
Logical Methods in Computer Science
Vol. 11(2:6)2015, pp. 1–48
www.lmcs-online.org

Submitted Jan. 28, 2014
Published Jun. 10, 2015

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE

INTERACTION THROUGH SKELETONS ∗

PIERRE CLAIRAMBAULT

CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon
e-mail address: pierre.clairambault@ens-lyon.fr

Abstract. In this paper, we study the complexity of execution in higher-order program-
ming languages. Our study has two facets: on the one hand we give an upper bound to the
length of interactions between bounded P-visible strategies in Hyland-Ong game semantics.
This result covers models of programming languages with access to computational effects
like non-determinism, state or control operators, but its semantic formulation causes a loose
connection to syntax. On the other hand we give a syntactic counterpart of our semantic
study: a non-elementary upper bound to the length of the linear head reduction sequence
(a low-level notion of reduction, close to the actual implementation of the reduction of
higher-order programs by abstract machines) of simply-typed λ-terms. In both cases our
upper bounds are proved optimal by giving matching lower bounds.

These two results, although different in scope, are proved using the same method: we
introduce a simple reduction on finite trees of natural numbers, hereby called interaction
skeletons. We study this reduction and give upper bounds to its complexity. We then
apply this study by giving two simulation results: a semantic one measuring progress in
game-theoretic interaction via interaction skeletons, and a syntactic one establishing a
correspondence between linear head reduction of terms satisfying a locality condition called
local scope and the reduction of interaction skeletons. This result is then generalized to
arbitrary terms by a local scopization transformation.

1. Introduction

In the last two decades there has been a significant interest in the study of quantitative or
intensional aspects of higher-order programs; in particular, the study of their complexity
has generated a lot of effort. In the context of the λ-calculus, the first result that comes
to mind is the work by Schwichtenberg [19], later improved by Beckmann [4], establishing
upper bounds to the length of β-reduction sequences for simply-typed λ-terms. In the
related line of work of implicit complexity, type systems have been developed to characterize
extensionally certain classes of functions, such as polynomial [13] or elementary [11] time.

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program Semantics—
Denotational Semantics.

Key words and phrases: Linear head reduction, complexity, game semantics.
∗ This work presents the combined results of two conference papers [6, 7].

This work was partially supported by the ERC Advanced Grant ECSYM and by the French ANR grant
ELICA, ANR-14-CE25-0005.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(2:6)2015
c© P. Clairambault
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. CLAIRAMBAULT

Such systems rely on a soundness theorem establishing that well-typed terms normalize in a
certain restricted time, which is itself established using syntactic methods that are specific
to the system being studied. This calls for the development of syntax-independent tools
to study precisely the execution time of higher-order programs. The present paper is a
contribution towards that goal.

In order to develop tools for estimating the complexity of programs that are at the same
time syntax-independent but still precise and computationally relevant, game semantics
is a good place to start. Indeed Hyland-Ong game semantics, originally introduced to
solve the full abstraction problem for PCF [15], have since proved powerful and flexible
enough to provide fully abstract models for various computational features of programming
languages: non-determinism, state, exceptions, control operators, concurrency. . . At the
same time game semantics are computationally informative: moves in an interaction exactly
correspond to computation steps as performed by some abstract machines, as was formally
proved by Danos, Herbelin and Regnier [9] for the simply-typed λ-calculus. Accordingly,
the first contribution of this paper is an upper bound to the length of interactions between
bounded P-visible strategies in Hyland-Ong game semantics. Bounded P-visible strategies
allow computational effects such as non-determinism, control operators or ground state but
disallow, for instance, higher-order references using which a fixpoint combinator can be
defined. In this context, we give a non-elementary upper bound to the length of interactions
(so implicitly, computation), for which we prove optimality by providing a matching lower
bound. This is done by extracting from interaction sequences a finite tree of natural numbers
called an interaction skeleton. We then prove a simulation result, showing that progress
in the game theoretic interaction is witnessed by a simple reduction on the corresponding
interaction skeletons. This reduction is then analyzed independently of its connection with
game semantics, and this analysis informs a bound on the length of P-visible interactions.

This syntax-independent approach advocated above yields a result with a broader scope,
however there is a price to pay: the innocent strategies of game semantics are representations
of η-long β-normal λ-terms, so their interactions are only easily linked to syntactic reduction
of terms of the form M N1 . . . Np where M and all the Nis are β-normal η-long normal
forms; we will call such terms game situations in this paper. In order to compensate for this
structural restriction, we investigate the direct relationship between interaction skeletons
and linear head reduction, independently of game semantics. We define a set of terms
called generalized game situations, that are both η-long in a sense adapted to linear head
reduction, and satisfy a key locality constraint called local scope. Generalized game situations
are preserved by linear head reduction. Moreover they can be simulated by interaction
skeletons, from which we deduce optimal upper bounds to their complexity. These bounds
are then generalized to arbitrary simply-typed λ-terms by means of a syntactic λ-lifting [16]
transformation putting arbitrary terms to locally scoped form.

Related works. There are multiple approaches to the complexity analysis of higher-order
programs, but they seem to separate into two major families. On the one hand, Beckmann
[4], extending earlier work by Schwichtenberg [19], gave exact bounds to the maximal
length of β-reduction on simply-typed λ-terms. His analysis uses very basic information on
the terms (their length, or height, and order), but gives bounds that are in general very
rough. On the other hand other groups, including Dal Lago and Laurent [17], De Carvalho
[12], or Bernardet and Lengrand [5], use semantic structures (respectively, game semantics,
relational semantics, or non-idempotent intersection types) to capture abstractly the precise
complexity of particular terms. Their bounds are much more precise on particular terms,

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 3

but require information on the terms whose extraction is in general as long to obtain as
actual execution. The present contribution belongs to the first family. However, unlike
Beckmann and Schwichtenberg our core tools are syntax-independent. Moreover we focus on
linear head reduction, the notion of reduction implemented by several call-by-name abstract
machines [10], closer to the actual execution of functional programming languages.

Outline. In Section 2, we introduce a few basic notions or notations useful to the rest of
the paper. In Section 3 we present the game semantics framework from which interaction
skeletons were originally extracted, and prove our semantic simulation result. Section 4 is a
largely standalone section in which we study interaction skeletons and their reduction, and
prove our main complexity result. Finally, Section 5 focuses on the syntactic implications of
our study of skeletons and details their relationship with linear head reduction.

This paper is organized around the notion of interaction skeleton and their reduction,
with two largely independent applications to game semantics and to the complexity of linear
head reduction. We chose to present first the game-theoretic development, since it motivates
the definition of interaction skeletons. However, our intention is that the paper should be
accessible to semantically-minded as well as more syntactically-minded readers. In particular,
readers not interested in game semantics should be able to skip Section 3 and still have
everything needed to understand Sections 4 and 5.

2. Preliminaries

2.1. Syntax and dynamics of the λ-calculus. In this paper, we consider the simply-
typed λ-calculus Λ built from one base type o. Its types and terms are:

A,B ::= o | A→ B

M,N ::= λxA. M |M N | x | ∗A
subject to the usual typing rules defining the typing relation Γ ` M : A (for definiteness,
contexts Γ are considered to be sets of pairs x : A, where x is a variable name and A is
a simple type). All the terms in this paper are considered well-typed, although we will
not always make it explicit. Note that we work here with the simply-typed λ-calculus à la
Church, i.e. the variables are explicitly annotated with types (although we often omit the
annotations for the sake of readability). For each type A, there is a constant ∗A : A of type
A. We will often omit the index and write ∗. As usual, we write fv(M) for the set of free
variables of a term M , i.e. variables appearing in the term but not bound by a λ. If A is a
type, we write idA for the term ` λxA. x : A→ A. Terms are assumed to obey Barendregt’s
convention, and are considered up to α-equivalence. Note that our design choices – only one
atom, each type is inhabited – merely make the presentation simpler and are not strictly
required for our results to hold.

If Γ, x : A `M : B and Γ ` N : A, we write M [N/x] for the substitution of x by N in
M , i.e. M where all occurrences of x have been replaced by N . Although this paper focuses
on linear head reduction (to be defined later), we will occasionally need β-reduction. It is
the usual notion of reduction in the λ-calculus, defined by the context-closure of:

(λx. M) N →β M [N/x]

Likewise we consider η-expansion to be the context closure of:

M →η λx
A. M x

4 P. CLAIRAMBAULT

valid whenever M has type A→ B for some types A,B and x 6∈ fv(M).
The level of a type is defined by lv(o) = 0 and lv(A → B) = max(lv(A) + 1, lv(B)).

Likewise, the level lv(M) of a term M is the level of its type. Finally, the order ord(M) of
a term M is the maximal lv(N), for all subterms N of M . Within a term Γ `M : A such
that (x : B) ∈ Γ, we write lvM (x) = lv(B). The term M will generally be implicit from the
context, so we will just write lv(x).

2.2. Growth rates of functions. We recall some standard notations for comparing growth
rates of functions. For functions f, g : N→ N, we write f(n) = Θ(g(n)) when there exists
reals c1, c2 > 0 and N ∈ N such that for all n ≥ N , c1g(n) ≤ f(n) ≤ c2g(n). This is
generalized to functions of multiple variables f, g : Np → N by setting that f(n1, . . . , np) =
Θ(g(n1, . . . , np)) iff there are c1, c2 > 0 and N ∈ N such that for all ni ≥ N we have
c1g(n1, . . . , np) ≤ f(n1, . . . , np) ≤ c2g(n1, . . . , np). If h : N → N is another function, we
write f(n1, . . . , np) = h(Θ(g(n1, . . . , np))) iff there is a function φ : Np → N such that
f(n1, . . . , np) = h(φ(n1, . . . , np)) and φ(n1, . . . , np) = Θ(g(n1, . . . , np)).

3. Visible pointer structures and interaction skeletons

As we said before, the general purpose of this paper is to develop syntax-independent tools
to reason about termination and complexity of programming languages. Game semantics
provide such a framework: in this setting, programs are identified with the set of their
possible interactions with the execution environment, presented as a strategy. All the
syntactic information is forgotten but at the same time no dynamic information is lost, since
the strategy exactly describes the behaviour of the term within any possible evaluation
context.

More importantly, game semantics can be seen both as a denotational semantics and
as an operational semantics in the sense that the interaction process at the heart of
games is operationally informative and strongly related to the actual evaluation process as
implemented, for instance, by abstract machines. This important intuition was made formal
for the first time, to the author’s knowledge, by Danos, Herbelin and Regnier in [9]. There,
they showed that assuming one has a simply-typed λ-term M N1 . . . Np where M and the
Nis are both η-long and β-normal, then there is a step-by-step correspondence between:

• The linear head reduction sequence of M N1 . . . Np,
• The game-theoretic interaction between strategies JMK and Π1≤i≤pJNiK.
In this paper, we will refer to simply-typed λ-terms of that particular shape as game
situations, because it is in those situations that the connection between game semantics
and execution of programs is the most direct. Indeed (innocent) game semantics can be seen
as a reduction-free way of composing Böhm trees, i.e. of computing game situations.

Game situations also provide the starting point of our present contributions. Indeed,
the connection above reduces the termination and complexity analysis of the execution of
a game situation M N1 . . . Np to the syntax-independent analysis of the game-theoretic
witness of this execution, i.e. the game-theoretic interaction between the strategies JMK
and Π1≤i≤nJNiK. More precisely, it turns out that from this interaction one just has to keep
the structure of pointers in order to get a precise estimate of the complexity of execution.

In this section, we will start by recalling a few basic definitions of Hyland-Ong game
semantics. We will show that the mechanism of composition gives rise to structure called

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 5

visible pointer structures. We will then show the main result of this section, that visible
pointer structures can be simulated by a simple rewriting system called interaction skeletons.

3.1. Brief reminder of Hyland-Ong games. We start this section by recalling some of
the basic definitions of Hyland-Ong games. The presentation of game semantics will be
intentionally brief and informal, firstly because it is only there to provide context and is not
a prerequisite to understand the paper, and secondly because good introductions can be
easily found in the literature, see e.g. [14].

We are interested in games with two participants: Opponent (O, the environment) and
Player (P, the program). They play on directed graphs called arenas, which are semantic
versions of types. Formally, an arena is a structure A = (MA, λA, IA,`A) where:

• MA is a set of moves,
• λA : MA → {O,P} is a polarity function indicating whether a move is an Opponent or

Player move (O-move or P -move).
• IA ⊆ λ−1

A ({O}) is a set of initial moves.
• `A⊂MA ×MA is a relation called enabling, such that if m `A n, λA(m) 6= λA(n).

In our complexity analysis we will use notions of depth. A move m ∈ MA has depth
d ∈ N if there is an enabling sequence:

m0 `A m1 ` · · · ` mn−1 = m

where m0 ∈ IA, and no shortest enabling sequence exists; for instance any initial move has
depth 0. Likewise, an arena A has depth d if d is the largest depth of any move in MA.

We now define plays as justified sequences over A: these are sequences s of moves of
A, each non-initial move m in s being equipped with a pointer to an earlier move n in s,
satisfying n `A m. In other words, a justified sequence s over A is such that each reversed
pointer chain si0 ← si1 ← . . .← sin is a path on A (viewed as a graph). The role of pointers
is to allow reopenings or backtracking in plays. When writing justified sequences, we will
often omit the justification information if this does not cause any ambiguity. The symbol
v will denote the prefix ordering on justified sequences, and s1 vP s2 (resp. s1 vO s2 will
mean that s1 is a P -ending (resp. O-ending) prefix of s2. If s is a justified sequence on A, |s|
will denote its length. If s is a justified sequence over A and Σ ⊆MA, then the restriction
s � Σ comprises the moves of s in Σ. Pointers in s � Σ are those obtained by following a
path of pointers in s:

sj1 → sj2 → · · · → sjn
where sj1 , sjn ∈ Σ but for 2 ≤ k ≤ n − 1 sjk 6∈ Σ. If s = s0 . . . sn is a justified sequence
and i ≤ n, write s≤i for its subsequence s0 . . . si. The legal plays over A are the justified
sequences s on A satisfying the alternation condition, i.e. that if tmn v s, then λA(m) 6=
λA(n). The set of legal plays on A is denoted by LA.

Given a justified sequence s on A, it has two subsequences of particular interest: the
P-view and O-view. The view for P (resp. O) may be understood as the subsequence of the
play where P (resp. O) only sees his own duplications. Practically, the P-view psq of s is
computed recursively by forgetting everything under Opponent’s pointers, as follows:

• psmq = psqm if λA(m) = P ;
• psmq = m if m ∈ IA and m has no justification pointer;
• ps1ms2nq = ps1qmn if λA(n) = O and n points to m.

6 P. CLAIRAMBAULT

The O-view xsy of s is defined dually, without the special treatment of initial moves.
In this subsection, we will present several classes of strategies on arena games that are

of interest to us in the present paper. A strategy σ on A is a set of even-length legal plays
on A, closed under even-length prefix. A strategy from A to B is a strategy σ : A ⇒ B,
where A⇒ B is the usual arrow arena defined by

MA⇒B = MA +MB

λA⇒B = [λA, λB]

IA⇒B = IB

`A⇒B = `A + `B +IB × IA
where λA means λA with polarity O/P reversed.

3.1.1. Composition. We define composition of strategies by the usual parallel interaction
plus hiding mechanism. If A, B and C are arenas, we define the set of interactions
I(A,B,C) as the set of justified sequences u over A, B and C such that u� A,B ∈ LA⇒B,
u� B,C ∈ LB⇒C and u� A,C ∈ LA⇒C . Then, if σ : A ⇒ B and τ : B ⇒ C, their parallel
interaction is σ || τ = {u ∈ I(A,B,C) | u� A,B ∈ σ ∧ u� B,C ∈ τ}. Their composition is
σ; τ = {u� A,C | u ∈ σ||τ}, is associative and admits copycat strategies as identities.

3.1.2. P -visible strategies. A strategy σ is P -visible if each of its moves points to the current
P -view. Formally, for all sab ∈ σ, b points inside psaq. P -visible strategies are stable under
composition, and correspond to functional programs with ground type references [1].

3.1.3. Innocent strategies. The class of innocent strategies is central in game semantics,
because of their correspondence with purely functional programs (or λ-terms) and of their
useful definability properties. A strategy σ is innocent if

sab ∈ σ ∧ t ∈ σ ∧ ta ∈ LA ∧ psaq = ptaq =⇒ tab ∈ σ
Intuitively, an innocent strategy only takes its P -view into account to determine its next
move. Indeed, any innocent strategy is characterized by a set of P -views. This observation
is very important since P -views can be seen as abstract representations of branches of
η-expanded Böhm trees (a.k.a. Nakajima trees [18]): this is the key to the definability
process on innocent strategies. Arenas and innocent strategies form a cartesian closed
category and are therefore a model of Λ; let us add for completeness that o is interpreted as
the singleton arena and ∗A is interpreted as the singleton strategy on JAK containing only
the empty play.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 7

3.1.4. Bounded strategies. A strategy σ is bounded if it is P -visible and if the length of
its P -views is bounded: formally, there exists N ∈ N such that for all s ∈ σ, |psq| ≤ N .
Bounded strategies only have finite interactions [8]; this result corresponds loosely to the
normalisation result on simply-typed λ-calculus. Syntactically, bounded strategies include
the interpretation of all terms of a higher-order programming language with ground type
references, arbitrary non-determinism and control operators, but without recursion. This
remark is important since it implies that our results will hold for any program written with
these constructs, as long as they do not use recursion or a fixed point operator.

Our complexity results, in this game-theoretic part of this paper, will be expressed as a
function of the size of the involved bounded strategies, given by:

|σ| = maxs∈σ|psq|
2

When σ is an innocent strategy coming from a Böhm tree, then |σ| is proportional to the
height of this Böhm tree, as defined in the syntactic part of this paper.

3.2. Visible pointer structures.

3.2.1. Introduction of visible pointer structures. We note here that the notion of P -view (and
of its size) only takes into account the structure of pointers within the plays, and completely
ignores the actual labels of the moves. In fact the underlying pointer structure of a play will
be all we need to study the asymptotic complexity of execution.

Definition 3.1. The pure arena I∞ is defined by:

MI∞ = N

λI∞ =

{
2n 7→ O
2n+ 1 7→ P

`I∞ = {(n, n+ 1) | n ∈ N}
II∞ = {0}

A pointer structure is a legal play s ∈ LI∞ with at most one initial move. Note that for
any arena A, a legal play s ∈ LA with only one initial move can always be mapped to its
pointer structure s̄ ∈ LI∞ by sending each move si to its depth, i.e. the number of pointers
to be taken in s before reaching the initial move.

The depth of a pointer structure s is the largest depth of si ∈ N, for 0 ≤ i ≤ |s| − 1.

Pointer structures retain some information about the control flow of the execution, but
on the other hand forget most of the typing information. Our results will rely on the crucial
assumption that the strategies involved act in a visible way. This is necessary, because
non-visible strategies are able to express programs with general (higher-order) references
within which a fixpoint operator is definable, so termination is lost.

Definition 3.2. A visible pointer structure s is a pointer structure s ∈ LI∞ such that:

• It is P -visible: for any s′a vP s, a points within ps′q.
• It is O-visible: for any s′a vO s, a points within xs

′
y.

We write Vd for the set of all visible pointer structures of depth lower than d.

8 P. CLAIRAMBAULT

We are interested in the maximal length of a visible pointer structure resulting from the
interaction between two bounded strategies. Since the collapse of plays to visible pointer
structures forgets the identity of moves, all that remains from bounded strategies in this
framework is their size. Therefore, for n, p ∈ N, we define the set n ?d p of all visible pointer
structures possibly resulting from an interaction of strategies of respective sizes n and p, in
an ambient arena of depth d. Formally:

n ?d p = {s ∈ Vd | ∀s′ v s, |ps′q| ≤ 2n ∧ |xs′y| ≤ 2p+ 1}
In [8], we already examined the termination problem for visible pointer structures. We

proved that any interaction between bounded strategies is necessarily finite. Therefore since
n ?d p, regarded as a tree, is finitely branching, it follows that it is finite. So there is an
upper bound Nd(n, p) to the length of any visible pointer structure in n ?d p.

3.2.2. The visible pointer structure of an interaction. We take here the time to detail more
formally our claim that an estimation of the length of visible pointer structures in n ?d p is
informative of the complexity of interaction between bounded strategies.

Let σ : A ⇒ B and τ : B ⇒ C be bounded strategies, of respective size n and p. We
are interested in the possible length of interactions in σ ‖ τ . Of course arbitrary such
interactions are not bounded in size, since σ and τ both interact with an external opponent
in A and C, whose behavior is not restricted by any size condition. Therefore we restrict
our interest to passive such interactions, i.e. interactions u ∈ σ ‖ τ such that the unique
Opponent move in u � A,C is a unique initial question in C. When σ and τ are both
innocent and correspond to λ-terms, this corresponds by the results of [9] to a linear head
reduction sequence from a game situation. In particular, the passivity condition ensures
that the interaction stops if a free variable ever arrives in head position.

Proposition 3.3. Let σ : A ⇒ B be a bounded strategy of size p, let τ : B ⇒ C be a
bounded strategy of size n, and suppose that B has depth d − 1, for d ≥ 2. Then for all
passive u ∈ σ ‖ τ :

|u| ≤ Nd(n, p) + 1

Proof. Since u is passive, it consists in a play ◦Cu′ with ◦C initial in C and u′ ∈ LB , possibly
followed by a trailing move • in A or C. Take any strict prefix ◦Cu′′ v u. Then u′′ is either
in σ or an immediate prefix of a play in σ, so |pu′′q| ≤ 2p. Accordingly, |x◦C u′′y| ≤ 2p+ 1.
Likewise ◦Cu′′ is either in τ or an immediate prefix of a play in τ , so |p◦C u′′q| ≤ 2n.

Writing u for the pointer structure of a play u (i.e. the play of I∞ obtained by
sending any move to its depth). Then we have ◦Cu′ ∈ n ?d p. Indeed the size of P -views and
O-views in a play only depends on pointers, so it is unchanged by forgetting arena labels.
Moreover ◦Cu′ ∈ LB⇒{◦C} (where {◦C} is the singleton arena), which has depth d.

From the above, we deduce that | ◦C u′| ≤ Nd(n, p), so |u| ≤ Nd(n, p) + 1.

So the study of visible pointer structure is sufficient to study the length of interactions
in terms of the sizes of the strategies involved.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 9

3.2.3. Interaction skeletons and simulation of visible pointer structures. We now introduce
interaction skeletons (or just skeletons for short), the main tool used in this paper in order
to study the complexity of execution.

As we mentioned repeatedly, game-theoretic interaction corresponds to linear head
reduction — which is itself efficiently implemented by machines with environment such
as the Krivine Abstract Machine (KAM). In such machines, game situations produce by
reduction situations where the terms interacting are no longer plain closed terms but rather
terms-in-environments, also known as closures. Following this phenomenon, whereas the
measure of the first move s0 of a visible pointer structure is given by the sizes of the strategies
involved (so by a pair of natural numbers), the measure of a later move si will be given by a
finite tree of natural numbers reminiscent of the structure of closures.

We will call a pointed visible pointer structure a pair (s, i) where s is a visible
pointer structure and i ≤ |s| − 1 is an arbitrary “starting” move. We adapt the notions of
size and depth for them, and introduce a notion of context.

Definition 3.4. Let (s, i) be a pointed visible pointer structure. The residual size of s at
i, written rsize(s, i), is defined as follows:

• If si is an Opponent move, it is maxsi∈ps≤jq |ps≤jq| − |ps≤iq|+ 1

• If si is a Player move, it is maxsi∈xs≤jy |xs≤jy| − |xs≤iy|+ 1

where si ∈ ps≤jq means that the computation of ps≤jq reaches1 si. Dually, we have the notion
of residual co-size of s at i, written rcosize(s, i), defined as follows:

• If si is an Opponent move, it is maxsi∈xs≤jy |xs≤jy| − |xs≤iy|+ 1

• Otherwise, maxsi∈ps≤jq |ps≤jq| − |ps≤iq|+ 1

The residual depth of s at i is the maximal length of a pointer chain in s starting from si.

Definition 3.5. Let s be a visible pointer structure. We define the context of (s, i) as:

• If si is an O-move, the set {sn1 , . . . , snp} of O-moves appearing in ps<iq,
• If si is a P-move, the set {sn1 , . . . , snp} of P-moves appearing in xs<iy.

In other words it is the set of moves to which si+1 can point whilst abiding to the visibility
condition, except si. We also need the dual notion of co-context, which contains the moves
the other player can point to. The co-context of (s, i) is:

• If si is an O-move, the set {sn1 , . . . , snp} of P-moves appearing in xs<iy,
• If si is a P-move, the set {sn1 , . . . , snp} of O-moves appearing in ps<iq.

Definition 3.6. A skeleton is a finite tree, whose nodes and edges are both labeled by
natural numbers. If a1, . . . , ap are skeletons and d1, . . . , dp are natural numbers, we write:

n[{d1}a1, . . . , {dp}ap] =

n
d1 dp

a1 . . . ap

We now define what it means for (s, i) to respect a skeleton a.

Definition 3.7 (Trace, co-trace, interaction). The two notions Tr and coTr are defined
by mutual recursion, as follows: let a = n[{d1}a1, . . . , {dp}ap] be a skeleton. We say that
(s, i) is a trace (resp. a co-trace) of a, denoted (s, i) ∈ Tr(a) (resp. (s, i) ∈ coTr(a)) if the
following conditions are satisfied:

1So starting from sj and following Opponent’s pointers eventually reaches si.

10 P. CLAIRAMBAULT

• rsize(s, i) ≤ 2n (resp. rcosize(s, i) ≤ 2n+ 1),
• If {sn1 , . . . , snp} is the context of (s, i) (resp. co-context), then for each k ∈ {1, . . . , p} we

have (s, nk) ∈ coTr(ak).
• If {sn1 , . . . , snp} is the context of (s, i) (resp. co-context), then for each k ∈ {1, . . . , p} the

residual depth of s at nk is less than dk.

Then, we define an interaction of two skeletons a and b at depth d as a pair (s, i) ∈
Tr(a)∩coTr(b) where the residual depth of s at i is less than d, which we write (s, i) ∈ a?d b.

Notice that we use the same notation ? both for natural numbers and skeletons. This
should not generate any confusion, since the definitions above coincide with the previous
ones in the special case of “atomic” skeletons: if n and p are natural numbers, then obviously
s ∈ n ?d p (according to the former definition) if and only if (s, 0) ∈ n[] ?d p[] (according to
the latter). In fact, we will sometimes in the sequel write n for the atomic skeleton with n
at the root and without children, i.e. n[].

3.2.4. Simulation of visible pointer structures. We introduce now our main tool, a reduction
on skeletons which simulates visible pointer structures: if n[{d1}a1, . . . , {dp}ap] and b are
skeletons (n > 0), we define the non-deterministic reduction relation on triples (a, d, b),
where d is a depth (a natural number) and a and b are skeletons, by the following two cases:

(n[{d1}a1, . . . , {dp}ap], d, b) (ai, di − 1, (n− 1)[{d1}a1, . . . , {dp}ap, {d}b])
(n[{d1}a1, . . . , {dp}ap], d, b) (b, d− 1, (n− 1)[{d1}a1, . . . , {dp}ap, {d}b])

where i ∈ {1, . . . , p}, di > 0 in the first case and d > 0 in the second case.
In order to prove our simulation result, we will make use of the following lemma.

Lemma 3.8. Let s be a pointed visible pointer structure and a = n[{d1}a1, . . . , {dp}ap] a
skeleton such that (s, i) ∈ coTr(a). Then if sj → si, (s, j) ∈ Tr(a).

Proof. Let us suppose without loss of generality that si is an Opponent move; the other
case can be obtained just by switching Player/Opponent and P -views/O-views everywhere.
Then sj being a Player move, we have to check first that rsize(s, j) ≤ 2n, i.e.

max
sj∈xs≤ky

|xs≤ky| − |xs≤jy|+ 1 ≤ 2n

We use that rcosize(s, i) ≤ 2n+ 1, i.e.

max
si∈xs≤ky

|xs≤ky| − |xs≤iy|+ 1 ≤ 2n+ 1

But sj → si, hence |xs≤jy| = |xs≤iy| + 1 and the inequality is obvious. We need now to
examine the context of (s, j). Since sj is a Player move, it is defined as the set {sn1 , . . . , snp}
of Player moves appearing in xs<jy, which is also the set of Player moves appearing in xs<iy
and therefore the co-context of (s, i). But (s, i) ∈ coTr(a), hence for all k ∈ {1, . . . , p} we
have (s, nk) ∈ coTr(ak) which is exactly what we needed.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 11

Proposition 3.9 (Simulation). Let (s, i) ∈ a ?d b, then if si+1 is defined, there exists
(a, d, b) (a′, d′, b′) such that (s, i+ 1) ∈ a′ ?d′ b′.

Proof. Suppose a = n[{d1}a1, . . . , {dp}ap]. Let {sn1 , . . . , snp} be the context of (s, i). By
visibility, si+1 must either point to si or to an element of the context. Two cases:

• If si+1 → si, then we claim that (s, i + 1) ∈ b ?d−1 (n − 1)[{d1}a1, . . . , {dp}ap, {d}b], i.e
(s, i+ 1) ∈ Tr(b), (s, i+ 1) ∈ coTr((n− 1)[{d1}a1, . . . , {dp}ap, {d}b]) and the depth of s
relative to i+ 1 is at most d− 1. For the first part, we use that (s, i) ∈ a?d b: in particular,
(s, i) ∈ coTr(b) and since si+1 → si this implies by Lemma 3.8 that (s, i+ 1) ∈ Tr(b). For
the second part, we must first check that rcosize(s, i+ 1) ≤ 2(n− 1) + 1. Let us suppose
without loss of generality that si is an Opponent move, all the reasoning below can be
adapted by switching Player/Opponent and P -views/O-views everywhere. We want to
prove:

rcosize(s, i+ 1) = max
si+1∈ps≤jq

|ps≤jq| − |ps≤i+1q|+ 1 ≤ 2(n− 1) + 1

But since (s, i) ∈ Tr(a), we already know:

rsize(s, i) = max
si∈ps≤jq

|ps≤jq| − |ps≤iq|+ 1 ≤ 2n

Thus we only need to remark that |ps≤i+1q| = |ps≤iq|+1 since si+1 is a Player move. Now, we
must examine the co-context of (s, i+ 1), but by definition of P -view it is {sn1 , . . . , snp , si}
where {sn1 , . . . , snp} is the context of (s, i). Since (s, i) ∈ Tr(n[a1, . . . , ap]) we have
as required (s, nk) ∈ coTr(ak) for each k ∈ {1, . . . , p} and (s, i) ∈ coTr(b) because
(s, i) ∈ a ?d b. For the third part, we have to prove that the depth of s relative to i+ 1 is
at most d− 1, but it is obvious since the depth relative to i is at most d and si+1 → si.
• Otherwise, we have si+1 → snj for j ∈ {1, . . . , p}. Then, we claim that (s, i + 1) ∈
aj ?di−1 (n− 1)[{d1}a1, . . . , {dp}ap, {d}b]. We do have (s, i+ 1) ∈ Tr(aj) because (s, i) ∈
Tr(n[{d1}a1, . . . , {dp}ap]), thus (s, nj) ∈ coTr(aj) and (s, i+ 1) ∈ Tr(aj) by Lemma 3.8.
It remains to show that (s, i+ 1) ∈ coTr((n− 1)[{d1}a1, . . . , {dp}ap, {d}b]) and that the
depth of s relative to i+ 1 is at most d1 − 1, but the proofs are exactly the same as in the
previous case.

Before going on to the study of skeletons, let us give a last simplification. If a =
n[{d1}t1, . . . , {dp}tq] and b are skeletons, then a ·d b will denote the skeleton obtained
by appending b as a new son of the root of a with label d, i.e. n[{d1}t1, . . . , {dp}tq, {d}b].
Consider the following non-deterministic rewriting rule on skeletons:

n[{d1}a1, . . . , {dp}ap] ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap]
Both rewriting rules on triples (a, d, b) are actually instances of this reduction, by the
isomorphism (a, d, b) 7→ a ·d b. We leave the obvious verification to the reader. Taking this
into account, all that remains to study is this reduction on skeletons illustrated in Figures 1
and 2, and analyzed in the next section.

If N (a) denotes the length of the longest reduction sequence starting from a skeleton a,
we have the following property.

Proposition 3.10. Let n, p ≥ 0, d ≥ 2, then Nd(n, p) ≤ N (n[{d}p]) + 1.

Proof. Obvious from Proposition 3.9, adding 1 for the initial move which is not accounted
for by the reduction on skeletons.

12 P. CLAIRAMBAULT

We postpone the analysis of the reduction of skeletons to the next section. However
with the results proved there, we get the following result:

Theorem 3.11. For fixed d ≥ 3, we have Nd(n, p) = 2
Θ(n log(p))
d−2 .

Proof. Upper bound. Follows from Proposition 3.10 and Theorem 4.17.
Lower bound. To construct the example providing the lower bound, it is convenient to

consider the extension Λ× of Λ with finite product types Π1≤i≤nAi. Tupling of Γ `Mi : Ai
for 1 ≤ i ≤ n is written 〈M1, . . . ,Mn〉. For simplicity we use λ〈x1, . . . , xn〉Π1≤i≤nAi .M as
syntactic sugar for λxΠ1≤i≤nAi . M [πix/xi], where πi : Π1≤i≤nAi → Ai is the corresponding
projection. Products are interpreted in the games model following standard lines [15]. In Λ×
(and Λ), we define higher types for Church integers by setting A−2 = o and An+1 = An → An.
For n, p ∈ N, we write np for the Church integer for n of type Ap. For A a type, if M : A→ A
and N : A, we write Mn(N) for the n-th iteration of M applied to N . Then for n, p, d ∈ N,
we define:

(λ〈x, y, z1, . . . , zd〉. xn(y) z1 . . . zd) 〈pd+1
, 2d, 2d−1, . . . , 20〉

By elementary calculations on λ-terms, we know that this is β-equivalent to 2p
n

d+10
. So,

taking a maximal (necessarily passive) interaction:

u ∈ J〈p
d+1

, 2d, 2d−1, . . . , 20, ido〉K ‖ Jλ〈x, y, z1, . . . , zd, i〉. xn(y) z1 . . . zd iK

we know that u must have length at least 2p
n

d+1. Inspecting these strategies, we see that the
left hand side one has size p + d + 2 and the right hand side one has size n + d + 3, and
that they interact in an arena JΠd+2

i=0Ad+1−iK of depth d+ 3. It follows that the underlying

pointer structure of u (of length at least 2p
n

d+1) is in (n+ d+ 3) ?d+4 (p+ d+ 2). Therefore,

Nd+4(n+ d+ 3, p+ d+ 2) ≥ 2p
n

d+1

So for d ≥ 4, n ≥ d+ 3, p ≥ d+ 2 we have Nd(n, p) ≥ 2
(n−d−3) log(p−d−2)
d−2 , providing the lower

bound. Although this example only proves the other bound for d ≥ 4 it also holds for d = 3:
this is proved using the same reasoning on the maximal interaction between strategies Jp

0
K

and Jλx. xn(ido)K, having length at least pn.

The strength of this result is that being a theorem about interactions of strategies
in game semantics, its scope includes any programming language whose terms can be
interpreted as bounded strategies. Its weakness however, is that it only applies syntactically
to game situations. In order to increase the generality of our study and give exact bounds
to the linear head reduction of arbitrary simply-typed λ-terms, we will in Section 5 detail a
direct connection between linear head reduction and reduction of skeletons. Before that, as
announced we focus Section 4 on the analysis of skeletons.

4. Skeletons and their complexity analysis

In the previous section we proved a simulation result of plays in the sense of Hyland-Ong
games into a reduction on simple combinatorial objects, interaction skeletons. In the present
section we investigate the properties of this reduction independently of game semantics or
syntax, proving among other things Theorem 4.17 used in the previous section.

As announced in the introduction, the rest of this paper – starting from here – is
essentially self-contained. We start this section by recalling the definition of interaction

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 13

n

dpd1

ai
di−1

 n− 1
dpd1

a1 aq a1 aq

Figure 1: Rewriting rule on skeletons

skeletons and investigating their basic properties. Then, we will prove our main result about
the length of their reduction.

4.1. Skeletons and their basic properties.

4.1.1. Skeletons and their dynamics. Interaction skeletons, or skeletons for short, are
finite trees of natural numbers, whose nodes and edges are labeled by natural numbers. To
denote these finite trees, we use the notation illustrated below:

n[{d1}a1, . . . , {dp}ap] =

n
d1 dp

a1 . . . ap

Each natural number n can be seen as an atomic skeleton n[] without subtrees, still denoted
by n. That should never cause any confusion. Given a skeleton a, we define:

• Its order ord(a), the maximal edge label in a,
• Its maximum max(a), the maximal node label in a,
• Its depth depth(a), the maximal depth of a node in a, the root having depth 1.

We will also use the notation a ·d b for the skeleton a with a new child b added to the
root of a, with edge label d. Formally if a = n[{d1}a1, . . . , {dp}ap]:

a ·d b = n[{d1}a1, . . . , {dp}ap, {d}b]
With that in place, we define the reduction on skeletons by:

n[{d1}a1, . . . , {dp}ap] ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap]
which is allowed whenever n, di ≥ 1 so that no index ever becomes negative. The reduction
is illustrated in Figure 1, and performed on an example in Figure 2 (where the node selected
for the next reduction is highlighted). It is important to insist that this reduction is only
ever performed in head position: n needs to be the actual root of the tree for the reduction
to be allowed. We do not know which properties of this reduction are preserved in the
generalized system where reduction can occur everywhere.

Let us write N (a) for the norm of a skeleton a, i.e. the length of its longest reduction
sequence. We will show later that it is always finite; in the meantime for definiteness we
define it as a member of N ∪ {+∞}.

14 P. CLAIRAMBAULT

Figure 2: Example reduction sequence on interaction skeletons

4.1.2. Embedding lemma. The norm of a skeleton is unchanged by permutation of subtrees,
or merging of identical subtrees, and is only increased by an increase of labels. If a =
n[{d1}a1, . . . , {dp}ap] and a′ = n′[{d′1}a′1, . . . , {d′p′}a′p′], we say that a embeds in a′, written

a ↪→ a′, if n ≤ n′ and for any i ∈ {1, . . . , p} there exists j ∈ {1, . . . , p′} such that di ≤ d′j
and ai ↪→ a′j . Then we have:

Lemma 4.1 (Embedding lemma). For any skeletons a and a′ with a ↪→ a′, N (a) ≤ N (a′).

Proof. Suppose a ↪→ a′, and a b. Write a = n[{d1}a1, . . . , {dp}ap], and suppose b =
ai ·di−1 (n − 1)[{d1}a1, . . . , {dp}ap]. Likewise, write a′ = n′[{d′1}a′1, . . . , {d′p′}a′p′]. Since

a ↪→ a′ we have n′ ≥ n ≥ 1 and there is j ∈ {1, . . . , p′} such that d′j ≥ di ≥ 1 and

ai ↪→ a′j . Set b′ = a′j · (n′−1)[{d′1}a′1, . . . , {d′p′}a′p′], it is straightforward to check that b ↪→ b′.

Therefore, ↪→ is a simulation, which implies that if a ↪→ a′ we have N (a) ≤ N (a′).

From this it follows that permuting subtrees in a skeleton does not affect the possible
reductions in any way. Perhaps more surprisingly, it shows that two identical subtrees can
be merged without any effect on the possible reductions: the number of copies of identical
subtrees does not matter. Following this idea, we are going to show that any skeleton embeds
into a simple thread-like one, and this only increases the length of possible reductions.

Definition 4.2. Let d, o,m ≥ 1 be natural numbers. The thread-like skeleton T (d, o,m) is:

T (1, o,m) = m

T (d+ 1, o,m) = m[{o}T (d, o,m)]

From the definition, we have that depth(T (d, o,m)) = d, max(T (d, o,m)) = m and
ord(T (d, o,m)) = o. We also have:

Proposition 4.3. If a has depth d, order o and maximum m, then N (a) ≤ N (T (d, o,m)).

Proof. It is obvious that a ↪→ T (d, o,m), therefore the result follows from Lemma 4.1.

4.1.3. Constructions on skeletons. If (ai)1≤i≤n is a finite family of skeletons, then writing
ai = ni[{di,1}bi,1, . . . , {di,pi}bi,pi], we define:

n⊔
i=1

ai = (max
1≤i≤n

ni) · [{di,j}bi,j | 1 ≤ i ≤ n & 1 ≤ j ≤ pi]

n∑
i=1

ai = (
n∑
i=1

ni) · [{di,j}bi,j | 1 ≤ i ≤ n & 1 ≤ j ≤ pi]

so, they either take the maximum or the sum of the roots, and simply append all the subtrees
of the ais. In the binary case, we write as usual + for the sum.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 15

Lemma 4.4. We have the following embeddings:

• If (ai)1≤i≤n, (bi)1≤i≤n are finite families of skeletons such that for all 1 ≤ i ≤ n, we have
ai ↪→ bi, then

n⊔
i=1

ai ↪→
n⊔
i=1

bi

n∑
i=1

ai ↪→
n∑
i=1

bi

• If (ai)1≤i≤n is a finite family of skeletons and b is a skeleton, then
n⊔
i=1

(ai · b) ↪→ (
n⊔
i=1

ai) · b
n∑
i=1

(ai · b) ↪→ (
n∑
i=1

ai) · b

• If a, b, c are skeletons and d ∈ N, then:

a+ b ·d c ↪→ (a+ b) ·d c

Proof. Direct from the definitions.

4.2. Upper bounds. We calculate upper bounds to the length of possible reductions on
skeletons. This is done by adapting a technique used by Schwichtenberg [19] and Beckmann
[4] to bound the length of possible β-reduction sequences on simply-typed λ-terms.

The idea of the proof is to define an inductive predicate ρ
α

on terms/skeletons whose
proofs/inhabitants combine aspects of a syntax tree and of a reduction tree — witnesses of
this predicate are called expanded reduction trees by Beckmann [4]. Their mixed nature will
allow us to define a transformation gradually eliminating their syntactic (or static) nodes,
yielding an alternative expanded reduction tree for the term/skeleton under study, whose
height is more easily controlled.

Definition 4.5. The predicate ρ
α

(where ρ, α range over natural numbers) is defined on
skeletons in the following inductive way.

• Base. ρ
α

0[{d1}a1, . . . , {dp}ap]
• Red. Suppose a = n[{d1}a1, . . . , {dp}ap] for n ≥ 1. Then if for all a′ such that a a′ we

have ρ
α
a′ and if we also have ρ

α
max(n− 1, 0)[{d1}a1, . . . , {dp}ap], then ρ

α+1
a.

• Cut. If ρ
α
a, ρ

β
b and d ≤ ρ, then ρ

α+β
a ·d b.

Definition 4.6. A context-skeleton a() is a finite tree whose edges are labeled by natural
numbers, and whose nodes are labeled either by natural numbers, or by the variable x, with
the constraint that all edges leading to x must be labeled by the same number d; d is called
the type of x in a(). We denote by a(b) the result of substituting all occurrences of x in a()
by b. We denote by a(∅) the skeleton obtained by deleting in a all occurrences of x, along
with the edges leading to them.

Lemma 4.7 (Monotonicity). If ρ
α
a, then

ρ′
α′
a for all α ≤ α′ and ρ ≤ ρ′, where the witness

trees have the same number of occurrences of Cut.

Proof. Straightforward by induction on the derivation for ρ
α
a.

Lemma 4.8 (Permutation lemma). If a is obtained from a′ by permuting some subtrees in

a, then for all ρ, α, ρ
α
a iff ρ

α
a′.

Proof. Straightforward by induction on the derivation for ρ
α
a.

16 P. CLAIRAMBAULT

Lemma 4.9 (Null substitution lemma). If ρ
α
a(∅) and the type of x in a is 0, then for all b

we still have ρ
α
a(b). Moreover, the witness includes as many Cut rules as for ρ

α
a(∅).

Proof. We prove by induction on derivations ρ
α
a that the property above holds for all

context-skeleton a′ such that the type of x in a′ is 0 and a′(∅) = a.

• Base. The root of a is 0, hence the result is trivial.
• Red. Suppose a′ has the form n[{d1}a′1, . . . , {dp}a′p, {0}x], where a′1, . . . , a

′
p possibly

include occurrences of x (the case where x appears as a son of the root encompasses the
other) and ai = a′i(∅). The premises of Red are then that for 1 ≤ i ≤ p such that di ≥ 1,

ρ
α−1

ai ·di−1 (n− 1)[{d1}a1, . . . {dp}ap] and ρ
α−1

max(n− 1, 0)[{d1}a1, . . . {dp}ap]. The IH
on these premises give witnesses for the two following properties:

ρ
α−1

(a′i ·di−1 (n− 1)[{d1}a′1, . . . , {dp}a′p, {0}x])(b) (4.1)

ρ
α−1

(max(n− 1, 0)[{d1}a′1, . . . {dp}a′p, {0}x])(b) (4.2)

This covers all the possible reductions of a′(b), thus by Red we have ρ
(α−1)+1

a′(b) as
required.

• Cut. Let us suppose ρ
α+γ

a is obtained by Cut, hence a has the form a1 ·d1 a2. Let us
assume that a′ has the form (a′1 ·d′ a′2) ·0 x with a′1(∅) = a1 and a′2(∅) = a2, since again the
case where x is a child of the root of a′ encompasses the other. The premises of Cut are

then ρ
α
a1 and ρ

γ
a2, and d′ ≤ ρ. We also have (a′1 ·0 x)(∅) = a1, therefore the IH on ρ

α
a1

along with ρ
β
b and 0 ≤ ρ+ 1 implies that ρ

α
a′1(b) ·0 b. But by IH we also have ρ

γ
a′2(b),

hence by Cut:

ρ
α+γ

(a′1(b) ·0 b) ·d′ a′2(b)

Which was what was required for (a′1(b) ·d′ a′2(b)) ·0 b, thus it suffices since trees are
considered up to permutation.

Lemma 4.10 (Main substitution lemma). If ρ
α
a(∅), ρ

β
b and d ≤ ρ + 1 (where d is the

type of x in a), then ρ
α(β+1)

a(b)

Proof. We prove by induction on derivations ρ
α
a that the property above holds for all

context-skeleton a′ such that the type of x in a′ is d ≤ ρ+ 1, and such that a = a′(∅).
• Base. The root of a is 0, hence the result is trivial.
• Red. Suppose a′ has the form n[{d1}a′1, . . . , {dp}a′p, {d}x], where a1 = a′1(∅), . . . , ap =
a′p(∅) (the case where x appears as a son of the root encompasses the other). The premises

of Red are that for 1 ≤ i ≤ p such that di ≥ 1, ρ
α−1

ai ·di−1 (n − 1)[{d1}a1, . . . {dp}ap]
and ρ

α−1
(n− 1)[{d1}a1, . . . {dp}ap]. The IH on these premises give witnesses for the two

following properties:

ρ
(α−1)(β+1)

(a′i ·di−1 (n− 1)[{d1}a′1, . . . , {dp}a′p, {d}x])(b) (4.3)

ρ
(α−1)(β+1)

((n− 1)[{d1}a′1, . . . {dp}a′p, {d}x])(b) (4.4)

By hypothesis we have ρ
β
b, hence by Cut (since d− 1 ≤ ρ), we have:

ρ
(α−1)(β+1)+β

b ·d−1 (n− 1)[{d1}a′1(b), . . . {dp}a′p(b), {d}b] (4.5)

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 17

Using (4.3) for all i ∈ {1, . . . , p}, (4.4) (adjusted to ρ
(α−1)(β+1)+β

by Lemma 4.7) and (4.5)
we deduce by Red that

ρ
(α−1)(β+1)+β+1

n[{d1}a′1(b), . . . , {dp}a′p(b), {d}b]
Which is what was required.

• Cut. Let us suppose ρ
α+γ

a is obtained by Cut, hence a has the form a1 ·d′ a2. Let us
suppose that a′ has the form (a′1 ·d′ a′2) ·d x with a1 = a′1(∅) and a2 = a′2(∅), since once
again the case where x is a child of the root of a′ encompasses the other. The premises of

Cut are then ρ
α
a1 and ρ

γ
a2, and d′ ≤ ρ. We also have (a′1 ·d x)(∅) = a1, therefore the

IH on ρ
α
a1 along with ρ

β
b and d ≤ ρ+ 1 implies that ρ

α(β+1)
a′1(b) ·d b. But by IH we

also have ρ
γ(β+1)

a′2(b), hence by Cut:

ρ
α(β+1)+γ(β+1)

(a′1(b) ·d b) ·d′ a′2(b)

Which is what was required, up to permutation.

The following lemma is the core of the proof, allowing to eliminate instances of the Cut
rule in the expanded head reduction tree.

Lemma 4.11 (Cut elimination lemma). Suppose ρ+1
α

a. Then if α = 0, ρ
0
a. Otherwise,

ρ
2α−1

a.

Proof. By induction on the tree witness for ρ+1
α

a.

• Base. Trivial.
• Red. Suppose a = n[{d1}a1, . . . , {dp}ap]. The premises of Red are ρ+1

α−1
ai ·di−1 (n −

1)[{d1}a1, . . . , {dp}ap] for all i ∈ {1, . . . , p} and ρ+1

α−1
(n − 1)[{d1}a1, . . . , {dp}ap]. If

α ≥ 2, then it follows by IH that ρ
2α−2

ai ·di−1 (n − 1)[{d1}a1, . . . , {dp}ap] and ρ
2α−2

(n− 1)[{d1}a1, . . . , {dp}ap], which implies by Red and Lemma 4.7 that ρ
2α−1

a. If α = 1,

then the premises of Red are ρ+1
0

ai ·di−1 (n− 1)[{d1}a1, . . . , {dp}ap] for all i ∈ {1, . . . , p}
and ρ+1

0
(n − 1)[{d1}a1, . . . , {dp}ap]. By induction hypothesis this is still true with ρ

instead of ρ+ 1, thus by Red we have ρ
1

[{d1}a1, . . . , {dp}ap] which is what we needed to
prove.

• Cut. Suppose a = a1 ·d a2, the premises of Cut are ρ+1
α

a1, ρ+1

β
a2 and d ≤ ρ+ 1. If

α, β ≥ 1 then by IH it follows that ρ
2α−1

a1 and ρ
2β−1

a2, in particular if we define a

context-skeleton a′1 = a1 ·d x we have ρ
2α−1

a′1(∅), hence by the substitution lemma (since

d ≤ ρ+ 1) we have ρ
2α−1(2β−1+1)

a′1(a2) = a1 ·d a2 = a, thus ρ
2α+β−1

a thanks to Lemma

4.7 (since it is always true than 2α+β−1 ≥ 2α−1(2β−1 + 1)). If α = 0 then by IH we have

ρ
0
a1 and ρ

β′

a2. We use then the substitution lemma (since d ≤ ρ+ 1) to get ρ
0

(a1 ·d a2),
which is stronger that what was required whatever was the value of β. The last remaining

case is when α = 1 and β = 0, then by IH ρ
1
a1 and ρ

0
a2, thus by the substitution lemma

we have as required ρ
1

(a1 ·d a2).

18 P. CLAIRAMBAULT

The lemma above allows us to transform any expanded reduction tree into a purely dynamic
one (using only rules Base and Red2). Now, we show how an expanded reduction tree can
be automatically inferred for any skeleton.

Lemma 4.12 (Recomposition lemma). Let a be a skeleton such that ord(a) ≥ 1. Let

nodes(a) denote the multiset of labels of nodes in a. Then,
ord(a)−1

Πn∈nodes(a)(n+1)
a.

Proof. First, let us show that the following rule Base’ is admissible, for any α and ρ.

ρ
α+n

n

If n = 0 this is exactly Base. Otherwise we apply Red. There is no possible reduction, so

the only thing we have to prove is ρ
α+n−1

(n− 1)[], which is by IH.
The lemma follows by applying Lemma 4.10 once for each node.

Now, we show how to deduce from a purely dynamic expanded reduction tree a bound
to the length of possible reductions.

Lemma 4.13 (Bound lemma). Let a be a skeleton, then if 0
α
a, N (a) ≤ α.

Proof. First of all we prove that if there is a witness for 0
α
a, then it can be supposed

Cut-free. We reason by induction on 0
α
a.

• Base. The rule has no premise, so the witness tree for 0
α
a is already Cut-free.

• Red. By IH, Cut can be eliminated in the premises of 0

α+1
a. Therefore by Red, there

is a Cut-free witness for 0

α+1
a.

• Cut. Suppose we have 0

α+β
a ·0 b by Cut, whose premises are 0

α
a and 0

β
b. By IH,

we can assume the witness trees for 0
α
a and 0

β
b to be Cut-free. Let us form the

context-skeleton a() = a ·0 x. Then by Lemma 4.9 we have 0
α
a(b) = a ·0 b, and by Lemma

4.7 that 0

α+β
a ·0 b. Since the witness tree for 0

α
a(∅) is Cut-free, so are the witness trees

for 0
α
a ·0 b and 0

α+β
a ·0 b.

Then, we prove the lemma by induction on the Cut-free witness tree for 0
α
a:

• Base. Necessarily, the root of a is 0, thus N (a) = 0; there is nothing to prove.

• Red. The premises of 0
α
a include in particular that for all a′ such that a a′, we have

0

α−1
a′. By IH, this means that for all such a′ we have N (a′) ≤ α− 1, hence N (a) ≤ α.

From all this, it is possible to give a first upper bound by using the recomposition lemma,
then iterating the cut elimination lemma. However, we will first prove here a refined version
of the cut elimination lemma when ρ = 1, which will allow to decrease by one the height
of the tower of exponentials. First, we need the following adaptation of the substitution
lemma:

Lemma 4.14 (Base substitution lemma). If 0
α
a(∅), 0

β
b and the type of x in a is 1, then

0

α+β
a(b).

Proof. We prove by induction on derivations 0
α
a(∅) that the property above holds for all

context-arena a′ such that the type of x in a′ is 1 and a = a′(∅).
2In fact at this point the expanded reduction tree can still contain cuts of order 0, eliminated later.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 19

• Base. The root of a is 0, hence the result is trivial.
• Red. Suppose a′ has the form n[{d1}a′1, . . . , {dp}a′p, {1}x], with ai = a′i(∅) (the case

where x appears as a son of the root encompasses the other). The premises of Red are

then that for 1 ≤ i ≤ p such that di ≥ 1, 0

α−1
ai ·di−1 (n − 1)[{d1}a1, . . . {dp}ap] and

0

α−1
(n − 1)[{d1}a1, . . . {dp}ap]. The IH on these premises give witnesses for the two

following properties:

0

α−1+β
(a′i ·di−1 (n− 1)[{d1}a′1, . . . , {dp}a′p, {1}x])(b) (4.6)

0

α−1+β
((n− 1)[{d1}a′1, . . . {dp}a′p, {1}x])(b) (4.7)

By hypothesis we have 0

β
b, hence by Lemma 4.9 we have

0

β
b ·0 (n− 1)[{d1}a′1(b), . . . {dp}a′p(b), {1}b] (4.8)

Hence, using (4.6) for all i ∈ {1, . . . , p}, (4.7) and (4.8) (adjusted to 0

α−1+β
by Lemma

4.7) we deduce by Red that

0

α+β
n[{d1}a′1(b), . . . , {dp}a′p(b), {1}b]

Which is what was required.

• Cut. Let us suppose 0

α+γ
a is obtained by Cut, hence a has the form a1 ·0 a2. Let us

suppose that a′ has the form (a′1 ·0 a′2) ·1 x, with ai = a′i(∅), again the case where x is a

child of the root encompasses the other. The premises of Cut are then 0
α
a1 and 0

γ
a2.

We also have (a′1 ·1 x)(∅) = a1, therefore the IH on 0
α
a1 along with 0

β
b implies that

0

α+β
a′1(b) ·1 b and all that remains is to substitute a′2(b) in (a′1(b) ·1 b) ·0 x. But since the

type of x is 0, Lemma 4.9 implies that 0

α+β
(a′1(b) ·1 b) ·0 a′2(b), which concludes since trees

are considered up to permutation.

Lemma 4.15 (Base cut elimination lemma). If 1
α
a, then 0

α
a.

Proof. By induction on the witness tree for 1
α
a.

• Base. Trivial.
• Red. Suppose a has the form n[{d1}a1, . . . , {dp}ap]. The premises of Red are that

for all i ∈ {1, . . . , p} we have 1

α−1
a1 ·di−1 (n − 1){d1}a1, . . . , {dp}ap] and 1

α−1
(n −

1){d1}a1, . . . , {dp}ap]. The result is then trivial by IH and Red.

• Cut. Suppose a = a1 ·d a2 with d ≤ 1, the premises of Cut are that 1
α
a1 and 1

β
a2. If

d = 0, then the result is trivial by the IH and Cut. If d = 1, we just apply Lemma 4.14
instead of Cut.

From all of this put together, we deduce the main theorem of this section.

Theorem 4.16 (Upper bound). If ord(a), depth(a),max(a) ≥ 1, N (a) ≤ 2
depth(a) log(max(a)+1)
ord(a)−1 .

Proof. Let us set a′ = T (depth(a), ord(a),max(a)). By definition, we have depth(a′) =
depth(a), ord(a′) = ord(a) and max(a′) = max(a). Moreover by Proposition 4.3, we have:

N (a) ≤ N (a′)

20 P. CLAIRAMBAULT

Write o = ord(a′), d = depth(a′), m = max(a′). By Lemma 4.12, we have o−1

Πn∈nodes(a′)(n+1)

a′. But all nodes in a′ have the same label m and there are d nodes, therefore o−1

(m+1)d

a′.

By o− 2 applications of Lemma 4.11 it follows that 1

2
d log(m+1)
o−1

a′, so 0

2
d log(m+1)
o−1

a′ as well by

Lemma 4.15. Finally, N (a) ≤ N (a′) ≤ 2
d log(m+1)
o−1 by Lemma 4.13.

This upper bound is optimal, since it yields bounds on linear head reduction that we
will prove optimal in the next section.

4.3. On game situations. Before we conclude this section, let us mention a specialized
form of our result of special importance to the previous section.

Theorem 4.17. If n, p ≥ 1 and d ≥ 3, then N (n[{d}p]) ≤ 2
2 p
n+1−1
p−1

−1

d−3 .

Proof. We show by induction on n ≥ 1 that d−2

1+Σnk=12pk

n[{d}p]. For n = 1, we need to show

that d−2

1+2p
1[{d}p]. By Red, this amounts to d−2

2p
0[{d}p] (true by Base) and:

d−2

2p
p[{d− 1}0[{d}p]]

This follows from Lemma 4.10 from d−2

p
p and d−2

1
0[{d}p], where the former follows from

p instances of Red and one Base and the latter follows from Base.

Now, suppose d−2

1+Σn−1
k=12pk

(n− 1)[{d}p]. The skeleton n[{d}p] has one possible reduction:

n[{d}p] p[{d− 1}(n− 1)[{d}p]]

We know by p instances of Red and one of Base that d−2

p
p. Therefore by Lemma 4.10:

d−2

p(2+Σn−1
k=12pk)

p[{d− 1}(n− 1)[{d}p]]

We also have d−2

p(2+Σn−1
k=12pk)

(n−1)[{d}p] by IH and Lemma 4.7. Therefore by Red, d−2

1+Σnk=12pk

n[{d}p], which concludes the induction.
From this, we use as before d− 3 times Lemma 4.11, Lemma 4.15 and Lemma 4.13, we

deduce:

N (n[{d}p]) ≤ 2
1+Σnk=12pk

d−3

And finally 1 + Σn
k=12pk = 2p

n+1−1
p−1 − 1, yielding the announced result.

This result is particularly relevant in game situations: when studying the reduction
length of one η-expanded Böhm tree applied to another. It also provides the answer to the
question raised in the previous section about the possible length of bounded visible pointer
structures — and hence of interactions between bounded strategies.

Remark 4.18. We finish this section by a few remarks on the above result:

• For d = 2, it is easy to see that N (n[{2}p]) = 2n.
• For d = 3, experiments with an implementation of skeletons and their reductions suggest

that, for n ≥ 0 and p ≥ 2, N (n[{3}p]) = 2p
n−1
p−1 . This quantity is Θ(2(n−1) log(p)) whereas

our general bound predicts Θ(2n log(p)). They differ but do match up to an exponential,

being both of the form 2Θ(n log(p)).

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 21

In fact for any d ≥ 3 we have N (n[{d}p]) = 2
Θ(n log(p))
d−2 . The upper bound is our theorem

above, and the lower bound is provided by the reduction on skeletons corresponding to the
visible pointer structures used in the proof of Theorem 3.11. So, in this sense our result is
optimal on game situations, just as the upper bound of Theorem 4.16 will appear later to
be optimal in the general situation.

5. Skeletons and linear head reduction

Although it is generally understood that game-theoretic interaction (underlying interaction
skeletons) has a strong operational content, the game-theoretic toolbox lacks results making
this formal. One notable exception is the result of Danos, Herbelin and Regnier [9] already
mentioned, which describes a step-by-step correspondence between the linear head reduction
sequence of a game situation M N1 . . . Nn (where M,N1, . . . , Nn are β-normal and η-long)
and the interaction of the corresponding strategies. Along with Theorem 4.17, this connection
suffices to immediately deduce an (optimal) upper bound for the length of reduction sequences
on game situations. However, this reasoning has two drawbacks. Firstly it is rather indirect:
the link it provides between linear head reduction and interaction skeletons, two relatively
simple combinatorial objects, is obfuscated by the variety of mathematical notions involved.
Indeed this connection requires elaborate semantic notions such as visible strategies and
pointer structures, and third party results such as the (very technical) result of [9]. Secondly
it only covers game situations, and it is not clear how to obtain from that general results on
arbitrary terms.

In this final section we address these two points and proceed to analyse the direct
connection between interaction skeletons and syntactic reduction. This study culminates in
optimal upper bounds to the length of linear head reduction sequence on arbitrary simply-
typed λ-terms. This requires us, on the one hand, to construct a generalization of game
situations whose reduction follows the combinatorics of interaction skeletons and, on the
other hand, to show that one can compile arbitrary terms into these generalized situations
in a way allowing us to obtain our upper bounds.

In Subsection 5.1 we give the definition of linear head reduction and prove some basic
properties. In Subsection 5.2 we define and study generalized game situations, and in
Subsection 5.3 we prove the technical core of this section: the fact that lhr on generalized
game situations can be simulated within interaction skeletons. Finally, Subsections 5.4
and 5.5 are devoted to dealing respectively with η-expansion and with λ-lifting in order to
compile arbitrary terms to generalized game situations and deduce our results.

5.1. Linear head reduction. We start by recalling the definition of linear head reduction
and proving some basic properties that are folklore, but to our knowledge unpublished under
this formulation. Our notion of linear head reduction follows [9]. We use it rather than the
more elegant approach of Accattoli [2] because we believe it yields a more direct relationship
with games. Indeed the multiplicative reductions of Accattoli’s calculus have no counterpart
in games/skeletons, which only take into account the variable substitutions.

22 P. CLAIRAMBAULT

5.1.1. Definition of linear head reduction. This work focuses strongly on linear substitution,
for which only one variable occurrence is substituted at a time. In this situation, it is
convenient to have a distinguished notation for particular occurrences of variables. We will
use the notations x0, x1, . . . to denote particular occurrences of the same variable x in a
term M . When in need of additional variable identifiers, we will use x1, x2, Sometimes,
we will still denote occurrences of x by just x when their index is not relevant. If x0 is a
specific occurrence of x, we will use M [N/x0] for the substitution of x0 by N , leaving all
other occurrences of x unchanged.

Intuitively, lhr proceeds as follows. We first locate the head variable occurrence, i.e. the
leftmost variable occurrence in the term M . Then we locate the abstraction, if any, that
binds this variable. Then we locate (again if it exists) the subterm N of M in argument
position for that abstraction, and we substitute the head occurrence by N . We touch
neither the other occurrences of x nor the redex. It is worth noting that locating the
argument subterm can be delicate, as it is not necessarily part of a β-redex. For instance
in (λyA. (λxB. x0M))N1N2, we want to replace x0 by N2, even though N2 is not directly
applied to λxB. x0M . Therefore, the notion of redex will be generalized.

Note that a term is necessarily of the form ∗ M1 . . . Mn, x0 M1 . . . Mn, λx. M or
(λx. M) M1 . . . Mn. This will be used quite extensively to define and reason on lhr. The
length of a term M is the number of characters in M , i.e. l(∗) = 1, l(x0) = 1, l(λx. M) =
l(M) + 1, l(M1 M2) = l(M1) + l(M2). Its height is h(∗) = 0,h(x0) = 1,h(λx. M) =
h(M), h(M1 M2) = max(h(M1),h(M2) + 1).

Definition 5.1. Given a term M , we define its set of prime redexes. They are written
as pairs (λx,N) where N is a subterm of M , and λx is used to denote the (if it exists,
necessarily unique by Barendregt’s convention) subterm of M of the form λx. N ′. We define
the prime redexes of M by induction on its length, distinguishing several cases depending
on the form of M .

• If ∗ M1 . . . Mn has no prime redex,
• If x0 M1 . . . Mn has no prime redex,
• The prime redexes of λx. M ′ are those of M ′,
• The prime redexes of (λx. M ′) M1 . . . Mn, are (λx,M1) plus those of M ′ M2 . . . Mn.

The head occurrence of a term M is the leftmost occurrence of a variable or constant
in M . If (λx,N) is a prime redex of M whose head occurrence is an occurrence x0 of the
variable x, then the linear head reduct of M is M ′ = M [N/x0]. We write M→lhrM

′.

Example 5.2. As an example, we give the lhr sequence of the term (λf. λx. f (f x)) (λy. y) ∗.
(λf. λx. f (f x)) (λy. y) ∗ →lhr (λf. λx. (λz. z) (f x)) (λy. y) ∗

→lhr (λf. λx. (λz. f x) (f x)) (λy. y) ∗
→lhr (λf. λx. (λz. (λu. u) x) (f x)) (λy. y) ∗
→lhr (λf. λx. (λz. (λu. x) x) (f x)) (λy. y) ∗
→lhr (λf. λx. (λz. (λu. ∗) x) (f x)) (λy. y) ∗

At this point the reduction stops since the head occurrence is a constant.

Given a term M , we overload the notation N and write N (M) for the length of the
lhr sequence of M . It is straightforward to see that lhr is compatible with β-reduction, in
the sense that if M →lhr M

′ we have M ≡β M ′. Since redexes for lhr are not necessarily
β-redexes, it will be necessary to consider the following generalization of redexes:

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 23

Definition 5.3 (Generalized redex). The generalized redexes of a term M are the prime
redexes of all subterms of M . In particular, all prime redexes are generalized redexes.

Example 5.4. Consider the following λ-term:

M = (λx. x) ((λy. (λz. u)) v w)

The only prime redex of M is (λx, (λy. (λz. u)) v w). The two other generalized redexes
are (λy, v), which is also a β-redex, and (λz,w), which is not.

5.1.2. Relating lhr with β-reduction. Before we go on to relating lhr with β-reduction, let
us include some preliminary investigations on its basic properties, and in particular how
it relates to β-reduction. Consider λ-terms temporarily extended by a term M , for each
term M . Those boxes can be opened when in head position. Formally, a head context is:

H[] = [] | H[] N | λx. H[]

The additional reduction rule for opening boxes is then (where H is a head context):

H[M] pop H[M]

We extend lhr in the presence of � by defining the prime redexes of M by induction on
its length, as follows:

• ∗ M1 . . . Mn, x0 M1 . . . Mn and M ′ M1 . . . Mn have no prime redex,
• The prime redexes of λx. M ′ are those of M ′,
• The prime redexes of (λx. M ′) M1 . . . Mn are (λx,M1) plus those of M ′ M2 . . . Mn.

Writing �−1(M) for the term obtained from M by removing all boxes, we see immediately
that the boxes can only block prime redexes, so prime redexes of M are always in �−1(M).

Writing M →�−1 �−1(M), we also notes that within this calculus, β-reduction on
standard terms decomposes in two steps:

1. Substitution (β�) (λx. M)N β� M [N /x]

2. Unboxing. (�−1) In one step, we remove all boxes in M .

Intuitively, boxes introduce a delay in the processing of β-reduction, and this delay corre-
sponds exactly to the delay of lhr with respect to head β-reduction. Here, we exploit this
fact to compare the two of them. In this Section 5.1.2 (but only in this section), terms are
in this extended language unless otherwise specified. If M does not contain any boxes, we
say it is a standard λ-term.

Lemma 5.5. If M,M ′ are standard terms such that M →lhr M
′, N is a standard term, and

the head occurrence x0 of M is not an occurrence of y, then M [N /y]→lhr M
′[N /y].

Proof. Straightforward by induction on the length of M .

Lemma 5.6. Suppose M is a standard term with a head occurrence x0 of a variable x, and
that M →β� M

′. Then for any standard term N such that no free variable of N is bound in
M , we also have M [N/x0]→β� M

′[N/x0].

Proof. Straightforward by induction on M .

24 P. CLAIRAMBAULT

Write →lhr∨pop for exactly one reduction step of, either lhr, or pop.

Lemma 5.7. If M is a standard λ-term with M →β� N and M →lhr M
′, then there is

N →lhr∨pop N
′ such that M ′ →∗β� N ′. Moreover, if M →β� N is not a weak head reduction

(so if it not a head reduction or operates under a lambda), none of the M ′ →∗β� N ′ is a weak
head reduction.

Proof. By induction on the length of M , detailing only the case M = (λx. M ′) M1 . . . Mn.

• If M = (λx. M ′) M1 . . . Mn where the head occurrence x0 is an occurrence of x and the
β�-reduction is:

(λx. M ′) M1 . . . Mn →β� M
′[M1 /x] M2 . . . Mn

In M ′[M1 /x] M2 . . . Mn, one copy of M1 has replaced the occurrence x0, so there is

M1 in head position. It follows that:

M ′[M1 /x] M2 . . . Mn →pop M
′[M1/x0][M1 /x] M2 . . . Mn

But we also have (λx. M ′[M1/x0]) M1 . . . Mn →β� M
′[M1/x0][M1 /x] M2 . . . Mn, so

we set N ′ = M ′[M1/x0][M1 /x] M2 . . . Mn.
• If M = (λx. M ′) M1 . . . Mn whose head occurrence x0 is an occurrence of x, and the
β�-reduction is inside M ′. Then no free variable in M1 can be bound in λx. M ′ by
Barendregt’s convention. Therefore, by Lemma 5.6, we have

M ′[M1/x0]→β� M
′′[M1/x0]

therefore (λx. M ′[M1/x0]) M1 . . . Mn →β� (λx. M ′′[M1/x0]) M1 . . . Mn.
• If M = (λx. M ′) M1 . . . Mn where the head occurrence x0 is an occurrence of x, and the
β�-reduction is M1 →β� M

′
1. Then we have:

(λx. M ′[M1/x0]) M1 . . . Mn →β�2 (λx. M ′[M ′1/x0]) M ′1 . . . Mn

providing the necessary commutation.
• If M = (λx. M ′) M1 . . . Mn where the head occurrence x0 is an occurrence of x, and the
β�-reduction is Mi →β� M

′
i with i ≥ 2, then the commutation is trivial.

• If M = (λy. M ′) M1 . . . Mn where the head occurrence x0 is not an occurrence of y, and
the β�-reduction is:

(λy. M ′) M1 . . . Mn →β� M
′[M1 /y] M2 . . . Mn

Necessarily, we have M ′ M2 . . . Mn →lhr M
′′ M2 . . . Mn. By Lemma 5.5, it follows that

(M ′ M2 . . . Mn)[M1 /y] →lhr (M ′′ M2 . . . Mn)[M1 /y]. Since y can only appear in
M ′ and M ′′ by Barendregt’s convention, it follows that:

M ′[M1 /y] M2 . . . Mn →lhr M
′′[M1 /y] M2 . . . Mn

which provides the required commutation.
• If M = (λy. M ′) M1 . . . Mn where the head occurrence x0 is not an occurrence of y, and

the β�-reduction is M ′ →β� M
′′, it follows directly from IH.

• If M = (λy. M ′) M1 . . . Mn where the head occurrence x0 is not an occurrence of y, and
the β�-reduction is M1 →β� M

′
1, trivial.

• If M = (λy. M ′) M1 . . . Mn where the head occurrence x0 is not an occurrence of y, and
the β�-reduction is Mi →β� M

′
i with i ≥ 2. By definition of lhr:

M ′ M2 . . . Mn →lhr M
′′ M2 . . . Mn

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 25

but we also have M ′ M2 . . . Mn →β� M ′ M2 . . . M ′i . . . Mn. By IH, there is
M ′ M2 . . . M ′i . . . Mn →lhr N such that M ′′ M2 . . . Mn →∗β� N . But necessarily, N

must have the form S M2 . . . M ′i . . . Mn since we have M ′ M2 . . . M ′i . . . Mn →lhr N .
So, M ′′ M2 . . . Mn →∗β� S M2 . . . M ′i . . . Mn. But the original β�-reduction was not
a weak head reduction, so by IH none of the reductions in →∗β� is. So they must all

either operate inside of M ′′ or Mi: in other words M ′′ →∗β� S and Mi →∗β� M ′i . It follows

that: (λy. M ′′) M1 . . . Mn →∗β� (λy. S) M1 . . . M ′i . . . Mn, providing the required

commutation.

Lemma 5.8. Suppose M →lhr∨pop N , M →�−1 M ′ and N →�−1 N ′. Then,

• If M →pop N , then M ′ = N ′.
• If M →lhr N , then M ′ →lhr N

′.

Proof. Straightforward.

Proposition 5.9. Linear head reduction terminates on standard terms.

Proof. Note first that from Lemma 5.7 it follows that whenever M →∗β� N and M →lhr M
′,

then there exists N ′ such that N →lhr∨pop N
′ and M ′ →∗β� N ′.

Suppose standard M has an infinite reduction chain:

M = M0 →lhr M1 →lhr M2 →lhr . . .

and M →β� M
′. Then, by iterating the argument above, we get an infinite chain:

M ′ = M ′0 →lhr∨pop M
′
1 →lhr∨pop M

′
2 →lhr∨pop . . .

Note that in this chain, there cannot be an infinite succession of pop, because each pop
strictly decreases the length of terms. Therefore, there are an infinite number of →lhr in
this sequence. Now, define M ′ →�−1 M ′′. Likewise for each i ∈ N, define M ′i →�−1 M ′′i . By
Lemma 5.8, if M ′i →pop M

′
i+1 we have M ′′i = M ′′i+1, whereas if M ′i →lhr M

′
i+1, we still have

M ′′i →lhr M
′′
i+1; it follows that there is a chain:

M ′′ = M ′′0 →lhr∨= M ′′1 →lhr∨= M ′′2 →lhr∨= . . .

Since there is an infinite number of lhr in the sequence of M ′, there is an infinite number of
lhr in this sequence. Moreover since M →β� M

′ →�−1 M ′′, we have M →β M
′′. Therefore,

we have proved that if the lhr reduction chain of M is infinite and M →β M
′, then the lhr

reduction chain of M ′ is infinite as well. But by normalization of β-reduction, we know that
M →∗β K, where K is β-normal. But if K has no β-redex it has no prime redexes either, so

K has no lhr reduction; absurd. Therefore, the lhr reduction chain of M was finite.

Lemma 5.10. Let M be a standard term with a head occurrence x0, such that there is no
prime redex (λx,N) within M . Let S be another term, and y a free variable in M . Then,
there is still no prime redex (λx,N) in M [S/y].

Proof. Straightforward by induction on the length of M .

26 P. CLAIRAMBAULT

Lemma 5.11. If M is standard, normal for lhr and M →β M
′, then M ′ is normal for lhr.

Proof. By induction on the length of M . We only detail M = (λx. M ′) M1 . . . Mn,
the other cases being trivial. Several subcases arise depending on the location of the β-
reduction; the only non-trivial case is M →β M

′[M1/x] M2 . . . Mn. If the head occurrence
of M is a constant ∗, it is still the head occurrence of M ′[M1/x] M2 . . . Mn, which
is therefore lhr-normal. Otherwise it is a variable occurrence y0, such that there is no
prime redex (λy,N) in M . It follows by definition of prime redexes that there is no
prime redex either in M ′ M2 . . . Mn. By Lemma 5.10, there is still no prime redex in
(M ′ M2 . . . Mn)[M1/x] = M ′[M1/x] M2 . . . Mn, but its head occurrence has not changed,
so it is lhr-normal.

Proposition 5.12. If a standard M →β M
′, then N (M) ≥ N (M ′).

Proof. We decompose M →β� M
′′ →�−1 M ′. Take a maximal lhr sequence:

M = M0 →lhr M1 →lhr · · · →lhr Mn

by Lemma 5.7, there is a corresponding sequence of the same length:

M ′′ = M ′′0 →lhr∨pop M
′′
1 →lhr∨pop · · · →lhr∨pop M

′′
n

with for all i ∈ {0, . . . , n}, Mi →∗β� M ′′i . Since Mn is maximal, this means that its head
occurrence does not appear in a prime redex, or is a constant. By unboxing, we get:

M ′ = M ′0 →lhr∨= M ′1 →lhr∨= · · · →lhr∨= M ′n

We have Mn →∗β M ′n by construction, so by Lemma 5.11 we know that M ′n is lhr-normal as

well, so this chain is maximal. So, the lhr sequence of M ′ is the subsequence of M ′0 →lhr∨=

M ′1 →lhr∨= · · · →lhr∨= M ′n keeping only the lhr steps, so its length is less or equal than n.

5.2. Generalized game situations. In this section, we detail the situation where the
connection between lhr and skeletons is the most direct.

That involves two aspects. Firstly, since the game-theoretic interpretation of terms is
invariant under η-expansion, it is clear from the start that terms whose dynamics match
game-theoretic interaction should be η-expanded. Accordingly, we will give a new notion
of non β-normal η-long terms adapted to lhr. Secondly, game-theoretic interaction is also
local : strategies involved in the interpretation of a term will only communicate with other
strategies with whom they share a redex, whereas substitution is non-local and can span over
multiple redexes. Accordingly, we introduce a notion called local scope ensuring that the
information flow of lhr is local. With the help of these two conditions we define generalized
game situations, that we prove to elegantly connect to interaction skeletons.

We now investigate these two aspects, in turn.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 27

5.2.1. Generalized η-long terms. Non β-normal η-long terms are often defined as those for
which any further η-expansion creates new β-redexes. Here of course, since we work with
generalized β-redexes, we will use instead the following definition:

Definition 5.13. A term M is η-long if whenever M →η M
′, then M ′ has more generalized

β-redexes than M .

We now prove that η-long terms are preserved by lhr. For that, we will make use of the
following lemmas allowing us to compose and decompose η-long terms.

Lemma 5.14. If M is η-long, so are its subterms.

Proof. Straightforward by induction on M , since an η-expansion in a subterm N of M would
create a new generalized redex in M that necessarily has to be in N .

Lemma 5.15. A term (λx. M) M1 . . . Mn is η-long, iff so are M M2 . . . Mn and M1.

Proof. Straightforward by cases on the location of an η-expansion.

Lemma 5.16. If Γ `M : A→ B and Γ ` N : A are η-long, so is M N .

Proof. Straightforward by induction on the length of M .

Using the lemmas above we prove the following substitution lemma, crucial in proving
the stability of η-long terms by lhr.

Lemma 5.17. If Γ `M : A is η-long and with head occurrence x0 of a variable x : B, and
Γ ` N : B is η-long, then M [N/x0] is η-long.

Proof. By induction on the length of M .

• If M = x0 M1 . . . Mn, then necessarily each Mi is η-long by Lemma 5.14. It follows by
Lemma 5.16 that N M1 . . . Mn is η-long as well.
• If M = λy. M ′, it follows directly from the IH.
• If M = (λy. M ′) M1 . . . Mn, it follows directly from IH and Lemma 5.15.

Lemma 5.18. If M is η-long and M →lhr M
′, then M ′ is η-long.

Proof. By induction on the length of M . We skip all the trivial cases, and only detail
M = (λx. M ′) M1 . . . Mn. Then, two subcases:

• If the head occurrence of M is an occurrence x0 of x, then we have: M →lhr M [M1/x0].
But since M is η-long, M1 is η-long as well by Lemma 5.14. So, by Lemma 5.17 we have
that M [M1/x0] is η-long as well.
• If the head occurrence of M is an occurrence y0 of a variable or constant other than x,

then if M →lhr M [N/y0], for some subterm N of M , and we must have as well:

M ′ M2 . . . Mn →lhr M
′[N/y0] M2 . . . Mn

by IH, M ′[N/y0] M2 . . . Mn is η-long. Finally, it follows from Lemma 5.15 that M1 is
η-long and that recomposing (λx. M ′[N/y0]) M1 . . . Mn yields an η-long term.

28 P. CLAIRAMBAULT

5.2.2. Local scope. Now that we have a notion of η-long term stable under composition, let
us consider the syntactic counterpart of the second aspect of skeletons: that their reduction
is local. It is not clear at first what local means in this context: just like a game situation
consists in two η-long normal forms interacting, a generalized game situation will consist in
a “tree” of η-long normal forms. Let us start with this slightly naive definition:

Definition 5.19. A term M is strongly locally scoped (abbreviated sls) iff for any
generalized redex (λx,N) in M , N is closed.

Unfortunately, sls terms do not quite fit for a syntactic counterpart of skeletons: they
are not preserved by lhr. It is easy to find a counter-example, for instance:

(λy. (λx. x y) (λz. z)) ∗ →lhr (λy. (λx. (λz. z) y) (λz. z)) ∗
Here, a new generalized redex (λz, y) is formed where y is obviously not closed. Therefore,
we must make skeletons correspond instead with a generalization of sls terms preserved by
lhr. This generalization comes from the observation that in the right hand side term above,
the violation of strong local scope is mitigated by the fact that the violating variable y is
part of a generalized redex — so its value is somehow already provided by an environment.
Hence the following definition:

Definition 5.20. A variable x in M is active iff it is a free variable or if there is a generalized
redex (λx,N) in M . It is passive otherwise. A term M is locally scoped (abbreviated ls)
if for any generalized redex (λx,N) in M all the free variables in N are active in M .

Local scope will be sufficient to ensure that the interpretation to skeletons is a simulation,
but the correspondence between terms and skeletons will be tighter for sls terms: the tree
structure of the skeleton will match the tree structure of nested generalized redexes.

Of course, we now need to prove that locally scoped terms are preserved by lhr. However,
this is still not true! Indeed, consider the following reduction:

λy. (λx. x y) (λz. z)→lhr λy. (λx. (λz. z) y) (λz. z)

The left hand side term is (strongly) locally scoped, but the right hand side term is not
because y is passive, but appears in the argument of a generalized redex. However, the
problem disappears if we apply the two terms above to a constant ∗. In general, we will
show that closed locally scoped terms of ground type are closed under lhr. This may seem
like a big restriction but it is not: an arbitrary term can be made closed and of ground type
without changing its possible reduction sequences significantly, by replacing its free variables
with constants and applying it to as many constants as required.

To prove stability of local scope by lhr, we start by stability under substitution.

Lemma 5.21. If M is a locally scoped term of ground type with head occurrence x0 of a
variable x, and N is a locally scoped term, then M [N/x0] is locally scoped.

Proof. By induction on the length of M (of ground type, so not an abstraction).

• If M = x0 M1 . . . Mn, then the generalized redexes of N M1 . . . Mn are those of
N,M1, . . . ,Mn (that are of the form (λy, S) where all free variables in S are active, by
definition of local scope), with possibly the addition of generalized redexes of the form
(λz,Mi). Free variables in Mi are free in N M1 . . . Mn, so they are active.
• If M = (λy. M ′) M1 . . . Mn, it follows directly from IH.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 29

Lemma 5.22. If `M : o is locally scoped and M →lhr M
′, then M ′ is locally scoped.

Proof. By induction on the length of M , writing (λx, S) for the prime redex fired in
M →lhr M

′. We only detail the non-trivial cases.

• If M = (λy. N) M1 . . . Mn with y 6= x, then it direct that N M2 . . . Mn is still ls. By
IH, N [S/x0] M2 . . . Mn is ls as well, and from that follows that M [S/x0] is ls.
• If M = (λx. N) M1 . . . Mn, where x0 is an occurrence of x. Then, necessarily
N M2 . . . Mn is ls as well. Likewise, M1 is ls, otherwise M could not be. There-
fore by Lemma 5.21, N [M1/x0] M2 . . . Mn is ls, and from that follows that M ′ is ls.

We say that a term M is a generalized game situation if it is closed, of ground type,
and both η-long and locally scoped. By Lemmas 5.18 and 5.22, we know that generalized
game situations are preserved by linear head reduction.

5.3. Simulation of generalized game situations. We start this subsection by showing
how one can associate a skeleton with any generalized game situation – in fact with any
term, although this connection will only yield a simulation for generalized game situations.

Definition 5.23. Let Γ ` M : A be a term, with a bs-environment ρ, being defined as
a partial function mapping each variable x of Γ on which it is defined to a skeleton ρ(x).
Then the skeleton JMKρ is defined by induction on the length of M , as follows:

J∗ M1 . . . MnKρ = 0
Jx0 M1 . . . MnKρ = 1 +

⊔n
i=1JMiKρ if ρ(x) undefined

Jx0 M1 . . . MnKρ = (1 +
⊔n
i=1JMiKρ) ·lv(x)+1 ρ(x) if ρ(x) defined

Jλx. MKρ = JMKρ
J(λx. M) M1 . . . MnKρ = JM M2 . . . MnKρ∪{x 7→JM1Kρ}

We write JMK for JMK∅.

5.3.1. Simulation of generalized game situations. We now prove that J−K is a simulation.
Because J−K over-approximates terms it will not directly relate →lhr and . Rather, we
will have that if M M ′, then there is a such that JMK a ←↩ JM ′K. This relaxed
simulation will suffice for our purposes since by Lemma 4.1 it implies that N (JM ′K) ≤
N (a). We show in Figure 3 the skeletons corresponding with all lhr-reducts of the term
(λfo→o. λxo.f (f x)) (λyo. y) ∗o from Example 5.2, with explicit typing.

We now aim to prove our simulation result for generalized game situations.

Definition 5.24. Let M be a term, and ρ, ρ′ two bs-environments. We write ρ ∼M ρ′ iff
dom(ρ) ∩ fv(M) = dom(ρ′) ∩ fv(M), and that for all x ∈ dom(ρ) ∩ fv(M), ρ(x) = ρ′(x).

Lemma 5.25. If M is a term, ρ and ρ′ are such that ρ ∼M ρ′, then JMKρ′ = JMKρ.

Proof. Straightforward by induction on the length of M .

30 P. CLAIRAMBAULT

Figure 3: Simulation of the reduction of Example 5.2 in skeletons

Lemma 5.26. Suppose Γ `M : A is such that (x : B) ∈ Γ does not appear in any subterm
N , for any generalized redex (λy,N) in M . Let ρ be a bs-environment, and a skeleton a.
Then, we have JMKρ∪{x 7→a} ↪→ JMKρ ·lv(x)+1 a.

Proof. By induction on the length of M , with ρ′ = ρ ∪ {x 7→ a}. Most cases follow directly
by unfolding the definition of J−K, IH, Lemma 4.4 and basic manipulations on embeddings.

We detail the one non-trivial case where M = (λy. M ′) M1 . . . Mn. Then:

J(λy. M ′) M1 . . . MnKρ∪{x 7→a} = JM ′ M2 . . . MnKρ∪{x 7→a}∪{y 7→JM1Kρ∪{x 7→a}}

= JM ′ M2 . . . MnKρ∪{x 7→a}∪{y 7→JM1Kρ}

↪→ JM ′ M2 . . . MnKρ∪{y 7→JM1Kρ} ·lv(x)+1 a

= J(λx. M ′) M1 . . . MnKρ ·lv(x)+1 a

where the second equation exploits Lemma 5.25 and the fact that x does not appear in M1

(since M1 is in a generalized redex (λy,M1)); the embedding is by IH, and the last equality
is by definition.

Lemma 5.27. Let Γ ` M : A1 → · · · → An → o be a locally scoped η-long term, and
Γ ` Ni : Ai be terms. Finally, let ρ be a bs-environment on M N1 . . . Nn. Then:

JM N1 . . . NnKρ ↪→ JMKρ · [{lv(Ni) + 1}JNiKρ | 1 ≤ i ≤ n]

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 31

Proof. By induction on the length of M , detailing non-trivial cases.

• If M = λx. M ′, we calculate:

J(λx. M ′) N1 . . . NpKρ = JM ′ N2 . . . NpKρ∪{x 7→JN1Kρ}

↪→ JM ′Kρ∪{x 7→JN1Kρ} · [{lv(Ni) + 1}JNiKρ∪{x7→JN2Kρ} | 2 ≤ i ≤ p]
= JM ′Kρ∪{x 7→JN1Kρ} · [{lv(Ni) + 1}JNiKρ | 2 ≤ i ≤ p]
↪→ JM ′Kρ ·lv(x)+1 JN1Kρ · [{lv(Ni) + 1}JNiKρ | 2 ≤ i ≤ p]
= JM ′Kρ · [{lv(Ni) + 1}JNiKρ | 1 ≤ i ≤ p]

The first equality is by definition, the first embedding by IH, the second equality by
Lemma 5.25 since x cannot appear in Ni, the second embedding by Lemma 5.26 since
λx. M ′ is ls, so x, being passive, cannot appear in N for any generalized redex (λz,N) of
M ′. Finally, the last equation is by definition.
• If M = (λx. M ′) M1 . . . Mp, we calculate:

J(λx. M ′) M1 . . . Mp N1 . . . NnKρ
= JM ′ M2 . . . Mp N1 . . . NnKρ∪{x 7→JM1Kρ}

↪→ JM ′ M2 . . . MpKρ∪{x 7→JM1Kρ} ·
[{lv(Ni) + 1}JNiKρ∪{x 7→JM1Kρ} | 1 ≤ i ≤ p]

= J(λx. M ′) M1 . . . MpKρ · [{lv(Ni) + 1}JNiKρ | 1 ≤ i ≤ p]
The first equality is by definition, the embedding by IH, the last equation by Definition
5.23 and Lemma 5.25, since x does not appear in Ni.

In order to prove our simulation result between lhr on terms and skeletons, we will have to
generalize it to a connection between skeletons and terms-with-environments, or closures.
Therefore, we will make use of the following notions.

Definition 5.28. The notions of closure and environments are defined by mutual induction:

• A closure is (Γ `M : A, σ) with Γ `M : A a term, and σ an environment on Γ.
• An environment σ on Γ is a partial function which, when defined, maps a variable (x : A)

to a closure (Γ ` N : A, τ). We write σ1(x) = N and σ2(x) = τ .

When (Γ ` M : A, σ) is a closure, we will use the shorthand notation Mσ and leave Γ, A
implicit. An environment σ for Γ is flat if for each (x : A) ∈ Γ, we have that σ2(x) ⊆ σ.

Standard notions on terms directly translate to environments: σ on Γ is η-long iff for
all (x : A) ∈ Γ, if σ(x) is defined then σ1(x) is η-long and σ2(x) is η-long. It is locally
scoped iff for all (x : A) ∈ Γ, if σ(x) is defined then σ1(x) and σ2(x) are locally scoped.

Using environments, we can generalize lhr on terms to a linear reduction on closures.

Lemma 5.29. Define the following reduction:

xi M1 . . . Mn →σ σ1(x) M1 . . . Mn

M →σ M
′

λy. M →σ λy. M
′

M ′ M2 . . . Mn →σ∪{y 7→Mσ
1 } M

′′ M2 . . . Mn

(λy. M ′) M1 . . . Mn →σ (λy. M ′′) M1 . . . Mn

32 P. CLAIRAMBAULT

Then, we have M →∅ M ′ iff M →lhr M
′.

Proof. We prove that for all σ:

• If the head occurrence of M is bound in M , then M →lhr M
′ iff M →σ M

′,
• If the head occurrence x0 of M is an occurrence of a variable x free in M on which σ is

defined, then M →σ M [σ1(x)/x0].
• If the head occurrence of M is a ∗ or an occurrence x0 of x on which σ is undefined, then

both →lhr and →σ halt.

This is done by a straightforward induction on the length of M .

Environments have a tree structure that corresponds closely to the tree structure of
interaction skeletons. The following definition associates a skeleton with any environment.

Definition 5.30. If σ is an environment on Γ, then we define a bs-environment JσK which for
any (x : A) ∈ Γ, (1) is undefined if σ(x) is undefined, (2) associates Jσ1(x)KJσ2(x)K otherwise.

Finally, we are in position to prove our simulation result.

Proposition 5.31. Let Γ ` M,M ′ : o be η-long ls terms, and σ be an η-long ls flat
environment on Γ such that M →σ M

′. Then, JMKJσK →bs←↩ JM ′KJσK. So in particular, if
M →lhr M

′ we have JMK→bs←↩ JM ′K.

Proof. By induction on the definition of →σ.

• If x0 M1 . . . Mn →σ σ1(x) M1 . . . Mn. Since σ1(x) is locally scoped and η-long, by
Lemma 5.27 we have:

Jσ1(x) M1 . . . MnKJσK ↪→ Jσ1(x)KJσK · [{lv(Mi) + 1}JMiKJσK | 1 ≤ i ≤ n]

But we have σ2(x) ⊆ σ since σ is flat, from which follows Jσ2(x)K ⊆ JσK. Moreover,
fv(σ1(x)) ∩ dom(σ) = fv(σ1(x)) ∩ dom(σ2) since both are defined on all free variables of
σ1(x). So by Lemma 5.25, Jσ1(x)KJσK = Jσ1(x)KJσ2(x)K. Finally, we have:

Jσ1(x)KJσ2(x)K · [{lv(Mi) + 1}JMiKJσK | 1 ≤ i ≤ n] ↪→ Jσ1(x)KJσ2(x)K ·lv(x) (
n⊔
i=1

JMiKJσK)

Where the right hand side is a -reduct of

Jx0 M1 . . . MnKJσK = (1 +

n⊔
i=1

JMiKJσK) ·lv(x)+1 Jσ1(x)KJσ2(x)K

• If λy. M →σ λy. M
′, then M and M ′ do not have ground type.

• If (λy. M) M1 . . . Mn →σ (λy. M ′) M1 . . . Mn, then note that σ ∪ {y 7→ Mσ
1 } is still

flat (and η-long, locally scoped). Then by IH we have:

JM M2 . . . MnKJσ∪{y 7→Mσ
1 }K →bs←↩ JM ′ M2 . . . MnKJσ∪{y 7→Mσ

1 }K

But Jσ∪{y 7→Mσ
1 }K = JσK∪{y 7→ JM1KJσK} by definition of interpretation of environments;

the required reduction follows by def. of interpretation of terms.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 33

5.3.2. Relating generalized game situations and their interpretation. To estimate lhr on
generalized game situations, we need to define measures on terms that reflect the geometry
of the corresponding skeletons. So instead of the quantities traditionally used to evaluate
the complexity of λ-terms (like the height or length), we have two alternative quantities.

Definition 5.32. The depth depth(M) of M is defined by induction on the length of M :

depth(∗ M1 . . . Mn) = 1

depth(x0 M1 . . . Mn) = max
1≤i≤n

depth(Mi)

depth(λx. M) = depth(M)

depth((λx. M) M1 . . . Mn) = max(depth(M M2 . . . Mn),depth(M1) + 1)

Likewise, the local height lh(M) of a term M is defined by:

lh(∗ M1 . . . Mn) = 0

lh(x0 M1 . . . Mn) = 1 + max
1≤i≤n

lh(Mi)

lh(λx. M) = lh(M)

lh((λx. M) M1 . . . Mn) = max(lh(M M2 . . . Mn), lh(M1))

We now aim to prove that these indeed reflect quantities on the corresponding skeletons.
Lemma 5.33 deals with depth, Lemma 5.34 with local height and Lemma 5.35 with order.

Lemma 5.33. If ρ is a bs-environment, we set depth(ρ) = maxx∈dom(ρ) depth(ρ(x)). Then,
for each strongly locally scoped term M with a bs-environment ρ, we have:

depth(JMKρ) ≤ max(depth(M),depth(ρ) + 1)

In particular, depth(JMK) ≤ depth(M).

Proof. By induction on the length of M , detailing the non-trivial cases.

• If M = x0 M1 . . . Mn and ρ is not defined on x, we have depth(M) = max1≤i≤n depth(Mi).
On the other hand, Jx0 M1 . . . MnKρ = (1 +

⊔n
i=1JMiKρ). But then we have:

depth(1 +

n⊔
i=1

JMiKρ) = max
1≤i≤n

depth(JMiKρ)

≤ max
1≤i≤n

max(depth(Mi), depth(ρ) + 1)

= max(depth(M),depth(ρ) + 1)

where the first equality is by definition of +, depth, and
⊔

, the inequality is by IH, and
the last equality is by definition of maximum and depth.
• If M = x0 M1 . . . Mn, ρ(x) defined, we still have depth(M) = max1≤i≤n depth(Mi). On

the other hand, Jx0 M1 . . . MnKρ = (1 +
⊔n
i=1JMiKρ) ·lv(x)+1 ρ(x). But then:

depth((1 +

n⊔
i=1

JMiKρ) ·lv(x)+1 ρ(x)) = max(depth(1 +

n⊔
i=1

JMiKρ),depth(ρ(x)) + 1)

≤ max(max
1≤i≤n

depth(JMiKρ),depth(ρ) + 1)

≤ max(max
1≤i≤n

depth(Mi), depth(ρ) + 1)

34 P. CLAIRAMBAULT

where the first equality is by definition of ·, the first inequality is by definition of +,
⊔

and depth(ρ), the second inequality is by IH and definition of max.
• If M = λx. M ′, then it directly follows from the IH.
• If M = (λx. M ′) M1 . . . Mn, then we have

depth(M) = max(depth(M ′ M2 . . . Mn), depth(M1) + 1)

We calculate:

depth(J(λx. M ′) M1 . . . MnKρ)
= depth(JM ′ M2 . . . MnKρ∪{x 7→JM1Kρ})

≤ max(depth(M ′ M2 . . . Mn),depth(ρ ∪ {x 7→ JM1Kρ}) + 1)

≤ max(depth(M ′ M2 . . . Mn),max(depth(ρ),depth(JM1Kρ)) + 1)

= max(depth(M ′ M2 . . . Mn),max(depth(ρ), depth(JM1K∅)) + 1)

≤ max(depth(M ′ M2 . . . Mn),max(depth(ρ),max(depth(M1), 1)) + 1)

≤ max(depth(M ′ M2 . . . Mn),depth(M1) + 1, depth(ρ) + 1)

= max(depth((λx. M ′) M1 . . . Mn),depth(ρ) + 1)

Where the first equality is by definition of interpretation, the second line is by IH, the
third line is by definition of depth on environments, the fourth line uses that since M is
strongly locally scoped M1 must be closed, therefore ρ 'M1 ∅ hence by Lemma 5.25 we
have JM1Kρ = JM1K∅. The fifth line is by IH on M1, and the last two lines are by easy
manipulations on maximums (using that depth is always greater than one) and definition
of depth.

Lemma 5.34. If ρ is a bs-environment, we set max(ρ) = maxx∈dom(ρ) max(ρ(x)). Then,
for each term M with a bs-environment ρ, for any natural number m ∈ N, we have:

max(m+ JMKρ) ≤ max(lh(M) +m,max(ρ))

In particular, max(JMK) ≤ lh(M).

Proof. By induction on the length of M , omitting basic manipulations of expressions.

• If M = ∗ M1 . . . Mn, it is direct.
• If M = x0 M1 . . . Mn with ρ(x) undefined, we calculate:

max(m+ JMKρ) = max
1≤i≤n

((m+ 1) + max(JMiKρ))

≤ max
1≤i≤n

max(lh(Mi) +m+ 1,max(ρ))

= max(lh(M) +m,max(ρ))

• If M = x0 M1 . . . Mn and ρ(x) is defined, we calculate:

max(m+ JMKρ) = max((

n⊔
i=1

(m+ 1) + JMiKρ) ·lv(x)+1 ρ(x))

≤ max(max
1≤i≤n

max(m+ 1 + JMiKρ),max(ρ))

≤ max(max
1≤i≤n

max(lh(Mi) +m+ 1,max(ρ)),max(ρ))

= max(lh(M) +m,max(ρ))

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 35

• If M = (λx. M) M1 . . . Mn, then we calculate:

max(m+ JMKρ) = max(m+ JM M2 . . . MnKρ∪{x 7→JM1Kρ})

≤ max(lh(M M2 . . . Mn) +m,max(ρ ∪ {x 7→ JM1Kρ}))
= max(lh(M M2 . . . Mn) +m,max(ρ),max(JM1Kρ))
≤ max(lh(M M2 . . . Mn) +m,max(ρ),max(lh(M1),max(ρ)))

≤ max(max(lh(M M2 . . . Mn), lh(M1)) +m,max(ρ))

= max(lh(M) +m,max(ρ))

Lemma 5.35. If Γ ` M : A is a term with a bs-environment ρ, we define ord(ρ) =
maxx∈dom(ρ) ord(ρ(x)). Then, we have:

ord(JMKρ) ≤ max(ord(M), ord(ρ), max
x∈dom(ρ)

(lv(x) + 1))

In particular, ord(JMK) ≤ ord(M).

Proof. By induction on the length of M , omitting some basic manipulations.

• If M = x0 M1 . . . Mn, ρ(x) undefined, then JMKρ = 1 +
⊔n
i=1JMiKρ. We calculate:

ord(JMKρ) = max
1≤i≤n

ord(JMiKρ)

≤ max
1≤i≤n

max(ord(Mi), ord(ρ), max
x∈dom(ρ)

(lv(x) + 1))

= max(max
1≤i≤n

ord(Mi), ord(ρ), max
x∈dom(ρ)

(lv(x) + 1))

≤ max(ord(M), ord(ρ), max
x∈dom(ρ)

(lv(x) + 1))

• If M = x0 M1 . . . Mn, ρ(x) defined, then JMKρ = (1 +
⊔n
i=1JMiKρ) ·lv(x)+1 ρ(x).

ord(JMKρ) = max(max
1≤i≤n

ord(JMiKρ), lv(x) + 1, ord(ρ(x)))

≤ max(max
1≤i≤n

max(ord(Mi), ord(ρ), max
y∈dom(ρ)

(lv(y) + 1)), lv(x) + 1, ord(ρ))

= max(ord(M), ord(ρ), max
y∈dom(ρ)

(lv(y) + 1))

• If M = λx. M ′, then it is straightforward.
• If M = (λxB. M ′) M1 . . . Mn, writing ρ′ = ρ ∪ {x 7→ JM1Kρ}:

ord(JMKρ) = ord(JM ′ M2 . . . MnKρ∪{x 7→JM1Kρ})

≤ max(ord(M ′ M2 . . . Mn), ord(ρ ∪ {x 7→ JM1Kρ}), max
y∈dom(ρ′)

(lv(y) + 1))

= max(ord(M ′ M2 . . . Mn), ord(JM1Kρ), ord(ρ), max
y∈dom(ρ′)

(lv(y) + 1))

≤ max(ord(M ′ M2 . . . Mn), ord(M1), lv(x) + 1, ord(ρ), max
y∈dom(ρ)

lv(y) + 1)

= max(ord(M), ord(ρ), max
y∈dom(ρ)

lv(y) + 1)

We can now summarize the results of this subsection with the following proposition.

Proposition 5.36. If M is a strongly locally scoped, η-long term of ground type, then:

depth(JMK) ≤ depth(M) max(JMK) ≤ lh(M)
ord(JMK) ≤ ord(M) N (JMK) ≥ N (M)

36 P. CLAIRAMBAULT

Proof. For depth, local height and order, it is a consequence respectively of Lemmas 5.33,
5.34 and 5.35. For the norm, we prove it on locally scoped (not strongly) terms, by induction
on N (JMK). If N (JMK) = 0, then N (M) = 0 as well by Proposition 5.31. If N (M) = 0,
this is obvious. Otherwise we have M →lhr M

′. By Lemma 5.22, M ′ is still locally scoped.
By Lemma 5.18, it is also still η-long. By Lemma 5.29, we have M →∅ M ′. By Proposition
5.31, it follows that there is a skeleton a such that: JMK∅ →bs a←↩ JM ′K∅. By definition of
norm and Lemma 4.1, we have N (JMK∅) > N (a) ≥ N (JM ′K∅). But by IH, we know that
N (M ′) ≤ N (JM ′K∅). So, N (M) = N (M ′) + 1 ≤ N (JM ′K∅) + 1 < N (JMK∅) + 1.

5.4. Bounds for strongly locally scoped terms. With Proposition 5.36 and Theorem
4.16 we can already deduce upper bounds for the length of lhr on sls η-long terms. However
it will turn out that η-expansion does not change the asymptotic bounds, so we first deal
with η-expansion and we will then formulate bounds for non necessarily η-long sls terms.

5.4.1. How η-expansion affects the norm.

Lemma 5.37. If M has a head occurrence x0 of a variable x, and M →η M
′, then for any

term N , we have M [N/x0]→η M
′[N/x0].

Proof. Direct by induction on M .

Lemma 5.38. If (λx,N) is a prime redex in M N , then for any N ′, (λx,N ′) is a prime
redex of M N ′.

Proof. Direct by induction on M .

Lemma 5.39. Suppose M →η M
′, with (λx,N) prime redex in M N and x0 head occurrence

of M , then there is a term M ′′ such that M ′ N →+
lhr M

′′ N and M [N/x0] N →η M
′′ N .

Proof. By induction on the length of M . If the η-expansion is external, i.e. M →η λy. M y0,
then by Lemma 5.38 we know that (λx, y0) is a prime redex in λy. M y0. It follows that we
have (λy.M y0) N →lhr (λy. M [y1/x0] y0) N . But then, y1 becomes the head occurrence,
and (λy,N) is a prime redex, therefore:

(λy. M [y1/x0] y0) N →lhr (λy. M [N/x0] y0) N

and to conclude, we obviously have M [N/x0] N →η (λy. M [N/x0] y0) N .
If the η-expansion is internal, we reason by cases on the form of M .

• If M = x0 M1 . . . Mn, then M does not have any prime redex.
• If M = λx. M ′, then necessarily x0 is an occurrence of x. Then we have M ′ →η M

′′, and
the prime redex (λx,N) in M N is still in (λx. M ′′) N . Moreover, the head occurrence
of M ′′ is still x0. Therefore, (λx. M ′′) N →lhr (λx. M ′′[N/x0]) N . By Lemma 5.37,
M ′[N/x0]→η M

′′[N/x0], so (λx. M ′[N/x0]) N →η (λx. M ′′[N/x0]) N .
• If M = (λy. M ′) M1 . . . Mn, then by cases on the location of the η-expansion:

– For M →η (λy. M ′′) M1 . . . Mn, it follows directly from IH.
– For the remaining cases, the same lhr reduction as in M is possible and obviously

commutes with the η-expansion.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 37

Lemma 5.40. If M →η N and M →lhr S, then there is T such that N →lhr+ T and
S →η+ T .

Proof. By induction on M , detailing only non-trivial cases.

• If M has the form λx. M ′, then M →lhr S with S = λx. S′. Since we have M →η N ,
several cases arise:
– If N = λy. M y0, it is immediate with T = λy. (λx.S′) y.
– If M ′ →η N

′, IH provides T ′ with N ′ →lhr+ T
′ and S′ →η+ T

′. Setting T = λx. T ′, the
commutation follows.

• If M has the form M1 M2. Three cases arise:
– If M1 M2 →η λx. M1 M2 x, then the prime redexes of λx. M1 M2 x are included in those

of M1 M2, and the head occurrence is the same. It follows that if M1 M2 →lhr M
′
1 M2,

we have that λx. M1 M2 x→lhr λx. M
′
1 M2 x as well. Setting T = λx. M ′1 M2 x yields

the required diagram.
– If M1 M2 →η M

′
1 M2 (so M1 →η M

′
1). Then, two cases arise.

∗ If the reduction M1 M2 →lhr S1 M2 involves a prime redex (λy,M2), and the
head occurrence of M1 is y0. Then by Lemma 5.39, there is a term T ′ such that
M ′1 M2 →+

lhr T
′ M2 and M1[M2/y0] M2 →η T

′ M2. Setting T = T ′ M2, we have the
required commutation.
∗ If the reduction M1 M2 →lhr S1 M2 does not involve M2, then we also have M1 →η M

′
1,

and M1 →lhr S1. By IH, there is T1 such that M ′1 →lhr+ T1 and S1 →η+ T1. Setting
T = T1M2 gives the required commutation.

– If M1 M2 →η M1 M
′
2, then two sub-cases arise:

∗ If M1 M2 →lhr S1 M2 is obtained by firing a prime redex (λx,M2) with x0 head
occurrence of M1, then setting T = M1[M ′2/x0] yields M1 M

′
2 →lhr T and S1 M2 =

M1[M2/x0] M2 →η2 M1[M ′2/x0] M ′2.
∗ If M1 M2 →lhr S1 M2 is obtained by firing a prime redex not involving M2, then

setting T = S1M
′
2 immediately yields the required commutation.

Lemma 5.41. If M →ηn N and M →lhrp S, then there are T , n′ ≥ n and p′ ≥ p such that
N →

lhrp
′ T and S →ηn′ T .

Proof. We reason by induction on the lexicographic ordering of pairs (N (N), n), using that
N (N) is finite by Proposition 5.9. If n = 0 or p = 0, it is obvious. Otherwise, we have
M →η N1 →ηn−1 N and M →lhr S1 →lhrp−1 S. By Lemma 5.40, there is N ′1 such that
M1 →η+ N

′
1 and N1 →lhr+ N

′
1, let us write M1 →ηq N

′
1 and N1 →lhrr N

′
1, with r, q ≥ 1. We

represent the situation on the following diagram:

M
η //

lhr
��

N1
ηn−1

//

lhrr

��

N

S1
ηq //

lhrp−1

��

N ′1

S

38 P. CLAIRAMBAULT

We have n− 1 < n and N (N) is unchanged, therefore by IH, there is N ′ as displayed here:

M
η //

lhr
��

N1
ηn−1

//

lhrr

��

N

lhrr
′

��
S1

ηq //

lhrp−1

��

N ′1
ηn
′
// N ′

S

with r′ ≥ r and n′ ≥ n− 1. Finally, N (N ′) < N (N), therefore by IH there is T closing the
diagram:

M
η //

lhr
��

N1
ηn−1

//

lhrr

��

N

lhrr
′

��
S1

ηq //

lhrp−1

��

N ′1
ηn
′
// N ′

lhrp
′

��
S

ηn
′′

// T

with p′ ≥ p− 1 hence p′+ r′ ≥ p− 1 + r ≥ p− 1 + 1 ≥ p, and n′′ ≥ q+n′ ≥ 1 +n− 1 ≥ n.

Proposition 5.42. If M →η N , then N (N) ≥ N (M).

Proof. We show by induction onN (M) that if M →∗η N , thenN (N) ≥ N (M). IfN (M) = 0,
this is obvious. Otherwise, there is M →lhr M

′. By Lemma 5.41 there is N ′ such that
N →lhr+ N ′ and M ′ →∗η N ′. But N (M ′) < N (M), so by IH we have N (N ′) ≥ N (M ′).
Since N (M) = N (M ′) + 1 and N (N) ≥ N (N ′) + 1, we have N (N) ≥ N (M) as well.

5.4.2. How η-expansion affects other quantities on terms.

Definition 5.43. An η-expansion step M →η M
′ is restricted if M and M ′ have the same

number of generalized redexes. We write M →ηr M
′.

Lemma 5.44. On any term M , the expansion →ηr terminates.

Proof. Suppose A is a type, then its size written size(A), is defined by induction on A by
size(o) = 1 and size(A→ B) = size(A) + size(B). If M is a term, its deficiency quantifies
the lack of η-expansion within M . It is defined by induction on the length of M , as follows:

• If M = x0 M1 . . . Mn, where x0 is an occurrence of a variable or constant, and if
x : A1 → · · · → Ap → o, then set df(M) =

∑n
i=1 df(Mi) +

∑p
i=n+1 size(Ai).

• If M = λx. M ′, we set df(M) = df(M ′).
• If M = (λx. M ′) M1 . . . Mn, we set df(M) = df(M ′ M2 . . . Mn) + df(M1).

Restricted η-expansion strictly decreases deficiency, by induction on the length of M :

• If M = x0 M1 . . . Mn where x0 is a variable or constant occurrence having type
A1 → · · · → Ap → o, then by definition we have df(M) =

∑n
i=1 df(Mi) +

∑p
i=n+1 size(Ai).

We reason by cases on the location of the η-expansion. If it is:

x0 M1 . . . Mn →ηr λy. x0 M1 . . . Mn y0

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 39

then df(λy. x0 M1 . . . Mn y0) =
∑n

i=1 df(Mi) + df(y0) +
∑p

i=n+2 size(Ai). But it is
obvious by definition that df(y0) = size(An+1) − 1, so deficiency is reduced. If the η-
expansion is x0 M1 . . . Mn →ηr x0 M1 . . . M ′i . . . Mn, then Mi →ηr M

′
i , so by IH we

have df(M ′i) < df(Mi). So, df(x0 M1 . . . M ′i . . . Mn) < df(x0 M1 . . . Mn).
• If M = λx. M ′, the η-expansion cannot be λx. M ′ → λy. (λx. M ′) y0 as that would

create a new generalized redex, so it is M ′ →ηr M
′′. The property follows from IH.

• If M = (λx. M ′) M1 . . . Mn, then the only possible restricted η-expansions are:

(λx. M ′) M1 . . . Mn →ηr λy. (λx. M ′) M1 . . . Mn y0

(λx. M ′) M1 . . . Mn →ηr (λx. M ′′) M1 . . . Mn

(λx. M ′) M1 . . . Mn →ηr (λx. M ′) M1 . . . M ′i . . . Mn

All the others create a generalized β-redex. In all three cases, the result follows from IH
and definition of deficiency.

We have a positive strictly decreasing measure for ηr, so it terminates.

Lemma 5.45. If M is a term and M →∗ηr M
′, then lh(M ′) ≤ lh(M) + ord(M).

Proof. We define a quantity lh′(M) such that lh(M) ≤ lh′(M) ≤ lh(M) + ord(M) and
we show that lh′ is preserved by restricted η-expansion. It is defined as for lh, except for
variables where we set, with x0 occurrence of x : A1 → · · · → Ap → o:

lh′(x0 M1 . . . Mn) = 1 + max(max
1≤i≤n

lh′(Mi), max
1≤i≤n

lv(Ai))

Clearly, we have lh(M) ≤ lh′(M) ≤ lh(M) + ord(M). We prove by induction on M that it
is preserved by restricted η-expansion, skipping the trivial case.

• If M = x0 M1 . . . Mn where x0 is a variable occurrence of a variable x : A1 → · · · →
Ap → o, then several cases depending on the location of the η-expansion. Firstly, if the
η-expansion is: x0 M1 . . . Mn →ηr λy. x0 M1 . . . Mn y0 we have

lh′(x0 M1 . . . Mn) = 1 + max(max
1≤i≤n

lh′(Mi), max
n+1≤i≤p

lv(Ai))

lh′(λy. x0 M1 . . . Mn y) = 1 + max(max
1≤i≤n

lh′(Mi), lh
′(y), max

n+2≤i≤p
lv(Ai))

But then, writing y : B1 → · · · → Bm → o, we have lh′(y) = 1 + max1≤i≤m lv(Bi) =
lv(An+1), so those two quantities are equal. Secondly, if the restricted η-expansion is
within some Mi, then the result follows immediately by IH.
• If M = (λx. M ′) M1 . . . Mn, then several cases following the location of the η-expansion.

For (λx. M ′) M1 . . . Mn →ηr λy. (λx. M ′) M1 . . . Mn y0, we calculate:

lh′((λx. M ′) M1 . . . Mn) = max(lh′(M ′ M2 . . . Mn), lh′(M1))

= max(lh′(λy. M ′ M2 . . . Mn y0), lh′(M1))

= max(lh′(M ′ M2 . . . Mn y0), lh′(M1))

= lh′((λx. M ′) M1 M2 . . . Mn y0))

= lh′(λy. (λx. M ′) M1 M2 . . . Mn y0)

If the η-expansion is within M ′ or Mi, it follows directly from IH.

Lemma 5.46. If M →ηr M
′, then depth(M) = depth(M ′).

Proof. Immediate by induction on M .

40 P. CLAIRAMBAULT

Lemma 5.47. If M →η M
′, then ord(M) = ord(M ′)

Proof. There is a subterm N such that N →η λy. N y0. But lv(λy. N y0) = lv(N) and
lv(N y0) ≤ lv(N), so the new subterms have lower level than the original ones.

Finally, it remains to note that η-expansion preserves strong local scope.

Lemma 5.48. If M is strongly locally scoped and M →ηr M
′, then M ′ is sls.

Proof. B straightforward induction on the length of M .

Proposition 5.49. If M is a term, then there is an η-long term M ′ such that:

lh(M ′) ≤ lh(M) + ord(M) depth(M ′) = depth(M)
ord(M ′) = ord(M) N (M ′) ≥ N (M)

Moreover if M was strongly locally scoped, so is M ′.

Proof. By Lemma 5.44, there is M ′ such that M →∗ηr M
′, and there is no further restricted

η-expansion. By definition, M ′ is η-long. Moreover, the preservations of depth, order, local
height and norm follow respectively from Lemmas 5.46, 5.47, 5.45 and Proposition 5.42. The
construction preserves strong local scope by Lemma 5.48.

5.4.3. Bounds for strongly locally scoped terms. Putting everything together, we estimate:

Llsn(h, d) = max{N (M) | ord(M) ≤ n & lh(M) ≤ h & depth(M) ≤ d & M sls}

Proposition 5.50. Suppose M is a sls term of order at least one. Then,

N (M) ≤ 2
depth(M) log(lh(M)+ord(M)+1)
ord(M)−1

Proof. If Γ ` M : A1 → · · · → An → o is a sls term, we first make it of ground type by
forming Γ ` M ∗A1 . . . ∗An : o – its norm can only increase, the other quantities stay
unchanged and the term is still sls. By Proposition 5.49, there is M ′ η-long, of ground type,
and sls such that lh(M ′) ≤ lh(M) + ord(M), depth(M ′) = depth(M), ord(M ′) = ord(M)
and N (M ′) ≥ N (M). We conclude by Proposition 5.36 and Theorem 4.16.

We now prove the optimality of this upper bound by exhibiting a family of terms whose
reduction length asymptotically reaches it. This family of terms is closely related to the
example used in Section 3 for game situations. For n, k, p ≥ 0 and M : Ap, we define:

[n]0p(M) = M [n]k+1
p (M) = np+1 [n]kp(M)

One can immediately check that [n]kp(M) : Ap and that for all q ∈ N, [n]kp(qp) →
∗
β q

nk

p
.

Exploiting this construction we set, for n, k, p ≥ 0:

Sn,k,p = [n]kp(2p) 2p−1 . . . 20

For which it is immediate to check that for all n, k, p ≥ 0 we have Sn,k,p →∗β 22n
k

p
0
. Moreover,

by construction of Sn,k,p, for n ≥ 2 and p, k ≥ 1 we have lh(Sn,k,p) = n+ 1, depth(Sn,k,p) =
k + 1 and ord(Sn,k,p) = p+ 3, and Sn,k,p is sls. To deduce a lower bound from this, we use:

Lemma 5.51. If M →∗β n0, then N (M ido) ≥ n, where ido = λxo. x.

Proof. By induction on n, exploiting that lhr preserves β-equivalence.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 41

y ∈ fv(M1)

(λx. M) M1 . . . Mn →λl (λx. M [x y/x]) (λy′. M1[y′/y]) . . . Mn

Mi →λl M
′
i

x0 M1 . . . Mn →λl x0 M1 . . . M ′i . . . Mn

M →λl M
′

λx. M →λl λx. M
′

M1 →λl M
′
1

(λx. M) M1 . . . Mn →λl (λx. M) M ′1 . . . Mn

M M2 . . . Mn →λl M
′ M ′2 . . . M ′n (M1 closed)

(λx. M) M1 . . . Mn →λl (λx. M ′) M1 M
′
2 . . . M ′n

Figure 4: Definition of the λ-lifting expansion →λl

Theorem 5.52. For fixed n ≥ 2 we have Llsn(h, d) = 2
Θ(d log(h))
n−1 .

Proof. We start with n ≥ 3, n = 2 requires a separate construction for the lower bound. Let

us fix h ≥ 3 and d ≥ 2. By Proposition 5.50, we already know that Llsn(d, h) ≤ 2
d log(h+n+1)
n−1 .

Moreover, we have lh(Sh−1,d−1,n−3 ido) = h and depth(Th−1,d−1,n−3 ido) = d, and by Lemma

5.51 we have N (Th−1,d−1,n−3 ido) ≥ 2
(d−1) log(h−1)
n−1 . To summarize:

2
(d−1) log(h−1)
n−1 ≤ Llsn(d, h) ≤ 2

d log(h+n+1)
n−1

Therefore, with n ≥ 3 fixed and d, h parameters we have Llsn(h, d) = 2
Θ(d log(h))
n−1 .

For n = 2, the upper bound still holds. For d, p ≥ 2, define:

Un,d = n1 (n1 . . . (n1 ido) . . .)

with d copies of n1 in total. Then, Un,d is sls and lh(Un,d) = n+ 1, depth(Un,d ido) = d+ 1,

ord(Un,d ido) = 2 and N (Un,d) ≥ nd = 2d log(n). It follows that Lls2(d, h) = 2Θ(d log(h)).

In particular, reduction length for sls second-order terms of fixed depth is bounded by a
polynomial of degree less than the depth.

5.5. Generalization to arbitrary terms. In this final subsection, we deduce from the
study of lhr of ls terms a bound on the length of lhr of arbitrary terms. The key observation
is that any λ-term can be transformed into a locally scoped form through λ-lifting [16].

5.5.1. Lambda-lifting to sls terms. Take a term M = λxA. (λyA. y) x. Obviously, M is not
sls: indeed there is a prime redex (λy, x) and the subterm x has x free. In order to make
the variable x “local”, we modify the abstraction subterm λy. y to forward explicitly the

variable x. We get the term M ′ = λxA. (λyA→A. y x)(λx′A. x′). The type of y has changed,
but not the type of the overall term. Note that the terms M and M ′ are still β-equivalent,
although we are not going to use that explicitly. More importantly, the norm has increased,
the order has increased by one, and the other quantities are essentially unchanged. We
formalize this construction by the λ-lifting expansion →λl, defined in Figure 4.

First, we prove that →λl indeed allows us to convert any term M into a sls M ′. This is
done by showing that →λl terminates, and that its normal forms are sls.

42 P. CLAIRAMBAULT

Lemma 5.53. Let M be any term. Then, →λl terminates on M .

Proof. For each occurrence x0 of x in M , we define its binding distance dM (x0):

dx0 M1 ... Mn(x0) = 0
d∗ M1 ... Mn(x0) = dMi(x0) (x0 ∈Mi)
dy0 M1 ... Mn(x0) = dMi(x0) (x0 ∈Mi)

dλx. M ′(x0) = dM ′(x0)
d(λy. M ′) M1 ... Mn

(x0) = dM ′(x0) (x0 ∈M ′)
d(λy. M ′) M1 ... Mn

(x0) = maxyi∈ocy(M ′) dM ′(yi) + dM1(x0) + 1 (x0 ∈M1 ∧ x ∈ fv(M ′))
d(λy. M ′) M1 ... Mn

(x0) = dM1(x0) (x0 ∈M1 ∧ x0 6∈ fv(M1))
d(λy. M ′) M1 ... Mn

(x0) = dM ′ M2 ... Mn(x0) (x0 ∈Mi ∧ i ≥ 2)

where x0 ∈ M means that x0 is a variable occurrence x in M and ocy(M) is the set
of occurrences of a variable y in M . Then, for any term M we consider the multiset
M(M) = {dM (x0) | x0 ∈ ocx(M)} where by {− | −} we denote here multiset comprehension.
Then, we show by induction on M →λl M

′ that M(M ′) < M(M) for < the multiset
well-founded ordering on multisets of natural numbers.

• If M = (λx. M ′) M1 . . . Mn →λl (λx. M ′[x y/x]) (λy′. M1[y′/y]) . . . Mn = M ′′:
– Occurrences of variables other than y′ in M1[y′/y] keep their binding distance,
– Occurrences of y in M1 of distance dM (yi) = maxxi∈ocx(M ′) dM ′(xi) + dMi(yi) + 1 have

been replaced by occurrences of y′ of distance dM ′′(y
′
i) = dMi(yi).

– New occurrences of y of distance less than maxxi∈ocx(M ′) dM ′(xi) appear.
So, each variable occurrence is either unchanged or replaced by occurrences of strictly
smaller distance, so the reduction decreases the multiset ordering on M(M).
• The other cases follow from IH since M(−) is additive over all term constructors.

Lemma 5.54. If a term M is λl-normal, M is strongly locally scoped.

Proof. Straightforward induction on the length of M .

5.5.2. How λ-lifting increases the norm. Now, it remains to investigate how λ-lifting affects
the relevant quantities on terms. First, we show that it can only increase the norm.

Lemma 5.55. If M has a head occurrence x0 where x is free in M and N is a term, then
if M →λl M

′, then the head occurrence of M ′ is still x0 and M [N/x0]→λl M
′[N/x0].

Proof. By induction on the length of M . The only non-trivial case is for the term M =
(λy. M ′) M1 . . . Mn, where three subcases arise:

• If M ′ →λl M
′′, then by IH we know that M ′[N/x0]→λl M

′′[N/x0], therefore

(λy. M ′[N/x0]) M1 . . . Mn →λl (λy. M ′′[N/x0]) M1 . . . Mn

• If Mi →λl M
′
i , then (λy. M ′[N/x0]) M1 . . . Mn →λl (λy. M ′[N/x0]) M1 . . . Mn.

• If (λy. M ′) M1 . . . Mn →λl (λy. M ′[y z/y]) (λz. M1) . . . Mn, then since x is free in
M ′, necessarily y 6= x (y is bounded). Hence M ′[y z/y][N/x0] = M ′[N/x0][y z/y], so
(λy. M ′[N/x0]) M1 . . . Mn →λl (λy. M ′[y z/y][N/x0]) (λz. M1) . . . Mn.

Lemma 5.56. If M has a head occurrence x0 where x is free in M and N is a term with
N →λl N

′, then we have M [N/x0]→λl M [N ′/x0].

Proof. Straightforward by induction on the length of M .

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 43

Lemma 5.57. If M →λl M
′ and M →lhr N , then there exists S, T such that:

M
λl //

lhr

��

M ′
lhr

&&
T

N
λl+ // S

xx

β•si

Where in β•si, by s we mean the β-reduction of a spine redex, i.e. a β-redex that is also a
prime redex, by i we mean that it is internal, in the sense that it is not the leftmost redex,
and by • we mean that there are either zero or one reduction steps.

Proof. By induction on M , detailing only the non-trivial cases.

• If M = λx. M ′, it follows directly from IH.
• If M = (λx. M ′) M1 . . . Mn and the head occurrence of M ′ is an occurrence x0 of x,

then (λx. M ′) M1 . . . Mn →lhr (λx. M ′[M1/x0]) M1 . . . Mn. There are several cases. If
the →λl step comes from M ′ M2 . . . Mn →λl M

′′ M ′2 . . . M ′n, then by Lemma 5.55 we
also have:

M ′[M1/x0] M2 . . . Mn →λl M
′′[M1/x0] M ′2 . . . M ′n

It immediately follows:

(λx. M ′[M1/x0]) M1 . . . Mn →λl (λx. M ′′[M1/x0]) M1 M
′
2 . . . M ′n

which provides the necessary commutation. If the →λl comes from M1 →λl M
′
1, then by

Lemma 5.56 we also have M ′[M1/x0]→λl M
′[M ′1/x0]. It immediately follows:

(λx. M ′[M1/x0]) M1 . . . Mn →λl2 (λx. M ′[M ′1/x0]) M ′1 . . . Mn

which provides the necessary commutation. Finally, if the →λl step is:

(λx. M ′) M1 . . . Mn →λl (λx. M ′[x z/x]) (λz. M1) . . . Mn

Then the head occurrence of (λx. M ′[x z/x]) (λz. M1) . . . Mn is still x0. Moreover,

(λx. M ′[x z/x]) (λz. M1) . . . Mn →lhr (λx. M ′[x z/x][(λz. M1)/x0]) (λz. M1) . . . Mn

= (λx. M ′[((λz. M1) z)/x0][x z/x]) (λz. M1) . . . Mn

→βsi (λx. M ′[M1/x0][x z/x]) (λz. M1) . . . Mn

←λl (λx. M ′[M1/x0]) M1 . . . Mn

• If M = (λy. M ′) M1 . . . Mn whose head occurrence x0 is not an occurrence of y, then
three cases.
– If the→λl-reduction comes from M ′ M2 . . . Mn →λl M

′′ M ′2 . . . M ′n, it follows directly
from IH.

– If the →λl-reduction comes from M1 →λl M
′
1, then it is obvious.

– If the →λl-reduction is:

(λy. M ′) M1 . . . Mn →λl (λy. M ′[y z/y]) (λz. M1) . . . Mn

The head occurrence of M ′ is not an occurrence of y, therefore the lhr reduct of
(λy. M ′) M1 . . . Mn must have the form (λy. M ′[N/x0]) M1 . . . Mn for some N . The
head occurrence of (λy. M ′[y z/y]) (λz. M1) . . . Mn is still x0, and:
∗ If the associated prime redex (λx,N) has not changed, the same lhr is possible and

commutes with the λl-reduction.

44 P. CLAIRAMBAULT

∗ If the associated prime redex has become (λx,N [y z/y]), we have M ′[N/x0][y z/y] =
M ′[N [y z/y]/x0][y z/y], so the same reasoning as above applies.

Proposition 5.58. If M →λl M
′, then N (M ′) ≥ N (M).

Proof. By induction on N (M ′). By Lemma 5.57, there are terms S, T such that:

M
λl //

lhr

��

M ′
lhr

&&
T

N
λl+ // S

xx
β∗

By Proposition 5.12, we have N (S) ≤ N (T) = N (M ′)− 1. Moreover, we have a chain:

N = N1 →λl N2 →λl · · · →λl Nn = S

But since N (S) < N (M ′), it follows by immediate induction that N (N) ≤ N (S). Therefore,
we have N (M) = N (N) + 1 ≤ N (S) ≤ N (M ′)− 1 < N (M ′).

5.5.3. How λ-lifting preserves other quantities on terms. Finally, We examine how λ-lifting
affects the other quantities on terms. We first notice that it preserves the depth.

Lemma 5.59. If M →λl M
′, then depth(M) = depth(M ′).

Proof. First, we prove by induction on M that for any x free in M and variable y, we have
depth(M) = depth(M [x y/x]). The lemma follows by induction on the definition of →λl.

Unfortunately it does affect the order and the local height; however we will show that
multiple applications of →λl can only change them by one. To prove that, we will construct
weighted variants of order and local height that give different weight to variables according
to their behaviour with respect to →λl. By design they will be preserved by →λl, but will
remain within small bounds of the original level and local height. We start with the order.

Say that a variable x in a term M is local in M iff for any generalized redex (λy,N) of
M , x does not appear free in N . If x is a variable of M define the weighted level lv′(x) by
lv(x) + 1 if x is local and lv(x) + 2 otherwise. Then, define the weighted order ord′(M)
as being the maximum over all lv′(x) for variables x in M , and all lv(A) for constants ∗A in
M . First, we prove that ord′(M) remains closely related to ord(M).

Lemma 5.60. Let M be a closed term, then ord(M) ≤ ord′(M) ≤ ord(M) + 1.

Proof. We prove first that ord(M) ≤ ord′(M). If M admits as a subterm a constant ∗A with
ord(M) = lv(A), then ord′(M) ≥ lv(A) ≥ ord(M). Otherwise, M has a subterm λxA. M ′

such that ord(M) = lv(A) + 1 – indeed if a subterm of M of maximal level has the form
M1 M2 then M1 has higher level, and if it has the form λxA. M ′ with lv(M ′) > lv(A) + 1
then M ′ still has maximal level so the property follows by induction. So in particular M
has a variable x with ord(M) = lv(x) + 1, which is always less than ord′(M).

We now prove that ord′(M) ≤ ord(M) + 1. Firstly, if there is a constant ∗A in M such
that ord′(M) = lv(A), then ord(M) + 1 ≥ ord(M) ≥ lv(A) as well. Secondly, if there is a
local variable xA such that ord′(M) = lv(A) + 1, then since M is closed it has a subterm of
the form λxA. M ′, so ord(M) + 1 ≥ lv(λxA. M ′) + 1 ≥ lv(A) + 2 > lv(A) + 1. Finally if
there is a non-local variable xA such that ord′(M) = lv(A) + 2, same reasoning.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 45

Now we prove that the weighted order is preserved by →λl.

Lemma 5.61. For any term M with M →λl M
′, then ord′(M) = ord′(M ′).

Therefore (by Lemma 5.60) if M is closed with M →∗λl N , then ord(N) ≤ ord(M) + 1.

Proof. By induction on the definition of →λl.

• If Ml = (λx. M ′) M1 . . . Mn →λl (λx. M ′[x y/x]) (λy′. M1[y′/y]) . . . Mn = Mr, both
terms contain the same constants. If z is a variable on the left hand side, reason by cases.
For clarity we write the levels of variables as lvl(x) or lv′l(x) on the left hand side, and
lvr(x) or lv′r(x) on the right hand side. We describe a mapping of variables of Ml to
variables of Mr increasing the weighted level.
– We map x to x if lvl(x) ≥ lvl(y) + 1. Then x is local in Ml iff it is local in Mr, so

there is i ∈ {1, 2} such that we have lv′l(x) = lvl(x) + i and lv′r(x) = lvr(x) + i =
max(lvl(x), lvl(y) + 1) + i = lvl(x) + i. If lvl(x) ≤ lvl(y), we associate y to x. Then,
we note that x is local in Ml iff y is local in Mr; it follows that lv′r(y) = lvr(y) + i =
lvl(y) + i ≥ lvl(x) + i = lv′l(x).

– We map y to x as well. Indeed, lv′l(y) = lvl(y) + 2 ≤ lvr(x) + 1 ≤ lv′r(x).
– Any other variable is unchanged, its weighted level unaffected by the reduction.
Likewise, we give a mapping of variables in Mr to variables in Ml.
– We map x to x if lvl(x) ≥ lvl(y)+1 (then we have lv′r(x) = lvr(x)+1 = max(lvl(x), lvl(y)+

1) + 1 = lvl(x) + 1 = lv′l(x)), and y if lvl(x) ≤ lvl(y) (then lv′r(x) = lvl(y) + 2 = lv′l(y)).
– We map y and y′ to y, the weighted level can only increase.
– To any other z we leave it unchanged, its weighted level is unaffected.
• For all other cases, it directly follows from IH.

For preservation of local height, we need a few preliminaries. If M is a term and x is a
variable of M , we say that x is a carrier variable iff there is a generalized redex (λx,N)
in M such that N has a free variable. We also define the V -weighted local height of
M , parametrized by a set V of variables and written lhV (M), by induction on M as for lh
except that the base case for variable occurrences is enriched with:

lhV (x0 M1 . . . Mn) = 1 + max(1, max
1≤i≤n

lhV (Mi))

when x0 is an occurrence of x ∈ V . The weighted local height of M , written lh′(M), is
defined as lhV (M) where V is the set of carrier variables of M .

First, we show how the weighted local height compares with the local height.

Lemma 5.62. For any term M , lh(M) ≤ lh′(M) ≤ lh(M) + 1.

Proof. Immediate by induction on the length of M .

Lemma 5.63. If M is a term such that M →λl M
′, then lh′(M) = lh′(M ′).

Therefore (by Lemma 5.62) that for any term M , if M →∗λl M
′, then lh(M ′) ≤ lh(M)+1.

Proof. By induction on the definition of λl, detailing non-trivial cases.

• If we have, with y ∈ fv(M1):

Ml = (λx. M) M1 . . . Mn →λl (λx. M [x y/x]) (λy′. M1[y′/y]) . . . Mn = Mr

Then, it is direct to show by induction on the length of a term M that if x, y are not bound
in M and x ∈ V , y 6∈ V , and if V ′ is either V or V \ {x}, then lhV (M) = lhV ′(M [x y/x]).

46 P. CLAIRAMBAULT

Since y is free in Ml it is not a carrier variable, so applying the property above it is direct
that lh′(Ml) = lh′(Mr).
• Suppose we have (λx. M) M1 . . . Mn →λl (λx. M ′) M1 M ′2 . . . M ′n from Ml =
M M2 . . . Mn →λl M

′ M ′2 . . . M ′n and M1 closed. Let V be the set of carrier variables
of Ml. Since M1 is closed, x 6∈ V . We calculate:

lhV ((λx. M) M1 . . . Mn) = max(lhV (M M2 . . . Mn), lhV (M1))

But lhV (M M2 . . . Mn) = lh′(M M2 . . . Mn): by Barendregt’s convention variables
of V appearing in M M2 . . . Mn are bound in M M2 . . . Mn and therefore be carrier
variables in M M2 . . . Mn. Therefore, the property follows from IH.

Putting all of the above together, we obtain the following lemma:

Lemma 5.64. For any closed term M , there is a strongly locally scoped M ′ such that:

N (M ′) ≥ N (M) ord(M ′) ≤ ord(M) + 1
lh(M ′) ≤ lh(M) + 1 depth(M ′) = depth(M)

Proof. Starting from M , apply →λl as much as possible. By Lemma 5.53, this reduction
must terminate on a term M ′. By Lemma 5.54, M ′ is strongly locally scoped. By Proposition
5.58, we have N (M ′) ≥ N (M). By Lemmas 5.61 and 5.63, we have lh(M ′) ≤ lh(M) + 1
and ord(M ′) ≤ ord(M) + 1. Finally by Lemma 5.59, we have depth(M ′) = depth(M).

5.5.4. Expanding variables. Until now, terms have been measured through their local height
and depth. However for general terms those are rather unnatural quantities, and bounds for
λ-calculi are usually not expressed in terms of them.

The height of a term M , is the quantity defined by induction by h(∗) = 0,h(x0) =
1, h(λx. M) = h(M), h(M1 M2) = max(h(M1), h(M2) + 1). We give a final norm-increasing
term transformation, allowing us to convert depth and local height to height.

Lemma 5.65. For any term M , there exists a term M ′ such that M →∗η M ′,

lh(M ′) ≤ 2 depth(M ′) ≤ h(M)
ord(M ′) = ord(M) N (M ′) ≥ N (M)

Proof. We define the expansion exp(M) by induction on M as follows:

exp(x0) = λy1A1 λynAn . x0 y1 . . . yn

exp(∗) = ∗
exp(λx. M) = λx. exp(M)

exp(M N) = exp(M) exp(N)

where in the first case, x has type A1 → · · · → An → o. It is direct that M →∗η exp(M), so by
Proposition 5.42 and Lemma 5.47 we have N (exp(M)) ≥ N (M) and ord(exp(M)) = ord(M).
Finally, lh(exp(M)) ≤ 2 and depth(exp(M)) ≤ h(M) are immediate by induction.

BOUNDING LINEAR HEAD REDUCTION AND VISIBLE INTERACTION THROUGH SKELETONS 47

5.5.5. Exact bounds for general terms. We are now interested in estimating the quantity:

Lgenn(h) = max{N (M) | ord(M) ≤ n & h(M) ≤ h}
We do that by applying the tools developed earlier to get an upper bound on the length
of reduction, and then prove a matching lower bound by providing terms whose length of
reduction asymptotically reaches the upper bound.

Proposition 5.66 (Upper bound). Suppose M is a term. Then, N (M) ≤ 2
h(M) log(ord(M)+5)
ord(M) .

Proof. Start with a term M , call it M0. Without loss of generality we can consider M
closed, otherwise we replace occurrences of free variables by occurrences of constants without
changing the norm, and only reducing the local height, depth and order. Then, we apply
the following transformations.

First we expand variables: by Lemma 5.65, there is a term closed term M1 with:

N (M1) ≥ N (M0) ord(M1) = ord(M0)
lh(M1) ≤ 2 depth(M1) ≤ h(M0)

Then, we make it strongly locally scoped. By Lemma 5.64, there is M2 sls such that:

N (M2) ≥ N (M1) ord(M2) ≤ ord(M1) + 1
lh(M2) ≤ lh(M1) + 1 depth(M2) = depth(M1)

If ord(M2) = 0, then M2 does not have any prime redex (nor any application, in fact), so

N (M2) = 0. Otherwise, by Proposition 5.50, N (M2) ≤ 2
depth(M2) log(lh(M2)+ord(M2)+1)
ord(M2)−1 . By

the inequalities above, we immediately deduce that N (M) ≤ 2
h(M) log(ord(M)+5)
ord(M) .

Theorem 5.67. For fixed n ≥ 3 we have Lgenn(h) = 2
Θ(h)
n .

Proof. Upper bound. By Proposition 5.66.
Lower bound. The construction is essentially the same as the one used in [4] for the lower

bound in terms of height. For p ≥ 1 and k ≥ 0, we define bp0 = 2p and bpk+1 = λxAp−1 . bpk (bpk x).
Then, we set:

Bp
k = bpk 2p−1 . . . 20

Note that this term is not sls. By standard arithmetic of Church numerals, we have that
for any p ≥ 1, k ≥ 0, Bp

k →
∗
β 2kp+2

0
. By Lemma 5.51 it follows that N (Bp

k ido) ≥ 2kp+2. It is

direct to check that ord(Bp
k) = p+ 2 and h(Bp

k) = k + 3 (for k ≥ 1), concluding the proof.

For a term M of height h and order n, Beckmann’s results [4] predict that any β-reduction

chain of M terminates in less than 2
Θ(h)
n+1 steps. It might seem counter-intuitive that our

bound (with lhr) is smaller than Beckmann’s (with β-reduction) since we substitute only
one occurrence at a time, which is obviously longer. However, Beckmann considers arbitrary
β-reduction, not head β-reduction. The possibility of reducing in arbitrary locations of
the term unlocks much longer reductions, since higher-order free variables or constants can
isolate sections of the term that will never arrive in head position but can still be affected
by arbitrary β-reduction. The fact that the length of lhr has the same order of magnitude
as head β-reduction is not surprising in the light of Accattoli and Dal Lago’s recent result
[3] that a similar notion of lhr is quadratically related to head reduction.

48 P. CLAIRAMBAULT

Acknowledgment. The author is grateful to the anonymous referees for their very helpful
comments and suggestions.

References

[1] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully abstract game semantics for
idealized algol with active expressions. Electr. Notes Theor. Comput. Sci., 3:2–14, 1996.

[2] Beniamino Accattoli. An abstract factorization theorem for explicit substitutions. In Tiwari [20], pages
6–21.

[3] Beniamino Accattoli and Ugo Dal Lago. On the invariance of the unitary cost model for head reduction.
In Tiwari [20], pages 22–37.

[4] Arnold Beckmann. Exact bounds for lengths of reductions in typed lambda-calculus. J. Symb. Log.,
66(3):1277–1285, 2001.

[5] Alexis Bernadet and Stéphane Lengrand. Complexity of strongly normalising -terms via non-idempotent
intersection types. In FOSSACS, pages 88–107, 2011.

[6] Pierre Clairambault. Estimation of the length of interactions in arena game semantics. In FOSSACS,
pages 335–349, 2011.

[7] Pierre Clairambault. Bounding skeletons, locally scoped terms and exact bounds for linear head reduction.
In Masahito Hasegawa, editor, TLCA, volume 7941 of Lecture Notes in Computer Science, pages 109–124.
Springer, 2013.

[8] Pierre Clairambault and Russ Harmer. Totality in arena games. Ann. Pure Appl. Logic, 161(5):673–689,
2010.

[9] V. Danos, H. Herbelin, and L. Regnier. Game semantics and abstract machines. In Logic in Computer
Science, 1996. LICS’96. Proceedings., Eleventh Annual IEEE Symposium on, pages 394–405. IEEE,
1996.

[10] V. Danos and L. Regnier. How abstract machines implement head linear reduction. 2003. unpublished.
[11] Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Inf. Comput., 183(1):123–137,

2003.
[12] Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of the execution

time in linear logic. TCS, 412(20):1884–1902, 2011.
[13] Jean-Yves Girard. Light linear logic. In Daniel Leivant, editor, LCC, volume 960 of Lecture Notes in

Computer Science, pages 145–176. Springer, 1994.
[14] Russ Harmer. Innocent game semantics. Lecture notes, 2004–2007.
[15] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf. Comput.,

163(2):285–408, 2000.
[16] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations. In FPCA, pages

190–203, 1985.
[17] Ugo Dal Lago and Olivier Laurent. Quantitative game semantics for linear logic. In Michael Kaminski

and Simone Martini, editors, CSL, volume 5213 of Lecture Notes in Computer Science, pages 230–245.
Springer, 2008.

[18] R. Nakajima. Infinite normal forms for the λ-calculus. λ-Calculus and Computer Science Theory, pages
62–82, 1975.

[19] H. Schwichtenberg. An upper bound for reduction sequences in the typed λ-calculus. Archive for
Mathematical Logic, 30(5):405–408, 1991.

[20] Ashish Tiwari, editor. 23rd International Conference on Rewriting Techniques and Applications (RTA’12)
, RTA 2012, May 28 - June 2, 2012, Nagoya, Japan, volume 15 of LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Syntax and dynamics of the -calculus
	2.2. Growth rates of functions

	3. Visible pointer structures and interaction skeletons
	3.1. Brief reminder of Hyland-Ong games
	3.2. Visible pointer structures

	4. Skeletons and their complexity analysis
	4.1. Skeletons and their basic properties
	4.2. Upper bounds
	4.3. On game situations

	5. Skeletons and linear head reduction
	5.1. Linear head reduction
	5.2. Generalized game situations
	5.3. Simulation of generalized game situations
	5.4. Bounds for strongly locally scoped terms
	5.5. Generalization to arbitrary terms

	References

