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ABSTRACT. We compare games under delayed control and delay games, two types of infinite
games modelling asynchronicity in reactive synthesis. In games under delayed control both
players suffer from partial informedness due to symmetrically delayed communication, while
in delay games, the protagonist has to grant lookahead to the alter player.

Our first main result, the interreducibility of the existence of sure winning strategies for
the protagonist, allows to transfer known complexity results and bounds on the delay from
delay games to games under delayed control, for which no such results had been known.
We furthermore analyse existence of randomized strategies that win almost surely, where
this correspondence between the two types of games breaks down. In this setting, some
games surely won by the alter player in delay games can now be won almost surely by the
protagonist in the corresponding game under delayed control, showing that it indeed makes
a difference whether the protagonist has to grant lookahead or both players suffer from
partial informedness. These results get even more pronounced when we finally address the
quantitative goal of winning with a probability in [0,1]. We show that for any rational
threshold 6 € [0,1] there is a game that can be won by the protagonist with exactly
probability 6 under delayed control, while being surely won by alter in the delay game
setting. All these findings refine our original result that games under delayed control are
not determined.

1. INTRODUCTION

Two-player zero-sum games of infinite duration are a standard model for the synthesis of
reactive controllers, i.e., correct-by-construction controllers that satisfy their specification
even in the presence of a malicious environment. In such games, the interaction between the
controller and the environment is captured by the rules of the game and the specification
on the controller induces the winning condition of the game. Then, computing a correct
controller boils down to computing a winning strategy.

Key words and phrases: Games under delayed control, delay games, synthesis.
* Full version of [FWZ23], contains all proofs omitted in the conference version as well as a new section on
winning games under delayed control with mixed strategies with respect to a fixed threshold (Section 6).

|IEE| LOGICAL METHODS © M. Franzle, P. Kroger, S. Winter, and M. Zimmermann
IN COMPUTER SCIENCE DOI:10.46298/LMCS-21(1:24)2025 @ Creative Commons


https://lmcs.episciences.org/
https://orcid.org/0000-0002-9138-8340
https://orcid.org/0000-0002-0301-3611
https://orcid.org/0000-0002-3499-1995
https://orcid.org/0000-0002-8038-2453
http://creativecommons.org/about/licenses

24:2 M. FrANzLE, P. KROGER, S. WINTER, AND M. ZIMMERMANN Vol. 21:1

Often, it is convenient to express the rules in terms of a graph capturing the state-space
such that moves correspond to transitions between these states. The interaction between the
controller and the environment then corresponds to a path through the graph and the winning
condition is a language of such paths, containing those that correspond to interactions that
satisfy the specification on the controller.

In other settings, it is more convenient to consider a slightly more abstract setting
without game graphs, so-called Gale-Stewart games [GS53|. In such games, the players
alternatingly pick a sequence of letters, thereby constructing an infinite word. The winning
condition is a language over infinite words, containing the winning words for one player. To
capture the synthesis problem, the winning condition has to encode both the specification
on the controller as well as the rules of interaction. It is straightforward to transform a
graph-based game into a Gale-Stewart game and a Gale-Stewart game into a graph-based
game such that the existence of winning strategies for both players is preserved.

In the most basic setting of synthesis, both the controller and the environment are
fully informed about the current state of the game (complete information). However, this
scenario is not always realistic. Thus, much effort has been poured into studying games under
incomplete information where the players are only partially informed about the current state
of the game. Here, we are concerned with a special type of partial information designed to
capture delays in perception and action. Such delays either render the most recent moves
of the opponent invisible to a player or induce a time lag between the selection and the
implementation of an own move, respectively.

As a motivating example, consider the domain of cooperative driving: Here, the exchange
of information between cars is limited (and therefore delayed) by communication protocols
that have to manage the available bandwidth to transfer information between cars. Other
delaying factors include, e.g., complex signal processing chains based on computer vision
to detect the locations of obstacles. Thus, decisions have to be made based on incomplete
information, which only arrives after some delay.

1.1. Games under Delayed Control. Chen et al. [CFL"21] introduced (graph) games
under delayed control to capture this type of incomplete information. Intuitively, assume the
players so far have constructed a finite path vg - - - v, through the graph. Then, the controller
has to base their decision on a visible proper prefix vg - - - v,_s, where § is the amount of
delay. Hence, the suffix v,_s11--- v, is not yet available to base the decision on, although
the decision to be made is to be applied at the last state v, in the sequence.

Chen et al. showed that solving games under delayed control with safety conditions and
with respect to a given delay is decidable: They presented two algorithms, an exponential
one based on a reduction to delay-free safety games using a queue of length ¢, and a more
practical incremental algorithm synthesizing a series of controllers handling increasing delays
and reducing game-graph size in between. They showed that even a naive implementation
of this algorithm outperforms the reduction-based one, even when the latter is used with
state-of-the-art solvers for delay-free games. However, the exact complexity of the incremental
algorithm and that of solving games under delayed control remained open.

Note that asking whether there is some delay § that allows controller to win reduces to
solving standard, i.e., delay-free games, as they correspond to the case § = 0. The reason is
monotonicity in the delay: if the controller can win for delay ¢ then also for any ¢’ < 4. More
interesting is the question whether controller wins with respect to every possible delay. Chen
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et al. conjectured that there is some exponential § such that if the controller wins under
delay §, then also under every §’. We call a § with this property decisive.

1.2. Delay Games. There is also a variant of Gale-Stewart games modelling delayed
interaction between the players [HL72|. Here, the player representing the environment
(often called Player I for input) has to provide a lookahead on their moves, i.e., the player
representing the controller (accordingly called Player O for output) has access to the first
n + k letters picked by Player I when picking their n-th letter. So, k is the amount of
lookahead that Player I has to grant Player O. Note that the lookahead benefits Player O
(representing the controller) while the delay in a game under delayed control disadvantages
the controller.

Only three years after the seminal Biichi-Landweber theorem showing that delay-free
games with w-regular winning conditions are decidable [BL69|, Hosch and Landweber showed
that it is decidable whether there is a k such that Player O wins a given Gale-Stewart
game with lookahead k [HL72|. Forty years later, Holtmann, Kaiser, and Thomas [HKT12]
revisited these games (and dubbed them delay games). They proved that if Player O wins a
delay game then Player O wins it already with at most doubly-exponential lookahead (in
the size of a given deterministic parity automaton recognizing the winning condition). Thus,
unbounded lookahead does not offer any advantage over doubly-exponential lookahead in
games with w-regular winning conditions. Furthermore, they presented an algorithm with
doubly-exponential running time solving delay games with w-regular winning conditions, i.e.,
determining whether there exists a k such that Player O wins a given delay game (with its
winning condition again given by a deterministic parity automaton) with lookahead k.

Both upper bounds were improved and matching lower bounds were later proven by
Klein and Zimmermann [KZ16a]: Solving delay games is EXPTIME-complete and exponential
lookahead is both necessary to win some games and sufficient to win all games that can be
won. Both lower bounds already hold for winning conditions specified by deterministic safety
automata while the upper bounds hold for deterministic parity automata. The special case
of solving delay games with conditions given as reachability automata is PSPACE-complete,
but exponential lookahead is still necessary and sufficient. Thus, there are tight complexity
results for delay games, unlike for games under delayed control.

1.3. On Player Names. Note that games under delayed control and delay games are in
a sense asymmetric: In a game under delayed control, one models situations in which the
controller is disadvantaged by the delayed access to environment’s moves while in a delay
game, one models situations in which the controller (Player O) benefits from a lookahead on
environment’s (Player ) moves. Said differently, in a delay game, Player I is disadvantaged
by having to provide a lookahead on their moves to Player O. Thus, it is natural to ask
whether there is a connection between the two disadvantaged players (i.e., controller in a
game under delayed control and Player I in a delay game) and between the other two players
(environment and Player O).

For the sake of consistency with existing literature, we prefer to stick to the player names
“controller” and “environment” as well as “Player I” and “Player O”, even though in a delay
game Player O is typically understood to represent the controller.

Also, let us remark that winning conditions in both types of games are always formulated
from the perspective of controller, i.e., for controller in games under delayed control and for
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winning conditon complexity decisive delay
safety PSPACE-complete exponential
reachability ExpPTIME-complete  exponential
parity ExpPTIME-complete  exponential

LTL 3EXPTIME-complete triply-exponential

Table 1: Our results for games under delayed control. “Complexity” refers to the problem of
determining whether controller wins the game for every possible delay. All bounds
for the decisive delays are tight.

Player O in delay games. Hence, as we will relate controller and Player I, we always have to
complement winning conditions.

1.4. Our Contributions. In this work, we prove that there is indeed a tight relation between
controller in a game under delayed control and Player I in a delay game. More precisely, we
show that one can transform a safety game under delayed control in polynomial time into
a delay game with a reachability condition for Player O (i.e., with a safety condition for
Player I) such that controller wins the game under delayed control with even delay ¢ if and
only if Player I wins the resulting delay game with lookahead of size % Dually, we show
that one can transform a delay game with safety condition for Player I in polynomial time
into a reachability game under delayed control such that Player I wins the delay game with
lookahead of size ¢ if and only if controller wins the resulting game under delayed control
with delay 20. Thus, we can transfer both upper and lower bound results on complexity and
on (necessary and sufficient) lookahead from delay games to delayed control. In particular,
determining whether controller wins a given safety game under delayed control for every
possible delay is PSPACE-complete. Our reductions also prove the conjecture by Chen et al.
on the delays that allow controller to win such games: There is an exponential decisive delay
in games under delayed control with safety conditions.

Furthermore, we generalize our translation from games with safety conditions to games
with reachability conditions, games with parity conditions, and games with winning conditions
given by formulas of Linear Temporal Logic (LTL) [Pnu77|, again allowing us to transfer
known results for delay games to games under delayed control. Table 1 lists our results.

Note that we have only claimed that the existence of winning strategies for the controller
in the game under delayed control and Player I in the delay game coincides. This is no
accident! In fact, the analogous result for relating environment and Player O fails. This
follows immediately from the fact that delay games are determined while games under delayed
control are undetermined, even with safety conditions. The reason is that the latter games
are truly incomplete information games (which are typically undetermined) while delay games
are complete information games.

We furthermore refine these findings by a detailed comparison between environment and
Player O both in the setting of pure (deterministic) and in the setting of mixed (randomized)
strategies. The latter setting increases power for both the controller and the environment,
making them win (almost surely) games under delayed control that remain undetermined
in the deterministic setting, but it also breaks the correspondence between controller and
Player I observed in the deterministic setting: there are games that controller wins almost
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surely while the corresponding Player I surely looses them — and thus Player O, generally
corresponding to the environment, wins.

We finally provide results concerning existence of strategies that do not have to win
surely or almost surely, but guarantee a win with a given probability 8 €]0, 1] at least. Again,
this relaxation of the winning condition to at least 6-sure winning does not change anything
for delay games, as they are determined, meaning that one of the two parties Player I and
Player O has a sure (and thus also an almost sure and an at least #-sure) winning strategy.
For games under delayed control, the relaxation however makes a tremendous difference: we
show that for every rational 6 € [0, 1] there exists an w-regular game that the controller,
taking its optimal strategy, wins with probability 8 exactly. By symmetry, the same applies
to the environment.

These findings confirm our original intuition that delay games and games under delayed
control are indeed different, with the latter in relation giving more power to controller by
symmetrically subjecting both parties, i.e., the environment also, to incomplete information.
In the asymmetric setting of delay games, delay comes as a penalty for Player I only, while
it is a benefit for Player O, who is granted a lookahead.

2. PRELIMINARIES

We denote the non-negative integers by N. An alphabet ¥ is a non-empty finite set of
letters. A word over X is a finite or infinite sequence of letters of 3: The set of finite words
(non-empty finite words, infinite words) over ¥ is denoted by ¥* (XF, 3%). The empty
word is denoted by ¢, the length of a finite word w is denoted by |w|. Given two infinite

words a € (¥9)* and 8 € (¥1)¥, we define (3) = (gggg) @83) (gg;) € (B x X)L

2.1. Games under Delayed Control. Games under delayed control are played between
two players, controller and environment. For pronomial convenience [McN0O|, we refer to
controller as she and environment as he.

A game G = (5, sg, Se, Se, X, e, —, Win) consists of a finite set S of states partitioned
into the states S, C S of the controller and the states S, C S of the environment, an
initial state sy € S, the sets of actions Y. for the controller and X, for the environment,
and a transition function —: (S, x X.) U (Se x X¢) — S such that s € S;, o € X, implies
—(s,0) € Se, and s € S, 0 € ¥ implies —(s,0) € S.. Finally, Win C S“ is the winning
condition of the game. We write s 2 s’ as shorthand for s’ = —(s, o).

A play in G is an infinite sequence m = mgogmio1Te09 - -+ satisfying mg = sg and
Ty 2 mp+1 for alln > 0. We say that controller wins « if momyms - - - € Win; otherwise, we say
that environment wins 7. The play prefix of 7 of length n is defined as w[n| = mpog - - - op_17n,
i.e., n is the number of actions (equivalently, the number of transitions). We denote by
Pref(G) the set of play prefixes of all plays in G, which is partitioned into the sets Pref.(G)
and Pref.(G) of play prefixes ending in S. and S, respectively. Due to our alternation
assumption, play prefixes of even (odd) length are in Pref.(G) (Pref.(G)).

Fix some even 6 > 0. A strategy for the controller in G under delay 9§ is a pair (o, 7¢)
where o € (Zc)g and 7.: Pref.(G) — 3. maps play prefixes ending in S, to actions of the
controller. A play mpogmo1m0oy - -+ is consistent with («a, ;) if ogog - - 05_405_2 = a and
oon = Te(m[2n — §]) for all 2n > § — 2, i.e., controller has access to environment’s actions
with a delay of §. In particular, her first g + 1 actions are independent of environment’s
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actions and, in general, her n-th action og, only depends on the actions 01,03, ..., 02— -1
picked by environment, but not on the actions o(2,_§)4+1,0(2n—5)+3;- - - 02n—1 picked by
environment. The strategy (a,7.) is winning under delay ¢ if every play that is consistent
with it is winning for controller. Controller wins G under delay ¢ if she has a winning strategy
under delay 4 for G.

Remark 2.1.

(1) The notion of winning strategy for controller under delay 0 is the classical one for
delay-free games (cf. [GTWO02]).
(2) If controller wins G under delay §, then also under every delay ¢’ < § [CFL*21].

A strategy for environment is a mapping 7.: Pref.(G) — .. A play mpoomioimeoy--- is
consistent with 7, if 09,41 = Te(mp00 * - - O2n—172n+1) for all n > 0, i.e., environment has
access to the full play prefix when picking his next action. The strategy 7. is winning, if
every play that is consistent with it is winning for the environment (i.e., the sequence of
states is not in Win). Further, we say that environment wins G, if he has a winning strategy
for G. Note that the two definitions of strategies are in general not dual, e.g., the one for
environment is not defined with respect to a delay 9.

Remark 2.2. The notion of winning strategy for environment is the classical one for
delay-free games (cf. [GTWO02]).

We say that a game under delayed control G is determined under delay ¢, if either
controller wins G under delay 0 or environment wins G. Let us stress that determinacy
is defined with respect to some fixed 4 and that G may be determined for some 9, but
undetermined for some other ¢’ (due to the non-dual definition of strategies). Remark 4.11
shows an undetermined safety game under delayed control.

Example 2.3. Consider the game G = (S, sg, S¢, Se, X¢, Xe, —, Win) depicted in Figure 1
where Win contains all plays that do not visit the black vertex. Note that this is a safety
condition. In particular, if controller does not pick action b at ¢y and does not pick action a
at cs, then the vertex es is never reached. This is straightforward without delay, but we
claim that controller can also win G under delay 2.

To gain some intuition, consider a play prefix myoomy -+ - Tp_10p_17n With n > 4 and
7, € S.. Then, controller has to pick an action o, to continue the prefix. However, due to
the delayed control, she has to do so based on the prefix myoomy - - - T30 n_3Tn—_2.

If m_o is ¢, then 7, is either c3 or ¢;. Hence, picking o, = b is the only safe choice.
Dually, if m,_o is c¢3, then 7, is either co or ¢;. Hence, picking o, = a is the only safe choice.

Finally, assume m,_o is ¢1. Then, 7, is either ¢y or ¢3. In the former case, picking o, = a
is the only safe choice, in the latter case, picking o, = b is the only safe choice. So, controller
needs to distinguish these two cases, although she has no access to m,.

But she can do so by inspecting 7,3 (which she has access to): As a predecessor of
Tn—2 = C1, it can either be ey, e5, or es. In the latter case, the play is already losing. Thus,
we disregard this case, as we construct a winning strategy. So, assume we have m,_3 = e4
(the case m,_3 = e5 is dual). Then, we must have m,,_4 = co (the only predecessor of e4) and,
by our analysis of the safe moves above, controller must have picked o,_2 = b (based, due to
delay, on the prefix ending in 0,,—4 = ¢3). From this we can conclude 7,1 = e2 and thus
7, = c3 (the only successor of eg). Thus, she can safely pick o,, = b.
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Figure 1: The game for Example 2.3. Controller wins all plays that never visit the black
vertex. Note that we have 3, = {a,b} and X, = {u,u'}.

This intuition, and the necessary initialization, is implemented by the strategy (o, 7¢)
with @ = a and
(a n =2 and my = ¢q,
b n>2 m,_9=cy,and m,_3 = ey,
Tc(7r0007T1 o ﬂn_gan_37rn_2) =4qa n> 2, Tn—2 = C1, and TTp—3 = €5,

b mp_2=ca,

\a Tp—2 = C3.

An induction over the play length shows that («,7.) is winning for controller under delay 2.

Remark 2.4. Our definition of games under delayed control differs in three aspects from
the original definition of Chen et al. [CFLT21].

e We allow arbitrary winning conditions while Chen et al. focused on safety conditions.

e The original definition allows nondeterministic strategies (a strategy that returns a
nonempty set of actions, each one of which can be taken), while we restrict ourselves
here to deterministic strategies (a strategy that returns a single action to be taken). The
motivation for their use of nondeterministic strategies is the fact that they can be refined
if additional constraints are imposed, which Chen et al.’s algorithm computing a winning
strategy relies on.

Here, on the other hand, we are just interested in the existence of winning strategies.
In this context, it is sufficient to consider deterministic strategies, as controller has a
nondeterministic winning strategy if and only if she has a deterministic winning strategy.
Also, strategies in delay games are deterministic, so the transformation between games
under delayed control and delay games can be formulated more naturally for deterministic
strategies.

e The original definition also allowed odd delays § while we only allow even delays. As we
will see in Section 3, the transformation of games under delayed control to delay games is
naturally formulated for even delays. This choice also simplifies definitions, as accounting
for odd delays imposes an additional notational burden.



24:8 M. FrANzLE, P. KROGER, S. WINTER, AND M. ZIMMERMANN Vol. 21:1

2.2. Delay Games. Delay games are played between two players, Player I (she) and
Player O (he). A delay game I;(L) (with constant lookahead) consists of a lookahead k € N
and a winning condition L C (X; x ¥p)¥ for some alphabets ¥; and ¥p. Such a game is
played in rounds n = 0,1,2, ... as follows: in round 0, first Player I picks a word xg € E’;H,
then Player O picks a letter yg € Y. In round n > 0, Player I picks a letter x,, € ¥, then
Player O picks a letter y, € £p. So, a play of I},(L) has the form (xo,yo)(z1, y1)(z2,y2) - -,
where ¢ is a word of length k& 4+ 1 and all other x,, (those with n > 0) and all y,, are
letters. Player O wins such a play (zo, y0)(z1,y1)(z2,y2) - - - if the outcome (”Zgzi;;) is in
L; otherwise, Player I wins.

A strategy for Player I in I}, (L) is a mapping 77: X, — X7 satisfying |77(e)| = k + 1
and |t7(w)| =1 for all w € ZJ(S. A strategy for Player O is a mapping 70: ] — 0. A
play (xo,vo0)(x1,y1)(z2,y2) - -+ is consistent with 77 if x,, = 77(yo - - yn—1) for all n > 0, and
it is comnsistent with 7o if y,, = 70(x0 - - xy,) for all n > 0. So, strategies are dual in delay
games, i.e., Player I has to grant some lookahead on her moves that Player O has access to.
A strategy for Player P € {I, O} is winning, if every play that is consistent with the strategy
is won by Player P. We say that Player P € {I,O} wins a game I} (L) if Player P has a
winning strategy in Iy (L).

Remark 2.5.

e If Player O wins I (L), then he also wins I}/ (L) for every k' > k.
e If Player I wins I;(L), then she also wins I}/ (L) for every k' < k.

Unlike games under delayed control, delay games with Borel winning conditions are deter-
mined [KZ16al, i.e., each delay game I} (L) with Borel L and fixed k is won by one of the
players.

Example 2.6. Consider

A GG

over the alphabets X5 = ¥p = {1,2,3,4}.

Player I wins Iy (L) for k =1 with the following strategy 77: 77(¢) = 12 and 77(bg) = bo,
and 77(w) arbitrary for all w € ¥, with |w| > 1: In round 0, after Player I has picked aga; =
12, Player O has to pick some by. In order to not loose immediately, he has to pick by ¢ {1,2}.
Then, in round 1, Player I picks ag = by and thereby ensures by € {ag, a1, az}. Hence, the
play is not won by Player O (it’s outcome is not in L), therefore it is winning for Player I.

However, Player O wins I} (L) for k = 2 with the following strategy 7o: 70(apaiasz)
is a letter in the nonempty set 3o \ {ao, a1, a2} and To(w) arbitrary for all w € X} with
|w| # 3. In round 0, after Player I has picked agajaz, Player O picks by ¢ {ag, a1, a2} and
thus ensures that the outcome is in L.

Remark 2.7. We restrict ourselves here to the setting of constant lookahead, i.e., in a delay
game I (L) in round n when Player O picks her n-th letter, Player I has already picked
k +n+ 1 letters (note that we start in round 0 with the zeroth letter). Delay games have
also been studied with respect to growing lookahead, i.e., the lookahead increases during a
play [HKT12|. However, it is known that constant lookahead is sufficient for all w-regular
winning conditions: if Player O wins for any lookahead (no matter how fast it is growing), then
she also wins with respect to constant lookahead, which can even be bounded exponentially
in the size of a deterministic parity automaton recognizing the winning condition [KZ16a).
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Stated differently, growing lookahead does not allow to win any more games than constant
lookahead. Finally, the setting of constant lookahead in delay games considered here is the
natural counterpart to games under delayed control, where the delay is fixed during a play.

2.3. Games under Delayed Control vs. Delay Games. Let us illustrate the differences
between the strategic abilities of the players in a game G under delayed control (say with
delay §) and the players in a delay game I} (L).

Let us start with the delay game I (L). Here, Player I has to grant a lookahead of
k moves to Player O, who can base her moves on this additional information. Formally,
consider a play prefix (zo,40) -+ - (n, Yn), keeping in mind that x is a word of length k + 1
and each x,, with n’ > 0 and each vy, is a single letter. Hence, Player I has picked zoz1 - - - 7,
of length n + 1 + k while Player O has picked yoy1 - - - y, of length n + 1. Now, Player I’s
next move x,+1 may depend on yyi - - -y, and Player O’s subsequent move depends on
ToT1 - TnTne1. Thus, a delay game is a game of complete information, both players have
full access to the moves made by their respective opponent.*

On the other hand, in the game G under delayed control, controller has to base her
moves on a proper prefix of the play prefix constructed thus far while environment does not
gain a symmetric advantage from controller’s disadvantage. To understand this, consider a
play prefix moog7y - - - Tp—10p 17, with (w.lo.g.) n > 4. If 7, € S, i.e., it is controllers turn,
then she has to base her decision on the prefix mgogm - - Tp_1_§0n—1—6Tn—s, Picking some
action o, leading to a state w41 € Se. Thus, the actions o,41-¢s,0p+3-5,-..,0,—1 have
already been picked by environment, but are not available to controller to base her decision on.
Thus, she has incomplete information about the evolution of the play. Crucially, environment
does not benefit from controller’s disadvantage: Environment has to pick action o, only
based on the actions oy, ...,0,—1 while controller has to pick the action 0,45 based on the
actions oq,...,0p—1.

We will study this difference in informedness of the players in a game under delayed
control and in a delay game in the setting of deterministic and randomized strategies.

2.4. w-Automata. A deterministic reachability automaton A = (Q, 3, qr, 4, F') consists
of a finite set ) of states containing the initial state gy € @ and the set of accepting
states F' C @, an alphabet X, and a transition function d4: Q@ x ¥ — Q. The size of A is
defined as | A| = |Q|. Let w = wowjws - -+ € £¥. The run of A on w is the sequence gogiq2 - - -
such that gy = ¢r and ¢u+1 = d4(qn,wy) for all n > 0. A run gpqiqe - - - is (reachability)
accepting if ¢, € F for some n > 0. The language (reachability) recognized by A, denoted
by L(A), is the set of infinite words over ¥ such that the run of A on w is (reachability)
accepting.

A deterministic safety automaton has the form A = (Q, X, q,0.4,U) where Q, %, qr,04
are as in a deterministic reachability automaton and where U C (@ is a set of unsafe states.
The notions of size and runs are defined as for reachability automata, too. A run qogi1qs - -
is (safety) accepting if g, ¢ U for all n > 0. The language (safety) recognized by A, again
denoted by L(.A), is the set of infinite words over ¥ such that the run of A on w is (safety)
accepting.

Reachability and safety automata accept each a fragment of the w-regular languages, while
parity automata accept exactly the w-regular languages [GTWO02|. A deterministic parity

1As usual, a player can always reconstruct their own previous moves, if necessary.
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automaton has the form A = (Q, %, qr,94, ) where @, %, qr,04 are as in a deterministic
reachability automaton and where €2: () — N is a coloring of the states. The notions of size
and runs are defined as for reachability automata, too. A run qoqige --- is (parity) accepting
if the maximal color appearing infinitely often in the sequence €(qo)2(q1)2(g2) - - - is even.
The language (parity) recognized by A, again denoted by L(.A), is the set of infinite words
over ¥ such that the run of A on w is (parity) accepting.

Reachability and safety automata are dual while parity automata are self-dual.

Remark 2.8.
(1) Let A= (Q,%,qr,04, F) be a deterministic reachability automaton and let A be the

deterministic safety automaton (Q, 3, qr,d4, F). Then, L(A) = m

(2) Let A = (Q,%,qr,04, F) be a deterministic safety automaton and let A be the deter-
ministic reachability automaton (Q, X, qr,04, F). Then, L(A) = L(A).

(3) Let A = (Q,%,qr,04,Q) be a deterministic parity automaton and let A be the deter-

ministic parity automaton (@, X, qr, 04,9 — Q(q) +1). Then, L(A) = L(A).

3. FROM GAMES UNDER DELAYED CONTROL TO DELAY GAMES AND BACK

In this section, we exhibit a tight correspondence between controller in games under delayed
control and Player I in delay games. Recall that in a game under delayed control, it is the
controller whose control is delayed, i.e., she is at a disadvantage as she only gets delayed access
to the action picked by environment. In a delay game, it is Player I who is at a disadvantage
as she has to grant a lookahead on her moves to Player O. Thus, when simulating a game
under delayed control by a delay game, it is natural to let Player I take the role of controller
and let Player O take the role of environment. Also recall that the winning condition Win
in a game under delayed control is formulated from controller’s point-of-view: the winning
condition requires her to enforce a play in Win. On the other hand, the winning condition L
of a delay game is formulated from the point-of-view of Player O: Player O has to enforce
a play whose outcome is in L. Thus, as Player I takes the role of controller, we need to
complement the winning condition to reflect this change in perspective: The set of winning
outcomes for Player I in the simulating delay game is the complement of Win.

In the remainder of this section, we show how to simulate a game under delayed control
by a delay game and then the converse, i.e., we show how to simulate a delay game by a
game under delayed control.

Transformation 3.1. First, we transform a game under delayed control into a winning
condition for a delay game, i.e., a language. In a delay game with this winning condition,
the players simulate a play in the game under delayed control by picking actions, which
uniquely induce such a play. To formalize this, we need to introduce some notation. Fix a
game G = (S, 0, Se, Se, e, Xe, —, Win). Note that a sequence ogo10g -+ € (LX) induces
a unique play play(cooi0g - -+ ) = moogmio1me02 - - -+ in G which is defined as follows: my = s
and Tp+1 =—(mp, 0) for alln > 0. Likewise, a finite sequence ogoy - -0y € (XcXe)* (X +¢)
induces a unique play prefiz play(cgoy - - - 0y,) which is defined analogously.

Now, we define the language L(G) C (3¢ x X¢)¥ such that (g(l)) (gi) (g:‘) - € L(G) if and
only if play(cooi09 - -+ ) is winning for controller.
Example 3.2. We continue Example 2.3 to illustrate the transformation: consider the game
under delayed control G = (S, sg, S¢, Se, X¢, Xe, —, Win) depicted in Figure 1 on Page 6 where
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Figure 2: The safety automaton accepting the winning condition L(G) obtained by applying
Transformation 3.1 to the game from Example 2.3. A run is accepting if it does
not visit the black state.

Win contains all plays that do not visit the black vertex. The language L(G) is accepted
by the safety automaton depicted in Figure 2, which accepts an infinite sequence of actions
(arranged in tuples) if and only if the unique induced play in G is winning for controller.

In a delay game with winning condition L(G) (recall we need to complement the winning
condition), Player I picks actions from ., Player O picks actions from ¥, and Player I
wins if and only if the induced play in G is in Win.

Now, we prove the correspondence between G and Iy (L(G)). The winning condition
of the delay game is the complement of L(G), which implements the switch of perspective
described above.

Lemma 3.3. Let G be a game and § > 0 even. Controller wins G under delay § if and only
if Player I wins I},(L(G)) for k = g

Proof. To simplify our notation in the following, we denote I';(L(G)) by T

First, let (o, 7.) be a winning strategy for controller under delay ¢ in G. We inductively
define a strategy 77 for Player I in I.

For the induction start, we define 77(¢) = « - 7.(s¢), where s¢ is the initial vertex of
G. Note that |a] =k, i.e., 77(¢) has the required length. For the induction step, we define
T1(0103 -+ - 0ant1) = Te(play(ogor - - - oon41)) for all n > 0, where ogoy---05_2 = « and
o9; = 17(0103 - - 09;_1) for all 2¢ in the range 6 — 2 < 2i < 2n.

We show that 77 is a winning strategy for Player I in I'. Consider a play in I' that is
consistent with 77, say with outcome (gfgigg) We show that the play is winning for Player I
by showing that its outcome is in L(G), i.e., play(cgoioy---) is winning for controller in G.
To this end, consider the unique play m in G under delay § that is consistent with 7. and
where environment plays such that his moves spell o103 ---. By definition of 77, we have
m = play(cgoi109 - -+ ). Since 7, is a winning strategy for controller, we indeed obtain that =
is winning for controller in G.

For the other direction, let 77 be a winning strategy for Player I in I'. We define a strategy
(a, 7.) for controller in G under delay §. Let 77(¢) = ag---ar. We define a = ag---ag_1
and 7.(mp) = ay. Note that |a| = g, i.e., o has the required length. Furthermore, we define
Te(TMoo0T * + - Oonp1Mont2) = T1(0103 - - - 09n41) for all play prefixes moogmy -+ - O2p41Ton+2 Of
length 2n + 2 for n > 0.
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We show that (a,7.) is a winning strategy for controller in G under delay §. Consider a

play m = mpogmio1ma09 - - - consistent with (a, 7.). We show that 7 is winning for controller
in G. To this end, consider the unique play in I' that is consistent with 77 and where Player O
plays such that his moves spell o103 --. By definition of 7., the outcome of this play is
(Zﬁgigg) Since 77 is a winning strategy for Player I in I', we obtain (gggigi) ¢ L(G), i.e.,
(g?gig:) € L(G). Hence, play(ogoioz---) = 7 is indeed winning for controller in G. ]

Now, we consider the converse and transform a delay game into a game under delayed control.

Transformation 3.4. Fiz a delay game I} (L) with L C (X1 x Xp)¥. We construct a game
under delayed control to simulate T(L) as follows: The actions of controller are the letters in
Y1, and the actions of environment are the letters in Y. Thus, by picking actions, controller
and environment construct the outcome of a play of I, (L). As winning conditions of games
under delayed control only refer to states visited by a play, but not the actions picked by the
players, we reflect the action picked by a player in the state reached by picking that action.
Here, we have to require without loss of generality that X7 and ¥Xo are disjoint.

Formally, we define G(L) = (S, $1,S¢, Se, Xy ey, —, Win) with S = S. U Se, S = {sr}U
Y0, Se =21, ¥ =%, Xe = X0, —(s,a) =a forall s € S, and a € Xy, and —(s,b) = b
for all s € S, and b € Xp. Finally, we define Win = {srsps1s2- - - | (50) (52) (84) - € L}.

s1/ \s3/ \ss5

Example 3.5. We continue Example 2.6 to illustrate the second transformation: consider
the delay game I} (L) with

A e e}

over the alphabets ¥; = Yo = {1,2,3,4}. Note that this game does not satisfy our
assumption that ¥; and ¥ are disjoint. Hence, in the following we decorate all letters in
Y0 by a prime and consider the winning condition

)G G) 1o e i)

over the alphabets X7 = {1,2, 3,4} and 3o = {1/,2/,3/,4'}.

Now, applying Transformation 3.4 yields the game under delayed control depicted in
Figure 3. In this game, controller picks letters from ¥; (by moving to the corresponding
state) and environment picks letters from Yo (again by moving to the corresponding state).
Thus, controller and environment construct the outcome of a play of I',(L). Now, the winning
condition of G(L) is defined such that controller wins G(L) (recall that we need to complement
the winning condition) if and only if the resulting outcome is in L.

The following remark simplifies the proof of correctness of the second transformation. It
follows by a careful inspection of the definitions.

Remark 3.6. Let L C (X x $0)¥. Then, L = L(G(L)).

Now, we show that the second transformation is correct, again using complementation
to implement the perspective switch.

Lemma 3.7. Let L C (X7 X ¥0)¥ and k > 0. Player I wins Iy(L) if and only if controller
wins G(L) under delay 2k.
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Figure 3: The game under delayed control obtained by applying Transformation 3.4 to the
delay game from Example 2.6. All incoming edges to vertex j are labeled by
action j, all incoming edges to vertex 7’ are labeled by action j’.

Proof. Consider the delay game I},(L(G(L)). By Lemma 3.3, controller wins G(L) under
delay 2k if and only if Player I wins I},(L(G(L)). Applying Remark 3.6 yields L = L(G(L))

and thus L = L(G(L)). Hence, as I} (L) and I} (L(G(L)) have the same winning condition,
Player I wins the former if and only if she wins the latter. Thus, the statement of the lemma
directly follows. []

4. RESULTS

Lemma 3.3 and Lemma 3.7 allow us to transfer results from delay games to games under
delayed control. Due to the definitions of strategies in games under delayed control not being
dual, we first consider controller and then environment.

Recall that delay that allows controller to win satisfies a monotonicity property (see
Remark 2.1(2)): if controller wins a game under delay §, then also under every delay ¢’ < 4.
Thus, the set of delays for which controller wins is downward-closed, i.e., it is either a finite
set {0,2,4,...,dmax} or it is equal to the set 2N of even numbers. In the following, we study
the complexity of determining whether controller wins under all possible delays, whether she
wins under a given delay, and determine bounds on ¢y ax-

Note that winning for environment is independent of delay and boils down to the classical
notion of winning delay-free games [GTWO02|, which is a well-studied problem. Hence, we
disregard this problem. However, we do discuss the relation between environment in a game
under delayed control and Player O in the simulating delay game constructed in the previous
section.

Before we present our results, we need to specify how to measure the size of games and
delay games, especially how winning conditions are represented (recall that, so far, they are
just w-languages). In the following, we only consider w-regular winning conditions specified
by w-automata (see Subsection 2.4) or formulas of Linear Temporal Logic (LTL) [Pnu77],
which subsume the typical specification languages for winning conditions. Hence, the size of
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a game (5, 50, Se¢, Se, X¢, Xe, —, Win) under delayed control is given by the sum |S| + |2.| +
|Xe| + |Win|, where |Win| is the size of an automaton or LTL formula (measured in the
number of distinct subformulas) representing Win, depending on whether Win is specified by
an automaton or a formula. Analogously, for a delay game I} (L), we define the size of L as
the size of an automaton or LTL formula (measured in the number of distinct subformulas)
representing L. The bound k is encoded in binary, if necessary.

4.1. Safety. A game G = (S, so, S¢, Se, 2c, e, —, Win) with winning condition Win is a
safety game if Win is accepted by a deterministic safety automaton.

Remark 4.1. When Chen et al. introduced safety games under delayed control, they did
not use automata to specify their winning plays, but instead equipped the game with a
set of unsafe states and declared all those plays winning for controller that never visit an
unsafe state. It is straightforward to see that our definition is equivalent, as their definition
is captured by a deterministic safety automaton with two states. Conversely, taking the
product of a game and a deterministic safety automaton yields an equivalent game with a
state-based safety condition.

Our results rely on the following two bounds on the transformations presented in Section 3,
which are obtained by applying Remark 2.8:

(1) If the winning condition Win for a game G under delayed control is given by a deterministic
safety automaton with n states, then the winning condition L(G) is recognized by a
deterministic reachability automaton with n states.

(2) Dually, if the winning condition L C (X;xXp)% of a delay game is given by a deterministic
reachability automaton with n states, then the winning condition of the game G(L)
under delayed control is recognized by a deterministic safety automaton with O(n - |X;|)
states. Here, the factor |X;| stems from the fact that an automaton A for L processes
pairs (a,b) € X7 x Zp of letters while an automaton for the winning condition of G(L)
needs to simulate A while first receiving a and then b, i.e., it needs to store a € Xy in its
state.

We begin by settling the complexity of determining whether controller wins a given safety
game under every delay, which follows from the PSPACE-completeness of determining whether
there is a lookahead that allows Player O to win a given delay game with reachability winning
condition [KZ16a].

Theorem 4.2. The following problem is PSPACE-complete: Given a safety game G, does
controller win G under every delay 6 ¢

Proof. The following problem is PSPACE-complete [KZ16al|: Given a deterministic reachability
automaton A, does Player O win I;(L(.A)) for some k? Hence, due to determinacy of delay
games with w-regular winning conditions [KZ15] and due to closure of PSPACE under
complementation, the following problem is also PSPACE-complete: Given a deterministic
reachability automaton A, does Player I win I};(L(.A)) for all k? Thus, the PSPACE lower
bound follows from Lemma 3.7 and the corresponding upper bound from Lemma 3.3.  []

Next, we give a lower bound on the complexity of determining whether controller wins a
given safety game under a given delay, which is derived from a lower bound for delay games
with reachability winning conditions.
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Theorem 4.3. The following problem is PSPACE-hard: Given a safety game G and 0
(encoded in binary), does controller win G under delay §.

Proof. The following problem is PSPACE-hard [KZ16a]% Given a deterministic reachability
automaton A, does Player O win I} (L(A)) for k = 2M!? Hence, due to determinacy of
delay games with w-regular winning conditions [KZ15] and due to closure of PSPACE under
complementation, the following problem is also PSPACE-complete: Given a deterministic
reachability automaton A, does Player I win I}(L(A)) for k = 21? Thus, the PSPACE
lower bound follows from Lemma 3.7 using § = 2k. (]

Note that we do not claim any upper bound on the problem considered in Theorem 4.3.
There is a trivial 2EXPTIME upper bound obtained by hardcoding the delay into the graph
of the safety game, thereby obtaining a classical delay-free safety game. It is open whether
the complexity can be improved. Let us remark though that, via the correspondence to
delay games presented in Section 3, improvements here would also yield improvements on
the analogous problem for delay games, which is open too [Zim22].

Next, we turn our attention to bounds on the delay for which controller wins. Recall
that due to monotonicity, the set of delays for which controller wins is downward-closed, i.e.,
it is either a finite set {0,2,4,...,0max} or it is equal to 2N. In the following, we present
tight bounds on the value dpax.

As a consequence, we settle a conjecture by Chen et al.: They conjectured that there is
some delay d; (exponential in |G|), such that if controller wins G under delay d;, then she
wins under every delay. Note that this conjecture implies that dpa.x IS at most exponential.

The following theorem proves Chen et al.’s conjecture, while Theorem 4.5 shows that
d¢ must necessarily be exponential. For d.x this means it is at most exponential for every
game, and can be exponential for some games.

The following two results are again obtained from similar bounds for delay games with
reachability winning conditions.

Theorem 4.4. Let G be a safety game. There is a 0¢ € (’)(2|g|) such that if controller wins
G under delay d;, then she wins G under every §.

Proof. Exponential lookahead is sufficient for Player O to win delay games with reachability
conditions: Let A be a deterministic reachability automaton with n states recognizing a
language L. If Player O wins I}, (L) for some k, then he also wins I}y (L) for ¥ = 2" [KZ16a].
So, dually, if Player O does not win I}/ (L) for k' = 2", then he does not win I (L) for any k.
Due to determinacy [KZ15], this is equivalent to the following statement: if Player I wins
I} (L) for k' = 2™, then she wins I} (L) for every k. We transfer this result to safety games
under delayed control.

Given G, let 6; = 2 - 219, Now, assume controller wins G under delay d;. Then, Player I
wins I}, (L(G)) for k = %’f = 2l9 due to Lemma 3.3. As argued above, L(G) is recognized by

a deterministic reachability automaton of size at most |G|. Thus, Player I wins I} (L(G)) for
every k. Hence, due to Lemma 3.7, controller wins G under every §. []

Finally, we show that the exponential upper bound on dyx is tight.

2The result is not stated as such, but follows by inspecting the proof of Theorem 4.1 in [KZ16a], which
shows that Player O wins a delay game with reachability condition with respect to any lookahead if and only
if he wins it with respect to constant lookahead 2lAl,
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Theorem 4.5. For every n > 1, there is a safety game Gy, of size O(n) such that controller
wins G under delay 2", but not under delay 2™ + 2.

Proof. For every n > 1, there is a deterministic reachability automaton .4,, of size O(n) and
where X is of size n such that Player O wins I;(L(A;,)) for k& = 2", but Player I wins
I (L(Ay,)) for every k' < 2™ [KZ16a]. Now, we consider the safety games G(L(A;)), which
have size O(n) as argued above. Applying Lemma 3.7 shows that controller wins G(L(A;,))
under delay 2 - 2". Now, towards a contradiction, assume controller wins G(L(.A,)) under
delay 2" + 2. Then, Lemma 3.3 yields that Player I wins I}(L(G(L(Ay)))) = Ik (L(Ay)) (see
Remark 3.6) for k = 2™, yielding the desired contradiction. L]

4.2. Reachability. In this subsection, we consider the case of winning conditions given
by reachability automata. A game G = (S, s, Sc, Se, ¢, Xe, —, Win) with winning condi-
tion Win is a reachability game if Win is accepted by a deterministic reachability automaton.

Applying Remark 2.8 yields the following two bounds on the transformations from
Section 3:

(1) If the winning condition Win for a game G under delayed control is given by a deterministic
reachability automaton with n states, then the winning condition L(G) is recognized by
a deterministic safety automaton with n states.

(2) Dually, if the winning condition L C (X;xXp)% of a delay game is given by a deterministic
safety automaton with n states, then the winning condition of the game G(L) under
delayed control is recognized by a deterministic reachability automaton with O(n - [2;|)
states. Here, the additional factor || is again required to store an input letter, as in
the case of safety automata (see Page 14).

Exponential lookahead is both sufficient to win all delay games with safety conditions that
can be won and required to win some of these games |[KZ16a|. Furthermore, determining
whether there is some lookahead that allows Player O to win a given delay game with safety
condition is EXPTIME-complete [KZ16a]. As in the case of safety games, we can transfer
these results to games under delayed control with w-regular winning conditions.

Theorem 4.6.

(1) The following problem is EXPTIME-complete: Given a reachability game G, does controller
win G under every delay 6 ¢

(2) Let G be a reachability game with winning condition specified by a deterministic reachability
automaton with n states. There is a §; € (’)(2"2) such that if controller wins G under
delay 0¢, then she wins G under every 9.

(3) For every m > 1, there is a reachability game G, of size O(n?) with a winning condition
specified by a two-state deterministic reachability automaton A, such that controller wins
G under delay 2™, but not under delay 2™ + 2.

4.3. Parity. Next, we consider the case of w-regular winning conditions, given by deter-
ministic parity automata. Applying Remark 2.8 yields the following two bounds on the
transformations from Section 3:

(1) If the winning condition Win for a game G under delayed control is given by a deterministic

parity automaton with n states, then the winning condition L(G) is recognized by a
deterministic parity automaton with n states.



Vol. 21:1 ON THE EXISTENCE OF REACTIVE STRATEGIES RESILIENT TO DELAY 24:17

(2) Dually, if the winning condition L C (X7 xXp)“ of a delay game is given by a deterministic
parity automaton with n states, then the winning condition of the game G(L) under
delayed control is recognized by a deterministic parity automaton with O(n - [¥1|) states.
Here, the additional factor |X;| is again required to store an input letter, as in the case
of safety automata (see Page 14)

Exponential lookahead is both sufficient to win all w-regular delay games that can be won
and required to win some of these games [KZ16a|. Furthermore, determining whether there
is some lookahead that allows Player O to win a given w-regular delay game is EXPTIME-
complete [KZ16a]. As in the case of safety games, we can transfer these results to games
under delayed control with w-regular winning conditions.

Theorem 4.7.

(1) The following problem is EXPTIME-complete: Given a game G with w-regular winning
condition specified by a deterministic parity automaton, does controller win G under every
delay 67

(2) Let G be a game with w-regular winning condition specified by a deterministic parity
automaton with n states. There is a §; € (’)(2”3) such that if controller wins G under
delay 0¢, then she wins G under every 9.

(3) For every m > 1, there is a game G, of size O(n?) with w-regular winning condition
specified by a two-state deterministic parity automaton A, such that controller wins G
under delay 2™, but not under delay 2™ + 2.

Note that the lower bound on §; is just a restatement of Theorem 4.5, as safety games have
w-regular winning conditions.

4.4. Linear Temporal Logic. Finally, one can also transfer the triply-exponential upper
and lower bounds on the necessary lookahead in delay games with LTL winning conditions
as well as the 3EXPTIME-completeness of determining whether Player O wins such a delay
game with respect to some lookahead [KZ16b| to games under delayed control with LTL
winning conditions. Here, we exploit the following facts:

(1) If the winning condition Win for a game G under delayed control is given by an LTL
formula ¢, then the winning condition L(G) is given by an LTL formula of size O(|¢]).
(2) Dually, if the winning condition L C (X; x ¥p)“ of a delay game is given by an LTL
formula ¢, then the winning condition of the game G(L) under given action is given by

an LTL formula of size O(|¢]|).

Theorem 4.8.
(1) The following problem is 3EXPTIME-complete: Given a game G with winning condition

specified by an LTL formula @, does controller win G under every delay 6 ?
(2) Let G be a game with w-reqular winning condition specified by an LTL formula . There

[el+19]
is ad; € (’)(222 ’
every d.

(3) For every n > 1, there is a game G, of size O(n?) with winning condition specified by

) such that if controller wins G under delay 0, then she wins G under

an LTL formula o, of size O(n?) such that controller wins G under delay 222n, but not
under delay 22 1 2.
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4.5. Environment’s View. In Section 3, we proved a tight correspondence between con-
troller in a game under delayed control and Player I in a delay game. Thus, it is natural
to ask whether environment and Player O also share such a tight correspondence. A first
indication that this is not the case can be obtained by considering the determinacy of these
games: While delay games with Borel winning conditions are determined [KZ15|, even safety
games under delayed control are not necessarily determined [CFL*21].

Upon closer inspection, the lack of a correspondence between environment and Player O
is not surprising, as the strategies in games under delayed control are not dual between the
players: controller is at a disadvantage as she only gets delayed access to the actions picked
by environment while environment does not benefit from this disadvantage. He does not
get access to the actions picked by controller in advance. In a delay game however, the
strategy definitions are completely dual: Player I has to grant lookahead on her moves which
Player O gets access to. Thus, environment is in a weaker position than Player O.3

In this section, we study the correspondence between environment and Player O in detail
by formally proving that environment is weaker than Player O.*

Lemma 4.9. Let G be a game. If environment wins G then Player O wins I},(L(G)) for
every k.

Proof. Fix some k > 0. To simplify our notation in the following, we denote I}, (L(G)) by T

Let 7.: Pref.(G) — X, be a winning strategy for environment in G. We inductively
define a strategy 7o: E;r — Yo for Player O in I', which is a straightforward simulation of
Te ignoring the granted lookahead of k additional letters.

For the induction start, we define 7o(ogo2 - - 09r) = Te(play(op)). For the induction
step, we define 70(0002 - -+ 02n) = Te(play(ooo1 - oyn_yy)) for all n > k, where 09,41 =
70(0002 - - Ta(i4 1)) for all 2i in the range 0 < 27 < 2(n — k) — 2.

We show that 7o is a winning strategy for Player O in I". Consider a play in I' that
is consistent with 7o, say with outcome (g?g;g‘;) We show that the play is winning for
Player O by showing that its outcome is not in L(G), i.e., play(cgoi02 - -+ ) is winning for
environment in G. To this end, consider the unique play 7 in G that is consistent with 7,

and where controller plays such that her moves spell ogos - --. By definition of 79, we have
m = play(cpoi10a -+ ). Since 7. is a winning strategy for environment, we indeed obtain that
7 is winning for environment in G. ]

Now, we show that the converse direction of Lemma 4.9 fails.

Lemma 4.10. There is a safety game G such that Player O wins Ty (L(G)) for some k, but
environment does not win G under any delay.

Proof. Let G be the safety game depicted in Figure 4. With each move, the players place a
coin (by either picking heads or tails) and the environment wins a play by correctly predicting
the second action of controller with his first action. Note that environment has only one
nontrivial choice to make, i.e., the choice of head or tails for the first action picked by him.

3The difference can be formalized in terms of the information the players have access to: games under
delayed control are incomplete-information games while delay games are complete-information games.
Although interesting, we do not pursue this angle any further.

4Note that the following lemma can easily be proven using determinacy of delay games and the correspon-
dence between controller and Player I exhibited by Lemma 3.3 and Lemma 3.7, if the winning condition is
Borel. However, we state (and prove) the lemma for arbitrary winning conditions.
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Figure 4: A safety game that environment does not win under any delay, but Player O wins
the associated delay game with k > 1. The initial state is marked by an arrow

and the unsafe vertices are black. Note that both players have the actions h and ¢
available.

Clearly, environment has no winning strategy in G (under any delay) because he has no
access to future moves of controller. Stated differently, if environment picks i (t) in his first
move, then the play in which the second action of controller is ¢ (h) is winning for controller.?

Now, we consider the delay game I';(L(G)) for k = 1. Recall that the winning condi-

tion L(G) contains the winning plays for Player O, i.e., we have (7°7274™") € L(G) if and only

010305

if o1 # o9. It is easy to see that Player O has a winning strategy in Iy (L(G)) by simply
flipping the second letter picked by Player I. This is possible since Player I has to provide
two letters during the first round. []

Remark 4.11. The safety game G depicted in Figure 4 is in fact undetermined under every
delay 6 > 0. In the proof of Lemma 4.10, we have already established that environment does
not win G. Now, under every delay § > 0, controller has to fix at least two actions before
getting access to the first action picked by environment. This implies that there is, for every
strategy for controller under delay ¢, at least one consistent play that is losing for her, i.e., a
play in which environment picks A (t) if the second move fixed by controller is ¢ (h). Thus,
no strategy is winning for controller under delay é.

Let us remark that, according to our definition of environment strategies, he is not able
to enforce a losing play for controller (the game is undetermined after all), as he does not
get access to the second action fixed by controller. Also, this is again the difference to delay
games: Player O has access to these first two actions when making his first move, and is
thereby able to win.

The full relation between games under delayed control and delay games is depicted in
Figure 5, restricted to Borel winning conditions (note that both transformations described
in Section 3 preserve Borelness). The equivalence between controller winning the game
under delayed control and Player I winning the corresponding delay game has been shown
in Lemma 3.3 and Lemma 3.7. Also, Lemma 3.7 and Remark 3.6 imply that undetermined
safety games under delayed control and those won by environment get transformed into delay
games that are won by Player O. Lemma 4.9 shows that games under delayed control won by
environment are transformed into delay games won by Player O while chaining Lemma 3.3
and Lemma 3.7 shows that undetermined games under delayed control are also transformed

SNote that under any delay 6 > 0, controller cannot do this strategically, as she has to fix her first
two actions in advance. But as environment has no access to these fixed actions, he cannot react to them
strategically. Also, see Remark 4.11.
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Figure 5: The relation between games under delayed control and delay games with Borel
winning conditions. The upper ellipsis contains pairs (G, ) consisting of a game G
under delayed control and a fixed delay §; the lower one contains delay games I} (L)
for some fixed k. The arrows represent the two transformations described in
Section 3.

into delay games won by Player O. Finally, Lemma 3.3 and Remark 3.6 imply that delay
games won by Player O get transformed into undetermined safety games under delayed
control or to ones that are won by environment (and it straightforward to construct delay
games that realize both cases).

5. REFINING THE CORRESPONDENCE: SURE WINNING AND ALMOST SURE WINNING

It should be noted that the above transformations of games under delayed control into delay
games and vice versa hinge on the fact that environment in the game under delayed control
could, though lacking recent state information to do so strategically, by mere chance play
the very same actions that the informed Player O in the delay game plays in his optimal
adversarial strategy. That this constitutes a fundamental difference becomes apparent if
we consider almost sure winning instead of sure winning. Almost sure winning calls for the
existence of a mixed strategy that wins with probability 1, i.e., may fail on a set of plays
with measure 0. This is different from sure winning in the sense of the definition of winning
strategies for games under delayed control in Subsection 2.1, which calls for a strategy that
never fails.

Remark 5.1. We introduce mixed strategies for games under delayed control only, as delay
games (with Borel winning conditions) are determined, which means that mixed strategies
do not offer any advantage over pure strategies as introduced in Subsection 2.2.

Given an even d > 0, a mixed strategy for controller in G under delay 4 is a pair (o, 7c)
where a € P ((EC)%> is a probability distribution over (ZC)% and 7.: Pref.(G) — P (X.)
maps play prefixes ending in S, to probability distributions over actions of controller. A
mixed strategy for environment is a mapping 7.: Pref.(G) — P (Z.).

The notion of consistency of a play with a strategy simply carries over, now inducing a
Markov chain due to the probabilistic nature of the strategies. We say that a mixed strategy
for controller (environment) wins almost surely if and only if it wins against any strategy
of its opponent environment (controller) with probability 1, i.e., if and only if the winning
condition is satisfied with probability 1 over the Markov chain induced by the game and
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Figure 6: A reachability game that, under any positive delay, is won by controller almost
surely via the simple randomized strategy of coin tossing (thus randomly generating
head and tail events h and t), but won by player O surely if interpreted as a delay
game due to the lookahead on Player I’s actions granted to Player O. The initial
state is marked by an arrow and controller wins if and only if the black vertex is
visited at least once.

the particular strategy combination. In this section, we write sure winning for winning as
defined in Section 2, as is usual for games with randomized strategies.

The notion of almost sure winning alters chances for the players substantially by excluding
the possibility of reliably playing an optimal strategy though lacking the information for
doing so due to delayed observation. This can be seen from the following lemma, stating
a fundamental difference between controller’s power in games under delayed control and
Player I’s power in the corresponding delay games.

Lemma 5.2. There is a game G under delayed control and some (even) delay 0 such that
controller wins G under delay § almost surely while Player O (not Player I, which is the
player corresponding to controller) wins the corresponding delay game Ty (L(G)) for k = g,
and surely so.

Proof. Consider the reachability game in Figure 6 under delay 2 (or any larger delay).
Intuitively, the players place a coin in each round (by picking either heads to tails with each
move) and controller wins a play if the black state is visited, which happens if she selects a
different coin placement than chosen by environment in the previous move.

Under any even (by definition) positive delay, controller wins this game with probability 1,
i.e., almost surely, by a simple randomized strategy of coin tossing: in each step randomly
selecting action h or t with positive probability each, an eventual visit of the black state
is guaranteed with probability 1, irrespective of being uninformed about environment’s
preceding move due to the delay.

The corresponding delay game I}, (m) for k = g, however, is easily won by Player O,
because in delay games, the delayed Player I grants a lookahead to Player O. Hence, Player O
can, due to the delay, already see the next move of Player I such that he can simply copy the
next coin placement by Player I, safely staying in the non-black states and thereby win. []

Note that Lemma 5.2 implies that the previously observed correspondence between Player I
and controller breaks down when considering almost sure winning strategies instead of
just sure winning strategies: Games under delayed control for which Player O wins the
corresponding delay game, are no longer either undetermined or won by environment, but
may well be won by controller almost surely.
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Games under i E wins
delayed control almost surely
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Figure 7: The relation between safety games under delayed control and delay games with
Borel winning conditions. The upper ellipsis contains pairs (G, ) consisting of a
game G under delayed control and a fixed delay §; the lower one contains delay
games I} (L) for some fixed k. The arrows represent the two transformations
described in Section 3.

This consequently refines the correspondence between games under delayed control and
delay games shown in Figure 5 as follows.

Theorem 5.3. Given a game G with Borel winning condition and an even & > 2, the

following correspondences between G and the corresponding delay game Ty (L(G)) for k = %
hold:

(1) Controller surely wins G under delay § if and only if Player I surely wins Iy, (L(G)).
(2) If controller almost surely wins G under delay § but cannot surely win G under delay &

then Player O surely wins I,(L(G)).

(3) If environment surely or almost surely wins G under delay § then Player O wins I,(L(G)).

(4) If G is undetermined under delay 0 with respect to almost sure winning strategies then
Player O wins Ty,(L(G)).

(5) All the aforementioned classes are non-empty, i.e., there exist games under delayed
control where controller wins, where controller wins almost surely (but not surely), where
environment wins surely, where environment wins almost surely (but not surely), and

games which are undetermined with respect to almost-sure winning strategies.

The above correspondences are depicted in Figure 7.

Proof. Equivalence (1) has been shown in Section 4. Implications (2)—(4) follow immediately
from (1) and determinacy of the delay game T} (L(G)): whenever controller fails to have a
sure winning strategy then Player I does not have one either, and Player O consequently
wins surely due to determinacy of I, (L(G)).

For (5), one observes that games where either controller or environment surely win exist
trivially, as universal as well as empty winning conditions are permitted. Existence of a
game under delayed control that can be won by controller almost surely, but not surely, is
shown by the example in Figure 6. Complementation of its winning condition, i.e., declaring
environment the winner if and only if the black vertex is visited, converts this game into one
that environment wins almost surely, but not surely. Existence of a game that is undetermined
with respect to almost sure winning strategies is witnessed by the game depicted in Figure 4,
wherein under delay > 2, neither controller nor environment can secure a win with probability
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Figure 8: A reachability game that, under any positive delay, is won by controller with
probability % via the simple randomized strategy of balanced coin tossing (thus
randomly generating head and tail events h and ¢ with probability % each), but
won by player O surely if interpreted as a delay game due to the lookahead on
Player I'’s actions granted to Player O. The objective for controller (Player I,
resp.) in this game is to reach some black state.

strictly larger than % This game consequently remains undetermined with respect to almost
sure winning strategies. ]

Item (2) of Theorem 5.3 is of particular interest, as it expresses a delay-related strengthening
of controller relative to Player I, letting controller win almost surely where Player I looses
for sure. The correspondence between controller and Player I observed in the deterministic
setting thus breaks down when almost sure winning is considered and mixed strategies are
permitted.

6. FURTHER REFINING THE CORRESPONDENCE: WINNING WITH PROBABILITY

The differences between delay games and games under delayed control become even more
pronounced when we ask for strategies that win with at least a given probability 6 €]0, 1]
instead of asking for an almost-sure win.

Figure 8 depicts a reachability game under delayed control that controller can win
with probability % + (%)2 + (%)3 = % when the delay is non-zero, while Player I in the
corresponding delay game looses surely.

Such a difference is not particular to reachability games: Note that controller would
also win the Biichi game defined by the black states being controller’s winning set with
probability %, and likewise controller would win the safety game where it has to avoid the
black states forever with probability %, while all these games will surely be lost by Player I.
Note that we can furthermore also generate a safety game that is won by controller with
probability g (and likewise a reachability game or a Biichi game which are won by controller
with probability %) by simply swapping the acceptance status of the four bottom connected
components in the game graph of Figure 8. These games are still lost by Player I for sure.

Our next result shows that a game with these properties exists for every rational number
in [0, 1].
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Lemma 6.1. Let 6 € [0, 1] be rational. Then there exists a game under delayed control with
w-regular winning condition that controller wins with probability 6.

Proof. The case of 8 = 1 has been covered in Section 3 and Section 5, as all games won
by Player I as well as the game in Figure 6 are won with probability 1 by controller.
Hence, w.l.o.g., § = - with n, m being integer and 0 < n < m. Consider the game where
first controller picks a number a € {0,...,m — 1} and then environment picks a number
be {0,...,m —1}. The game then is over (i.e., the states now reached are all sinks) and
controller wins if and only if (a +b) mod m < n.

When not subject to delay, this game is won by the environment by observing a and
picking b = m — 1 — a, which gives (a+b) mod m = (a+m—1—a) mod m=m—12>n,
violating controller’s winning condition.

But under any positive delay, the best strategy played by controller obviously is to draw
a random choice uniformly from {0,...,m — 1}, as any biased choice (no matter whether
deterministic or random) would render its otherwise unobservable (due to the delay) choice
predictable to the environment and thus give the environment an advantage. But with a
being chosen uniformly from {0,...,m — 1}, the random variable (a + b) mod m also is
uniformly distributed over {0,...,m — 1}, no matter what strategy the environment plays,
as the environmental strategy has to be independent of the particular choice of a due to the
delay. The chance for controller to win, given its winning condition (a + b) mod m < n and
the uniform distribution of (a +b) mod m over {0,...,m — 1}, consequently is . Hence,
this game under delayed control features a win probability of exactly ;> = 6 for controller. []

Remark 6.2. By the symmetry between controller and environment inherent to games
under delayed control with respect to a fixed delay |[CFL121, Section 2|, which subjects
both to the same informedness constraints, environment wins with probability 1 — § when
controller wins with probability 6. Hence, for each 6 € [0, 1] being rational there also exists a
game under delayed control with w-regular winning condition that environment wins with
probability 6.

As delay games with Borel winning conditions are determined, there obviously is no
counterpart to the property expressed in Lemma 6.1 for delay games: in such delay games,
the winning probabilities are, under optimal strategies, always either 0 or 1; in fact, these
losses or wins are even sure and not only almost sure.

Lemma 6.3. If a game under delayed control with Borel winning condition is won by
controller with probability @ < 1 then the corresponding delay game is won by Player O surely.

Proof. As 6 < 1, the controller cannot win the game surely. By the results from Section 3,
in particular Lemma 3.7, this implies that Player I cannot win the corresponding delay
game. As delay games with Borel winning conditions are determined, Player O then wins
(for sure). []

Please note that in case of a win probability of § = 1 for controller, either a win of Player [
or of Player O may apply, as has been shown in Section 3 and Section 5. The transformation
from Section 3 shows that games won by Player I are surely won by controller, while Figure 6
provides an example of a game won surely by Player O while won with probability 1 by
controller.

As Lemma 6.1 demonstrates that the win probabilities of games under delayed control
are dense in [0, 1], the following refined statement about correspondence between the different
types of games under delay makes sense.
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Figure 9: A zoom on the area labeled “undetermined” in Figure 7. For every rational
number 0 €]0, 1] there is a game under delayed control G and a delay § such that
controller wins G under delay § with value 6.

Theorem 6.4. Let G be a game with Borel winning condition, 6 = 2k with k € N\ {0} a
delay, and 0 € [0,1] the probability of winning G under delay § by controller with an optimal
mized strategy.

(1) If 0 < 1 then Player O wins the corresponding delay game T (L(G)) with delay k, and
this win is for sure.

(2) If 0 = 1, yet controller does not win G surely, then Player O wins in the corresponding
delay game Ty (L(G)) with delay k for sure.

(3) If controller wins G surely under delay § then Player I wins the corresponding delay
game Ty,(L(G)) for sure under delay k.

(4) If environment wins G surely under delay ¢ then Player O wins the corresponding delay
game T (L(G)) for sure under delay k.

(5) All the aforementioned classes are non-empty, i.e., there exist games under delayed
control where controller wins, where controller wins almost surely (but not surely), where
controller wins with some probability 6 €0, 1], where environment wins almost surely
(but not surely), and where environment wins surely.

Figure 9 refines the are labeled “undetermined” in Figure 7.

Proof. Lemma 6.3 states property (1). Properties (2) to (4) are reformulations of the corre-
sponding properties from Theorem 5.3. The last property (5) follows from the corresponding
property in Theorem 5.3 together with Lemma 6.1. L]

7. CONCLUSION

We have compared delay games [KZ16a] and games under delayed control [CFL*21], two types
of infinite games aiming to model asynchronicity in reactive synthesis, and have exhibited
the differences in definitions and charted the relation between them with respect to both
deterministic and randomized strategies: When considering sure winning and deterministic
strategies, one can efficiently transform a game under delayed control into a delay game such
that controller wins the game under delayed control with delay § by a deterministic strategy
if and only if Player I wins the resulting delay game with lookahead of size g. Dually, one
can efficiently transform a delay game into a game under delayed control such that Player [
wins the delay game with lookahead of size k if and only if controller wins the resulting game
under delayed control with delay 2k by a deterministic strategy. These results allow us to

transfer known complexity results and bounds on the amount of delay from delay games
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to games under delayed control, for which no such results were known (when considering
deterministic strategies).

Analogous results fail in the setting of randomized strategies and almost sure or even
quantitative winning conditions. Here, it is completely open who can win the game under
delayed control and with which probability, unless Player I can win the delay game surely.
For the case that Player I does not have a sure winning strategy, i.e., whenever Player O has
a sure winning strategy (due to determinacy of delay games with Borel winning conditions),
we can construct games that controller, normally corresponding to Player I, nevertheless
wins almost surely, wins with any rational probability in ]0, 1], loses almost surely, or loses
surely. These findings refine our original result from |[CFL*21] that games under delayed
control are not determined. They also expose a profound difference between the problem of
control via delaying channels, which games under delayed control capture, and delay games.
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