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Abstract. An algorithm for unification modulo one-sided distributivity is an early result
by Tidén and Arnborg. More recently this theory has been of interest in cryptographic
protocol analysis due to the fact that many cryptographic operators satisfy this property.
Unfortunately the algorithm presented in the paper, although correct, has recently been
shown not to be polynomial time bounded as claimed. In addition, for some instances,
there exist most general unifiers that are exponentially large with respect to the input size.
In this paper we first present a new polynomial time algorithm that solves the decision
problem for a non-trivial subcase, based on a typed theory, of unification modulo one-
sided distributivity. Next we present a new polynomial algorithm that solves the decision
problem for unification modulo one-sided distributivity. A construction, employing string
compression, is used to achieve the polynomial bound. Lastly, we examine the one-sided
distributivity problem in the new asymmetric unification paradigm. We give the first
asymmetric unification algorithm for one-sided distributivity.

1. Introduction

Equational unification has long been a core component of automated deduction and more
recently has found application in symbolic cryptographic protocol analysis [6]. In particular,
the algorithm for unification modulo a one-sided distributivity axiom

X × (Y + Z) = X × Y +X × Z

is an early result by Tidén and Arnborg [22]. More recently this theory has been of interest
in protocol analysis due to the fact that many cryptographic operators satisfy this property.
Unfortunately the algorithm presented in the paper, although elegant and correct, has
recently been shown not to be polynomial time bounded as claimed [17]. In addition, for
some instances, there exist most general unifiers (mgus) that are exponentially large with
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respect to the input size. In this paper we examine the decision problem for one-sided
distributivity. More formally we consider the decision problem for elementary unification
modulo this theory, where the terms can only contain symbols in the signature of the
theory and variables. This is the theory considered by Tidén and Arnborg [22]. We first
present a new polynomial time algorithm which solves the decision problem for a non-trivial
subcase, based on a typed theory, of unification modulo one-sided distributivity. This
subcase happens to be sufficient to express the negative complexity result in [17]. Next
we present a new polynomial algorithm which solves the decision problem for unification
modulo one-sided distributivity. We employ string compression through the use of straight
line programs, which allows us to achieve the polynomial bound. Compression by straight
line programs proves to be sufficient for our results, however the use of compression in
unification and matching is not novel to this paper. See for example [9] and [12] for some
pioneering work on using compression in unification and other related problems.

Since our initial results [15], a new unification paradigm has been developed in [5] and is
based on newly identified requirements arising from the symbolic analysis of cryptographic
protocols. In order to satify these requirements and to apply state space reduction tech-
niques, it is usually necessary for at least part of this state to be in normal form, and
to remain in normal form even after unification is performed. This requirement can be
expressed as an asymmetric unification problem {s1 =↓ t1, . . . , sn =↓ tn} where the =↓

denotes a unification problem with the restriction that any unifier leaves the right-hand
side of each equation irreducible. Given our motivation in protocol analysis, our final result
is to consider the theory in the newly developed paradigm and give the first asymmetric
unification algorithm for one-sided distributivity.

2. Paper Outline

Let us give a brief preview of the remaining portions of the paper.

• Section 3 presents the preliminary background material.
• Section 4 presents an overview of the complexity result concerning the original Tidén and
Arnborg [22] algorithm.

• Section 5 presents the first contribution of this paper. We consider a restricted version
of the one-sided distributivity problem, which is still sufficiently expressive to contain
the family of problems presented in Section 4. For this new restricted version of the
problem we develop a new polynomial time bounded decision algorithm (Algorithm 1).
This section also provides an introduction to the methods used to solve the main problem.
The solution to the main problem builds on Algorithm 1 primarily by the addition of string
compression.

• Section 6 contains the main contribution of this paper. Here we present a new polynomial
bounded algorithm (Algorithm 2) for the decision unification problem over a theory of
one-sided distributivity. The result is achieved by building on Algorithm 1 and using
polynomial methods for solving several problems on compressed strings.

• Section 7 considers the one-sided distributivity problem in the new asymmetric unification
paradigm. This new paradigm has only recently been identified (see [5]) and is important
to the area of cryptographic protocol analysis. Here we present the first asymmetric
unification algorithm for the theory of one-sided distributivity. Although the algorithm is
not polynomial bounded, it should (much like the original Tidén and Arnborg algorithm)
perform well on most problems. In addition, the algorithm is relatively simple, consisting
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of a small set of inference rules (see Figure 10). One could ask why Algorithm 2 is not
extended to the asymmetric problem? Unfortunately, the string compression methods
required for the polynomial result in Section 6 do not easily extend to encapsulate the
additional information needed in an asymmetric unification problem. This remains an
open problem.

3. Preliminaries and General Results

We use the standard notation of equational unification [2] and term rewriting systems [1].
The set of Σ-terms, denoted by T (Σ,X ), is built over the signature Σ and the (countably
infinite) set of variables X . The terms t|p and t[u]p denote respectively the subterm of
t at the position p, and the term t having u as subterm at position p. The symbol of t
occurring at the position p (resp. the top symbol of t) is written t(p) (resp. t(ǫ)). The set
of positions of a term t is denoted by Pos(t), the set of non variable positions for a term t

over a signature Σ is denoted by Pos(t)Σ. A Σ-rooted term is a term whose top symbol is
in Σ. The set of variables of a term t is denoted by V ar(t).

A Σ-substitution θ is an endomorphism of T (Σ,X ) denoted by {X1 7→ t1, . . . ,Xn 7→ tn}
if there are only finitely many variables X1, . . . ,Xn not mapped to themselves. We call
domain of θ the set of variables {X1, . . . ,Xn} and range of θ the set of terms {t1, . . . , tn}.
Application of a substitution θ to a term t (resp. a substitution φ) may be written tθ

(resp. φθ) or in functional notation as θ(t).
Given a first-order signature Σ, and a set E of Σ-axioms (i.e., pairs of Σ-terms, de-

noted by l = r), the equational theory =E is the congruence closure of E under the law
of substitutivity. By a slight abuse of terminology, E will be often called an equational
theory.

Given an equational theory E, an E-unification problem is a set of equations

S = {s1 =
? t1, . . . , sm =? tm}

A solution to S, called an E-unifier , is a substitution δ such that δ(si) =E δ(ti) for all
1 ≤ i ≤ m. A substitution δ is more general modulo E than θ on a set of variables V ,
denoted as δ ≤V

E θ, if and only if there is a substitution τ such that δτ(X) =E θ(X) for
all X ∈ V . Two substitutions θ1 and θ2 are equivalent modulo E on a set of variables V ,
denoted as θ1 ≡

V
E θ2, if and only if θ1(X) =E θ2(X) for all X ∈ V . For a substitution θ and

a set of variables V , θ|V denotes the restriction of the substitution to the variables in V ,
i.e.,

θ|V = {X 7→ θ(X) | X ∈ V }

We call a set Γ of substitutions a complete set of E-unifiers of S if and only if (i) for
every θ ∈ Γ, θ is an E-unifier and (ii) for every E-unifier θ, there is a substitution δ ∈ Γ

where δ ≤
V ar(S)
E θ holds. A complete set of E-unifiers Γ of a unification problem S is

minimal if and only if for any two E-unifiers δ and θ in Γ, δ ≤
V ar(S)
E θ implies that δ = θ.

Equational unification problems are classified based on the function symbols that ap-
pear in them, i.e., their signature (Sig). An E-unification problem S is elementary if
and only if Sig(S) = Sig(E). S is called an E-unification problem with constants if
Sig(S) r Sig(E) contains only free constants. Finally, if there are uninterpreted function
symbols in Sig(S) r Sig(E), S is called a general E-unification problem.
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A set of equations S is said to be in standard form over a signature F if and only if
every equation in S is of the form X =? t where X is a variable and t, a term over F , is one
of the following: (a) a variable different from X, (b) a constant, or (c) a term of depth 1
that contains no constants. We say S is in standard form if and only if it is in standard form
over the entire signature. For a set of equations S in standard form, lhs(S) denotes the set
of left-hand sides of equations in S. It is not generally difficult to decompose equations of
a given problem into simpler standard forms.

A set of equations is said to be in dag-solved form if and only if they can be arranged
as a list

X1 =
? t1, . . . , Xn =? tn

where (a) each left-hand side Xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: Xi does
not occur in tj ([10]). A set of equations S is said to be in F -solved form if and only if it
is in standard form and the subset of equations S ∩ (V × T (F, V )) is in dag-solved form.
Note, a unification problem in dag solved form has a unique most general idempotent unifier
(see [10]).

An equation l = r is called a subterm collapsing equation iff one term is a proper
subterm of the other. An equational theory, E, is called simple or subterm collapse free if
there is no equation in E that is subterm collapsing: t 6=E s for all proper subterms s of
t. Note, an important property of simple theories is: a variable X and a term t are not
E-unifiable if X ∈ V ar(t) (see [3]).

Definition 3.1. A straight-line program (SLP ) is a context-free grammar, G = (Σ, N, P ).
Where Σ is the set of terminal symbols (these will correspond to a set of “label” variables
in this paper), N is a set of nonterminal symbols and P as set of grammar productions.
P contains only two types of productions: Ni → a and Ni → NjNk with i > j, k, where
Ni, Nj , Nk are nonterminals and a is a terminal. The SLP generates exactly one string
corresponding to the top nonterminal.

As an example consider the string (ab)32

abababababababababababababababababababababababababababababababab

over the set of terminals {a, b}. A corresponding SLP for this string is [ N1 → a, N2 → b,
N3 → N1N2, N4 → N3N3, N5 → N4N4, N6 → N5N5, N7 → N6N6, N8 → N7N7 ]. The size
of a SLP can be defined in several ways. We use the following definition from [11]. We note
that the name SLP is not used in [11] and [12] rather they use the name Singleton Context-
Free Grammars. For any terminal, a, define the depth(a) = 0 and for any nonterminal
N

depth(N) = max{k=1,2} {depth(Nk) + 1 | N → N1N2}

We can define the depth of the SLP as the depth of its top nonterminal. The size of a
SLP , S, is defined to be the number of productions and is denoted as |S|. We denote the
length of a string produced by a SLP S by ‖S‖, 64 in the above example. Note that the
lengths are represented in binary.

4. The Tidén-Arnborg Algorithm and the Exponential Examples

Here we wish to very briefly review the Tidén-Arnbog Algorithm [22] and the exponential
time result [17]. We can assume, without loss of generality, that the input is given as a set
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of equations, where each equation is in one of the following forms:

X =? Y, X =? Y + Z, and X =? Y × Z

A simple decomposition algorithm can transform a set of equations into the above form
and maintain unifiability (see [22]).

4.1. The Tidén-Arnborg Algorithm. In [22] Tidén and Arnborg developed an elegant
algorithm which is based on the following results.

Theorem 4.1. (Tidén and Arnborg [22])
In the theory of one-sided distributivity:

(1) The set of equations {U =? X1 ◦X2, U =? T1 ◦ T2} has precisely the same unifiers as
the set of equations {U =? X1 ◦X2, X1 =

? T1, X2 =
? T2}, where ◦ is × or +.

(2) Every unifier for the set of equations
{U =? V ×W, W =? W1 +W2, X =? V ×W1, Y =? V ×W2}
is a unifier for the set of equations {U =? V ×W, U =? X+Y }, where W1 and W2 are
fresh variables.

The key steps in the algorithm can be described by the deduction rules of Figure 1.

(a)
{U =? V } ⊎ EQ

{U =? V } ∪ {U 7→ V }(EQ)
if U occurs in EQ

(b)
EQ ⊎ {U =? V ×W, U =? X × Y }

EQ ∪ {U =? V ×W, V =? X, W =? Y }

(c)
EQ ⊎ {U =? V +W, U =? X + Y }

EQ ∪ {U =? V +W, V =? X, W =? Y }

(d)
EQ ⊎ {U =? V ×W, U =? X + Y }

EQ ∪ {U =? V ×W, W =? W
1
+W

2
, X =? V ×W

1
, Y =? V ×W

2
}

Figure 1: Tidén and Arnborg Inference Rules

The W1,W2 in rule (d) are fresh variables and ⊎ is disjoint union. Furthermore, rule (d)
(the “splitting rule”) is applied only when the other rules cannot be applied. A set of
equations is said to be abc-reduced1 if and only if none of the rules (a), (b) and (c) can
be applied to it. A sum transformation is defined as a binary relation between two abc-
reduced systems, S1 and S2, where S2 is obtained from S1 by applying rule (d), followed by
exhaustive applications of rules (a), (b) and (c). Clearly, a sum transformation is applicable
if and only if some variable occurs as the left-hand side in more than one equation.

The algorithm also makes use of two graphs. The graphs are used to detect two types
on non-unifiability errors. We include the definitions here for completeness.

1Such a system of equations is called simple in [22]. However, simple has come to denote a theory that
is subterm collapse free (see [3]).
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Definition 4.2. The dependency graph (D(S)) of an abc-reduced system, S, is an edge
labeled, directed multi-graph. It has as vertices the variables of S. For an equation X =
Y + Z in S it has an l+-labeled edge (X,Y ) and an r+-labeled edge (X,Z). An equation
X = Y × Z similarly generates two edges with labels l× and r×.

Definition 4.3. The sum propagation graph (P (S)) of an abc-reduced system S is a directed
simple graph. It has as vertices the equivalence classes of the symmetric, reflexive, and
transitive closure of the relation defined by the r×-edges in the dependency graph of S. It
has an edge (V,W ) iff there is an edge in the dependency graph from a vertex in V to a
vertex in W with label l+ or r+.

It can be seen that by using cycle checking on D(S) we can detect all the occur-check
like errors that may develop as the algorithm works with the system of equations. We know
these are indeed errors due to the following property.

Theorem 4.4. The one-sided distributive axiom is subterm-collapse free.

Proof. If we consider the convergent system

X × (Y + Z) → X × Y +X × Z

we can see that the rule is non-size-reducing. Therefore, we cannot reduce a term t to a
subterm of itself.

This implies that the system is simple ([3]) and therefore occur-checks must be detected
as they imply non-unifiability.

The propagation graph is needed to detect non-unifiable systems that cause infinitely
many applications of the splitting rule (d). An example of this type of system is the following
two equations:

Z =? V2 + V3, Z =? V1 × V3.

These types of systems are shown not to have a finite unifier [22]. However, they will never
produce a cycle in the dependency graph, thus the propagation graph is needed.

We can conclude this overview of the original algorithm with some of the results proven
for it in [22]:

Theorem 4.5. From Tidén and Arnborg [22]:

(1) The algorithm formed by applying the sum transformation with the rules of Figure 1 is
sound, complete and terminating.

(2) If the system is not unifiable either the dependency graph (Definition 4.2) or the prop-
agation graph (Definition 4.3) will contain a cycle after a finite number of steps.

(3) If either the dependency or the propagation graph contain a cycle, the initial system is
not unifiable.

(4) The algorithm produces a final solved form, which provides a unique most general unifier
for the initial system.

4.2. Complexity Result. In [17] a family of unifiable, abc-reduced systems is presented,
on which the Tidén-Arnborg algorithm runs in exponential time.

Definition 4.6. [17] Let EQ be a subset of the set of abc-reduced systems defined as
follows: all multiplications are of the form Xi =

? T × Yj (or Yj =? T × Xi) where T is a

unique variable and all additions are of the form Xi =
? Xi1 +Xi2 or Yi =

? Yi1 + Yi2.
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That is variables are represented using X and Y along with subscripts. The actual
family of instances that causes the exponential growth is a subset of EQ defined as:

Definition 4.7. [17] For n ≥ 0, let σ(n) be the set of equations

X1i =? X1i+1 +X1i2,

Y2i =? Y2i1 + Y2i+1 ,

Y2i1 =? T ×X1i2,

X =? T × Y,

X1i+1 =? X1i+2 +X1i+12

for all 0 ≤ i ≤ n. Where Xli denotes i concatenations of l ∈ {1, 2}, i.e., X132 = X1112.

It is shown in [17] that a system of equations, as defined in Definition 4.7, will result in
exponentially many applications of the sum transformation.

The result can be viewed graphically in the following manner. Let variables represent
nodes in a graph and create downward edges for variables related by an addition operation
and lateral edges for variables related by a multiplication operation (this is essentially the
D(S) definition). The edges to the unique variable T will not affect the complexity and so
can be ignored. We can see such graphs in the following two examples. Figure 2 represents
an initial set of equations and Figure 3 is the same system after application of the Tidén-
Arnborg algorithm. Essentially, we see that the new variables and paths that are created at
each level of the graph are the cause of the complexity growth and will need to be avoided.

X1

X

X12X11

X2 Y1

Y

Y2

Figure 2: Graph for σ(0)
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Y2

X

X1 X2 Y1

Y22Y21Y12Y11X22X21X12X11

Y

Figure 3: After 4 applications of the sum transformation

In the Tidén-Arnborg algorithm this exponential behavior is due to an exponential
number of application of rule (d) from Figure 1. This is the rule that creates the new
variables and paths seen in Figure 3. We develop a new algorithm in Section 5 which
ensures a polynomial number of application of a rule equivalent to rule (d) from Figure 1 and
this algorithm is sufficient to ensure polynomial time and solve the unification problem for
the Single Homomorphism (introduced in the next section) restricted form of the problem.
However, when applied to the full problem it proves insufficient, see example 6.1. The
solution is to introduce the use of string compression, which is done in Section 6.

5. Typed System and Single Homomorphism

We present a typed system interpretation of one-sided distributive unification. We begin
with the simplest non-trivial subcase, the case of a single homomorphism. This is non-trivial
because the exponential complexity result in [17] holds in this case as well. Consider a ‘type’
system based on two types τ1 and τ2. We let all left multiplication variables be of type τ1
and all right variables of type τ2. Thus

× : τ1 ∗ τ2 → τ2,

+ : τ2 ∗ τ2 → τ2,

If there is only a single variable of type τ1 in the input equations then we can consider the
multiplication operation as a homomorphism h over +. Thus, we can view an equation
of the form X = T × Y , where T is the single variable of type τ1, as the homomorphism
equation X = h(Y ). This is the single homomorphism case, it restricts the number of valid
terms from the general case but it is sufficient for encoding the exponential example in [17]
and it yields a much simplified decision algorithm.
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5.0.1. Single homorphism and the General Algorithm. There are two primary reasons for
considering this sub-case:

(1) The Algorithm for the single homomorphism case (Algorithm 1) is more efficient than
the algorithm that solves the general case (Algorithm 2).
This is due to the SLPs. In Algorithm 2, every step dealing with compression must use
SLPs and thus must employ various subroutines for dealing with SLPs, of which the
best complexity measures are all of quadratic or greater polynomial complexity. How-
ever, in this restricted case binary encoding provides suitable compression. Operations
dealing with compressed objects are reduced to addition and subtraction, i.e., linear
complexity.

(2) Algorithm 2 is built from Algorithm 1.
Algorithm 1 uses the same underlying method used in Algorithm 2. Both algorithms
approach the problem by ordering the equivalence classes (defined below) and “process-
ing” each class, one at a time. However, the processing is less complex in this restricted
theory since it does not need to deal with SLPs. This leads to a similar algorithm
which is easier to understand.

5.1. Data Structures.

Definition 5.1. We define the following relations (X, Y and Z are variables):

• X ≻h Y if X = h(Y ).
• X ≻l+ Y if X = Y + Z.
• X ≻r+ Z if X = Y + Z.
• X ≻a Z if X = Y + Z or X = Z + Y .

We use the following two graphs, that are similar to the dependency and propagation
graphs used in [22], see Definitions 4.2 and 4.3. For a unification problem S in standard
form we construct the following two graphs.

Definition 5.2. A path labeled dependency graph (LD) is a directed graph such that the
nodes in the graph correspond to variables of type τ2. We form two kinds of edges:
(i) Lateral edges, where for each equation of the form X =? h(Y ), we have an edge from node
X to node Y labeled with a label variable, h1. Thus, for single edges corresponding to a
single homomorphism the label is h1. For paths corresponding to multiple homomorphisms
(compound paths which will be constructed during the running of the algorithm) the label
is hn, n ∈ N

+, where n is the number of homomorphisms/single edges composing the path.
We will use π (possible with subscripts) to denote a path in the graph. For example, for a

path between nodes X and Y we write, X
π

−→ Y . Where π is understood to represent
some hj , j ∈ N. The path length, denote |π|, is j.
(ii) Downward edges, where for each equation of the form X =? X1 +X2, we have directed
edges from node X to node X1 and from node X to node X2.

Definition 5.3. The path labeled propagation graph (LP) is a directed simple graph. Its
vertices are the equivalence classes of the symmetric, reflexive, and transitive closure of
the relation defined by ≻h on the LD graph for the same system. Edges exist between
equivalence classes [X] and [Y ] if there exist variables U ∈ [X] and V ∈ [Y ] such that
U ≻a V .
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Note, that we can order the equivalence classes/nodes of LP. Let ∼h stand for the
reflexive, symmetric and transitive closure of ≻h. Thus ∼h defines a set of equivalence
classes over a set of variables. Denote these classes as [Y ]h. The LP graph has exactly
these classes as its nodes. We can define a strict partial ordering ⋗h on the ∼h-equivalence
classes based on ≻a. That is, [X]h⋗h [Y ]h if and only if there exist K1 ∈ [X]h and K2 ∈ [Y ]h
such that K1 ≻a K2, i.e., an edge from the node [X]h to the node [Y ]h. This ordering will
be important as it provides an ordering strategy for applying the unification algorithm.

These graphs, mainly the LD, will be the primary data structure and will be modified
via the set of graph saturation rules. The rules are very similar to the original Tidén-Arnborg
rules however they primarily act not on the set of equations but on the LD graph. This
is due to the need for compression, where acting on a fully uncompressed set of equations
results in the original algorithm. Note, that we still need the LP graph for detecting the
set of non-unifiable systems. An example of this is the following set of equations.

{X =? V + Y, X =? h(Y )}

The LP graph and the sum propagation graph of [22] (Definition 4.3) are the same for
the single homomorphism systems. This is easy to see as both graphs will contain the same
equivalence classes and thus nodes and both graphs have the same edges. Therefore, each
time the algorithm updates the LD graph (i.e., the inference rules modify the LD graph) it
also updates the LP graph and checks for cycles. Likewise, if cycles are found the algorithm
terminates with failure.

5.2. Algorithm Presentation. Before presenting the rules, we need to discuss several
problems the algorithm needs to solve when dealing with compressed paths. During sat-
uration we derive path constraints of the form π1 =? π2 or π1≺

?π2. For the single homo-
morphism case, because there is just one homomorphism, π1 =

? π2 is simply a check if the
lengths are equal, i.e., if |π1| = |π2|. For the prefix check π1≺

?π2, in the single homomor-
phism case we only need to check if the length of π1 is less then π2, i.e., |π1| < |π2|. It is
important to note that path lengths are kept in binary representation. This compression is
significant as it allows us to avoid exponential growth in the path lengths. In addition to
path constraints we will need to perform several path computations, specifically we need to
concatenate paths and compute path suffixes. These operations can be accomplished, in the
single homomorphism case, by simple addition and subtraction.

We now introduce a set of inference rules. Rule (0) acts on the system S and rules (i)
through (vii) act on the LD graph of S. Rule (0) is simple variable replacement. Rules
(i) - (iii) are cancellation rules that follow directly from the rules of Figure 1. Rule (vi) is
a failure rule that corresponds to occur-check type errors. Rules (iv), (v), (vii) are path
completion rules. Rule (vii) is the same path propagation rule from the Tidén-Arnborg
algorithm, justified by the axioms of the system; see Figure 1 rule(d). However, in rule
(vii) we do not create the new variables W1 and W2 unless W has no child variables related
along a ≻a edge.

Before giving the algorithm details let us give a high-level overview of the process.

(1) The algorithm begins with a unification problem, S, in standard form.
(2) From the set of equations S it generates the LD graph and from the LD graph it

generates the LP graph.
(3) Next the algorithm applies the set of “cancellation” inference rules. These are rules

which do not create new edges or nodes in the graph and clearly terminate.
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(0)
S ⊎ {U =? V }

{U 7→ V }(S) ∪ {U =? V }
if U occurs in S

(i)
U =? U1 + U2, U =? U3 + U4,

U =? U1 + U2, U3 = U1, U4 = U2

(ii)
X

η
−→ Y, Z

π
−→ Y |η| = |π|

X =? Z, Z
π

−→ Y

(iii)
X

η
−→ Y, X

π
−→ Z, |η| = |π|

X
π

−→ Z, Y =? Z

(iv)
X

hj

−→ Y, X
hi

−→ Z, j < i

Y
hi−j

−→ Z, X
hi

−→ Z

(v)
X

hi

−→ Y, Y
hj

−→ Z

X
hi+j

−→ Z, Y
hj

−→ Z

(vi) S
FAIL

if LP or LD are cyclic

(vii)
U

η
−→ W, U =? U1 + U2,

U
η

−→ W, W =? W1 +W2, U1
η

−→ W1, U2
η

−→ W2

Figure 4: Inference Rules for the Single Homomorphism Problem.

(4) The algorithm works in a top down ordering on the equivalence classes, using the
relation ⋗h to order the classes. Each class is “processed” using the inference rules.
This is done by applying the rules to the nodes in LD graph which are contained in the
current “selected” class.

(5) After each new class is processed the algorithm applies the cancellation rules and re-
checks for any errors.

(6) During this process two things can happen:
(a) Cycles can be found in either graph implying non-unifiability.
(b) The inference rules are exhaustively applied and no cycles occur, implying unifia-

bility.

The algorithm for the single homomorphism subcase is presented in Algorithm 1.
We next discuss the correctness and complexity of Algorithm 1; most of these results

will follow directly from [22].

5.3. Correctness. Correctness of the inference rules can be assured due to the correctness
proof of the algorithm presented in [22] and the following lemmas.

Lemma 5.4. Soundness of rules (i) through (vii) are direct consequences of the “sum
transformation”2 method of [22] and variable replacement.

Proof. The soundness of the rules follow from Theorem 4.1. Therefore, we know that the set
of equations {X =? Y ◦Z, X =? V ◦W}, where ◦ is + or ×, has the same solutions as the set

2See Section 4 for the definition of sum transformation.
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Algorithm 1 Unification modulo a Single Homomorphism

(Input: A system of equations in standard form)
(1: Generate data structures) Generate the graphs, LD and LP.
(2: Clean up the system) Exhaustively apply the rules (0), (i), (ii), (iii) and (iv).
(3: Error checking) Apply graph cycle checking to the two graphs (i.e., rule (vi)). If
a cycle is found stop with failure.
(4: Process equivalence class) Select an equivalence class based on the strict partial
ordering ⋗h. That is, we select the largest element of ⋗h that has not yet been processed.
Thus, if we select the class [X]h then there does not exist a class [Y ]h such that [Y ]h has

not been processed and [Y ]h ⋗
+
h [X]h. Clearly, if ⋗h is not a strict partial ordering then

there is a cycle in the LP graph.

First we apply rule (v) — this is done by starting with the sink node of the path and
working back to the start node of the path. Once rule (v) has been exhaustively applied
we apply rule (vii) if applicable.
(5: Check if Complete) If no inference rules can be applied and no cycles exist, then
exit with success, else return to Step 2.

{X =? Y ◦Z, Y =? V, Z =? W}, that the set of equation {X =? Y ×Z, X =? V +W} has
the same solutions, over the shared variables, as the set {X =? Y ×Z, Z =? V1+V1, W =?

Y × V1, V =? Y × V2}.

The LD, and LP, graphs are simply graphical representations of a system of equa-
tions, which Algorithm 1 transforms by application of one or more of the inference rules.
Lemma 5.4 ensures that each transformation is sound. It remains to be shown that if the
algorithm terminates without failure then the system is indeed unifiable.

Lemma 5.5. Given a system of equations S in standard form if no failure errors occur
Algorithm 1 transforms S, through its LD graph representation, into dag-solved form.

Proof. Let D be the final LD graph and consider the definition of dag-solved form.

• The first condition is satisfied as each variable is represented by a node in the graph. If
the left hand sides Xi were not distinct, then a cancellation or path propagation rule,
(vii), could be applied.

• The second condition is satisfied as the paths correspond to a distinct ordering and there
are no cycles in the graph.

Therefore, if the system is unifiable the algorithm will report that fact. We need to show
that if the system is not unifiable the algorithm correctly reports that as a failure. Directly
from [22] we get the following two results.

Lemma 5.6. Cycles in the LD graph for a system S in standard form imply that S is not
unifiable.

Proof. This is due to Theorem 4.4, which shows that the one-sided distributive axiom is
subterm-collapse free. The constraint to a typed system does not remove the property that
the system is simple. Therefore, a cycle in the LD graph will imply a cycle in the system
of equations and a non-unifiablity error for a simple system.
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Lemma 5.7. Cycles in the LP graph for a system S, in standard form, imply that S is not
unifiable.

Proof. The LP graph contains the same information, for the single homomorphism systems,
as is contained in the propagation graph of [22] (Definition 4.3). Both graphs will contain
the same equivalence classes and thus nodes and both graphs have the same edges. The
result then follows from Theorem 4.5.

Theorem 5.8. Algorithm 1 is correct.

Proof. Follows from Lemma 5.4 to Lemma 5.6.

5.4. Complexity. First we get the following result from the cancellative nature of the rules
(i) through (iii).

Lemma 5.9. Given a LD graph rules (0)-(iii) can only be applied a polynomial number of
times with respect to the initial set of nodes in the graph.

In addition, we get the following clear result.

Lemma 5.10. Given a LD graph rule (iv) can only be applied a polynomial number of
times with respect to the initial set of nodes in the graph.

Lemma 5.11. Each equivalence class formed by closure along ≻h-related nodes has a unique
sink.

Proof. If a class has no sink then there is a cycle and the system is not unifiable. Now
assume we have at least one sink. Rules (iii), (ii), (iv) and (v) ensure that each node can
have at most one lateral outgoing edge.

Lemma 5.12. Processing an equivalence class (Step 4) takes polynomial time with respect
to the number of variables in the class.

Proof. By rules (i) through (iv) each variable in the class will have at most one outgoing
edge and all paths will lead to the sink. Applying (v) exhaustively starting from the sink is
therefore bounded linearly by the number of variables in the class. In addition, (vii) is also
bounded by the number of variables in the class as it can be applied at most once for each
variable in the class. Moreover, it can create 2 new variables at most once for each class.

Lemma 5.13. The number of ∼h-equivalence classes for a system S can never increase.

Proof. New variables created by rule (vii) don’t create new equivalence classes as they are
added to pre-existing classes.

Due to the fact that each equivalence class contains a single sink, by Lemma 5.11, we
get the following.

Lemma 5.14. A maximum of 2 new nodes can be added to an equivalence class from any
one higher equivalence class.

In addition by rule (vii) we get the following.

Lemma 5.15. During processing the number of paths added to a ∼h-equivalence class from
a higher, by ⋗h, ∼h-equivalence class cannot exceed the number of nodes in the lower equiv-
alence class.
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Combining the above results we get the following.

Theorem 5.16. The running time of Algorithm 1 is polynomial with respect to the initial
set of equations.

Proof. Processing an equivalence class is polynomial bounded by Lemma 5.12.
By Lemma 5.14 and Lemma 5.15 the classes can only grow by a constant amount as each
class is processed and by Lemma 5.13 the number of classes cannot increase.

This section covers a decision algorithm for the single homomorphism subcase. The
obvious extension to this problem results in the multiple homomorphism problem. In the
multiple homomorphism case we may have a finite set of variables of type τ1 but we can still
consider them as homomorphisms h1, . . . , hn. Although we do not go into any more details
here, the multiple homomorphism case is also interesting. Unlike the single homomorphism
case compression is needed for the multiple homomorphism case. This is due to the fact that,
unlike the single homomorphism case, the label variables are not the same and therefore
just keeping the path lengths is not sufficient. But, the multiple homomorphism case does
not require all the methods presented in the next section for the general case, due to the
type system, i.e., labeled variables cannot also be nodes in the LD graph.

6. General Algorithm

We now consider the general problem, with no type system. Let us give a brief overview of
the section.

Section Summary.

• We begin with a discussion on why the string compression methods are required to achieve
a polynomial bound, Example 6.1.

• We next introduce the new graph data structures in Section 6.1.
• Section 6.2 provides a high-level overview of the new algorithm.
• Section 6.3 presents the new algorithm.
• Section 6.4 discusses issues with label variables which are a key difference between the
general algorithm developed in this section and the Single Homomorphism algorithm
developed in the previous section.

• Details on the SLP operations used in the algorithm and their complexity is covered in
Section 6.5.

• Correctness is proven in Section 6.6 and 6.7.
• Finally, the complexity proof is covered in Section 6.8.

Example 6.1. One consequence of this new graph interpretation is that the label variable
paths, if not compressed, could grow exponentially in length with respect to the initial set of
label variables. This can be seen using the same example used to prove the exponential result
in Section 4, σ(n). If the algorithm presented below (without compression) is applied to the
system σ(n), we do not get an exponential number of applications of the sum transformation;
rather we get label paths of exponential length. The growth is due to the path string being
copied and then doubled at each consecutive level. Although this doubling of the string
leads to the exponential growth, it also requires the re-use of the string and this suggests
the use of string compression. Therefore, we keep each of these paths compressed in the
form of straight line programs.
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Consider again the σ(0) system and assume there is a single label variable, a, for the
initial system. If Algorithm 2 is applied but does not use string compression the final length
of the string labeling the longest path at level n will be 2n − 1. In σ(0) (Figure 5) this is
22 − 1 = 3. For larger n the result is undesirably long paths, as seen in Figure 6. However,
these strings can easily be compressed via a SLP .

Y2

X

X1 X2

X12X11

Y

aa

aaaa

aaa

aaa

a

Y21 Y22

Y1

Figure 5: Exponential path length, initial graph

Level 0

a

Level n

2
n
−1

︷ ︸︸ ︷

aa . . . aa

Figure 6: Exponential path length, final graph

6.1. Data Structures. As in the single homomorphism case we interpret the equations of
a unification problem as graphs.

Definition 6.2. we define the following relations:

• X ≻r∗ Y if X = Z × Y .
• X ≻l∗ Z if X = Z × Y .
• X ≻m Y if X ≻l∗ Y or X ≻r∗ Y .
• X ≻l+ Y if X = Y + Z.
• X ≻r+ Z if X = Y + Z.
• X ≻a Z if X = Y + Z or X = Z + Y .

We denote the transitive closure of a relation R as R+.
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Definition 6.3. A path labeled dependency graph (LD) is a directed graph such that the
nodes in the graph correspond to variables of the unification problem S. We form three
kinds of edges:

(1) Lateral Edges, where for each equation of the form X =? Z × Y , we have an
edge from node X to node Y labeled with the top nonterminal of a SLP generating the
label variable, Z. Label variables are kept as straight line programs, where the terminals
corresponds to the label variable. Each label variable, Z, is given a unique single production
SLP . Therefore, lateral edge and path labels correspond to the top nonterminal of the SLP
generating the label variables corresponding to those edges.
We denote a path and its label, π, of one or more lateral edges between nodes X and Y

by X
π

−→ Y . For the general case paths are the composition of any number of the label
variables. A path π is notation for a path X1, . . . ,Xn for some n ∈ N and is kept altogether

compressed as a SLP. Therefore, X
π

−→ Y corresponds to the equations X =? π × Y and
is a compact representation of the equation

X =? X1 ×X2 × . . .×Xn × Y

where the string generated by π is of the form X1·X2· . . . ·Xn

(2) Downward Edges, where for each equation of the form X =? X1 + X2, we have
directed edges from node X to node X1 and from node X to node X2.

(3) Relation Edges, where for each node X in the graph such that there exists a path

X
π

−→ Y and for each terminal/label variable Ki in the SLP π, we have a single edge
from X to the node Ki in the graph.

These edges will only be used for cycle checking and could even be generated just before
the graph is checked for cycles in the algorithm.

We explain several points below that should help clarify the need for such a graph.

• The initial LD graph will be built from an initial unification problem, S, in standard form.
That initial graph will not have any composite paths labeled by a SLP with more then
one production. The composite paths will be added later by the algorithm. In addition,
when constructing the LD graph each variable X from the set of label variables is given
a unique SLP . For example, a label variable X would be given a SLP πX → X and all
lateral edges formed by an equation with X as the label variable would be labeled by πX .
This implies that different lateral edges can have the same edge label. For example, in the
LD graph of Figure 7 the edges X → Y and L2 → L3 have the same SLP label because
they used the same label variable in the equations X =? Z1 × Y and L2 =

? Z1 × L3.
• The algorithm presented later will build up the composite paths and unlike in the initial

graph it will not in general be the case that for a X
π

−→ Y all the terminals (label
variables) in π are ≻l∗ related to X. This is the reason for the additional “Relation”
edges.

• Lateral Paths are kept as SLP s because if not kept compressed the paths could grow
exponential in size, during running of the algorithm. By keeping the initial label variables
as SLPs when we build longer composite paths we can create the new SLP labels by
“concatenating” the SLPs.

• The Relation edges are only needed during graph cycle checking operations required by
the algorithm. Thus, as the information about these edges is maintained by the set of
terminals for each SLP , we will just generate these edges before cycle checking.
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Figure 7: LD graph example

Example 6.4. Let us consider an example LD graph for the following system of equations
(re denotes relation edges).

X =? X1 +X2, X =? π1 × Y , Y =? π2 × L, L =? L1 + L2, L1 =
? π5 ×K, L2 =

? π1 × L3

where the SLP s are: π1 → Z1, π2 → Z2 and π5 → π3π4, π3 → π2π2, π4 → π1π1. The
corresponding LD graph is given in Figure 7.

Definition 6.5. The path labeled propagation graph LP is a directed simple graph. Its
vertices are the equivalence classes of the symmetric, reflexive, and transitive closure of
the relation defined by ≻r∗ on the LD graph for the same system. Edges exist between
equivalence classes [X] and [Y ] if there exist variables U ∈ [X] and V ∈ [Y ] such that
U ≻a V .

Similar to the typed case we can order the equivalence classes/nodes of LP . Let ∼r

stand for the reflexive, symmetric and transitive closure of ≻r∗. Thus ∼r defines a set of
equivalence classes over a set of variables. Denote these classes as [Y ]r. The LP graph
has exactly these classes as its nodes. We can define a strict partial ordering ⋗r on the
∼r-equivalence classes based on ≻a. That is, [X]r⋗r [Y ]r if and only if there exist K1 ∈ [X]r
and K2 ∈ [Y ]r such that K1 ≻a K2. This ordering will again be important as it provides
an ordering strategy for applying the rules of the unification algorithm.

Again, we also need the LP graph due to a specific type of non-unifiable system. These
are systems that require infinite unifiers but will always cause a cycle in the LP graph. An
example of this is the following set of equations.

{X =? X1 +X2, X =? V ×X2}

Lemma 6.6. Let S be a system of equations with variables U,W in S such that U ≻a W

and U ≻r∗ W . Then S is not unifiable.

Proof. This system can be seen to cause a cycle not only in LP but also in P (S) (see
Definition 4.3). This is due to forming the equivalence classes by closure along ≻r related
nodes. It is shown in [22] Lemma 11, if P (S) contains a cycle there is no unifier for the
system S (See Theorem 4.5).

Each time the algorithm updates the LD graph it also updates the LP graph and checks
for cycles. Likewise, if cycles are found the algorithm terminates with failure.

It can be seen that the propagation graph of [22] and the LP graph are the same. This
is due to fact that both graphs contain the same equivalence classes and equivalent edges
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L2, L3X2X1 L1,K

X, Y, L

Figure 8: LP graph example

between the classes. Figure 8 is an example LP graph for the same set of equations used
to form the graph of Figure 7.

The algorithm will work by “saturating” the graphs. A set of transformation rules is
used to either convert the graph into a solved form or detect a cycle in the graph. The
first case implies unifiability and the second non-unifiability. During saturation we derive
path constraints of the form π1 =? π2 or π1≺

?π2. The constraint π1≺
?π2, is a prefix check

(i.e., whether the string produced by the SLP π1 is a prefix of the string produced by the
SLP π2) and π1 =? π2, similarly, is an equality check. In addition to path constraints we
will need to perform several path computations: specifically we need to concatenate paths,
compute path suffixes and find a single pair of mismatched terminals in two equated SLP

produced strings, all without decompressing the SLPs.

6.2. High Level Overview. Before giving the inference rules and algorithm details let
us give a high-level overview of the process. The algorithm works based on the idea of
collecting equations into sets. Each set correspond to the equations forming one of the
equivalence classes. We can then order the equivalence classes in such a way that if we
proceed top down in this order, converting each set into a solved form (processing), we
do not have to revisit any class. This combined with the fact that we don’t create new
classes requiring processing provides us with a well defined structure for the execution of
the algorithm. Briefly, the algorithm proceeds as follows:

• The algorithm begins with a unification problem, S, in standard form. From the set of
equations S it generates a graph interpretation, the LD graph and makes note of the set
of label variables, V. Note that this process does not discard S. From the LD graph the
algorithm generate the LP graph. The nodes of the LP graph are the equivalence classes,
each of which corresponds to a set of nodes from the LP graph.

• Next the algorithm reduces the graph to a normal-form by applying the set of cancellation
inference rules. These rules are applied to the entire system which results in a system
where no additional cancellation rules can be applied. All of these rules work directly on
the LD graph, except rule (0) which works on the set S.

• Next the algorithm selects an equivalence class to process based on the class ordering.
It then applies a set of rules on the nodes of the LP graph which correspond to that
equivalence class. The effect of these rules is to transform the equivalence class into a
compressed solved form.

• This process is repeated along with error checking, each time reducing the number of
classes remaining to be processed.
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• Finally, it could happen that during the process two label variables are equated. If this
occurs the algorithm updates S with the new equality (rule (0)), rebuilds the two graphs
and the process of processing equivalence classes is restarted. Since there is only a finite
number of label variables, which cannot be increased, each time two label variables are
equated the number of label variables is reduced. Therefore the total number of times
the process can be restarted is equal to the initial number of label variables in S.

6.3. Algorithm Presentation. We first present the set of inference rules (Fig 9) for a
unification problem S in standard form. The rules are applied to the graph LD, except rule
(0) which is applied to S, and as that graph is updated the LP graph is updated.

(0)
S ⊎ {U =? V }

{U 7→ V }(S) ∪ {U =? V }
if U occurs in S

(i)
U =? U1 + U2, U =? U3 + U4

U =? U1 + U2, U3 = U1, U4 = U2

(ii)
X

π
−→ Y, Z

η
−→ Y η = π

X =? Z, X
π

−→ Y

(iii)
X

η
−→ Y, X

π
−→ Z, η = π

Y =? Z, X
π

−→ Z

(iv)
X

η
−→ Y, X

π
−→ Z, η ≺ π

Y
η−1 π
−→ Z, X

π
−→ Z

(v)
X

η
−→ Y, X

π
−→ Y, η 6= π

η=? π

(vi)
X

η
−→ Y, X

π
−→ Z, η 6≺ π

η≺? π
if |η| < |π|

(vii)
U

η
−→ W, U =? U1 + U2, W =? W1 +W2

W =? W1 +W2, U1
η

−→ W1, U2
η

−→ W2, U
η

−→ W

(viii)
U

η
−→ W, U =? U1 + U2,

W =? W1 +W2, U1
η

−→ W1, U2
η

−→ W2, U
η

−→ W

(ix) S
FAIL

if LP or LD are cyclic

(x)
X

π
−→ Y, Y

η
−→ Z

X
τ=(πη)
−→ Z, Y

η
−→ Z

Figure 9: Inference Rules for the One-sided Distributivity Decision Procedure.
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Rule Zero. Rule (0) is simply a variable replacement rule but it has a special action on label
variables: if a label variable is equated to a non-label variable, then the non-label variable
is replaced by the label variable. This rule acts directly on the system S by doing variable
replacement whenever there is an equation between two variables. That is, for an equation
of the form U = V between two variables, the rule replaces all occurrences of V in S with U .
If one of the variables is a label variable, say V , and one is not, say U , then the non-label
variable is replaced in S by the label variable. So in this example, all occurrences of U are
replaced by V . Therefore, after any variables are equated, we apply this rule eagerly. Note,
whenever a rule creates an equation of the form X =? Y , those two nodes in the graph are
equated and rule (0) applies that equation to the set S. Therefore, rule (0) is the only rule
that acts on and changes the set of equations S. All other rules modify the two graph data
structures.

Rule (i) is due to the cancellative nature of the + operator and directly corresponds
to the canceling operation in [22] (see Figure 1). Rules (ii), (iii) and (iv) are due to the
cancellative nature of × ([22]). Rules (v) and (vi) check the path constraints and attempt
to find label variables that have to be equated in order to satisfy the path constraint. These
rules and rules (iv) and (x) are explained in more detail in Section 6.5. Rules (vii) and
(viii) directly correspond to the splitting rule (Rule (d) of Figure 1) of [22] and are direct
consequences of the distributive axiom. These two versions are just modifications to work in
the modified graph setting. The difference between the two rules is that rule (viii) creates
new variables (W1 and W2) and rule (vii) does not. Rule (ix) is a failure rule, which
corresponds to detecting a cycle in the graphs in the Tidén-Arnborg algorithm. Finally,
rule (x) is a path completion rule, justified by the soundness of variable replacement. This
rule is also responsible for building the SLPs with more then one production. The rule
creates a new SLP , τ , corresponding to the “concatenation” of the two SLP s π and η.
More details on rule (x) are given in Section 6.5.

We also keep and update the length of the string each SLP generates. Note, that
this information can be efficiently computed in a bottom up manner for any SLP since
productions ending in a terminal symbol have string length 1 and productions with two
non-terminals have length equal to the sum of the lengths of the strings generated by the
two non-terminals. However, since we build our SLP bottom up we can keep track of this
information using simple addition and subtraction when constructing new SLPs through
concatenating and taking the suffix.

Algorithm 2 uses the following notation. Let r1 and r2 denote inference rules. Then,
r!1 indicates exhaustive application of the rule r1. The composite rule r!1r2 means, apply r1
until it cannot be applied any more and then try to apply r2. Note that even if r1 cannot
be applied the rule r!1r2 can still be used if r2 can be applied. Thus r!1 does not indicate
that r1 must be applied but rather that if r1 can be applied we do so exhaustively. r1 + r2
indicates choice: apply rule r1 or rule r2. Therefore, the last composite rule in Algorithm 2
implies that rule (vii) has the lowest priority and that rule (viii) is only applied once in
the processing of a single equivalence class.

Algorithm 2 is presented above. Let us now give some additional explanation of what
each step accomplishes before proceeding to the proof details.

(1) The first generates the two data structures needed to check error conditions.

3Again, if ⋗r is not strict partial ordering there must be a cycle in the LP graph
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Algorithm 2 One-sided Distributive Unification

(Input: A system of equations in standard form)
(1: Generate data structures) Generate the 2 graphs, LD and LP. Make a note of
the initial label variables in S; denote this set as V.

(2: Clean up the system) Exhaustively apply the following composite rule:

(0 + i+ ii+ iii)

(3: Error checking) Apply graph cycle checking to the graphs (i.e., rule (ix)). If a
cycle is found stop with failure. If the graphs have no cycles and are in dag-solved form,
exit with success.

(4: Process equivalence class) Select an equivalence class based on the strict partial
ordering ⋗r. That is, we select the largest element of ⋗r that has not yet been processed.
Thus, if we select the class [X]r then there does not exist a class [Y ]r such that [Y ]r has
not been processed and [Y ]r ⋗

+
r [X]r

3.

Process the selected class using the following composite rule:

(v + vi)(iv)!(x)!(viii)(vii)!

Rule (x) is applied by starting with the sink node of the path and working back to the start
node of the path. Rule (iv) is applied based the ≻r∗ partial ordering, starting from the
source nodes and working down to the sinks. In addition, if rule (v) or rule (vi) is applied
label variables will be equated.
(5: Checking) If any of the variables in V are equated go back to Step 1 else go back
to Step 2.

(2) Step two consists of an exhaustive application of the “cancellation” inference rules,
i.e., rules (0), (i), (ii), (iii). These rules are the simplest rules as they either reduce
the number of variables, rule (0), or reduce the number of edges in the graph, rules
(i), (ii), (iii). In addition, the rules don’t create any new SLPs or edges. By applying
these inference rules first we reduce the problem to a “normal-form”, where change can
now only occur via rules (iv) − (x). Some of the rules must check equality between
SLP, which can be done in polynomial time, see section 6.5.2. Lemma 6.13 shows that
the inference rules are sound and Lemma 6.25 shows that this step of the algorithm is
polynomially bounded.
(a) Note that redundant edges are removed by rule (iii). That is, if there are two edges

X
π

−→ Y, X
η

−→ Y and η = π

Then, rule (iii) will remove one of the redundant edges.
(3) Step three is an error checking step which corresponds to the cycles checking of the two

graphs. The correctness of the step is due to the fact that the system is simple and
therefore cycle, or occur-checks, are errors. See section 6.7 for full proofs.

(4) Step four is the step responsible for processing equivalence classes and corresponds to the
application of the inferences rules (v), (vi), (iv), (x), (viii) and (vii) in a specific order.
The order that rules are applied is important as it ensures that the number of steps
required to process any equivalence class is bounded by a polynomial, see Lemma 6.26.
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(5) Step five checks to see if any label variables were equated and if so, it goes back to step
one, where we rebuild the graphs. This is done to ensure we don’t miss any variables
which are part of the compressed labels. Since the number of label variables is reduced
at each application, Lemma 6.8 shows the number of times this can happen is bounded
by the initial number of label variables.

6.4. Label Variables. We need several results about the label variables and their interac-
tion with the new variables. Let V0 denote the set of initial label variables for a system S

and V the set of label variables at any point during the application of Algorithm 2. Let Z
denote the set of fresh variables created by rule (viii) during application of Algorithm 2.

Lemma 6.7. During and after the application of Algorithm 2, V ∩ Z = ∅.

Proof. By the definition, it is not possible to apply rule (0) such that a newly created
variable is made a label variable. The only way to make a new variable a label variable
is to create a new lateral edge and make its label a new variable. The rules creating new
lateral edges are (iv), (vii) and (viii). But, the labels of these edges are all composed of
pre-existing label variables.

Lemma 6.8. During and after the application of Algorithm 2 on a system S in standard
form, |V| ≤ |V0|

Proof. Follows directly from rule (0) and Lemma 6.7.

Actually we can get a similar result for the original Tidén-Arnborg algorithm if we
also assume that variable replacement in that algorithm replaces newly created variables
by original variables. Stated more precisely we get the following lemma.

Lemma 6.9. Let Vl denote the set of left multiplication variables, i.e., Z ∈ Vl iff there
exists an equation of the form X = Z × Y for some variables X and Y . Let Sum denote
the sum transformation operation as defined in [22] (See Section 4 to recall the definition).
Also, assume that if a pre-existing variable is equated to a variable created by Sum, the new
variable is replaced by the pre-existing one. Then it is never the case that a new variable
created by Sum is in Vl.

Proof. The Sum operation does not create new left multiplication variables. Therefore, the
only way to get a new variable Z into Vl is by equating it with a variable already in Vl.

Thus, we can assume that there will never be an equation of the form X =? Z × Y ,
where Z is a fresh variable created by Algorithm 2.

6.5. Graph and SLP Operations. We first examine the problem of graph cycle checking
and then we cover the details of the SLP operations.
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6.5.1. Graph Cycle Checking and Updating. The LD graph is updated by the algorithm as
the inference rules operate on it. The LP graph is built from the LD graph and thus can
be updated after updating the LD graph. We note that the LD and LP graphs can use
standard cycle checking algorithms. With the additional observation that we can add the
relation edges in polynomial time with respect to the number of nodes in the LD graph, we
get the following Lemma.

Lemma 6.10. The LP and LD graphs for a system S in standard form can be checked for
cycles in polynomial time with respect to the size of S.

6.5.2. SLP Operations. Algorithm 2 requires the use of some type of string compression due
to the need to keep path labels from growing exponentially. But, we still need to know how
the label variables are related along paths, e.g., for error checking. Therefore, we cannot
just keep a set of the variables forming the path, the terminals of the SLP , because this
removes essential information. We first examine how the SLP are formed and then we will
discuss how the operations are used by each rule in Algorithm 2 along with a presentation
of their complexity. For convenience, Table 1 gives a listing of the SLP algorithms required
by Algorithm 2 and a listing of where polynomial time algorithms have been developed
and studied for that problem. See [14, 19] for surveys on algorithms on compressed strings,
including SLPs. More details are given in the following discussion

Forming SLPs. We first encode the label variables as SLPs. Each unique label variable is
encoded as a unique SLP . For example, when creating the LD graph for two equations
X =? Y ∗ Z and K =? Y ∗ L only one SLP is created, πY → Y , and two edges are labeled
by that SLP , i.e., by the top nonterminal πY . Then, larger or additional SLP s are formed,
bottom up, by the inference rules (x) and (iv). In addition, we only keep a single copy of
each unique SLP. This implies we only keep the set of all productions. When creating a
new larger SLP we need only create a new top production. For example, if we have two
pre-existing SLPs πi and πj that we wish to concatenate we don’t need to duplicate all
the productions; simply adding a top production π(ij) → πiπj to the set of productions is
sufficient. Likewise, when constructing a suffix, we may need to create new productions
that are added to the set of productions but we do not delete the productions contained
in the prefix since they generate other SLPs. Note that rules (vii) and (viii) don’t create
new SLPs but just use pre-existing ones.

SLP operations required by Algorithm 2 Reference to Polynomial Algorithm
The concatenation of two SLP [4, 11, 12]
SLP equality [13, 16, 20, 18]
SLP prefix and suffix [13, 8, 9, 12]
Find one pair of non-equal terminals in a pair of
non-equal SLPs

[8, 13, 16]

Table 1: Algorithms for SLP Operation
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Using SLPs. We now examine the SLP operations used by each rule and their complexity.
Rule (x): Rule (x) forms a new SLP by concatenating two existing SLPs. Rule (x) is
applied by starting with the sink node of the path and working back to the start node.
This ensures a minimal number of applications of rule (x). To concatenate two SLPs,
I = (Σ, NI , PI) and J = (Σ, NJ , PJ ),

4 we create a new SLP , K = (Σ, NK , PK). Let πI
and πJ be the top nonterminals of I and J respectively. Then, NK = NI ∪ NJ ∪ {πK}
and PK = PI ∪ PJ ∪ {πK → πIπJ}. This is a simplified version, with just two SLPs,
of the method presented in [12], for concatenating n strings. There it is shown, by a

constructive proof,5 that the SLP , G, generating the new string satisfies |G
′
| ≤ |G|+ n− 1

and depth(G
′
) ≤ depth(G)+⌈log(n)⌉. Rule (x) is just concatenating the SLPs but we could

also balance the resulting SLP . It is shown in [20] that for a SLP , G, generating a text
of length m with n rules we can construct a SLP , G′, in O(n log(m)) time, such that G′

has a depth of O(log(m)) and O(n log(m)) rules. This could improve results which depend
on the depth of a SLP . However, for our purposes we will use the simple concatenation
method as it is sufficient for our results and allows for a simpler complexity analysis. The
following result easily follows.

Lemma 6.11. Let I = (Σ, NI , PI) and J = (Σ, NJ , PJ ) be two SLPs. Then we can
construct in linear time, without decompression, a SLP K = (Σ, NK , PK) that generates
the concatenation of the two strings generated by I and J such that |K| = |PI ∪PJ |+1 and
depth(K) ≤ max {depth(I), depth(J)} + 1.

Additional algorithms and notes on concatenation can be found in [4, 11, 20].
Rules (ii) and (iii): These two rules require that we can decide if two compressed strings

are equal, π1 =? π2. The area of fully compressed pattern matching is an active area and
there are many algorithms that will solve this problem in polynomial time (O(n3) time for
a SLP of size n [13]). We cite the following, non-exhaustive, list of papers for excellent
algorithms; [13, 16, 20, 18].
Rule (iv): We can partially order the nodes in each equivalence class based on the lateral

edges, i.e., based on the ≻r∗ relation. Rule (iv) is applied based on this partial ordering,
starting from the source nodes and working down to the sinks.
We do not apply rule (iv) to a node X if rule (iv) can be applied to a node Y such that
there is a lateral path from Y to X. Rule (iv) requires that we can decide if one SLP π1
is a prefix of an SLP π2, π1 ≺? π2, in polynomial time with respect to π2. This problem
has been solved in [13], O(n3) time for a SLP , π2, of size n. We also need to extract the
suffix in compressed form, π3 = π1

−1π2. Because we build the SLP s bottom up and keep
the length information. A simple polynomial-time recursive algorithm can accomplish this.
See also [8, 12, 13, 21] for additional efficient methods for computing the suffix (and prefix).
For example, it has been shown in [12] that if G is a SLP generating the word v, then for

any suffix v
′
there exists a SLP G

′
that generates v

′
and satisfies |G

′
| ≤ |G| + depth(G)

and depth(G
′
) ≤ depth(G). For completeness a simple, but polynomial, suffix algorithm is

presented in Appendix A and from this algorithm we have the following result.

Lemma 6.12. Let I = (Σ, NI , PI) and J = (Σ, NJ , PJ ) be two SLPs such that the string
generated by J is a prefix of the string generated by I. Then, in O(|I|4) time a SLP

4 For every SLP the set of terminals will be a subset of Σ, the initial set of label variables.
5 We have replaced “singleton context free grammar” with SLP in the statement, just to stay consistent

with the naming in this paper.
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K = (Σ, NK , PK) can be constructed that generates the suffix of I after removing the prefix
J such that |K| ≤ |I|+ depth(I) and depth(K) ≤ depth(I).

Rules (v) and (vi): These rules handle the situation where two label paths should be equal,
or one a prefix of the other, but are found not to be. We then need to check if they can
be made equal. We accomplish this by finding at least one pair, (X,Y ), of terminals (label
variables) in the corresponding SLP s such that these terminals form a mismatch, X 6= Y .
One pair will do for each application of the rule because by the cancellative nature of ×,
all mismatched pairs of terminals must be equated. Therefore, we do not have to try all
different combinations of setting pairs equal or unequal. It is sufficient to select the first
mismatch, equate the variables and construct the resulting new problem. Note that we
are finding a single pair of terminals that form a mismatch in the string, not finding all
the positions where the strings generated by the SLPs differ, a NP-hard problem ([13]).
In [8] the authors have developed a nice polynomial, O(n3), algorithm for finding the first
mismatch. A mismatch can also be found using the algorithms in [13, 16] or by a simple
recursive algorithm, using the SLP equality algorithm of [13] as a subroutine. The result
is a simple O(n4) algorithm, n being the size of the largest SLP .

The way rules (v) and (vi) work in Algorithm 2 is if in the LD graph one of the rules is
satisfied, then a pair of label variables will be found (by the SLP algorithm) and equated
(through the use of rule (0)). This will cause the set of label variables, V, to be reduce
and thus the number of label variables in the system S to be reduced. The algorithm then
returns to step 1 and rebuilds a new LD graph from the newly modified system.

6.6. Correctness. We now examine the correctness of the above algorithm. Rather then
reconstructing all the proofs from “scratch” we can reuse some result proven by Tidén and
Arnborg since we are working on a compressed version of the original algorithm.

Lemma 6.13. The non-failure rules of Algorithm 2 maintain the set of unifiers.

Proof. The new rules are essentially equivalent to the original set of rules, only modified to
work on a compressed version of the problem. This can be seen by considering a path

X
π

−→ Z

and remove the compression. The path is a graphical representation of the equation.

X =? π × Z

where the string generated by π is of the form X1 · X2 · . . . · Xn, for some label variables
X1, . . . ,Xn. This is a compressed form of the following equation.

X =? X1 ×X2 × . . .×Xn × Z

This was constructed from n equations in standard form using variable replacement. These
equations are of the form

X =? X1 ×K1, K1 =
? X2 ×K2, . . . , Kn−1 =

? Xn × Z

Therefore, the result follows from Theorem 4.1 which is proven in [22]. Let us now
examine the rules.

• Rule (x) and rule (0) follow from variable replacement.
• Rule (i) follows from Theorem 4.1 part 1.
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• Now consider rules (ii) and (iii), since π = η, these rules follow from |π| applications of
Theorem 4.1 part 1. The same holds for rule (iv) except that η is a prefix.

• Rules (v) and (vi) also follow from Theorem 4.1 part 1 because by part 1 all the label
variables in π would have to be equated to the corresponding variables in η, so we are
safe in selecting one pair. More specifically, consider two paths and (v).

X
π

−→ Z, X
η

−→ Z

correspond to two equations, uncompressed

X =? Xi1 ×Xi2 × . . .×Xin × Z, X =? Xj1 ×Xj2 × . . .×Xjn × Z

Both could be expanded out into standard form and by applying Theorem 4.1 part 1 we
equate each pair Xil = Xjl .

• Finally, rules (viii) and (vii) follow from Theorem 4.1 part 2.

Note that rule (ix) is a failure condition that is handled by cycle checking the graph.

Lemma 6.14. If Algorithm 2 exits with success on a system S in standard form, then S is
unifiable.

Proof. The result follows from Lemma 6.13 and the fact that the set of inference rules
transforms S into a dag-solved form, which implies unifiability [7]. This can be seen by
examining the set of rules and the definition of dag solved-form.
Part (a) is satisfied because if there existed some Xi such that Xi =

? t1 and Xi =
? t2 (for

terms t1 and t2) one of the inference rules would be applicable.
Part (b) is satisfied because there are no cycles in the graph and thus the equations can be
arranged in the proper order.

Lemma 6.15. If Algorithm 2 terminates with failure on a system S in standard form, then
S is not unifiable.

Proof. Follows from Lemma 6.17.

From these results we get the following.

Theorem 6.16. The decision Algorithm 2 is correct.

Proof. Follows from Lemma 6.14 and Lemma 6.15.

6.7. Failure Conditions. Graph cycle checking is employed to detect failure conditions.
We argue in this section that if a cycle is found this corresponds to a non-unifiable system.

Lemma 6.17. A system S in standard form is not unifiable if there exists a cycle in any
of the corresponding LP or LD graphs for that system.

Proof. We consider the following cases:
Case 1: Assume that the LD graph for a system S contains a cycle. Then the cycle was
created by zero or more applications of the inference rules and implies that a variable is a
proper subterm of itself. By Theorem 4.4 these cycles correspond to non-unifiable systems.
Case 2: Assume the the LP graph for a system S contains a cycle. This implies there is
a cycle between the ∼r equivalence classes. It is shown in [22] that cycles between ∼r

equivalence classes of this form correspond to non-unifiable systems due to the need for an
infinite unifier (see Theorem 4.5).
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Therefore, if cycles are found we can safely conclude that the system is not unifiable
and return an error.

Finally, one could ask if some infinite systems (of Lemma 6.6) that are found in the
algorithm of [22] could be missed by the current algorithm due to not creating the same
number of new variables. This is shown not to be the case in the following lemma.

Lemma 6.18. Cycles in the sum propagation graph of [22] for a system S in standard form
imply cycles in the LP graph for S.

Proof. Clearly if the cycle exists in the initial system or is created by one or more applica-
tions of the cancellation rules (a)–(c) then the same cycle will be created in the LP graph.
Thus, assume the the cycle is created by creating new equations by rule (d). That is, by
rule (d) the following equations are created

X =? X1 +X2, X =? X3 ×X4

where X1, . . . ,X4 are newly created variables. But, then we need to equate X4 and X2.
Equating variables can only happen through rules (b) and (c) and would require two pre-
existing equations of the form X =? L1 + L2, X =? L3 × L2 but this is already a cycle in
the LP graph.

6.8. Complexity. We establish the polynomial time bound in this section.

Lemma 6.19. The number of ∼r equivalence classes never increases.

Proof. Rule (viii) is the only rule that creates new variables but these variables are contained
in pre-existing equivalence classes.

Lemma 6.20. The number of sinks in any equivalence class after processing is at most one.
Besides, every non-sink node in the class has exactly one outgoing edge.

Proof. If there is no sink in the class, then this implies a cycle and thus a non-unifiable
system. Therefore, let us assume there is no cycle and thus at least one sink. In addition,
there must be at least one source node. It can be seen that rules (ii), (iii), (iv), (v) and
(vi) ensure that all the nodes in the class have at most a single outgoing edge.

We now prove several small results about new variables and new lateral edges that will
be useful in the complexity result.

Lemma 6.21. The maximum number of new variables added to the system S is equal to
twice the number of equivalence classes.

Proof. Rule (viii) is the only rule that can add variables and this rule can only add two
variables for each sink. By Lemma 6.20 there is a single sink for each class. By Lemma 6.19
the number of equivalence classes never increases. Rule (viii) adds two new variables to a
lower class for each sink in the upper class. A class is only processed one time, thus the
number of variables that can be added is double the number of equivalence classes.
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Lemma 6.22. Let [X]r be a ∼r-equivalence class. Assume there exist K ∼r-equivalence
classes one level above [X]r by the ⋗r ordering. Denote the K classes as C1, C2, . . . , CK

and assume that each class Ci contains ni variables, such that NK =
∑K

i=1 ni. Then the
total number of lateral edges added to [X]r by the K higher classes is ≤ 2NK .

Proof. Processing each Ci will produce ni − 1 edges in Ci each connecting one node to the
sink of that class. If each of these edges is propagated down by rule (vii) or rule (viii) each
class could add a total of 2(ni − 1) edges to [X]r. Doing the sum we get that the K higher
classes could add no more then 2NK − 2K edges to [X]r.

Lemma 6.23. The maximum number of lateral edges added to any ∼r-equivalence class of
a system S in standard form is O(V0 +M), where V0 is the initial number of variables in
S and M is the number of equivalence classes.

Proof. Follows from Lemma 6.22.

These last two lemmas give a bound on the number of edges added to a class from an
outside class, using rules (vii) and (viii). We now need to consider the edges added to a
class during the processing of the class itself.

Lemma 6.24. Let [X]r be a ∼r-equivalence class. The number of lateral edges in [X]r does
not increase during application of step (2) or step (4).

Proof. This follows from the set of inference rules. Rules (vii) and (viii) only create edges
at a lower equivalence class. The only rule creating a new edge inside the class is rule (iv).
But rule (iv) also deletes an edge, thus leaving the number of lateral edges unchanged.

Lemma 6.25. The number of inference rule applications used during a single application
of step (2) of Algorithm 2 is bounded O(N +E), where N is the number of variables/nodes
and E the number of edges in the LD-graph at the start of step (2).

Proof. Clearly rules (i) - (iii) are linearly bounded by the number of edges and (0) by the
number of variables.

Lemma 6.26. The number of inference rule applications used to process a single equivalence
class, Ci, (step (4) of Algorithm 2) is bounded by O(Ni∗Li) where Li is the number of lateral
edges and Ni the number nodes in the class Ci being processed.

Proof. Rules (v) and (vi) will equate label variables therefore by Lemma 6.8 the number
of times they can be applied is equal to the number of label variables. Rule (viii) can be
applied at most once for each class. Rule (vii) can be applied once for each variable in the
class. Rule (x) is applied by starting with the sink node of the path and working back to
the start node of the path, thus if there are l edges in the equivalence class at the start of
the application of rule (x) it will be applied at most l times. In addition because at the
start of the application of rule (x) every node, but the sink, has at most one outgoing lateral
edge the number of application of rule (x) is also bound by n− 1, where n is the number of
nodes in the class.

Let us now consider rule (iv). Let li be the number of edges of the equivalence class
Ci to be processed, including edges added from higher classes, and let ni be the number
of nodes in Ci. Let us also denote a node for which rule (iv) is applicable as a (iv)-peak.
That is a (iv)-peak is a node, X, with two edges leaving X such that the inference rule (iv)
is satisfied. Note that a single node can form more then one (iv)-peak. Now, if we apply
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rule (iv) to each node X forming a (iv)-peak, based on the lateral edge partial ordering
(by ≻r∗), until X is no longer a peak we have removed X from the set of nodes forming
(iv)-peaks. The number of times we can apply rule (iv) to each node is bounded by the
number of edges leaving that node. It can be seen that each application of rule (iv) removes
a (iv)-peak but could add a new (iv)-peak. But, the new (iv)-peak will be lower in the
≻r∗ path from the initial (iv)-peak node to the sink. As each path must end in a sink the
number of these new peaks is naturally bounded by the length of the path. In addition,
because rule (iv) both removes and adds and edge it can not increase the number of peaks.
Therefore, we can make the following worst case assumption. Assume that rule (iv) can be
applied li times to each node. Then, as rule (iv) will remove one node from the set of peaks
after li applications the total number of applications of rule (iv) in Ci is ≤ ni ∗ li.

We have bounds on the number of classes, the number of new edges and nodes, and
the number of applications of the inference rules. Finally, we need to bound the size of the
SLPs. Recall Definition 3.1 for the size of a SLP .

Lemma 6.27. The largest, in size, SLP constructed by Algorithm 2 on any unification
problem S is O(|S|4) where |S| is the initial number of equations.

Proof. Assume that we have M topologically sorted, by ⋗r, ∼r-equivalence classes,
C1, C2, . . . , CM , each containing l1, l2, . . . , lM lateral edges, for a total of L, and
n1, n2, . . . , nM , for a total of N , variables. In addition, let l

′

i denote the number of lateral

edges in class Ci at the start of processing and n
′

i the number of variables at the start of

processing. n
′

i and l
′

i may differ from ni and li because nodes and edges can be added when
processing classes above Ci.

We need to consider both rule (x) and rule (iv) as these are the rules that can add
new grammar productions and create larger SLPs. Recall two facts about these two rules,
given two SLPs I = (Σ, NI , PI) and J = (Σ, NI , PJ ).

(1) For rule (x), creating the new SLP K, by Lemma 6.11 |K| = |PI ∪ PJ | + 1 and
depth(K) ≤ max {depth(I), depth(J)} + 1.

(2) For rule (iv), creating the new SLP K, by Lemma 6.12 |K| ≤ |I| + depth(I) and
depth(K) ≤ depth(I).

For the analysis we assume that for rule (x) depth(K) = max {depth(I), depth(J)}+1 and
for rule (iv) |K| = |I|+depth(I). Therefore, rule (x) adds just one new grammar production
and rule (iv) adds depth(I) new grammar productions. We want to give a bound on the
grammar productions created at each level in the sort of classes and thus the largest SLP
produced will be bounded by the total number of unique productions.

Compute the Maximum Depth: First note that the depth of any SLP is only increased
by rule (x) and only by 1. Let us first examine the depth of a SLP in a class Ci. Let Di

be the depth of the largest, in depth, SLP in Ci at the start of processing. Then, since the
application of rule (x) is bound by n− 1, where n is the number of nodes in the class, the
largest, in depth, SLP produced in Ci by rule (x) is

(n
′

i − 1) +Di (6.1)

where if Ci is a source node in the ⋗r ordering, Di = 1. Now assume there are k classes,
denoted as Cj1 , . . . , Cjk , above Ci in the ⋗r ordering. Thus, from the i− 1 classes above Ci

in the sort, at the start of processing Ci, k of them are related to Ci by ⋗r. As the classes
not related to Ci by ⋗r will not contribute any nodes or edges to Ci we need only consider
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the k classes.
Claim 1:

Di ≤
k∑

x=1

(n
′

jx − 1) + 1

Proof of Claim 1:
First, there must exist at least one “source” class in the k classes. By the bound given
in (6.1), the more source classes we have the less depth we add as for each source class,
Cs, Ds = 1. Thus, for the worst case analysis let us assume there is only one source class,
say Cj1 , from the k classes. Second, for the worst case analysis when processing any one
of the k class we want to ensure we are always adding depth to the previous largest, in
depth, SLP . Thus, assume that the k classes form a chain, each class adding the maximum
number of productions to the largest, in depth, SLP passed down from the class above and
then passing that new SLP to the next class. The process starts with class Cj1 and ends
at Ci, i.e., like a total ordering. If we compute the depth of the final deepest SLP in this
chain, using (6.1) as a bound of the depth at each level, we obtain the following bound on
maximum depth.

k∑

x=1

(n
′

jx − 1) + 1 (6.2)

✷

Compute the Maximum Size: Now let us consider rule (iv) on the same class Ci.

Lemma 6.26 bounds the number of applications of rule (iv) for any class based on l
′

i and n
′

i.

From Lemma 6.22, we can make the worst case assumption, l
′

i = li+2
∑k

x=1(njx − 1). This
results in a larger then worst-case bound for the number of applications of rule (iv) on the
equivalence class Ci:

n
′

i(li + 2
k∑

x=1

(njx − 1)) (6.3)

By Lemma 6.12 rule (iv) can add up to depth(π) new grammar productions when applied
to a SLP π. We can make a worst-case assumption that each time rule (iv) is applied
the SLP it is applied to has the maximum depth. Therefore, combining the bound (6.3)
with (6.2) we get the following bound on the number of new grammar productions rule (iv)
can add during processing of a class Ci:

n
′

i(li + 2

k∑

x=1

(njx − 1))(

k∑

x=1

(n
′

jx − 1) + 1) (6.4)

We also have from (6.1) that the number of new grammar productions produced by rule (x)
during processing of class Ci is bounded by

n
′

i − 1 (6.5)

Let us make an additional worst-case assumption, that each edge in each initial class contains
a unique single production SLP . This of course cannot happen as the initial number of
unique SLPs before processing for all classes combined is the number of label variables.
Combining this assumption about the unique starting edges with the number of applications
of (x) and the number of new grammar productions created by (iv) we get the following
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bound on the number of possible new grammar productions added by the processing of a
class Ci:

n
′

i − 1 + n
′

i(li + 2
k∑

x=1

(njx − 1))(
k∑

x=1

(n
′

jx − 1) + 1) (6.6)

Therefore, to get the total number we add up this value from each class from 1 to M .
Lemma 6.21 implies that the total number of new variables added to the system is ≤ 2M ,

thus we can assume that
∑k

x=1(njx − 1) ≤ (N + 2M) and
∑k

x=1(n
′

jx − 1) + 1 ≤ (N + 2M).
Recall that N is the total number of initial variables. With these assumptions for any class
Ci, 1 ≤ i ≤ M :

n
′

i − 1 + n
′

i(li + 2

k∑

x=1

(njx − 1))(

k∑

x=1

(n
′

jx − 1) + 1)

≤ (N + 2M) + (N + 2M)(L+ 2(N + 2M))(N + 2M)

Therefore, adding M of these we get:

M [(N + 2M) + (N + 2M)(L+ 2(N + 2M))(N + 2M)]

Since the equations are in standard form there are at most 3 variables per equation. This
implies that N , L and M are ≤ 3|S|, where |S| is the total number of equations. Therefore,
we get the upper bound O(|S|4).

Definition 6.28. Let Pslp denote the largest polynomial which bounds the run-time for
any of the required SLP operations. This polynomial is in terms of the largest SLP , which
by Theorem 6.27 is O(|S|4).

From [13] we could assume that Pslp = O(n3), where n is the size of the largest SLP .

Theorem 6.29. The worst-case running time of Algorithm 2 is O(|S|4 ∗Pslp(|S|
4)), where

|S| is the initial number of equations in standard.

Proof. First let V denote the initial number of label variables and let M denote the initial
number of equivalence classes. Lemma 6.8 shows that V does not increase and Lemma 6.19
shows that M does not increase.

First we consider a general overview of the run time of the algorithm.

(1) Since V does not increase and each time the algorithm returns to step (1) it equates
two label variables, thus decreasing V , step (1) is applied at most V times.

(2) Since the algorithm process an equivalence class once and M does not increase the
algorithm applies steps (2) though (5) a maximum of M times.

Now let us assume that each step (1) through (5), has an associated polynomial, Pi, i ∈
{1, 2, 3, 4, 5}, which bounds the maximum run-time of that step in terms of |S| the initial
number of equations in standard form. Based on the general observations above we get the
following polynomial, P, which bounds the running time of Algorithm 2

P = V (P1 +M(P2 + P3 + P4)) (6.7)

It remains to be shown that each Pi is indeed a polynomial in |S| which bounds the
run-time of step i. Before examining each step in more detail we present a few useful facts.

• First, rule (0) is the only rule that affects the initial set of equations and this rule only
equates two variables. Therefore, we can bound the run-time by |S| without concern that
|S| will increase.
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• Let V0 denote the set of all variables in the initial standard form set of equations. Then, by
the structure of the equations we can see that there are at most 3 variables per equation
and V0 ≤ 3 ∗ |S|. This also implies that V ≤ 3 ∗ |S| and M ≤ 3 ∗ |S|.

• It also easily follows that L the number of lateral edges is bounded by |S|, in fact L ≤ |S|.

We now consider each step in Algorithm 2.

(1) Step (1), by standard graph construction methods, is bounded by O(V0 ∗ |S|), which
results in P1 ≤ C1 ∗ |S|

2, for some constant C1.
(2) By Lemma 6.25 the number of inference rules applied at step (2) is O(N + E), where

N is the number of nodes and E the number of edges in the LD graph. Let V0 denote
the initial number of variables in S, then N ≤ V0 + 2 ∗ M , since by Lemma 6.21 the
maximum number of variables that can be added is twice the number of equivalence
classes. Next, by Lemma 6.23 The maximum number of lateral edges added to any
equivalence class is O(V0 + M). We can thus conservatively say that the maximal
number of lateral edges is O(M(V0 +M)). Since the number of downward edges does
not change we get the bound of C2(V0 + 2 ∗M) +M(V0 +M)). Rewriting in terms of
|S|, P2 ≤ C2 ∗ (|S|

2 + |S|2 + |S|2) ∗ Pslp(|S|
4), for some constant C2.

(3) Using standard graph cycle checking we get that P3 ≤ C3 ∗ |S|, for some constant C3.
(4) By Lemma 6.26, the number of rules applied for class i is O(Ni ∗ Li) where Li is the

number of lateral edges and Ni the number nodes in the class i being processed. Thus
for each class we get a run-time bound of O((Ni ∗ Li) ∗ Pslp(|S|

4)). Rewriting in terms
of |S| we get P4 ≤ C4 ∗ |S|

2Pslp(|S|
4), for some constant C4.

Now plugging all these into Equation (6.7), letting C = Max(C1, C2, C3, C4) and replacing
V and M in terms of S we get

P ≤ C ∗ (|S|3 + |S|4 ∗ Pslp(|S|
4) + |S|3 + |S|4 ∗ Pslp(|S|

4)) (6.8)

or
O(|S|4 ∗ Pslp(|S|

4)) (6.9)

7. On Asymmetric Unification and One-Sided Distributivity

Our work on a polynomial bounded procedure was partially motivated by its potential
application to cryptographic protocol analysis. Since our initial results [15], a new unifi-
cation paradigm has been developed in [5] and is based on newly identified requirements
arising from the symbolic analysis of cryptographic protocols. The analysis involves the
unification-based exploration of a space in which the states obey equational theories that
can be expressed as a decomposition R⊎E, where R is a set of rewrite rules that is confluent,
terminating and coherent modulo E. In order to apply state space reduction techniques,
it is usually necessary for at least part of this state to be in normal form, and to remain
in normal form even after unification is performed. This requirement can be expressed
as an asymmetric unification problem {s1 =↓ t1, . . . , sn =↓ tn} where the =↓ denotes a
unification problem with the restriction that any unifier leaves the right-hand side of each
equation irreducible.

Let us review a few definitions needed for asymmetric unification problems. A rewrite
rule is an ordered pair l → r such that l, r ∈ T (Σ,X ) and l 6∈ X . The rewrite relation on
T (Σ,X ), written t →R s, holds between t and s iff there exists a non-variable p ∈ PosΣ(t),
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l → r ∈ R and a substitution δ, such that t|p = lδ and s = t[rδ]p. The relation →R/E on
T (Σ,X ) is =E ◦ →R ◦ =E. The relation →R,E on T (Σ,X ) is defined as: t →R,E t′ if there
exists a position p ∈ PosΣ(t), a rule l → r ∈ R and a substitution δ such that t|p =E lδ

and t′ = t[rδ]p. The transitive (resp. transitive and reflexive) closure of →R,E is denoted by
→+

R,E (resp. →∗
R,E). A term t is →R,E irreducible if there is no term t′ such that t →R,E t′.

t is then said to be a R,E-normal form (or just normal form). If →R,E is confluent and
terminating we denote the irreducible version of a term t by t ↓R,E .

Definition 7.1. We call (Σ, E, R) a decomposition of an equational theory ∆ over a
signature Σ if ∆ = R ⊎ E and R and E satisfy the following conditions:

(1) E is variable preserving, i.e., for each s = t in E we have V ar(s) = V ar(t).
(2) E has a finitary and complete unification algorithm.
(3) For each l → r ∈ R we have V ar(r) ⊆ V ar(l).
(4) R is confluent and terminating modulo E, i.e., the relation →R/E is confluent and

terminating.
(5) R is coherent modulo E, i.e., ∀t1, t2, t3 if t1 →R,E t2 and t1 =E t3 then ∃ t4, t5 such that

t2 →
∗
R,E t4, t3 →

+
R,E t5, and t4 =E t5.

Definition 7.2. (Asymmetric Unification). Given a decomposition (Σ, E,R) of an
equational theory, a substitution δ is an asymmetric R,E-unifier of a set S of asymmetric
equations {s1 =↓ t1, . . . , sn =↓ tn} iff for each asymmetric equations si =↓ ti, δ is an
(E ∪ R)-unifier of the equation si =

? ti and (ti ↓R,E)δ is in R,E-normal form. A set of
substitutions Ω is a complete set of asymmetric R,E-unifiers of S (denoted CSAU(S)) iff:
(i) every member of Ω is an asymmetric R,E-unifier of S, and (ii) for every asymmetric

R,E-unifier θ of S there exists a δ ∈ Ω such that δ ≤
V ar(S)
E θ.

Example 7.3. Let R = {X ⊕ 0 → X, X ⊕ X → 0, X ⊕ X ⊕ Y → Y } and E be the
associativity and commutativity (AC) axioms for ⊕. Consider the equation Y ⊕X =↓ X⊕a.
The substitution δ1 = {Y 7→ a} is an asymmetric solution since the right hand side will
remain irreducible after applying δ1. But, δ2 = {Y 7→ a, X 7→ 0} is not an asymmetric
unifier, although it is a unifier, since 0⊕ a →R,E a.

We consider the one-sided distributivity theory in this new asymmetric setting. First,
we need to present the axioms as a theory decomposition. In this case the theory decom-
position is simple. Let ∆ = R ∪ E, where R = {X × (Y + Z) → X × Y + X × Z} and
E = ∅.

One way of approaching the asymmetric unification problem is to start with the sym-
metric unifiers and then try modifying them, if need be, into asymmetric unifiers. Thus we
could have first obtained the symmetric unifier using the original Tidén-Arnborg algorithm.
This method looks feasible as far as decidability is concerned, but instead we develop an
algorithm where failures can be detected much earlier.

In what follows we are going to assume that variables are always mapped to R, ∅-normal
forms. We can do this by assuming, without loss of generality, that all substitutions are
R, ∅-normalized.

Based on ∆, the following inference rules represent an asymmetric algorithm and are a
simple modification of the original Tidén-Arnborg algorithm to the new asymmetric domain.
The soundness of the rules follow directly from the rules presented in Section 3. In addition,
since the asymmetric restriction does not affect the system being subterm collapse free,
the error conditions of the original algorithm, and the graphs used to detect them, remain
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unchanged. The only additional error conditions, rules (e) and (f), follow due to the rewrite
rule, R = {X×(Y +Z) → X×Y +X×Z} , which requires that we apply a reduction to the
× rooted term. Likewise, rules (e’) and (f’) would imply failure because a reduction could
be applied to a term with an irreducible restriction. We denote the algorithm, consisting
of the following inference rules along with the error checking, as Algorithm 3.

(a)
EQ ⊎ {U =↓ V }

{U =↓ V } ∪ {U 7→ V }(EQ)
if U occurs in EQ

(b)
EQ ⊎ {U =↓ V ◦W, U =↓ X ◦ Y }

EQ ∪ {U =↓ V ◦W, X =↓ V, Y =↓ W}
where ◦ is either + or ×

(c)
EQ ⊎ {U =↓ V ◦W, X ◦ Y =↓ U}

EQ ∪ {U =↓ V ◦W, X =↓ V, Y =↓ W}

(d)
EQ ⊎ {V ◦W =↓ U, X ◦ Y =↓ U}

EQ ∪ {V ◦W =↓ U, X =↓ V, Y =↓ W}

(e)
EQ ⊎ {U =↓ V ×W, U =↓ X + Y }

FAIL

(e’)
EQ ⊎ {U =↓ V ×W, W =↓ X + Y }

FAIL

(f)
EQ ⊎ {U =↓ V ×W, X + Y =↓ U}

FAIL

(f’)
EQ ⊎ {U =↓ V ×W, X + Y =↓ W}

FAIL

(g)
EQ ⊎ {V ×W =↓ U, U =↓ X + Y }

EQ ∪ {V ×W =↓ U, W
1
+W

2
=↓ W, V ×W

1
=↓ X, V ×W

2
=↓ Y }

(h)
EQ ⊎ {V ×W =↓ U, X + Y =↓ U}

EQ ∪ {V ×W =↓ U, W
1
+W

2
=↓ W, V ×W

1
=↓ X, V ×W

2
=↓ Y }

Figure 10: Asymmetric Inference Rules for Algorithm 3.

In addition to error checking remaining the same, the soundness of the above procedure
can be shown by showing each rule is sound and this follows since each rule is just an
asymmetric instantiation of the sound symmetric rules presented in Section 4. In addition,
we can assume termination since the original algorithm is terminating.

In the following let ◦ denote either + or ×.

Lemma 7.4. The set of equations
{U =↓ V ◦W, U =↓ X ◦ Y }
and the set of equations
{U =↓ V ◦W, X ◦ Y =↓ U}
have the same asymmetric solutions as the set
{U =↓ V ◦W, X =↓ V, Y =↓ W}.
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Proof. The fact that the equations have the same unifiers is a result of Theorem 4.1. Next
note that the asymmetric restrictions are maintained since the instances of V ◦W , V and
W must be irreducible.

Lemma 7.5. The set of equations
{V ◦W =↓ U, X ◦ Y =↓ U}
has the same asymmetric solutions as the set
{V ◦W =↓ U, X =↓ V, Y =↓ W}.

Proof. The fact that the equations have the same unifiers is a result of Theorem 4.1. We can,
without loss of generality, assume that all substitutions are R, ∅ normalized. This implies
that variables are always mapped to R, ∅-normal forms and we can apply an irreducibility
restriction to them without restricting the solution space. This implies the correctness of
the last two equations X =↓ V, Y =↓ W .

Lemma 7.6. The following sets of equations have no asymmetric R, ∅ solutions:
{U =↓ V ×W, U =↓ X + Y },
{U =↓ V ×W, X + Y =↓ U}.

Proof. This is due to the orientation of R which requires a reduction in the ×-rooted equa-
tion in order to move a + to the top.

Lemma 7.7. The set of equations
{V ×W =↓ U, U =↓ X + Y }
and the set of equations
{V ×W =↓ U, X + Y =↓ U}
have the same asymmetric solutions as the set
{V ×W =↓ U, W1+W2 =

↓ W, V ×W1 =
↓ X, V ×W2 =

↓ Y }, where W1 and W1 are fresh
variables.

Proof. The fact that the equations have the same unifiers is a result of Theorem 4.1. In
addition, since we can assume that variables are mapped to R, ∅-normal forms and all
substitutions are normalized we a free to place an irreducibility restriction on a variable
without reducing the set of solutions.

Recall that in addition to the two failure rules we maintain the two graphs used to
detect failure in the original symmetric algorithm.

Lemma 7.8. The error conditions of Algorithm 3 are correct.

Proof. This follows from Lemma 7.6 and the fact that adding the asymmetric restriction
does not change the fact that the theory is still simple, i.e., cycles imply failure. Thus, the
use of the graph based method to detect cycles is still valid. In addition, it has been shown
in [22] that systems that cause non-termination are not unifiable and are detectable via the
sum propagation graph method. Since adding irreducibility constraints does not increase
the types of systems which cause non-termination and the systems are still detectable via
the graph method, the use of a propagation graph to detect all non-terminating systems is
still correct.
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Theorem 7.9. Asymmetric R, ∅ unification is decidable.

Proof. Lemma 7.8 shows that if a system is not asymmetrically unifiable it will be detected
by one or more of the failure rules or graphs. In addition, Lemma 7.8 shows that non-
terminating systems will also be detected implying Algorithm 3 terminates.

Lemma 7.4, Lemma 7.5 and Lemma 7.7 show that Algorithm 3 transforms a system
into a solved-form maintaining the set of solutions. This implies that the substitution
constructed from the final solved form is an asymmetric solution to the initial problem.

Theorem 7.10. Algorithm 3 produces a complete set of asymmetric unifiers.

Proof. Consider an asymmetric problem, S, and its solved form, S′ produced by Algo-
rithm 3. Let δS′ denote the substitution obtained from S′ in the standard way. Recall that
a substitution obtained from a dag solved form is idempotent, i.e., δS′ = δS′δS′ . Let θ be
an asymmetric solution to S and let X ∈ V ar(S).

(1) If X 6∈ V ar(S′), XδS′ = X and XδS′θ = Xθ.
(2) If X ∈ V ar(S′), then there are two cases.

(a) XδS′ 7→ X, in which case XδS′θ = Xθ.
(b) XδS′ 7→ ti, for some term ti. This implies there is an equation in S′ of the form

X =↓ ti. Recall Lemma 7.4, Lemma 7.5 and Lemma 7.7 show that Algorithm
3 transforms a system into a solved-form maintaining the set of solutions. Thus,
Xθ =∆ tiθ. This implies that XδS′θ =∆ tiθ =∆ Xθ.

Therefore, we can obtain an asymmetric unification algorithm by modifying the original
symmetric algorithm. This new algorithm has the following beneficial characteristics:

• Much as the original algorithm of [22], this new algorithm is conceptually easy to grasp,
and easy to implement.

• Again, like the Tidén and Arnborg algorithm, the new asymmetric algorithm should
perform well computationally on most problem instances, since it is unlikely a problem
will have the structure needed to force the exponential behavior.

Complexity.

Definition 7.11. For n ≥ 0, let σ′(n) be the set of equations

X1i+1 +X1i2 =↓ X1i ,

Y2i1 + Y2i+1 =↓ Y2i ,

T ×X1i2 =↓ Y2i1,

T × Y =↓ X,

X1i+2 +X1i+12 =↓ X1i+1

for all 0 ≤ i ≤ n, where Xli denotes i concatenations of l ∈ {1, 2}, i.e., X132 = X1112.

A simple modification to the σ(n) definition (see Definition 7.11) again results in a
family of equations, this time asymmetric, which cause exponentially many applications of
the inference rules. The new definition, σ′(n), simply places the irreducibility restriction on
the variables which are already irreducible with respect to the rewrite rule. Since we can
assume, without loss of generality, that substitutions are fully reduced via R, ∅-rewriting,
the irreducibility restrictions will not be violated. Therefore, the action of the new algorithm
does not change, in terms of complexity, from the action of the original algorithm on σ(n).
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An Open Problem: Polynomial-Time Decision Algorithms for Asymmetric Unification mod-
ulo One-Sided Distributivity. The polynomial algorithm developed in Section 6 relies on the
use of SLPs to ensure the polynomial bound. The SLP compression method can be used
because the critical information, path labels, are maintained by the compression method.
In addition, there are polynomial bounded algorithms for answering the required questions
regarding SLP compressed strings. However, when asymmetric unification is considered
we are forced to also keep track of the irreducibility restriction. This information would
unfortunately be lost in the current compression method. The current compression scheme
used in Algorithm 2 would need to be modified, to maintain the irreducibility constraints,
before the algorithm could be applied to the asymmetric case.

Therefore, a polynomial time asymmetric algorithm based on compression is still an
open problem. There are a couple of possible approaches:

(1) Develop a method of encoding the irreducibility restriction into the same SLPs. This
seems like it may be possible, but it also requires ensuring the SLP algorithms used in
Section 6.5.2 can be applied, in polynomial time, to these new encodings.

(2) Use a different compression method. This may also be possible, for example perhaps
using the methods developed in [9]. Again, we would need to ensure all the operations
used in Section 6.5.2 could be done on the new compression method in polynomial time.

8. Conclusions

Three problems are solved in this paper:

(1) We have developed a new polynomial time algorithm which solves the decision problem
for a non-trivial subcase, based on a typed theory, of unification modulo one-sided
distributivity. This subcase happens to be sufficient to express the negative complexity
result in [17]. The new algorithm is conceptually easy to understand and more efficient
than the new algorithm solving the general problem.

(2) We developed the first polynomial time algorithm which solves the decision problem
for unification modulo one-sided distributivity.

(3) We developed the first algorithm that solves the asymmetric unification problem for
unification modulo one-sided distributivity. That is, the algorithm produces the most
general asymmetric unifier. Although this new algorithm is not polynomial, it is con-
ceptually easy to grasp and easily implemented. In addition, it should perform well
computationally on most problem instances.

Although the focus of this paper is on decision procedures and complexity we can note
that all the algorithms presented in the paper compute unifiers. In the asymmetric case a
complete set of unifiers can be obtained from the computed solved forms. In the compressed
case, a resulting solved form is actually a compressed representation of a unifier.
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Appendix A: Computing a Suffix

For completeness we present in a very simple recursive algorithm for computing the com-
pressed suffix in polynomial time. One could also use the methods developed in [8, 12, 13, 21]
to efficiently compute the suffix and prefix. The algorithm only requires the size of the
string produced by the prefix and the actual SLP containing the prefix and suffix. We
assume also that the size of the string produced for each SLP is contained in the data
structure. Let π1 denote the large SLP containing the suffix and let π2 denote the prefix.
Let diff = ||π1|| − ||π2||, i.e., diff is the size of the string produced by the suffix. The
algorithm returns the suffix SLP , denoted as π3.

Algorithm 3 BuildSuffix

(Input: π1, diff)
Create a SLP pointer: temp = π1
while ||RightChild(temp)|| ≥ diff do

temp = RightChild(temp)
end while
if ||temp|| == df then

return temp

else
Create new non-terminal π3.
RightChild(π3) = RightChild(temp)
LeftChild(π3) = BuildSuffix(LeftChild(temp), diff − ||RightChild(π3)||)
return π3

end if

Theorem 9.1. Algorithm 3 runs in O(depth(π1)), |π3| ≤ |π1|+depth(π1) and depth(π3) ≤
depth(π1).

Proof. Consider the recursive call in Algorithm 3. The algorithm only uses a single linear
recursive call and the recursion is always called on a non-terminal one level lower in π1.
Therefore, the algorithm is bounded by depth(π1). In addition, a new rule/non-terminal,
is created for each recursive call for a maximum of depth(π1) new rules, thus |π3| ≤ |π1| +
depth(π1).
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