When i = 0 then the result follows from the fact

that
0∼ is the universal relation. For the inductive case, note first that

i+1∼ is symmetric by

construction and all g ∈ i+1∼ satisfy the (FSyS) conditions in
i∼. Hence, by Lemma 7.8,

all elements of Cl(
i+1∼ ) satisfy the (FSyS) conditions in Cl(

i∼). By IH, Cl(
i∼) =

i∼ so

Cl(
i+1∼ ) ⊆ i+1∼ , as required.

More explicitly, the last part of Proposition 7.9 means that, given (q1, S1) (
i∼)hτ (q2, S2):

(1) Then, (q2, S2) (
i∼)hτ−1 (q1, S1).

(2) For all τ ′, if τ ≤S1,S2 τ ′ then (q1, S1) (
i∼)hτ ′ (q2, S2).

(3) For all (q2, S2) (
i∼)hτ ′ (q3, S3), (q1, S1) (

i∼)hτ ;τ ′ (q3, S3).

We therefore observe that the extension of symbolic representations to the size 3r, and
the ensuing history representation up to size 2r along with the extended symbolic bisimulation
conditions, have paid off in yielding the desired closure properties. The group-theoretic
behaviour of a closed relation R differs between different components:

• R∞ has the same structure as the closed relations R examined in Section 4.2.
• For h ∈ [0, 2r], the tuples (q1, S1, σ, q2, S2) ∈ Rh respect the condition |S1| = |S2| = |σ| = h.
In particular, σ is a bijection from S1 to S2 and, hence, in this case closure under
extension is trivial, and so are characteristic sets (Xp

S(R
h) = S). Moreover, σ ∈ IS3r and

S1, S2 ⊆ [1, 3r].

We can hence see that the same groups arise as in the case of RA(S#0), and actually simpler
in the case h ∈ [0, 2r], albeit parameterised over h. This allows for a similar group-theoretic
treatment.

7.2. PSPACE bound for bisimulation game. Before we come to the proof of the main
result, recall Theorem 4.11 which says that, for n ≥ 2, the length of every subgroup chain in
S[1,n] is at most 2n− 3.

Lemma 7.10. Let h ∈ [0, 2r] ∪ {∞}, S1, S2 ⊆ [1, 3r] and Uh
S1,S2

= Q× {S1} × ISr ×Q×
{S2}×{h}. Then the sub-chain { i∼ | (i+1∼ ∩ Uh

S1,S2
) ⊊ (

i∼ ∩ Uh
S1,S2

)} has size O(|Q|2+r2|Q|).

Proof. We argue that { i∼ | (i+1∼ ∩ Uh
S1,S2

) ⊊ (
i∼ ∩ Uh

S1,S2
)} has at most |Q|2 + r2|Q| − 2r|Q|

elements. We shall say that (q1, S1, h, q2, S2) is separated in
i∼ if there is no σ such that



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:33

(q1, S1) (
i∼)hσ (q2, S2); we say it is unseparated otherwise. We claim that if (

i+1∼ ∩ Uh
S1,S2

) ⊊

(
i∼ ∩ Uh

S1,S2
) then there is some q ∈ Q and S ∈ {S1, S2} such that

(i) either Xq
S((

i∼)h) ⊊ Xq
S((

i+1∼ )h)

(ii) or GqS(
i+1∼ h) is a strict subgroup of GqS(

i∼h)

(iii) or there is a tuple (q1, S1, h, q2, S2) that is unseparated in
i∼ and becomes separated

in
i+1∼ .

We reason as follows. If (
i+1∼ ∩ Uh

S1,S2
) ⊊ (

i∼ ∩ Uh
S1,S2

) then there are q1, q2 ∈ Q and σ

such that (q1, S1) (
i∼)hσ (q2, S2) but not (q1, S1) (

i+1∼ )hσ (q2, S2). From closure properties

for
i∼, i+1∼ it follows that (q1, S1) (

i∼)hσ′ (q2, S2) and not (q1, S1) (
i+1∼ )hσ′ (q2, S2), where σ′ =

σ ∩ (Xq1
S1
((

i∼)h)×Xq2
S2
((

i∼)h)). Consequently, we can assume wlog that dom(σ) = Xq1
S1
((

i∼)h)
and rng(σ) = Xq2

S2
((

i∼)h). Now, suppose that, for all q ∈ Q, S ∈ {S1, S2}, we have

Xq
S((

i+1∼ )h) = Xq
S((

i∼)h) (i.e. not (i)) and that no previously unseparated tuple becomes

separated in
i+1∼ ∩ Uh

S1,S2
(i.e. not (iii)). From the latter, It follows that there is some τ

such that (q1, S1) (
i+1∼ )hτ (q2, S2). Hence, σ; τ

−1 ∈ Gq1S1
(h, i) but σ; τ−1 /∈ Gq1S1

(h, i+ 1) so that

Gq1S1
((

i∼)h) > Gq1S1
((

i+1∼ )h).

Because Xq
S((

i∼)h) ⊆ Xq
S((

i+1∼ )h), (i) may happen at most 2r|Q| times in the whole

chain. For fixed Xq
S((

i∼)h), by Theorem 4.11, (ii) may happen at most 2r − 2 times (we
include the case r = 1), which gives an upper bound of 2r|Q|(2r − 2) for the number of
such changes inside the whole chain (under the assumption that the changes are not of
type (i), which have already been counted). Finally, the remaining changes must be of
type (iii) and may happen at most |Q|2 times across the whole chain. Overall, we obtain
2r|Q|+ 2r|Q|(2r − 2) + |Q|2 = |Q|2 + 4r2|Q| − 2r|Q| as a bound on the length of the given
chain.

Given S1, S2 ⊆ [1, 3r] and h ∈ [0, 2r]∪ {∞}, let us call the triple (S1, S2, h) proper just
if: either |S1| = |S2| = h, or h =∞ and S1, S2 ⊆ [1, r]. For such (S1, S2, h), let us define:

γ̂(S1, S2, h) =

{
γ(S1 ∩ [1, r], S2 ∩ [1, r]) + h if h ∈ [0, 2r]

γ(S1, S2) + 2r + 1 if h =∞

The measure γ̂ enables us to show the following bound for stabilising indexed bisimulation,
proven similarly to Lemma 4.17.

Lemma 7.11. Let ℓ be the bound from Lemma 7.10 and B = (4r + 2)ℓ. For any proper

(S1, S2, h), we have
B∼ ∩ Uh

S1,S2
=

s∼ ∩ Uh
S1,S2

.

Proof. Observe that 0 ≤ γ̂(S1, S2, h) ≤ 4r + 1. For each m ∈ [0, 4r + 1], let

km = min{i | i∼ ∩ Uh
S1,S2

=
s∼ ∩ Uh

S1,S2
for any S1, S2, h with γ̂(S1, S2, h) ≥ m}.

Consider S1, S2, h with γ̂(S1, S2, h) ≥ m, where m < 4r + 1.

Observe that, for k ≥ km+1, if
k∼ ∩ Uh

S1,S2
=

k+1∼ ∩ Uh
S1,S2

, then we must have
k∼

∩ Uh
S1,S2

=
s∼ ∩ Uh

S1,S2
, because the (FSyS) conditions for (S1, S2, h) refer to either (S1, S2, h)



13:34 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

or (S′
1, S

′
2, h

′) with γ̂(S′
1, S

′
2, h

′) > γ̂(S1, S2, h). Consequently, if
k∼ ∩ Uh

S1,S2
̸= s∼ ∩ Uh

S1,S2
,

the sequence (
k∼ ∩ Uh

S1,S2
) (k = km+1, km+1 + 1, · · · ) must change in every step before

stabilisation. By Lemma 7.10, at most ℓ extra steps from
km+1∼ will be required to arrive

at
s∼ ∩ Uh

S1,S2
, which implies km ≤ km+1 + ℓ. By a similar argument, we can conclude that

k4r+1 ≤ ℓ. Consequently, k0 ≤ (4r + 2)ℓ, as required.

We can therefore establish solvability in polynomial space.

Proposition 7.12. For any FRA(S#0) bisimulation problem, if there is a winning strategy
for Attacker then there is one of depth O(r|Q|2 + r3|Q|).

Proposition 7.13. ∼-FRA(S#0) is in PSPACE.

7.3. Generating systems and NP routines. We proceed to generating systems for
FRA(SF ), which are h-parameterised versions of the ones for RA(SF ), except that now
they are built over [1, 3r] rather than [1, r]. Since we again consider only characteristic sets

and groups with relation parameter R =
s∼, we will typically leave this argument implicit in

what follows. We call a pair (S, h) proper just if (S, S, h) is proper.

Definition 7.14. A generating system GS,h for proper (S, h) (in which case |S| ≤ 2r),
consists of:

• a partitioning of Q into P1, · · · , Pk;
• for each partition Pi, a single representative pi ∈ Pi and:
– a characteristic set Xpi

S,h ⊆ S;

– a set Gpi
S,h, of up to max(2,r) permutations σ ∈ SXpi

S,h
;

– for each q ∈ Pi \ {pi}, a partial permutation raypiq ∈ ISS such that dom(raypiq ) = Xpi
S,h;

for technical convenience, we also add raypipi = idXpi
S,h

.

We write rep(GS,h) for the set {p1, · · · , pk} of representatives.
From GS,h we generate gen(GS,h) ⊆ (Q× {S} × IS3r ×Q× {S}) by setting

BASEGS,h
= {(pi, S, σ, pi, S) | pi ∈ rep(GS,h) ∧ σ ∈ Gpi

S,h}
∪ {(pi, S, raypiq , q, S) | pi ∈ rep(GS,h) ∧ q ∈ Pi}

and taking gen(GS,h) = Cl(BASEGS,h
).

The following lemma, proved in the same way as Lemmata 6.3 and 6.4, enables us to
prove an NP upper bound for bisimilarity in FRA(SF ).

Lemma 7.15. (1) For any proper (S, h) there exists a generating system GS,h such that

gen(GS,h) =
s∼ ∩ Uh

S,S.

(2) For any generating system GS,h, membership in gen(GS,h) can be determined in polynomial
time.

Theorem 7.16. ∼-FRA(SF ) is in NP.

Proof. Given an input tuple (q1, S1, σ, q2, S2, h
0), note first that [1, r] ⊆ S1, S2 (by F ) and

|S1| = |S2|. We can therefore convert it to an equivalent (q1, S
′
1, σ

′, q2, S2, h
0), with S′

1 = S2,
by applying a permutation on the indices in S1 \ [1, r]. Hence, we can assume wlog that our
input is some (q1, S

0, σ, q2, S
0, h0). Moreover, because the expansion of S in the symbolic



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:35

bisimulation game (when h ∈ [0, 2r]) always occurs in its first free register (min([r+1, 3r]\S)),
we can compute the sequence (S0, h0, S0), (S1, h0+1, S1), · · · of distinct triples considered in
the game (in the h ∈ [0, 2r] phase), which must thence be bounded in length by 2r. Including
the final bisimulation phase (h = ∞), this gives us 2r + 1 phases. We first generate for
each of them a generating system, say GSi,hi , and then verify whether each gen(GSi,hi) is a
symbolic bisimulation, similarly to Theorem 6.5. Note that each such check can be achieved
in polynomial time. If the guess leads to some gen(GSi,hi) being a non-symbolic-bisimulation,
we return NO. Otherwise, we use another membership test for gen(GS0,h0) to check whether
the given instance of the bisimilarity problem belongs to gen(GS0,h0). We return the outcome
of that test as the final result.

8. Visibly pushdown automata with single assignment and filled registers
(VPDRA(SF ))

Finally, we consider a variant of register automata with visible pushdown storage [AM04].
We only consider the most restrictive register discipline (SF ), as undecidability will be
shown to apply already in this case.

Definition 8.1. A visibly pushdown r-register automaton (r-VPDRA(SF )) A is a
tuple

⟨Q,ΣC ,ΣN ,ΣR,Γ, δ⟩,
where:

• Q is a finite set of states;
• ΣC , ΣN , ΣR are disjoint finite sets of push-, no-op- and pop-tags respectively;
• Γ is a finite set of stack tags;
• δ = δC ∪ δN ∪ δR, the transitions, have Lab = {1, . . . , r} ∪ {1•, . . . , r•} and:
◦ δC ⊆ Q× ΣC × Lab× Γ× {1, · · · , r} ×Q
◦ δN ⊆ Q× ΣN × Lab×Q
◦ δR ⊆ Q× ΣR × Lab× Γ× {1, · · · , r, •} ×Q

Configurations of r-VPDRA(SF ) are triples (q, ρ, s), where q ∈ Q, ρ is a register assignment

and s ∈ (Γ × D)∗ is the stack. An LTS arises by having a labelled edge (q1, ρ1, s1)
(t,d)−→

(q2, ρ2, s2) just if there exist i ∈ [1, r] and l ∈ {i, i•} such that:

(1) ρ1(x) = ρ2(x) for all x ̸= i;
(2) if l = i then ρ1(i) = ρ2(i), otherwise ρ2(i) ̸∈ rng(ρ1);

and (iii) one of the following conditions holds:

• (q1, t, l, t
′, j, q2) ∈ δC and s2 = (t′, ρ2(j))s1,

• (q1, t, l, q2) ∈ δN and s2 = s1,
• (q1, t, l, t

′, j, q2) ∈ δR, s1 = (t′, d′)s2,

where if j ∈ [1, r] then d′ = ρ2(j), otherwise d′ ̸∈ rng(ρ2).

We show that even the visibly pushdown with SF register discipline is undecidable. To
do so, we reduce from the undecidable emptiness problem for (one-way) universal register
automata with two registers (URA2) [DL09].



13:36 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Definition 8.2 [DL09]. A one-way universal n-register automaton (URAn) is a tuple
⟨Σ, Q, qI , n, δ⟩ such that Σ is a finite alphabet, Q is a finite set of states, qI ∈ Q is the initial
state and δ : Q→ ∆(Σ, Q, n) is the transition function, where

∆(Σ, Q, n) = {⊥, ⊤, q ∧ q′, q ◁ β ▷ q′, Xq, Xq, ↓r q
| q, q′ ∈ Q, r ∈ {1, · · · , n}, β ∈ B(Σ, n) }

B(Σ, n) = {a, end} ∪ {↑r | r ∈ {1, · · · , n}}

The emptiness problem for URA2 is undecidable [DL09]. We shall reduce it to bisimilarity
testing. We first sketch the argument and then later give all the details.

Given a URA2 U , we shall devise a 2-VPDRA AU with two configurations κ1, κ2 such
that U accepts a word iff κ1 ̸∼ κ2. AU is constructed to induce a bisimulation game in which
Attacker gets a chance to choose a word to be accepted by U and simulate an accepting
run (if one exists). It consists of two nearly identical components, which are linked by the
Defender Forcing circuit in places. Other differences between them stem from the need to
arrange for non-bisimilarity, in cases when the bisimulation game reaches a stage indicating
acceptance or Attacker tried to cheat while simulating a run. We sketch the design of the
components.

Input stage. Initially, we want Attacker to start choosing input letters and pushing them on
the stack. This is to continue until Attacker decides to finish the input phase. Defender
will simply copy the moves in other component. Technically, both kinds of choices can
be implemented by deterministic push transitions that cover the range of input in both
components. Observe that, in order to win (uncover non-bisimilarity), Attacker will eventually
need to abandon the input stage to avoid infinite copying.

Transitions. Once the input phase is over, the automaton enters the simulation stage. Recall
that the input word chosen by Attacker will be available on the stack in both components.
The top of the stack will play the role of the head of U and we can use the two registers of
AU to emulate the two registers of U . To make transitions, we need to be able to access the
tag at the top of the stack as well as compare the corresponding data value with the content
of registers. The only way of inspecting the top of the stack is by popping, but then we
could lose the data value if it does not already occur in a register (the value might be needed
later, e.g. the automaton might want to move it into a register). To avoid such a loss, we
will let Attacker guess the outcome of the comparisons. However, Defender will be allowed
to verify the correctness of such guesses (via Defender Forcing). During the verification the
top of the stack will indeed be popped, but we shall be no longer concerned about losing
it, because it will survive in a different branch of the game, which will carry on simulating
the run. In order to implement the detection of incorrect guesses, we will need to break
symmetry between the components and arrange for non-bisimilarity if Attacker’s guess is
correct.

Universal states. To simulate these, we can delegate the choice to Defender through Forcing.
This will allow Defender to direct the game towards a failing branch, if one exists.

Head movements. To advance the tape, we simply use one of the pop-instructions.

Register reassignment. To move the currently scanned data value into a register, let us
assume that the symbol is not in a register yet. Then we can refresh the content of the
relevant register (to guess the data value at the top of the stack) and then perform a pop.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:37

Note that a wrong guess by Attacker will lead to a deadlock (no ability to pop), which gives
Attacker the necessary incentive to guess correctly.

Accepting/rejecting states. If the simulation reaches a rejecting state, we arrange for
bisimilarity (to attract Defender there). In accepting states, we arrange non-bisimilarity.

Theorem 8.3. VPDRA(SF) bisimiliarity is undecidable.

Proof. Given a URA2 U = ⟨Σ, Q, qI , 2, δ⟩, we shall construct a 2-VRPDA AU such that
κ1 ∼ κ2 if and only if U does not accept any input, where κj = (init j , τI , ϵ) (j = 1, 2) and
init1, init2 are states. AU will be constructed so as to induce a bisimulation game in which
Attacker gets a chance to choose a word to be accepted and simulate an accepting run (if
one exists). Without loss of generality, we shall assume injectivity of register assignments
and that, whenever ↓r is used, the D-value on the tape is not present in registers (these
conditions can be enforced by modifying the transition function with the help of the finite
control and appropriate book-keeping). Moreover, to avoid complications with borderline
cases, we shall assume that U does not accept the empty word.
AU will consist of two mostly identical components involving superscripted states from U

as well as a number of auxiliary states implicit in the definitions below. The only connections
between the two components will be due to the use of the Defender Forcing circuit. The only
differences between the components will stem from the need to arrange for non-bisimilarity,
in cases when the bisimulation game reaches a stage indicating acceptance or when Attacker
makes a simulation mistake.

Below we explain the design of AU at various stages of simulating U . We use arrows to
define transitions according to the following conventions.

• q1
(t,l)/(t′,j)// q2 stands for (q1, t, l, t

′, j, q2) ∈ δC

• q1
(t,l) // q2 stands for (q1, t, l, q2) ∈ δN

• q1
(t,l),(t′,j)// q2 stands for (q1, t, l, t

′, j, q2) ∈ δR

Given q ∈ Q, we write qj (j = 1, 2) for its superscripted variants to be included in AU . We
shall rely on the following sets of tags.

ΣC = {⊥}+Σ
ΣN = {t0, t1, t2}
ΣR = {tR}

For the stack alphabet, we shall have Γ = ΣC .

We start off by introducing new states init1, init2 that will be used to start the initial
phase in which Attacker can choose an input word and push it on the stack.

Input Phase. When drawing a diagram featuring states superscripted with j, we mean to
say that two copies of the design should be included into AU , one for j = 1 and another for
j = 2. We use ◦, □,△, ⋄,⊙ to indicate auxiliary states to be included in each component.
We shall reuse them in different cases on the understanding that they refer to different states
in each case.



13:38 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

init j

(⊥,1)/(⊥,1)
��
◦j

(t0,1•)
��

(a,1)/(a,1)





(a,2)/(a,2)

uu

□j

(a,1)/(a,1)
��
△j

(t0,1•)
��

(t0,1)

44

⋄j

(t0,2•)
��
⊙j

||   
test j qjI

a ranges over Σ above. Consequently, if the bisimulation game starts from (κ1, κ2) then the
above design gives Attacker a chance to pick a data word and push it on the stack. The three
outgoing transitions from state ◦j correspond to (from left to right) Attacker picking for the
next data value: a fresh data value not currently in either register, the data value currently
stored in register 1 or the data value currently stored in register 2. The stack content in
both copies will be the same. Attacker also decides when to end the input selection phase
and proceed to (⋄1, ⋄2). The transition sequence (t0, 1

•)(t0, 2
•) is intended to give Attacker

a chance to pick the right initial register assignment to support the simulation. For a match
with URA, we need the initial values to be different from any data values present in the
selected input word. Once Attacker generates the values and (⊙1,⊙2) is reached, Defender
will have an option to challenge the choice or to proceed with the simulation to (q1I , q

2
I ). This

will be achieved through Defender Forcing, represented by dashed lines. We shall return to
the exact design of test j , after we apply Defender Forcing in simpler cases.

The subsequent part of the construction corresponds to checking that the selected word
is accepted (we want Attacker to win iff this is the case). We analyze each kind of transition
in turn.

Transitions.

δ(q) = ⊥ (rejection).

qj

We do not add any transitions from q1 or q2. This ensures bisimilarity, should the game
enter configurations with states q1, q2 respectively.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:39

δ(q) = ⊤ (acceptance).

q1

(t0,1)
��
◦1

q2

Note that we do not add any transitions from q2 in order to generate non-bisimilar
configurations.

δ(q) = q1∧ q2 (universal choice). We will let Defender choose the state (q1 or q2) that should
be pursued. Note that this is consistent with the goal of relating emptiness with bisimilarity.
To that end, we use the Defender Forcing circuit from Section 2.1 (Figure 4). Recall that
in order for the technique to work with VPDRA, we need to be sure that the stacks and
registers are used in the same way by each of the components. This is an easily verifiable
property of our constructions. In order to implement DF we need two different labels, e.g.
(t1, 1) and (t2, 1).

For brevity, in what follows, we shall write

q

�� ��
q1 q2

to refer to the use of DF (q1, q2, (t1, 1), (t1, 1), (t2, 1), q
1
1, q

2
1, q

1
2, q

2
2).

δ(q) = q1 ◁ β ▷ q2. Here we shall let Attacker choose between q1 and q2 but the Defender
will later be able to challenge the decision (and check whether it is consistent with β). For
this purpose we use

qj

(t1,1)

||

(t2,1)

$$
◦jL

�� ��

◦jR

�� ��

βj qj1 ¬βj qj2

where β1, β2,¬β1,¬β2 will be constructed so that the first two induce bisimilarity iff β fails
and the last two induce bisimilarity iff β holds. We do case analysis on β.

β = a (stack tag comparison). To handle βj , we introduce

βj

(tR,1),(a,2)
��

(tR,1),(a,1)

,,

(tR,1),(a,•)

qq◦j



13:40 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

and

◦1

(t0,1)
��

□1

We explain the idea behind this first gadget, the rest are similar. If Defender was correct to
challenge Attacker because Attacker cheated, i.e. the letter under the head (top of stack)
is not tagged by a (despite Attacker’s claim), then Attacker will not be able to play any
transition from βj and hence Defender will win. If Defender challenged Attacker incorrectly,
then Attacker will be able to play exactly one of the transitions, according to the current
register assignment, and Defender will copy the move. However, in the following move
Attacker will win, since Attacker will play the only transition out of ◦1 and Defender cannot
match this in ◦2, since it has no available transitions.

For ¬βj we can take

¬βj

(tR,1),(a′,2)
��

(tR,1),(a′,1)

,,

(tR,1),(a′,•)

qq◦j

where a′ ranges over Σ \ {a}, and:

◦1

(t0,1)
��

□1

β =↑r (stack D-value comparison). To handle βj , we introduce

βj

(tR,1),(a,r)
��
◦j

with a ranging over Σ, and:

◦1

(t0,1)
��

□1

For ¬βj we can take

¬βj

(tR,1),(a,3−r)

((

(tR,1),(a,•)

vv◦j



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:41

with a ranging over Σ, and

◦1

(t0,1)
��

□1

β = end (last tape-symbol). To handle βj , we introduce

βj

(tR,1),(a,2)
��

(tR,1),(a,1)

,,

(tR,1),(a,•)

qq□j

with a ranging over Σ,

□j

(tR,1),(⊥,2)
��

(tR,1),(⊥,1)

,,

(tR,1),(⊥,•)

qq◦j

and:

◦1

(t0,1)
��
△1

For ¬βj we can take

¬βj

(tR,1),(a,2)
��

(tR,1),(a,1)

,,

(tR,1),(a,•)

qq□j

with a ranging over Σ,

□j

(tR,1),(a,2)
��

(tR,1),(a,1)

,,

(tR,1),(a,•)

qq◦j

with a ranging over Σ again, and:

◦1

(t0,1)
��
△1



13:42 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

δ(q) =↓r q1. We add

qj

(t0,r•)
��

□j

�� ��
βj qj1

and also add outgoing transitions for βj , as for the case β =↑r. Note that the arrangement
forces Attacker to guess the D-value stored on top of the stack (and place it in register r).

Freshness testing (test j). We design test1 and test2 in such a way that they will lead to
non-bisimilarity iff Attacker guessed an initial register assignment that does not contain any
data values encountered during the input phase. a ranges over Σ.

test1 (tR,1),(a,•)gg

(tR,1),(⊥,•)
��
⋄1

test2 (tR,1),(a,•)gg

δ(q) = Xq1 (move head right/reject). To take advantage of previous cases, we represent the
transition as u1 ◁ end ▷ u2 with δ(u1) = ⊥ and δ(u2) = Xq1. This makes sure that X is only
invoked when we are not at the end of the word. Consequently, we can reuse the previous
constructions for u1 ◁ β ▷ u2 and ⊥ cases. To handle u2, we can now add

uj2

(tR,1),(a,2)
��

(tR,1),(a,1)

,,

(tR,1),(a,•)

rrqj1

with a ranging over Σ.

δ(q) = Xq1 (move head right/accept). This is nearly the same as the previous case: now we
decompose the transition into u1 ◁ end ▷ u2 with δ(u1) = ⊤ and δ(u2) = Xq1.

Altogether, we obtain κ1 ∼ κ2 if and only if U does not accept any words. This implies
Theorem 8.3.

The argument above also reduces URA1 emptiness to 1-VPDRA, which implies a
non-primitive-recursive lower bound for 1-VPDRA.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:43

9. Conclusion

We have demonstrated bounds on the bisimilarity problem for broad classes of (fresh-)register
automata, which include those studied in the literature. The ability to start with empty
registers, erase their contents (or equivalently, store duplicate values) and use of a stack all
affect the inherent problem complexity. Global freshness, however, does not seem to affect
complexity. Except for the SF discipline, all bounds are tight.

Although our problem formulation is with respect to two configurations of a single
automaton, extending our results to problems concerning two automata is unproblematic. If
the automata have different numbers of registers, the game can be played on an automaton
with a number equal to the larger of the two, with additional registers initialised (and left)
empty. Even in F register disciplines our arguments show that, since these extra registers are
never assigned to, the system can be treated as a #0 system without change in complexity.

Acknowledgments

We would like to thank M. Jerrum, R. Gray, J. Mitchell and M. Beaudry for useful discussions
regarding computational group theory. We are also grateful to the anonymous referees for
many helpful suggestions. The research was supported by the Engineering and Physical
Sciences Research Council (EP/J019577/1, EP/L022478/1) and the Royal Academy of
Engineering (RF 10216/111).

References

[AM04] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of STOC’04, pages
202–211. ACM, 2004.

[Bab86] L. Babai. On the length of subgroup chains in the symmetric group. Commun. Algebra, 14(9):1729–
1736, 1986.

[BGKM13] M. Benedikt, S. Göller, S. Kiefer, and A. S. Murawski. Bisimilarity of pushdown automata is
nonelementary. In Proceedings of LICS, pages 488–498. IEEE Computer Society, 2013.

[BKL14] M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. LMCS, 10(3), 2014.
[BT00] M. Boreale and L. Trevisan. A complexity analysis of bisimilarity for value-passing processes.

Theor. Comput. Sci., 238(1-2):313–345, 2000.
[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
[CM10] V. Ciancia and U. Montanari. Symmetries, local names and dynamic (de)-allocation of names.

Inf. Comput., 208(12):1349 – 1367, 2010.
[DL09] S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans.

Comput. Log., 10(3), 2009.
[FHL80] M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for permutation groups.

In Proceedings of FOCS, pages 36–41. IEEE Computer Society, 1980.
[GDPT13] R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification based on

register automata. In Proceedings of TACAS, volume 7795 of LNCS, pages 260–276. Springer,
2013.

[JP93] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-finite-state
programs. Inf. Comput., 107(2):272–302, 1993.

[JS08] P. Jančar and J. Srba. Undecidability of bisimilarity by defender’s forcing. J. ACM, 55(1), 2008.
[JS19] P. Jančar and S. Schmitz. Bisimulation equivalence of first-order grammars is ACKERMANN-

complete. In Proceedings of LICS, pages 1–12. IEEE, 2019.
[KF94] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–363,

1994.
[Koz77] D. Kozen. Lower bounds for natural proof systems. In Proceedings of FOCS, pages 254–266.

IEEE Computer Society, 1977.



13:44 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

[LP82] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation. Theor. Comput.
Sci., 19:161–187, 1982.

[MN87] A. McIver and P. M. Neumann. Enumerating finite groups. Quart. J. Math. Oxford Ser., 38(4):473–
488, 1987.

[MP97] U. Montanari and M. Pistore. An introduction to history dependent automata. Electr. Notes
Theor. Comput. Sci., 10, 1997.

[MRT14] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Reachability in pushdown register automata.
In Proceedings of MFCS, volume 8634 of LNCS, pages 464–473. Springer, 2014.

[MRT15] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Bisimilarity in fresh-register automata. In
Proceedings of LICS, pages 156–167. IEEE Computer Society, 2015.

[MRT18] A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Polynomial-time equivalence testing for
deterministic fresh-register automata. In Proceedings of MFCS, volume 117 of LIPIcs, pages
72:1–72:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[NSV04] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Log., 5(3):403–435, 2004.

[Pis99] M. Pistore. History Dependent Automata. PhD thesis, University of Pisa, 1999.
[Pit13] A. M. Pitts. Nominal Sets. CUP, 2013.
[Sak98] H. Sakamoto. Studies on the Learnability of Formal Languages via Queries. PhD thesis, Kyushu

University, 1998.
[Seg06] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In Proceedings of

CSL, volume 4207 of Lecture Notes in Computer Science. Springer, 2006.
[Sén05] G. Sénizergues. The bisimulation problem for equational graphs of finite out-degree. SIAM J.

Comput., 34(5):1025–1106, 2005.
[SI00] H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory automata. Theor.

Comput. Sci., 231(2):297–308, 2000.
[Srb06] J. Srba. Visibly pushdown automata: From language equivalence to simulation and bisimulation.

In Proceedings of CSL, volume 4207 of Lecture Notes in Computer Science, pages 89–103. Springer,
2006.

[Srb08] J. Srba. Roadmap of infinite results. http://www.brics.dk/~srba/roadmap/, 2008.
[Tze11] N. Tzevelekos. Fresh-register automata. In Proceedings of POPL, pages 295–306. ACM Press,

2011.

Appendix A. Proofs from Section 3

Given d, d′ ∈ D, let us write (d d′) for the bijection on D defined as:

(d d′)(x) =


d′ if x = d

d if x = d′

x otherwise

In what follows, we will consider various finite sets that involve elements of D, e.g. finite
subsets of D, register assignments and tuples thereof. Given such a finite set X, we write
(d d′) ·X for the result of applying (d d′) recursively to the elements of X. Put otherwise,
(d d′) ·X will be X, where d and d′ have been swapped.11 In particular,

• if X does not involve names, then (d d′) ·X = X;
• if X ⊆ D, then (d d′) ·X = {(d d′)(x) | x ∈ X};
• if X is some register assignment, then (d d′) ·X = {(i, (d d′)(X(i))) | X(i) ∈ D}∪{(i,#) |
X(i) = #};
• if X is some tuple (X1, . . . , Xn) then (d d′) ·X = ((d d′) ·X1, . . . , (d d′) ·Xn).

11Formally, this can be defined as an action of the group of permutations on a nominal set; see [Pit13] for a
detailed exposition.

http://www.brics.dk/~srba/roadmap/


Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:45

Moreover, we shall consider finite name-permutations, i.e. ones taken from the set:

PermD = {π : D
∼=−→ D | ∃X ⊆ D. X finite ∧ ∀d ∈ D \X.π(d) = d }

and use π to range over them. Each π ∈ PermD can be decomposed as π = (d1 d
′
1)◦· · ·◦(dn d′n),

for some n and d1, d
′
1, . . . , dn, d

′
n ∈ D. We then define π ·X = (d1 d′1) · . . . · (dn d′n) ·X.

Finally, given ρ1, ρ2, H with rng(ρ1) ∪ rng(ρ2) ⊆ H ⊆ N or rng(ρ1) ∪ rng(ρ2) ⊆ N ⊆ H,
we extend the trim operation for H as:

⌈H⌉Nρ1,ρ2 =

{
H if H ⊊ N

N \ {min(N \ (rng(ρ1) ∪ rng(ρ2))} if N ⊆ H

In either case, rng(ρ1) ∪ rng(ρ2) ⊆ ⌈H⌉Nρ1,ρ2 ⊆ N ∩H and ⌈H⌉Nρ1,ρ2 ⊊ N . Moreover, given

ρ1, ρ2, H, Ĥ, we say that H can restrict to (ρ1, ρ2, Ĥ), written H ▷N (ρ1, ρ2, Ĥ), if:

• rng(ρ1) ∪ rng(ρ2) ⊆ H ⊊ N and Ĥ = H, or

• rng(ρ1) ∪ rng(ρ2) ⊆ N ⊆ H and Ĥ = N \ {d} for some d ∈ N \ (rng(ρ1) ∪ rng(ρ2)).

Note that, in either case, rng(ρ1) ∪ rng(ρ2) ⊆ Ĥ ⊆ N ∩H and Ĥ ⊊ N . In particular, when
⌈H⌉Nρ1,ρ2 is well defined, we have H ▷N (ρ1, ρ2, ⌈H⌉Nρ1,ρ2).

Proof of Lemma 3.7. We show a correspondence between bisimulations and N -bisimulations
from which the result follows.

bisim→N-bisim. Let R be a bisimulation on A that is closed in the following manner:
for all permutations π, if (q1, ρ1, H)R (q2, ρ2, H) then (π · (q1, ρ1, H))R (π · (q2, ρ2, H)). We

claim that the relation R̂ ⊆ CA,N × CA,N , defined by

R̂ = { ((q1, ρ1, Ĥ), (q2, ρ2, Ĥ)) | ∃H. (q1, ρ1, H)R (q2, ρ2, H) ∧H ▷N (ρ1, ρ2, Ĥ) },

is an N -bisimulation.

Let (q1, ρ1, Ĥ) R̂ (q2, ρ2, Ĥ), due to some (q1, ρ1, H)R (q2, ρ2, H), and suppose (q1, ρ1, Ĥ)
(t,d)−−→

(q′1, ρ
′
1, Ĥ

′) for some t, d, q′1, ρ
′
1, Ĥ

′. Next we reason by case analysis.

(a) Suppose d ∈ rng(ρ1) ∪ rng(ρ2). Then, Ĥ
′ = Ĥ and, since R is a bisimulation, we have

(q2, ρ2, H)
(t,d)−−→ (q′2, ρ

′
2, H) for some q′2, ρ

′
2 such that (q′1, ρ

′
1, H)R (q′2, ρ

′
2, H). Conse-

quently, (q2, ρ2, Ĥ)
(t,d)−−→ (q′2, ρ

′
2, Ĥ). It suffices to show that (q′1, ρ

′
1, Ĥ) R̂ (q′2, ρ

′
2, Ĥ),

i.e. H ▷N (ρ′1, ρ
′
2, Ĥ). But this follows from H ▷N (ρ1, ρ2, Ĥ) and rng(ρ′1) ∪ rng(ρ′2) ⊆

rng(ρ1) ∪ rng(ρ2).

(b) Suppose d = min(Ĥ \ (rng(ρ1)∪ rng(ρ2))). Then, again Ĥ ′ = Ĥ and, reasoning as in the

previous case, (q2, ρ2, Ĥ)
(t,d)−−→ (q′2, ρ

′
2, Ĥ) for some q′2, ρ

′
2 such that (q′1, ρ

′
1, H)R (q′2, ρ

′
2, H).

Since rng(ρ′1) ∪ rng(ρ′2) ⊆ rng(ρ1) ∪ rng(ρ2) ∪ {d}, it follows that H ▷N (ρ′1, ρ
′
2, Ĥ) and,

thus, (q′1, ρ
′
1, Ĥ) R̂ (q′2, ρ

′
2, Ĥ), as required.

(c1) Suppose d = min(N \Ĥ) and Ĥ = H ⊊ N . Then, Ĥ ′ = Ĥ⊎{d} and, since R is a bisimu-

lation, we have (q2, ρ2, Ĥ)
(t,d)−−→ (q′2, ρ

′
2, Ĥ

′) for some q′2, ρ
′
2 with (q′1, ρ

′
1, Ĥ

′)R (q′2, ρ
′
2, Ĥ

′).

Moreover, Ĥ ′ ▷N (ρ′1, ρ
′
2, ⌈Ĥ ′⌉Nρ′1,ρ′2) and, thus, (q

′
1, ρ

′
1, ⌈Ĥ ′⌉Nρ′1,ρ′2) R̂ (q′2, ρ

′
2, ⌈Ĥ ′⌉Nρ′1,ρ′2).

(c2) Suppose d = min(N \ Ĥ) and Ĥ = N \ {d̂} for some d̂ ∈ (N \ (rng(ρ1) ∪ rng(ρ2)),

and N ⊆ H. Clearly, d = d̂ and Ĥ ′ = N . Since d is a fresh name for Ĥ, the
transition from (q1, ρ1, Ĥ) must be a globally fresh one, i.e. ρ′1 = ρ1[i 7→ d]. This



13:46 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

implies that (q1, ρ1, H)
(t,d′)−−−→ (q′1, ρ1[i 7→ d′], H ⊎ {d′}) for some fresh d′ and, therefore,

(q2, ρ2, H)
(t,d′)−−−→ (q′2, ρ2[j 7→ d′], H ⊎ {d′}) with (q′1, ρ1[i 7→ d′], H ⊎ {d′})R (q′2, ρ2[j 7→

d′], H ⊎ {d′}), for some q′2, j. Moreover, (q2, ρ2, Ĥ)
(t,d)−−→ (q′2, ρ2[j 7→ d], N). Let us set

ρ′2 = ρ2[j 7→ d]. By closure of R under permutations of D, we also have that (q′1, ρ
′
1, H ⊎

{d′})R (q′2, ρ
′
2, H ⊎ {d′}), so it suffices to show that (H ⊎ {d′}) ▷N (ρ′1, ρ

′
2, ⌈N⌉Nρ′1,ρ′2),

which holds by definition.

N-bisim→bisim. Let R be an N -bisimulation on A. We claim that the relation R̂ ⊆
CA × CA, defined by

R̂ = {π·((q1, ρ1, H), (q2, ρ2, H)) | π ∈ PermD∧∃Ĥ.(q1, ρ1, Ĥ)R (q2, ρ2, Ĥ)∧H▷N (ρ1, ρ2, Ĥ) }

is a bisimulation.
Let (q1, ρ1, H) R̂ (q2, ρ2, Ĥ), due to some (q1, ρ1, Ĥ)R (q2, ρ2, Ĥ), so WLOG assume that π

is the identity, and suppose (q1, ρ1, H)
(t,d)−−→ (q′1, ρ

′
1, H

′) for some t, d, q′1, ρ
′
1, H

′. Next we
reason by case analysis.

(a) Suppose d ∈ rng(ρ1) ∪ rng(ρ2). Then, H ′ = H and, since R is an N -bisimulation,

we have (q2, ρ2, Ĥ)
(t,d)−−→ (q′2, ρ

′
2, Ĥ) for some q′2, ρ

′
2 such that (q′1, ρ

′
1, Ĥ)R (q′2, ρ

′
2, Ĥ).

Hence, (q2, ρ2, H)
(t,d)−−→ (q′2, ρ

′
2, H). We need to show that (q′1, ρ

′
1, H) R̂ (q′2, ρ

′
2, H).

For this, it suffices that H ▷N (ρ′1, ρ
′
2, Ĥ), which follows from H ▷N (ρ1, ρ2, Ĥ) and

rng(ρ′1) ∪ rng(ρ′2) ⊆ rng(ρ1) ∪ rng(ρ2).

(b) Suppose d ∈ H \ (rng(ρ1) ∪ rng(ρ2)) and let d′ = min(Ĥ \ (rng(ρ1) ∪ rng(ρ2))). Note

that d′ ∈ H. Then, we also have (q1, ρ1, H)
(t,d′)−−−→ (q′1, (d d′) · ρ′1, H) and, hence,

(q1, ρ1, Ĥ)
(t,d′)−−−→ (q′1, (d d′) · ρ′1, Ĥ). By N -bisimulation, we get (q2, ρ2, Ĥ)

(t,d′)−−−→
(q′2, ρ

′
2, Ĥ) and (q1, (d d′) ·ρ′1, Ĥ)R (q2, ρ

′
2, Ĥ). But then (q2, ρ2, H)

(t,d′)−−−→ (q′2, ρ
′
2, H) and

therefore (q2, ρ2, H)
(t,d)−−→ (q′2, (d d

′)·ρ′2, H), so it suffices to show that (q′1, ρ
′
1, H) R̂ (q′2, (d d

′)·
ρ′2, H). Note that H ▷N (ρ1, ρ2, Ĥ) implies that H ▷N ((d d′) ·ρ′1, ρ′2, Ĥ), thus (q′1, (d d′) ·
ρ′1, H) R̂ (q′2, ρ

′
2, H), and hence (q′1, ρ

′
1, H) = ((d d′) · (q′1, (d d′) · ρ′1, H)) R̂ ((d d′) ·

(q′2, ρ
′
2, H)) = (q′2, (d d′) · ρ′2, H).

(c1) Suppose d /∈ H, Ĥ = H ⊊ N , and pick d′ = min(N \ Ĥ). Then, H ′ = H ⊎ {d}
and we also have (q1, ρ1, H)

(t,d′)−−−→ (q′1, (d d′) · ρ′1, (d d′) · H ′) and hence, since R is

an N -bisimulation, we get (q2, ρ2, H)
(t,d′)−−−→ (q′2, ρ

′
2, (d d′) · H ′) for some q′2, ρ

′
2 with

(q′1, (d d′) · ρ′1, Ĥ ′)R (q′2, ρ
′
2, Ĥ

′) and Ĥ ′ = ⌈(d d′) ·H ′⌉N(d d′)·ρ′1,ρ′2
. The latter implies that

(q′1, (d d′)·ρ′1, (d d′)·H ′) R̂ (q′2, ρ
′
2, (d d′)·H ′) and, by closure of R̂, (q′1, ρ

′
1, H

′) R̂ (q′2, (d d′)·
ρ′2, H

′). We conclude by noting that also (q2, ρ2, H)
(t,d)−−→ (q′2, (d d′) · ρ′2, H ′).

(c2) Suppose d /∈ H, N ⊆ H and Ĥ = N \ {d′} for some d′ ∈ N \ (rng(ρ1) ∪ rng(ρ2)), so

d′ ∈ H. Then, H ′ = H ⊎ {d} and we also have (q1, ρ1, Ĥ)
(t,d′)−−−→ (q′1, (d d′) · ρ′1, N)

and hence, since R is an N -bisimulation, (q2, ρ2, Ĥ)
(t,d′)−−−→ (q′2, ρ

′
2, N) for some q′2, ρ

′
2

with (q′1, (d d′) ·ρ′1, Ĥ ′)R (q′2, ρ
′
2, Ĥ

′) and Ĥ ′ = ⌈N⌉N(d d′)·ρ′1,ρ′2
. But then (q2, ρ2, H)

(t,d)−−→
(q′2, (d d′) · ρ′2, H ′), so it suffices to show that (q′1, ρ

′
1, H

′) R̂ (q′2, (d d′) · ρ′2, H ′). Noting



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:47

that H ′ ▷N ((d d′) · ρ′1, ρ′2, Ĥ ′), we get (q′1, (d d′) · ρ′1, H ′) R̂ (q′2, ρ
′
2, H

′), from which the

claim follows by closure of R̂.

The lemma follows from the two reductions above, using the fact that bisimilarity satisfies
the permutation-closure assumption used in the first reduction.

Appendix B. Proofs from Section 4

Proof of Lemma 4.3. We do a case analysis on i, j being 0 or not. Assume first that i, j ̸= 0.
Then:

(ρ1; ρ
−1
2 )[i 7→ j] = {(i, j)} ∪ {(i′, j′) ∈ [1, r]2 | i′ ̸= i ∧ j′ ̸= j ∧ ∃a′. ρ1(i′) = ρ2(j

′) = a′}
= {(i, j)} ∪ {(i′, j′) ∈ ρ1[i 7→ a]; ρ2[j 7→ a]−1 | i′ ̸= i ∧ j′ ̸= j}
= ρ1[i 7→ a]; ρ2[j 7→ a]−1

On the other hand, if i = j = 0 then the claim is trivial. Suppose now i = 0, j ̸= 0. Then:

(ρ1; ρ
−1
2 )[i 7→ j] = {(i′, j′) ∈ [1, r]2 | j′ ̸= j ∧ ∃a′. ρ1(i′) = ρ2(j

′) = a′}
= {(i′, j′) ∈ [1, r]2 | j′ ̸= j ∧ ∃a′ ̸= a. ρ1(i

′) = ρ2(j
′) = a′} (as a /∈ rng(ρ1))

= ρ1; ρ2[j 7→ a]−1 = ρ1[i 7→ a]; ρ2[j 7→ a]−1

Finally, if i ̸= 0, j = 0 then we can show that (ρ1; ρ
−1
2 )[i 7→ j]−1 = (ρ1[i 7→ a]; ρ2[j 7→ a]−1)−1

using the previous case above.

Proof of Lemma 4.5. We show a correspondence between bisimulations and symbolic bisim-
ulations from which the result follows.

bisim→ s-bisim. Let R be a bisimulation on A. We claim that the relation R′ ⊆ U ,
R′ = { (q1, S1, σ, q2, S2) | ∃ρ1, ρ2. (q1, ρ1)R(q2, ρ2) ∧ σ = ρ1; ρ

−1
2 ∧ dom(ρi) = Si }

is a symbolic bisimulation. For the latter (by symmetry in the definition) it suffices to
show that R′ is a symbolic simulation. So suppose that (q1, S1, σ, q2, S2) ∈ R′ due to some

(q1, ρ1)R(q2, ρ2). Let q1
t,i−→ q′1 for some i ∈ S1. Then, (q1, ρ1)

t,a−→ (q′1, ρ1) with a = ρ1(i)

and, hence, (q2, ρ2)
t,a−→ (q′2, ρ

′
2) with (q′1, ρ1)R(q′2, ρ

′
2).

• If i ∈ dom(σ) then a = ρ2(σ(i)) and therefore the above transition is due to some

q2
t,σ(i)−−−→ q′2, and ρ′2 = ρ2. Hence, (q

′
1, S1)R

′
σ(q

′
2, S2).

• If i /∈ dom(σ) then the transition is due to some q2
t,j•−−→ q′2, and ρ′2 = ρ2[j 7→ a]. Hence,

since σ[i 7→ j] = ρ1; (ρ2[j 7→ a])−1 and dom(ρ′2) = S2[j], we have (q′1, S1)R
′
σ[i 7→j](q

′
2, S2[j]).

Now let q1
t,i•−−→ q′1. For each a /∈ rng(ρ1), (q1, ρ1)

t,a−→ (q′1, ρ
′
1) with ρ′1 = ρ1[i 7→ a] and, hence,

there is some (q2, ρ2)
t,a−→ (q′2, ρ

′
2) with (q′1, ρ

′
1)R(q′2, ρ

′
2).

• Select some a /∈ rng(ρ2). Then, the transition above is due to some q2
t,j•−−→ q′2, and

ρ′2 = ρ2[j 7→ a]. Moreover, since σ[i 7→ j] = ρ1[i 7→ a]; (ρ2[j 7→ a])−1, dom(ρ′1) = S1[i] and
dom(ρ′2) = S2[j], we have (q′1, S1[i])R

′
σ[i 7→j](q

′
2, S2[j]).

• Let j ∈ S2 \ rng(σ). Then, we can take a to be ρ2(j), so the transition is due to some

q2
t,j−→ q′2, and ρ′2 = ρ2. We moreover have (q′1, S1[i])R

′
σ[i 7→j](q

′
2, S2).



13:48 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

s-bisim→bisim. Let R be a symbolic bisimulation on A. We claim that the relation

R′ = { ((q1, ρ1), (q2, ρ2)) | (q1, S1)Rσ(q2, S2)

∧ σ = ρ1; ρ
−1
2 ∧ Si = dom(ρi) }

is a bisimulation, for which it suffices to show that R′ is a simulation. So suppose that

((q1, ρ1), (q2, ρ2)) ∈ R′

due to some (q1, S1)Rσ(q2, S2), and let (q1, ρ1)
t,a−→ (q′1, ρ

′
1) for some (t, a) ∈ Σ × D. If

a ∈ rng(ρ1), say a = ρ1(i), then q1
t,i−→ q′1 and ρ′1 = ρ1. We distinguish two cases:

• If a ∈ rng(ρ2) then i ∈ dom(σ), so q2
t,σ(i)−−−→ q′2 and (q′1, S1)Rσ(q

′
2, S2). Hence, (q2, ρ2)

t,a−→
(q′2, ρ2) and (q′1, ρ1)R

′(q′2, ρ2).

• If a /∈ rng(ρ2) then i ∈ S1 \ dom(σ), so q2
t,j•−−→ q′2 and (q′1, S1)Rσ[i 7→j](q

′
2, S2[j]). Hence,

(q2, ρ2)
t,a−→ (q′2, ρ2[j 7→ a]) and (q′1, ρ1)R

′(q′2, ρ2[j 7→ a]).

If a /∈ rng(ρ1) then there is q1
t,i•−−→ q′1 such that ρ′1 = ρ1[i 7→ a].

• If a /∈ rng(ρ2) then, since q2
t,j•−−→ q′2 with (q′1, S1[i])Rσ[i 7→j](q

′
2, S2[j]), we obtain (q2, ρ2)

t,a−→
(q′2, ρ2[j 7→ a]) and (q′1, ρ

′
1)R

′(q′2, ρ2[j 7→ a]).

• If a ∈ rng(ρ2), say a = ρ2(j), then j ∈ S2 \ rng(σ). Hence, q2
t,j−→ q′2 with

(q′1, S1[i])Rσ[i 7→j](q
′
2, S2),

from which we get (q2, ρ2)
t,a−→ (q′2, ρ2) and (q′1, ρ

′
1)R

′(q′2, ρ2).

Proof of Lemma 4.6. By induction on i we prove that, for all i ∈ ω,
i+1∼ ⊆ i∼. When i = 0, the

result is trivial as
i∼ is the universe. Let us assume

i+1∼ ⊆ i∼ (IH) and (q1, S1)
i+2∼ τ (q2, S2). It

follows by definition that (q1, S1, τ, q2, S2) and (q2, S2, τ
−1, q1, S1) satisfy the (SyS) conditions

in
i+1∼ . Because

i+1∼ ⊆ i∼, the tuples also satisfy the (SyS) conditions in
i∼, whence

(q1, S1)
i+1∼ τ (q2, S2), as needed.

We next show that
⋂

i∈ω
i∼ =

s∼. We start with the ⊇ direction and argue that, for all i ∈ ω,
i∼ ⊇ s∼. The proof is by induction on i. When i = 0 the result is trivial. Let us assume
i∼ ⊇ s∼ (IH) and (q1, S1)

s∼τ (q2, S2). We wish to show that (q1, S1, τ, q2, S2) and its inverse

satisfy the (SyS) conditions in
i∼. By definition, they satisfy the (SyS) conditions in

s∼.
Because

i∼ ⊇ s∼, the tuples satisfy the (SyS) conditions in
i∼. Hence, i+1∼ ⊇ s∼.

For the ⊆ direction, we argue that the left-hand side is a symbolic bisimulation. To

see this, assume (q1, S1, τ, q2, S2) ∈
⋂

i∈ω
i∼ so that (q1, S1, τ, q2, S2) and its inverse satisfy

the (SyS) conditions in
i∼, for all i ∈ ω. The satisfaction of the (SyS) conditions in

i∼
by (q1, S1, τ, q2, S2) (and, analogously, by its inverse) is witnessed by a subset Ci ⊆

i∼ ⊆ U
for each i. Because U is finite, there exists C such that C = Ci for infinitely many i.

Consequently, in view of
i+1∼ ⊆ i∼, C witnesses satisfaction of the (SyS) conditions in

(
⋂

i∈ω
i∼).

Proof of Lemma 4.8. We first observe that Cl(R) = Cl−(R ∪R−1) where, for any relation
X, we let Cl−(X) be the smallest relation that contains X and is closed under the rules



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:49

(Id), (Tr) and (Ext) above. Let R′ = Cl−(R ∪R−1) and P ′ = Cl(P ). We show that all
elements in R′ satisfy the (SyS) conditions in P ′, by rule induction on Cl−(R ∪R−1).
For the base cases, either the element is in R∪R−1 or is an identity. In both cases the result
is clear. For the inductive step, consider the rule:

(q1, S1, σ1, q2, S2) ∈ R′ (q2, S2, σ2, q3, S3) ∈ R′

(q1, S1, σ1;σ2, q3, S3) ∈ R′ (Tr)

and assume that the premises satisfy the (SyS) conditions in P ′. Let us write σ for σ1;σ2.

Suppose q1
t,i−→ q′1 with i ∈ S1.

• If i ∈ dom(σ1) and j = σ1(i) ∈ dom(σ2) then q2
t,j−→ q′2 with (q′1, S1)P

′
σ1

(q′2, S2), and q3
t,k−→

q′3 with (q′2, S2)P
′
σ2

(q′3, S3) and k = σ2(j) = σ(i). By (Tr) we obtain (q′1, S1)P
′
σ (q

′
3, S3).

• If i ∈ dom(σ1) and j = σ1(i) /∈ dom(σ2) then q2
t,j−→ q′2 with (q′1, S1)P

′
σ1

(q′2, S2), and

q3
t,k•−−→ q′3 with (q′2, S2)P

′

σ2[j 7→k] (q
′
3, S3[k]) for some k. By (Tr) we obtain (q′1, S1)P

′

σ[i 7→k]

(q′3, S3[k]).

• If i /∈ dom(σ1) then q2
t,j•−−→ q′2 with (q′1, S1)P

′

σ1[i 7→j] (q
′
2, S2[j]), for some j, so q3

t,k•−−→ q′3

with (q′2, S2[j])P
′

σ2[j 7→k] (q
′
3, S3[k]) for some k. By (Tr,Ext), using σ1[i 7→ j];σ2[j 7→

k] ≤S1,S3[k] σ[i 7→ k], we get (q′1, S1)P
′

σ[i 7→k] (q
′
3, S3[k]).

Now suppose q1
t,i•−−→ q′1.

• Then, q2
t,j•−−→ q′2 with (q′1, S1[i])P

′

σ1[i 7→j] (q
′
2, S2[j]), for some j, so q3

t,k•−−→ q′3 with

(q′2, S2[j])P
′

σ2[j 7→k] (q
′
3, S3[k])

for some k. By (Tr,Ext), (q′1, S1[i])P
′

σ[i 7→k] (q
′
3, S3[k]).

• If k ∈ rng(σ2) and j = σ−1
2 (k) /∈ rng(σ1) then q2

t,j−→ q′2 with (q′1, S1[i])P
′

σ1[i 7→j] (q
′
2, S2),

and q3
t,k−→ q′3 with (q′2, S2)P

′
σ2

(q′3, S3). By (Tr) obtain (q′1, S1[i])P
′

σ[i 7→k] (q
′
3, S3).

• If k ∈ S3 \ rng(σ2) then q2
t,j•−−→ q′2 with (q′1, S1[i])P

′

σ1[i 7→j] (q
′
2, S2[j]), for some j, and so

q3
t,k−→ q′3 with (q′2, S2[j])P

′

σ2[j 7→k] (q
′
3, S3). By (Tr,Ext) we obtain (q′1, S1[i])P

′

σ[i 7→k] (q
′
3, S3).

Consider now the rule:

(q1, S1, σ, q2, S2) ∈ R′ σ ≤S1,S2 σ′

(q1, S1, σ′, q2, S2) ∈ R′ (Ext)

and assume (q1, S1, σ, q2, S2) satisfies the (SyS) conditions in P ′. Suppose q1
t,i−→ q′1 with

i ∈ S1.

• If i ∈ dom(σ) then q2
t,σ(i)−−−→ q′2 and (q′1, S1)P

′
σ (q

′
2, S2). Since σ ⊆ σ′, we have σ(i) = σ′(i)

and (q′1, S1)P
′
σ′ (q′2, S2).

• If i /∈ dom(σ′) then also i /∈ dom(σ) and therefore q2
t,j•−−→ q′2, for some j, and

(q′1, S1)P
′

σ[i 7→j] (q
′
2, S2[j]).

From σ ≤S1,S2 σ′ we obtain σ[i 7→ j] ≤S1,S2[j] σ
′[i 7→ j], so (q′1, S1)P

′

σ′[i 7→j] (q
′
2, S2[j]).

• If i ∈ dom(σ′) \ dom(σ) then we reason as follows. Let σ′(i) = j ∈ S2.



13:50 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

I. Since i /∈ dom(σ), there is some q2
t,j′•−−→ q′′2 with (q′1, S1)P

′

σ[i 7→j′] (q
′′
2 , S2[j

′]);

II. hence, there is some q1
t,i′•−−→ q′′1 with (q′′1 , S1[i

′])P
′

σ[i′ 7→j′] (q
′′
2 , S2[j

′]);

III. then, there is some q2
t,j−→ q′2 with (q′′1 , S1[i

′])P
′

σ[i′ 7→j] (q
′
2, S2).

Taking stock (and using symmetry of P ′),

(q′1, S1)P
′

σ[i 7→j′] (q
′′
2 , S2[j

′])P
′

σ−1[j′ 7→i′] (q
′′
1 , S1[i

′])P
′

σ[i′ 7→j] (q
′
2, S2)

and thus, since σ[i 7→ j′];σ−1[j′ 7→ i′];σ[i′ 7→ j] ≤S1,S2 σ[i 7→ j], we have

(q′1, S1)P
′

σ[i 7→j] (q
′
2, S2).

Suppose now q1
t,i•−−→ q′1.

• Then, q2
t,j•−−→ q′2 and (q′1, S1[i])P

′

σ[i 7→j] (q
′
2, S2[j]). Since σ[i 7→ j] ≤S1[i],S2[j] σ

′[i 7→ j], we

have (q′1, S1[i])P
′

σ′[i 7→j] (q
′
2, S2[j]).

• If j ∈ S2 \ rng(σ′) then j /∈ rng(σ), hence q2
t,j−→ q′2 and (q′1, S1[i])P

′

σ[i 7→j] (q
′
2, S2). Again,

we obtain (q′1, S1[i])P
′

σ′[i 7→j] (q
′
2, S2).

Hence, all elements of R′ satisfy the (SyS) conditions in P ′.

Proof of Lemma 4.13. (First part). Since R is closed, (p, S) Rσ;σ−1 (p, S). Because σ;σ−1 =

idX for some X ⊆ S, we have X ⊇ Xp
S(R). Moreover, dom(σ) ⊇ dom(σ;σ−1) = X, hence

dom(σ) ⊇ Xp
S(R). A symmetric argument establishes that dom(σ−1) ⊇ Xq

S(R).
(Second part). By definition, we have that dom(σ′) ⊆ Xp

S(R) and rng(σ′) ⊆ Xq
S(R).

Observing that σ′ = idXp
S(R);σ; idXq

S(R), by closure of R we get (p, S) Rσ′ (q, S). By the first

part, dom(σ′) ⊇ Xp
S(R) and rng(σ′) ⊇ Xq

S(R), hence dom(σ′) = Xp
S(R) and rng(σ′) = Xq

S(R).
The final claim follows from the fact that (p, S) RidS (p, S).

Proof of Lemma 4.17. Let us write γ(S1, S2) for |S1| + |S2|, i.e. 0 ≤ γ(S1, S2) ≤ 2r. For
each m ∈ [0, 2r], let

km = min{i | i∼ ∩ US1,S2
=

s∼ ∩ US1,S2
for any S1, S2 with γ(S1, S2) ≥ m}.

Consider S1, S2 with γ(S1, S2) ≥ m, where m < 2r.

Observe that, for k ≥ km+1, if
k∼ ∩ US1,S2

=
k+1∼ ∩ US1,S2

, then we must have
k∼

∩ US1,S2
=

s∼ ∩ US1,S2
, because the (SyS) conditions for (S1, S2) refer to either (S1, S2)

or (S′
1, S

′
2) with γ(S′

1, S
′
2) > γ(S1, S2). Consequently, if

k∼ ∩ US1,S2
̸= s∼ ∩ US1,S2

, the

sequence (
k∼ ∩ US1,S2

) (k = km+1, km+1 + 1, · · · ) will have to change in every step before

stabilisation. By Lemma 4.16, at most ℓ extra steps from (
km+1∼ ) will be required to arrive

at
s∼ ∩ US1,S2

, which implies km ≤ km+1 + ℓ. By a similar argument, we can conclude that

k2r ≤ ℓ. Consequently, k0 ≤ (2r + 1)ℓ, as required.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:51

Appendix C. Proofs from Section 7

Proof of Lemma 7.1. For the first claim, note that it suffices to consider the case where the
product ii′jj′ is not 0 as e.g. if ii′ = 0 then [i↔ i′] = [1↔ 1]. In this case, the claim follows
by composition of partial permutations, noting that ρ−1

2 ; (j j′) = ((j j′); ρ2)
−1.

Claim 2 then follows as Lemma 4.3 implies that (ρ1; ρ
−1
2 )[i′ 7→ j′] = ρ1[i

′ 7→ a];
ρ2[j

′ 7→ a]−1.

Proof of Lemma 7.3. Let (q1, S1, σ, q2, S2, h), (q1, S
′
1, σ

′, q2, S
′
2, h) ∈ symb(κ1, κ2) be dis-

tinct and produced from ρ̂i and ρ̂′i respectively (for i = 1, 2). Let us assume that

(q1, S
′
1, σ

′, q2, S
′
2, h) ∈

s∼. Take σi = ρ̂i; ρ̂
′−1
i . By definition, σi ↾ [1, r] = idSi∩[1,r], and we

can verify that (qi, Si)(
s∼)hσi

(qi, S
′
i). Hence, (q1, S1) (

s∼)hσ1
(q1, S

′
1) (

s∼)hσ′ (q2, S
′
2) (

s∼)h
σ−1
2

(q2, S2)

and, using Proposition 7.9 (which does not depend on this lemma), we get (q1, S1, σ1;σ
′;σ−1

2 ,

q2, S2, h) = (q1, S1, σ, q2, S2, h) ∈
s∼.

Proof of Lemma 7.6. Let A be an r-FRA(S#0). We show a correspondence between bisim-
ulations and symbolic bisimulations for A from which the result follows.

bisim→ s-bisim. Let R be a bisimulation on A. We claim that the relation P ⊆ U ,

P =
⋃
{ symb(κ1, κ2) | (κ1, κ2) ∈ R ∧ κi = (qi, ρi, Hi) ∧H1 = H2}

is a symbolic bisimulation. For the latter (by symmetry) it suffices to show that P is a
symbolic simulation, which reduces to showing the (FSyS) conditions true. So suppose
that (q1, S1, σ, q2, S2) ∈ P h due to some (q1, ρ1, H)R(q2, ρ2, H). If h ≤ 2r then let ρ̂i be
some 3r-register assignment of type S#0 used by symb (for i = 1, 2), so ρ̂i ↾ [1, r] = ρi,
Si = dom(ρ̂i), rng(ρ̂i) = H and σ = ρ̂1; ρ̂

−1
2 .

Let q1
t,i−→ q′1 for some i ∈ S1∩ [1, r]. Then, (q1, ρ1, H)

t,a−→ (q′1, ρ1, H) with a = ρ1(i) ∈ H

and, hence, (q2, ρ2, H)
t,a−→ (q′2, ρ

′
2, H) with (q′1, ρ1, H)R(q′2, ρ

′
2, H).

• If σ(i) ∈ [1, r] then a = ρ2(σ(i)) and therefore the above transition is due to some

q2
t,σ(i)−−−→ q′2, and ρ′2 = ρ2. Hence, (q

′
1, S1)P

h
σ (q

′
2, S2).

• If σ(i) = j′ ∈ [r+1, 3r] then a = ρ̂2(j
′) /∈ rng(ρ2) and the above transition is due

to some q2
t,j•−−→ q′2, and ρ′2 = ρ2[j 7→ a]. Now, taking ρ̂′2 = ρ̂2[j ↔ j′], we have

(q′1, S1, ρ̂1; ρ̂
′−1
2 , q′2, dom(ρ̂′2)) ∈ P h. Since ρ̂1; ρ̂

′−1
2 = [j ↔ j′]σ and dom(ρ̂′2) = S′

2[j ↔ j′],
we obtain

(q′1, S1)P
h
[j↔j′]σ(q

′
2, S2[j ↔ j′]).

• If i /∈ dom(σ) then h =∞ and the transition is due to some q2
t,j•−−→ q′2, and ρ′2 = ρ2[j 7→ a].

Hence, since σ[i 7→ j] = ρ1; (ρ2[j 7→ a])−1 and dom(ρ′2) = S2[j], we have

(q′1, S1)P
h
σ[i 7→j](q

′
2, S2[j]).

Let q1
t,i•−−→ q′1. For each a ∈ H \ rng(ρ1), (q1, ρ1, H)

t,a−→ (q′1, ρ
′
1, H) with ρ′1 = ρ1[i 7→ a]

and, hence, there is some (q2, ρ2, H)
t,a−→ (q′2, ρ

′
2, H) with (q′1, ρ

′
1, H)R(q′2, ρ

′
2, H). Now, let

a = ρ̂1(i
′) for i′ ∈ S1 \ [1, r] (if h ≤ 2r), and a = ρ̂2(j) for j ∈ S2 \ rng(σ) (if h =∞); in the

former case, set ρ̂′1 = ρ̂1[i↔ i′].



13:52 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

• If σ(i′) ∈ [1, r] then a = ρ2(σ(i
′)) so the transition above is due to some q2

t,σ(i′)−−−−→ q′2 and
ρ′2 = ρ2. Thus, (q

′
1, dom(ρ̂′1))P

h
ρ̂′1;ρ̂

−1
2

(q′2, S2) i.e. (q
′
1, S1[i↔ i′])P h

σ[i↔i′](q
′
2, S2).

• If σ(i′) = j′ ∈ [r+1, 3r] then a = ρ̂2(j
′) /∈ rng(ρ2) so the transition above is due to some

q2
t,j•−−→ q′2 and ρ′2 = ρ2[j 7→ a]. Thus, setting ρ̂′2 = ρ̂2[j ↔ j], we obtain

(q′1, dom(ρ̂′1))P
h
ρ̂′1;ρ̂

′−1
2

(q′2, dom(ρ̂′2)),

i.e. (q′1, S1[i↔ i′])P h
[j↔j′]σ[i↔i′](q

′
2, S2[j ↔ j′]).

• For a = ρ̂2(j) with j ∈ S2 \ rng(σ), the transition is due to some q2
t,j−→ q′2, and ρ′2 = ρ2.

We moreover have (q′1, S1[i])P
h
σ[i 7→j](q

′
2, S2).

Finally, let q1
t,ℓi−−→ q′1 with ℓi ∈ {i•, i⊛}. For each a /∈ H, we have (q1, ρ1, H)

t,a−→ (q′1, ρ
′
1, H

′)

with ρ′1 = ρ1[i 7→ a] and H ′ = H ∪ {a} and, hence, there is some (q2, ρ2, H)
t,a−→ (q′2, ρ

′
2, H

′)

with (q′1, ρ
′
1, H

′)R(q′2, ρ
′
2, H

′). The latter must be due to q2
t,ℓj−−→ q′2, for some ℓj ∈ {j•, j⊛},

in which case ρ′2 = ρ2[j 7→ a].

• If h < 2r then let ρ̂′1 = ρ̂1[i
′ 7→ a][i ↔ i′] and ρ̂′2 = ρ̂2[j

′ 7→ a][j ↔ j′], where i′ =
min([r+1, 3r] \ dom(ρ̂1)) and j′ = min([r+1, 3r] \ dom(ρ̂2)). We have ρ′1 = ρ̂′1 ↾ [1, r],

similarly for ρ′2, and ρ̂′1; ρ̂
′−1
2 = [j ↔ j′](σ[i′ 7→ j′])[i↔ i′], so

(q′1, S1[i↔ i′])P h+1
[j↔j′](σ[i′ 7→j′])[i↔i′](q

′
2, S2[j ↔ j′]).

• If h = 2r then (q′1, dom(ρ′1))P
∞
ρ′1;ρ

′−1
2

(q′2, dom(ρ′2)). Now observe that ρ̂1[i 7→ a] ↾ [1, r] = ρ′1,

similarly for ρ′2, and hence σ[i 7→ j] ∩ [1, r]2 = ρ′1; ρ
′−1
2 .

• If h =∞ then, since σ[i 7→ j] = ρ1[i 7→ a]; (ρ2[j 7→ a])−1, dom(ρ′1) = S1[i] and dom(ρ′2) =
S2[j], we have (q

′
1, S1[i])P

h
σ[i 7→j](q

′
2, S2[j]). Moreover, if ℓi = i• then, since |H| > |rng(ρ1)|+

|rng(ρ2)|, there is some a′ ∈ H \ (rng(ρ1) ∪ rng(ρ2)). We can therefore pick a = a′ and the
latter would impose ℓj = j•.

Hence, P is a symbolic bisimulation.

s-bisim→bisim. Let R be a symbolic bisimulation on A such that, for all pairs of
configurations κ1, κ2, either symb(κ1, κ2) ⊆ R or symb(κ1, κ2) ∩R = ∅. We claim that the
relation

R′ = { (κ1, κ2) | κi = (qi, ρi, Hi) ∧H1 = H2 ∧ symb(κ1, κ2) ⊆ R }
is a bisimulation, for which it suffices to show that R′ is a simulation. So suppose that

((q1, ρ1, H), (q2, ρ2, H)) ∈ R′

and let (q1, S1, σ, q2, S2, h) ∈ symb((q1, ρ1, H), (q2, ρ2, H)) ⊆ R, and if h ≤ 2r let ρ̂i be some

3r-extension of ρi used by symb. Let (q1, ρ1, H)
t,a−→ (q′1, ρ

′
1, H

′) for some (t, a) ∈ Σ×D.
If a ∈ rng(ρ1), say a = ρ1(i), then q1

t,i−→ q′1 and ρ′1 = ρ1. We distinguish three cases:

• If a ∈ rng(ρ2) then σ(i) ∈ [1, r], so q2
t,σ(i)−−−→ q′2 and (q′1, S1)R

h
σ(q

′
2, S2). Hence, (q2, ρ2, H)

t,a−→
(q′2, ρ2, H) and (q′1, ρ1, H)R′(q′2, ρ2, H).

• If a /∈ rng(ρ2) and h ≤ 2r then σ(i) = j′ ∈ [r+1, 3r], so q2
t,j•−−→ q′2 and

(q′1, S1)R
h
[j↔j′]σ(q

′
2, S2[j ↔ j′]),



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:53

for some j. Hence, (q2, ρ2, H)
t,a−→ (q′2, ρ2[j 7→ a], H) and, taking ρ̂′2 = ρ̂2[j ↔ j′] (so

ρ̂′2 ↾ [1, r] = ρ2[j 7→ a]), we have (q′1, dom(ρ̂1))R
h
ρ̂1;ρ̂

′−1
2

(q′2, dom(ρ̂′2)) hence

(q′1, ρ1, H)R′(q′2, ρ2[j 7→ a], H).

• If a /∈ rng(ρ2) and h =∞ then i ∈ S1 \ dom(σ), so q2
t,j•−−→ q′2 and (q′1, S1)R

h
σ[i 7→j](q

′
2, S2[j]).

Hence, (q2, ρ2, H)
t,a−→ (q′2, ρ2[j 7→ a], H) and this (q′1, ρ1, H)R′(q′2, ρ2[j 7→ a], H).

If a ∈ H \rng(ρ1), and either h ≤ 2r (so a = ρ̂1(i
′) for some i′ > r) or h =∞ and a ∈ rng(ρ2),

then H ′ = H and there is some q1
t,i•−−→ q′1 and ρ′1 = ρ1[i 7→ a].

• If h ≤ 2r and σ(i′) ∈ [1, r] then q2
t,σ(i′)−−−−→ q′2 and (q′1, S1[i ↔ i′])Rh

σ[i↔i′](q
′
2, S2). Thus,

since ρ2(σ(i
′)) = a, (q2, ρ2, H)

t,a−→ (q′2, ρ2, H) and, setting ρ̂′1 = ρ̂1[i ↔ i′], we obtain
(q′1, ρ

′
1, H)R′(q′2, ρ2, H).

• If h ≤ 2r and σ(i′) = j′ ∈ [r+1, r] then q2
t,j•−−→ q′2 with (q′1, S1[i ↔ i′])Rh

[j↔j′]σ[i↔i′]

(q′2, S2[j ↔ j′]), for some j. Thus, since a /∈ rng(ρ2), (q2, ρ2, H)
t,a−→ (q′2, ρ2[j 7→ a], H) and,

setting ρ̂′1 = ρ̂1[i↔ i′] and ρ̂′2 = ρ̂2[j ↔ j′], we obtain (q′1, ρ
′
1, H)R′(q′2, ρ2[j 7→ a], H).

• If h = ∞ and a ∈ rng(ρ2), say a = ρ2(j), then j ∈ S2 \ rng(σ). Hence, q2
t,j−→ q′2 with

(q′1, S1[i])Rσ[i 7→j](q
′
2, S2), from which we get (q2, ρ2, H)

t,a−→ (q′2, ρ2, H) and

(q′1, ρ
′
1, H)R′(q′2, ρ2, H).

If either h ≤ 2r and a /∈ H, or h = ∞ and a /∈ rng(ρ1) ∪ rng(ρ2) then q1
t,ℓi−−→ q′1, for some

ℓi ∈ {i•, i⊛}, and H ′ = H ∪ {a} and ρ′1 = ρi[i 7→ a]. Thus, q2
t,ℓj−−→ q′2 for some ℓj ∈ {j•, j⊛}.

Let ρ′2 = ρ2[j 7→ a].

• If h < 2r then, taking i′ = max([r+1, 3r] \ S1) and j′ = max([r+1, 3r] \ S2), we have

(q′1, S1[i ↔ i′])Rh+1
[j↔j′]σ[i′ 7→j′][i↔i′](q

′
2, S2[j ↔ j′]). Setting ρ̂′1 = ρ̂1[i

′ 7→ a][i ↔ i′] and

ρ̂′2 = ρ̂2[j
′ 7→ a][j ↔ j′], we obtain (q′1, ρ

′
1, H

′)R′(q′2, ρ
′
2, H

′).
• If h = 2r then (q′1, S1[i] ∩ [1, r])R∞

σ[i 7→j]∩[1,r]2(q
′
2, S2[j] ∩ [1, r]), from which we obtain

(q′1, ρ
′
1, H

′)R′(q′2, ρ
′
2, H

′).

• If h =∞ then (q′1, S1[i])R
h
σ[i 7→j](q

′
2, S2[j]). In particular, if a ∈ H then ℓi = i• and therefore

ℓj = j•. Thus, in each case, (q2, ρ2, H)
t,a−→ (q′2, ρ2[j 7→ a], H ′) and (q′1, ρ

′
1, H

′)R′(q′2, ρ
′
2, H

′).

Hence, R′ is a bisimulation.

Thus, to prove Lemma 7.6, given such κ1 and κ2, if κ1
s∼ κ2 then we can construct a

symbolic bisimulation P such that symb(κ1, κ2) ⊆ P . Conversely, if κ1
s∼ κ2 then, using also

Lemma 7.3, there is a bisimulation R′ such that κ1R
′κ2.

Proof of Lemma 7.7. For the first part, we argue by induction on i. For i = 0 we need

to show
1∼ ⊆ 0∼, which is true because

0∼ = U . Next, assuming
i+1∼ ⊆ i∼, we argue that

i+2∼ ⊆ i+1∼ . Suppose (q1, S1) (
i+2∼ )hτ (q2, S2). It follows by definition that (q1, S1, τ, q2, S2, h)

and (q2, S2, τ
−1, q1, S1, h) satisfy the (FSyS) conditions in

i+1∼ . Because
i+1∼ ⊆ i∼, the tuples

also satisfy the (FSyS) conditions in
i∼, which implies (q1, S1) (

i+1∼ )hτ (q2, S2).



13:54 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

For the second part, we start with ⊇ and argue that, for all i ∈ ω,
i∼ ⊇ s∼. The proof is

by induction on i. For i = 0 the result is trivial, because
0∼ = U . Next, assuming

i∼ ⊇ s∼, we
will show

i+1∼ ⊇ s∼. Suppose (q1, S1)(
s∼)hτ (q2, S2). We wish to show that (q1, S1, τ, q2, S2, h)

and its inverse satisfy the (FSyS) conditions in
i∼. By definition, they satisfy the (FSyS)

conditions in
s∼. Because of

i∼ ⊇ s∼, this implies that they satisfy the (FSyS) conditions in
i∼. Hence, i+1∼ ⊇ s∼, as required.

For the ⊆ direction, we argue that the left-hand side is a symbolic bisimulation. To see

this, assume (q1, S1, τ, q2, S2, h) ∈
⋂

i∈ω
i∼ so that (q1, S1, τ, q2, S2, h) and its inverse satisfy

the (FSyS) conditions in
i∼, for all i ∈ ω. The satisfaction of the (FSyS) conditions in

i∼
by (q1, S1, τ, q2, S2, h) (and, analogously, by its inverse) is witnessed by a subset Ci ⊆

i∼ ⊆ U
for each i. Because U is finite, there exists C such that C = Ci for infinitely many i.

Consequently, in view of
i+1∼ ⊆ i∼, C witnesses satisfaction of the (FSyS) conditions in

(
⋂

i∈ω
i∼q).

Proof of Lemma 7.8. We first observe that Cl(R) = Cl−(R ∪R−1) where, for any relation
X, we let Cl−(X) be the smallest relation that contains X and is closed under the rules

(Id), (Tr) and (Ext) above. Let R̂ = Cl−(R ∪ R−1) and P̂ = Cl(P ). We show that all

elements in R̂ satisfy the (FSyS) conditions in P̂ , by rule induction on Cl−(R ∪R−1).
For the base cases, either the element is in R∪R−1 or is an identity. In both cases the result
is clear. For the inductive step, consider the rule:

(q1, S1, σ1, q2, S2) ∈ R̂h (q2, S2, σ2, q3, S3) ∈ R̂h

(q1, S1, σ1;σ2, q3, S3) ∈ R̂h
(Tr)

and assume that the premises satisfy the (FSyS) conditions in P̂ . Let us write σ for σ1;σ2.

Suppose q1
t,i1−−→ q′1.

• If σ1(i1) = i2 ∈ [1, r] then, by the (FSyS) conditions on (q1, S1, σ1, h, q2, S2), we have

q2
t,i2−−→ q′2 with j2 = σ1(j1) and (q′1, S1)P̂

h
σ1
(q′2, S2).

– If σ2(i2) = i3 ∈ [1, r] then q3
t,i3−−→ q′3 with (q′2, S2)P̂

h
σ2
(q′3, S3). By (Tr), (q′1, S1)P̂

h
σ (q

′
3, S3).

– If σ2(i2) = i′3 ∈ [r+1, 3r] then q3
t,i•3−−→ q′3 with (q′2, S2)P̂

h
[i3↔i′3]σ2

(q′3, S3[i3 ↔ i′3]). By (Tr),

and using also Lemma 2.7, we obtain (q′1, S1)P̂
h
[i3↔i′3]σ

(q′3, S3[i3 ↔ i′3]), as required.

– If i2 ∈ S2 \ dom(σ2) then q3
t,i•3−−→ q′3 with (q′2, S2)P̂

h
σ2[i2 7→i3]

(q′3, S3[i3]). By (Tr), we

obtain (q′1, S1)P̂
h
σ1;σ2[i2 7→i3]

(q′3, S3[i3]), which is what is required since σ[i1 7→ i3] = σ1;

σ2[i2 7→ i3].

• If σ1(i1) = i′2 ∈ [r+1, 3r] then q2
t,i•2−−→ q′2 with (q′1, S1)P̂

h
[i2↔i′2]σ1

(q′2, S2[i2 ↔ i′2]).

– If σ2(i
′
2) = i3 ∈ [1, r] then q3

t,i3−−→ q′3 with (q′2, S2[i2 ↔ i′2])P̂
h
σ2[i2↔i′2]

(q′3, S3). By (Tr) we

obtain (q′1, S1)P̂
h
σ (q

′
3, S3).

– If σ2(i
′
2) = i′3 ∈ [r+1, 3r] then q3

t,i•3−−→ q′3 with (q′2, S2[i2 ↔ i′2])P̂
h
[i3↔i′3]σ2[i2↔i′2]

(q′3, S3[i3 ↔ i′3]). By (Tr) we have (q′1, S1)P̂
h
[i3↔i′3]σ

(q′3, S3[i3 ↔ i′3]).



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:55

• If i1 ∈ S1 \ dom(σ1) then we have h =∞ and q2
t,i•2−−→ q′2 with (q′1, S1)P̂

h
σ1[i1 7→i2]

(q′2, S2[i2]),

for some i2, so q3
t,i•3−−→ q′3 with (q′2, S2[i2])P̂

h
σ2[i2 7→i3]

(q′3, S3[i3]) for some i3. By (Tr,Ext),

using σ1[i1 7→ i2];σ2[i2 7→ i3] ≤S1,S3[i3] σ[i1 7→ i3], we get (q1, S1)P̂
h
σ[i1 7→i3]

(q3, S3[i3]).

Now suppose q1
t,i•1−−→ q′1 and let i′1 ∈ S1 \ [1, r] (so h ≤ 2r).

• If σ1(i
′
1) = i2 ∈ [1, r] then q2

t,i2−−→ q′2 with (q′1, S1[i1 ↔ i′1])P̂
h
σ1[i1↔i′1]

(q′2, S2).

– If σ2(i2) = i3 ∈ [1, r] then q3
t,i3−−→ q′3 with (q′2, S2)P̂

h
σ2
(q′3, S3). By (Tr) we obtain

(q′1, S1[i1 ↔ i′1])P̂
h
σ[i1↔i′1]

(q′3, S3).

– If σ2(i2) = i′3 ∈ [r+1, 3r] then q3
t,i•3−−→ q′3 with (q′2, S2)P̂

h
[i3↔i′3]σ2

(q′3, S3[i3 ↔ i′3]). By (Tr)

we have (q′1, S1[i1 ↔ i′1])P̂
h
[i3↔i′3]σ[i1↔i′1]

(q′3, S3[i3 ↔ i′3]).

• If σ1(i
′
1) = i′2 ∈ [r+1, 3r] then q2

t,i•2−−→ q′2 with (q′1, S1[i1 ↔ i′1])P̂
h
[i2↔i′2]σ1[i1↔i′1]

(q′2, S2[i2 ↔ i′2]).

– If σ2(i
′
2) = i3 ∈ [1, r] then q3

t,i3−−→ q′3 with (q′2, S2[i2 ↔ i′2])P̂
h
σ2[i2↔i′2]

(q′3, S3). By (Tr) we

obtain (q′1, S1[i1 ↔ i′1])P̂
h
σ[i1↔i′1]

(q′3, S3).

– If σ2(i
′
2) = i′3 ∈ [r+1, 3r] then q3

t,i•3−−→ q′3 with (q′2, S2[i2 ↔ i′2])P̂
h
[i3↔i′3]σ2[i2↔i′2]

(q′3, S3[i3 ↔ i′3]). By (Tr), (q′1, S1[i1 ↔ i′1])P̂
h
[i3↔i′3]σ[i1↔i′1]

(q′3, S3[i3 ↔ i′3]).

On the other hand, if q1
t,i•1−−→ q′1 and i3 ∈ S3 \ rng(σ) (so h =∞).

• If i3 ∈ rng(σ2) and i2 = σ−1
2 (i3) /∈ rng(σ1) then q2

t,i2−−→ q′2 with (q′1, S1[i1])P̂
h
σ1[i1 7→i2]

(q′2, S2),

and so q3
t,i3−−→ q′3 with (q′2, S2)P̂

h
σ2
(q′3, S3). By (Tr) obtain (q′1, S1[i])P̂

h
σ[i1 7→i3]

(q′3, S3).

• If i3 ∈ S3 \ rng(σ2) then, since q2
t,i•2−−→ q′2 with (q′1, S1[i1])P̂

h
σ1[i1 7→i2]

(q2, S2[i2]) for some i2,

we also have q3
t,i3−−→ q′3 with (q′2, S2[i2])P̂

h
σ2[i2 7→i3]

(q′3, S3). By (Tr,Ext) we obtain

(q′1, S1[i1])P̂
h
σ[i1 7→i3]

(q′3, S3).

Finally, let q1
t,i•1/i

⊛
1−−−−→ q′1. Then, q2

t,i•2/i
⊛
2−−−−→ q′2 and q3

t,i•3/i
⊛
3−−−−→ q′3 with (q′1, S

′
1)P̂

h′

σ′
1
(q′2, S

′
2) and

(q′2, S
′
2)P̂

h′

σ′
2
(q′3, S

′
3).

• If h < 2r then h′ = h + 1 and i′k = min([r+1, 3r] \ Sk), S′
k = Sk[i

′
k][ik ↔ i′k] and

σ′
k = [ik+1 ↔ i′k+1](σk[i

′
k 7→ i′k+1])[ik ↔ i′k], for k = 1, 2, 3. By (Tr), we have

(q′1, S
′
1)P̂

h
σ′
1;σ

′
2
(q′3, S

′
3), which is as required since σ′

1;σ
′
2 = [i3 ↔ i′3](σ[i

′
1 7→ i′3])[i1 ↔ i′1].

• If h = 2r then h′ =∞ and S′
k = Sk[ik] ∩ [1, r] and σ′

k = σk[ik 7→ ik+1] ∩ [1, r]2. By (Tr),

we have (q′1, S
′
1)P̂

h
σ′
1;σ

′
2
(q′3, S

′
3) and, hence, by (Ext) we obtain the required result since

σ′
1;σ

′
2 ≤S′

1,S
′
2
σ[i1 7→ i3] ∩ [1, r]2.

• If h =∞ then h′ =∞ and S′
k = Sk[ik] and σ′

k = σk[ik 7→ ik+1]. By (Tr,Ext),

(q′1, S1[i1])P̂
h
σ[i1 7→i3]

(q′3, S3[i3]).



13:56 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Moreover, if the transition from q1 to q′1 is localy fresh then so is the one from q2 to q′2,
and from q3 to q′3.

We now consider the rule:

(q1, S1, σ, q2, S2) ∈ R̂h σ ≤S1,S2 σ′

(q1, S1, σ′, q2, S2) ∈ R̂h
(Ext)

and assume (q1, S1, σ, h, q2, S2) satisfies the (FSyS) conditions in P̂ . Note that if h < ∞
then h = |σ| = |σ′|, hence σ = σ′ and the required result is trivial. So let us assume h =∞.

Suppose q1
t,i−→ q′1.

• If i ∈ dom(σ) then q2
t,σ(i)−−−→ q′2 and (q′1, S1)P̂

∞
σ (q′2, S2). Since σ ⊆ σ′, we have σ(i) = σ′(i)

and (q′1, S1)P̂
∞
σ′ (q′2, S2).

• If i /∈ dom(σ′) then also i /∈ dom(σ) and therefore q2
t,j•−−→ q′2, for some j, and

(q′1, S1)P̂
∞
σ[i 7→j](q

′
2, S2[j]).

From σ ≤S1,S2 σ′ we obtain σ[i 7→ j] ≤S1,S2[j] σ
′[i 7→ j], so (q′1, S1)P̂

∞
σ′[i 7→j](q

′
2, S2[j]).

• If i ∈ dom(σ′) \ dom(σ) then we reason as follows. Let σ′(i) = j ∈ S2.

I. Since i /∈ dom(σ), there is some q2
t,j′•−−→ q′′2 with (q′1, S1)P̂

∞
σ[i 7→j′](q

′′
2 , S2[j

′]);

II. hence, there is some q1
t,i′•−−→ q′′1 with (q′′1 , S1[i

′])P̂∞
σ[i′ 7→j′](q

′′
2 , S2[j

′]);

III. then, there is some q2
t,j−→ q′2 with (q′′1 , S1[i

′])P̂∞
σ[i′ 7→j](q

′
2, S2).

Taking stock (and using symmetry of P̂ ),

(q′1, S1)P̂
∞
σ[i 7→j′](q

′′
2 , S2[j

′])P̂∞
σ−1[j′ 7→i′](q

′′
1 , S1[i

′])P̂∞
σ[i′ 7→j](q

′
2, S2)

and thus, since σ[i 7→ j′];σ−1[j′ 7→ i′];σ[i′ 7→ j] ≤S1,S2 σ[i 7→ j] ≤S1,S2 σ′, we have

(q′1, S1)P̂
∞
σ′ (q′2, S2).

Suppose now q1
t,i•−−→ q′1.

• Then, q2
t,j•−−→ q′2 and (q′1, S1[i])P̂

∞
σ[i 7→j](q

′
2, S2[j]). Since σ[i 7→ j] ≤S1[i],S2[j] σ

′[i 7→ j], we

have (q′1, S1[i])P̂
∞
σ′[i 7→j](q

′
2, S2[j]).

• If j ∈ S2 \ rng(σ′) then j /∈ rng(σ), hence q2
t,j−→ q′2 and (q′1, S1[i])P̂

∞
σ[i 7→j](q

′
2, S2). Again,

we obtain (q′1, S1[i])P̂
∞
σ′[i 7→j](q

′
2, S2).

Finally, let q1
t,i⊛−−→ q′1.

• Then, q2
t,j⊛−−→ q′2 and (q′1, S1[i])P̂

∞
σ[i 7→j](q

′
2, S2[j]). Since σ[i 7→ j] ≤S1[i],S2[j] σ

′[i 7→ j], we

have (q′1, S1[i])P̂
∞
σ′[i 7→j](q

′
2, S2[j]).

Hence, R̂ satisfies the (FSyS) conditions in P̂ .



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:57

Appendix D. PSPACE completeness of inverse subsemigroup membership

Given an inverse semigroup G, an inverse subsemigroup of G is some inverse semigroup
H ⊆ G. The problem of inverse subsemigroup membership of G:

For a set G of elements of G and a distinguished element g of G, does g ∈ ⟨G⟩?
where ⟨G⟩ is the inverse semigroup generated by the members of G via composition and
inversion. In this section we prove the following result.

Theorem D.1. Checking membership in inverse subsemigroups of ISn is PSPACE-complete.

Note first that PSPACE membership follows from Kozen’s corresponding PSPACE
result for functions, as members of ISn can be seen as functions on [1, n] ∪ {#}.

Theorem D.2 [Koz77]. Checking whether a function h : [1, n] → [1, n] can be generated
from given functions f1, · · · , fk : [1, n]→ [1, n] is PSPACE-complete.

For hardness, we shall make use of a result of Lewis and Papadimitriou which shows
that PSPACE computations correspond to computations performed in polynomial space by
Turing machines with symmetric transitions.

Definition D.3 [LP82]. A symmetric Turing Machine is a tupleM = ⟨Q, q0, δ, F ⟩ where:
• Q is a set of states, q0 ∈ Q is initial and F ⊆ Q are final,
• δ ⊆ (Q×{0, 1}×{0}×{0, 1}×Q)∪ (Q×{0, 1}2×{−1,+1}×{0, 1}2×Q) is the transition
relation,

such that δ = δ−1, where δ−1 = {t−1 | t ∈ δ} and:
• (q, a, 0, b, q′)−1 = (q′, b, 0, a, q),
• (q, a, b, A, c, d, q′)−1 = (q′, c, d,−A, a, b, q).

Note that our machines have input and tape alphabet {0, 1}. Moreover, since we are only
examining machines running in polynomial space, we assume a single tape (i.e. no separate
input/work tapes), which is initially empty.12 A symmetric TMM operates just as a TM,
with the feature thatM can look 2 symbols ahead:13 e.g. a transition (q, a, b,+1, c, d, q′)
means that, if the automaton is at state q, with the tape symbol at the head being a and
the tape symbol to the right of the head being b, then the automaton will rewrite those
symbols to c, d respectively, move the head to the right and go to state q′. In a transition
(q, a, b,−1, c, d, q′) we have the dual behaviour: the automaton looks one symbol to the left
ahead, and moves the head to the left. Transitions of the form (q, a, 0, b, q′) leave the head
unmoved.

Given f : N→ N, we let SSPACE(f) be the class of problems decided by a symmetric
TM in space O(f).

Theorem D.4 [LP82]. For any f : N→ N,

DSPACE(f) ⊆ SSPACE(f) ⊆ NSPACE(f).

Hence, setting SPSPACE =
⋃

i∈N SSPACE(ni), using also Savitch’s theorem we have
SPSPACE = PSPACE.

12Lewis&Papadimitriou work with multi-tape automata, which they reduce to 2-tape automata with one
tape for input and one work tape. The same procedure can be used to reduce to just one tape, retaining the
same space complexity if the initial complexity is at least polynomial.
13This feature does not add expressiveness to a TM but allows one to define symmetric machines.



13:58 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos Vol. 21:1

Proof of Theorem D.1. It suffices to show that the problem is PSPACE-hard. Suppose that
M is a symmetric TM with set of states Q = [1,K] and a tape of size N . By convention,
we assume that the initial state is 1, the initial head position is 1 and the unique final
state is K. We will simulate its computation using partial permutations from ISn, where
n = 2N +N +K + 1.

The first 2N numbers in n are used for modelling the tape, the next N numbers for
storing the position of the head on the tape, and the last K + 1 ones for storing the current
state, where we include an extra dummy state (K + 1) to be used at the beginning of the
simulation. The way we model these data (tape, head, state) is by employing N + 1 + 1
“tokens” which we distribute among our n numbers as follows:

• One token is shared between 2i− 1 and 2i, for each i ∈ [1, N ]. This token represents the
value of bit i of the tape. E.g. if the tape is 10 · · · 0, then we can think of the tokens being
on numbers 2, 3, 5, · · · , 2N − 1.
• One token is shared between the numbers 2N + 1, · · · , 3N . This token represents the
position of the head. E.g. if the tape is on position 5, then this token will be on number
2N + 5.
• One token is shared between the numbers 3N + 1, ..., 3N +K + 1. This token represents
the current state.

Initially, we will require all tokens to be on positions 2i−1 (i ∈ [1, N ]), 2N+1 and 3N+K+1.
The latter means that the last token is initially placed on the dummy state K + 1.

We model transitions as partial permutations that pass on the 2N + 2 tokens. E.g.
consider the transition t = (3, 0, 0,+1, 1, 0, 5).14 Then, t is modelled by partial permutations:

πi
t = {(2i− 1, 2i)} ∪ {(2(i+ 1)− 1, 2(i+ 1)− 1)}
∪ {(j, j) ∈ [1, 2N ]× [1, 2N ] | j ̸= 2i− 1, 2i, 2i+ 1, 2i+ 2}
∪ {(2N + i, 2N + i+ 1)}
∪ {(3N + 3, 3N + 5)}

for i ∈ [1, N−1]. The first line above says “at position i, read 0 and write 1” and “at position
i+ 1, read 0 and write 0”; the second line “leave the remaning cells unchanged”; third line
“move right”; and the fourth one “from state 3 go to state 5”. This can be generalised to all
of δ:

• for all t = (x, a, b, A, c, d, y) and i ∈ [1, N ] such that i+A ∈ [1, N ], set
πi
t = {(2i−2+A+a, 2i−2+A+c)}∪{(2i+A+b, 2i+A+d)}∪{(j, j) ∈ [1, 2N ]×[1, 2N ] | j /∈

[2i− 2 +A, 2i+ 1 +A]} ∪ {(2N + i, 2N + i+A)} ∪ {(3N + x, 3N + y)}
• for all t = (x, a, 0, b, y) and i ∈ [1, N ], set πi

t = {(2i − 1 + a, 2i − 1 + b)} ∪ {(j, j) ∈
[1, 2N ]× [1, 2N ] | j /∈ [2i− 1, 2i]} ∪ {(2N + i, 2N + i)} ∪ {(3N + x, 3N + y)}

Note that, in the latter case, (πi
t)

−1 = πi
t−1 and, in the former one, (πi

t)
−1 = πi+A

t−1 .
Let us write X for the set of all such partial permutations. IfM has d many transitions

then the size of X is at most d ·N . Let us also select Y to be a minimal set of generators
for the group of partial permutations of the form:

π′ = π1 ∪ π2 ∪ {(3N +K, 3N +K)}

14i.e. from state 3, if the head of the tape and its right-successor read 00 then write 10 to them, move right
and go to state 5.



Vol. 21:1 BISIMILARITY IN FRESH-REGISTER AUTOMATA 13:59

where π1 : [1, 2N ]
∼=→ [1, 2N ] and π2 : [2N + 1, 3N ]

∼=→ [2N + 1, 3N ]. Note that |Y | ≤ 3n/2.
Moreover, let us take

π0 = {(2i− 1, 2i− 1) | i ∈ [1, N ]} ∪ {(2N + 1, 2N + 1)}
∪{(3N +K + 1, 3N + 1)}

to be a permutation setting up the initial positions of the tokens. We then have that:

M terminates ⇐⇒ πM ∈ ⟨X ∪ Y ∪ {π0}⟩ (D.1)

where πM is the partial permutation:

πM = {(2i− 1, 2i− 1) | i ∈ [1, N ]} ∪ {(2N + 1, 2N + 1)}
∪{(3N +K + 1, 3N +K)}

To prove (D.1), note first that any accepting run ofM, say

(q0, H0, α0)
t1−→ (q1, H1, α1) · · ·

tk−→ (qk, Hk, αk)

where q0 = 1, H0 = 1, α0 = 0N and qk = K, yields a permutation π = π0;π
H0
t1

; · · · ;πHk
tk

with the property that dom(π) = dom(π0) and π(3N + 1) = 3N +K. We can now select
some π′ ∈ ⟨Y ⟩ such that π′ ↾ dom(π) = (π ↾ [1, 3N ]) ∪ {(3N + K, 3N + K)} and, hence,
π;π′−1 = πM.

Conversely, suppose that πM ∈ ⟨X ∪Y ∪{π0}⟩ and in particular let πM = π0;π1; · · · ;πk
be a production (so each πi is in X ∪ Y ∪ {π0} ∪X−1 ∪ Y −1 ∪ {π−1

0 }). Note that, because
π0 is the only generator with 3N + K + 1 in its domain, it must be the leftmost one in
the production. Let k′ ≤ k be the least index such that πk′ /∈ Y ∪ Y −1 and, for all j > k′,
πj ∈ Y ∪Y −1, and assume the production is minimal with respect to the value (k′, k) (in the
lexicographic ordering). We first claim that there is no πj with j < k′ such that πj ∈ Y ∪Y −1.
Because if that were the case then π′ = π0; · · · ;πj−1 would satisfy dom(π′) = dom(πM) and
π′(3N+K+1) = 3N+K so there would be some π′′ ∈ ⟨Y ⟩ such that πM = π0; · · · ;πj−1;π

′′,
and the latter would lead to a production with size (j − 1, · · · ) which would be smaller
than (k′, k). Moreover, if πi = π0 for some i > 0 then we must have πi−1 = π−1

0 . Because

π−1
0 ;π0 = idrng(π0) and |π

−1
0 ;π0| = |πM| = N +2, we have that π−1

0 ;π0 can be safely removed
from the production of π, thus contradicting the minimality of the latter. For similar reasons,
πi ≠ π−1

0 , for all i ∈ [1, k]. Hence, π0 only occurs at the beginning of the production and

π−1
0 does not occur at all. Summing up, π = π0;πA;πB with πA ∈ ⟨X⟩ and πB ∈ ⟨Y ⟩. We

can now see that πA represents a computation ofM from 1 to K.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany


	1. Introduction
	2. Preliminaries
	2.1. Bisimilarity
	2.2. Fresh-register automata
	2.3. Groups and permutations
	2.4. Update notation

	3. Bisimilarity problems complete for EXPTIME
	3.1. EXPTIME algorithm
	3.2. EXPTIME hardness

	4. PSPACE-completeness for RAs with single assignment without erasure (RA(S#0)) 
	4.1. Symbolic bisimulations
	4.2. Bounding indexed bisimilarity convergence using permutation groups
	4.3. PSPACE hardness

	5. Language equivalence for RA(S#0)
	6. NP bound for single assignment with filled registers (RA(SF))
	7. Fresh-register automata with single assignment without erasure (FRA(S#0))
	7.1. Symbolic bisimulation
	7.2. PSPACE bound for bisimulation game
	7.3. Generating systems and NP routines

	8. Visibly pushdown automata with single assignment and filled registers (VPDRA(SF))
	Input Phase
	Transitions

	9. Conclusion
	Acknowledgments
	References
	Appendix A. Proofs from Section 3
	Appendix B. Proofs from Section 4
	Appendix C. Proofs from Section 7
	Appendix D. PSPACE completeness of inverse subsemigroup membership

