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Abstract. Order-invariant first-order logic is an extension of first-order logic (FO) where
formulae can make use of a linear order on the structures, under the proviso that they are
order-invariant, i.e. that their truth value is the same for all linear orders. We continue
the study of the two-variable fragment of order-invariant first-order logic initiated by
Zeume and Harwath, and study its complexity and expressive power. We first establish
coNExpTime-completeness for the problem of deciding if a given two-variable formula
is order-invariant, which tightens and significantly simplifies the coN2ExpTime proof by
Zeume and Harwath. Second, we address the question of whether every property expressible
in order-invariant two-variable logic is also expressible in first-order logic without the use of
a linear order. We suspect that the answer is “no”. To justify our claim, we present a class of
finite tree-like structures (of unbounded degree) in which a relaxed variant of order-invariant
two-variable FO expresses properties that are not definable in plain FO. By contrast, we
show that if one restricts their attention to classes of structures of bounded degree, then
the expressive power of order-invariant two-variable FO is contained within FO.

1. Introduction

The main goal of finite model theory is to understand formal languages describing finite
structures: their complexity and their expressive power. Such languages are ubiquitous in
computer science, starting from descriptive complexity, where they are used to provide
machine-independent characterisations of complexity classes, and ending up on database
theory and knowledge representation, where formal languages serve as fundamental querying
formalism. A classical idea in finite model theory is to employ invariantly-used relations,
capturing the data-independence principle in databases: it makes sense to give queries the
ability to exploit the presence of the order in which the data is stored in the memory, but at
the same time we would like to make query results independent of this specific ordering. It is
not immediately clear that the addition of an invariantly-used linear order to first-order logic
(FO) allow us to gain anything from the standpoint of expressive power. Indeed, as long
as we consider arbitrary (i.e. not necessarily finite) structures it does not, which is a direct
consequence of FO having the Craig Interpolation Property. However, as it was first shown
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by Gurevich [Lib04, Thm. 5.3], the claim holds true over finite structures: order-invariant
FO is more expressive than plain FO (already the four-variable fragment of FO can express
properties that are not FO-definable).

Unfortunately, order-invariant FO is poorly understood. As stated in [BL16], one of
the reasons why progress in understanding order-invariance is rather slow is the lack of
logical toolkit. The classical model-theoretic methods based on types were proposed only
recently [BL16], and order-invariant FO is not even a logic in the classical sense, as its syntax
is undecidable. Moreover, the availability of locality-based methods is limited: order-invariant
FO is known to be Gaifman-local [GS00, Thm. 2] but the status of its Hanf-locality remains
open. This suggests that a good way to understand order-invariant FO is to first look at its
fragments, e.g. the fragments with a limited number of variables.

Our contribution. We continue the line of research initiated in [ZH16], which aims to study
the complexity and the expressive power of order-invariant FO2, the two-variable fragment
of order-invariant FO. From a complexity point of view, it is known that order-invariant
FO2 has a coNExpTime-complete validity problem (which is inherited from FO2 with
a single linear order, see [Ott01, Thm. 1.2]), and that whether a given FO2-formula is
order-invariant is decidable in coN2ExpTime [ZH16, Thm. 12]. From an expressive power
point of view, order-invariant FO2 is more expressive than plain FO2 as it can count globally,
see [ZH16, Example 2]. It remains open [ZH16, Sec. 7], however, whether it is true that
every order-invariant FO2-formula is equivalent to an FO-formula without the linear order
predicate. This paper contributes to the field in the three following ways:
• We provide a tight bound for deciding order-invariance for FO2; namely, we show that

this problem is coNExpTime-complete. Our proof method relies on establishing an
exponential-size counter-model property for order-invariance, and is significantly easier
than the proof of Zeume and Harwath [ZH16, Thm. 12].
• We present a class Ctree of tree-like structures, inspired by [Pot94], and show that there

exists an FO2-formula that is order-invariant over Ctree (but not over all finite structures!)
which is not equivalent to any FO-formula without the linear order predicate. This leads
us to believe that the answer to the question of [ZH16, Sec. 7] of whether the expressive
power of order-invariant FO2 lies inside FO is “no”. The problem remains open, though.
• In stark contrast to the previous result, we show that order-invariant FO2 cannot express

properties beyond the scope of FO over classes of structures of bounded degree. We show
that this upper bound remains when adding counting to FO2.

This work is an extended version of [Bed22] and [Gra23].

2. Preliminaries

We employ standard terminology from finite model theory, assuming that the reader is
familiar with the syntax and the semantics of first-order logic (FO) [Lib04, Sec. 2.1], basics
on computability and complexity [Lib04, Secs. 2.2–2.3], and order-invariant queries [Lib04,
Secs. 5.1–5.2]. By FO(Σ) we denote the first-order logic with equality (written FO when Σ
is clear from the context) on a finite signature Σ composed of relation and constant symbols.
We say that Σ is purely relational if it contains no constant symbol. By FO2 we denote the
fragment of FO in which only two variables x and y are used.

As usual in mathematics, for a given set S we write |S| to denote its cardinality.
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Structures. Structures are denoted by calligraphic upper-case letters A,B and their domains
are denoted by the corresponding Roman letters A,B. We assume that structures have non-
empty, finite domains. We write φ[R/S] to denote the formula obtained from φ by replacing
each occurrence of the symbol R with S. We write φ(x̄) to indicate that all the free variables
of φ are in x̄. A sentence is a formula without free variables. By A↾∆ we denote the
substructure of the structure A restricted to the set ∆ ⊆ A. Given a Σ-structure A and a
relational vocabulary τ ⊆ Σ, by the τ -reduct of A we mean the unique τ -structure B such
that A = B and for every predicate R from τ we have RA = RB.

Order-invariance. A sentence φ ∈ FO2(Σ ∪ {<}), where < is a binary relation symbol not
belonging to Σ, is said to be order-invariant if for every finite Σ-structure A, and every pair
of strict linear orders <0 and <1 on A, (A, <0) |= φ if and only if (A, <1) |= φ. It is then
convenient to omit the interpretation for the symbol <, and to write A |= φ if (A, <) |= φ
for any (or, equivalently, every) linear order <. Note that φ is not order-invariant if there is a
structure A and two linear orders <0, <1 on A such that (A, <0) |= φ and (A, <1) ̸|= φ. The
set of order-invariant sentences using two variables is denoted < -inv FO2. While determining
whether an FO-sentence is order-invariant is undecidable [Lib04, Ex. 9.3], the situation
improves when we allow only two variables: checking order-invariance for FO2-formulae was
shown to be in coN2ExpTime in [ZH16, Thm. 12].1

Decision problems. The finite satisfiability problem for a logic L asks whether an input
sentence φ from L is satisfied in some finite structure. The finite satisfiability problem for a
logic L asks whether an input sentence φ from L is satisfied by all finite structure. Both the
finite satisfiability and validity problems for FO are undecidable [Tur38, Tra50], while for
FO2 they are NExpTime-complete and coNExpTime-complete, see [GGY97, Thm. 5.3]
and [Für83, Thm. 3], respectively. Note that φ is finitely valid iff ¬φ is finitely unsatisfiable.

Definability and similarity. Let L, L′ be two logics defined over the same signature, and C

be a class of finite structures on this signature. We say that a property P ⊆ C is definable
(or expressible) in L on C if there exists an L-sentence φ such that P = {A ∈ C : A |= φ}.
When C is the class of all finite structures, we omit it. We say that L ⊆ L′ on C if every
property on C definable in L is also definable in L′. Since a sentence which does not mention
the linear order predicate is trivially order-invariant, we get the inclusion FO2 ⊆ < -inv FO2.
This inclusion is strict [ZH16, Example 2].

The quantifier rank of a formula is the maximal number of quantifiers in a branch of
its syntactic tree. Given two Σ-structures A0 and A1, and L being one of FO, FO2 and
< -inv FO2, we write A0 ≡L

k A1 if A0 and A1 satisfy the same L-sentences of quantifier rank
at most k. In this case, we say that A0 and A1 are L-similar at depth k.

We write A0 ≃ A1 if A0 and A1 are isomorphic.

Atomic types. An (atomic) 1-type over Σ is a maximal satisfiable set of atoms or negated
atoms over Σ with a free variable x. Similarly, an (atomic) 2-type over Σ is a maximal
satisfiable set of atoms or negated atoms with variables x, y. We stress that it is not necessary
that all variables are mentioned in an atom. Note that the total number of atomic 1- and
2-types over τ is bounded exponentially in |Σ|. We often identify a type with the conjunction
of all its elements. The sets of 1-types and 2-types over the signature consisting of the

1The authors of [ZH16] incorrectly stated the complexity in their Thm. 12, mistaking “invariance” with
“non-invariance”.
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symbols appearing in φ are denoted by αφ and βφ, respectively. Given a structure A and an
element a ∈ A we say that a realises a 1-type α if α is the unique 1-type such that A |= α[a]
(a satisfies α in A). We then write tpA(a) to refer to this type. Similarly, for (non-necessarily
distinct) a, b ∈ A, we denote by tpA(a, b) the unique 2-type realised by the pair (a, b), i.e.
the 2-type β such that A |= β[a, b] (the pair a, b satisfies β in A). Finally, given a linearly
ordered Σ-structure (A, <), we split tp(A,<)(a, b) into tpA(a, b) and tp<(a, b), where tp<(a, b)

contains (and, over constant-free vocabularies, is fully determined by) one of the following
atoms “x < y”, “x > y” and “x = y”.

The two-pebble Ehrenfeucht-Fraïssé game. A common way to prove similarity (with
respect to some logic) between two structures is to use Ehrenfeucht-Fraïssé games. Such a
game is played between two players: one tries to highlight the differences between the two
structures, while the other attempts to show that they are identical. There exists a whole
family of those games, each characterizing a specific logic, in the sense that the second player
wins exactly when the two structures cannot be distinguished by the corresponding logic.
These games differ by the kind of moves allowed, which reflect the particulars of the logic
they characterize.

As we are interested in two-variable first-order logic, let us define the two-pebble FO
game, which captures exactly the expressive power of FO2. This flavor of Ehrenfeucht-Fraïssé
game has been introduced by Immerman and Kozen [IK89].

Let us consider two structures A0 and A1. The k-round two-pebble Ehrenfeucht-Fraïssé
game on A0 and A1 is played by two players: the spoiler and the duplicator. The spoiler tries
to expose differences between the two structures, while the duplicator tries to establish their
indistinguishability.

There are two pebbles associated with each structure: px0 and py0 on A0, and px1 and py1
on A1. Formally, these pebbles can be seen as the interpretations in each structure of two
new constant symbols, but it will be convenient to see them as moving pieces.

At the start of the game, the duplicator places px0 and py0 on elements of A0, and px1
and py1 on elements of A1. The spoiler wins if the duplicator is unable to ensure that
tpA0

(px0 , p
y
0) = tpA1

(px1 , p
y
1). Otherwise, the proper game starts. Note that in the usual

definition of the starting position, the pebbles are not on the board; however, it will be
convenient to have them placed in order to uniformize our invariants in Section 5.4. This
change is not profound and does not affect the properties of the game.

For each of the k rounds, the spoiler starts by choosing a structure and a pebble in
this structure, and places this pebble on an element of the chosen structure. In turn, the
duplicator must place the corresponding pebble in the other structure on an element of that
structure. The spoiler wins at once if tpA0

(px0 , p
y
0) ̸= tpA1

(px1 , p
y
1). Otherwise, another round

is played. If the spoiler has not won after k rounds, then the duplicator wins.
The main interest of these games is that they capture the expressive power of FO2. We

will only need the fact that these games are correct:

Theorem 2.1. [IK89, Lemma 12] If the duplicator has a winning strategy in the k-round
two-pebble Ehrenfeucht-Fraïssé game on A0 and A1, then A0 ≡FO2

k A1 .

Gaifman graphs and degree. The Gaifman graph GA of a structure A is the simple graph
with vertices in A and undirected edges between any pair of distinct elements that appear in
the same tuple of some relation of A. By distA(a, b) we denote the distance between a and b
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in GA, defined in the usual way. The distance between an element a and a set B of elements
is defined as minb∈B(distA(a, b)). For B ⊆ A, we let NA(B) denote the set of elements at
distance exactly 1 from B in GA. In particular, B ∩ NA(B) = ∅. The degree of A is the
maximal degree of its Gaifman graph. The class C of Σ-structures is said to have bounded
degree if there exists some d ∈ N such that the degree of every A ∈ C is at most d.

3. Complexity of the invariance problem

We study the complexity of the problem of deciding if an input sentence φ of FO2 is
order-invariant and establish its coNExpTime-completeness. We start from a lower bound,
inspired by slides of Schweikardt [Sch13, Slide 9]. The following lemma is crucial:

Lemma 3.1. Fix an FO2 sentence φ, and let ψ< := ∃x (P (x) ∧ ∀y(y ≤ x)) contain a fresh
unary predicate P . Then (¬φ)→ ψ< is <-invariant if and only if φ is satisfied by all finite
structures with at least two elements.

Proof. Suppose that φ is satisfied by every structure with at least two elements. To prove
that (¬φ) → ψ< is <-invariant, we establish that (¬φ) → ψ< is equivalent to ⊤ over all
structures with at least two elements. Indeed, over such structures ¬φ is equivalent to ⊥ (and
hence (¬φ) → ψ< is logically equivalent to ⊤). Thus, (¬φ) → ψ< is trivially <-invariant.
For the other direction, suppose that there exists an A with at least two elements (say,
a1, a2, . . . , an) that satisfies ¬φ. Let B be the finite structure with PB = {an} whose reduct
is A. Clearly B |= ¬φ, since the predicate P is fresh. Finally, let <1, <2 be two linear orders
on B: the first one orders the elements ai of B according to their subscript numbering, while
the second ordering is like the first one but swaps the positions of a1 and an. Now note that
(B, <1) |= (¬φ)→ ψ< but (B, <2) ̸|= (¬φ)→ ψ< (the formula ψ< basically states that the
maximal element of <B

i satisfies P ). Hence, the formula (¬φ)→ ψ< is not <-invariant.

The above lemma provides a reduction from finite FO2-validity (over structures of size
at least two) to checking order-invariance of FO2-sentences. By coNExpTime-hardness2 of
finite validity problem for FO2 [Für83, Thm. 3], we conclude:

Theorem 3.2. Checking whether an FO2 formula is order-invariant is coNExpTime-hard.

Our upper bound uses the following fact, immediate from the definition of order-invariance.

Fact 3.3. An FO2 sentence φ is not order-invariant iff the sentence φ[</<0] ∧ ¬φ[</<1] is
finitely satisfiable over structures interpreting <0 and <1 as linear orders over the domain.

Let FO2
−[<0, <1] be composed of sentences of the shape φ[</<0] ∧ ¬φ[</<1] for all

sentences φ ∈ FO2(Σ ∪ {<}) over all signatures Σ. To simplify the reasoning about such
formulae, we rewrite them into the so-called Scott Normal Form.

Definition 3.4. We say that an FO2
−[<0, <1]-sentence is in Scott’s normal form if

• its signature is constant-free and employs only predicates of arity 1 or 2, and

2The finite validity problem is equally hard to the validity problem over structures of size at least 2.
Let φ be an FO2-sentence, P be a fresh unary predicate, and let φP be the P -relativisation of φ, i.e. the
formula obtained from φ by replacing all its subformulae of the form ∃x.ψ with ∃x(P (x) ∧ ψ(x)) and ∀x.ψ
with ∀x(P (x) → ψ(x)) (and analogously for the variable y). One can verify that φ is valid if and only if
(∃x.P (x) ∧ ∃x.¬P (x)) → φP is satisfied in every structure of size at least 2.
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• it has the form
1∧

i=0

∀x∀y χi(x, y) ∧
mi∧
j=1

∀x∃y γji (x, y)

 ,

where the decorated χ and γ are quantifier-free and for each i ∈ {0, 1} the symbol <i does
not appear in χ1−i.

The following lemma justifies the use of formulae in Scott’s normal form.

Lemma 3.5. Given an FO2
−[<0, <1]-sentence φ one can compute in time polynomial in |φ|

an FO2
−[<0, <1]-sentence φscott in Scott’s normal form (which is of size polynomial in |φ|)

such that φ is finitely satisfiable over structures interpreting <0 and <1 as linear orders over
the domain if and only if φscott is.

Proof sketch. As the translation we are going to provide is folklore and appears almost
in every paper regarding FO2, we only sketch its proof here. As usual in the context of
two-variable logic, we can confirm our attention only to vocabularies composed solely of
predicates of arity one and two. A pedantic proof of this fact can be found in the recent
textbook of Ian Pratt-Hartmann [PH23, Sec. 3, Lemma 3.4].3 The reminder of the proof goes
via a routine renaming by replacing formulae with a single free variable with a fresh unary
predicate and sharpening its interpretation. To do so, we one-by-one take the maximally
nested subformula of φ starting from a single quantifier, say ∃xλ(x, y). We then replace
the formula ∃xλ(x, y) with A(y) for a fresh unary predicate A, and append the conjunct
∀y (∃xλ(x, y))↔ A(y) to φ. Note that λ does not simultaneously contain <0 and <1. Finally,
we split the equivalence into two implications, yielding (by shifting atoms) the formulae of
the form ∀∀θ and ∀∃ξ. The resulting formula is clearly equisatisfiable to the original one. By
repeating this procedure and regrouping and reordering the obtained formulae (and adding
vacuous quantifiers if needed), we obtain the desired equivalent formula in normal form.

For brevity we speak about ∀∀ and ∀∃-conjuncts of φ in the normal form given above,
meaning the appropriate subformulae of φ starting from the mentioned prefix of quantifiers.
Given a model A |= φ of a formula φ in Scott’s normal form given above and elements
a, b ∈ A such that A |= γji (a, b), we call b a γji -witness for a (or simply a witness). The
core of our upper bound proof is the following small model theorem, employing the circular
witnessing scheme by Grädel, Kolaitis, and Vardi [GGY97, Thm. 4.3].

Lemma 3.6. If an FO2
−[<0, <1] sentence φ (in normal form of Lemma 3.5) has a finite

model (that interprets <0, <1 as linear orders over the domain) then there exists such a finite
model with O(|φ|3 · 2|φ|) elements.

Proof. Let M := m0 +m1 be the total number of ∀∃-conjuncts of φ, and let αφ be the set
of all 1-types over the set of unary symbols of φ. Recall that M is polynomial in |φ| and
|αφ| is exponential in |φ|. Suppose that A is a finite model of φ that interprets <0, <1 as
linear orders over the domain, and let us explain our proof plan.

Intuition and proof plan. In what follows, we employ a variant of the circular witnessing
scheme by Grädel, Kolaitis, and Vardi [GGY97, Thm. 4.3] in order to distinguish three disjoint
sets of domain elements of A, namely W0,W1,W2 whose union W := W0 ∪W1 ∪W2 will
serve as a “base” of a new “small” model of φ. In order to satisfy φ, the universal (∀∀) and the

3Pratt-Hartmann’s proof leaves nullary symbols in the vocabulary, but one can easily get rid of them. More
precisely, given a nullary symbol p and a formula φ, we replace φ with (∀xP (x) ∨ ∀x¬P (x)) ∧ φ[p/∀xP (x)].
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existential (∀∃) conjuncts of φ must be fulfilled. In our construction, we first distinguish a set
W0 of elements of A that contains elements of A with 1-types that do not appear “frequently”
in A together with the first and last M realisations w.r.t. <0 and w.r.t. <1 of each other (i.e.
frequent) 1-type needed later in the construction. Unfortunately, A restricted to W0 may not
be a model of φ. Indeed, while such a structure satisfies the universal part of φ, some elements
from W0 may violate ∀∃-conjuncts of φ. To “repair” the resulting structure, we construct the
set W1 by taking the minimal number of elements in A so that all elements from W0 have all
the required γji -witnesses in A restricted to W0∪W1. Note that W1 has no more than M · |W0|
elements. The situation is a bit better now: the A restricted to W0 ∪W1 again satisfies the
∀∀-subformula of φ (as the universal formulae are preserved under taking substructures), all
elements from W0 have their required witnesses for subformulae γji , but there may be still
some elements W1 may violate ∀∃-conjuncts of φ. We “repair” the resulting structure one
final time by constructing the set W2 analogously to the case of W1, so that all the required
γji -witnesses for the elements from W1 in A are in the set W0 ∪W1 ∪W2. Unfortunately,
for the same reason as before, some elements from W2 may violate some ∀∃-subformulae of
φ. To fix the problem, for each of such elements a, we suitably select M pairwise-different
elements b1, b2, . . . , bM from W0 and alter binary relations between a and all of bi in order
to provide suitable witnesses for a. By our choice of W0 such different elements will always
exist. The resulting 2-type between a and other bi will be one of the 2-types already present
in A, which ensures that we do not accidentally violate the ∀∀-subformulae of φ.4 Finally,
by construction, all the selected elements have the required witnesses in W0 ∪W1 ∪W2,
and hence the ∀∃-subformulae of φ are also satisfied in the altered structure A restricted to
W0 ∪W1 ∪W2. This yields a desired “small” model of the formula φ and concludes the proof.

The construction of W0. Call a 1-type α ∈ αφ rare if it is realised by at most 4M
elements in A (the factor 4 comes from the fact that we consider maximal and minimal
elements w.r.t. <0 and <1 and M is the number of ∀∃-conjuncts of φ). For every 1-type
α ∈ αφ that is not rare, we select M minimal and M minimal elements w.r.t. each of the
orders <0 and <1 that realise α. Let W0 be the set of the selected elements from A together
with all elements of A realising rare 1-types.

The construction of W1 and W2. We next close W0 twice under taking witnesses.
More precisely, let W1 be any ⊆-minimal subset of A so that all elements from W0 have all
the required γji -witnesses in W0 ∪W1. Similarly, we define W2 to be any ⊆-minimal subset
of A so that all elements from W0 ∪W1 have all the required γji -witnesses in W0 ∪W1 ∪W2.
As they are only M different γji -formulae in φ, we have that:

|W1| ≤M |W0| ≤ 4M2|αφ| and |W2| ≤M |W0 ∪W1| ≤M · (4M + 4M2)|αφ| ≤ 8M3|αφ|.

The construction of B. Consider the structure B := A↾W0∪W1∪W2
. We see that:

|B| ≤ |W0|+ |W1|+ |W2| ≤ (4M + 4M2 + 8M3)| · |αφ| ≤ 16M3 · |αφ| ≤ 16 |φ|3 · 2|φ|.

Hence, the size of B is as desired. Note that universal formulae are preserved under substruc-
tures, thus <B

0 , <
B
1 (defined as <A

0 ∩B and <A
1 ∩B) are linear orders over B and B satisfies

the ∀∀-conjuncts of φ. Hence, by the construction of W1 and W2, the only reason for B to
not be a model of φ is the lack of required γji -witnesses for elements from the set W2. We fix
this issue by reinterpreting binary relational symbols between the sets W2 and W0.

4It would be unwise to apply the same approach to W1, as such elements are already constrained by the
construction of W0 (while W2 are not!).
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Reinterpreting binary relations in B. Let us fix an element a from W2 that violate
some of the ∀∃-conjuncts of φ in B, as well as a ∀∃-conjunct ψ := ∀x∃y γji (x, y) whose
satisfaction is violated by a. We stress that there are at most M such conjuncts, and γji does
not use the <1−i predicate. Since A |= φ we know that there is an element b ∈ A (different
from a) such that b is a γji -witness for a and γji in A. Let α be the 1-type of b in A. Note
that α is not rare. Indeed, otherwise b ∈ W0, and hence b ∈ B. Moreover either b <A

i a or
a <A

i b. Suppose that b <A
i a (the other case is analogous), and pick an element a′ from W0

among M -minimal (w.r.t. <i) realisations of the 1-type α. In case a′ was already selected to
provide a missing witness for a, we take yet another one. Note that such an element exists
due to the fact that there are only M ∀∃-conjuncts in φ and we selected M minimal and
maximal realisations of every non-rare 1-type for each of the orders <0 and <1. We now
alter the binary relations between a and a′ in B so that the equality tpA(a, b) = tpB(a, b)
holds (which can be done as a′ and b have equal 1-type). We repeat the process to provide all
missing witnesses for a. Observe that all elements from B that had γji -witnesses before our
redefinition of certain 2-types, still do have them (as we did not touch 2-types between them
and their witnesses), B still satisfies the ∀∀-component of φ (since the modified 2-type does
not violate φ in A it does not violate φ in B) and a has all required witnesses. By repeating
the strategy for all the other elements from W2 violating φ, we obtain the desired “small”
model of φ.

Lemma 3.6 yields an NExpTime algorithm for deciding satisfiability of FO2
−[<0, <1]

formulae: convert an input into Scott’s normal form, guess its exponential size model and
verify the modelhood with a standard model-checking algorithm (in PTime [GO99, Prop.
4.1]). After applying Fact 3.3 and Theorem 3.2 we conclude:

Theorem 3.7. Checking if an FO2-formula is order-invariant is coNExpTime-complete.

4. Can order-invariant FO2 express properties beyond the scope of FO?

While we do not solve the question stated in the heading of this section, we provide a partial
solution. Let C be some class of finite structures. A sentence φ ∈ FO2(Σ ∪ {<}), where < is
a binary relation symbol not belonging to Σ, is said to be order-invariant over C if for every
finite Σ-structure A in C, and every pair of strict linear orders <0 and <1 on A, (A, <0) |= φ
iff (A, <1) |= φ. Note that this is a weakening of the classical condition of order-invariance,
and that the usual definition is recovered when C is the class of all finite structures.

In what follows, we present a class C over the vocabulary Σ := {T,D, S} (for binary
predicates T , D and S) of tree-like finite structures, and a sentence φ ∈ FO2(Σ ∪ {<})
“expressing even depth” that is order-invariant over C but not equivalent to any first-order
sentence over Σ. To do so, we employ dendroids, namely finite Σ-structures A that, intuitively,
are complete directed binary trees decorated with a binary parent-child relation TA, a
descendant relation DA, and a sibling relation SA. Their formal definition comes next.

Definition 4.1. A Σ-structure A is a dendroid if there is a positive integer n such that
• A = {0, 1}≤n (i.e. the set of all binary words of length at most n),
• TA = {(w,w0), (w,w1) | w ∈ A, |w| < n},
• DA = (TA)+ (i.e. DA is the transitive closure of TA), and
• SA = {(w0, w1), (w1, w0) | w ∈ A, |w| < n}.
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We call the number n the depth of A, and call the length of a node v ∈ A the level of v. We
also use the terms “root” and “leaf” in the usual way.

The following is a variant of a classical exercise stating that for every threshold q we
have that trees that are exponentially deep w.r.t. q are FOq-equivalent. Indeed:

Lemma 4.2. For all q ∈ N, if A,B are dendroids of depth ≥ 2q+1 then A ≡FO
q B.

Proof. This is a tedious generalisation of the winning strategy for the duplicator in the
q-round Ehrenfeucht-Fraïssé games on linear orders [Lib04, Thm 3.6 Proof #1].

As an immediate corollary we get:

Corollary 4.3. There is no FO(Σ)-formula φeven such that for every A ∈ C we have
A |= φeven iff the depth of A is even.

In contrast to Corollary 4.3, we show that the even depth query can be defined with
an FO2(Σ ∪ {<})-formula which is order-invariant over C (but unfortunately not over the
class of all finite structures). Henceforth we considered ordered dendroids, i.e. dendroids that
are additionally linearly-ordered by <. Given such an ordered dendroid T , and an element c
with children a, b we say that a is the left child of c iff a <T b holds. Otherwise we call a the
right child of c. A zig-zag in T is a sequence of elements a0, a1, . . . , an, where an is a leaf of
T , a0 is the root of T , a2i+1 is the right child of a2i for any i ≥ 0 and a2i is the left child of
a2i−1 for any n

2 ≥ i ≥ 1. A zig-zag is even if its last element is the left child of its parent,
and odd otherwise. The underlying trees in dendroids are complete and binary, thus:

Observation 4.4. An ordered dendroid T has an even zig-zag iff T is of even depth.
Moreover, if T is a dendroid of even and odd depth then for any linear order < over its
domain the ordered dendroid (T , <) has an even and odd zig-zag, respectively.

Proof. Immediate by induction after observing that A↾{0,1}≤n , for any positive integer n
smaller than the depth of A, is also a dendroid.

The above lemma suggests that a good way to express the evenness of the depth of a
dendroid is to state the existence of an even zig-zag; this is precisely the property that we are
going to describe with an FO2(Σ ∪ {<})-formula. Let us first introduce a few useful macros:

ROOT(x) := ¬∃y T (y, x) LEAF(x) := ¬∃y T (x, y) 2nd(x) := ∃y T (y, x) ∧ ROOT(y)
LS(x) := ∃y S(x, y) ∧ x < y RS(x) := ∃y S(x, y) ∧ y < x

The first two macros have an obvious meaning. The third macro identifies a child of the root,
while the last two macros identify the left and the right siblings (according to the linear
order <), respectively. Our desired formula φeven-zig-zag is then

∃x
(

[LEAF(x) ∧ LS(x)] ∧ [∀y (2nd(y) ∧D(y, x))→ RS(y)]

∧[∀y (¬ROOT(y) ∧ ¬2nd(y) ∧D(y, x) ∧ RS(y))→ ∃x T (x, y) ∧ LS(x)]
∧[∀y (¬ROOT(y) ∧ ¬2nd(y) ∧D(y, x) ∧ LS(y))→ ∃x T (x, y) ∧ RS(x)]

)
.

Note that the above formula, by fixing a leaf, fixes the whole path from such a leaf to the
root (since root-to-leaf paths in trees are unique). To say that such a path is an even zig-zag,
we need a base of induction (the first line) stating that the selected leaf is a left child and the
root’s child lying on this path is its right one, as well as an inductive step stating that every
left and right child on the path has a parent which is itself a right and left child, respectively,
with the obvious exception of the root and its child. From there, it is easily shown that:
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Proposition 4.5. An ordered dendroid T satisfies φeven-zig-zag iff it has even depth.

Proof. To prove the right-to-left implication, we use Observation 4.4 to infer the existence of
an even zig-zag a0, a1, . . . , a2n in T . Taking a2n as a witness for the existential quantifier in
front of φeven-zig-zag and going back to the definition of an even zig-zag, we get T |= φeven-zig-zag.
For the other direction, consider a leaf a satisfying the properties enforced in φeven-zig-zag.
There is a unique path ρ = a0, a1, . . . , an = a from the root of T to a. The first line of
φeven-zig-zag guarantees that an is a left child and a1 is a right child. We then show by
induction, relying on the last two lines of φeven-zig-zag, that for any i ≥ 0, a2i+1 is the right
child of a2i, and for i ≥ 1, a2i is the left child of a2i−1. Thus ρ is an even zig-zag. By invoking
Observation 4.4 again, we get that T has even depth.

As a direct consequence of the previous statement, observe that our formula φeven-zig-zag
is order-invariant over C: whether an ordered dendroid has even depth only depends on the
underlying dendroid, and not on the particulars of its linear order. Recalling Corollary 4.3,
we conclude the following:

Theorem 4.6. There exists a class of finite structures C and an FO2(Σ ∪ {<})-sentence
which is order-invariant over C, but is not equivalent to any FO(Σ) sentence.

5. Expressive power when the degree is bounded

We have seen in the previous section that if we relax the order-invariant constraint (namely,
by requiring invariance only on a restricted class of structures), then one is able to define,
with two variables, properties that lie beyond the expressive power of FO. We conjecture
that this is still the case when requiring invariance over the class of all finite structures.

In this section, we go the other way, and show that when one considers only classes
of bounded degree, then < -inv FO2 can only express FO-definable properties. Note that
although the class C from Section 4 contains tree-like structures, the descendant relation
makes this a dense class of structures (as its Gaifman graph contains cliques of arbitrarily
large size), and in particular C does not have a bounded degree.

5.1. Overview of the result. We give an upper bound to the expressive power of order-
invariant FO2 when the degree is bounded:

Theorem 5.1. Let C be a class of structures of bounded degree on a purely relational
vocabulary. Then < -inv FO2 ⊆ FO on C.

For the remainder of this section, we fix a purely relational vocabulary Σ, an integer
d and a class C of Σ-structures of degree at most d. The constraint on Σ is merely to ease
the presentation of the proof. We discuss in Paragraph 5.6 how to extend Theorem 5.1 to
vocabulary containing constants.

Let us now detail the outline of the proof. The technical parts of the proof will be the
focus of Sections 5.3 and 5.4. Our general strategy is to show the existence of a function
f : N→ N such that every formula φ ∈ < -inv FO2 of quantifier rank k is equivalent on C (i.e.
satisfied by the same structures of C) to an FO-formula ψ of quantifier rank at most f(k).

To prove the existence of such an equivalent FO-formula ψ to any order-invariant FO2-
formula φ on C, we will pick f(k) large enough so that for any two structures A0,A1 ∈ C such
that A0 ≡FO

f(k) A1, we have A0 ≡<-inv FO2

k A1. In other words, we show that the equivalence
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relation ≡FO
f(k) is more fine-grained than the equivalence relation ≡<-inv FO2

k . Let us show that

this indeed guarantees the existence of ψ. By definition of ≡<-inv FO2

k , the class of structures
satisfying a formula φ of < -inv FO2 of quantifier rank k is a union of equivalence classes for
the equivalence relation ≡<-inv FO2

k , whose intersection with C is consequently the intersection
of C with a union of equivalence classes c1, . . . , cl for ≡FO

f(k). It is folklore (see, e.g., [Lib04,
Cor. 3.16]) that there are only a finite number of equivalence classes for ≡FO

f(k), each of which
being definable by an FO-sentence of quantifier rank f(k). Then the disjunction ψ of the
sentences defining c1, . . . , cl (which is again an FO-sentence of quantifier rank f(k)) is indeed
equivalent to φ on C, thus showing that the addition of a built-in order does not allow to
express more first-order properties on C, although it may allow more concise descriptions of
these properties.

In order to show that A0 ≡<-inv FO2

k A1 for any structures A0 and A1 of C such that
A0 ≡FO

f(k) A1, we will construct in Section 5.3 two particular different orders on A0 and A1

(denoted < on both structures, whose domain can assumed to be disjoint), and we will prove
in Section 5.4 that

(A0, <) ≡FO2

k (A1, <) . (5.1)
This concludes the proof, since any sentence of < -inv FO2 with quantifier rank at most k
holds in A0 iff it holds in (A0, <) (by definition of order-invariance), iff it holds in (A1, <)
(by Equation (5.1)), iff it holds in A1.

In the process of constructing the linear orders on A0 and A1, it will be convenient to
sort the elements of these structures based on the isomorphism type of their neighbourhood
(for k ∈ N, the k-neighbourhood of some element a is the substructure induced by the set
of elements that are at distance at most k from a). This notion is central in finite model
theory, and is the basic tool of the locality methods to prove inexpressibility results. For an
introduction on the subject, see, e.g., [Lib04, Chapter 4].

Section 5.2 is devoted to the notion of neighbourhood: it is defined in Section 5.2.1,
where we recall that, when the degree is bounded, first-order logic is able to count (up to
some threshold) the number of occurrences of each isomorphism type of neighbourhood, and
nothing more. In Section 5.2.2, we establish a dichotomy between neighbourhood types that
appear frequently in a structure, and those that have only a few occurrences. This distinction
will highlight which elements play a particular role in the structures A0 and A1, and should
thus be treated with special care when constructing the linear orders. By contrast, we can be
much more liberal with the way we treat elements with a frequent neighbourhood type; in
particular, we will use them as padding between critical parts of the orders.

Lastly, we show in Section 5.5 that when the degree is bounded, the inclusion of
< -inv FO2 in FO still holds when one adds counting quantifiers to FO2.

5.2. Neighbourhoods.

5.2.1. Definition and properties of neighbourhoods. Let us start by defining the notion of
neighbourhood of an element in a structure.

Let c be a constant symbol, and let A ∈ C. For k ∈ N and a ∈ A, the (pointed) k-
neighbourhood N k

A(a) of a in A is the (Σ∪{c})-structure whose restriction to the vocabulary Σ

is the substructure of A induced by the set Nk
A(a) := {b ∈ A : distA(a, b) ≤ k} , and where c

is interpreted as a. In other words, it consists of all the elements at distance at most k
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from a in A, together with the relations they share in A; the center a being marked by the
constant c. We sometimes refer to Nk

A(a) as the k-neighbourhood of a in A as well, but
the context will always make it clear whether we refer to the whole substructure or only
its domain. The k-neighbourhood type τ = neigh-tpk

A(a) of a in A is the isomorphism class
of its k-neighbourhood. We say that τ is a k-neighbourhood type over Σ, and that a is an
occurrence of τ . We denote by |A|τ the number of occurrences of τ in A (i.e. the number
of elements with k-neighbourhood τ in A), and we write JA0Kk =t JA1Kk to mean that for
every k-neighbourhood type τ , |A0|τ and |A1|τ are either equal, or both larger than t.

Let NeighTyped
k denote the set of k-neighbourhood types over Σ occurring in structures

of degree at most d. Note that NeighTyped
k is a finite set.

The interest of this notion resides in the fact that when the degree is bounded, FO
is exactly able to count the number of occurrences of neighbourhood types up to some
threshold [FJY95]. We will only use one direction of this characterization, namely:

Proposition 5.2. For all integers k and t, there exists some f̂(k, t) ∈ N (which also depends
on the bound d on the degree of structures in C) such that for all structures A0,A1 ∈ C,
A0 ≡FO

f̂(k,t)
A1 implies JA0Kk =t JA1Kk.

Remark 5.3. Assume the existence of a function Υ: N→ N such that whenever A0,A1 ∈ C

are such that JA0Kk =Υ(k) JA1Kk, one can construct < satisfying Equation (5.1).
Summing up the above discussion, we show that the existence of such a Υ is enough to

end the proof of Theorem 5.1. Indeed, Proposition 5.2 ensures that for f : k 7→ f̂(k,Υ(k)), if
A0 ≡FO

f(k) A1 then there exists < such that (A0, <) ≡FO2

k (A1, <), entailing A0 ≡<-inv FO2

k A1.
In other words, this means the equivalence relation ≡FO

f(k) is more fine-grained than

≡<-inv FO2

k on C. Given an < -inv FO2-sentence of quantifier rank k, one can decompose it
along the equivalence classes of ≡<-inv FO2

k , and thus, in turn, decompose it according to
≡FO

f(k) (i.e. as a disjunction of FO-sentences of rank f(k) defining the relevant ≡FO
f(k) classes).

This gives a translation on C from < -inv FO2-sentences of quantifier rank k to FO-sentences
of rank f(k).

Let us now explain how the function Υ is chosen.

5.2.2. Frequency of a neighbourhood type. Let us write #neighdk := |NeighTyped
k|, the

number of types of k-neighbourhoods possibly appearing in structures of C (which have
degree at most d).

In this section, we show that if we consider the set Freq[A]k of k-neighbourhood types
that have enough occurrences in some A ∈ C (where “enough” will be given a precise
meaning later on), each type in Freq[A]k must have many occurrences that are scattered
across A. Not only that, but we can also make sure that such occurrences are far from all
the occurrences of every k-neighbourhood type not in Freq[A]k, which by definition have
few occurrences in A.

Such a dichotomy was introduced in [Gra21]; we simply accommodate this construction
to our needs. In the remainder of this section, we recall and adapt this construction.

The following lemma, which heavily relies on the degree boundedness assumption, states
that, when given a small set B and a bounded number of large enough sets C1, . . . , Cn, it is
always possible to find many elements in each Cj which are far apart from one another, as
well as far from B. It is a strengthening of [NO10, Lemma 3.2]).
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Lemma 5.4. Given three positive integers m, δ, s, there exists a threshold g(m, δ, s) ∈ N
such that for all A ∈ C, all B ⊆ A of size at most s, and all subsets C1, . . . , Cn ⊆ A
(with n ≤ #neighdk) of size at least g(m, δ, s), it is possible to find elements c1j , . . . , c

m
j ∈ Cj for

all j ∈ {1, . . . , n}, such that for all j, j′ ∈ {1, . . . , n} and i, i′ ∈ {1, . . . ,m}, distA(cij , B) > δ

and distA(cij , c
i′
j′) > δ if (j, i) ̸= (j′, i′).

Furthermore, such a function g can be chosen such that:
• for all integers m, δ, s, g(m, δ, s) ≥ s, and
• g is non-decreasing in its third argument, i.e. for every integers m, δ, s, s′ such that s ≤ s′,
g(m, δ, s) ≤ g(m, δ, s′).

Proof. Let us fix m, δ, s ∈ N and A ∈ C, which has degree at most d by assumption.
Let us start by proving that for any p ∈ N and sets of elements X,Y ⊆ A such that

|X| ≤ p and |Y | ≥ (p +m)(dδ + 1), there exist elements y1, . . . , ym ∈ Y such that for all
i, i′ ∈ {1, . . . ,m}, distA(yi, Y ) > δ and distA(yi, yi

′
) > δ if i ̸= i′.

Let us consider the δ-th power GδA of the Gaifman graph of A, whose vertex set is the
same as GA and where there is an edge between two vertices iff their distance in GA is at
most δ. The degree of GδA can be coarsely bounded by dδ. Thus, there are at most p(dδ + 1)

elements in or adjacent to X in GδA, and at least m(dδ + 1) elements in Y \ (X ∪NGδ
A
(X)).

Consider an arbitrary (dδ + 1)-coloring of GδA (where two adjacent vertices have different
colors), which is guaranteed to exist since the degree of GδA is at most dδ. By the pigeonhole
principle, one can find m elements y1, . . . , ym in Y \ (X ∪ NGδ

A
(X)) with the same color.

Since these elements do not belong to X ∪NGδ
A
(X), they are at distance at least δ + 1 from

X in GA. Furthermore, they form an independent set in GδA (by definition of a coloring), and
are thus at distance at least (δ + 1) from one another in GA. This proves the claim.

We are now ready to prove the lemma: let B be a subset of A of size at most s. Define
gn(m, δ, s) := (s+ nm)(dδ +1). We show by induction on n that for every C1, . . . , Cn ⊆ A of
size at least gn(m, δ, s), one can find elements cij ∈ Cj , for j ∈ {1, . . . , n} and i ∈ {1, . . . ,m},
which are at distance at least δ + 1 from each other and from B in GA. For n = 0, there is
nothing to show. For the inductive step from n to n+ 1: since gn+1(m, δ, s) ≥ gn(m, δ, s), we
start by using the induction hypothesis to get suitable elements cij ∈ Cj for j ∈ {1, . . . , n}
and i ∈ {1, . . . ,m}. We can then rely on the previous claim with X := B ∪

⋃n
j=1{c1j , . . . , cmj }

(i.e. p = s+ nm) and Y := Cn+1 (which, by choice of gn+1(m, δ, s), satisfy the cardinality
condition of the claim), and pick the y1, . . . , ym as our c1n+1, . . . , c

m
n+1.

Setting g(m, δ, s) := g
#neighd

k
(m, δ, s) concludes the proof: it is routine to check that

such a function g satisfies the last two properties of the lemma.

Remark 5.5. Note that the size of (an instance of) a neighbourhood type τ ∈ NeighTyped
k

is at most

Md
k :=

{
2k + 1 if d = 2

1 + d (d−1)k−1
d−2 otherwise

and thus can be bounded by a function of k (recall that the signature Σ and the degree d
are fixed).

We now explain how to use Lemma 5.4 in order to define the notion of k-neighbourhood
frequency in a structure A. Let us consider

m := 2(k + 1) ·Md
k ! and δ := 4k . (5.2)
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Our goal is, given a structure A ∈ C, to partition the k-neighbourhood types into two
categories: the frequent types, and the rare types. The property we wish to enforce is that
there exist in A at least m occurrences of each one of the frequent k-neighbourhood types
which are both
• at distance greater than δ from one another, and
• at distance greater than δ from every occurrence of a rare k-neighbourhood type.

To that end, for t ∈ N and A ∈ C let Freq[A]≥t
k ⊆ NeighTyped

k denote the set of
k-neighbourhood types which have at least t occurrences in A.

Lemma 5.6. Let k ∈ N and define m and δ as in Equation (5.2). There exists Υ(k) ∈ N
such that for every A ∈ C, there exists some t ≤ Υ(k), for which

t ≥ g

(
m, δ,

∑
τ∈NeighTypedk\Freq[A]≥t

k

|A|τ

)
.

Proof. Define by induction h1(k) := 0 and hi+1(k) := hi(k) + g(m, δ, hi(k)). This is well
defined, as m and δ depend only on k. We now show that the lemma holds for

Υ(k) := h
#neighd

k+2
(k) .

Fix some structure A ∈ C and let τ1, . . . , τ#neighd
k

be an enumeration of NeighTyped
k

such that for all i < j we have |A|τi ≤ |A|τj .
Consider the algorithm described in Procedure 1. The set X, which is empty at first,

will eventually contain all types that will be declared rare. In words, this algorithm proceeds
as follows:
(1) First, we mark every k-neighbourhood type as frequent.
(2) Among the types which are currently marked as frequent, let τ be one with the smallest

number of occurrences in A.
(3) If |A|τ is at least g(m, δ, s) (g being the function from Lemma 5.4) where s is the total

number of occurrences of all the k-neighbourhood types which are currently marked as
rare, then we are done and the marking frequent/rare is final. Otherwise, mark τ as rare,
and go back to step 2 if there remains at least one frequent k-neighbourhood type

Procedure 1: Determining the rare and frequent neighbourhood types
1 X ← ∅
2 i← 1

3 while i ≤ #neighdk and |A|τi ≤ g(m, δ,
∑

τ∈X |A|τ )
4 X ← X ∪ {τi}
5 i++
6 end ; // the rare types are those in X; types outside X are frequent types

Let us establish the following invariant for the “while” loop:∑
τ∈X
|A|τ ≤ hi(k). (5.3)

Before the first execution of the body of the loop, both sides of Equation (5.3) are zero.
Suppose now that Equation (5.3) is true for some i ≤ #neighdk at the start of the loop, and
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let us prove that Equation (5.3) still holds after executing the body of the loop. We went
from i to i+ 1. Let Xi denote the old value of X, and Xi+1 its new value; in other words,
Xi+1 = Xi ∪ {τi}. The left part of Equation (5.3) has been augmented by |A|τi , which,
because the “while” condition was satisfied, is less than g(m, δ,

∑
τ∈Xi

|A|τ ). Thus,∑
τ∈Xi+1

|A|τ ≤
∑
τ∈Xi

|A|τ + g

(
m, δ,

∑
τ∈Xi

|A|τ

)
.

By assumption,
∑

τ∈Xi
|A|τ ≤ hi(k), and since g is non-decreasing in its third variable, we

get
∑

τ∈Xi+1
|A|τ ≤ hi+1(k), which means that Equation (5.3) is preserved by the body of

the loop.
Let us now look at the two ways we can exit the “while” loop, and prove that the

statement of the lemma holds whichever the case:
• If we exit the loop because the condition “i ≤ #neighdk” is false, then we have i = #neighdk+1

and X = NeighTyped
k. By Equation (5.3),

∑
τ∈NeighTypedk

|A|τ ≤ h#neighd
k+1

(k), and we
can choose t := g(m, δ, h

#neighd
k+1

(k)). We then indeed get t ≤ Υ(k) and, because g is
non-decreasing in its third argument,

t ≥ g

(
m, δ,

∑
τ∈NeighTypedk

|A|τ

)
= g

(
m, δ,

∑
τ∈NeighTypedk\Freq[A]≥t

k

|A|τ

)
.

• Otherwise, i ≤ #neighdk and it is “|A|τi ≤ g(m, δ,
∑

τ∈X |A|τ )” which fails. We can then
choose t := g(m, δ,

∑
τ∈X |A|τ ) + 1 (which is, again, smaller than Υ(k)). Let us prove that

X is exactly the set of k-neighbourhood types that have less than t occurrences in A. For
τ ∈ X, we have |A|τ ≤

∑
τ ′∈X |A|τ ′ ≤ g(m, δ,

∑
τ ′∈X |A|τ ′) < t (the second inequality

follows from the good properties of g, cf. Lemma 5.4). Conversely, if τ /∈ X, it means that
|A|τ ≥ |A|τi (recall that the τi are examined in number of occurrences in A), which in
turn is at least t.

Then we have

t ≥ g

(
m, δ,

∑
τ∈X
|A|τ

)
= g

(
m, δ,

∑
τ∈NeighTypedk\Freq[A]≥t

k

|A|τ

)
.

We are now ready to formally establish the notion of frequent type:

Definition 5.7. Fix an integer k and a structure A ∈ C, and let Freq[A]k := Freq[A]≥t
k

for the smallest threshold t ≤ Υ(k) such that

t ≥ g

(
m, δ,

∑
τ∈NeighTypedk\Freq[A]≥t

k

|A|τ

)
,

whose existence is guaranteed by Lemma 5.6. Some k-neighbourhood type τ ∈ NeighTyped
k

is said to be frequent in A if it belongs to Freq[A]k; that is, if |A|τ ≥ t. Otherwise, τ is said
to be rare in A.

Remark 5.8. A structure A without frequent type has size bounded by Υ(k) ·#neighdk since,
by Definition 5.7, each τ ∈ NeighTyped

k has at most Υ(k) occurrences in A.

Recall how m and δ were defined in Equation (5.2). Combining Lemmas 5.4–5.6, we get:
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Proposition 5.9. Let k ∈ N. In every structure A ∈ C, one can find 2(k+1)·Md
k ! occurrences

of each frequent k-neighbourhood type in A which are at distance at least 4k + 1 from one
another and from the set of occurrences of every rare k-neighbourhood type in A.

With these notions of frequent and rare neighbourhood types established, we now turn
to the construction of the two linear orders.

5.3. Constructing linear orders on A0 and A1. Recall that our goal is to find a function f
such that, given two structures A0, A1 in C (assumed without loss of generality to have
disjoint domains) such that A0 ≡FO

f(k) A1, we are able to construct linear orders on A0 and A1

(both denoted <) such that (A0, <) ≡FO2

k (A1, <). In this section, we define f and we detail
the construction of such orders. The proof of FO2-similarity between (A0, <) and (A1, <)
will be the focus of Section 5.4.

For every integer k, we choose an f(k) large enough so that
• for every structures A0,A1 ∈ C, A0 ≡FO

f(k) A1 entails JA0Kk =Υ(k) JA1Kk, where Υ(k) is
defined in Lemma 5.6,
• f(k) ≥ Υ(k) ·#neighdk + 1,
• f satisfies an additional lower bound made explicit later in this section, in the paragraph

Transfer on A1 below.
In what follows, we fix an integer k ∈ N, as well as two structures A0 and A1 of C

such that
A0 ≡FO

f(k) A1 (5.4)
for such a choice of f .

By choice of f , we get JA0Kk =Υ(k) JA1Kk. This ensures, for all t ≤ Υ(k), that
Freq[A0]

≥t
k = Freq[A1]

≥t
k , and that∑

τ∈NeighTypedk\Freq[A0]
≥t
k

|A0|τ =
∑

τ∈NeighTypedk\Freq[A1]
≥t
k

|A1|τ .

The smallest t such that

t ≥ g

(
m, δ,

∑
τ∈NeighTypedk\Freq[A0]

≥t
k

|A0|τ

)

is therefore also the smallest t such that

t ≥ g

(
m, δ,

∑
τ∈NeighTypedk\Freq[A1]

≥t
k

|A1|τ

)
,

meaning exactly (according to Definition 5.7) that Freq[A0]k = Freq[A1]k. In other words,
the notion of frequent and rare k-neighbourhood types coincide on A0 and A1. From this
point on, we thus refer to frequent and rare k-neighbourhood types without mentioning the
structure involved.

Furthermore, if Freq[A0]k (and thus Freq[A1]k) is empty, then according to Remark 5.8
we have |A0| ≤ Υ(k) ·#neighdk. As we chose f(k) ≥ Υ(k) ·#neighdk +1, Equation (5.4) entails
that A0 ≃ A1, and in particular that A0 ≡<-inv FO2

k A1. From now on, we thus suppose that
there is at least one frequent k-neighbourhood type.
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To construct the two linear orders, we need to define the notion of k-environment:
given A ∈ C, a linear order < on A, k ∈ N and an element a ∈ A, we define the k-environment
Envk(A,<)(a) of a in (A, <) as the restriction of (A, <) to the k-neighbourhood of a in A,
where a is the interpretation of the constant symbol c. Note that the order is not taken into
account when determining the domain of the substructure (it would otherwise be A, given
that any two distinct elements are adjacent for <). The k-environment type env-tpk

(A,<)(a) is
the isomorphism class of Envk(A,<)(a). In other words, env-tpk

(A,<)(a) contains the information
of N k

A(a) together with the order of its elements in (A, <).
Given τ ∈ NeighTyped

k, we define Env(τ) as the set of k-environment types whose
underlying k-neighbourhood type is τ .

For each i ∈ {0, 1}, we aim to partition Ai into 2(2k + 1) + 2 segments:

Ai = Xi ⊎
2k⊎
j=0

(Lj
i ⊎R

j
i ) ⊎Mi .

Once we have set a linear order on each segment, the linear order < on Ai will result from
the concatenation of the orders on the segments as follows:

(Ai, <) := Xi · L0
i · L1

i · · ·L2k
i ·Mi ·R2k

i · · ·R1
i ·R0

i .

Formally, we order the segments as

Xi < L0
i < L1

i < · · · < L2k
i < Mi < R2k

i < · · · < R1
i < R0

i ,

and for x, y ∈ Ai, we let x < y either if x’s segment is smaller than y’s segment, or if both
belong to the same segment and x is less than y according to the order for this segment.

Each segment Lj
i , for j ∈ {0, . . . , 2k}, is itself decomposed into two segments NLj

i and
ULj

i , and the order on Lj
i will be defined as the concatenation of the order on NLj

i with the
order on ULj

i (meaning that all elements from NLj
i will be smaller than all elements from

ULj
i ). The ULj

i for j ∈ {k+ 1, . . . , 2k} will be empty; they are defined solely in order to keep
the notations uniform. The ’N’ stands for “neighbour” and the ’U’ for “universal”, for reasons
that will soon become apparent. Symmetrically, each Rj

i is decomposed into URj
i ·NR

j
i (and

thus all elements of URj
i will be smaller than all elements of NRj

i ), with URj
i being empty as

soon as j ≥ k + 1.
For i ∈ {0, 1} and r ∈ {0, . . . , 2k}, we define Sr

i as

Sr
i := Xi ∪

r⋃
j=0

(Lj
i ∪R

j
i ) .

Let us now explain how the segments are constructed inA0; see Figure 1 for an illustration.
For every τ ∈ Freq[A0]k, let τ1, . . . , τ|Env(τ)| be an enumeration of Env(τ). Recall the

definition of Md
k in Remark 5.5: we have |Env(τ)| ≤Md

k ! for every τ ∈ NeighTyped
k.

In particular, Proposition 5.9 ensures that we are able to pick, for every τ ∈ Freq[A0]k,
every l ∈ {1, . . . , |Env(τ)|} and every j ∈ {0, . . . , k}, two elements a[τl]

j
L and a[τl]

j
R which

have τ as k-neighbourhood type in A0, such that all the a[τl]
j
L and the a[τl]

j
R, for τ ∈

Freq[A0]k, l ∈ {1, . . . , |Env(τ)|} and j ∈ {0, . . . , k}, are at distance at least 4k + 1 from
each other and from any occurrence of a rare k-neighbourhood type in A0.
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· · · · · · · · ·X0 NL0
0 UL0

0 NL1
0 UL1

0 NLk
0 ULk

0 NLk+1
0 NL2k

0 M0 NR2k
0 UR1

0 NR1
0 UR0

0

L0
0 L1

0 Lk
0 Lk+1

0 L2k
0 R2k

0 R1
0 R0

0

Figure 1: Elements from two distinct segments can only be adjacent if there is a black curvy
edge between those segments. The order < grows from the left to the right. Note
that NR0

0 is empty and thus left out of the picture.

As their names suggest, a[τl]
j
L will appear in ULj

0 and a[τl]
j
R in URj

0, in order to make
sure that each environment (i.e., ordering) of each frequent type appears in each universal
segment ULj

0, UR
j
0 – which are called “universal” for that very reason.

Construction of X0 and NL0
0. We start with the set X0, which contains all the oc-

currences of rare k-neighbourhood types, together with their k-neighbourhoods. Formally,
X0 is

⋃
a∈A0: neigh-tpk

A0
(a)∈NeighTypedk\Freq[A0]k

Nk
A0

(a) . We set NL0
0 := NA0(X0) (the set of

neighbours of elements of X0), and define the order < on X0 and on NL0
0 in an arbitrary

way.

Construction of ULj
0. If k < j ≤ 2k, then we set ULj

0 := ∅. Otherwise, for j ∈ {0, . . . , k},
once we have constructed L0

0, . . . , L
j−1
0 and NLj

0, we construct ULj
0 as follows.

The elements of ULj
0 are

⋃
τ∈Freq[A0]k

⋃|Env(τ)|
l=1 Nk

A0
(a[τl]

j
L) . Note that ULj

0 does not

intersect the previously constructed segments, by choice of the a[τl]
j
L. Furthermore, the

Nk
A0

(a[τl]
j
L) are pairwise disjoint, hence we can fix < freely and independently on each of

them. Unsurprisingly, we order each Nk
A0

(a[τl]
j
L) so that env-tpk

(A0,<)(a[τl]
j
L) = τl. This is

possible because for every τ ∈ Freq[A0]k and each l, neigh-tpk
A0

(a[τl]
j
L) = τ by choice of

a[τl]
j
L.
Once each Nk

A0
(a[τl]

j
L) is ordered according to τl, the linear order < on ULj

0 can be
completed in an arbitrary way. Note that every possible k-environment type extending a
frequent k-neighbourhood type in A0 occurs in each ULj

0. The ULj
0 are universal in that

sense.

Construction of NLj
0. Now, let us see how the NLj

0 are constructed. For j ∈ {1, . . . , 2k},
suppose that we have constructed L0

0, . . . , L
j−1
0 . The domain of NLj

0 consists of all the
neighbours (in A0) of the elements of Lj−1

0 not already belonging to the construction so far.
Formally, NA0(L

j−1
0 ) \

(
X0 ∪

⋃j−2
m=0 L

m
0

)
.

The order < on NLj
0 is chosen arbitrarily.

Construction of Rj
0. We construct similarly the Rj

0, for j ∈ {0, . . . , 2k}, starting with
NR0

0 := ∅, then UR0
0 which contains each a[τl]

0
R together with its k-neighbourhood in A0

ordered according to τl, then NR1
0 := NA0(R

0
0), then UR1

0, etc.
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Note that the a[τl]
j
R have been chosen so that they are far enough in A0 from all

the segments that have been constructed so far, allowing us once more to order their
k-neighbourhood in A0 as we see fit.

Construction of M0. Let M0 contain all the elements of A0 besides those already belonging
to S2k

0 . The order < chosen on M0 is arbitrary.

Transfer on A1. Suppose that we have constructed S2k
0 . We can make sure, retrospectively,

that the index f(k) in Equation (5.4) is large enough so that there exists a set S ⊆ A1 so
that A0↾S2k

0 ∪NA0
(S2k

0 ) ≃ A1↾S . This is ensured as long as f(k) ≥ |S2k
0 ∪NA0(S

2k
0 )|+1, whose

right side can be bounded by a function of k, independent of A0 and A1. Indeed, all elements
of S2k

0 ∪ NA0(S
2k
0 ) are at distance at most 3k + 2 from X0 or one of the a[τl]

j
∗. Since the

number of such elements is bounded by a function of k (remember that, by Definition 5.7,
the number of occurrences of each rare neighbourhood types is at most Υ(k)) and since the
degree is at most d (which is fixed), |S2k

0 ∪NA0(S
2k
0 )| can be bounded by a function of k.

Let ϕ0 : A0↾S2k
0
→ A1↾S′ be the restriction to S2k

0 of said isomorphism, and let ϕ1 be its
converse. By construction, the k-neighbourhood of every a ∈ Sk

0 is included in S2k
0 ; hence

every such a has the same k-neighbourhood type in A0 as has ϕ0(a) in A1.
We transfer alongside ϕ0 all the segments besides M0, with their order, from (A0, <) to

A1, thus defining X1, NL
j
1, UL

j
1, . . . as the respective images by ϕ0 of X0, NL

j
0, UL

j
0, . . ., and

we defineM1 as the set of remaining elements of A1. It remains to define the restriction of < on
M1: this is done in an arbitrary way. Note that the properties concerning neighbourhood are
transferred; e.g. all the neighbours of an element in Lj

1, 1 ≤ j < 2k, belong to Lj−1
1 ∪Lj

1∪L
j+1
1 .

By construction, we get the following lemma:

Lemma 5.10. For each a ∈ Sk
0 , we have env-tpk(A0,<)(a) = env-tpk(A1,<)(ϕ0(a)) .

Lemma 5.10 has two immediate consequences:
• The set X1 contains the occurrences in A1 of all the rare k-neighbourhood types (just

forget about the order on the k-environments, and remember that A0 and A1 have the
same number of occurrences of each rare k-neighbourhood type).
• All the universal segments ULj

1 and URj
1, for 0 ≤ j ≤ k, contain at least one occurrence of

each environment in Env(τ), for each τ ∈ Freq[A0]k.
By virtue of ϕ0 being an isomorphism, and because the order < was constructed on S′

as the image by ϕ0 of <, we get:

Lemma 5.11. For each a, b ∈ Sk
0 , we have tp(A0,<)(a, b) = tp(A1,<)(ϕ0(a), ϕ0(b)) .

In particular, for a = b ∈ Sk
0 , we have tp(A0,<)(a) = tp(A1,<)(ϕ0(a)) .

5.4. Proof of the FO2-similarity of (A0, <) and (A1, <). In this section, we aim to show
the following result:

Proposition 5.12. (A0, <) ≡FO2

k (A1, <)

Recall Theorem 2.1: in order to prove Proposition 5.12, we show that the duplicator
wins the k-round two-pebble Ehrenfeucht-Fraïssé game on (A0, <) and (A1, <). For that,
let us show by a decreasing induction on r from k to 0 that the duplicator can ensure, after
k − r rounds, that the three following properties (described below) hold. Recall that ϕ0 and
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ϕ1 are the isomorphisms between A0↾A0\M0
and A1↾A1\M1

along which the segments were
transferred from A0 to A1.

∀i ∈ {0, 1}∀α ∈ {x, y} pαi ∈ Sr
i implies pα1−i = ϕi(p

α
i ) (Sr)

∀α ∈ {x, y} env-tpr
(A0,<)(p

α
0 ) = env-tpr

(A1,<)(p
α
1 ) (Er)

tp(A0,<)(p
x
0 , p

y
0) = tp(A1,<)(p

x
1 , p

y
1) (Tr)

Let us stress that in this context, px0 , p
y
0, p

x
1 and py1 denote the elements of A0 and A1 on

which the pebbles have been played after k − r rounds, and thus depend on r.
The first property, (Sr), guarantees that if a pebble is close (in a sense that depends on

the number of rounds left in the game) to one of the <-minimal or <-maximal elements, the
corresponding pebble in the other structure is located at the same position with respect to
this <-extremal element.

As for (Er), it states that two corresponding pebbles are always placed on elements
sharing the same r-environment type. Once again, the safety distance decreases with each
round that goes.

Finally, (Tr) controls that both pebbles have the same relative position (both with respect
to the order and the original vocabulary) in the two ordered structures. In particular, the
duplicator wins the game if (Tr) is satisfied at the beginning of the game, and after each of
the k rounds of the game.

5.4.1. Base case: proofs of (Sk), (Ek) and (Tk). We start by proving (Sk), (Ek) and (Tk). At
the start of the game, the duplicator places both px0 and py0 on the <-minimal element of
(A0, <), and both px1 and py1 on the <-minimal element of (A1, <). In particular,

px1 = py1 = ϕ0(p
x
0) = ϕ0(p

y
0) .

This ensures that (Sk) holds, while (Ek) and (Tk) follow from Lemmas 5.10–5.11.

5.4.2. Winning strategy for the duplicator. We now describe the duplicator’s strategy to
ensure that (Sr), (Er) and (Tr) hold no matter how the spoiler plays.

Suppose that we have (Sr+1), (Er+1) and (Tr+1) for some 0 ≤ r < k, after k − r − 1
rounds of the game. Without loss of generality, we may assume that, in the (k−r)-th round of
the Ehrenfeucht-Fraïssé game between (A0, <) and (A1, <), the spoiler moves px0 in (A0, <).

(I) If px0 ∈ Sr
0 , then the duplicator responds by placing px1 on ϕ0(px0).

This corresponds to a tit-for-tat strategy. If the duplicator does not respond this
way, then the spoiler will be able to expose the difference between (A0, <) and (A1, <)
in the subsequent moves, by forcing the duplicator to play closer and closer to the
<-minimal or -maximal elements.

(II) Else, if px0 /∈ Sr
0 , and px0 ∈ N1

A0
(py0), then (Er+1) ensures that there exists an isomor-

phism ψ : Envr+1
(A0,<)(p

y
0)→ Envr+1

(A1,<)(p
y
1) . The duplicator responds by placing px1 on

ψ(px0) – in other words, on the element whose relative position to py1 is the same as
the relative position of px0 with respect to py0.

(III) Else suppose that (A0, <) |= px0 < py0 and py0 /∈ L
r+1
0 . In other words, the spoiler places

px0 to the left of py0, when py0 is not in the leftmost segment outside of Sr
0 (namely,

Lr+1
0 ). The situation where py0 ∈ L

r+1
0 is covered by Case (IV).
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We have τ := neigh-tpk
A0

(px0) ∈ Freq[A0]k as px0 /∈ X0. Let τl := env-tpk
(A0,<)(p

x
0).

The duplicator responds by placing px1 on ϕ0(a[τl]r+1
L ).

(IV) Else, if (A0, <) |= px0 < py0 and py0 ∈ L
r+1
0 , then the duplicator moves px1 on ϕ0(p

x
0)

(by (Sr+1), px0 indeed belongs to the domain of ϕ0).
(V) Else, suppose that (A0, <) |= py0 < px0 and py0 /∈ Rr+1

0 . This case is symmetric to
Case (III).

Similarly, the duplicator opts to play px1 on ϕ0(a[τl]r+1
R ), where τl := env-tpk

(A0,<)(p
x
0).

(VI) If we are in none of the cases above, it means that the spoiler has placed px0 to the
right of py0, and that py0 ∈ R

r+1
0 . This case is symmetric to Case (IV).

Once again, the duplicator places px1 on ϕ0(px0).
It remains to show that this strategy satisfies our invariants: under the inductive

assumption that (Sr+1), (Er+1) and (Tr+1) hold, for some 0 ≤ r < k, we need to show that
this strategy ensures that (Sr), (Er) and (Tr) hold.

We treat each case in its own section: Section 5.4.3 is devoted to Case (I) while Sec-
tion 5.4.4 covers Case (II). Both Cases (III) and (IV) are treated in Section 5.4.5. Cases (V)
and (VI), being their exact symmetric counterparts, are left to the reader.

Remark 5.13. Note that some properties need no verification. Since py0 and py1 are left
untouched by the players, (Sr+1) ensures that half of (Sr) automatically holds, namely that

∀i ∈ {0, 1}, pyi ∈ S
r
i → py1−i = ϕi(p

y
i ) .

Similarly, the part of (Er) concerning py0 and py1 follows from (Er+1):

env-tpr
(A0,<)(p

y
0) = env-tpr

(A1,<)(p
y
1) .

Lastly, notice that once we have shown that (Er) holds, it follows that tpA0
(px0) = tpA1

(px1)
and tpA0

(py0) = tpA1
(py1). This remark will help us prove (Tr).

5.4.3. When the spoiler plays near the endpoints: Case (I). In this section, we treat the case
where the spoiler places px0 near the <-minimal or <-maximal element of (A0, <). Obviously,
what “near” means depends on the number of rounds left in the game; the more rounds
remain, the more the duplicator must be cautious regarding the possibility for the spoiler to
reach an endpoint and potentially expose a difference between (A0, <) and (A1, <).

As we have stated in Case (I), with r rounds left, we consider a move on px0 by the spoiler
to be near the endpoints if it is made in Sr

0 . In that case, the duplicator responds along the
tit-for-tat strategy, namely by placing px1 on ϕ0(px0).

Let us now prove that this strategy guarantees that (Sr), (Er) and (Tr) hold. Recall from
Remark 5.13 that part of the task is already taken care of.

Proof of (Sr) in Case (I). We have to show that ∀i ∈ {0, 1}, pxi ∈ Sr
i → px1−i = ϕi(p

x
i ) .

This follows directly from the duplicator’s strategy, since px1 = ϕ0(p
x
0) (thus px0 = ϕ1(p

x
1)).

Proof of (Er) in Case (I). We need to prove that env-tpr
(A0,<)(p

x
0) = env-tpr

(A1,<)(p
x
1) ,

which is a consequence of Lemma 5.10 given that px1 = ϕ0(p
x
0) and r < k.
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Proof of (Tr) in Case (I). First, suppose that py0 ∈ Sr+1
0 . By (Sr+1), we know that

py1 = ϕ0(p
y
0). Thus, Lemma 5.11 allows us to conclude that tp(A0,<)(p

x
0 , p

y
0) = tp(A1,<)(p

x
1 , p

y
1).

Otherwise, py0 /∈ S
r+1
0 and (Sr+1) entails that py1 /∈ S

r+1
1 . We have two points to establish:

tpA0
(px0 , p

y
0) = tpA1

(px1 , p
y
1), (5.5)

tp<(p
x
0 , p

y
0) = tp<(p

x
1 , p

y
1). (5.6)

By construction, the neighbours in Ai of an element of Sr
i all belong to Sr+1

i , thus px0
and py0 never appear in the same tuple of some relation, and neither do px1 and py1. In
other words, the only atoms that hold in A0 about px0 and py1 concern independently px0
and py0. Similarly, the only atoms that hold in A1 about px1 and py1 concern independently
px1 and py1. Equation (5.5) follows from this fact together with tpA0

(px0) = tpA1
(px1) and

tpA0
(py0) = tpA1

(py1) (Remark 5.13).
As for Equation (5.6), either

px0 ∈ X0 ∪
⋃

0≤j≤r

Lj
0 and px1 ∈ X1 ∪

⋃
0≤j≤r

Lj
1 ,

in which case tp<(p
x
0 , p

y
0) and tp<(p

x
1 , p

y
1) both contain the atom “x < y” (as px0 and px1

appear in segments to the left of the segments containing py0 and py1, respectively) and are
thus equal, or

px0 ∈
⋃

0≤j≤r

Rj
0 and px1 ∈

⋃
0≤j≤r

Rj
1 ,

in which case tp<(p
x
0 , p

y
0) and tp<(p

x
1 , p

y
1) both contain the atom “x > y”, and are still equal.

5.4.4. When the spoiler plays next to the other pebble: Case (II). Suppose now that the
spoiler places px0 next to the other pebble in A0 (i.e. px0 ∈ N1

A0
(py0)), but not in Sr

0 (for that
move would fall under the jurisdiction of Case (I)). In that case, the duplicator must place px1
so that the relative position of px1 and py1 is the same as that of px0 and py0.

For that, we can use (Er+1), which guarantees that env-tpr+1
(A0,<)(p

y
0) = env-tpr+1

(A1,<)(p
y
1) .

Thus there exists an isomorphism ψ between Envr+1
(A0,<)(p

y
0) and Envr+1

(A1,<)(p
y
1). Note that

this isomorphism is unique, as we are dealing with linear orders.
The duplicator’s response is to place px1 on ψ(px0). Let us now prove that this strategy is

correct with respect to our invariants (Sr), (Er) and (Tr).

Proof of (Sr) in Case (II). Because the spoiler’s move does not fall under Case (I), we
know that px0 /∈ Sr

0 . Let us now show that px1 is not near the endpoints either, i.e. that
px1 /∈ Sr

1 .
We consider two cases, depending on whether py1 ∈ S

r+1
1 . Since px1 and py1 are neighbours

in A1, if py1 /∈ S
r+1
1 , then by construction px1 /∈ Sr

1 . Otherwise, py1 ∈ S
r+1
1 and we know by

(Sr+1) that py0 = ϕ1(p
y
1). Because ψ is the unique isomorphism between Envr+1

(A0,<)(p
y
0) and

Envr+1
(A1,<)(p

y
1), ψ is equal to the restriction ϕ̃0 of ϕ0:

ϕ̃0 : Envr+1
(A0,<)(p

y
0) → Envr+1

(A1,<)(p
y
1) .

Thus px0 = ψ−1(px1) = ϕ̃0
−1

(px1) = ϕ1(p
x
1), and by definition of the segments on (A1, <),

which are just a transposition of the segments of (A0, <) via ϕ0, px0 /∈ Sr
0 then entails px1 /∈ Sr

1 .
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Since we neither have px0 ∈ Sr
0 nor px1 ∈ Sr

1 , (Sr) holds – recall from Remark 5.13 that
the part concerning py0 and py1 is always satisfied.

Proof of (Er) in Case (II). Recall that the duplicator placed px1 on the image of px0 by the
isomorphism

ψ : Envr+1
(A0,<)(p

y
0)→ Envr+1

(A1,<)(p
y
1) .

It is easy to check that the restriction ψ̃ of ψ: ψ̃ : Envr(A0,<)(p
x
0) → Envr(A1,<)(p

x
1) is

well-defined, and is indeed an isomorphism.
This ensures that env-tpr

(A0,<)(p
x
0) = env-tpr

(A1,<)(p
x
1) , thus completing the proof of (Er).

Proof of (Tr) in Case (II). This follows immediately from the fact that the isomorphism ψ
maps px0 to px1 and py0 to py1: all the atomic facts about these elements are preserved.

5.4.5. When the spoiler plays to the left: Cases (III) and (IV). We now treat our last case,
which covers both Cases (III) and (IV), i.e. the instances where the spoiler places px0 to the
left of py0 (formally: such that (A0, <) |= px0 < py0), which do not already fall in Cases (I)–(II).

Note that the scenario in which the spoiler plays to the right of the other pebble is the
exact symmetric of this one (since the Xi play no role in this case, left and right can be
interchanged harmlessly).

The idea here is very simple: since the spoiler has placed px0 to the left of py0, but neither
in Sr

0 nor in N1
A0

(py0), the duplicator responds by placing px1 on an element of ULr+1
1 (the

leftmost universal segment not in Sr
1) sharing the same k-environment. This is possible

by construction of the universal segments: if τl := env-tpk
(A0,<)(p

x
0) (which must extend a

frequent k-neighbourhood type, since px0 /∈ X0), then ϕ0(a[τl]r+1
L ) satisfies the requirements.

There is one caveat to this strategy. If py1 is itself in Lr+1
1 , two problems may arise: first,

it is possible for px1 and py1 to be in the wrong order (i.e. such that (A1, <) |= px1 > py1).
Second, it may be the case that px1 and py1 are neighbours in A1, which, together with the
fact that px0 and py0 are not neighbours in A0, would break (Tr).

This is why the duplicator’s strategy depends on whether py1 ∈ L
r+1
1 :

• if this is not the case, then the duplicator places px1 on ϕ0(a[τl]r+1
L ). This corresponds to

Case (III).
• if py1 ∈ L

r+1
1 , then (Sr+1) guarantees that py0 ∈ L

r+1
0 . Hence px0 , which is located to the left

of py0, is in the domain of ϕ0: the duplicator moves px1 to ϕ0(px0). This situation corresponds
to Case (IV).

Let us prove that (Sr), (Er) and (Tr) hold in both of these instances.

Proof of (Sr) in Case (III). Since the spoiler’s move does not fall under Case (I), we have
that px0 /∈ Sr

0 . By construction, a[τl]r+1
L ∈ Lr+1

0 , thus ϕ0(a[τl]r+1
L ) ∈ Lr+1

1 , and px1 /∈ Sr
1 .

Proof of (Er) in Case (III). It follows from env-tpk
(A0,<)(a[τl]

r+1
L ) = τl together with

Lemma 5.10 that
env-tpk

(A0,<)(p
x
0) = env-tpk

(A1,<)(p
x
1) .

A fortiori, env-tpr
(A0,<)(p

x
0) = env-tpr

(A1,<)(p
x
1).
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Proof of (Tr) in Case (III). Because the spoiler’s move does not fall under Case (II),
px0 /∈ N1

A0
(py0). In other words, the (positive) atoms occurring in tpA0

(px0 , p
y
0) are exactly

those appearing in tpA0
(px0) and tpA0

(py0), as no atom involving both px0 and py0 holds.
Recall the construction of ULr+1

0 : the whole k-neighbourhood of a[τl]r+1
L was included

in this segment. In particular, N1
A1

(px1) = N1
A1

(ϕ0(a[τl]
r+1
L )) ⊆ ULr+1

1 . By assumption,
py1 /∈ Lr+1

1 , which entails that the atoms in tpA1
(px1 , p

y
1) are those occurring in tpA1

(px1)
and tpA1

(py1). It then follows from the last observation of Remark 5.13 that tpA0
(px0 , p

y
0) =

tpA1
(px1 , p

y
1) .

Let us now prove that tp<(p
x
1 , p

y
1) contains the atom “x < y”. We claim that py1 /∈

X1 ∪
⋃

0≤j≤r+1 L
j
1. Suppose otherwise: (Sr+1) would entail that py0 ∈ X0 ∪

⋃
0≤j≤r+1 L

j
0

which, together with the assumption py0 /∈ L
r+1
0 and px0 < py0, would result in px0 being in Sr

0 ,
which is a contradiction. Both tp<(p

x
1 , p

y
1) and tp<(p

x
0 , p

y
0) contain the atom “x < y” and

thus must be equal, which concludes the proof of (Tr).

Proof of (Sr), (Er) and (Tr) in Case (IV). Let us now move to the case where py1 ∈ L
r+1
1 .

Recall that under this assumption, py0 = ϕ1(p
y
1) ∈ L

r+1
0 and since px0 < py0 and px0 /∈ Sr

0 , we
have that px0 ∈ L

r+1
0 . The duplicator places the pebble px1 on ϕ0(px0); in particular, px1 ∈ L

r+1
1 .

The proof of (Sr) follows from the simple observation that px0 /∈ Sr
0 and px1 /∈ Sr

1 . As for
(Er) and (Tr), they follow readily from Lemmas 5.10 and 5.11 and the fact that px1 = ϕ0(p

x
0)

and py1 = ϕ0(p
y
0).

5.5. Counting quantifiers. We now consider the natural extension C2 of FO2, where one
is allowed to use counting quantifiers of the form ∃≥ix and ∃≥iy, for i ∈ N. Such a quantifier,
as expected, expresses the existence of at least i elements satisfying the formula which follows
it. This logic C2 has been extensively studied. From an expressiveness standpoint, C2 strictly
extends FO2 (which cannot express the existence of three elements over the empty vocabulary),
and contrary to the latter, C2 does not enjoy the small model property (meaning that contrary
to FO2, there exist satisfiable C2-sentences which do not have small, or even finite, models).
However, the satisfiability problem for C2 is still decidable [GOR97, Pra07, Pra10]. To the
best of our knowledge, it is not known whether < -inv C2 has a decidable syntax. Let us now
explain how the proof of Theorem 5.1 can be adapted to show the following stronger version:

Theorem 5.14. Let C be a class of structures of bounded degree on a purely relational
vocabulary. Then < -inv C2 ⊆ FO on C.

Proof. The proof is very similar to that of Theorem 5.1. The difference is that we now need
to consider C2-similarity instead of FO2-similarity. To that end, we consider two families
of equivalence relations, denoted ≡C2

k,k and ≡<-inv C2

k,k (for k ∈ N), such that A0 ≡C2

k,k A1 and
A0 ≡<-inv C2

k,k A1 iff A0 and A1 agree on all C2-sentences and < -inv C2-sentences, respectively,
of quantifier rank at most k and with counting indexes at most k.

Let us rephrase Remark 5.3 in the case of C2. Assume we manage to show the existence
of some function Υ such that for A0,A1 ∈ C, one can construct < with

(A0, <) ≡C2

k,k (A1, <) (5.7)

whenever JA0Kk =Υ(k) JA1Kk. Once again considering f : k 7→ f̂(k,Υ(k)), Proposition 5.2
guarantees that A0 ≡FO

f(k) A1 implies A0 ≡<-inv C2

k,k A1. This amounts to saying that the
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equivalence relation ≡FO
f(k) is more fine-grained than ≡<-inv C2

k,k on C. An < -inv C2-sentence of
quantifier rank k and with counting indexes at most k can first be decomposed according to
the equivalence classes of ≡<-inv C2

k,k , and then rewritten on C as a disjunction of FO-sentences
of rank f(k) defining ≡FO

f(k) classes, which concludes the proof.
It only remains to show the existence of such a function Υ and to detail the strategy for

the construction of two linear orders satisfying Equation (5.7).
In order to prove Equation (5.7), we need an Ehrenfeucht-Fraïssé game capturing ≡C2

k,k. It
is not hard to derive such a game from the Ehrenfeucht-Fraïssé game for C2 [IL90]. This game
only differs from the two-pebble Ehrenfeucht-Fraïssé game in that in each round, once the
spoiler has chosen a structure (say (A0, <)) and a pebble to move (say px0), the spoiler picks
not only one element of that structure, but a set P0 of up to k elements. Then the duplicator
must respond with a set P1 of same cardinality in (A1, <). The spoiler then places px1 on any
element of P1, to which the duplicator responds by placing px0 on some element of P0. As
usual, the spoiler wins after this round if tp(A0,<)(p

x
0 , p

y
0) ̸= tp(A1,<)(p

x
1 , p

y
1) . Otherwise, the

game goes on until k rounds are played.
It is not hard to establish that this game indeed captures ≡C2

k,k, in the sense that
(A0, <) ≡C2

k,k (A1, <) if and only if the duplicator has a winning strategy for k rounds of this
game. The restriction on the cardinality of the set chosen by the spoiler (which is at most k)
indeed corresponds to the fact that the counting indexes of the formulae are at most k. As
for the number of rounds (namely, k), it corresponds as usual to the quantifier rank. This
can be easily derived from a proof of Theorem 5.3 in [IL90], and is left to the reader.

Let us now explain how to modify the construction of < presented in Section 5.3 in order
for the duplicator to maintain similarity for k-round in such a game. The only difference
lies in the choice of the universal elements. Recall that in the previous construction, we
chose, for each k-environment type τl extending a frequent k-neighbourhood type and each
segment ULj

0, an element a[τl]
j
L whose k-environment type in (A0, <) is destined to be τl

(and similarly for URj
0 and a[τl]

j
R).

In the new construction, we pick k such elements, instead of just one. Just as previously,
all these elements must be far enough from one another in the Gaifman graph of A0. Once
again, this condition can be met by virtue of the k-neighbourhood type τ underlying τl being
frequent, and thus having many occurrences scattered across A0 (remember that we have a
bound on the degree of A0, thus all the occurrences of τ cannot be concentrated). We only
need to multiply the value of m by k in Equation (5.2). This in turn means that Υ must be
larger than for the case of FO2.

When the spoiler picks a set of elements of size at most k in one of the structures (say P0

in (A0, <)), the duplicator responds by selecting, for each one of the elements of P0, an
element in (A1, <) along the strategy for the FO2-game explained in Section 5.4.2. All that
remains to be shown is that it is possible for the duplicator to answer each element of P0

with a different element in (A1, <).
Note that if the duplicator follows the strategy from Section 5.4.2, they will never

answer two moves by the spoiler falling under different cases among Cases (I)-(VI) with
the same element. Thus we can treat separately each one of these cases; and for each case,
we show that if the spoiler chooses up to k elements in (A0, <) falling under this case
in P0, then the duplicator can find the same number of elements in (A1, <), following the
aforementioned strategy.
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• For Case (I), this is straightforward, since the strategy is based on the isomorphism between
the borders of the linear orders. The same goes for Cases (II), (IV) and (VI), as the strategy
in these cases also relies on an isomorphism argument.
• Suppose now that py0 /∈ L

r+1
0 , and assume that the spoiler chooses several elements to the

left of py0, but outside of Sr
0 and not adjacent to py0. This corresponds to Case (III). Recall

that our new construction guarantees, for each k-environment type extending a frequent
k-neighbourhood type, the existence in Lr+1

1 of k elements having this environment. This
lets us choose, in Lr+1

1 , a distinct answer for each element in the set selected by the spoiler,
sharing the same k-environment type. Case (V) is obviously symmetric.

This concludes the proof of Theorem 5.14.

5.6. Constant symbols. Theorem 5.1 and 5.14 assume the vocabulary is purely relational.
We now explain how to lift this constraint.

To extend these theorems to a vocabulary Σ containing constant symbols, it suffices to
alter the definition of k-neighborhoods in the proof. Instead of including only elements at
distance at most k from a, N k

A(a) now also includes the interpretations of all the (finitely
many) constant symbols in Σ. The only notable difference in the proof is an increase in the
bound on the size of neighborhoods – more precisely, Md

k has to be increased by the number
of constant symbols in Remark 5.5. This increase has no bearing on the proof, as Md

k is still
a function of Σ, k and d.

6. Conclusion

In this paper, we made significant progress towards a better understanding of the two-variable
fragment of order-invariant first-order logic:
• From a complexity point of view, we established the coNExpTime-completeness of the

problem of deciding if a given FO2-sentence is order-invariant (Theorem 3.7), significantly
simplifying and improving the result by Zeume and Harwath [ZH16, Thm. 12].
• From an expressivity point of view, we addressed the question of whether every property

definable in order-invariant FO2 can also be expressed in plain FO. We failed short of
fully answering the question, but provided two interesting results. The first one (namely,
Theorem 4.6) establishes that under a more relaxed notion of order-invariance, the answer
to the above question is “no”. While this does not bring a fully-satisfactory answer to the
problem, this leads us to believe that order-invariant FO2 can indeed express properties
beyond the scope of FO. The second one (Theorem 5.1) states that when the degree is
bounded, every property expressible in order-invariant FO2 is definable in FO without
the use of the order. This is an important step towards resolving the conjecture that
order-invariant FO over classes of structures of bounded degree cannot express properties
beyond the reach of FO.

Results of Section 5 also apply to the case of the two-variable logic with counting, C2.
While order-invariant C2 has decidable satisfiability and validity problems [CW16, Theorem
6.20], it is open if it has a decidable syntax (i.e. whether the problem of determining if a
given C2-sentence is order-invariant is decidable). Unfortunately the techniques introduced
in Section 3 are of no use here, as C2 lacks the finite model property. Finally, it might be a
good idea to study order-invariant FO2 over graph classes beyond classes of bounded-degree,
e.g. planar graphs or nowhere-dense classes of graphs.



Vol. 21:1 ORDER-INVARIANCE WITH TWO VARIABLES 30:27

Acknowledgements

Bartosz Bednarczyk was supported by the ERC Consolidator Grant No. 771779 (DeciGUT).
He would like to thank Antti Kuusisto and Anna Karykowska for many insightful discussions
on the problem. The authors want to thank Thomas Schwentick and the anonymous reviewers
for their helpful comments.

References

[Bed22] Bartosz Bednarczyk. Order-Invariance of Two-Variable Logic is coNExpTime-complete. ArXiV,
2022.

[BL16] Pablo Barceló and Leonid Libkin. Order-Invariant Types and Their Applications. Logical Methods
in Computer Science, 12(1), 2016.

[CW16] Witold Charatonik and Piotr Witkowski. Two-variable Logic with Counting and a Linear Order.
Logical Methods in Computer Science, 12(2), 2016.

[FJY95] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On Monadic NP vs. Monadic co-NP.
Information and Computation, 120(1):78–92, 1995.

[Für83] Martin Fürer. The Computational Complexity of the Unconstrained Limited Domino Problem
(with Implications for Logical Decision Problems). In Egon Börger, Gisbert Hasenjaeger, and Dieter
Rödding, editors, Logic and Machines: Decision Problems and Complexity, Proceedings of the
Symposium "Rekursive Kombinatorik" held from May 23-28, 1983 at the Institut für Mathematische
Logik und Grundlagenforschung der Universität Münster/Westfalen, volume 171 of Lecture Notes
in Computer Science, pages 312–319. Springer, 1983.

[GGY97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the Decision Problem for Two-Variable
First-Order Logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[GO99] Erich Grädel and Martin Otto. On Logics with Two Variables. Theoretical Computer Science,
224(1-2):73–113, 1999.

[GOR97] Erich Grädel, Martin Otto, and Eric Rosen. Two-Variable Logic with Counting is Decidable. In
Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June
29 - July 2, 1997, pages 306–317. IEEE Computer Society, 1997.

[Gra21] Julien Grange. Successor-Invariant First-Order Logic on Classes of Bounded Degree. Logical Methods
in Computer Science, 17(3), 2021.

[Gra23] Julien Grange. Order-Invariance in the Two-Variable Fragment of First-Order Logic. In Bartek
Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer Science Logic,
CSL 2023, February 13-16, 2023, Warsaw, Poland, volume 252 of LIPIcs, pages 23:1–23:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[GS00] Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas. ACM
Transactions on Computational Logic, 1(1):112–130, 2000.

[IK89] Neil Immerman and Dexter Kozen. Definability with Bounded Number of Bound Variables. Infor-
mation and Computation, 83(2):121–139, 1989.

[IL90] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization,
pages 59–81. Springer New York, New York, NY, 1990.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.
[NO10] Jaroslav Nesetril and Patrice Ossona de Mendez. First Order Properties on Nowhere Dense

Structures. Journal of Symbolic Logic, 75(3):868–887, 2010.
[Ott01] Martin Otto. Two Variable First-Order Logic over Ordered Domains. Journal of Symbolic Logic,

66(2):685–702, 2001.
[PH23] Ian Pratt-Hartmann. Fragments of First-Order Logic. Oxford University Press, 2023.
[Pot94] Andreas Potthoff. Logische Klassifizierung regulärer Baumsprachen. PhD thesis, Christian-Albrechts-

Universität Kiel, 1994.
[Pra07] Ian Pratt-Hartmann. Complexity of the Guarded Two-variable Fragment with Counting Quantifiers.

Journal of Logic and Computation, 17(1):133–155, 2007.
[Pra10] Ian Pratt-Hartmann. The Two-Variable Fragment with Counting Revisited. In Anuj Dawar and Ruy

J. G. B. de Queiroz, editors, Logic, Language, Information and Computation, 17th International



30:28 B. Bednarczyk and J. Grange Vol. 21:1

Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceedings, volume 6188 of Lecture
Notes in Computer Science, pages 42–54. Springer, 2010.

[Sch13] Nicole Schweikardt. A Tutorial on Order- and Arb-Invariant Logics. https://www.irif.fr/
~steiner/jifp/schweikardt.pdf, 2013.

[Tra50] Boris A Trakhtenbrot. Impossibility of an Algorithm for the Decision Problem for Finite Classes.
In Doklady Akademiia Nauk SSSR, volume 70, page 569, 1950.

[Tur38] Alan Mathison Turing. On computable numbers, with an application to the Entscheidungsproblem.
A correction. Proceedings of the London Mathematical Society, 2(1):544–546, 1938.

[ZH16] Thomas Zeume and Frederik Harwath. Order-Invariance of Two-Variable Logic is Decidable. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8,
2016, pages 807–816. ACM, 2016.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://www.irif.fr/~steiner/jifp/schweikardt.pdf
https://www.irif.fr/~steiner/jifp/schweikardt.pdf

	1. Introduction
	2. Preliminaries
	3. Complexity of the invariance problem
	4. Can order-invariant FO 2  express properties beyond the scope of FO?
	5. Expressive power when the degree is bounded
	5.1. Overview of the result
	5.2. Neighbourhoods
	5.3. Constructing linear orders on A0 and A1
	5.4. Proof of the FO2-similarity of (A0,<0) and (A1,<1)
	5.5. Counting quantifiers
	5.6. Constant symbols

	6. Conclusion
	Acknowledgements
	References

