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Abstract. The notion of absorption was developed a few years ago by Barto and Kozik
and immediately found many applications, particularly in topics related to the constraint
satisfaction problem. We investigate the behavior of absorption in semigroups and n-
ary semigroups (that is, algebras with one n-ary associative operation). In the case of
semigroups, we give a simple necessary and sufficient condition for a semigroup to be
absorbed by its subsemigroup. We then proceed to n-ary semigroups, where we conjecture
an analogue of this necessary and sufficient condition, and prove that the conjectured
condition is indeed necessary and sufficient for B to absorb A (where A is an n-ary
semigroup and B is its n-ary subsemigroup) in the following three cases: when A is
commutative, when |A \ B| = 1 and when A is an idempotent ternary semigroup.

1. Introduction

Let A be an algebra and B 6 A. We say that B absorbs A, denoted by B E A, iff there
exists an idempotent term t in A (that is, t(a, a, . . . , a) ≈ a for each a ∈ A) such that for
each a ∈ A and b1, b2, . . . , bm ∈ B we have

t(a, b2, b3, . . . , bm) ∈ B;

t(b1, a, b3, . . . , bm) ∈ B;
...

t(b1, b2, b3, . . . , a) ∈ B.

The notion of absorption was developed a few years ago by Barto and Kozik, and
immediately found many applications [6, 7, 3, 4, 5]. We would particularly like to mention
that Bulatov’s dichotomy theorem for conservative CSPs [8], with a deep and complicated
proof (nearly 70 pages long), was reproved using these techniques on merely 10 pages [1].
Loosely speaking, the main idea of absorption is that, when B E A where B is a proper
subalgebra of A, then some induction-like step can often be applied.

2012 ACM CCS: [Computing methodologies]: Symbolic and algebraic manipulation–Symbolic and
algebraic algorithms–Algebraic algorithms; [Theory of computation]: Computational complexity and
cryptography–Complexity theory and logic /Algebraic complexity theory .

2010 Mathematics Subject Classification: 08A70, 20M99, 03B25, 68Q17.
Key words and phrases: absorption, semigroups, n-ary semigroups, constrained satisfaction problem.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(2:15)2015

c© B. Bašić
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This naturally leads to the following question: given a finite algebra A and its subal-
gebra B, is it decidable whether B E A? This question turns out to be quite hard. Let
us mention that the notion of absorption emerged as a generalization of the notion of the
so-called near-unanimity term (in particular: an idempotent finite algebra A has a near-
unanimity term iff every singleton absorbs A). It was asked in 1995 whether the existence
of a near-unanimity term in a finite algebra A is decidable [11], and it took a while to finally
prove that it is [15] (another interesting point here is that, before this proof appeared, there
were some evidences suggesting that the answer is actually negative). Some recent results
on deciding absorption are given in [10, 14, 2]; as expected, the proposed algorithms are
quite complex.

In this paper we show that in semigroups the absorption is much easier to grasp. Namely,
for absorption in semigroups, in Theorem 2.1 we provide a necessary and sufficient condition
that is very easy to check. After that, we turn to n-ary semigroups, that is, algebras
A = (A, f) where f is an n-ary associative operation. We conjecture an analogue of the
necessary and sufficient condition for B E A from Theorem 2.1, and we then prove the
conjecture in the following cases: when f is commutative, when |A \B| = 1 and when A is
an idempotent ternary semigroup.

Let us say a few words on a possible application of these results. Namely, one of the
most interesting algebraic results toward the CSP Dichotomy Conjecture of Feder and Vardi
[12] is the proof that, if a finite relational structure Γ does not admit any so-called weak
near-unanimity (wnu) polymorphism, then CSP (Γ) is NP-complete (see [9], where Bulatov,
Jeavons and Krokhin gave a different algebraic sufficient condition for CSP (Γ) to be NP-
complete, and [16], where Maróti and McKenzie showed that this condition is equivalent to
the nonexistence of a wnu polymorphism). Bulatov, Jeavons and Krokhin conjectured that
the other direction also holds, that is, that the existence of a wnu polymorphism compatible
with Γ implies that CSP (Γ) is in P (this is known under the name Algebraic Dichotomy
Conjecture). This has been checked for some relational structures of a special form, as well
as for all relational structures but given the existence of a wnu polymorphism of a special
form, and in all the cases known so far the results agree with the conjecture. In many of
these works the absorption was the key ingredient in the proof (see, e.g., the references from
the beginning of this section).

In particular, by the result of Jeavons, Cohen and Gyssens [13], we know that whenever
Γ admits a semilattice polymorphism (a semilattice operation is a binary operation that is
idempotent, commutative and associative), then CSP (Γ) is in P. Theorem 2.1 from the
present paper gives an exact description of when an algebra is absorbed by its subalgebra
in the class of algebras with a binary associative operation (which is a wider class than
the class of algebras with a semilattice operation). This provides a direct link between
Theorem 2.1 and the current line of attack on the Dichotomy Conjecture. Concerning our
generalization to n-ary semigroups, so far there is no result (at least up to the author’s
knowledge) toward the Dichotomy Conjecture that directly relates to Conjecture 3.1 in a
similar manner; however, since there are many results of this kind toward the Dichotomy
Conjecture and many researchers are actively working on it, it is not hard to imagine that
such a result exists and is just waiting to be discovered, and in fact, Conjecture 3.1 might
serve as a motivation for it.

And of course, speaking about the notion of absorption itself, Theorem 2.1 and Conjec-
ture 3.1 may shed some light on the (presently quite unclear) behavior of absorption, since
we now have a natural class of algebras in which the absorption behaves in a very predictable
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(but nontrivial) way. It might be a very useful research direction to discover whether there
is a deeper reason for this nice behavior of absorption in semigroups and (conjecturally)
n-ary semigroups, and whether this reason may help to describe the behavior of absorption
in other classes of algebras.

2. Absorption in semigroups

The main (in fact, the only) theorem in this section is the following one.

Theorem 2.1. Let A = (A, ·) be a semigroup, and let B 6 A. Then B E A if and only if

ab ∈ B and ba ∈ B for each a ∈ A, b ∈ B, and there exists a positive integer k > 1 such

that ak ≈ a for each a ∈ A.

Proof. (⇐): Assume that the condition from the statement holds, and let us prove that
B E A. Choose a positive integer k > 1 such that ak ≈ a for each a ∈ A, and let
t(x, y) = xk−1y. For any a ∈ A we have t(a, a) = ak ≈ a, that is, t is an idempotent
term. Further, for any a ∈ A, b ∈ B, we have t(a, b) = ak−1b = (ak−1)b ∈ B and
t(b, a) = bk−1a = b(bk−2a) ∈ B, which proves that t is an absorbing term.

(⇒): Let B E A, and let t be an absorbing term. Since t is an idempotent term, we
trivially get that there exists a positive integer k > 1 such that ak ≈ a for each a ∈ A (in
particular, k is the length of the term t). Therefore, we are left to prove that ab ∈ B and
ba ∈ B for each a ∈ A, b ∈ B.

Let t be a term in m variables, which are named in such a way that the leftmost variable
in t(x1, x2, . . . , xm) is x1. Let di denote the number of times the variable xi appears in
t(x1, x2, . . . , xm).

Let a ∈ A and b ∈ B be given. We evaluate t(ab, bk−1, bk−1, . . . , bk−1). Because
t(ab, bk−1, bk−1, . . . , bk−1) begins with ab and (ab)bk−1 = abk ≈ ab, we easily conclude

t(ab, bk−1, bk−1, . . . , bk−1) ≈ (ab)d1 .

Since bk−1 ∈ B and t is an absorbing term, by the previous equality we get

(ab)d1 ∈ B. (2.1)

Let r be any positive integer greater than (m−1)d1 such that r ≡ 1 (mod k−1). Note
that

rk ≡ 1 · 1 = 1 (mod k − 1). (2.2)

For 2 6 i 6 m, denote

ti = t((ab)d1 , bk−1, . . . , bk−1, (ab)r, bk−1, . . . , bk−1)

(the expression (ab)r is at the ith coordinate and at all the coordinates denoted by “. . . ” we
put bk−1). Since (ab)d1 ∈ B (see (2.1)), bk−1 ∈ B and t is an absorbing term, we get

ti ∈ B. (2.3)

As we have observed earlier, (ab)bk−1 = abk ≈ ab, and we thus conclude that ti evaluates
to a power of ab. In particular, since (ab)d1 appears d1 times and (ab)r appears di times,
we obtain

ti ≈ (ab)d
2
1
+rdi . (2.4)

Consider the expression

(ab)(r−(m−1)d1)d1t2t3 · · · tm.
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By (2.1) we get

(ab)(r−(m−1)d1)d1 = ((ab)d1)r−(m−1)d1 ∈ B,

which together with (2.3) gives

(ab)(r−(m−1)d1)d1t2t3 · · · tm ∈ B. (2.5)

We further have

(ab)(r−(m−1)d1)d1t2t3 · · · tm
(2.4)
≈ (ab)(r−(m−1)d1)d1+

∑m
i=2

(d2
1
+rdi)

= (ab)rd1−(m−1)d2
1
+(m−1)d2

1
+
∑m

i=2
rdi

= (ab)r(d1+d2+···+dm) = (ab)rk.

Since (ab)k ≈ ab, it follows that (ab)l1 ≈ (ab)l2 whenever l1 ≡ l2 (mod k − 1). Therefore,

(ab)(r−(m−1)d1)d1t2t3 · · · tm ≈ (ab)rk
(2.2)
≈ ab.

Together with (2.5), this gives ab ∈ B, which was to be proved. The proof that ba ∈ B is
analogous. This completes the proof of Theorem 2.1.

3. Absorption in n-ary semigroups

We say that an n-ary operation f : An → A is associative iff

f(f(a1, a2, . . . , an), an+1, . . . , a2n−1) = f(a1, f(a2, . . . , an, an+1), . . . , a2n−1)

= · · ·

= f(a1, a2, . . . , f(an, an+1, . . . , a2n−1))

(3.1)

for every a1, a2, . . . , a2n−1 ∈ A. An algebra A = (A, f), where f is an n-ary associative
operation, is called an n-ary semigroup.

Instead of f(a1, a2, . . . , an) we shall often write a1a2 · · · an, instead of the expressions
from (3.1) we shall write a1a2 · · · a2n−1 etc. However, we have to keep in mind that such
an expression, say a1a2 · · · aq, is defined in A if and only if q ≡ 1 (mod n − 1). On the
other hand, any expression of the form a1a2 · · · aq (no matter whether q ≡ 1 (mod n − 1)
or not) will be called word. Even if the word w is not defined in A, we shall still write
wl for the concatenation ww · · ·w (where w is repeated l times), but we need to be very
careful not to apply any possible identities from A on such a word; for example, if A is
an idempotent ternary semigroup and a, b ∈ A, then (ab)3a is a valid way to write abababa

(which is defined in A), but we cannot deduce (ab)3a ≈ aba. The notation wl is defined
also for l = 0, and in that case it stands for the “empty word”, that is, uw0v means simply
uv.

We believe that Theorem 2.1 can be generalized for n-ary semigroups in the following
way.

Conjecture 3.1. Let A = (A, f) be an n-ary semigroup, and let B 6 A. Then the
following conditions are equivalent:

(1) B E A;
(2) abn−1 ∈ B and bn−1a ∈ B for each a ∈ A, b ∈ B, and there exists a positive integer

k > 1 such that ak ≈ a for each a ∈ A;
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(3) a1a2 · · · an ∈ B whenever at least one of a1, a2, . . . , an belongs to B, and there exists a
positive integer k > 1 such that ak ≈ a for each a ∈ A.

We say that an n-ary operation f is commutative iff

f(a1, a2, . . . , an) = f(aπ(1), aπ(2), . . . , aπ(n))

for any a1, a2, . . . , an and any permutation π of the set {1, 2, . . . , n}. We now prove Con-
jecture 3.1 in the case when f is commutative, and then in two more cases, namely when
|A \B| = 1 and when A is an idempotent ternary semigroup.

Theorem 3.2. Conjecture 3.1 holds when f is commutative.

Proof. The implications (2) ⇒ (3) and (3) ⇒ (1) are easy, and in fact we shall not use the
commutativity of f in their proofs.

(2) ⇒ (3): Let a1, a2, . . . , an ∈ A be given, and let ai ∈ B for some i. Then

a1a2 · · · ai · · · an ≈ a1a2 · · · a
2k−1
i · · · an = (a1a2 · · · a

n−i+1
i )a2k−n−2

i (aii · · · an),

which implies that it is enough to prove a1a2 · · · a
n−i+1
i ∈ B and aii · · · an ∈ B. And indeed:

a1a2 · · · a
n−i+1
i ≈ a1a2 · · · a

n−i+k
i = (a1a2 · · · a

k−i+1
i )an−1

i ∈ B

and
aii · · · an ≈ ai+k−1

i · · · an = an−1
i (ai+k−n

i · · · an) ∈ B

by the assumption.
(3) ⇒ (1): Let t(x, y) be any term of length k containing at least one occurrence of

each variable x and y. Then t is an absorbing term.
That leaves only the implication (1) ⇒ (2). We also note that, since we have just

shown that the previous two implications always hold, in the later theorems we prove only
the implication (1) ⇒ (2).

(1) ⇒ (2): Let B E A, and let t(x1, x2, . . . , xm) be an absorbing term. Let k be the
length of t. Then ak ≈ a for each a ∈ A, and furthermore, al1 ≈ al2 whenever l1 ≡ l2
(mod k − 1).

By the commutativity of f , we may write t(x1, x2, . . . , xm) in the form xk11 xk22 · · · xkmm ,
where k1 + k2 + · · · + km = k. Let us show that bn−1a ∈ B for each a ∈ A, b ∈ B.

Let a ∈ A, b ∈ B. Let

t1(a, b) = t(a, b, b, . . . , b)t(b, a, b, . . . , b)t(b, b, a, . . . , b) · · · t(b, b, b, . . . , a)bl,

where l is chosen so that
m+ l ≡ n (mod k − 1). (3.2)

The length of t1 equals mk+ l. Since mk+ l ≡ m+ l ≡ n (mod k− 1) and n− 1 | k− 1, we
get mk+ l ≡ n ≡ 1 (mod n− 1), that is, t1 is well-defined. Further, since t is an absorbing
term, we have t(a, b, b, . . . , b) ∈ B, t(b, a, b, . . . , b) ∈ B, . . . , t(b, b, b, . . . , a) ∈ B, which gives
t1(a, b) ∈ B. Finally, note that

t1(a, b) ≈ ak1bk−k1ak2bk−k2 · · · akmbk−kmbl ≈ bmk−(k1+k2+···+km)+lak1+k2+···+km

≈ b(m−1)k+lak ≈ bm−1+la
(3.2)
≈ bn−1a,

(3.3)

which proves that bn−1a ∈ B. The proof of abn−1 ∈ B is analogous.
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Theorem 3.3. Conjecture 3.1 holds when |A \B| = 1.

Proof. (1) ⇒ (2): Let B E A, and let t(x1, x2, . . . , xm) be an absorbing term. Let k be
the length of t. By the idempotence of t it follows that ak ≈ a and in fact that al1 ≈ al2

whenever a ∈ A and l1 and l2 are positive integers such that l1 ≡ l2 (mod k − 1).
Let A \B = {c}. All we have to prove is that bn−1c 6≈ c and cbn−1 6≈ c for each b ∈ B.

In the first place, we shall prove that ck−1b ∈ B and bck−1 ∈ B for each b ∈ B, which shall
be needed later.

Aiming for a contradiction, suppose first that ck−1b ≈ c for some b ∈ B. Let xi be the
leftmost variable in t(x1, x2, . . . , xm). Putting c at the ith coordinate and b at all the other
ones gives

t(b, . . . , b, c, b, . . . , b) = cc · · · ccbb · · · bbcc · · · ccbb · · · bb · · · .

Let us show that each occurrence of cb in the above expression can be replaced by cc without
affecting the value of t(b, . . . , b, c, b, . . . , b). And indeed, we have

· · · cb · · · ≈ · · · ckb · · · = · · · cck−1b · · · ≈ · · · cc · · · ,

which proves the claim. By iterating this process we ultimately get

t(b, . . . , b, c, b, . . . , b) ≈ ck ≈ c;

however, since t is an absorbing term, t(b, . . . , b, c, b, . . . , b) ∈ B should hold, a contradiction.
This proves that ck−1b 6≈ c. In an analogous way we obtain that bck−1 6≈ c.

Again aiming for a contradiciton, suppose now that

bn−1c ≈ c (3.4)

for some b ∈ B. It now follows that

c ≈ ck = ccck−2 (3.4)
≈ (bn−1c)(bn−1c)ck−2 = b(bn−2cb)bn−3(bck−1).

Since b ∈ B and bck−1 ∈ B, it is impossible that bn−2cb ∈ B, since then the value at the
right-hand side would belong to B, while the value at the left-hand side is c. In other words,

bn−2cb ≈ c. (3.5)

Now, let

t1(c, b) = t(c, b, b, . . . , b)t(b, c, b, . . . , b)t(b, b, c, . . . , b) · · · t(b, b, b, . . . , c)bl,

where l is chosen so that m+ l ≡ n (mod k − 1). In exactly the same way as in the proof
of Theorem 3.2, we see that t1 is well-defined and that t1(c, b) ∈ B. Furthermore, we note
that each occurrence of cb in t1(c, b) can be replaced by bc without affecting the value of
t1(c, b); indeed:

· · · cb · · ·
(3.4)
≈ · · · (bn−1c)b · · · = · · · b(bn−2cb) · · ·

(3.5)
≈ · · · bc · · · .

This enables us to further mimic the proof of Theorem 3.2 (in particular, the lines (3.3)),
thus obtaining t1(c, b) ≈ bn−1c and hence bn−1c ∈ B. However, this is exactly the opposite
of the supposition (3.4). This condradiction proves bn−1c ∈ B. The proof of cbn−1 ∈ B is
analogous.
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Theorem 3.4. Conjecture 3.1 holds when A is an idempotent ternary semigroup.

Proof. (1) ⇒ (2): Let B E A, and let t(x1, x2, . . . , xm) be an absorbing term, where the
variables are named in such a way that the leftmost variable is x1. Let k be the length of t.

We need to prove that ab2 ∈ B and b2a ∈ B for any a ∈ A, b ∈ B. The proof proceeds
in nine steps:

(1) We show that whenever u2vu ∈ B, where u is any word of an odd length and v of an
even length, then vu ∈ B. Analogously, we also obtain that, whenever uvu2 ∈ B, then
uv ∈ B.

(2) We show that whenever ub ∈ B, where u is any word of an even length and b ∈ B, then
bu ∈ B, and vice versa.

(3) We show that abbab ∈ B and babba ∈ B for any a ∈ A, b ∈ B.
(4) We show that aab ∈ B, baa ∈ B and aabaa ∈ B for any a ∈ A, b ∈ B.
(5) We show that, whenever t′(x, y) is a term such that t′(a, b) ∈ B for all a ∈ A, b ∈ B, then

b(ab)l ∈ B, where l is the absolute value of the difference of the number of occurrences
of the letter a at the odd, respectively even positions in the word t′(a, b).

(6) We show that, whenever b(ab)l ∈ B for an integer l > 1 and some a ∈ A, b ∈ B, then
(ab)l−1a ∈ B.

(7) We show that there exists a positive integer l such that b(ab)l ∈ B and b(ab)l+1 ∈ B for
any a ∈ A, b ∈ B.

(8) We show that bab ∈ B for any a ∈ A, b ∈ B.
(9) We show that ab2 ∈ B and b2a ∈ B for any a ∈ A, b ∈ B.

We now prove these steps.

(1) Since u2vu ∈ B, we obtain t(vu, u2vu, u2vu, . . . , u2vu) ∈ B. Note that

(vu)(u2vu) · · · = vu3vu · · · ≈ vuvu · · · = (vu)(vu) · · · .

Therefore,
t(vu, u2vu, u2vu, . . . , u2vu) ≈ (vu)k ≈ vu,

which gives vu ∈ B. The proof that uvu2 ∈ B implies uv ∈ B is analogous.
(2) If ub ∈ B, then bub2 = b(ub)b ∈ B, and now bu ∈ B by the previous step. The other

direction is analogous.
(3) Let a ∈ A, b ∈ B be given. Denote

a′ = abbab.

We have t(a′bb, b, b, . . . , b) ∈ B. Note that t(a′bb, b, b, . . . , b) is a word that starts with
a′, ends with b and has no occurrences of two letters a′ next to each other; furthermore,
since b3 ≈ b, this word reduces to a word that has either b or bb between each two
successive occurrences of a′. We note

a′ba′ = (abbab)b(abbab) = (abb)3ab ≈ abbab = a′,

that is, each occurrence of a′ba′ in the considered word reduces to a′. It follows that
t(a′bb, b, b, . . . , b) reduces to a word a′bba′bba′bba′ · · · b, that is, either to (a′bb)l or to
(a′bb)la′b for some odd positive integer l (l has to be odd for these products to be
defined). These words further reduce to a′bb and a′bba′b, respectively. Since

a′bb = (abbab)bb = abbab3 ≈ abbab
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and
a′bba′b = (abbab)bb(abbab)b = abbab3abbabb ≈ abbababbabb,

we obtain abbab ∈ B or abbababbabb ∈ B. In the first case, this is what was to be
proved. In the second case, since (abb)ab(abb)2 = abbababbabb ∈ B, by step 1 we again
obtain abbab ∈ B. The proof that babba ∈ B is analogous (or, alternatively, follows
from abbab ∈ B and step 2).

(4) Let a ∈ A, b ∈ B be given. By the previous step, we have

aabaabb ≈ aab3aabb = (aab)bb(aab)b ∈ B.

In an analogous way, we obtain

bbaabaa ∈ B.

From these two conclusion we get

bbaab ≈ bb(aab)3 = bbaabaabaab ≈ bbaaba4baab3

= (bbaabaa)(aabaabb)b ∈ B.

Now, since bbaab ∈ B, step 1 gives aab ∈ B. The proof that baa ∈ B is analogous (or, al-
ternatively, follows from aab ∈ B and step 2). Finally, aabaa ≈ aab3aa = (aab)b(baa) ∈
B.

(5) Let a ∈ A, b ∈ B be given. We may assume that the leftmost variable in t′(x, y) is x:
indeed, if t′(x, y) begins with y and t′(a, b) ∈ B for all a ∈ A, b ∈ B, then because of
step 2 the same holds for the term obtained from the term t′ by moving the leftmost
y to the end, and this can be repeated until we reach a term that begins with x. We
have t′(abb, b) ∈ B. The word t′(abb, b) is a word that starts with a, ends with b, and
has no occurrences of two letters a next to each other. Since b3 ≈ b, this word reduces
to a word that has either b or bb between each two successive occurrences of a. We can
write the obtained word in the form

(ab)l1b(ab)l2b(ab)l3b · · · (3.6)

with either · · · (ab)lq or · · · (ab)lqb at the end, for some positive integers l1, l2, . . . , lq.
Given a word consisting only of the letters a and b, by its difference we shall mean the

absolute value of the difference of the number of occurrences of the letter a at the odd,
respectively even positions in the considered word. We can assume that the difference
of the word t′(a, b) is nonzero, since otherwise the conclusion we have to reach is b ∈ B,
which holds trivially.

Notice that the difference of the word t′(a, b) equals the difference of the word t′(abb, b)
(the latter word is obtained by inserting bb after each occurrence of a in the former word,
which keeps the parities of the positions at which a appears in the former word), which
in turn equals the difference of the word (3.6) (replacing b3 by b also keeps the considered
parities), which is evaluated to

|l1 − l2 + l3 − · · ·+ (−1)q+1lq|. (3.7)

If q = 1, then the word (3.6) is (ab)l1b (it cannot be (ab)l1 because this word has
an even length) and its difference is l1. Now from (ab)l1b ∈ B and step 2 we obtain
b(ab)l1 ∈ B, which was to be proved.

Let q = 2. Then the word (3.6) is (ab)l1b(ab)l2 (there cannot be · · · (ab)l2b at the end,
because then the length would be even). The difference of this word, which is assumed
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to be nonzero, equals |l1 − l2|; therefore, l1 6= l2, and in particular, l1 + l2 > 3. Now,
since (ab)l1b(ab)l2 ∈ B and (ab)l1−1b(ab)l2−1 ∈ A, step 4 gives

((ab)l1−1b(ab)l2−1)2((ab)l1b(ab)l2)((ab)l1−1b(ab)l2−1)2 ∈ B.

Further, we have

((ab)l1−1b(ab)l2−1)2((ab)l1b(ab)l2)((ab)l1−1b(ab)l2−1)2

= (ab)l1−1b(ab)l1+l2−2b(ab)l1+l2−1b(ab)l1+l2−1b(ab)l1+l2−2b(ab)l2−1

= (ab)l1−1b((ab)l1+l2−2bab)3(ab)l1+l2−3b(ab)l2−1

≈ (ab)l1−1b(ab)l1+l2−2bab(ab)l1+l2−3b(ab)l2−1

= (ab)l1−1b(ab)l1+l2−2b(ab)l1+l2−2b(ab)l2−1

= ((ab)l1−1b(ab)l2−1)3 ≈ (ab)l1−1b(ab)l2−1.

Therefore, if (ab)l1b(ab)l2 ∈ B, then (ab)l1−1b(ab)l2−1 ∈ B. Further, note that the
difference of the latter word equals |(l1 − 1)− (l2 − 1)| = |l1 − l2|, that is, this transfor-
mation preserves the difference. Repeatedly applying this procedure ultimately leads
to b(ab)l2−l1 ∈ B or (ab)l1−l2b ∈ B (depending on whether l2 > l1 or l1 > l2). In the
former case, the claim is proved. In the latter case, step 2 gives b(ab)l1−l2 ∈ B, which
again proves the claim.

Finally, let q > 3. We assume l1 6 lq. Let us explain why we are allowed to make

this assumption. If it were lq < l1, then from (ab)l1b(ab)l2b · · · (ab)lq ∈ B (the case with

· · · (ab)lqb at the end is similar) we get, by step 2, (ba)l1b(ba)l2 · · · b(ba)lq ∈ B, and now
since lq < l1, everything that follows could be applied as if, informally speaking, it were
read from right to left.

We claim that there exists a word that belongs to B, starts with a, ends with b, has
no occurrences of two letters a next to each other, has the same difference as the word
(3.6) and is shorter than (3.6).

We first consider the case when l1 > l2 or l1 > l3. Since l1 6 lq, it follows that l2 6 lq
or l3 < lq, respectively. We conclude that the minimal possible value of li, 1 6 i 6 q, is
achieved for at least one i such that 2 6 i 6 q − 1. For such i we have

(ab)l1b(ab)l2b · · · b(ab)li−1b(ab)lib(ab)li+1b · · ·

= (ab)l1b(ab)l2b · · · (ba)li−1−li(b(ab)li)3(ab)li+1−lib · · ·

≈ (ab)l1b(ab)l2b · · · (ba)li−1−lib(ab)li(ab)li+1−lib · · ·

≈ (ab)l1b(ab)l2b · · · b(ab)li−1+li+1−lib · · ·

This gives the shorter word we were looking for. Indeed, it is enough to check that the
obtained word has the same difference as the word (3.6) (all the other requirements are
immediately clear). And indeed, the difference of the obtained word equals

∣

∣

∣

∣

∣

∣

i−2
∑

j=1

(−1)j+1lj + (−1)i(li−1 + li+1 − li) +

q
∑

j=i+2

(−1)j+1lj

∣

∣

∣

∣

∣

∣

,

which is easily seen to be equal to (3.7).
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Let now l1 < l2 and l1 6 l3. Since the word (3.6) is in B and b(ab)l2−l1 ∈ A, step 4
gives

(b(ab)l2−l1)(b(ab)l2−l1)((ab)l1b(ab)l2b(ab)l3b · · · ) ∈ B.

Further, we have

(b(ab)l2−l1)(b(ab)l2−l1)((ab)l1b(ab)l2b(ab)l3b · · · )

= b(ab)l2−l1b(ab)l2b(ab)l2b(ab)l3b · · ·

= b((ab)l2−l1b(ab)l1)3(ab)l3−l1b · · ·

≈ b(ab)l2−l1b(ab)l1(ab)l3−l1b · · · = b(ab)l2−l1b(ab)l3b · · ·

Now, since b(ab)l2−l1b(ab)l3b · · · ∈ B, by step 2 it follows that the word obtained from
this word by moving the letter b from the beginning to the end (and possibly applying
b3 ≈ b at the end, in case that b3 appears there) also belongs to B. This gives the
shorter word we were looking for. Indeed, it is again enough to check only that the
obtained word has the same difference as the word (3.6), which follows by noting that
the difference of the obtained word equals

∣

∣

∣

∣

∣

∣

(l2 − l1) +

q
∑

j=3

(−1)j lj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

q
∑

j=1

(−1)j lj

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

q
∑

j=1

(−1)j+1lj

∣

∣

∣

∣

∣

∣

.

To conclude the proof, we note that repeatedly applying this procedure of “shortening
the word” ultimately leads to a word of the form treated in one of the cases q = 1 or
q = 2, from where we reach the desired conclusion in the already demonstrated way.

(6) Let b(ab)l ∈ B. By step 2, (ab)lb ∈ B. Since aab ∈ B (because of step 4), it follows that

(ab)laab = (ab)l−1abaab ≈ (ab)l−1ab3aab = ((ab)lb)b(aab) ∈ B.

Denote a′ = (ab)l−1a and b′ = (ab)laab. Since b′ ∈ B, by step 4 we get a′a′b′a′a′ ∈ B.
Note that

a′a′b′a′a′ = ((ab)l−1a)((ab)l−1a)((ab)laab)((ab)l−1a)((ab)l−1a)

= (ab)l−1a(ab)l−1a(ab)la(ab)la(ab)l−1a

= (ab)l−1a(ab)l−2(aba(ab)l−1)3a

≈ (ab)l−1a(ab)l−2(aba(ab)l−1)a = ((ab)l−1a)3 ≈ (ab)l−1a.

This completes the proof.
(7) Let oi, respectively ei, denote the number of occurrences of the letter xi at the odd,

respectively even, positions in the word t(x1, x2, . . . , xm) (we recall that t is an absorbing
term). Then the difference of the word t(b, . . . , b, a, b, . . . , b) (a is at the ith coordinate)
equals |oi − ei|. We claim that these differences, for 1 6 i 6 m, are coprime (not
necessarily pairwise coprime). Suppose the opposite: there exists a prime number p

such that p | |oi − ei| for each i, 1 6 i 6 m. Then

p |
m
∑

i=1

(oi − ei) =
m
∑

i=1

oi −
m
∑

i=1

ei =

⌈

k

2

⌉

−

⌊

k

2

⌋

= 1

(we recall that k is the length of t), which is a contradiction. Therefore, the considered
differences are coprime.
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By step 5, if li is any of these differences, then b(ab)li ∈ B for all a ∈ A, b ∈ B. If li
and lj are any two of these differences, then

b(ab)li+lj = b(ab)li(ab)lj ≈ (b(ab)li)b(b(ab)lj ) ∈ B.

Therefore, b(ab)l ∈ B whenever l is any linear combination with nonnegative integer
coefficients of the considered differences. Since these differences are coprime, any large
enough positive integer can be represented as a linear combination of them. In partic-
ular, there indeed exists a positive integer l such that b(ab)l ∈ B and b(ab)l+1 ∈ B.

(8) Let l0 be the least positive integer such that b(ab)l0 ∈ B and b(ab)l0+1 ∈ B for any
a ∈ A, b ∈ B (such a number exists by the previous step). We need to prove that l0 = 1.
Aiming for a contradiction, suppose that l0 > 2. We shall prove that b(ab)l0−1 ∈ B

for any a ∈ A, b ∈ B, which, together with the assumed b(ab)l0 ∈ B, contradicts the
minimality of l0.

We first treat the case l0 = 2. Let a ∈ A, b ∈ B be given, and let us prove that
bab ∈ B. We have b(ab)2 ∈ B and b(ab)3 ∈ B. By step 6, we have aba ∈ B and
ababa ∈ B. Since, by step 4, aab ∈ B and baa ∈ B, we conclude

(baa)(aba)(ababa)(aba)(baa)b(aab) ∈ B.

Further, we have

(baa)(aba)(ababa)(aba)(baa)b(aab) = baa(abaab)3aab ≈ baaabaabaab

= ba(aab)3 ≈ baaab ≈ bab.

This proves the case l0 = 2.
Let now l0 > 3. Let a ∈ A, b ∈ B be given, and let us prove that b(ab)l0−1 ∈ B.

Denote a′ = bab and b′ = abbab. By step 3, we have b′ ∈ B. Therefore, b′(a′b′)l0 ∈ B

and b′(a′b′)l0+1 ∈ B. By step 6, we have (a′b′)l0−1a′ ∈ B and (a′b′)l0a′ ∈ B. By step 4,
we have a′a′b′ ∈ B. Therefore,

((a′b′)l0−1a′)((a′b′)l0a′)((a′b′)l0−1a′)b′(a′a′b′) ∈ B.

Further, we have

((a′b′)l0−1a′)((a′b′)l0a′)((a′b′)l0−1a′)b′(a′a′b′)

= (a′b′)l0−1a′(a′b′)l0a′(a′b′)l0a′a′b′ = ((a′b′)l0−1a′a′b′)3

≈ (a′b′)l0−1a′a′b′ = ((bab)(abbab))l0−1(bab)(bab)(abbab)

= (bababbab)l0−2babab(bab)3abbab

≈ (bababbab)l0−2bababbababbab = (bababbab)l0−3bababb(abbab)3

≈ (bababbab)l0−3bababbabbab = ba((bab)2ba)l0−2b

≈ ba(ba)l0−2b = b(ab)l0−1.

(Between the last and the next to last row we used the fact that after each (bab)2 there
is another bab following, and thus, because of (bab)3 ≈ bab, we may simply erase each
such (bab)2.) This completes the proof.

(9) Let a ∈ A, b ∈ B be given. By the previous step, we have bab ∈ B. By step 2, we now
obtain ab2 ∈ B and b2a ∈ B, which was to be proved.
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The proof of Theorem 3.4 is thus finished.

For the end, we prove a proposition that shows that the requirement that A is idempotent
from the previous theorem is, in a way, not so restrictive as it might seem to be.

Proposition 3.5. Assume that Conjecture 3.1 holds for all idempotent n-ary semigroups.

Then Conjecture 3.1 holds in general.

Proof. As before, it is enough to prove only the direction (1) ⇒ (2). Let B E A, and
let t(x1, x2, . . . , xm) be an absorbing term. Let k be the length of t. Then the algebra
A′ = (A, f ′), where f ′(x1, x2, . . . , xk) = x1x2 · · · xk, is a k-ary idempotent semigroup. The
term t is also an absorbing term for B in A′, that is, B E A′. Therefore, by the assumed
special case of Conjecture 3.1, bk−1a ∈ B and abk−1 ∈ B for each a ∈ A, b ∈ B. Of course,
the same also holds in A. From here it is easy to prove that bn−1a ∈ B and abn−1 ∈ B for
each a ∈ A, b ∈ B; indeed:

bn−1a ≈ bn+k−2a = bn−1(bk−1a) ∈ B

and an analogous reasoning shows abn−1 ∈ B.

Acknowledgments

The author would like to thank the two anonymous referees for thorough reading of the paper
and many useful comments, and in particular for a suggestion about a possible application
of the results from the paper mentioned in the Introduction.

The research was supported by the Ministry of Science and Technological Development
of Serbia (project 174006) and by the Provincial Secretariat for Science and Technolog-
ical Development, Autonomous Province of Vojvodina (project “Ordered structures and
applications”).

References

[1] L. Barto, The dichotomy for conservative constraint satisfaction problems revisited, in: Proceedings
of the 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011), Toronto, Ontario,
Canada, 2011, pp. 301–310.
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