
Logical Methods in Computer Science
Volume 21, Issue 1, 2025, pp. 27:1–27:27
https://lmcs.episciences.org/

Submitted Apr. 07, 2023
Published Mar. 20, 2025

LANGUAGE INCLUSION FOR BOUNDEDLY-AMBIGUOUS

VECTOR ADDITION SYSTEMS IS DECIDABLE

WOJCIECH CZERWIŃSKI AND PIOTR HOFMAN

University of Warsaw, Poland
e-mail address: wczerwin@mimuw.edu.pl, piotr.hofman@uw.edu.pl

Abstract. We consider the problems of language inclusion and language equivalence for
Vector Addition Systems with States (VASS) with the acceptance condition defined by
the set of accepting states (and more generally by some upward-closed conditions). In
general, the problem of language equivalence is undecidable even for one-dimensional VASS,
thus to get decidability we investigate restricted subclasses. On the one hand, we show
that the problem of language inclusion of a VASS in k-ambiguous VASS (for any natural
k) is decidable and even in Ackermann. On the other hand, we prove that the language
equivalence problem is already Ackermann-hard for deterministic VASS. These two results
imply Ackermann-completeness for language inclusion and equivalence in several possible
restrictions. Some of our techniques can be also applied in much broader generality in
infinite-state systems, namely for some subclass of well-structured transition systems.

1. Introduction

Vector Addition Systems (VAS) together with almost equivalent Petri Nets and Vector
Addition Systems with States (VASS) are one of the most fundamental computational
models with many applications in practice for modelling concurrent behaviour. There
is also an active field of theoretical research on VAS, with a prominent example being
the reachability problem whose complexity was recently established to be Ackermann-
complete [Ler21a, CO21] and [LS19]. An important type of questions that can be asked for
any pair of systems is whether they are equivalent in a certain sense. The problem of language
equivalence (acceptance by configuration) was already proven to be undecidable in 1975 by
Araki and Kasami [AK76] (Theorem 3). They also have shown that the language equivalence
(acceptance by configuration) for deterministic VAS is reducible to the reachability problem,
thus decidable, as the reachability problem was shown to be decidable by Mayr a few years
later in 1981 [May81]. The equality of the reachability sets of two given VAS was also shown
undecidable in the 70-ties by Hack [Hac76]. Jančar has proven in 1995 that the most natural
behavioural equivalence, namely the bisimilarity equivalence is undecidable for VASS [Jan95].

Key words and phrases: vector addition systems, language inclusion, language equivalence, determinism,
unambiguity, bounded ambiguity, Petri nets, well-structured transition systems.

This paper is a full version of [CH22] which appeared at the CONCUR 2022 conference. Both authors are
supported by the INFSYS ERC grant, agreement no. 950398.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-21(1:27)2025
© W. Czerwiński and P. Hofman
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-6169-868X
https://orcid.org/0000-0001-9866-3723
http://creativecommons.org/about/licenses

27:2 W. Czerwiński and P. Hofman Vol. 21:1

His proof works for only two dimensions (improving the previous results [AK76]) and is
applicable also to language equivalence (this time as well for acceptance by states). A few
years later in 2001 Jančar has shown in [Jan01] that any reasonable equivalence in-between
language equivalence (with acceptance by states) and bisimilarity is undecidable (Theorem
3) and Ackermann-hard even for systems with finite reachability set (Theorem 4). For the
language equivalence problem, the state-of-the-art was improved a few years ago. In [HMT13]
(Theorem 20) it was shown that already for one-dimensional VASS the language equivalence
(and even the trace equivalence, namely language equivalence with all the states accepting)
is undecidable.

As the problem of language equivalence (and similar ones) is undecidable for general
VASS (even in very small dimensions) it is natural to search for subclasses in which the
problem is decidable. The decidability of the problem for deterministic VASS [AK76, May81]
suggests that restricting nondeterminism might be a good idea. Recently a lot of attention
was drawn to unambiguous systems [Col15], namely systems in which each word is accepted
by at most one accepting run, but can potentially have many non-accepting runs. Such
systems are often more expressive than the deterministic ones however they share some of
their good properties, for example [CFM13]. In particular many problems are more tractable
in the unambiguous case than in the general nondeterministic case. This difference is already
visible for finite automata. The language universality and the language equivalence problems
for unambiguous finite automata are in NC2 [Tze96] (so also in PTime) while they are in
general PSpace-complete for nondeterministic finite automata. Recently it was shown that
for some infinite-state systems the language universality, equivalence and inclusion problems
are much more tractable in the unambiguous case than in the general one. There was a
line of research investigating the problem for register automata [MQ19, BC21, CMQ21]
culminating in the work of Bojańczyk, Klin and Moerman [BKM21]. They have shown
that for unambiguous register automata with guessing the language equivalence problem
is in ExpTime (and in PTime for a fixed number of registers). This result is in a sheer
contrast with the undecidability of the problem in the general case even for two register
automata without guessing [NSV04] or one register automata with guessing (the proof can
be obtained following the lines of [DL09] as explained in [CMQ21]). Recently, it was also
shown in [CFH20] that the language universality problem for VASS accepting with states
is ExpSpace-complete in the unambiguous case in contrast to Ackermann-hardness in the
nondeterministic case (even for one-dimensional VASS) [HT14].

Our contribution. In this article we follow the line of [CFH20] and consider problems of
language equivalence and inclusion for unambiguous VASS and also for their generalisations
k-ambiguous VASS (for k ∈ N) in which each word can have at most k accepting runs. The
acceptance condition is defined by some upward-closed set of configurations which generalises
a bit the acceptance by states considered in [CFH20]. Notice that the equivalence problem
can be easily reduced to the inclusion problem, so we prove lower complexity bounds for the
equivalence problem and upper complexity bounds for the inclusion problem.

Our only lower bound result is the following one; it is proven by a rather straightforward
reduction from the reachability problem for VASS.

Theorem 1.1. The language equivalence problem for deterministic VASS is Ackermann-
hard.

Our main technical result concerns VASS with bounded ambiguity.

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:3

Theorem 1.2. There is an algorithm that for each k ∈ N and a k-ambiguous VASS V
constructs, in elementary time, a VASS with a downward-closed set of accepting configurations
which recognises the complement of the language of V .

Its rather simple consequence is the following result.

Theorem 1.3. For each k ∈ N, the language inclusion problem of a VASS in a k-ambiguous
VASS is in Ackermann.

Briefly speaking to prove Theorem 1.3 we use Theorem 1.2 and check non-emptiness
of the intersection of the language of the first VASS with the complement of the language
of the second VASS. The problem reduces to the reachability problem in VASS, which is
in Ackermann [LS19]. In Section 5 we present the details of the proof. The special case of
Theorem 1.3 is the following statement.

Theorem 1.4. The inclusion problem of a nondeterministic VASS language in an unam-
biguous VASS language is in Ackermann.

Despite the fact that Theorem 1.4 is a special case of Theorem 1.3 we decided to present
separately the proof of Theorem 1.4 because it introduces a different technique of independent
interest. Additionally, it is a good introduction to a more technically challenging proof of
Theorem 1.3.

The proof of Theorem 1.4 uses a novel technique but is quite simple. We add a regular
lookahead to a VASS and use results on regular separability of VASS from [CLM+18] to
reduce the problem, roughly speaking, to the deterministic case. This technique can be
applied to more general systems namely well-structured transition-systems [FS01]. We believe
that it might be interesting on its own and reveal some connection between separability
problems and the notion of unambiguity.

The proof of Theorem 1.2 proceeds in three steps. First, we show that the problem for
k-ambiguous VASS can be reduced to the case when the control automaton of the VASS is
k-ambiguous. Next, we show that the control automaton can even be made k-deterministic
(roughly speaking, for each word there are at most k runs). Finally, we show that for a VASS
with k-deterministic control automaton one can compute in elementary time a VASS with a
downward-closed set of accepting configurations recognising its complement. We emphasise
that to prove our main technical result, namely Theorem 1.2, we do not need most of our
contribution from Section 4. In fact, the only used part of Section 4 is the construction of
the word and automata decoration.

On a way to show Theorem 1.2 we also prove several other lemmas and theorems, which
we believe may be interesting on their own. Theorems 1.1 and 1.3 together easily imply the
following corollary.

Corollary 1.5. The language equivalence problem is Ackermann-complete for:

• deterministic VASS
• unambiguous VASS
• k-ambiguous VASS for any k ∈ N

Organisation of the paper. In Section 2 we introduce the necessary notions. Then in
Section 3 we present results concerning deterministic VASS. First, we show Theorem 1.1.
Next, we prove that the inclusion problem of a VASS language in a language of a deterministic
VASS, a k-control-deterministic VASS or a VASS with holes (to be defined) is in Ackermann.

27:4 W. Czerwiński and P. Hofman Vol. 21:1

This is achieved by reducing to the VASS reachability problem. In Section 4 we define
adding a regular lookahead to VASS. Then we show that with a carefully chosen lookahead
we can reduce the inclusion problem of a VASS language in an unambiguous VASS language
into the inclusion problem of a VASS language in the language of deterministic VASS with
holes. The latter is in Ackermann due to Section 3 so the former is also in Ackermann.
In Section 5 we present the proof of Theorem 1.2 which is our most technically involved
contribution. We also use the idea of a regular lookahead and the result proved in Section 3
about k-control-deterministic VASS. Finally in Section 6 we discuss the implications of our
results and sketch possible future research directions.

2. Preliminaries

Basic notions. By N and Z we denote natural and integer numbers, respectively. For
a, b ∈ N we write [a, b] to denote the set {a, a + 1, . . . , b − 1, b}. For a vector v ∈ Nd and
i ∈ [1, d] we write v[i] to denote the i-th coordinate of vector v. By 0d we denote the vector
v ∈ Nd with all the coordinates equal to zero. For a word w = a1 · . . . · an and 1 ≤ i ≤ j ≤ n
we write w[i..j] = ai · . . . · aj for the infix of w starting at position i and ending at position

j. We also write w[i] = ai. For any 1 ≤ i ≤ d by ei ∈ Nd we denote the vector with all
coordinates equal to zero except the i-th coordinate, which is equal to one. For a finite
alphabet Σ we denote Σε = Σ ∪ {ε} the extension of Σ by the empty word ε.

Upward and downward-closed sets. For two vectors u, v ∈ Nd we say that u ⪯ v if for
all i ∈ [1, d] we have u[i] ≤ v[i]. A set S ⊆ Nd is upward-closed if for each u, v ∈ Nd it holds
that u ∈ S and u ⪯ v implies v ∈ S. Similarly, a set S ⊆ Nd is downward-closed if for each
u, v ∈ Nd it holds that u ∈ S and v ⪯ u implies v ∈ S. For u ∈ Nd we write u↑ = {v | u ⪯ v}
for the set of all vectors bigger than u w.r.t. ⪯ and u↓ = {v | v ⪯ u} for the set of all
vectors smaller than u w.r.t. ⪯. If an upward-closed set is of the form u↑, we call it an
up-atom. Notice that if a one-dimensional set S ⊆ N is downward-closed then either S = N
or S = [0, n] for some n ∈ N. In the first case, we write S = ω↓ and in the second case
S = n↓. If a downward-closed set D ⊆ Nd is of a form D = D1 × . . .×Dd, where all Di for
i ∈ [1, d] are downward-closed one dimensional sets then we call D a down-atom. In the
literature, sometimes up-atoms are called principal filters, and down-atoms are called ideals.
If Di = (ni)↓, then we also write D = (n1, n2, . . . , nd)↓. In that sense, each down-atom is of
the form u↓ for u ∈ (N ∪ {ω})d. Notice that a down-atom does not have to be of a form u↓
for u ∈ Nd, for example D = Nd is not of this form, but D = (ω, . . . , ω)↓.

The following two propositions will be helpful in our considerations.

Proposition 2.1 ([CLM+18] Lemma 17, [KP92], [Dic13]). Each downward-closed set in Nd

is a finite union of down-atoms. Similarly, each upward-closed set in Nd is a finite union of
up-atoms.

We represent upward-closed sets as finite unions of up-atoms and downward-closed
sets as finite unions of down-atoms, the numbers are encoded in binary. The size of the
representation of an upward- or a downward-closed set S is denoted ||S||. The following
proposition helps to control the blowup of the representations of upward- and downward-
closed sets.

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:5

Proposition 2.2. Let U ⊆ Nd be an upward-closed set and D ⊆ Nd be a downward-closed
set. Then the size of the representation of their complements U = Nd \ U and D = Nd \D
is at most exponential w.r.t. the sizes ||U || and ||D||, respectively and can be computed in
exponential time.

Proof. Here we present only the proof for the complement of the upward-closed set U as the
case for downward-closed sets follows the same lines. Let U = u1↑ ∪ u2↑ ∪ . . . ∪ un↑. The
complement of U is a downward closed set, that can be represented as a union of down-atoms.
As each down-atom is represented as a downward closure of a single vector over N ∪ {ω}
it is sufficient to calculate these vectors. Each vector x representing a down-atom has two
properties:

(1) it is in the complement of U i.e. for every i ∈ {1, . . . , n} there is a coordinate f(i) ∈
{1, . . . , d} such that x[f(i)] < ui[f(i)].

(2) it is maximal, i.e. for every y ̸= x that satisfies the first property it holds x ̸⪯ y.

Intuitively, function f witnesses why x is not in U .
Thus, for every function f : {1, . . . , n} −→ {1, . . . , d} we can define one down-atom

represented by some vector xf as the maximal vector, for which function f witnesses that
xf ̸∈ U . For a coordinate i ∈ [1, d] we need that xf [i] < uj [i] for each j ∈ [1, n] such that
j = f(i). Therefore

xf [i] = min{uj [i]− 1 | j ∈ [1, n], f(j) = i},
where we put min(∅) = ω. Notice that the union of xf ↓ is exactly the complement of U .

Observe that there is at most exponentially many different functions f ∈ {1 . . . n} −→
{1, . . . , d} and numbers that appear in descriptions of vectors xf are ω or are smaller than
the maximal number that appear in the description of U . Therefore, we conclude that the
proposition is true.

For a more general study (for arbitrary well-quasi orders) see [GLHK+20].

Vector Addition Systems with States. A d-dimensional Vector Addition System with
States (d-VASS or simply VASS) V consists of a finite alphabet Σ, a finite set of states Q, a
finite set of transitions T ⊆ Q×Σ×Zd×Q, a distinguished initial configuration cI ∈ Q×Nd,
and a set of distinguished final configurations F ⊆ Q× Nd. We write V = (Σ, Q, T, cI , F).
Sometimes we ignore some of the components in a VASS if they are not relevant, for example
we write V = (Q,T) if Σ, cI , and F do not matter. A configuration of a d-VASS is a pair
(q, v) ∈ Q×Nd, we often write it q(v) instead of (q, v). We write state(q(v)) = q. The set of
all configurations is denoted Conf = Q× Nd. For a state q ∈ Q and a set U ⊆ Nd we write
q(U) = {q(u) | u ∈ U}. A transition t = (p, a, u, q) ∈ T can be fired in the configuration r(v)

if p = r and u+ v ∈ Nd. Then we write p(v)
t−→ q(u+ v). We say that the transition t ∈ T

is over the letter a ∈ Σ or the letter a labels the transition t. We write p(v)
a−→ q(u+ v)

slightly overloading the notation, when we want to emphasise that the transition is over the
letter a. The effect of a transition t = (p, a, u, q) is the vector u, we write eff(t) = u. The
size of VASS V is the total number of bits needed to represent the tuple (Σ, Q, T, cI , F), we
do not specify here how we represent F as it may depend a lot on the form of F . A sequence
ρ = (c1, t1, c

′
1), (c2, t2, c

′
2), . . . , (cn, tn, c

′
n) ∈ (Conf× T ×Conf)∗ is a run of VASS V = (Q,T)

if for all i ∈ [1, n] we have ci
ti−→ c′i and for all i ∈ [1, n − 1] we have c′i = ci+1. We write

trans(ρ) = t1 · . . . · tn. We extend the notion of labelling to runs; Labelling of a run ρ is a
word w which is the concatenation of labels of transitions of ρ, we also say that the run ρ is

27:6 W. Czerwiński and P. Hofman Vol. 21:1

over the word w. This run ρ, if not empty, is from the configuration c1 to the configuration
c′n and the configuration c′n is reachable from the configuration c1 by the run ρ. We write

then c1
ρ−→ c′n, c1

w−→ c′n if w labels ρ slightly overloading the notation or simply c1 −→ c′n
if the run ρ is not relevant. The empty run can go from any configuration to itself, and it is
labeled with ε.

VASS languages. A run ρ is accepting if it is from the initial configuration to some final
configuration. For a VASS V = (Σ, Q, T, cI , F) we define the language of V as the set of all
labellings of accepting runs, namely

L(V) = {w ∈ Σ∗ | cI
w−→ cF for some cF ∈ F}.

For any configuration c of V we define the language of configuration c, denoted Lc(V) to
be the language of VASS (Σ, Q, T, c, F), namely the language of VASS V with the initial
configuration cI substituted by c. Sometimes we simply write L(c) instead of Lc(V) if V
is clear from the context. Further, we say that the configuration c has the empty language
if L(c) = ∅. For a VASS V = (Σ, Q, T, cI , F) its control automaton is intuitively VASS V
after ignoring its counters. Precisely speaking, the control automaton is (Σ, Q, T ′, qI , F

′)
where qI = state(cI), F

′ = {q ∈ Q | ∃v∈Nd q(v) ∈ F} and for each (q, a, v, q′) ∈ T we have
(q, a, q′) ∈ T ′.

Notice that a 0-VASS, namely a VASS with no counters is just a finite automaton, so
all the VASS terminology works also for finite automata. In particular, a configuration of a
0-VASS is simply an automaton state. In that special case for each state q ∈ Q we call the
L(q) the language of state q.

A VASS is deterministic if for each configuration c reachable from the initial configuration

cI and for each letter a ∈ Σ there is at most one configuration c′ such that c
a−→ c′. A VASS

is k-ambiguous for k ∈ N if for each word w ∈ Σ∗ there are at most k accepting runs over w.
If a VASS is 1-ambiguous we also call it unambiguous.

Note that, the set of languages accepted by unambiguous VASS is a strict superset of
the languages accepted by deterministic VASS. To see that unambiguous VASS can accept
more, consider a language (a∗b)∗anbm where n ≥ m. On the one hand, an unambiguous
VASS that accepts the language, guesses where the last block of letter a starts, then it
counts the number of a’s in this last block, and finally counts down reading b’s. As there
is exactly one correct guess, this VASS is unambiguous. On the other hand, deterministic
system can not accept the language, as intuitively speaking it does not know whether the
last block of a’s has already started or not. To formulate the argument precisely one should
use rather easy pumping techniques.

An example language which can be recognised by k-ambiguous VASS, but probably
cannot be recognised by a (k − 1)-ambiguous VASS is the following: language of words over
{a, b} with exactly k letters b, which divides the word into k + 1 blocks consisting of letters
a, such that the first block is not the shortest one. A k-ambiguous 1-VASS increments the
counter on each letter a in the first block, later guesses a block which is the shortest one,
and in that guessed block it decrements the counter. As there are at most k other blocks,
which may be guessed, there are at most k accepting runs for each word. However, it is not
clear how to accept this language by a (k − 1)-ambiguous VASS. The problematic scenario
is if the first block is the longest one.

The following two problems are the main focus of this paper, for different subclasses of
VASS:

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:7

Inclusion problem for VASS:
Input: Two VASS V1 and V2.
Question: Does L(V1) ⊆ L(V2) hold?

Equivalence problem for VASS:
Input: Two VASS V1 and V2.
Question: Does L(V1) = L(V2) hold?

In the sequel, we are mostly interested in VASS with the set of final configurations F
of some special form. We extend the order ⪯ on the vectors of Nd to configurations from
Q× Nd in a natural way: we say that q1(v1) ⪯ q2(v2) if q1 = q2 and v1 ⪯ v2. We define the
notions of upward-closed, downward-closed, up-atom and down-atom the same as for vectors.
As Proposition 2.1 holds for any well quasi-order, it also applies to Q× Nd. Proposition 2.2
applies here as well, as the upper bound on the size can be shown separately for each state.
Let the set of final configurations of VASS V be F . If F is upward-closed then we call V
an upward-VASS. If F is closed downward, then we call V a downward-VASS. For two sets
A ⊆ Na, B ⊆ Nb and a subset of coordinates J ⊆ [1, a + b] by A ×J B we denote the set
of vectors in Na+b which projected into coordinates in J belong to A and projected into
coordinates outside J belong to B. If F =

⋃
i∈[1,n] qi(Ui ×Ji Di) where for all i ∈ [1, n] we

have Ji ⊆ [1, d], Ui ⊆ N|Ji| are up-atoms and Di ⊆ Nd−|Ji| are down-atoms then we call V
an updown-VASS. In the sequel we write simply × instead of ×J , as the set of coordinates J
is never relevant. If F = {cF } is a singleton, then we call V a singleton-VASS.
Notation. As in this paper we mostly work with upward-VASS we often say simply a VASS
instead of an upward-VASS. In other words, if not indicated otherwise, we assume that the
set of final configurations F is upward-closed.

For the complexity analysis we assume that whenever F is upward- or downward-closed
then it is given as a union of atoms. If F =

⋃
i∈[1,n] qi(Ui ×Di) then in the input we get a

sequence of qi and representations of atoms Ui, Di defining individual sets qi(Ui ×Di).

Language emptiness problem for VASS. The following emptiness problem is the central
problem for VASS.

Emptiness problem for VASS
Input: A VASS V = (Σ, Q, T, cI , F)
Question: Is cF reachable from cI in V for some cF ∈ F?

Observe that the emptiness problem is not influenced in any way by labels of the
transitions, so sometimes we will not even specify transition labels when we work with the
emptiness problem. If we want to emphasise that transition labels do not matter for some
problem, then we write V = (Q,T, cI , F) ignoring the Σ component. In such cases we also
assume that transitions do not contain the Σ component, namely T ⊆ Q× Zd ×Q.

Note also that the celebrated reachability problem and the coverability problem for
VASS are special cases of the emptiness problem. The reachability problem is the case when
F is a singleton set {cF }, classically it is formulated as the question whether there is a run
from cI to cF . The coverability problem is the case when F is an up-atom cF , classically
it is formulated as the question whether there is a run from cI to any c such that cF ⪯ c.
Recall that the reachability problem, so the emptiness problem for singleton-VASS is in
Ackermann [LS19] and actually Ackermann-complete [Ler21a, CO21].

A special case of the emptiness problem is helpful for us in Section 3.

27:8 W. Czerwiński and P. Hofman Vol. 21:1

Lemma 2.3. The emptiness problem for VASS with the acceptance condition F = qF (U×D)
where D is a down-atom and U is an up-atom is in Ackermann.

Proof. We provide a polynomial reduction of the problem to the emptiness problem in
singleton-VASS which is in Ackermann. Let V = (Q,T, cI , qF (U ×D)) be a d-VASS with
up-atom U ⊆ Nd1 and down-atom D ⊆ Nd2 such that d1 + d2 = d. Let U = u↑ for some
u ∈ Nd1 and let D = v↓ for some v ∈ (N ∪ {ω})d2 . Let us assume wlog of generality that
d2 = dU + dB such that for i ∈ [1, dU] we have v[i] = ω and for i ∈ [dU + 1, d2] we have
v[i] ∈ N. Let a d-VASS V ′ be the VASS V slightly modified in the following way. First we
add a new state q′F and a transition (qF , 0

d, q′F). Next, for each coordinate i ∈ [1, d1] we add
a loop in state q′F (transition from q′F to q′F) with the effect −ei, namely the one decreasing
the coordinate i, these are the coordinates corresponding to the up-atom U . Similarly for
each coordinate i ∈ [d1 + 1, d1 + dU] we add in q′F a loop with the effect −ei, these are the
unbounded coordinates corresponding to the down-atom D. Finally, for each coordinate
i ∈ [d1 + dU + 1, d] we add in q′F a loop with the effect ei (notice that this time we increase
the counter values); these are the bounded coordinates corresponding to down-atom D. Let
the initial configuration of V ′ be cI (the same as in V) and the set of final configurations F ′

of V ′ be the singleton set containing q′F (u, (0
dU , v[dU + 1], . . . , v[dU + dB])). Clearly V ′ is a

singleton-VASS, so the emptiness problem for V ′ is in Ackermann. It is easy to see that the
emptiness problems in V and in V ′ are equivalent, which finishes the proof.

The following is a simple and useful corollary of Lemma 2.3.

Corollary 2.4. The emptiness problem for updown-VASS is in Ackermann.

Proof. Recall that for updown-VASS the acceptance condition is a finite union of q(U×D) for
some up-atom U ⊆ Nd1 and down-atom D ⊆ Nd2 where d1 and d2 sums to the dimension of
the VASS V . Thus, emptiness of the updown-VASS can be reduced to finitely many emptiness
queries of the form q(U ×D), which can be decided in Ackermann due to Lemma 2.3. Notice
that the number of queries is not bigger than the size of the representation of F thus the
emptiness problem for updown-VASS is also in Ackermann.

By Proposition 2.1 each downward-VASS is also an updown-VASS, thus Corollary 2.4
implies the following one.

Corollary 2.5. The emptiness problem for downward-VASS is in Ackermann.

Recall that the coverability problem in VASS is in ExpSpace [Rac78], and the coverability
problem is equivalent to the emptiness problem for the set of final configurations being an
up-atom. By Proposition 2.1 we have the following simple corollary which creates an elegant
duality for the emptiness problems in VASS.

Corollary 2.6. The emptiness problem for upward-VASS is in ExpSpace.

Actually, even the following stronger fact is true and helpful for us in the remaining part
of the paper. The following proposition is an easy consequence of Corollary 4.6 from [LS21].

Proposition 2.7. For each upward-VASS the representation of the downward-closed set of
configurations with the empty language can be computed in doubly-exponential time.

Deciding unambiguity and k-ambiguity for VASS. It is a natural question to ask
whether a given VASS is unambiguous, or more generally, k-ambiguous for a given k ∈ N.

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:9

Deciding it can be rather easily reduced to the language emptiness problem (and thus to
the coverability or the reachability problem for VASS). Intuitively, to check whether a VASS
V is unambiguous, one can construct a VASS V ′ that accepts words having at least two
different runs in V . Then V is unambiguous if and only if the language of V ′ is empty.
VASS V ′ essentially speaking simulates two copies of V and additionally keeps in its state
information whether these runs have already differed or not. Thus, for VASS accepting
by a set of states, the unambiguity problem can be decided in ExpSpace, for details, see
Proposition 20 in [CFH20]. The same complexity can be achieved for upward-VASS in
exactly the same way. Also, in the same way, for downward-VASS the unambiguity problem
is reduced to the reachability problem for VASS, which is in Ackermann [LS19].

A very similar construction can be used to decide the k-ambiguity of the upward- or
downward-VASS for any fixed k. For a d-VASS V one can construct a d(k + 1)-VASS
V ′, which simulates k + 1 copies of V , makes sure that all of them accept and runs in all
the copies are different. Then V is not k-ambiguous if and only if the language of V ′ is
nonempty. In turn, the problem of checking k-ambiguity is in ExpSpace for upward-VASS
and in Ackermann for downward-VASS.

3. Deterministic VASS

3.1. Lower bound. First we prove a lemma, which easily implies Theorem 1.1.

Lemma 3.1. For each d-dimensional singleton-VASS V with final configuration being
cF = qF (0

d) one can construct in polynomial time two deterministic (d+ 1)-dimensional
upward-VASSes V1 and V2 such that

L(V1) = L(V2) ⇐⇒ L(V) = ∅.

Notice that Lemma 3.1 shows that the emptiness problem for a singleton-VASS with
the final configuration having zero counter values can be reduced in polynomial time to the
language equivalence for deterministic VASS. This proves Theorem 1.1 as the emptiness
problem, even with zero counter values of the final configuration is Ackermann-hard [Ler21a,
CO21]. Also, Lemma 3.1 implies hardness in fixed dimensional VASS. For example the
language equivalence problem for deterministic (2d+ 5)-VASS is Fd-hard as the emptiness
problem is Fd-hard for (2d+ 4)-dimensional singleton-VASS [Ler21b].

Proof of Lemma 3.1. We first sketch the proof. To show the lemma, we take V and add to
it one transition labelled with a new letter. In V1 the added transition can be performed if
we have reached a configuration bigger than or equal to cF . In V2 the added transition can
be performed only if we have reached a configuration strictly bigger than cF . Then it is easy
to see that L(V1) ̸= L(V2) if and only if cF can be reached. A detailed proof follows.

For a given V = (Q,T, cI , cF) we construct V1 = (Σ = T ∪ {a}, Q ∪ {q′F }, T ′ ∪
{t1}, c′I , q′F (0d+1↑)), and V2 = (Σ = T ∪ {a}, Q ∪ {q′F }, T ′ ∪ {t2}, c′I , q′F (0d+1↑)). Notice
that V1 and V2 are pretty similar to each other and also to V . Both V1 and V2 have the same
states as V plus one additional state q′F . Notice that the alphabet of labels of V1 and V2 is
the set of transitions T of V plus one additional letter a. For each transition t = (p, v, q) ∈ T
of V we create a transition (p, t, v′, q) ∈ T ′ where

• for each i ∈ [1, d] we have v′[i] = v[i]; and
• v′[d+ 1] = v[1] + . . .+ v[d],

27:10 W. Czerwiński and P. Hofman Vol. 21:1

so v′ is identical as v on the first d coordinates and on the last (d+1)-th coordinate it keeps
the sum of all the others. Notice that the transitions in T ′ are used both in V1 and in V2.

We also add one additional transition t1 to V1 and one t2 to V2. To V1 we add a new
a-labelled transition from qF to q′F with the effect 0d+1 for the additional letter a. To V2 we

also add an a-labelled transition between qF and q′F , but with an effect equal (0d,−1). This
−1 on the last coordinate is the only difference between V1 and V2. The starting configuration

in both V1 and V2 is c′I = qI(x1, x2, . . . xd,
∑d

i=1 xi) where cI = qI(x1, x2, . . . xd). The set of

accepting configurations is the same in both V1 and V2, namely it is q′F (0
d+1↑) . Notice that

both V1 and V2 are deterministic upward-VASS, as required in the lemma statement.
Now we aim to show that L(V1) = L(V2) if and only if L(V) = ∅. First, observe that

L(V1) ⊇ L(V2). Clearly if w ∈ L(V2) then w = ua for some u ∈ T ∗, where T is the set of
transitions of V . For any word ua ∈ L(V2), we have

c′I
u−→ qF (v)

a−→ q′F (v − ed+1)

in V2. But, then we have also

c′I
u−→ qF (v)

a−→ q′F (v)

in V1. Thus ua ∈ L(V1).
Now we show that, if L(V) ̸= ∅, so cI −→ qF (0

d) in V then L(V1) ̸= L(V2). Let

the run ρ of V be such that cI
ρ−→ qF (0

d) and let u = trans(ρ) ∈ T ∗. Then clearly

c′I
u−→ qF (0

d+1)
a−→ q′F (0

d+1) and ua ∈ L(V1). However ua ̸∈ L(V2) as the last coordinate on
the run of V2 over ua corresponding to ρ would go below zero and this is the only possible
run of V2 over ua due to determinism of V2.

It remains to show that if L(V) = ∅, so cI −̸→ qF (0
d) in V , then L(V1) ⊆ L(V2). Let

w ∈ L(V1). Then w = ua for some u ∈ T ∗. Let c′I
ρ−→ c in V1 such that trans(ρ) = u. As

ua ∈ L(V1) we know that c = qF (v). However as cI −̸→ qF (0
d) in V we know that v ̸= 0d+1.

In particular v[d + 1] > 0. Therefore w = ua ∈ L(V2) as the last transition over a may
decrease the (d+ 1)-th coordinate and reach an accepting configuration. This finishes the
proof.

3.2. Upper bounds. In this Section we prove three results of the form: if V1 is a VASS and
V2 is a VASS of some special type then deciding whether L(V1) ⊆ L(V2) is in Ackermann.
Our approach to these problems is the same, namely we first prove that complement of L(V2)
for V2 of the special type is also a language of some VASS V ′

2 . Then to decide the inclusion
problem it is enough to construct VASS V such that L(V) = L(V1) ∩ L(V ′

2) = L(V1) \ L(V2)
and check it for emptiness. In the description above, using the term VASS we do not specify
the form of its set of accepting configurations. Starting from now on, we call upward-VASS
simply VASS and for VASS with other acceptance conditions we use their full name (like
downward-VASS or updown-VASS) to distinguish them from upward-VASS. The following
lemma is very useful in our strategy of deciding the inclusion problem for VASS languages.

Lemma 3.2. There is an algorithm that for a VASS V1 and a downward-VASS V2 constructs
in polynomial time an updown-VASS V such that L(V) = L(V1) ∩ L(V2).

Proof. We construct V as the standard synchronous product of V1 and V2. The set of
accepting configurations in V is also the product of accepting configurations in V1 and

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:11

accepting configurations in V2, thus due to Proposition 2.1 a finite union of q(U ×D) for a
state q of V , an up-atom U and a down-atom D.

Deterministic VASS. We first show the following theorem, which will be generalised
by the other results in this section. We aim to prove it independently in order to mildly
introduce our techniques.

Theorem 3.3. There is algorithm, that for a deterministic VASS V constructs, in exponential
time, a downward VASS that recognises the complement of the language of V .

Proof of Theorem 3.3. Let V = (Σ, Q, T, cI , F) be a deterministic d-VASS. We aim at con-

structing a d-dimensional downward-VASS V ′ such that L(V ′) = L(V). Before constructing
V ′ let us observe that there are three possible scenarios for a word w to be not in L(V). The
first scenario (1) is that the only run over w in V finishes in a non-accepting configuration.
Another possibility is that there is even no run over w. Namely, for some prefix va of w

where v ∈ Σ∗ and a ∈ Σ we have cI
v−→ c for some configuration c but there is no transition

from c over the letter a as either (2) all possible transitions over a would decrease some of
the counters below zero, (3) there is no such transition possible in V in the state of c. For
each case we separately design a part of a downward-VASS accepting it. Cases (1) and (3)
are simple. For case (2) we nondeterministically guess the moment when the run would
go below zero and freeze the configuration at that moment. Then, at the end of the word,
we check if our guess was correct. Notice that the set of configurations from which a step
labelled with a letter a would take a counter below zero is downward-closed, so we can check
the correctness of our guess using a downward-closed accepting condition. A detailed proof
follows.

We are ready to describe VASS V ′ = (Σ, Q′, T ′, c′I , F
′). Basically speaking, it consists of

2 · |Σ|+1 copies of V . Concretely, the set of states Q′ is the set of pairs Q×(Σ×{2, 3}∪{−}).
Let cI = qI(vI). Then let q′I ∈ Q′ be defined as q′I = (qI ,−) and we define the initial
configuration of V as c′I = q′I(vI). The set of accepting configurations F ′ = F1 ∪ F2 ∪ F3

is a union of three sets Fi, each set Fi for i ∈ {1, 2, 3} is responsible for accepting words
rejected by VASS V due to the scenario (i) described above. We successively describe
which transitions are added to T ′ and which configurations are added to F ′ in order to
appropriately handle various scenarios.

We first focus on words fulfilling the scenario (1). For states of a form (q,−) the VASS
V ′ is just as V . Namely for each transition (p, a, v, q) ∈ T we add (p′, a, v, q′) to T ′ where
p′ = (p,−) and q′ = (q,−). We also add to F ′ the following set F1 = {(q,−)(v) | q(v) ̸∈ F}.
It is easy to see that words that fulfil scenario (1) above are accepted in V ′ by the use of the
set F1. The size of the description of F1 is at most exponential compared to the size of the
description of F by Proposition 2.2.

Now we describe the second part of V ′ which is responsible for words rejected by V
because of the scenario (2). The idea is to guess when the run over w is finished. For
each label a ∈ Σ we add (p′, a, 0d, p′′) to T ′ where p′ = (p,−) and p′′ = (p, (a, 2)). The
idea is that the run reaches the configuration in which the transition labeled with a cannot
be fired. Now we have to check that our guess is correct. In the state (p, (a, 2)) for
t ∈ T no transition changes the configuration. Namely for each p′′ = (p, (a, 2)) ∈ Q × Σ
and each b ∈ Σ we add to T ′ a transition (p′′, b, 0d, p′′). We now add to F ′ the set
F2 = {(p, (a, 2))(v) | v + eff(t) ̸∈ Nd for all t = (p, a, eff(t), q) ∈ T where q ∈ Q}. Notice that
F2 can be easily represented as a polynomial union of down-atoms. It is easy to see that

27:12 W. Czerwiński and P. Hofman Vol. 21:1

indeed V ′ accepts by F2 exactly words w such that there is a run of V over some prefix v
of w but reading the next letter would decrease one of the counters below zero. The last
part of V ′ is responsible for the words w rejected by V because of the scenario (3), that is,
w has a prefix va such that there is a run over v ∈ Σ∗ in V but then in the state of the
reached configuration there is no transition over the letter a ∈ Σ. To accept such words for
each state p ∈ Q and letter a ∈ Σ such that there is no transition of a form (p, a, v, q) ∈ T
for any v ∈ Zd and q ∈ Q we add to T ′ transition ((p,−), a, 0d, (p, (a, 3))). In each state
p′ = (p, (a, 3)) ∈ Q× Σ, we have a transition (p′, b, 0d, p′) for each b ∈ Σ. We also add to F ′

the set F3 = {(p, (a, 3))(v) | v ∈ Nd and there is no (p, a, u, q) ∈ T for u ∈ Zd and q ∈ Q}.
The size of F3 is polynomial w.r.t. T .

Summarising V ′ with the accepting downward-closed set F = F1 ∪ F2 ∪ F3 indeed
satisfies L(V ′) = L(V), which finishes the construction and the proof.

The following theorem is a simple corollary of Theorem 3.3, Lemma 3.2 and Corollary 2.4.

Theorem 3.4. The inclusion problem of a VASS language in a deterministic VASS language
is in Ackermann.

Deterministic VASS with holes. We define here VASS with holes, which are a useful
tool to obtain our results about unambiguous VASS in Section 4. A d-VASS with holes
(or shortly d-HVASS) V is defined exactly as a standard VASS, but with an additional
downward-closed set H ⊆ Q × Nd which affects the semantics of V . Namely the set of
configurations of V is Q× Nd \H. Thus each configuration on a run of V needs not only
to have nonnegative counters, but in addition to that it can not be in the set of holes H.
Additionally in HVASS we allow for transitions labelled by the empty word ε, in contrast
to the rest of our paper. Due to that fact in this paragraph we often work also with VASS
having ε-labelled transitions, we call such VASS the ε-VASS. As an illustration of the HVASS
notion, let us consider the zero-dimensional case. In that case, the set of holes is just a
subset of states. Therefore, HVASS in dimension zero are exactly VASS in dimension zero,
so finite automata. However, for higher dimensions, the notions of HVASS and VASS differ.

We present here a few results on languages for HVASS. First notice that for nondeter-
ministic HVASS it is easy to construct a language equivalent ε-VASS.

Lemma 3.5. There is an algorithm, that for a given HVASS computes, in exponential time,
a language equivalent ε-VASS.

Proof of Lemma 3.5. We first sketch our solution. At first, we observe that the complement
of the set of holes is an upward-closed set U . The idea behind the construction is that
after each step we test if the current configuration is in U . We nondeterministically guess a
minimal element xi of U above which the current configuration is, then we subtract xi and
add it back. If our guess was not correct, then the run is blocked. A detailed proof follows.

Let V = (Σ, Q, T, qI(vI), F,H) be a d-HVASS with the set of holes H. We aim at
constructing a d-VASS V ′ = (Σ, Q′, T ′, c′I , F

′) such that L(V) = L(V ′). By Proposition 2.2

we can compute in exponential time an upward-closed set of configurations U = (Q×Nd)\H.
In order to translate V into a d-VASS V ′ intuitively we need to check that each configuration
on the run is not in the set H. To do this, we use the representation of U as a finite union
U =

⋃
i∈[1,k] qi(ui↑) for qi ∈ Q and ui ∈ Nd. Now for each configuration c on the run of V

the simulating VASS V ′ needs to check that c belongs to qi(ui↑) for some i ∈ [1, k]. That
is why in V ′ after every step simulating a transition of V we go into a testing gadget and

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:13

after performing the test we are ready to simulate the next step. For that purpose we define
Q′ = (Q × {0, 1}) ∪ {r1, . . . , rk}. The states in Q × {0} are those before the test and the
states in Q× {1} are the ones after the test. The states r1, . . . , rk are used to perform the
test. The initial configuration c′I is defined as (qI , 0)(vI) and the set of final configurations
is defined as F ′ = {(q, 1)(v) | q(v) ∈ F}. For each transition (p, a, v, q) in T we add a
corresponding transition ((p, 1), a, v, (q, 0)) to T ′. In each reachable configuration (q, 0)(v)
the VASS V ′ nondeterministically guesses for which i ∈ [1, k] holds qi(ui) ⪯ q(v) (which
guarantees that indeed q(v) ∈ U). In order to implement it for each q ∈ Q and each i ∈ [1, k]
such that q = state(ri) we add two transitions to T ′: the one from (q, 0) to ri subtracting ui,
namely ((q, 0), ε,−ui, ri) and the one coming back and restoring the counter values, namely

(ri, ε, ui, (q, 1)). It is easy to see that (q, 0)(v)
ε−→ (q, 1)(v) if and only if q(v) ∈ U , which

finishes the proof.

It is important to emphasise that the above construction applied to a deterministic
HVASS does not give us a deterministic VASS, so we cannot simply reuse Theorem 3.3.
Thus in order to prove the decidability of the inclusion problem for HVASS we need to
generalise Theorem 3.3 to HVASS.

Theorem 3.6. There is an exponential time algorithm, that for a deterministic HVASS V
computes a downward-ε-VASS, which recognises the complement of the language of V .

Proof of Theorem 3.6. We first sketch our solution. The proof is very similar to the proof
of Theorem 3.3. In case (1) we have to check if the accepting run stays above the holes, to
perform it we use the trick from Lemma 3.5. In case (2) we freeze the counter when the run
would have to drop below zero or enter the hole. The case (3) is the same as in Theorem 3.3.
A more detailed proof follows.

As the proof is very similar to the proof of Theorem 3.3 we only sketch the key
differences. Let V be a deterministic HVASS and let H ⊆ Q × Nd be the set of its holes.
Let U = (Q×Nd) \H, by Proposition 2.2 we know that U =

⋃
i∈[1,k] qi(ui↑) for some states

qi ∈ Q and vectors ui ∈ Nd, and additionally ||U || is at most exponential w.r.t. the size
||H||.

The construction of V ′ recognising the complement of L(V) is almost the same as in the
proof of Theorem 3.3, we need to introduce only small changes. The biggest changes are in
the part of V ′ that recognises words rejected by V because of scenario (1). We need to check
that after each transition, the current configuration is in U (so it is not in any hole from H).
We perform it here in the same way as in the proof of Lemma 3.5. Namely, we guess which
qi(ui↑) the current configuration belongs to and check it by simple VASS modifications (for
details, look at the proof of Lemma 3.5). The size of this part of V ′ can have a blow-up
of at most size of U times, namely the size can be multiplied by some number, which is at
most exponential w.r.t. the size ||H||.

In the part recognising words rejected by V due to scenario (2), we only need to
adjust the accepting set F2. Indeed, we need to accept now if we are in a configuration
(p, t)(v) ∈ Q× T such that v + t ̸∈ Nd or v + t ∈ H (in contrast to only v + t ̸∈ Nd in the
proof of Theorem 3.3). This change does not introduce any new superlinear blow-up.

Finally the part recognising words rejected by V because of scenario (3) does not need
adjusting at all. It is not hard to see that the presented construction indeed accepts the
complement of L(V) as before. The constructed downward-VASS V ′ is of at most exponential
size w.r.t. the size V as explained above, which finishes the proof.

27:14 W. Czerwiński and P. Hofman Vol. 21:1

Now, the following theorem is an easy consequence of the shown facts. We need only to
observe that proofs of Lemma 3.2 and Corollary 2.4 work as well for ε-VASS.

Theorem 3.7. The inclusion problem of an HVASS language in a deterministic HVASS
language is in Ackermann.

Proof of Theorem 3.7. Let V1 = (Σ, Q1, T1, c
1
I , F1, H1) be a d1-HVASS with holes H1 ⊆

Q1 × Nd1 and let V2 = (Σ, Q2, T2, c
2
I , F2, H2) be a deterministic d2-HVASS with holes

H2 ⊆ Q2 × Nd2 . By Lemma 3.5 an ε-VASS V ′
1 equivalent to V1 can be computed in

exponential time. By Theorem 3.6 a downward-ε-VASS V ′
2 can be computed in exponential

time such that L(V ′
2) = Σ∗ \ L(V2). It is enough to check now whether L(V ′

1) ∩ L(V ′
2) = ∅.

By Lemma 3.2 (extended to ε-VASS) one can compute an updown-ε-VASS V such that
L(V) = L(V ′

1) ∩ L(V ′
2). Finally, by Corollary 2.4 (also extended to ε-VASS) the emptiness

problem for updown-ε-VASS is in Ackermann, which finishes the proof.

Boundedly-control-deterministic VASS. We define here a generalisation of a determin-
istic VASS, namely a k-control-deterministic VASS for k ∈ N. Such VASS are later used as
a tool for deriving results about k-ambiguous VASS in Section 5.

We say that a finite automaton A = (Σ, Q, T, qI , F) is k-deterministic if for each word
w ∈ Σ∗ there are at most k maximal runs over w. We call a run ρ a maximal run over w
if either (1) it is a run over w or (2) w = uav for u, v ∈ Σ∗, a ∈ Σ such that the run ρ is
over the prefix u of w but there is no possible way of extending ρ by any transition labelled
with the letter a ∈ Σ. Let us emphasise that here we count runs in a subtle way. We do not
count only the maximal number of active runs throughout the word, but the total number
of different runs that have ever been started during the word. To illustrate the difference
better let us consider an example finite automaton A over Σ = {a, b} with two states p, q
and with three transitions: (p, a, p), (p, a, q) and (q, b, q). Then A has n+ 1 maximal runs
over the word an although only two of these runs actually survive till the end of the input
word. So A is not 2-deterministic even though for each input word it has at most two runs.
We say that a VASS V = (Σ, Q, T, cI , F) is k-control-deterministic if its control automaton
is k-deterministic.

Theorem 3.8. There is an exponential time algorithm, that for a k-control-deterministic
d-VASS V constructs a (k ·d)-dimensional downward-VASS, which recognises the complement
of the language of V .

Proof of Theorem 3.8. We first sketch our solution. In the algorithm the (k · d)-dimensional
downward-VASS V ′ simulates k copies of V which take care of at most k different maximal
runs of V . The accepting condition F ′ of V ′ verifies whether in all copies there is a reason
that the simulated maximal runs do not accept. The reasons why each individual copy does
not accept are the same as in Theorem 3.3.

Before starting the proof, let us remark that it would seem natural to first build a
deterministic (k · d)-VASS equivalent to the input k-control-deterministic d-VASS and then
apply construction from the proof of Theorem 3.3 to recognise its complement. However, it is
not clear how to construct a deterministic (k · d)-VASS equivalent to k-control-deterministic
d-VASS, thus we compute directly a VASS recognising the complement of the input VASS
language.

Let V = (Σ, Q, T, cI , F) be a k-control-deterministic d-VASS. We aim to construct a
(k · d)-dimensional downward-VASS V ′ = (Σ, Q′, T ′, c′I , F

′) such that L(V ′) = Σ∗ \ L(V).

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:15

In this proof, also, we strongly rely on the ideas introduced in the proof of Theorem 3.3.
Recall that the idea of the construction is that V ′ simulates k copies of V which take care
of different maximal runs of V . Then the accepting condition F ′ of V ′ verifies whether in
all copies there is a reason the simulated maximal runs do not accept.

Recall that for a run there are three scenarios in which it is not accepted: (1) it reaches
the end of the word, but the reached configuration is not accepted, (2) at some moment it
tries to decrease some counter below zero, and (3) at some moment there is no transition
available over the input letter. In the proof of Theorem 3.3 it was shown how a VASS can
handle all three reasons. In short words: in case (1) it simulates the run till the end of
the word and then checks that the reached configuration is not accepting and in cases (2)
and (3) it guesses the moment in which there is no valid transition available and keeps this
configuration untouched (in other words freezes it) till the end of the run when it checks by
the accepting condition that the guess was correct. We only sketch how the downward-VASS
V ′ works without stating explicitly its states and transitions. It starts in the configuration
c′I which consists of k copies of cI . Then it simulates the run in all the copies in the same
way until the first time when there is a choice of transition. Then we enforce that at least
one copy follows each choice, but we allow for more than one copy to follow the same choice.
In the state of V ′ we keep the information which copies follow the same maximal run and
which have already split. Each copy is exactly as in the proof of Theorem 3.3, it realises one
of the scenarios (1), (2) or (3). As we know that V is k-control-deterministic, we are sure
that all the possible runs of V can be simulated by V ′ under the condition that V ′ correctly
guesses which copies should simulate which runs. If the guesses of V ′ are wrong and at some
point it cannot send to each branch a copy, then the run of V ′ is rejected.

A bit more concretely, the state of V ′ keeps the following information: (I) for each of
the k copies in which state in Q it is, (II) the set of copies which are frozen and for each
such copy a transition which caused the freezing, (III) which copies have already split and
which have not (formally speaking we keep a partition of the set of copies).

We guarantee that all the branches are explored by some copy in the following way. If
in V there are m different transitions over some letter a from a state q then in V ′ in every
state that encodes ℓ copies in state q not all the possible mℓ options in the product are
allowed. We allow only for these options for which each of the possible m transitions of V
are taken in one of the ℓ copies. In particular if m = ℓ then instead of mm options in V ′

we have exactly m! options. In each of the options, there are actually 2m possibilities for
freezing the copies. This is needed because if the transition would decrease the counters
below zero (so scenario (2) is realised), the copy may not actually fire the transition, and we
should have a possibility of freezing it. If a copy gets frozen, the control state is updated
accordingly.

At the end of the run over the input word w VASS V ′ checks using the acceptance
condition F ′ that indeed all copies have simulated all the possible maximal runs and that
all reject. It is easy to see that F ′ is a downward-closed set, since, roughly speaking, it is a
product of k downward-closed accepting conditions, which finishes the proof.

Theorem 3.8 together with Lemma 3.2 and Corollary 2.4 easily implies (analogously as
in the proof of Theorem 3.7) the following theorem.

Theorem 3.9. The inclusion problem of a VASS language in a k-control-deterministic
VASS language is in Ackermann.

27:16 W. Czerwiński and P. Hofman Vol. 21:1

4. Unambiguous VASS

In this section we aim to prove Theorem 1.4. However, possibly a more valuable contribution
of this section is a novel technique which we introduce in order to show Theorem 1.4. The
essence of this technique is to introduce a regular lookahead to words, namely to decorate
each letter of a word with a piece of information regarding some regular properties of the
suffix of this word. For technical reasons, we realise it by using finite monoids.

The high-level intuition behind the proof of Theorem 1.4 is the following. We first
introduce the notion of (M,h)-decoration of words, languages and VASS, where M is a
monoid and h : Σ∗ → M is a homomorphism. Proposition 4.3 states that language inclusion
of two VASS can be reduced to language inclusion of its decorations. On the other hand
Theorem 4.6 shows that for appropriately chosen pair (M,h) the decorations of unambiguous
VASS are deterministic HVASS. Theorem 4.5 states that such an appropriate pair can be
computed quickly enough. Thus, the language inclusion of unambiguous VASS reduces to
language inclusion of deterministic HVASS, which is in Ackermann due to Theorem 3.7.

Recall that a monoid M together with a homomorphism h : Σ∗ → M and an accepting
subset F ⊆ M recognises a language L if L = h−1(F). In other words L is exactly the set of
words w such that h(w) ∈ F . The following proposition is folklore, for details see [Pin97]
(Proposition 3.12).

Proposition 4.1. A language of finite words is regular if and only if it is recognised by
some finite monoid.

For that reason, monoids are a good tool for working with regular languages. In
particular Proposition 4.1 implies that for each finite family of regular languages there is a
monoid, which recognises all of them, this fact is useful in Theorem 4.6. Fix a finite monoid
M and a homomorphism h : Σ∗ → M . For a word w = a1 · . . . · an ∈ Σ∗ we define its
(M,h)-decoration to be the following word over an alphabet Σε ×M :

(ε, h(a1 · . . . · an)) · (a1, h(a2 · . . . · an)) · . . . · (an−1, h(an)) · (an, h(ε)).

In other words, the (M,h)-decoration of a word w of length n has length n+ 1, where the
i-th letter has the form (ai−1, h(ai · . . . · an)). We denote the (M,h)-decoration of a word w
as w(M,h). If h(w) = m then we say that the word w has type m ∈ M . The intuition behind
the (M,h)-decoration of w is that for each language L which is recognised by the pair (M,h)
the i-th letter of w is extended with an information whether the suffix of w after this letter
belongs to L or does not belong. This information can be extracted from the monoid element
h(ai+1 · . . . · an) by which the letter ai is extended. As an illustration consider words over
alphabet Σ = {a, b}, monoid M = Z2 counting modulo two and homomorphism h : Σ → M
defined as h(a) = 1, h(b) = 0. In that case for each w ∈ Σ∗ the element h(w) indicates
whether the number of letters a in the word w is odd or even. The decoration of w = aabab
is then w(M,h) = (ε, 1)(a, 0)(a, 1)(b, 1)(a, 0)(b, 0).

We say that a word u ∈ (Σε ×M)∗ is well-formed if u = (ε,m0) · (a1,m1) · . . . · (an,mn)
such that all ai ∈ Σ, and for each i ∈ [0, n] the type of ai+1 · . . . · an is mi (in particular type
of ε is mn). We say that such a word u projects into word a1 · . . . · an. It is easy to observe
that w(M,h) is the only well-formed word that projects into w. The following proposition is
useful in Section 5, an appropriate finite automaton can be easily constructed.

Proposition 4.2. The set of all well-formed words is regular.

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:17

A word is almost well-formed if it satisfies all the conditions of well-formedness, but the
first letter is not necessarily of the form (ε,m) for m ∈ M , it can as well belong to Σ×M .

The (M,h)-decoration of a language L, denoted L(M,h), is the set of all (M,h)-decorations
of all words in L, namely

L(M,h) = {w(M,h) | w ∈ L}.
Since the (M,h)-decoration is a function from the set of words over Σ to words over Σε ×M
we observe that u = v iff u(M,h) = v(M,h) and clearly the following proposition holds.

Proposition 4.3. For each finite alphabet Σ, two languages K,L ⊆ Σ∗, a monoid M and
homomorphism h : Σ∗ → M we have

K ⊆ L ⇐⇒ K(M,h) ⊆ L(M,h).

HVASS construction. As defined earlier, an HVASS (VASS with holes) is a VASS
with some downward-closed set H of prohibited configurations (see Section 3, paragraph
Deterministic VASS with holes). For each d-VASS V = (Σ, Q, T, cI , F), a monoid M
and a homomorphism h : Σ∗ → M we can define in a natural way a d-HVASS V(M,h) =
(Σε ×M,Q′, T ′, c′I , F

′) accepting the (M,h)-decoration of L(V). The set of states Q′ equals
Q× (M ∪ {⊥}). The intuition is that V(M,h) is designed in such a way that for any state

(q,m) ∈ Q ×M and vector v ∈ Nd if (q,m)(v)
w′
−→ F ′ then w′ is almost well-formed and

w′ projects into some w ∈ Σ∗ such that h(w) = m. If cI = qI(vI) then configuration
c′I = (qI ,⊥)(vI) is the initial configuration of V(M,h). The set of final configurations F ′ is
defined as F ′ = {(q, h(ε))(v) | q(v) ∈ F}. Finally we define the set of transitions T ′ of V ′ as
follows. First, for each m ∈ M we add the following transition ((qI ,⊥), (ε,m), 0d, (qI ,m)) to
T ′. Then for each transition (p, a, v, q) ∈ T and for each m ∈ M we add to T ′ the transition
(p′, a′, v, q′) where a′ = (a,m), q′ = (q,m) and p′ = (p, h(a) ·m). It is now easy to see that
for any word w = a1 · . . . · an ∈ Σ∗ we have

qI(vI)
a1−→ q1(v1)

a2−→ . . .
an−1−→ qn−1(vn−1)

an−→ qn(vn)

if and only if

(qI ,⊥)(vI)
(ε,m1)−→ (qI ,m1)(vI)

(a1,m2)−→ (q1,m2)(v1)
(a2,m3)−→ . . .

(an−1,mn)−→ (qn−1,mn)(vn−1)
(an,mn+1)−→ (qn,mn+1)(vn),

where mi = h(w[i..n]) for all i ∈ [1, n + 1], in particular mn+1 = h(ε). Therefore, indeed
L(V(M,h)) = L(V)(M,h). Until now the defined HVASS is actually a VASS, we have not
defined any holes. Our aim is now to remove configurations with the empty language, that

is, (q,m)(v) for which there is no word w ∈ (Σε ×M)∗ such that (q,m)(v)
w−→ c′F for some

c′F ∈ F ′. Notice that as F ′ is upward-closed we know that the set of configurations with
the empty language is downward-closed. This is how we define the set of holes H, it is
exactly the set of configurations with the empty language. We can compute the set of holes
in doubly-exponential time by Proposition 2.7.

By Proposition 4.3 we know that for two VASS U, V we have L(U) ⊆ L(V) if and only
if L(U(M,h)) ⊆ L(V(M,h)). This equivalence is useful, as we show in a moment that for an
unambiguous VASS V and suitably chosen (M,h) the HVASS V(M,h) is deterministic.

Regular separability. We use here the notion of regular separability. We say that two
languages K,L ⊆ Σ∗ are regular-separable if there exists a regular language S ⊆ Σ∗ such

27:18 W. Czerwiński and P. Hofman Vol. 21:1

that K ⊆ S and S∩L = ∅. We then say that S separates K and L and S is a separator of K
and L. We recall here a theorem about regular-separability of VASS languages (importantly
upward-VASS languages, not downward-VASS languages) from [CLM+18].

Theorem 4.4 [CLM+18, Theorem 24]. For any two VASS languages L1, L2 ⊆ Σ∗ if
L1 ∩ L2 = ∅ then L1 and L2 are regular-separable and one can compute a regular separator
in elementary time.

Proof. Theorem 24 in [CLM+18] says that there exists a regular separator of L1 and L2

of size at most triply-exponential. In order to compute it, we can simply enumerate all
the possible separators of at most triply-exponential size and check them one by one. For
a given regular language and a given VASS language by Proposition 2.6 one can check in
doubly-exponential time whether they intersection is nonempty.

For our purposes we need a bit stronger version of this theorem. We say that a family
of regular languages F separates languages of a VASS V if for any two configurations c1, c2
such that languages L(c1) and L(c2) are disjoint there exists a language S ∈ F that separates
L(c1) and L(c2).

Theorem 4.5. There is an algorithm that, for any VASS computes, in an elementary time,
a finite family of regular languages that separates its languages.

Proof. Let us fix a d-VASS V = (Σ, Q, T, cI , F). Let us define the set of pairs of configurations
of V with disjoint languages D = {(c1, c2) | L(c1) ∩ L(c2) = ∅} ⊆ Q × Nd × Q × Nd. One
can easily see that the set D is exactly the set of configurations with empty language in the
synchronised product of VASS V with itself. Thus, by Proposition 2.7 we can compute in
doubly-exponential time its representation as a finite union of down-atoms D = A1∪ . . .∪An.
We show now that for each i ∈ [1, n] one can compute in elementary time a regular language
Si such that for all (c1, c2) ∈ Ai the language Si separates L(c1) and L(c2). This will
complete the proof showing that one of S1, . . . , Sn separates L(c1) and L(c2) whenever they
are disjoint.

Let A ⊆ Q×Nd×Q×Nd be a down-atom. Therefore A = D1×D2 where D1 = p1(u1↓)
and D2 = p2(u2↓) for some u1, u2 ∈ (N ∪ {ω})d. Let L1 =

⋃
c∈D1

L(c) and L2 =
⋃

c∈D2
L(c).

Languages L1 and L2 are disjoint as w ∈ L1 ∩ L2 would imply w ∈ L(c1) ∩ L(c2) for some
c1 ∈ D1 and c2 ∈ D2. Now, observe that L1 is not only an infinite union of VASS languages
but also a VASS language itself. Indeed, let V1 = (Σ, Q, T1, c(I,1), F1) be the VASS V where
all coordinates i ∈ [1, d] such that u1[i] = ω are ignored. Concretely,

• (p, a, v1, q) ∈ T1 if there exists (p, a, v, q) ∈ T such that for every i holds either v1[i] = v[i]
or v1[i] = 0 and u1[i] = ω,

• state(c(I,1)) = p1 and for every i holds either c(I,1)[i] = u1[i] or c(I,1)[i] = 0 and u1[i] = ω,
• (q, v1) ∈ F1 if there exists (q, v) ∈ F such that for every i holds either v1[i] = v[i] or
u1[i] = ω.

Then it is easy to observe that V1 accepts exactly the language L1. Similarly, one can define
VASS V2 accepting the language L2. By Theorem 4.4 we can compute in elementary time
some regular separator S of L(V1) and L(V2). It is now easy to see that for any configurations
c1 ∈ D1 and c2 ∈ D2 languages L(c1) and L(c2) are separated by S.

Now we are ready to use the notion of (M,h)-decoration of a VASS language. Let
us recall that a regular language L is recognised by a monoid M and homomorphism
h : Σ∗ −→ M if there is F ⊆ M such that L = h−1(F).

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:19

Theorem 4.6. Let V be an unambiguous VASS over Σ and F be a finite family of regular
languages separating languages of V . Suppose M is a monoid with homomorphism h : Σ∗ →
M recognising every language in F . Then the HVASS V(M,h) is deterministic.

Proof. Let V = (Σ, Q, T, cI , F) and let cI = qI(vI). We aim to show that HVASS V(M,h) =
(Σ′, Q′, T ′, c′I , F

′) is deterministic, where Σ′ = Σε × M and Q′ = Q × (M ∪ {⊥}). It is
easy to see from the definition of V(M,h) that for each (a,m) ∈ Σ′ and each q ∈ Q the
state (q,⊥) has at most one outgoing transition over (a,m). Indeed, there is exactly one
transition over (ε,m) outgoing from (qI ,⊥) and no outgoing transitions in the other cases.
Assume now towards a contradiction that V(M,h) is not deterministic. Then there is some

configuration c = (q,m)(v) with (q,m) ∈ Q × M such that cI
u−→ c for some word u

over Σ′ and a letter (a,m′) ∈ Σ′ such that a transition from c over (a,m′) leads to two
different configurations c1 = (q1,m

′)(v1) and c2 = (q2,m
′)(v2). Recall that a transition

over (a,m′) has to lead to some state where the second component is equal to m′. As
configurations with empty language are not present in V(M,h) we know that there exist words
w1 ∈ L(c1) and w2 ∈ L(c2). Recall that as c1 = (q1,m

′)(v1) and c2 = (q2,m
′)(v2) we have

h(w1) = m′ = h(w2). We show now that L(c1) and L(c2) are disjoint. Assume otherwise
that there exists w ∈ L(c1)∩L(c2). Then there are at least two accepting runs over the word
u · (a,m′) · w in V(M,h). However, this means that there are at least two accepting runs over
the projection of u · (a,m′) · w in V , which contradicts the unambiguity of V . Thus, L(c1)
and L(c2) are disjoint and therefore separable by some language from F . Recall that all
languages in F are recognisable by (M,h), therefore words from L(c1) should be mapped by
homomorphism h to different elements from M than words from L(c2). However, h(w1) = m′

for w1 ∈ L(c1) and h(w2) = m′ for w2 ∈ L(c2) which leads to the contradiction.

Now we are ready to prove Theorem 1.4. Let V1 be a VASS and V2 be an unambiguous
VASS, both with labels from Σ. We first compute a finite family F separating languages of
V2 which can be performed in elementary time by Theorem 4.5 and then we compute a finite
monoid M together with a homomorphism h : Σ∗ → M recognising all the languages from
F . By Proposition 4.3 we get that L(V1) ⊆ L(V2) if and only if L(V1)(M,h) ⊆ L(V2)(M,h).
We now compute HVASS V ′

1 = V1(M,h)
and V ′

2 = V2(M,h)
as described above in the paragraph

HVASS construction. By Theorem 4.6 the HVASS V ′
2 is deterministic. Thus it remains to

check whether the language of a HVASS V ′
1 is included in the language of a deterministic

HVASS V ′
2 , which is in Ackermann due to Theorem 3.7.

Remark 4.7. We remark that our technique can be applied not only to VASS but also in a
more general setting of well-structured transition systems. In [CLM+18] it was shown that
for any well-structured transition systems satisfying some mild conditions (finite branching
is enough), the disjointness of two languages implies regular separability of these languages.
We claim that an analogue of our Theorem 4.5 can be obtained in that case as well. Assume
now that W1,W2 are two classes of finitely branching well-structured transition systems,
such that for any two systems V1 ∈ W1, V2 ∈ W2 where V2 is deterministic the language
inclusion problem is decidable. Then this problem is also likely to be decidable if we weaken
the condition of determinism to unambiguity. More concretely speaking this seems to be the
case if it is possible to perform the construction analogous to Theorem 3.3 in W2, namely if
one can compute the system recognising the complement of deterministic language without
leaving the class W2. We claim that an example of such a class W2 is the class of VASS with
one reset. The emptiness problem for VASS with one zero-test (and thus also for VASS with

27:20 W. Czerwiński and P. Hofman Vol. 21:1

one reset) is decidable due to [Rei08, Bon11]. Then following our techniques it seems that
one can show that inclusion of a VASS language in a language of an unambiguous VASS
with one reset is decidable.

5. Boundedly-ambiguous VASS

In this section we aim to prove Theorem 1.2 and show that Theorem 1.3 is its easy consequence.
Recall the statements of both Theorem 1.2 and Theorem 1.3.

Theorem 1.2. There is an algorithm that, for each k ∈ N and a k-ambiguous VASS V con-
structs, in elementary time, a VASS with a downward-closed set of accepting configurations
which recognises the complement of the language of V .

Theorem 1.3. For each k ∈ N the language inclusion problem of a VASS in a k-ambiguous
VASS is in Ackermann.

Let us first show how Theorem 1.2 implies Theorem 1.3. Let V1 be a VASS and V2 be a
k-ambiguous VASS. By Theorem 1.2 can be computed in elementary time a downward-VASS
V ′
2 such that L(V ′

2) = Σ∗\L(V2). By Lemma 3.2 one can construct in time a polynomial w.r.t.
the size of V1 and V ′

2 an updown-VASS V such that L(V) = L(V1) ∩ L(V ′
2) = L(V1) \ L(V2).

By Corollary 2.4 emptiness of V is decidable in Ackermann which, consequently, proves
Theorem 1.3.

The rest of this section focusses on the proof of Theorem 1.2.

Proof of Theorem 1.2. We now prove Theorem 1.2 using Lemmas 5.1 and 5.2. Then in
Sections 5.1 and 5.2 we show the formulated lemmas. Let V be a k-ambiguous VASS over an
alphabet Σ. First due to Lemma 5.1 proved in Section 5.1 we construct a VASS V 1 which is
language equivalent to V and additionally has the control automaton being k-ambiguous.

Lemma 5.1. There is an algorithm, that for each k-ambiguous VASS V constructs, in
doubly-exponential time, a language equivalent VASS V ′ with the property that its control
automaton is k-ambiguous.

Now our aim is to obtain a k-control-deterministic VASS V 2, which is language equivalent
to V 1. We are not able to achieve it literally, but using the notion of (M,h)-decoration from
Section 4 we can compute a somehow connected k-control-deterministic VASS V 2. We use
the following lemma which is proved in Section 5.2.

Lemma 5.2. Let A = (Σ, Q, T, q, F) be a k-ambiguous finite automaton for some k ∈ N. Let
M be a finite monoid and h : Σ∗ → M be a homomorphism recognising all the state languages
of the automaton A. Then the decoration A(M,h) is a k-deterministic finite automaton.

Now we consider the control automaton A of VASS V 1. We compute a monoid M
together with a homomorphism h : Σ∗ → M that recognises all the state languages of A.
Then we construct the automaton A(M,h). Note that the decoration of a VASS produces
an HVASS, but as we decorate an automaton i.e. 0-VASS we get a 0-HVASS which is
also a finite automaton. Based on A(M,h) we construct a VASS V 2. We add a vector to
every transition in A(M,h), to produce a VASS, that recognises the (M,h)-decoration of the

language of VASS V 1. Precisely, if we have a transition ((p,m), (a,m′), (q,m′)) in A(M,h)

then it is created from the transition (p, a, q) in A, which originates from the transition

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:21

(p, a, v, q) in V 1. So in V 2 we label ((p,m), (a,m′), (q,m′)) with v i.e. we have the transition
((p,m), (a,m′), v, (q,m′)). Similarly, based on V 1, we define initial and final configurations
in V 2. It is easy to see that there is a bijection between accepting runs in V 1 and accepting
runs in V 2. By Lemma 5.2 A(M,h) is k-deterministic which immediately implies that V 2 is
k-control-deterministic as well.

Now by Theorem 3.8 we compute a downward-VASS V 3 which recognises the complement
of L(V 2). Notice that for each w ∈ Σ∗ there is exactly one well-formed word in Σε ×M
which projects into w, namely the (M,h)-decoration of w. Therefore, V 3 accepts all the non-
well-formed words and all the well-formed words that project into the complement of L(V).
By Proposition 4.2 the set of all well-formed words is recognised by some finite automaton B.
Computing a synchronised product of B and V 3 one can obtain a downward-VASS V 4 which
recognises the intersection of languages L(B) and L(V 3), namely all the well-formed words
which project into the complement of L(V). Now, it is easy to compute a downward-ε-VASS
V 5 recognising the projection of L(V 4) into the first component of the alphabet Σε×M . We
obtain V 5 simply by ignoring the second component of the alphabet. Thus, V 5 recognises
exactly the complement of L(V). However V 5 is not a downward-VASS as it contains a
few ε-labelled transitions leaving the initial state. We aim to eliminate these ε-labelled
transitions. Recall that in the construction of the (M,h)-decoration the (ε,m)-labelled
transitions leaving the initial configuration have the effect 0d. Thus, it is easy to eliminate
them and obtain a downward-VASS V 6 which recognises exactly the complement of L(V),
which finishes the proof of Theorem 1.2. Let us remark here that even ignoring the last
step of elimination and obtaining a downward-ε-VASS recognising the complement of L(V)
would be enough to prove Theorem 1.3 along the same lines as it is proved now.

5.1. Proof of Lemma 5.1. We recall the statement of Lemma 5.1.

Lemma 5.1. There is an algorithm, that for each k-ambiguous VASS V constructs, in
doubly-exponential time, a language equivalent VASS V ′ with the property that its control
automaton is k-ambiguous.

Proof of Lemma 5.1. Let V = (Σ, Q, T, cI , F) be a k-ambiguous d-VASS for some k ∈ N.
We aim at constructing a language equivalent VASS V ′ such that its control automaton
is k-ambiguous. Notice that if the control automaton of V ′ is k-ambiguous then clearly
V ′ is k-ambiguous as well. The idea behind the construction of V ′ is that it behaves as
V , but additionally the states of V ′ keep some finite information about the values of the
counters. More precisely counter values are kept exactly until they pass some threshold
M . After passing this threshold, its value is not kept in the state, only the information
about passing the threshold is remembered. We define the described notion below more
precisely as the M -abstraction of a VASS. The control state of V ′ is the M -abstraction of V
for appropriately chosen M ; we show how to choose M later.

Definition 5.3. We consider here vectors over N ∪ {ω} where ω is interpreted as a number
greater than all natural numbers and fulfilling ω + a = ω for any a ∈ Z. For v ∈ (N ∪ {ω})d
and M ∈ N we define vM ∈ ([0,M −1]∪{ω})d such that for all i ∈ [1, d] we have vM [i] = v[i]
if v[i] < M and vM [i] = ω otherwise. In other words, all the numbers in v that are at least
equal to M are changed into ω in vM . Let V = (Σ, Q, T, cI , F) be a d-VASS. For M ∈ N the
M -abstraction of V is a finite automaton VM = (Σ, Q′, T ′, q′I , Q

′
F) which roughly speaking

behaves like V up to the threshold M . More concretely, we define VM as follows:

27:22 W. Czerwiński and P. Hofman Vol. 21:1

• the set Q′ of states equals Q× ([0,M − 1] ∪ {ω})d
• if cI = qI(v) then the initial state equals q′I = qI(vM)
• the set Q′

F of accepting states equals {q(vM) | q(v) ∈ F}
• for each transition t = (q, a, v, q′) ∈ T and for each u ∈ ([0,M − 1] ∪ {ω})d such that
u+ v ∈ (N ∪ {ω})d we define transition (q(u), a, q′(u′)) ∈ T ′ such that u′ = (u+ v)M .

Now we aim at finding M ∈ N such that the M -abstraction of V is k-ambiguous. Notice
that it proves Lemma 5.1. Having such an M we substitute the control automaton of V
by the M -abstraction of V and obtain a VASS V ′ that meets the conditions of Lemma 5.1.
In other words, each state q of the control automaton of V multiplies itself and now in the
control automaton VM of V ′ there are (M + 1)d copies of q. The effects of transitions in V ′

are inherited from the effects of transitions in V . The languages of V and V ′ are the same
as the new control automaton VM of V ′ never eliminates any run allowed by the old control
automaton in V .

We define now a d(k + 1)-VASS V which roughly speaking simulates k + 1 copies of V
and accepts if all the copies have taken different runs and additionally all of them accept.
Notice that it is easy to construct V : it is just a synchronised product of k + 1 copies of
V which additionally keeps in the state the information which copies follow the same runs
and which have already split. The language of V contains those words that have at least
k + 1 runs in V . As V is k-ambiguous, we know that L(V) is empty. Now, we formulate the
following lemma.

Lemma 5.4. For each d-VASS V there is a computable doubly-exponential threshold M ∈ N
such that if the M -abstraction of V has an accepting run then V has an accepting run.

Lemma 5.4 is a consequence of the result by Rackoff [Rac78] showing that if there is
a covering path in VASS then there is also a covering path of at most doubly-exponential
length.

By Lemma 5.4 we can compute a threshold M such that the M -abstraction of V has
no accepting run. We claim now that the M -abstraction of V , namely VM is k-ambiguous.
Assume otherwise; let VM have at least k + 1 runs over some word w. Then it is easy to

see that the M -abstraction of V has an accepting run over w, which is a contradiction.
Thus indeed VM is k-ambiguous and extending the control automaton of V by M -bounded
counters in a way as in VM (such that the control automaton becomes exactly VM) finishes
the proof of Lemma 5.1.

Proof of Lemma 5.4. Let V = (Σ, Q, T, cI , F) and let C be the set of configurations of V
from which it is possible to reach F . As the set F is upward closed the same holds for
C. Further, let C̄ be (N ∪ ω)d \ C, so the complement of C in the space of (N ∪ ω)d. It is
downward closed i.e. it is a union of down-atoms, d1 ↓, d2 ↓, . . . , dn ↓. Let ||V || be the
norm of VASS V , namely the maximal absolute value occurring on transition of V . Let
M = max{di[j] : i ≤ n, j ≤ d, di[j] ̸= ω}+ ||V || be the maximal constant that appears in
the description of the set C̄ plus the norm of VASS V . By [Rac78] the minimal length of a
path covering a given configuration is at most doubly-exponential wrt. the size of the VASS
and the norm of the target configuration (i.e. the maximal absolute value of coordinates in
the target). Therefore all the numbers in vectors di are at most doubly-exponential as well.
Thus also the constant M is at most doubly-exponential.

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:23

By anM -abstraction of a configuration c, denoted by AM (c), we mean an ω-configuration
in Q× (N ∪ {ω})d where we substitute in c any value greater or equal M by ω. Concretely:

AM (c)[j] =

{
c[j] if c[j] < M,

ω if c[j] ≥ M.

Observe that function AM has a following property, which is the consequence of the
definition of the value M ,

c ∈ C̄ ⇐⇒ AM (c) ∈ C̄. (5.1)

Finally, the image of the function AM is in one to one correspondence with the states of the
M -abstraction of V , so we will use M -abstractions of configurations in both settings: in the
VASS V and in the M -abstraction of V .

Now we can start the actual proof of the lemma. We prove it by contradiction. Namely
we assume that from some configuration c there is no accepting run in V , but there is
an accepting run from the state AM (c) in the M -abstraction of V . Therefore c ∈ C̄ and
from AM (c) in the M -abstraction it is possible to reach the set of final states F ′ of the
M -abstraction. We will show that such c cannot exist. First observe that AM (c) cannot be
among final states of the M -abstraction as then c ∈ F which contradicts the fact that c ∈ C̄.

So for every AM (c) there is a shortest path in the M -abstraction to the set of final
states F ′. Without loss of generality we can assume that c is chosen in such a way that
the length of the path from AM (c) to F ′ is minimal. We denote this path by σ. As
AM (c) ̸∈ F ′ we can decompose σ = tσ′ into the head and a tail, where t = (q, at, δt, p). Let
us consider ω-configuration c′ = AM (c) + eff(t) denoting an ω-configuration (p, v) where
v[i] = AM (c)[i] + δt[i] for every i ∈ [1, d] . On the one hand we know that c′ ∈ C̄, as c ∈ C̄.
Because of (5.1) we get that AM (c′) ∈ C̄. On the other hand in the M -abstraction of V the
path σ from AM (c) traverses through AM (c′). Therefore the path σ′ from AM (c′) to F ′ is
shorter than the path σ. So we get a contradiction with the choice of c as c′ ∈ C̄, and the
path from AM (c′) to F ′ is shorter than from c.

5.2. Proof of Lemma 5.2. We recall the statement of Lemma 5.2.

Lemma 5.2. Let A = (Σ, Q, T, q, F) be a k-ambiguous finite automaton for some k ∈ N.
Let M be a finite monoid and h : Σ∗ → M be a homomorphism recognising all the state
languages of the automaton A. Then the decoration A(M,h) is a k-deterministic finite
automaton.

Proof of Lemma 5.2. Let w ∈ Σ∗ be any word and w(M,h) ∈ (Σε ×M)∗ be its decoration.
We have to prove that there are at most k maximal runs over the word w(M,h). To do so we
prove two statements

• All maximal runs over the word w(M,h) have the same length.
• The multiset Xw(M,h) of states reachable in A(M,h) along w(M,h) is of size at most k.

Indeed, if the above holds, then all the maximal runs have the same length, therefore their
number is bounded by the size of Xw(M,h) i.e. by k as required.

In the first claim actually we show that either there is only one empty run of length
zero or all the maximal runs are over the whole word w(M,h). We consider two cases: either
w ̸∈ L(A) or w ∈ L(A).

27:24 W. Czerwiński and P. Hofman Vol. 21:1

We claim that in the first case, the only maximal run has length zero. Notice that, then

the first step should be (q,⊥)
(ϵ,h(w))−→ (q, h(w)). According to the definition of M for every

m ∈ M and every state p ∈ Q we have either h−1(m) ⊆ L(p) or h−1(m) ∩ L(p) = ∅. Thus,
in our case, it is that h−1(h(w)) ∩ L(q) = ∅, because w ̸∈ L(A). This means that the state
(q, h(w)) is not present in the automaton A(M,h), since A(M,h) does not have states with
empty language. So, indeed, the only maximal run is the empty one.

We prove the second case in a slightly more general setting: for all the prefixes of a
decorated word. The reason is that we show the statement via an induction on the length
of this prefix. Suppose u is a prefix of w and ū is the corresponding prefix of w(M,h). For
the empty prefix u = ε the statement trivially holds. For an induction step, suppose that
ū = ū′ · (a,m). The induction hypothesis says that all the maximal runs along ū′ are over

the whole word ū′. Let X ū′

(M,h) = {(q1,m′), (q2,m
′), . . . , (qℓ,m

′)}mul be the multiset of states

reached by the runs labelled ū′, for m′ = h(a) · m. Notice that a · h−1(m) ⊆ h−1(m′).
Recall that by the construction of A(M,h) the languages of states (qi,m

′) are not empty,

therefore for each i ∈ {1 . . . ℓ} we have h−1(m′) ⊆ L(qi). The two above inclusions imply

that a ·h−1(m) ⊆ L(qi). So, from each state (qi,m
′) ∈ X ū′

(M,h) there is an outgoing transition

labelled by (a,m). Thus, all the maximal runs over ū are over the whole word ū.
To prove the second claim, we assume that w is accepted by the automaton A as

otherwise there is just one maximal run of length zero. Let

X
w(M,h)

(M,h) = {(q1,m1), (q2,m1), . . . , (qℓ,m1)}mul

be the multiset of states reached by the runs labelled w(M,h). Furthermore, because of the
proof that all the maximal runs have the same length, we conclude that there are exactly
ℓ runs along w(M,h). Moreover, all of them are accepting, as they end in states with the
monoid element h(ϵ). Observe that the states along the runs of w(M,h) never differ on the
second component, as the second component is determined by the image h on the suffix of
the word. Thus, if two runs over w(M,h) differ, then they differ at the first component and
in consequence they induce two different runs along w in A. For example, such two different
runs over w(M,h) with the first difference after the letter (ai+1,mi+1):

(q,⊥)
(ε,m)−→ (q,m)

(a1,m1)−→ (p1,m1)
(a2,m2)−→ . . . (pi,mi)

(ai+1,mi+1)−→ (pi+1,mi+1) . . .

(an−1,mn−1)−→ (pn−1,mn−1)
(an,mn)−→ (pn, h(ϵ)),

(q,⊥)
(ε,m)−→ (q,m)

(a1,m1)−→ (p1,m1)
(a2,m2)−→ . . . (pi,mi)

(ai+1,mi+1)−→ (ri+1,mi+1) . . .

(an−1,mn−1)−→ (rn−1,mn−1)
(an,mn)−→ (rn, h(ϵ)).

induce the following two different runs over w:

q
a1−→ p1

a2−→ . . . pi
ai+1−→ pi+1 . . .

an−1−→ pn−1
an−→ pn,

q
a1−→ p1

a2−→ . . . pi
ai+1−→ ri+1 . . .

an−1−→ rn−1
an−→ rn.

Therefore, as A is k-ambiguous and A has at least ℓ accepting runs then we necessarily have
ℓ ≤ k, which finishes the proof that size of X ū is at most k.

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:25

6. Future research

VASS accepting by configuration. In our work we prove Theorem 1.2 stating that
for a k-ambiguous upward-VASS one can compute a downward-VASS recognising the
complement of its language. This theorem implies all our upper bound results, namely
decidability of language inclusion of an upward-VASS in a k-ambiguous upward-VASS and
language equivalence of k-ambiguous upward-VASS. The most natural question which can
be asked in this context is whether Theorem 1.2 or some of its consequences generalises to
singleton-VASS (so VASS accepting by a single configuration) or more generally to downward-
VASS. Our results about complementing deterministic VASS apply also to downward-VASS.
However, generalising our results for nondeterministic (but k-ambiguous or unambiguous)
VASS encounters essential barriers. Techniques from Section 4 do not work as the regular-
separability result from [CLM+18] applies only to upward-VASS. Techniques from Section 5
break as the proof of Lemma 5.1 essentially uses the fact that the acceptance condition is
upward-closed. Thus it seems that one would need to develop novel techniques to handle
the language equivalence problem for unambiguous VASS accepting by configuration.

Weighted models. Efficient decidability procedures for language equivalence were obtained
for finite automata and for register automata using weighted models [Sch61, BKM21]. For
many kinds of systems one can naturally define weighted models by adding weights and
computing value of a word in the field (Q,+, ·). The decidability of equivalence for weighted
models easily implies language equivalence for unambiguous models, as accepted words
always have the output equal to one, while rejected words always have the output equal
zero. Thus one can pose a natural conjecture that decidability of language equivalence for
unambiguous models always comes as a byproduct of equivalence of the weighted model.
Our results show that this is however not always the case as VASS are a counterexample to
this conjecture. In the case of upward-VASS language equivalence for unambiguous models
is decidable. However, equivalence for weighted VASS is undecidable, as it would imply
decidability of path equivalence (for each word, both systems need to accept by the same
number of accepting runs), which is undecidable for VASS [Jan01].

Unambiguity and separability. Our result from Section 4 uses the notion of regular-
separability in order to obtain a result for unambiguous VASS. This technique seems to
generalise to some other well-structured transition systems. It is natural to ask whether
there is a deeper connection between the notions of separability and unambiguity that can
be explored in future research.

Acknowledgment

We thank Filip Mazowiecki for asking the question for boundedly-ambiguous VASS and
formulating the conjecture that control automata of boundedly-ambiguous VASS can be
made boundedly-ambiguous. We also thank him and David Purser for inspiring discussions
on the problem. We thank Thomas Colcombet for suggesting the way of proving Theorem 4.5,
Mahsa Shirmohammadi for pointing us to the undecidability result [Jan01] and Lorenzo
Clemente for inspiring discussions on weighted models. We thank Petr Jančar for many
helpful remarks and simplifying the proofs of Proposition 2.2 and Lemma 5.4. We also thank
Marin Ricros for his detailed comments useful in improving our paper.

27:26 W. Czerwiński and P. Hofman Vol. 21:1

References

[AK76] Toshiro Araki and Tadao Kasami. Some Decision Problems Related to the Reachability Problem
for Petri Nets. Theor. Comput. Sci., 3(1):85–104, 1976.

[BC21] Corentin Barloy and Lorenzo Clemente. Bidimensional Linear Recursive Sequences and
Universality of Unambiguous Register Automata. In Proceedings of STACS 2021), volume
187 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.STACS.2021.8.

[BKM21] Mikolaj Bojanczyk, Bartek Klin, and Joshua Moerman. Orbit-Finite-Dimensional Vector Spaces
and Weighted Register Automata. In Proceedings of LICS 2021, pages 1–13. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470634.

[Bon11] Rémi Bonnet. The Reachability Problem for Vector Addition System with One Zero-Test. In
Proceedings of MFCS 2011, volume 6907 of Lecture Notes in Computer Science, pages 145–157.
Springer, 2011. doi:10.1007/978-3-642-22993-0_16.

[CFH20] Wojciech Czerwinski, Diego Figueira, and Piotr Hofman. Universality Problem for Unambiguous
VASS. In Proceedings of CONCUR 2020, pages 36:1–36:15, 2020. doi:10.4230/LIPICS.CONCUR.
2020.36.

[CFM13] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained Automata. Int.
J. Found. Comput. Sci., 24(7):1099–1116, 2013. doi:10.1142/S0129054113400339.

[CH22] Wojciech Czerwinski and Piotr Hofman. Language Inclusion for Boundedly-Ambiguous Vector
Addition Systems Is Decidable. In Proceedings of CONCUR 2022, volume 243 of LIPIcs, pages
16:1–16:22, 2022. doi:10.4230/LIPICS.CONCUR.2022.16.

[CLM+18] Wojciech Czerwinski, Slawomir Lasota, Roland Meyer, Sebastian Muskalla, K. Narayan Kumar,
and Prakash Saivasan. Regular Separability of Well-Structured Transition Systems. In Proceedings
of CONCUR 2018, volume 118 of LIPIcs, pages 35:1–35:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.35.

[CMQ21] Wojciech Czerwinski, Antoine Mottet, and Karin Quaas. New Techniques for Universality in
Unambiguous Register Automata. In Proceedings of ICALP 2021, volume 198 of LIPIcs, pages
129:1–129:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.
ICALP.2021.129.

[CO21] Wojciech Czerwinski and Lukasz Orlikowski. Reachability in Vector Addition Systems is
Ackermann-complete. In Proceedings of FOCS 2021, pages 1229–1240, 2021. doi:10.1109/
FOCS52979.2021.00120.

[Col15] Thomas Colcombet. Unambiguity in Automata Theory. In Proceedings of DCFS 2015, pages
3–18, 2015. doi:10.1007/978-3-319-19225-3_1.

[Dic13] L.E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics, 35((4)):413–422, 1913. doi:10.2307/2370405.

[DL09] Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3):16:1–16:30, 2009. doi:10.1145/1507244.1507246.

[FS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001. doi:10.1016/S0304-3975(00)00102-X.

[GLHK+20] Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The Ideal Approach to Computing Closed Subsets in Well-Quasi-orderings, pages
55–105. Springer International Publishing, Cham, 2020.

[Hac76] Michel Hack. The Equality Problem for Vector Addition Systems is Undecidable. Theor. Comput.
Sci., 2(1):77–95, 1976. doi:10.1016/0304-3975(76)90008-6.

[HMT13] Piotr Hofman, Richard Mayr, and Patrick Totzke. Decidability of Weak Simulation on One-
Counter Nets. In Proceedings of LICS 2013, pages 203–212. IEEE Computer Society, 2013.
doi:10.1109/LICS.2013.26.

[HT14] Piotr Hofman and Patrick Totzke. Trace Inclusion for One-Counter Nets Revisited. In Proceedings
of RP 2014, volume 8762 of Lecture Notes in Computer Science, pages 151–162. Springer, 2014.
doi:10.1007/978-3-319-11439-2_12.

[Jan95] Petr Jancar. Undecidability of Bisimilarity for Petri Nets and Some Related Problems. Theor.
Comput. Sci., 148(2):281–301, 1995. doi:10.1016/0304-3975(95)00037-W.

[Jan01] Petr Jancar. Nonprimitive recursive complexity and undecidability for Petri net equivalences.
Theor. Comput. Sci., 256(1-2):23–30, 2001. doi:10.1016/S0304-3975(00)00100-6.

https://doi.org/10.4230/LIPICS.STACS.2021.8
https://doi.org/10.1109/LICS52264.2021.9470634
https://doi.org/10.1007/978-3-642-22993-0_16
https://doi.org/10.4230/LIPICS.CONCUR.2020.36
https://doi.org/10.4230/LIPICS.CONCUR.2020.36
https://doi.org/10.1142/S0129054113400339
https://doi.org/10.4230/LIPICS.CONCUR.2022.16
https://doi.org/10.4230/LIPIcs.CONCUR.2018.35
https://doi.org/10.4230/LIPICS.ICALP.2021.129
https://doi.org/10.4230/LIPICS.ICALP.2021.129
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-319-19225-3_1
https://doi.org/10.2307/2370405
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1016/0304-3975(76)90008-6
https://doi.org/10.1109/LICS.2013.26
https://doi.org/10.1007/978-3-319-11439-2_12
https://doi.org/10.1016/0304-3975(95)00037-W
https://doi.org/10.1016/S0304-3975(00)00100-6

Vol. 21:1 INCLUSION FOR BOUNDEDLY-AMBIGUOUS VAS IS DECIDABLE 27:27

[KP92] M. Kabil and M. Pouzet. Une extension d’un théorème de P. Jullien sur les âges de mots.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications,
26(5):449–482, 1992.

[Ler21a] Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive. In Proceed-
ings of FOCS 2021, pages 1241–1252, 2021. doi:10.1109/FOCS52979.2021.00121.

[Ler21b] Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive. CoRR,
abs/2104.12695, 2021.

[LS19] Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In Proceedings of LICS 2019, pages 1–13. IEEE, 2019. doi:
10.1109/LICS.2019.8785796.

[LS21] Ranko Lazic and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique. Inf.
Comput., 277:104582, 2021. doi:10.1016/j.ic.2020.104582.

[May81] Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. In Proceedings
of STOC 1981, pages 238–246, 1981. doi:10.1145/800076.802477.

[MQ19] Antoine Mottet and Karin Quaas. The Containment Problem for Unambiguous Register Au-
tomata. In Proceedings of STACS 2019, pages 53:1–53:15, 2019. doi:10.4230/LIPICS.STACS.
2019.53.

[NSV04] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.1013562.

[Pin97] Jean-Eric Pin. Syntactic Semigroups. In Grzegorz Rozenberg and Arto Salomaa, editors, Hand-
book of Formal Languages, Volume 1: Word, Language, Grammar, pages 679–746. Springer,
1997. doi:10.1007/978-3-642-59136-5_10.

[Rac78] Charles Rackoff. The Covering and Boundedness Problems for Vector Addition Systems. Theor.
Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

[Rei08] Klaus Reinhardt. Reachability in Petri Nets with Inhibitor Arcs. Electron. Notes Theor. Comput.
Sci., 223:239–264, 2008. doi:10.1016/J.ENTCS.2008.12.042.

[Sch61] Marcel Paul Schützenberger. On the Definition of a Family of Automata. Inf. Control., 4(2-
3):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

[Tze96] Wen-Guey Tzeng. On Path Equivalence of Nondeterministic Finite Automata. Inf. Process.
Lett., 58(1):43–46, 1996. doi:10.1016/0020-0190(96)00039-7.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.1145/800076.802477
https://doi.org/10.4230/LIPICS.STACS.2019.53
https://doi.org/10.4230/LIPICS.STACS.2019.53
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/J.ENTCS.2008.12.042
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/0020-0190(96)00039-7

	1. Introduction
	2. Preliminaries
	3. Deterministic VASS
	3.1. Lower bound
	3.2. Upper bounds

	4. Unambiguous VASS
	5. Boundedly-ambiguous VASS
	5.1. Proof of Lemma 5.1
	5.2. Proof of Lemma 5.2

	6. Future research
	Acknowledgment
	References

