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Abstract. The multiplicative fragment of Linear Logic is the formal system in this family
with the best understood proof theory, and the categorical models which best capture this
theory are the fully complete ones. We demonstrate how the Hyland-Tan double glueing
construction produces such categories, either with or without units, when applied to any of
a large family of degenerate models. This process explains as special cases a number of such
models from the literature. In order to achieve this result, we develop a tensor calculus for
compact closed categories with finite biproducts. We show how the combinatorial properties
required for a fully complete model are obtained by this glueing construction adding to the
structure already available from the original category.

1. Introduction

Linear Logic [Gir87] is a well-known formal system that has attracted interest from com-
puter science as well as logicians. It has a very well behaved proof theory, and categorical
models for linear logic also contain a model of the (linear) simply-typed λ-calculus. Fully
complete [AJ94] models are those that equate precisely those proofs considered equivalent
by the proof theory, and which exclusively contain morphisms that are the interpretation
of some proof.

The best understood fragment of linear logic is that of unit-free Multiplicative Linear
Logic, MLL−. To model that one requires a ∗-autonomous category [Bar79], but not all such
categories satisfy the desired full completeness property. For example, compact closed
categories [KL80], which are thought of as degenerate models of MLL−, do not satisfy full
completeness for the logic. The Chu construction [Chu79] creates ∗-autonomous categories
which generally are not fully complete. Pre-existing studies of ‘good’ models in this
stronger sense are [HO93, Loa94a, DHPP99].
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In [Tan97] the double glueing construction is introduced (see also [HS03] for a general
account), and it is suggested that fully complete models may be obtained when this is
applied to three particular compact closed categories. The three categories in question are
the category Rel of sets and relations, the category FDVecF of finite dimensional vector
spaces over an arbitrary field F of characteristic 0, and the category of Conway games and
history-free strategies. However, the proof of the second—arguably the most interesting
case—is not completed in the cited work; and the restriction regarding the characteristic
of the field turns out to be unnecessary. Furthermore no two of the three proofs lend
themselves to a common unification.

In this paper, a greatly expanded version of the extended abstract [SS12], we provide
an entirely new approach to proving full completeness which can be applied to a large
variety of models provided by tensor-generated compact closed categories with finite biproducts
to which the double glueing construction has been applied. In the process we develop
a ‘tensor calculus’ for such categories, and discuss its combinatorial consequences. The
full completeness proofs consist of algorithms which calculate the required proof-theoretic
structure for a given natural transformation. As a consequence using the tensor calculus
has a very algorithmic flavour, and there is certainly interesting future work to be done
to connect this with other such work, for example in game semantics. Both Rel and
FDVecF belong to this collection of compact closed categories, and so the result is indeed
a generalisation of Tan’s work.

For the sake of self-containment, we start in Section 2 by offering some background
information relevant to the theorem being proved. This includes a short introduction to
unit-free multiplicative linear logic and its proof theory, as well as its categorical models
and the double glueing construction which can be placed over them. We then provide a
formal description of the ‘tensor calculus’ and its validity for the resulting categories within
Section 3. It is within Section 4 that we provide the proof of our main result, Theorem 4.24,
which says that all compact closed categories with finite biproducts satisfying an extremely
weak version of full completeness give rise to fully complete MLL− models via double
glueing. Using a mixture of results from earlier sections and from [Tan97], we finish by
demonstrating in Section 5 that the same double glueing construction under a slack focused
orthogonality [HS03] can produce fully complete models of MLL−+Mix, the multiplicative
fragment of linear logic with the ‘Mix’ rule (Theorem 5.11).

The results in this paper are taken from the thesis of the second author [Ste13]. The
thesis, to which we occasionally refer, offers further background and discusses some issues
in more detail than is possible here.

2. Background

In this section we give a short account of the well-known proof theory of MLL− [DR89]
and how this system can be modelled categorically [BFSS90, Blu93]. We repeat the formal
notion of full completeness for such models, and indicate what can be said about the
models provided by compact closed categories. An introduction to double glueing and
orthogonalities is also contained within this background survey.

2.1. Cut-Free MLL− Proof Nets. The linear logic fragment MLL− possesses a beautiful
proof theory revolving around the notion of proof nets [Mel06, Str06]. Proof nets provide a
method of equating two distinct derivations which differ only due to ‘bureaucracy’ [Gir87].
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Since derivations in MLL− can be normalised confluently, we are interested primarily in
cut-free MLL− proof nets. It is sufficient to consider right-sided sequents of formulae built
from literals (which in a derivation are created as pairs, one positive, one negative) using
the multiplicative conjunction ⊗ and disjunction M. Given a deduction in the system we
can construct a graph by using the parse trees of the final sequent, connecting those literals
that are created together in said proof via edges known as (axiom) links. This is the proof net
that corresponds to the derivation, and we wish to equate those deductions that have the
same proof net.

2.1.1. Correctness Criteria. While every proof net represents a derivation, it is possible to
create graphs which resemble proof nets but do not correspond to correct derivations.
Given a parse tree for a sequent constructed from literals and the MLL− connectives ⊗ and
Mwe use the term proof structure for a graph resulting from connecting matching literals.

In this paper, proof structures are written only as the sequent together with its set of
axiom links connecting appropriate literals above it. An example is given below.

((α ⊗ α⊥) ⊗ α ) M (α⊥ ⊗ α ) M ((α⊥M α) ⊗ α⊥)

It is possible to check whether a given proof structure is, in fact, a proof net [DR89]
using certain correctness criteria. A switching of a proof structure is a subgraph created by
removing exactly one of the two argument edges of each M-vertex. A proof structure is a
proof net if and only if every one of its switchings is both acyclic and connected.

2.1.2. MDNF Proof Structures. Multiplicative linear logic does not possess all the distribu-

tivity laws associated with Boolean logic. However, there are weak distributivity laws1

which have the effect of “weakening” formulae into a state closer to (and to closure into) a
disjunctive form.

A ⊗ (B M C)
(wLL)

(A ⊗ B) M C

A ⊗ (B M C)
(wLR)

(A ⊗ C) M B

(A M B) ⊗ C)
(wRL)

B M (A ⊗ C)

(A M B) ⊗ C)
(wRR)

A M (B ⊗ C)

From now on, in the appropriate contexts, we use the following notation: [M,N] =
{n ∈ N : M ≤ n ≤ N}, and [N] = [1,N].

1These are sometimes known as linear distributivity laws.
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Definition 2.1. An MLL− formula A is in multiplicative disjunctive normal form (or MDNF)

if A = MM
m=1(

⊗Lm

l=1(α f (m,l))
φ(m,l)) for literals {αi : i ∈ [N]} for some N ∈ N, M, L1, . . . , LM ∈ N,

and functions f :
∑M

m=1{(m, l) : l ∈ [Lm]} −→ [N] and φ :
∑M

m=1{(m, l) : l ∈ [Lm]} −→ {ǫ,⊥}
indicating the literal and polarity of said literal respectively, where ǫ denotes an empty

superscript, and therefore positivity. Each subformula
⊗Lm

l=1(α f (m,l))
φ(m,l) of A for a given m

is called a block of the formula. An MLL− sequent is considered to be in MDNF if all its
constituent formulae are in MDNF; and its blocks are the blocks of its formulae.

The correctness criteria for proof structures over MLL− sequents which are in MDNF
are even further simplified.

Fact 2.2. [Ste13] An MDNF proof structure is a proof net for MLL− if and only if its maximal
M-free subgraph is a tree.

The simplicity of these MDNF proof structures and their correctness criteria is very
useful to us when proving full completeness in a category. As is seen in Sections 4 and 5,
seemingly weaker full completeness theorems concerning only sequents of this form can
be shown to be equivalent to theorems dealing with all sequents.

Each block of literals in a MDNF structure written as a sequent with axiom links can
be seen as one large vertex without affecting the acyclicity and connectedness of graph (the
switchings of their parse trees are indeed still trees), and the instances of ‘M’ can be ignored
by Fact 2.2. From this perspective, we can check this graph for acyclicity and connectedness
very swiftly. For example, the MDNF proof structure below is clearly incorrect due to the
cycle between the two blocks.

( α ⊗ α⊥)M ( α ⊗ α⊥)

2.1.3. The ‘Mix’ Rule. Although not a formal part of linear logic, the ‘Mix’ rule is routinely
seen as a part of the multiplicative structure. This is partly due to its insistence to being
represented in many standard models, not least the category of coherence spaces [Gir87].
The proof theory of MLL− is however not unduly made too difficult by the addition of this
derivation rule. Thanks to [FR94] we know that the only true difference which can occur
between correct proof structures for MLL− and MLL−+Mix regards the disconnectedness
of switchings.

Fact 2.3. [FR94] An MLL− proof structure describes a proof net for MLL−+Mix if and only
if all its switchings are acyclic.

It is also possible to create a ‘Mix’ version of the MDNF criterion of the previous section:

Fact 2.4. [FR94, Ste13] An MDNF proof structure is a proof net for MLL−+Mix if and only
if its maximal M-free subgraph is a forest.
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2.2. Sound Categorical Models. Sound categorical models of MLL− are found in the form
of ∗-autonomous categories [Bar79, See89]—these are symmetric monoidal categories with
a well-behaved self-duality. The underlying idea is quite simple: Each symbol in the logic
is interpreted by a functor (of the appropriate arity) on the category; the monoidal structure
⊗ gives conjunction, the duality (−)⊥ allows negation, and to model disjunction these can
be combined to define a De Morgan dual − M − = ((−)⊥ ⊗ (−)⊥)⊥. We use the latter functor
also to interpret the commas separating formulae in a sequent.

Hence every sequent in MLL− determines a functor

CN × (Cop)N ✲ C

where N ∈ N+. That is to say, each sequent is described by a multivariant endofunctor
with N co- and contravariant arguments respectively. If we look at these functors then we
see that they are built by

• applying the duality functor (−)⊥ to each copy of Cop,
• creating as many copies of the arguments as required, then reordering them appropri-

ately,
• applying the functors ⊗ and M to get a result in C.

We refer to the functors that can be built in this way as MLL− functors. Similarly, functors
that correspond to MDNF sequents are referred to as MDNF functors.

Assume we have a right-sided sequent interpreted by the MLL− functor F. The formula
representing truth is interpreted by the functor whose value is the constant I, the unit for the
monoidal structure. We refer to this functor asKI, and allow ourselves to adjust its source
as needed. Every proof of the given sequent is interpreted by a dinatural transformation from
KI (with the same source as F) to F, which is a family of arrows (τR ∈ C[I, F(R,R)])R∈CN for
which the diagram below commutes for every f = ( f1, . . . , fN) : R ✲ S, where R,S ∈ CN.

F(R,R)

I

τR

✲

F(S,R)

F(f,1
R )

✲

F(S,S)

F(1 S
,f)

✲

τ
S

✲

Definition 2.5. An MLL− (respectively MDNF) transformation is a dinatural transformation
to an MLL− (respectively MDNF) functor from a constant functorKI of appropriate source.

It is possible to build MLL−(+Mix) transformations corresponding to correct one-sided
sequent derivations of the logic in an inductive manner [Ste13] in any ∗-autonomous
category. Furthermore, it can be shown that any two derivations which reduce to the same
cut-free proof net are represented by the same MLL− transformation in the category [LS06].
This suggests that ∗-autonomous categories are a sensible collection of models through
which one can investigate MLL−.

Dinatural transformations do not naturally compose with one another. However,
they are capable of being composed with transformations natural in all components. The
diagram below demonstrates the dinatural behaviour a composition of natural µ and
dinatural τ.
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F(R,R)
µ(R,R)

✲ G(R,R)

I

τR

✲

F(S,R)
µ(S,R)

✲

F(f,1
R )

✲

G(S,R)

G(f,1
R )
✲

F(S,S)
µ(S,S)

✲

F(1 S
,f)

✲

τ
S

✲

G(S,S)

G(1 S
,f)

✲

The equivalent result for precompositions is demonstrated in a dual manner.
One can now show that two proofs of the same sequent are interpreted by the same

dinatural transformation if and only if they have the same proof net [LS06]. In other
words, this categorical interpretation of proofs fits very well with the existing proof theory
for MLL−.

With ∗-autonomous categories being sound categorical models of MLL−, it is expected
that they should all contain natural transformations which model the weak distributivity
laws discussed in Section 2.1.2.

wLL : −1 ⊗ (−2 M −3) −→ (−1 ⊗ −2)M −3

wLR : −1 ⊗ (−2 M −3) −→ (−1 ⊗ −3)M −2

wRL : (−1 M −2) ⊗ −3 −→ −2 M (−1 ⊗ −3)

wRR : (−1 M −2) ⊗ −3 −→ −1 M (−2 ⊗ −3)

It is shown how one can construct each of them in [Ste13].
The ‘Mix’ Rule is modelled in a ∗-autonomous category if and only if there is a natural

transformation Mix : (−)1 ⊗ (−)2
✲ (−)1 M (−)2. This is equivalent to there existing a

‘Mix’ morphism mix : ⊥ ✲ I [Tan97].

2.3. Full Completeness. Full Completeness was first defined in [AJ94], and it is meant to
describe the tightest possible connection between the logic and its model. Not only are the
interpretations of two proofs the same if and only if they are equivalent in the proof theory,

but the model does not contain any representations of ‘non-proofs’.2

In the case of the work in this paper, we are considering what this means from a
dinatural interpretation of proofs. This provides us with the following definition, which
originates from the notion as it is set out in [BS96], and is further used in such works
as [Loa94b, Tan97, Hag00]:

Definition 2.6. A ∗-autonomous category C satisfies MLL−(+Mix) full completeness if every
MLL−(+Mix) transformation in the category is the interpretation of a cut-free proof net.

2The name ‘full completeness’ is derived from its original non-dinatural interpretation sense, in that the
property establishes the existence of a full functor between the model category and a free ∗-autonomous
category. With this analogy in mind, due to every pair of derivations sharing the same cut-free proof net
corresponding to the same MLL−(+Mix) transformation, the satisfaction of the above definition may be more
accurately described as full and faithful completeness. However, for the sake of convenience and easy compre-
hension, we keep to the originally given name.
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2.4. Compact Closed Categories with Finite Biproducts. Compact closed categories [KL80]
are particular degenerate ∗-autonomous categories which possess a parameterised adjunc-
tion B ⊗ − ⊢ − ⊗ B∗ (we denote the negation function (−)∗ for historical reasons in these
categories). The existence of this adjunction induces an invertible ‘Mix’ natural transfor-
mation Mix : (−)1 ⊗ (−)2

✲ (−)1 M (−)2 between the two functors modelling the binary
connectives. Nonetheless it turns out that they can form the basis for constructing fully
complete models, as is seen in Sections 4 and 5.

The adjunction associated with compact closed categories creates a bijective corre-
spondence v : [(−)2 ⊗ (−)1, (−)3] ✲

[

(−)1, (−)3 ⊗ (−) ∗2
]

. This, along with the coherence
properties of symmetric monoidal categories and the functoriality of tensor, ensure that
the MLL− transformations can be reproduced in the following manner:

(1) Take the right natural isomorphism on each of the basis MLL− functors,

ρi : (−)i ⊗ I ✲ (−)i,

with (−)i : CN ✲ C the projection of the ith component of the product categoryCN for
each i ∈ [N].

(2) Use the parameterised adjunction associated with these categories with the right iso-
morphism to produce dinatural transformations di = vI,(−)i,(−)i

(ρ(−)i
) : KI −→ (−)i⊗(−) ∗i

for each argument3.
(3) If the sequent whose derivation is being modelled contains ni positive/negative occur-

rences of the literal being modelled with the ith entries of the functors for each i ∈ [N],
then create the MLL− transformation

I
λ−1
✲

N
⊗

i=1

ni
⊗

j=1

I

⊗N
i=1

⊗ni
j=1 di
✲

N
⊗

i=1

ni
⊗

j=1

(−i ⊗ (−i)
∗)

(4) Use the associativity and symmetry isomorphisms α and σ to rearrange brackets and
the ordering of the literals so that those literals are found in the same order and the

brackets in the same place as the functor requires. If the ith and jth literals are supposed
to be connected by an axiom link, then it must be ensured that the two literals found
in those positions are two that were created simultaneously by the exact same ‘axiom
link’ dinatural transformation. The resulting dinatural transformation can be thought
of as a fixed-point-free involution, relating literals to their negations.

(5) Use the natural transformation Mix liberally to change all ⊗ functors into M functors
where necessary to shape the target functor to create the MLL− functor in the category.

Unfortunately, this advantage comes with a natural drawback: the unrestricted freedom
to generate representations of axiom links within the MLL− transformations means that
unsequentialisable proof structures can be modelled just as easily as genuine proof nets.
As such, MLL− full completeness cannot be satisfied by any of these categories.

In this paper we are more interested in the case where there is even more structure
than that given above, namely where the compact closed category C has finite biproducts.
Recall [Hou06] that C has finite products if and only if it has finite sums if and only if it has
finite biproducts. In this case the scalars (that is the homset of endomorphisms on the tensor
unit C[I, I]) form a commutative unital semiring, and due to the biproducts distributing

3This dinatural transformation is indeed the collection of arrows (dX : I ✲ X ⊗X∗)X∈C first discussed
in [KL80]
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over the tensor product C is enriched over CSModC[I,I]—the category of commutative
semimodules over the semiring of scalars [Heu08].

Given a set of dinatural transformations of the same type {τi : i ∈ I} for some index set I,
we define a linear combination

∑

i si ·τi of them as the collection of arrows
(
∑

i si · (τi)A

)

A∈C
.

It is easy to show that in such a category every linear combination of dinatural transfor-
mations is another such, giving a second obstacle to full completeness. Nonetheless, from
the above limitations, there is a clear concept of a compact closed category with finite
biproducts being ‘as fully complete as it can hope to be’.

Definition 2.7. A compact closed category C with finite biproducts satisfies feeble full
completeness if every MLL− transformation for the category is a linear combination of
interpretations of proof structures over the same sequent.

It is known from [CHS01] (proof reproduced in [Ste13]) that finite biproductal compact
closed categories whose tensor unit acts as a separator satisfy feeble full completeness.
These models are called tensor-generated, and there are many of them. Examples include
both Rel and FDVecF for any field F, and extend beyond these to include categories such
as that of finite-dimensional Hilbert spaces. Every compact closed category with finite
biproducts clearly has a non-trivial full subcategory which is tensor-generated, namely the
category generated by the object I and the tensor, biproduct and duality functors.

2.5. The Double Glueing Construction. Double Glueing constructions [HS03] operate
upon categories. They can be thought of as adding structure to objects in the form of two
arrows, which then has to be preserved by the morphisms of the newly created category.
This leaves a trivial forgetful functor U : D ✲ C from the double-glued category to the
original. When the added structure arrows are monomorphisms, this has the effect of
generating homsets between two objects in the new category which are fundamentally
subsets of the homsets of their underlying objects. [Ste13] That is,

{

U f : f ∈ D[(A, α, ξ), (B, β, ζ)]
}

⊆ C[A,B].

The most commonly seen double glueing construction used on top of models of linear
logic is the so-called Hyland-Tan construction [Tan97], inspired by Loader’s linear logic
predicates [Loa94b]. This double glueing is based upon structure arrows which take the
form of injections into homsets in Set, and so are clear monomorphisms, allowing us to
use the above fact. We define this construction formally below.

Definition 2.8. Given a ∗-autonomous category C with tensor unit I, and letting ⊥ = I⊥,
the category GC is the category described with the following object set and homsets:

• Objects — Obj(GC) = {(A,U,X) : A ∈ Obj(C), U ⊆ C[I,A], X ⊆ C[A,⊥]}
• Arrows — Arrows in GC[(A,U,X), (B,V,Y)] are described by single morphisms f ∈
C[A,B] such that:

f ◦U ⊆ V and Y ◦ f ⊆ X

In general, when discussing a GC-object (A,U,X), we refer to U and X as the object’s
sets of values and covalues respectively. We write

(A,U,X)Val = U

(A,U,X)CoVal = X
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As with any double glueing, the Hyland-Tan construction preserves ∗-autonomy, and it
also removes the degeneracy of compact closed categories. Tensor products and negations
of arrows are immediately inherited from the underlying category — indeed, the functor
U : GC ✲ C is ∗-autonomous. The object assignments are as follows:

(A,U,X)⊥ = (A⊥,X⊥ ◦ χI,U
⊥)

(A,U,X) ⊗ (B,V,Y) = (A ⊗ B, (U ⊗ V) ◦ λI,Z)

I = (I, {1I},C[I,⊥])

where Z =

{

z ∈ C[A ⊗ B,⊥] :
∀v ∈ V, A

ρA
✲ A ⊗ I

1A⊗v
✲ A ⊗ B

z
✲ ⊥ ∈ X,

∀u ∈ U, B
λB
✲ I ⊗ B

u⊗1B
✲ A ⊗ B

z
✲ ⊥ ∈ Y

}

.

2.5.1. Focused Orthogonalities. Many examples of double-glued structures which have been
investigated, particularly ones in which their glued nature is hidden, have restrictions
on the objects which they are allowed to contain. For example, the category of Chu
Spaces [Chu79] can be thought of as a full subcategory of a generalised version of the
category Rel under the influence of a double-glueing [Hug04]. Of course, the constraints
must be defined sensibly in order to preserve the closure of the operations defined on such
categories. These constraints are called orthogonalities, and they can come in a variety of
forms. In this paper, we wish to look at focused, slack orthogonalities.

Given any subset E ⊆ C[I,⊥], we can construct an orthogonality in which two mor-
phisms f ∈ C[I,A] and g ∈ C[A,⊥] are considered orthogonal if and only if they compose
to form an arrow in the chosen set. This is called the orthogonality focused on E, and spawns
a focused glueing GEC whose values and covalues must be mutually orthogonal.

Definition 2.9. Given a ∗-autonomous category C and a set E ⊆ C[I,⊥], the category GEC

is defined as the smallest full subcategory of GC containing every object (A,U,X) such that

∀u ∈ U, x ∈ X, x ◦ u ∈ E.

Of course, the tensor unit I of GC is not contained in any of the orthogonally glued

categories for which the focus is a proper subset ofC[I,⊥]4, meaning that the ∗-autonomous
structure of GC is not preserved per se. However, each one of these subcategories has
another object within it which acts as legitimate unit for the tensor functor: the unit for
GEC is IE = (I, {1I},E).

With this fact taken into account, and the fact that the categories are closed under the
tensor product and negation functors, we know that all of these constructions preserve ∗-
autonomy (with respect to the new unit definitions). Thus, just like the original G-glueing,
the glueings generate models of MLL−.

2.5.2. Properties. The Hyland-Tan double glueing construction and its focused orthogonal-
ities are particularly well-behaved, and in fact possess some properties which are immedi-
ately relevant to the coming results.

4The categories GEC and GC are clearly the same when E = C[I,⊥]
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Given an arbitrary focused glueing E ⊆ C[I,⊥], the value and covalue sets of an object
are in fact precisely the homsets from IE and to ⊥ = I⊥.

Fact 2.10. [Ste13] For every object R ∈ Obj(GEC), RVal = GC[IE,R] and RCoVal = GC[R,⊥E],
where ⊥E = (IE)⊥.

We can also claim a large understanding of the MLL− transformations for these double-
glued categories. Since homsets in these categories are in some way ‘stripped’ versions of
those from their underlying categories, it would be reasonable to assume that an analogous
statement could be made about dinatural transformations. This is indeed correct, as can
be deduced from the below proposition.

Proposition 2.11. [Tan97, Ste13] Let τ : F −→ G be a dinatural transformation in GEC. Then
there is a dinatural transformation τ̃ : UF −→ UG in C which defines τ; that is, UτR = τ̃UR for
every R = (R1, . . . ,RN).

Proof. Theorem 1.3.2 of [Tan97] provides the result for E = C[I,⊥]. As remarked on
page 119 in [Ste13], this proof only requires intermediary objects which are found in all
categories of the given form, thus it extends to all subsets E.

The consequences of this proposition are marked. The transformations of feebly fully
complete compact closed categories with biproducts take the form of linear combinations of
fixed-point-free involutions [CHS01]. Therefore the same morphisms are used to described
the transformations in the categories created by applying the glueing construction to them.

Finally, given a compact closed category C with finite biproducts, which is assured
a morphism ι−1 = ρ⊥ ◦ v(λI) ∈ C[⊥, I] and a separate zero morphism 0⊥,I in the homset
C[⊥, I], we note that every focused glueing GE where {ι} ( E ⊆ C[I,⊥] stops this morphism
being found in GEC[⊥E, IE], but G{ι}C preserves this modelling of the mix rule.

Fact 2.12. For every compact closed category Cwith finite biproducts and a set E ⊆ C[I,⊥]
containing ι, the category GECmodels the mix rule if and only if E = {ι}. (See [Tan97])

For shorthand, we say G{ι}C = G1C. The category is the subject of Section 5.

3. Arrow Decomposition

Every finite-dimensional vector space over a field F can be given a finite basis, meaning
that all arrows in their category FDVecF can take the shape of a matrix, or in fact a tensor
if desired, over the underlying field. Although it is not possible to say that all arrows in
a given compact closed category with finite biproducts can be reduced to an array-based
form over a single input type, the multilinear representations still appear and can certainly

be of use. We introduce this generalisation of matrix representations of arrows5 in the
coming section, and show that MLL− transformations and the calculations required in
deducing sets of values and covalues in double-glued objects can take a simplified form
when using this notation.

Definition 3.1. An array with index set I over a set X is a function f : I −→ X. An array can

be considered to be N-dimensional if its index set takes the form
∏N

i=1 Ii for some I1, . . . , IN.

5A concept found in folklore, and briefly explained in [Hou06].
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Definition 3.2. Letting n1, . . . , nN ∈ N
+, an

∏N
k=1 nk-tensor t over a semiring S is an N-

dimensional array, each of whose components contain a value from S. The (i1, . . . , iN)th

entry is written ti1,··· ,iN .

Indices of tensors are allowed to be separated by commas and semicolons to demarcate
relevant groups of indices. Superscripts may also be used to facilitate writing, though once
a notation style is chosen for a specific tensor it must be adhered to. The number of indices
a tensor requires to be expressed (in this case N) is called its order. Often tensors are written
with general index variables to emphasise that they are indeed multidimensional arrays.
Furthermore, long sets of indices can be replaced by bold ‘superindices’. For example,
ti1 ,··· ,iM, j1,··· , jN can be rewritten tij for shorthand, where i = (i1, . . . , iM) and j = ( j1, . . . , jN).
Sometimes we overload the notation of the tensor so as to show the reader information
concerning relative positions of indices with respect to other tensors or a set position.

Calculations involving tensors over semirings are unsurprisingly done in an identical
manner to those involving tensors over fields in standard multilinear algebra. All the
differences which may occur concern how its entries sum and multiply together. The
standard algebraic manipulations are found below.

• (Addition) — Given two tensors t and u over the same index sets, their sum is clearly
found in the same semimodule.

(t + u)i1 ,··· ,iM = ti1 ,··· ,iM + ui1,··· ,iM .

• (Composition) — Let t and u be (M + N)- and (N + P)-order tensors respectively with
N index positions ranging over the same index sets in both arrays. The composition of
the two is given by an (M + P)-order tensor for which each component is found to be as
follows:

(tu)i1 ,··· ,iM;k1,··· ,kP
=
∑

j1 ,··· , jN

(

ti1 ,··· ,iM; j1,··· , jN · u j1,··· , jN ;k1,··· ,kP

)

.

• (Product) — The outer product of two tensors ti1,··· ,iM and u j1,··· , jN is given by an (M +N)-
tensor for which each entry is merely a product of entries from its factors.

(t ⊗ u)i1,··· ,iM; j1,··· , jN = ti1 ,··· ,iM · u j1,··· , jN .

Examples of the first three manipulation techniques from above are seen ubiquitously in
the forms of addition, multiplication and the trace operation of matrices. It should be noted
that, if desired, one can consider tensor composition as the equivalent of finding the outer
product of two tensors sharing indices and contracting the result.

There are five types of tensor which are seen continuously in various guises within this
paper. Their definitions are given below.

Definition 3.3.

(1) A zero tensor, written 0i for some indices i, is a tensor, all of whose entries contain the
scalar 0.

(2) Similarly, a one tensor, written 1i, is a tensor whose entries all contain the scalar 1.
(3) A Kronecker delta, written δ, is an (N ×N)-tensor for any N ∈N such that

δi j =

{

1 if i = j
0 otherwise

.
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It is the tensor representation of the identity matrix.

We also write δ
j1 ··· jN
i1 ··· iN

=
⊗N

k=1 δik jk as shorthand6.

(4) A (full) M-permutation over [n] is an nM-tensor pi1 ···iM such that for all k ∈ [M], and xl ∈ [n]
for each l , k, there exists an xk ∈ [n] so that pi1 ···iM ·

∏

l,k δilxl
= δikxk

. We use the notation
Perm(M, n) to denote the set of all M-permutations over [n]. Note that a 1-permutation
over [n] is simply a tensor of the form δix for some x ∈ [n].

Of particular use are cycle permutation tensors. We define cycle(L, n, r), with L, n, r ∈
N+, to be the nL-tensor with entries defined as follows:

cycle(L, n, r)i1···iL =

{

1 if
∑L

j=1 i j ≡ r mod n

0 otherwise
.

(5) Generalising the above, a partial M-permutation over [n] is an nM-tensor pi1 ···iM such that
for all k ∈ [M], and xl ∈ [n] for each l , k, there exists an xk ∈ [n] so that pi1 ···iM ·

∏

l,k δilxl

is equal to δikxk
or 0ik . We use the notation PPerm(M, n) to denote the set of all M-

permutations over [n].

Because of the number of indices which may be given to each tensor, the calculus of tensors
can become very cluttered. The use of summation symbols adds to the excessive number
of symbols in many expressions, and they can be thought of in many cases as unnecessary.
As such, at some points it is useful to use the Einstein summation convention: whenever an
expression containing tensors has two index positions involved within it which are summed
together over the same index j say, the summation symbol may be omitted without worry.
This means that a simple composition rule, for example, can be rewritten (tu)ik = tijujk.

3.1. Tensor Representation. Decomposition of arrows between objects in the form of ten-
sor products of direct sums is possible in a symmetric monoidal category with finite
biproducts, and can be a very useful tool. Suppose that C is such a category, and consider
the arbitrary arrow

f :
⊗N

l=1

⊕nl
jl=1 Al, jl

✲

⊗M
k=1

⊕mk
ik=1 Bk,ik .

Due to the preservation of products by the tensor product7, we know that the following set
of m1 arrows describe f .

{(

πi1 ⊗

M
⊗

k=2

1⊕mk
i=1 Bk,i

)

◦ f : i1 ∈ [m1]

}

We can follow the same procedure of decomposing f using the projections
1⊕m1

i=1 B1,i
⊗ · · · ⊗ πik ⊗ · · · ⊗ 1⊕mM

i=1 B1,i
for all k of the object. Furthermore, due to the bi-

functoriality of the tensor product, each of the projections is independent of the others.
The injections operate similarly; and as such, it is possible to separate f yet further and

6Note that these tensors are an example of where it is of use to overload the index notation as discussed on
page 11. It facilitates the understanding of which indices are connected by such a relation without having to
resort to a yet more cumbersome notation.

7Since there is a natural isomorphism 1C � (−)∗∗ in any compact closed category, the functor B ⊗ − : C ✲ C

in a compact closed category for any object B can be seen as both a left and right adjoint, and as such preserves
both products and coproducts [Mac97].
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describe it using a set of
∏M

k=1 mk ×
∏N

l=1 nl arrows { fi1 ,...,iM; j1,..., jN : ∀k, l ik ∈ [mk], jl ∈ [nl]},
where

fi1 ,...,iM; j1,..., jN =

M
⊗

k=1

πik ◦ f ◦

N
⊗

l=1

in jl .

This decomposition of f is known as a tensor representation. It is generally inconvenient
to write down the resultant tensor as a single entity due to the number of dimensions
required. This is, however, of little concern to us, because we are able to view the entries
of the tensor on a case-by-case basis.

The greatest implication this has is to the freedom of expression one has when decom-
posing arrows concerning the tensor product: given two arrows in the prescribed form
above, it is possible to gain a tensor representation of their tensor product. This comes
about almost trivially, with each entry in the new tensor being created by producing the
tensor product of one entry from each of the representations of the more primitive mor-

phisms. Given arbitrary arrows f ∈ C[A,B] and g ∈ C[C,D], with A =
⊗NA

a=1

⊕nA,a

ka=1 Aa, ja ,

B =
⊗NB

b=1

⊕nB,b

jb=1 Bl, jb , C =
⊗NC

c=1

⊕nC,c

kc=1 Cc,ic and D =
⊗ND

d=1

⊕nD,d

jd=1 Dd,id , we find that

( f ⊗ g)i1 ,··· ,iNC+ND
; j1,··· , jNA+NB

=

NC+ND
⊗

l=1

πil ◦ ( f ⊗ g) ◦

NA+NB
⊗

l=1

in jl

=

(

NC
⊗

l=1

πil ◦ f ◦

NA
⊗

l=1

in jl

)

⊗





NC+ND
⊗

l=NC+1

πil ◦ g ◦

NA+NB
⊗

l=NA+1

in jl





= fi1,··· ,iNC
; j1,··· , jNA

⊗ giNC+1,··· ,iNC+ND
; jNA+1,··· , jNA+NB

Rather unsurprisingly, addition and composition operate in an almost identical manner as
they do in the matrix algebra. Identity and zero morphisms between objects of the form
given above are represented by Kronecker deltas and zero tensors respectively. Letting

A =
⊗NA

l=1

⊕nA,l

kl=1 Al, jl , B =
⊗NB

l=1

⊕nB,l

jl=1 Bl,il , and f, g ∈ C[A,B],

(0A,B) j1 ,..., jNB
;k1 ,...,kNA

=

NB
⊗

l=1

π jl ◦ 0A,B ◦

NA
⊗

l=1

inkl

= 0⊗NA
l=1 Al,kl

,
⊗NB

l=1 Bl, jl

( f + g)i1,...,iNB
; j1,..., jNA

=

NB
⊗

l=1

πil ◦ ( f + g) ◦

NA
⊗

l=1

in jl

=

(

NB
⊗

l=1

πil ◦ f ◦

NA
⊗

l=1

in jl

)

+

(

NB
⊗

l=1

πil ◦ g ◦

NA
⊗

l=1

in jl

)

= fi1,...,iNB
; j1,..., jNA

+ gi1 ,...,iNB
; j1,..., jNA
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(1A)i1,...,iNA
; j1,..., jNA

=

NA
⊗

l=1

πil ◦ 1A ◦

NA
⊗

l=1

in jl

=

NA
⊗

l=1

πil ◦

NA
⊗

l=1

1⊕nA,l
k=1 Al,k

◦

NA
⊗

l=1

in jl

=

NA
⊗

l=1

(

πil ◦ 1⊕nA,l
k=1 Al,k

◦ in jl

)

=

NA
⊗

l=1

(

πil ◦

nA,l
∑

k=1

(ink ◦πk) ◦ in jl

)

=
∑

k1 ,...,kNA

NA
⊗

l=1

(πil ◦ inkl
◦πkl
◦ in jl)

= δ
j1 ··· jNA
i1 ··· iNA

=







1⊗NA
l Al,il

∀l ∈ [NA] , il = jl

0⊗NA
l Al, jl

,Al,il

otherwise

Then taking arbitrary C =
⊗NC

l=1

⊕nC,l

il=1 Bl,il and h : B ✲ C,

(h ◦ f )i1 ,...,iNC
;k1,...,kNA

= (h ◦ 1B ◦ f )i1 ,...,iNC
;k1,...,kNA

=

NC
⊗

l=1

πil ◦ h ◦
∑

j1 ,..., jNB

(

NB
⊗

l=1

in jl ◦

NB
⊗

l=1

π jl

)

◦ f ◦

NA
⊗

l=1

inkl

=
∑

j1,..., jNB

(

NC
⊗

l=1

πil ◦ h ◦

NB
⊗

l=1

in jl

)

◦

(

NB
⊗

l=1

π jl ◦ f ◦

NA
⊗

l=1

inkl

)

=
∑

j1,..., jNB

hi1 ,...,iNC
; j1,..., jNB

◦ f j1,..., jNB
;k1 ,...,kNA

There is a specific type of interaction composition and tensor multiplicaton which
ought to be noted, namely when a composition passing through an object A⊗B contains an
arrow of the form f ⊗ 1B or 1A ⊗ g for some arrows f , 1A or g , 1B. Consider the composi-

tion C ⊗ B
f⊗1B
✲ A ⊗ B

h
✲ D; the tensor representations of the composite morphisms are

written, naturally, as ( f ⊗1B) j1 ,··· , jNA
, j′1,··· , j

′
NB

;k1···kNC
,k′1,··· ,k

′
NB

and hi1 ,··· ,iND
; j1,··· , jNA

, j′1,··· , j
′
NB

. However,

( f ⊗ 1B)j,j′;k,k′ = fj;k ⊗ δ
k′

j′ , and the only effect the Kronecker delta on the end representation

of the composition is the change of index, which is superficial. In these types of situation,
we consider ourselves at liberty to think instead of the composition of the two tensors fj;k
and hi;j,j′ , summing over the indices of j only.
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The monoidality of the category C allows for scalar multiplication of arrows to be
modelled by the synonymous operation on tensors.

(s · f )i1 ,...,iNB
; j1,..., jNA

=

NB
⊗

l=1

πil ◦ ((λB ◦ (s ⊗ 1B) ◦ λ−1
B ) ◦ f ) ◦

NA
⊗

l=1

in jl

= ((λ⊗NB
l=1 Bl,il

◦ (s ⊗ 1⊗NB
l=1 Bl,il

) ◦ λ−1
⊗NB

l=1 Bl,il

))

(

NB
⊗

l=1

πil ◦ f ◦

NA
⊗

l=1

in jl

)

= s · fi1 ,...,iNB
; j1,..., jNA

When the source and target objects of an arrow are tensor products of direct sums
of the tensor unit I, the arrow’s tensor representation acts as a standard tensor over
C[I ⊗ · · · ⊗ I, I ⊗ · · · ⊗ I]. These homsets are trivially in bijective correspondence with
the set of scalars C[I, I], and so we can work purely with tensors over this semiring.

Of course, in a compact closed category with finite biproducts, we are not restricted
to building objects over the two functors − ⊗ − and − ⊕ −: the contravariant endofunctor
(−)∗ is also available. We now show how tensor representations can be given to morphisms
between objects built with this functor.

Consider a morphism f : A ✲ C ⊗ B∗, where A =
⊕a

k=1 Ak, B =
⊕b

j=1 B j, and

C =
⊕c

i=1 Ci. The extent to which this arrow can be decomposed using the tensor rep-
resentation system given above is less than one would hope. The negation of B means that
it is not possible to break it down without extending the representation. The parameterised
adjunction − ⊗ B ⊣ − ⊗ B∗ described in Section 2.4 makes this extension possible.

The isomorphism v associated with the adjunction relates f to an arrow
v−1

A,B,C( f ) : B ⊗ A ✲ C. This new arrow is certainly in exactly the shape seen of mor-
phisms at the beginning of this section; B is no longer shackled by the negation functor and
its projections may be used in a decomposition in the same way as A and C. The set of
arrows {v−1

A,B,C( f )i jk : i ∈ [c], j ∈ [b], k ∈ [a]}, where

v−1
A,B,C( f )i jk = πk ◦ v−1

A,B,C( f ) ◦ (ini ⊗ in j)

determines v−1( f ) uniquely; and since v is an isomorphism the arrows provide a unique
description of f as well.

Using the isomorphism once more, this time on every arrow in the above set, we are
able to understand f by viewing a set of morphisms that have a superficially identical form
to it: {vAi,B j,Ck

(v−1
A,B,C( f )i jk) : i ∈ [c], j ∈ [b], k ∈ [a]}. The parameterised adjunction offers a

simplification of the descriptions of each of these arrows.

vAi,B j,C j
(v−1

A,B,C( f )i jk) = vAi ,B j,C j
(πk ◦ v−1

A,B,C( f ) ◦ (ini ⊗ in j))

= (πi ⊗ (in j)
∗) ◦ f ◦ ini

The principle above, where the duals of injection arrows into B are used in place of
projections, is entirely generalisable to multiple instances of dual objects in a tensor product.
Furthermore, the inherent duality of compact closed categories allows morphisms from
tensor products with dualised elements to be decomposed by substituting injection arrows



16 A. SCHALK AND H. P. STEELE

for duals of projection arrows. Suppose that we have an arrow

g :
⊗NA

l=1(
⊕nA,l

kl=1 Al,kl
)φ(l) ✲

⊗NB

l=1(
⊕nB,l

il=1 Bl, jk )
ψ(l)

where the functionsφ : [NA] ✲ {ǫ, ∗} andψ : [NB] ✲ {ǫ, ∗} depict the polarity of a direct
sum in the tensor product with respect to the negation functor, ǫ denoting an empty
superscript once more. We define the tensor representation of such an arrow to be the set of

morphisms
(

gj;k

)

j∈
∏NB

l=1

[nB,l],k ∈
∏NA

l=1[nA,l], where

g j1,..., jNB
;k1,...,kNA

=

NB
⊗

l=1

νl, jl ◦ g ◦

NA
⊗

l=1

µl,kl
,

νl, jl =

{

π jl ψ(l) = ǫ
(in jl)

∗ ψ(l) = ∗
and µl,kl

=

{

inkl
φ(l) = ǫ

(πkl
)∗ φ(l) = ∗.

We can extend this using a simple induction so that the functions φ and ψ may adopt the

new range of the set of strings using only the letter ∗, F{∗} as we shall name it at this point8,
so that we can apply the duality functor as many times as wished to a direct sum. The
tensor representation of the arrow g remains the same, but the definitions of ν and µ are
generalised accordingly.

νl, jl =

{

(π jl )
ψ(l) ψ(l) ∈ F{∗∗}

(in jl)
ψ(l) ψ(l) < F{∗∗}

and µl,kl
=

{

inkl
φ(l) ∈ F{∗∗}

(πkl
)∗ φ(l) < F{∗∗}.

Of course, the negation of a number of positive and negative direct sums of objects
together in a tensor product is also possible, and is in fact necessary if theM functor is to be
defined. It would therefore be useful to produce tensor representations for arrows between
objects containing such components. The principle being used in the earlier instances of
negation may be translated directly to produce such entities. Given an arrow

f : Aα ✲ Dδ ⊗ (Bβ ⊗ Cγ)∗

where A =
⊕

l Al, B =
⊕

j B j, C =
⊕

k Ck and D =
⊕

i Di are direct sums of objects acted on

by the negation functor α, β, γ and δ times respectively. There is a bijective correspondence
v−1

Aα,Bβ⊗Cγ ,Dδ to C[Aα,Dδ ⊗ (Bβ ⊗ Cγ)∗] to C[Aα ⊗ (Bβ ⊗ Cγ),Dδ], and every morphism in this

target set can be decomposed and be represented by a tensor containing arrows in the form
shown below.

(v−1
Aα,Bβ⊗Cγ ,Dδ( f ))i;l, j,k = νi ◦ v−1

Aα,Bβ⊗Cγ ,Dδ( f ) ◦ (µl ⊗ (µ j ⊗ µk)).

Using the correspondence v once again, we see that each morphism in the aforementioned
tensor is related to an arrow which may be placed into a new representation: the relative
of the above arrow is

fi, j,k;l = v
Aα

l ,B
β
j⊗C

γ
k ,D

δ
i

((v−1
Aα ,Bβ⊗Cγ ,Dδ( f ))i;l, j,k)

= v
Aα

l ,B
β
j⊗C

γ
k ,D

δ
i

(νi ◦ v−1
Aα,Bβ⊗Cγ ,Dδ( f ) ◦ (µl ⊗ (µ j ⊗ µk)))

= (νi ⊗ (µ j ⊗ µk)∗) ◦ f ◦ µl

8It is more traditionally written with a Kleene star, but the authors believe the resulting expression {∗}∗ leads
to confusing overloading.
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The arrows of this form bundled into an appropriate set are defined to be the tensor
representation of the arrow, and it is once again clear that the concept is generalisable to
morphisms whose sources and targets may contain any number of tensor products affected
by the functor (−)∗. The self-duality of compact closed categories once more means that
a similar line of reasoning can be afforded to dealing with negation in the source of an
arrow by swapping the roles of injection and projection arrows. A logical extension to the
argument can be constructed to deal with tensor products with the duality functor applied
numerous times. Using the symmetry natural isomorphism σ sensibly it is possible to
express tensor representations for arrows between objects which are tensor products of
tensor products of direct sums of primitive objects under any number of instances of the
duality functor. Furthermore, due to induction, this style of reasoning is extendable to
any arrow between objects built using indecomposable objects and the duality and tensor
functors. We give new, recursive definitions for the arrow sets µ and ν. These are, however,
reliant on the concept of index sets in a category theoretical sense.

Definition 3.4. An index set of an instance of an object A in C, written ι(A), is defined
inductively as follows:

• If A =
⊕n

i=1 Ai for some instances of objects A1, . . . ,An we wish to be considered inde-
composable, then ι(A) = [n].
• If A = B∗ for some object B, then ι(A) = ι(B).

• If A =
⊗N

l=1 Al for some objects A1, . . . ,AN, then ι(A) =
∏N

l ι(Al).

Equivalently, the index set of an object A =
⊗N

l=1

⊕nl
i=1 Al,i for which we consider its

instances of Al,i indecomposable for each l and i is the set of N-tuples where for every

l ∈ [N], the lth component ranges over the number of objects in the lth direct sum.
We are now in a position to define µ and ν.

Definition 3.5. The injection and projection arrow functions of an object A built using the
tensor product and negation functors over direct sums of indecomposable objects in a
compact closed category C with finite biproducts, written µA and νA respectively, have
domain ι(A) and are defined recursively as follows:

• If A =
⊕n

i=1 Ai for indecomposable A1, . . . ,An, µA(i) = ini and νA(i) = πi.
• If A = B∗ for some B, then µA(i) = (νB(i))∗ and νA(i) = (µB(i))∗.

• If A =
⊗N

l=1 Al for some A1, . . . ,AN, then µA(i1, . . . , iN) =
⊗N

l=1 µAl
(il) and

νA(i1, . . . , iN) =
⊗N

l=1 νAl
(il), where each il ∈ ι(Al).

The definition above facilitates the description of the tensor representation of every arrow
built in the manner that has been discussed earlier.

Definition 3.6. A tensor representation of an arrow f : A −→ B, where A and B are objects
built using tensor products and the negation functor over direct sums of instances of objects
considered indecomposable, is defined as the set of morphisms { fi,j : i ∈ ι(B), j ∈ ι(A)}where

fi,j = νi ◦ f ◦ µj

Note how this definition of tensor representation is consistent with the earlier, more
rudimentary forms which do not consider the possibility of negation existing beyond the
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direct sums. The entries in these tensors are still merely composites containing arrows;
and addition of morphisms is a consequence of enrichment over CMon, so the connection
between tensor and arrow addition is maintained, including the zero morphisms. Similarly,
scalar multiplication is unaffected. The extended definition of the identity arrow of any
object A is created recursively from prior knowledge of the standard diagonal matrix
representation of the identity arrow for direct sums of objects and the preservation of
identity morphisms by functors, and takes the form

∑

I∈ι(A)(µA(I) ◦ νA(I)).

• If A =
⊕n

i=1 Ai for indecomposable objects A1, . . . ,An, then the representation of the
identity morphism 1A is

(1A)i, j =

n
∑

k=1

(ink ◦πk) =
∑

I∈ι(A)

(µA(I) ◦ νA(I)).

• If A = B∗ for some object B, then

1A = 1B∗ = (1B)∗ =





∑

i∈ι(B)

(µB(i) ◦ νB(i))





∗

=
∑

i∈ι(A)

(µB(i) ◦ νB(i))∗

=
∑

i∈ι(A)

((νB(i))∗ ◦ (µB(i))∗) =
∑

i∈ι(A)

(µA(i) ◦ νA(i)).

• If A =
⊗N

l=1 Al for some objects A1, . . . ,AN, then

1A = 1⊗N
l=1 A1

=

N
⊗

l=1

1Al
=

N
⊗

l=1





∑

il∈ιAl

(µAl
(il) ◦ νAl

(il))





=
∑

(i1 ,··· ,iN)∈
∏N

l=1 ι(Al)

(

N
⊗

l=1

µAl
(il) ◦

N
⊗

l=1

νAl
(Il)

)

=
∑

i∈ι(A)

(µA(i) ◦ νA(i)).

Because of the lack of change required in the shape of this arrow from earlier versions, the
manner in which composition operates is also preserved.

Unlike when we consider only the simpler form of arrow being placed into a multilinear
representation, which lacks any use of the duality functor, it cannot be taken for granted
that the tensor describing an arrow between two objects built over direct sums of I, and
tensor and negation functors can be viewed as being a standard tensor over C[I, I]. This is
because the entries take the form of arrows between tensor products over tensor products of
both I and I∗. Fortunately, λI∗ ◦ vI,I,I(ρI) : I ✲ I∗ is an isomorphism; and we can compose
suitable tensor products built from it, its inverse, dualities of both these arrows and the
identity morphism 1I to “remove” the dual instantiations of the unit, and so therefore allow
us to view the tensors as being over C[I ⊗ · · · ⊗ I, I ⊗ · · · ⊗ I] � C[I, I].
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3.2. Describing Transformations with Tensors. The representations described in this sec-
tion offer a simplification to the form of morphisms between objects built from the three
functors expected to exist in a compact closed category with finite biproducts. It there-
fore follows naturally that certain arrows that are part of an MLL− transformation can
be viewed as tensors. In this section we consider an object F(A,A) in a compact closed
category C satisfying feeble full completeness for an arbitrary MLL− functor F where
A = (n1I, . . . , nNI), where nI =

⊕n
i=1 I, and give the arrows into the object which are

constituents of MLL− transformations.
It is known that every MLL− transformation in a compact closed category with finite

biproducts satisfying feeble full completeness is a linear combination of fixed-point-free
involutions [CHS01], with an involution being the equivalent of an appropriate number
of instances of the unit dinatural transformation η joined by a tensor product being post-

composed with a series of symmetry natural isomorphisms.9 Each pair of objects created
together by an instance of η models a pair of literals joined by an axiom link in a cut-free
proof net. As such, it makes sense to initially provide the tensor representation of ηnI for
arbitrary n ∈ N. The unit transformation is derived from the bijective correspondence
connected to C being applied to the identity arrows in C: for every A ∈ C, ηA = vI,A,A(λA);
and because of this the arrow ηnI : I ✲ nI ⊗ (nI)∗ is easily shown to have an n×n identity
matrix as its tensor representation.

(ηnI)i j = νi j ◦ ηnI ◦ µ∗

= λI ◦ (1I ⊗ χ
−1) ◦ (πi ⊗ (in j)

∗) ◦ v(λnI) ◦ 1I

= λI ◦ (1I ⊗ χ
−1) ◦ v(δi j)

=

{

χ−1 ◦ (λI ◦ v(λI)) = χ
−1 ◦ χ = 1 i = j

χ−1 ◦ (λI ◦ v(0I⊗I,I)) = χ
−1 ◦ 0I,I∗ = 0 i , j

We therefore are at liberty to express an axiom link as a Kronecker delta tensor, with one
index referring to the object modelling the positive literal and the other the negative literal.
This concept may be extended now by tensor multiplication to MLL− functors with more
than one pair of literals to being joined. Letting α be modelled by nI, the arrow modelling
the proof structure

((α ⊗ α⊥) ⊗ α ) M (α⊥ ⊗ α ) M ((α⊥M α) ⊗ α⊥)

is represented by the tensor δ
j1 ··· jM
i1 ··· iM

, where the indices il and jl are connected to the objects

representing the lth positive and negative literals respectively. In a more general form, if
the literals which are connected via axiom links are less well-ordered so that the lth positive

literal is connected to the σ(l)th negative literal for some permutation σ ∈ SM, then the

modelling tensor is δ
σ( j1) ··· σ( jM)
i1 ··· iM

.

9Associativity natural isomorphisms are suppressed in this explanation, but this can be perceived as self-
evident.
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Example 3.7. The tensor δ
j4 j2 j1 j3
i1 i2 i3 i4

represents the proof structure below.

((α ⊗ α⊥) ⊗ α ) M (α⊥ ⊗ α ) M ((α⊥M α) ⊗ α⊥)

As discussed in Section 2.4, MLL− functors may model sequents which contain more
than one instance of a single literal; and such entities can have more than one set of axiom
links attached to them. Furthermore, regardless of the number of repeated literals, scalar
multiplications on arrows, and so natural and dinatural transformations, are always pos-
sible. This gives rise to the possibility of transformations describing linear combinations
of sets of axiom links on a single sequent. Such linear combinations are modelled by
MLL− transformations which are linear combinations of transformations representing sin-
gle sets of axiom links, whose constituent arrows are linear combinations as well. It follows,
therefore, that the tensor representation of an arrow τA for some MLL− transformation τ
where A = (n1I, . . . , nNI) is in the following form:

τ
j1 ··· jM
i1 ··· iM

=
∑

σ∈SM

sσ · δ
σ( j1) ··· σ( jM)
i1 ··· iM

where sσ ∈ C[I, I] for every σ ∈ SM.

Example 3.8. The tensor τ
j1 j2 j3 j4
i1 i2 i3 i4

= δ
j1 j2 j3 j4
i1 i2 i3 i4

− δ
j4 j2 j1 j3
i1 i2 i3 i4

represents the linear combination of

axiom links on the MLL− formula given below.

((α ⊗ α⊥) ⊗ α ) M (α⊥ ⊗ α ) M ((α⊥M α) ⊗ α⊥)

×

×

−1

1

Of course, not every proof structure (and none which satisfies the correctness criteria)
is built over exactly one formula only containing tensors. It is therefore important to
understand the effects of replacing some instances of the functor ⊗with those ofM. Tensor
representations of arrows between arbitrary objects are shown to exist in Section 3.1; this
immediately implies that they exist for ones containing the par functor as well. After all, it
is the de Morgan dual of the tensor product using (−)∗ as negation.

We can see how involutions are viewed tensorially when certain tensor products are
changed by considering Mix : − ⊗ − ✲ −M− described in Section 2.2 and its represen-
tation. In compact closed categories, the ‘Mix’ transformation is not just natural but isomor-
phic, and is in fact built from the same correspondence v : C[−A⊗−B,−C] � C[−A,−C⊗(−B)∗]:

MixA,B = vA⊗B,A∗⊗B∗,I(λI ◦ (v−1(λ−1
B∗ ) ⊗ v−1(λ−1

A∗ )) ◦ σ̃),

where σ̃ is the composition of σ natural isomorphisms such that

σ̃A,B,C,D : A ⊗ B ⊗ C ⊗D ✲ D ⊗ B ⊗ C ⊗ A.

Via an inductive argument on the size of A and B, we find that the representation of MixA,B

reduces to an identity , as long as both A and B are unit-generated. The natural consequence
of this is that one need not even think of the multiplicative functor being used once the
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tensor calculus is employed: we differentiate between arrows with the same tensors purely
by looking at their signatures.

We can take this knowledge and provide an tensorial method to look at the the weak-
ening natural transformations. Consider wLL : −1 ⊗ (−2 M −3) −→ (−1 ⊗ −2) M −3. If the
three inputs to the natural transformation are unit-generated, then we know from above
that the instantiations of the −M − functor may be viewed in exactly the same manner as
the usages of the−⊗− functor. It becomes obvious that, just like the MLL− transformations
above, wLL is perceived as a tensor in the same way as the associativity isomorphism. That
is, letting Ik and Jk be the superindices denoting the kth entries of the source and target func-

tors respectively, we find that (wLL)I1I2I3 J1 J2 J3 = δ
J1 J2 J3
I1 I2 I3

. The other weakening transformations
are defined similarly.

3.3. Describing Double-Glued Objects with Tensors. The sets of values and covalues of
an object R in GC contain morphisms from I and to I∗ respectively. As such, if UR is built
solely from I, (−)∗ and −⊗− in the underlying category, then the elements of RVal and RCoVal

can be represented by tensors over the semiring of scalars of C.
Given R, S ∈ GC, E ⊆ C[I, I∗], we provide the shape of the values and covalues created

from the ∗-autonomous structure. One can see particularly how the formulation of these
sets is greatly simplified for the negation and tensor product.

• I =
(

I, {1I}, λI∗ ◦ vI,I,I(ρI) ◦ E
)

• R⊥Val = RCoVal; R⊥CoVal = RVal.

• (R ⊗ S)Val =
{

risj : ri ∈ RVal, sj ∈ SVal

}

• (R ⊗ S)CoVal =
{

zij : ∀ri ∈ RVal, zijri ∈ SCoVal, ∀sj ∈ SVal, zijsj ∈ RCoVal

}

4. MLL− Full Completeness for GC

For the purposes of this section, we let C be an arbitrary compact closed category with
biproducts satisfying feeble full completeness (Definition 2.7). Feeble full completeness al-
lows us to assume that every MLL− transformation (Section 2.2) in this category is described
by a linear combination of fixed-point-free involutions, each involution representing an ax-
iom link connecting the two literals being modelled. It is shown in [Tan97, HS03] that
GC must be ∗-autonomous, and so it is already known that all dinatural transformations
modelling correct MLL− proof structures are found in the glued category. Fact 2.11 tells
us that the dinatural transformations in the glued category are also described by linear
combinations of fixed-point-free involutions. What still remains to be shown, however, is
that the double glueing construction not only preserves the feeble full completeness of C,
but removes enough arrows to ensure that the only linear combinations of proof structures
which are still modelled are not linear combinations at all, but denotations of single proof
nets.

With such strong constraints on the arrows within transformations already placed, the
strategy to do this becomes in essence remarkably simple. For an MLL− transformation
τ : KI −→ UF in C to be found in GC, it must be the case that τUR is found as an arrow
from I to F(R,R) for every R ∈ (GC)N, i.e. the set of values for the GC-object F(R,R).
Alternatively, it may be said that τ does not translate into GC if there is a tuple of GC-
objects R where τUR does not belong to F(R,R)Val. We provide tuples which expose how
some arrows describing incorrect proof structures and impure linear combinations do not



22 A. SCHALK AND H. P. STEELE

find themselves in all the sets of values needed to ensure they remain transformations in
GC.

Every compact closed category with finite biproducts has a full subcategory closed
under all three of the characteristic functors which is generated solely by its tensor unit I.
By choosing ‘test objects’ for the tuples from this subcategory, we ensure the proof is as
general as possible. Furthermore, if the tuple R consists of test objects whose underlying
C-objects are of the form nI for some n ∈ N+, the shape of the object F(R,R) must be akin
to those discussed in Section 3.1, and tensor representations of arrows may be considered
instead, simplifying the process noticeably.

The structure of the coming proof can be viewed as follows:

(§4.1-4.5): We first prove that the only MDNF transformations in GC model correct proof
nets, a property which we call MDNF Full Completeness.
(§ 4.1) We introduce the families of test objects {An : n ∈ N} and {Cn : n ∈ N},

and calculate the sets of values for the objects given by MDNF functors when
instantiated using a chosen object from either one of these categories. These
value sets are dependent on the families of full and partial permutations given
in Definition 3.3.

(§ 4.2) It is shown that GC only contains MDNF transformations modelling linear com-
binations of proof structures whose scalar multiples sum to 1 (Proposition 4.2).
In particular, MDNF transformations containing only zero morphisms (zero trans-
formations) are not found in the glued category.

(§ 4.3) A proof that every MDNF transformation in GCmodels linear combinations of
acyclic proof structures is given.
• Consider a transformation τ : KI

✲ UF inCmodelling a linear combination
containing a cyclic proof structure.
• Use Algorithm 4.4 to produce partial permutations for all the blocks of a given

cyclic structure.
• Proposition 4.9, together with technical lemmas 4.6 and 4.8, are used to show

that the generated partial permutations can be used to prove that he tensor
representation (Section 3.2) of the transformation instantiated with a single
object nI for large enough n cannot be found in the instantiation of F where
all arguments are An. This disproves the possible existence of the equivalent
transformation in GC.

(§ 4.4) Following a similar strategy to the above, we deduce that every MDNF trans-
formation in GC models linear combinations of correct proof structures (i.e.
connectedness is proved).
• We consider a transformation τ : KI

✲ UF in C modelling a linear combi-
nation of acyclic, disconnected proof structures, noting all the structures must
be disconnected (Lemma 4.10).
• We create appropriate full permutations for all blocks except one using Algo-

rithm 4.11 and Lemma 4.13.
• Proposition 4.14 explains how these permutations when composed with a

tensor representation of appropriate dimensions of the linear combination of
disconnected proof structures produces a zero tensor. This proves that the
representation could not exist in the instantiation of F where all arguments are
Cn, meaning that the transformation cannot exist in the double-glued category.

(§ 4.5) It is found that only singular, unique MDNF proof nets can be modelled in GC.
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• The method is nearly identical to those seen above, considering a transforma-
tion in C to F modelling a true linear combination of proof nets (that is, one
containing at least two different proof nets whose scalars are non-zero).
• Algorithm 4.15 generates partial permutations for all except one block contain-

ing exactly one literal (which is a leaf in each MDNF proof net).
• Proposition 4.18, which lightly makes use of the full form of Proposition 4.2,

shows that the tensor representation of this linear combination cannot be found
in the set of values of the functor when instantiated using an appropriate An

once again, and so MDNF full completeness holds.
(§ 4.6): Finally, we show that the full completeness of MDNF transformations extends to

that for all MLL− transformations.
• Algorithms 4.21 and 4.22 take advantage of the natural isomorphisms and weak

distributivity natural transformations in ∗-autonomous categories to create natural
transformations which compose with general MLL− transformations to give ones for
MDNF functors. These transformations are used in Theorem 4.24 that MDNF full
completeness implies MLL− full completeness, thus giving the desired result.

It should be noted that the lemmata used in this full completeness proof find themselves
in an unusual order. In previous MLL− full completeness results, particularly those re-
quiring glueing constructions [Loa94b, Tan97, Hag00], it is generally proved first that only
MLL− proof structures are modelled in the category, and their correctness is shown af-
terwards. In the coming proof we do the exact reverse. The existence of cyclic proof
structures in modelled linear combinations is disproved, and disconnectedness of mod-
elled proof structures in the glued category is shown to be unallowed. Only then do we
prove that ‘impure’ linear combinations and scalar multiples of proof nets are not repre-
sented by transformations in GC. Without assuming acyclicity the most natural approach
to show the ‘purity’ (or ‘uniqueness’ as we refer to it from now on) of the allowed linear
combinations required; the results of following this train of thought is seen in Section 5.

Most parts of the coming proof method require the use of an algorithm to produce a
number of permutation tensors, and these are given in each of the corresponding subsec-
tions. The intuition behind how and why the permutations are of use are given alongside
these algorithms before providing each formal, generalised proof.

4.1. Test Objects and Permutations in MDNF Functors. It turns out that only two funda-
mental types of test object are required for full completeness to be proved. We define them
both for each n ∈N+ as follows:

• An := (nI, {inx ∈ C[I, nI] : x ∈ [n]} ∪ {0I,nI}, {πx ∈ C[nI, I] : x ∈ [n]} ∪ {0nI,I})
• Cn := (nI, {inx ∈ C[I, nI] : x ∈ [n]}, {πx ∈ C[nI, I] : x ∈ [n]})

As discussed in Section 3.3, we can represent these objects using sets of tensors instead
of collections of arrows. Their new form is given below.

• An := (nI, {δix : x ∈ [n]} ∪ {0i}, {δix : x ∈ [n]} ∪ {0i})
• Cn := (nI, {δix : x ∈ [n]}, {δix : x ∈ [n]})

It is clear, particularly from the tensor representations, that An and Cn are self-dual —
that is, An � A⊥n and Cn � C⊥n — for all positive natural numbers n. As a consequence
the sets of tensor representations of values and covalues of the objects F(R,R) and F′(R,R)
are the same if F′ is the MLL− functor representing the same sequent as F, only with all
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instances of negative literals converted to positive instances, and R is filled only with objects
such as An and Cn. Because of this, in these situations we are at liberty to pretend that all
instances of literals are positive in the formulae when viewing arrows solely through their
multilinear arrays.

Tensor powers of these objects (and therefore tensor products only containing positive
and negative instances of them) reproduce the sets of higher-order permutations, both
full and partial as defined in Definition 3.3. This can be demonstrated using a standard

inductive argument. We use the notation X⊗N for the Nth tensor power of an object X.

Lemma 4.1. For each N ∈ N+, C⊗N
n =

(

(nI)⊗N , {δx1 ··· xN

i1 ··· iN
: (x1, . . . , xN) ∈ [n]N},Perm(N, n)

)

.

Similarly, A⊗N
n =

(

(nI)⊗N , {δx1 ··· xN

i1 ··· iN
: (x1, . . . , xN) ∈ [n]N} ∪ {0i1 ···iN },PPerm(N, n)

)

.

Proof. The claim is trivially true for N = 1 in both cases, and it is also clear that
∣

∣A⊗N
n

∣

∣ = |An|
⊗N = (nI)⊗N = |Cn|

⊗N =
∣

∣C⊗N
n

∣

∣ .

To prove that the values and covalues are as desired for any positive N, we assume it is
true for a natural number M and show that it remains true for M + 1. Section 3.3 contains
the standard calculation rules that are used in this proof. Starting with the values of the
tensor power, we find

(A⊗M+1
n )Val =

(

A⊗M
n ⊗ An

)

Val

=
{

ui1···iM · viM+1
: ui1···iM ∈ (A⊗M

n )Val, viM+1
∈ (An)Val

}

= {δx1 ··· xM

i1 ··· iM
· δiM+1xM+1

: (x1, . . . , xM) ∈ [n]M, xM+1 ∈ [n]}

∪{δx1 ··· xM

i1 ··· iM
· 0iM+1

: (x1, . . . , xM) ∈ [n]M}

∪{0i1 ···iM · δiM+1xM+1
: xM+1 ∈ [n]} ∪ {0i1 ···iM · 0iM+1

}

= {δx1 ··· xM+1
i1 ··· iM+1

: (x1, . . . , xM+1) ∈ [n]M+1} ∪ {0i1 ···iM+1
}.

Finally, the covalues are evaluated to be as required.

(A⊗M+1
n )CoVal =

(

A⊗M
n ⊗ An

)

CoVal

=
{

zi1 ···iM+1
: ∀ui1···iM ∈ (A⊗M

n )Val, zi1 ···iMiM+1
· ui1···iM ∈ (An)CoVal,

∀ viM+1
∈ (An)Val, zi1 ···iMiM+1

· viM+1
∈ (A⊗M

n )CoVal

}

=
{

zi1 ···iM+1
: ∃y ∈ [n], zi1 ···iM+1

· 0i1 ···iM ∈ {δiM+1 y, 0iM+1
},

∀x ∈ [n]M,∃y ∈ [n], zi1···iM+1
· δx1 ··· xM

i1 ··· iM
∈ {δiM+1 y, 0iM+1

},

∃y ∈ [n]M, zi1 ···iM+1
· 0iM+1

∈ {δ
y1 ··· yM

i1 ··· iM
, 0i1···iM},

∀xM+1 ∈ [n],∃y ∈ [n]M, zi1···iM+1
· δiM+1xM+1

∈ PPerm(M, n)
}

=







zi1···iM+1
: ∀M+1

j=1 ∃y ∈ [n], zi1 ···iM+1
·
∏

k, j

δikxk
= {δi j y, 0i j

}







= PPerm(M + 1, n)

The inductive evaluations of the values and covalues for C⊗M+1
n are simpler but essen-

tially identical.



CONSTRUCTING FULLY COMPLETE MODELS OF MULTIPLICATIVE LINEAR LOGIC 25

If a functor F is in multiplicative disjunctive normal form, then the object F(R,R) takes
the form

M
M
m=1(

⊗Lm

l=1Rφ(m,l))

for some M and L1, . . . , LM, where R = (R, . . . ,R) for some object R = (nI,U,X), and

φ :
⋃M

m=1{(m, l) : l ∈ [Lm]} −→ {0, 1} indicates the number of times the negation functor
is applied to one of the instances of the object R. If R is self-dual like each all objects of
the form An and Cn, and we continue to use tensor representations, then the function φ
becomes irrelevant and may be ignored to all intents and purposes. The sets of values
and covalues in tensor representation form of the object F(R,R) are then the same as those

of the object MM
m=1R⊗Lm . Knowing the values and covalues of the tensor powers of the

objects An and Cn for each n allows us to calculate F(R,R)Val and F(R,R)CoVal concretely
for R = An = (An, . . . ,An) or Cn = (Cn, . . . ,Cn). As in the previous chapter, to aid clarity of
arguments, the names of the indices used in these sets are based upon the polarity of the
literal to which they are tied: ‘i’-indices represent positive literals, and ‘ j’-indices negative
ones. In a block m, we say that there are Pm positive and Nm negative literals; and in total
there are Lm = Pm +Nm literals.

F(An,An)Val =

{

z
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM)
: ∀k ∈ [M],∀m,kam ∈ PPerm(Lm, n),

∃(x1, . . . , xPk
, y1, . . . , yNk

) ∈ [n]Lk

z
j
i ·
∏

m,k(am)
j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
= δ

x1 ··· yNk
i(k,1) ··· j(k,Nk)

or 0i(k,1) ··· j(k,Nk)

}

F(An,An)CoVal =

{

M
∏

m=1

(am)
j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
: am ∈ PPerm(Lm, n)

}

F(Cn,Cn)Val =

{

z
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM)
: ∀k ∈ [M],∀m,kcm ∈ Perm(Lm, n),

∃(x1, . . . , xPk
, y1, . . . , yNk

) ∈ [n]Lk

z
j
i ·
∏

m,k(cm)
j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
= δ

x1 ··· yNk
i(k,1) ··· j(k,Nk)

}

F(Cn,Cn)CoVal =

{

M
∏

m=1

(cm)
j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm)
: cm ∈ Perm(Lm, n)

}

The derivation of these sets follows from a simple induction on the number of blocks of
tensor powers which exist in an MDNF formula, using the same principles as demonstrated
in Lemma 4.1 and Section 3.3.

If an MDNF transformation τ in C representing a linear combination of sets of axiom
links over an MDNF sequent modelled by a functor F is to exist in the glued category, then
τR must belong to both F(An,An) and F(Cn,Cn) when R = (nI, . . . , nI) ∈ Obj(C)N. The rest
of this section is dedicated to showing how we can always find permutations (either full
or partial) that expose the inability of the aforementioned arrow to belong to at least one
of these sets if the transformation models an unwanted axiom link combination.
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4.2. Zero Transformations. A zero transformation is an MLL− transformation found in
every compact closed category with finite biproducts whose constituent arrows are all zero
morphisms. They could be viewed from a certain perspective as the representation of
the statement of a sequent being provable with no evidence, even if the sequent is in fact
unprovable by standard linear logic reasoning. There is no place for such transformations
in fully complete models of MLL−, and so it is fortunate that their absence from the category
GC can be deduced with minimal effort.

It is actually worthwhile proving a stronger result than merely the zero transformations
being excluded from the glued category. We show that a linear combination of proof
structures cannot possibly be modelled by an MLL− transformation in GC unless the sum
of the scalars given to each of the proof structures totals exactly 1. Although this is not a
particularly strong result—in particular in categories such as GRel, where the result is in
fact equivalent to stating that zero transformations are forbidden—it is necessary for the
final full completeness proof to be finished. The test object which provides the clearest
proof of the desired result is C1 = (I, {1}, {1}). The object is in fact the tensor unit I1 of the
sub-∗-autonomous category G1C defined in Section 2.5.1, and the properties its position as
a unit of a model of MLL−+Mix bestows upon it are pivotal in the lemma below.

Proposition 4.2. Every MLL− transformation in GC models a linear combination of proof struc-
tures where the scalars applied to the constituent linkings sum to 1.

Proof. Using induction, we observe that, for every MLL− functor F, the arrows in the values
and covalues of F(C1,C1) have the tensor representation 1.

• The base case is trivially true: C1 = C1, and (C1)Val = {1} = (C1)CoVal.
• R⊥ = ((UR)∗,RCoVal,RVal) = (R∗, {1}, {1}).
• R ⊗ S = (U(R ⊗ S),RVal ⊗ SVal, {z : 1 · z ∈ {1}, z · 1 ∈ {1}}) = (U(R ⊗ S), {1}, {1}).
• RM S = (R⊥ ⊗ S⊥)⊥, and so this step may be deduced from the previous two.

A linear combination of proof structures is modelled by a tensor
∑

β sβ · δ
jβ(1,1) ··· jβ(M,PM )

i(1,1) ··· i(M,PM )
,

summing over bijections β from the set of indices for positive indices to the set of indices
for negative ones, with sβ ∈ C[I, I] for all β, when the underlying C-objects of the inputs
to F are of the form nI for some n ∈ N+. When n = 1, as is the case when C1 is the only
GC-object being used in F, the deltas become trivial (all the indices must be given the value
1), meaning that the tensor becomes

∑

β sβ; that is, the proof structures are modelled by the

sum of the scalars associated with the proof structures.
The only scalar found in F(C1,C1) is 1 regardless of the form of F, meaning morphisms

for any sum of scalars not equalling 1 do not lift to the homset GC[I, F(C1,C1)]. As
such, because not all the arrows required to form them in the glued category can be seen,
transformations describing linear combinations of proof structures whose scalars do not
add up to 1 in their semiring cannot translate into GC either.

Corollary 4.3. No zero transformation 0KI,F : KI −→ F in C exists in the category GC.

4.3. Acyclicity. It is first shown that each proof structure that is part of a linear combination
being modelled in GC satisfies the acyclicity criterion of Danos and Regnier [DR89]. The
concept behind how this is done can be understood by considering a few simple examples.
The most basic example of a cyclic proof structure involves a single axiom link:
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L ⊗ L⊥

Modelling L with An for some n > 1, the values of the resultant object are square (n×n)-
matrices with at most one entry being non-zero, and if such an entry exists it must be the
number 1. However, the tensor representation of the proof structure desired is δi j, which
for this representation of L has n non-zero entries. There are too many entries containing
non-zero positions. This fault still remains if we consider scalar multiples of the proof

structure.10

The same problem occurs with larger cycles containing more than one axiom link and
more than one block.

(L ⊗ L⊥)M (L ⊗ L⊥)M (L ⊗ L⊥)

The proof structure above is described by δ
j3 j1 j2
i1 i2 i3

(ik and jk relating to the positive and

negative literals in the kth block as is the norm). One of the criteria a tensor z
j1 j2 j3
i1 i2 i3

must satisfy
if [[L]] = An for large enough n in order for it to belong to the values of the corresponding
object is for every pair of partial (2-)permutations over [n], ai1 j1 and bi2 j2 say, to create an
(n × n)-matrix with at most one non-zero entry when composed with it. If we say that
ai1 j1 = δ

1 2
i1 j1
+ δ3 4

i1 j1
and bi2 j2 = δ

2 5
i2 j2
+ δ4 6

i2 j2
— which are indeed partial permutations — we find

ai1 j1 · bi2 j2 · δ
j3 j1 j2
i1 i2 i3

= (δ1 2
i1 j1
+ δ3 4

i1 j1
) · (δ2 5

i2 j2
+ δ4 6

i2 j2
) · δ

j3 j1 j2
i1 i2 i3

= (δ1 2
i1 j1
· δ2 5

i2 j2
· δ

j3 j1 j2
i1 i2 i3

) + (δ1 2
i1 j1
· δ4 6

i2 j2
· δ

j3 j1 j2
i1 i2 i3

)

+ (δ3 4
i1 j1
· δ2 5

i2 j2
· δ

j3 j1 j2
i1 i2 i3

) + (δ3 4
i1 j1
· δ4 6

i2 j2
· δ

j3 j1 j2
i1 i2 i3

)

= δ
j325
1 2i3
+ δ

j326
1 4i3
+ δ

j345
3 2i3
+ δ

j346
3 4i3
= δ5 1

i3 j3
+ δ6 3

i3 j3

The resulting matrix clearly has two non-zero entries: when i3 = 5 and j3 = 1; and when
i3 = 6 and j3 = 3. As such, this particular cyclic structure is shown to be represented neither
in the set of values of (An ⊗A⊥n )M (An ⊗A⊥n )M (An ⊗A⊥n ), nor the MLL− transformations of
GC.

The reason why this argument is possible is based on the fact that every block involved
in a cycle has two literals incident to axiom links in the cycle. The two literals in the first
block may be given tensors containing two non-zero positions which compose with the
proof structure tensor because they are in the same block, and (An ⊗ A⊥n )CoVal contains all
partial permutations; the same is true of those in the second block. If they were not, as
would be the situation in the proof structure below, only one non-zero entry would be able
to be found: tensors in (An MA⊥n )CoVal only have at most one value of 1, with the rest being
zeroes.

10Multiplying the structure by zero naturally removes the problem. However, this produces the zero
morphism; the existence of a zero transformation has already been contradicted in Proposition 4.2.
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L M L⊥ M (L ⊗ L⊥)M (L ⊗ L⊥)

The objective of the coming proof is to generate partial permutations with two non-zero
positions as above for all bar one of the blocks connected to the axiom links in a chosen
cycle; and these tensors should compose with the Kronecker delta tensor representing an
incorrect proof structure in a linear combination being considered to create a tensor with
more than one entry not equalling zero. Of course, the scenarios offered so far have been
curtailed in two ways: all of their axiom links are involved in the cycle (and there is only
one cycle), and linear combinations of two or more distinct proof structures are absent. The
algorithm below deals with both of these problems, and this is discussed in more detail
after its description.

Algorithm 4.4. Input: A cyclic MDNF proof structure with linking λ containing M blocks,

the mth of which containing Lm literals, and one of its minimal cycles λ̂.
Output: A number n ∈ N+; tensors a1, . . . , aM such that (am)i1···iLm

∈ PPerm(Lm, n) for each
m.

(1) Let i = 0, and note that, at this point, none of the links in λ has been dealt with.

(2) Find a link l ∈ λ\λ̂ which has not been dealt with yet.
(a) If one should exist, then assign the number i + 1 to both literals incident to l.

Increment i, and go to Step 2.
(b) If one does not exist, then move to Step 3.

(3) Find a link l ∈ λ̂ which has not been dealt with yet.
(a) If one should exist, then assign both the numbers i + 1 and i + 2 to both literals

incident to l. Increase the value of i by 2, and restart Step 3.
(b) If one does not exist, then move to Step 4.

(4) For each tensor product of literals which does not contain a literal incident to a link

within λ̂, place the values assigned to each literal into a tuple in the same order as their
literals appear in the subformula. This tuple ‘belongs’ to that subformula.

(5) For each tensor product of literals which does contain a literal incident to at least one

link within λ̂, create two tuples as follows:
(a) Place the lowest values assigned to each literal into a tuple in the same order as

their literals appear in the subformula.
(b) Place the highest values assigned to each literal into a tuple in the same order as

their literals appear in the subformula.11

(6) Set n = i; and for each m ∈ [M], define an element (am)i1···iLm
of PPerm(Lm, n) as follows:

(am)i1 ···iLm
=

{

1 if (i1, . . . , iLm) is a tuple for block m
0 otherwise.

The tensors created in this algorithm are indeed always partial permutations. The tensors

associated with blocks which are not connected to the cycle λ̂ only ever contain one non-
zero entry, and that entry is 1. In this type of situation it is abundantly clear that there are
only 1s and 0s as entries, and there cannot be two 1s in the same column. For those blocks

11If a literal has been assigned only one number, then this number is indeed considered both the highest
and lowest value.
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connected to the cycle, there are two 1s in their tensors, but since the two tuples which
define their positions in the tensor differ in more than one component, they cannot exist in
the same column, and so they can exist together in a partial permutation. An example of
how the algorithm functions with a typical input is given below.

Example 4.5. Consider the sum of the two linkings λ1 and λ2 seen in the following diagram:

L M L⊥ M (L ⊗ L⊥)M (L ⊗ L⊥ ⊗ L) M L⊥
λ2

λ1

The tensor representation of this linear combination of axiom links is δ
j(2,1) j(4,1) j(3,1) j(5,1)

i(1,1) i(3,1) i(4,1) i(4,2)
+δ

j(4,1) j(2,1) j(3,1) j(5,1)

i(1,1) i(3,1) i(4,1) i(4,2)
.

We apply Algorithm 4.4, choosing λ1 to be λ, and the subset of axiom links drawn below to be λ̂

(with representation δ
j(4,1) j(3,1)

i(3,1) i(4,1)
)

L M L⊥ M (L ⊗ L⊥)M (L ⊗ L⊥ ⊗ L) M L⊥

2. Step 2 from the algorithm is iterated twice. Starting with the left most axiom link

from λ\λ̂, the literals, along with the numbers to them are as follows:

L M L⊥ M (L ⊗ L⊥)M (L ⊗ L⊥ ⊗ L) M L⊥

1 1 2 2

3. Like Step 2, Step 3 must also be repeated. Starting once again from the left, the
following number assignments are given:

L M L⊥ M (L ⊗ L⊥)M (L ⊗ L⊥ ⊗ L) M L⊥

3 5 5 3

4 6 6 4

4 & 5. Tuples for the blocks are now created by merging the numbers for each of their
literals.

L M L⊥ M (L ⊗ L⊥)M (L ⊗ L⊥ ⊗ L) M L⊥
λ2

λ1

[1] [1] [3 , 5] [5 , 3 , 2] [2]

[4 , 6] [6 , 4 , 2]
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6. The tensors a1, . . . , a5 are then created from the tuples above.

(a1)i(1,1)
= δ1

i(1,1)

(a2) j(2,1)
= δ1

j(2,1)

(a3)i(3,1) j(3,1)
= δ3 5

i(3,1) j(3,1)
+ δ4 6

i(3,1) j(3,1)

(a4)i(4,1) j(4,1)i(4,2)
= δ5 3 2

i(4,1) j(4,1)i(4,2)
+ δ6 4 2

i(4,1) j(4,1)i(4,2)

(a5) j(5,1)
= δ2

j(5,1)

In the tuples underneath each of the blocks in the MDNF formula given in Part 4/5 of the
above example, it can be seen that each of the numbers being assigned to the literals occur
exactly twice. It can be easily verified that this occurs with any valid choice of input to
the algorithm: before a number is assigned to a pair of literals in either of Steps 2 or 3,
the counter used to provide that number is incremented so previously assigned numbers
are never reused; and numbers are assigned to two literals at a time. Furthermore, two
literals are given the same number (or numbers) of another literal if and only if they share
an axiom link in the chosen linking λ. This can be realised by noting that Steps 2 and 3 are
actually, in principle, numbering the axiom links of λ, and the literals, and only the literals,
incident to an axiom link take the numbers associated with that link. This principle allows
us to differentiate the chosen λ from all other linkings, as can be seen in the coming claims.

Lemma 4.6. Suppose that we have a linear combination of proof structures including a non-zero

instance of a linking λ which contains a minimal cycle λ̂, and choose a block k through which λ̂

passes. Then a tensor modelling a linking λ′ when composed with all the tensors except ak created

by Algorithm 4.4 (when using λ and λ̂ as inputs) will result in a zero tensor if λ and λ′ do not have
an identical set of axiom links not connected to block k.

Proof. Suppose there is a link l ∈ λ′\λ not connected to block k. Then the tensor modelling
λ′ must take the form λ̄′i jij = δi jωij for some tensor ω, with i and j being indices associated
with the literals connected via l. For the blocks mi and m j containing the literals allocated
the index i and j, the algorithm creates partial permutations built from summations of
one or two tensors of the form δixγi′ and δ jyχj′ , with x, y ∈ N+ and γ and χ products of
Kronecker deltas whose details are of little relevance.

Since the two literals connected to l are not linked in λ, the numbers given to those
literals in the tuples created by the algorithm are different, and therefore we know x , y
for each of the parts of the partial permutations ami and am j of the form δixγi′ and δ jyχj′ . We
therefore find that δi jδixδ jy = δxy = 0, meaning (δi jωij)(δixγi′)(δ jyχj′) = (δi jδixδ jy)ωijγi′χj′ = 0

in all entries, and therefore amiam jλ̄′ = 0 and λ̄′ ·
∏

m,k am = 0 for the appropriate indices.

The claim above can be seen clearly in action in Example 4.5. If we assume that block

k = 4, which is certainly in the cycle λ̂ in λ = λ1, then we see that the link in λ2 from
the left-most negative literal to the positive literal directly to its right, represented by the
tensor δi(3,1) j(2,1)

, is neither in λ1 nor incident to block 4. The algorithm provides two partial

permutations (a2) j(2,1)
= δ1

j(2,1)
and (a3)i(3,1), j(3,1)

= δ3 5
i(3,1) j(3,1)

+ δ4 6
i(3,1) j(3,1)

which are intended to be

composed directly with δi(3,1) j(2,1)
, and they produce a zero tensor as desired.

δi(3,1) j(2,1)
· δ1

j(2,1)
· (δ3 5

i(3,1) j(3,1)
+ δ4 6

i(3,1) j(3,1)
) = δ15

3 j(3,1)
+ δ16

4 j(3,1)
= 0 j(3,1)
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The effects of the tensor relating to λ2 are therefore eradicated when composed with all of
a1, a2, a3 and a5.

There are examples of linear combinations of proof structures and choice of block k,
unlike the one given above, where there is a linking λ′ which shares all of its axiom links
not incident with block k with λ. Lemma 4.6 is rendered useless in these situations when
attempting to differentiate all other sets of axiom links from λ. The example below typifies
such a dilemma.

Example 4.7. Consider the sum of the three linkings λ1,λ2 and λ3 seen in the diagram
below.

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L)

λ3

λ2

λ1

Their corresponding tensor representation is δ
j(1,1) j(3,1) j(3,2)

i(2,1) i(2,2) i(3,1)
+ δ

j(1,1) j(3,2) j(3,1)

i(3,1) i(2,1) i(2,2)
+ δ

j(1,1) j(3,1) j(3,2)

i(3,1) i(2,1) i(2,2)
. Choosing λ3

to be λ, and taking the subset of links given in the figure below to be λ̂ (with representation δ
j(3,2) j(3,1)

i(2,1) i(2,2)
)

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L)

λ̂

2. Step 2 from the algorithm is only used once. We provide the single pair of literals

connected to the sole link in λ\λ̂ with the number 1.

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L)

1 1

3. Step 3 is repeated twice. Starting from the left, the assign numbers as follows:

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L)

2 4 4 2

3 5 5 3
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4 & 5. The numbers created in the previous steps are now used to make tuples.

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L)

λ3

λ2

λ1

[1] [2 , 4] [4 , 2 1]

[1] [3 , 5] [5 , 3 , 1]

6. The tensors a1, . . . , a3 are then created from the tuples above.

(am) j(1,1)
= δ1

j(1,1)

(am)i(2,1)i(2,2)
= δ2 4

i(2,1)i(2,2)
+ δ3 5

i(2,1)i(2,2)

(am) j(3,1) j(3,2)i(3,1)
= δ4 2 1

j(3,1) j(3,2)i(3,1)
+ δ5 3 1

j(3,1) j(3,2)i(3,1)

Then λ̄2a1a2 , 0 , λ̄3a1a2.

Fortunately, we are able to find another claim which provides enough information to
differentiate any such rogue sets of axiom links from the chosen linking λ sufficiently.

Lemma 4.8. Suppose that we have a linear combination of proof structures including a non-zero

instance of a linking λ which contains a minimal cycle λ̂, and choose a block k through which λ̂

passes. Let (x1, y1) and (x2, y2) be the two tuples created for block k by Algorithm 4.4 with λ and λ̂

over their associated MLL− formula as its inputs, reordered so the lth positions of x1 and x2 relate to

the lth positive literal (given index i(k,l)), and y1 and y2 to the lth negative literal with j(k,l). If a set of
axiom links λ′ in the linear combination is similar enough to λ that their axiom links not connected
to block k are the same, then the tensor λ̄′ when composed with all the tensors created by Algorithm

4.4 except ak, and either one of the tensors δ
x1 y1

i(k,−)j(k,−)
and δ

x2 y2

i(k,−)j(k,−)
, the result is the scalar 1 if λ′ = λ,

and 0 otherwise.

Proof. We start by showing that zero is created in the case thatλ , λ′. In this situation, there
is an axiom link in λ′ incident to block k which is not found in λ. Without loss of generality,
we assume that this link is connected to block k by a positive literal given index i(k,li) in the
tensor representation; it is adjacent to a negative literal with index j(m,l j) for some m and l j.

The tensor representation of the axiom link is therefore δ
j(m,l j)

i(k,li )
, and the representation of λ′

has this as a factor.
The value (or values) found in the (l j)

th position of the tuple (or tuples) associated with

block m in this case are not the same as x
p
li

for p = 1 or 2, since the link is not found in λ:

the tensor (am)i(m,−)j(m,−)
has form δ

yl j

j(m,l j)
·
∏

l,l j
δ

yl

j(m,l)
or δ

y1
l j

j(m,l j)
·
∏

l,l j
δ

y1
l

j(m,l)
+ δ

y2
l j

j(m,l j)
·
∏

l,l j
δ

y2
l

j(m,l)
, and

we find that

λ̄′
j
i · δ

x1 y1

i(k,−)j(k,−)
· (am)i(m,−)j(m,−)

= 0
j′

i′
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for appropriate superindices i′ and j′, from which this part of the claim is a trivial conse-
quence. This is because, for both r = 1 and 2,

δ
j(m,l j)

i(k,li )
· δ

yl j

j(m,l j)
· δ

xr
i(k,li )

i(k,li )
= δ

yl j

xr
i(k,li )

= 0.

Now we consider the case when λ′ = λ. Suppose that two literals, one of each polarity,

given indices i(mi,li) and j(m j,l j) are connected by an axiom link in λ. Then λ̄
j
i has δ

j(mj,l j )

i(mi ,li)
as a

factor.
If blocks mi and m j are not connected to λ̂, then it must be the case that δ

x(mi ,li )

i(mi ,li )
and δ

x(mi ,li)

i(mi ,li)

are factors of (ami)i(mi ,−)
and (am j)j(mj ,−)

respectively for the x(mi ,li) and x(m j,l j) defined in the

algorithm for these index position. We know that x(mi,li) = x = x(m j ,l j) for some x for both

constant tensors due to the axiom link being in λ.

δ
j(mj,l j)

i(mi ,li)
· δx

i(mi ,li)
· δx

j(mj ,l j)
= δ1

1 = 1

As such, λ̄
j
i ·δ

x(mi,li)

i(mi,li )
·δ

x(mj ,l j)

j(mj ,l j)
produces Kronecker deltas representing an MDNF proof structure

identical to that of λ, but with the literals incident to the chosen axiom link removed
(together with said axiom link). Following this line of argument to its logical conclusion,

we find, when Γ(λ̂) means all blocks not adjacent to λ̂, that

λ̄
j
i ·
∏

m<Γ(λ̂)

(am)i(m,−)j(m,−)
·
∏

q

δ
z(q)
q

reduces to the tensor representation of the axiom links solely in the neighbouring blocks of

λ̂, with the q in the product being indices for each literal found in the blocks connected to

the links in λ̂ which are adjacent via axiom links to blocks not connected to the cycle.

We now consider tuples {bm : m ∈ Γ(λ̂)} for the remaining indices in the blocks con-

nected to λ̂. That is, for each of these m,

(am)i(m,−)j(m,−)
= (bm)i′(m,−)j

′
(m,−)
·
∏

ql

δzl
ql

for appropriate superindices.

Suppose that there is an axiom link connected to blocks connected to the cycle λ̂ but

not connected to block k. Then its representation takes the form δ
j(mj ,l j)

i(mi ,li )
for some mi, m j, li, l j.

It cannot be the case that mi = m j, since we have chosen for ˆlambda to be a minimal cycle in
λ (as prescribed by Algorithm 4.4). If it were, it would actually be the entire cycle. We are
therefore left with the only possibility that mi , m j.

If mi , m j, then there will be a factor of the original composition which is equivalent
to the following:

δ
j(m,l j)

i(m,li)
· (bmi)i′(mi,−)j

′
(mi,−)
· (bm j)i′′(mj ,−)j

′′
(mj,−)

.

The tensor δ
j(m,l j)

i(m,li )
is acting as the representation of an axiom link between the two literals

represented by the indices i(m,li) and j(m,l j).
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The two tuples bmi and bm j are partial permutations containing exactly two non-zero
positions. This is seen by how they are found by the blocks ami and am j : the ‘a’ blocks are
partial permutations with exactly two non-zero positions, and since they can be formed
from the two ‘b’ tuples by use of a single Kronecker delta the same must be true of their
factors. By assumption, and without loss of generality regarding which tuple contains the
positive literal of the axiom link and which contains the negative, we know that the tuples
bmi and bm j are tuples which take the forms below.

(bmi)i′(mi ,−)j
′
(mj ,−)
= δ

p1 q1

i′′(mi ,−)j
′
(mi ,−)

δr1
i(mi ,li )

+ δ
p2 q2

i′′(mi ,−)j
′
(mi ,−)

δr2
i(mi ,li)

(bm j)i′(mi ,−)j
′
(mj ,−)
= δs1 t1

i′(mi ,−)j
′′
(mi ,−)

δr1
j(mj ,l j)

+ δs2 t2

i′(mi,−)j
′′
(mi,−)

δr2
j(mj ,l j)

for some appropriately sized constant superindices p1,p2,q1,q2, s1, s2, t1, t2 and constants
r1, r2, whilst letting i′′(mi,−) and j′(m j,−) be the free superindices which are i′(mi,−) and j′(m j,−)

with i(mi,li) and j(m j,l j) removed respectively. We know this because Algorithm 4.4 ensures

that the tuples created for two blocks of tensors will have entries which match each other
if and only if there is an axiom link in λ connecting the literals whose positions they are
representing. Since the axiom links of λ′ and λ which are not connected to block k are the,
this crosses over to this linking.

Once these representations have been created, it becomes clear that the tensor com-
position from before reduces to nothing more than another partial permutation with two
non-zero entries.

δ
j(m,l j)

i(m,li )
· (bmi )i′(mi,−)j

′
(mi,−)
· (bm j)i′′(mj ,−)j

′′
(mj,−)
= δ

j(m,l j)

i(m,li)
·

(

δ
p1 q1

i′′(mi ,−)j
′
(mi ,−)

δr1
i(mi ,li )

+ δ
p2 q2

i′′(mi ,−)j
′
(mi ,−)

δr2
i(mi ,li )

)

·

(

δs1 t1

i′(mi ,−)j
′′
(mi,−)

δr1
j(mj ,l j)

+ δs2 t2

i′(mi ,−)j
′′
(mi ,−)

δr2
j(mj,l j )

)

= δ
p1 q1

i′′(mi ,−)j
′
(mi ,−)

δr1
i(mi ,li )

δs1 t1

i′(mi,−)j
′′
(mi,−)

δr1
j(mj ,l j)

δ
j(m,l j)

i(m,li)

+ δ
p1 q1

i′′(mi ,−)j
′
(mi ,−)

δr1
i(mi ,li )

δs2 t2

i′(mi ,−)j
′′
(mi,−)

δr2
j(mj ,l j)

δ
j(m,l j)

i(m,li)

+ δ
p2 q2

i′′(mi ,−)j
′
(mi ,−)

δr2
i(mi ,li )

δs1 t1

i′(mi ,−)j
′′
(mi,−)

δr1
j(mj ,l j)

δ
j(m,l j)

i(m,li)

+ δ
p2 q2

i′′(mi ,−)j
′
(mi ,−)

δr2
i(mi ,li )

δs2 t2

i′(mi ,−)j
′′
(mi,−)

δr2
j(mj ,l j)

δ
j(m,l j)

i(m,li)

= δ
p1 q1

i′′(mi ,−)j
′
(mi ,−)

δs1 t1

i′(mi ,−)j
′′
(mi,−)

δr1
r1

+ δ
p1 q1

i′′(mi ,−)j
′
(mi ,−)

δs2 t2

i′(mi ,−)j
′′
(mi ,−)

δr2
r1

+ δ
p2 q2

i′′(mi ,−)j
′
(mi ,−)

δs1 t1

i′(mi ,−)j
′′
(mi ,−)

δr1
r2

+ δ
p2 q2

i′′(mi ,−)j
′
(mi ,−)

δs2 t2

i′(mi ,−)j
′′
(mi ,−)

δr2
r2

= δ
p1 q1

i′′(mi ,−)j
′
(mi ,−)

δs1 t1

i′(mi ,−)j
′′
(mi,−)
+ δ

p2 q2

i′′(mi ,−)j
′
(mi ,−)

δs2 t2

i′(mi,−)j
′′
(mi,−)
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The representation could be said to be equivalent to the block of literals which would be
created by merging to two blocks to which b1 and b2 are connected and removing the linked
literals. The same idea applies to the two tuples that are created.

This is certainly a repeatable process for all axiom links not connected to block k. Fol-
lowing this procedure as far as possible, we find that the answer to the original composition
becomes the same as

ci(k,−)j(k,−)
· δ

xr yr

i(k,−)j(k,−)
·
∏

q

δ
z(q)
q .

The tensor c is the partial permutation described by two tuples providing the locations of
the non-zero entries of block k: the concatenation of all the first tuples of blocks which are
not k, with tuple positions relating to indices describing literals not connected to block k by
an axiom link deleted; and the same with the second tuples. In Example 4.7, taking that
k = 3, it happens that ci(3,−)j(3,−)

= (a3) j(3,1) j(3,2) j(3,1)
.

Due to the algorithm ensuring that certain tuple positions are kept equal to one another,

ci′′(k,−)j
′′
(3,−)
·
∏

q

δ
z(q)
q = δ

x1 y1

i(k,−)j(k,−)
+ δ

x2 y2

i(k,−)j(k,−)
.

It then follows trivially that

(δ
x1 y1

i(k,−)j(k,−)
+ δ

x2 y2

i(k,−)j(k,−)
) · δ

xr yr

i(k,−)j(k,−)
= δ

x1y1

xr yr + δ
x2y2

xr yr = 1 .

Example 4.7 fits the scenario where Lemma 4.8 is used neatly. Assuming block 3 is the
chosen block k, it is clear that every axiom link in λ2 = λ not incident to that block is found
in λ3 and vice versa. However, multiplying λ̄3 with a1 and a2 gives the following tensor:

λ̄ j(1,1)i(2,1)i(2,2) j(3,1) j(3,2)i(3,1)
(a1) j(1,1)

(a2)i(2,1)i(2,2)
= δ

j(1,1) j(3,1) j(3,2)

i(3,1) i(2,1) i(2,2)
δ1

j(1,1)
(δ2 4

i(2,1)i(2,2)
+ δ3 5

i(2,1)i(2,2)
)

= δ
1 j(3,1) j(3,2)

i(3,1)2 4 + δ
1 j(3,1) j(3,2)

i(3,1)3 5

Multiplying the resulting tensor with either δ4 2 1
j(3,1) j(3,2)i(3,1)

or δ5 3 1
j(3,1) j(3,2)i(3,1)

will immediately

result in producing a 0 as an output.

(δ
1 j(3,1) j(3,2)

i(3,1)2 4 + δ
1 j(3,1) j(3,2)

i(3,1)3 5 ) · δ4 2 1
j(3,1) j(3,2)i(3,1)

= δ142
124 + δ

142
135 = 0

(δ
1 j(3,1) j(3,2)

i(3,1)2 4 + δ
1 j(3,1) j(3,2)

i(3,1)3 5 ) · δ5 3 1
j(3,1) j(3,2)i(3,1)

= δ153
124 + δ

153
135 = 0

Note in particular how composing with δ4 2 1
j(3,1) j(3,2)i(3,1)

produces two tensors being summed

together which either have the right numbers to use in the entry positions but in the wrong
order as in the first (due to the axiom links connecting with the block in a different manner),
or the wrong numbers altogether like in the second (due to using the tensor created from
the information from the upper tuple rather than the lower). The dual of this remark can
be found by considering composition with δ4 2 1

j(3,1) j(3,2)i(3,1)
.

Armed with the two claims created from the earlier simple principle, we are in a
position to express why MDNF transformations from C only translate to GC if the linear
combination of proof structures they model do not contain a cyclic proof structure.

Proposition 4.9. Every MDNF transformation in GCmodels a linear combination of acyclic proof
structures.
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Proof. Suppose that the functor [[F]] is in MDNF, and therefore for any n ∈N+

[[F]](An,An) = MM
m=1(

⊗Lm

l=1A
φ(m,l)
n ).

The tensor representations of the values of the above object are given in Section 4.1
Let τ = (τR ∈ C[I, |[[F]]|(R,R)])R∈CN be an MDNF transformation inC, modelling a linear

combination of proof structures, one of which is cyclic. For the object R = (nI, . . . , nI), the
component τR is represented by the tensor

τ
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM )
=
∑

β sβ · δ
jβ(1,1) ··· jβ(M,PM)

i(1,1) ··· i(M,PM )
.

One of the bijections, ζ say, is such that sζ , 0, and there is a cycle between the blocks.

We show that τ
j
i < [[F]](An,An)Val = GC[I, [[F]](An,An)] for some choice of n ∈ N+. We

choose n and define a set of partial permutations {am : m ∈ [M]}, one for each block of
tensor products of literals, using Algorithm 4.4; and we nominate any one of the blocks
that is part of the chosen cycle, calling it k. We know from Lemmas 4.6 and 4.8 that
there are two distinct entry tuples (x1, y1) = (x1

(k,1), . . . , x
1
(k,Pk), y

1
(k,1), . . . , y

1
(k,Nk)) and (x2, y2) =

(x2
(k,1), . . . , x

2
(k,Pk), y

2
(k,1), . . . , y

2
(k,Nk)) for ak where (ak)x2,y2 = 1 = (ak)x2,y2 that, for l ∈ {1, 2},

δ
xl yl

i(k,−)j(k,−)
· δ

xl
(k,1) ··· x

l
(k,Pk ) yl

(k,1) ··· y
l
(k,Nk)

i(k,1) ··· i(k,Pk ) j(k,1) ··· j(k,Nk)
· τ

j
i ·
∏

m,k(am)i(m,1) ··· im,Pm j(m,1) ··· j(m,Nm)
= sζ , 0.

The tensor τ
j
i, when multiplied with these partial permutations, produces a tensor with

at least two non-zero entries, meaning it fails the criterion desired of it to belong to
[[F]](An,An)Val. As such τR is not an arrow in GC[I, [[F]](An,An)], and consequently τ
cannot be seen as an MLL− transformation in GC.

4.4. Connectedness. The previous subsection holds the proof that MDNF transformations
in GC only describe linear combinations of acyclic proof structures. This section is devoted
to proving the proof structures are connected as well. Once again we can see the intuition
behind the coming proof using a couple of small examples.

Consider the simplest disconnected proof structure.

L M L⊥ M L M L⊥

If we say [[L]] = Cn for some n > 1, it is quickly observed that the values of
[[L M L⊥ M L M L⊥]] are described by the 4-permutations over [n]. These are all tensors

of the form z
j1 j2
i1 i2

(il and jl being linked to the lth positive and negative literals respectively)
which, when composed with any three constant tensors, produce another constant tensor.

The proof structure is described by δ
j1 j2
i1 i2

. It is already known that this is not a full 4-
permutation, and therefore does not belong to the set of values. However, we require a more

generalisable perspective in order to the learn from the example. If we compose δ
j1
i1

with δ1
i1

and δ2
j1

, which are both 1-permutations over [n], we see that δ
j1
i1
· δ1

i1
· δ2

j1
= δ2

1 = 0, meaning

δ
j1 j2
i1 i2
· δ1

i1
· δ2

j1
= 0 · δ

j2
i2
= 0i2 j2 . Remembering the description of values of MDNF objects built

solely from Cn in Section 4.1, it becomes clear that δ
j1 j2
i1 i2

cannot belong in (CnMC⊥nMCnMC⊥n )Val:
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the zero tensor does not belong to (C⊥n )Val, and composing any tensor from the non-empty
(Cn)CoVal with 0i2 j2 produces 0 j2 .

In the above example it was possible to find (1-)permutations for both blocks in the left-
hand component which, when composed with the Kronecker delta modelling the axiom
link incident to their associated literals, produce the scalar 0. The generalisability of this
idea becomes further evident when a more complicated proof structure is considered.

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L) M L M L M L M L⊥

The above structure contains far more axiom links, and some blocks have more than one

literal within them. Its links are described by λ̄ = δ
j(1,1) j(3,1) j(3,2) j(3,3) j(7,1)

i(2,1) i(2,2) i(5,1) i(4,1) i(6,1)
, with the left-most

component’s links given by λ̄l = δ
j(1,1) j(3,1) j(3,2) j(3,3)

i(2,1) i(2,2) i(5,1) i(4,1)
.

The first five blocks constitute the left-most component, and five permutations which
can annihilate the above tensors are found below.

(c1) j(1,1)
= δ1

j(1,1)

(c2)i(2,1)i(2,2)
= cycle(2, n, 5)i(2,1)i(2,2)

(c3) j(3,1) j(3,2) j(3,3)
= cycle(3, n, 11) j(3,1) j(3,2) j(3,3)

(c4)i(4,1)
= δ2

i(4,1)

(c5)i(5,1)
= δ3

i(5,1)

(c1) j(1,1)
(c2)i(2,1)i(2,2)

(c3) j(3,1) j(3,2) j(3,3)
(c4)i(4,1)

(c5)i(5,1)
(λ̄l)

j(1,1) j(3,1) j(3,2) j(3,3)

i(2,1) i(2,2) i(4,1) i(5,1)

= δ1
j(1,1)

(c2)i(2,1)
i(2,2)(c

3) j(3,1) j(3,2) j(3,3)
δ2

i(4,1)
δ3

i(5,1)
δ

j(1,1) j(3,1) j(3,2) j(3,3)

i(2,1) i(2,2) i(5,1) i(4,1)

= cycle(2, n, 5)i(2,1)i(2,2)
cycle(3, n, 11) j(3,1) j(3,2) j(3,3)

δ
1 j(3,1) j(3,2) j(3,3)

i(2,1)i(2,2) 3 2

= (cycle(2, n, 5)i(2,1)i(2,2)
δ1

i(2,1)
) · (cycle(3, n, 11) j(3,1) j(3,2) j(3,3)

δ
j(3,1) j(3,3)

i(2,2) 2 ) · δ
j(3,2)

3

= (δ4
i(2,2)
· cycle(2, n, 9)i(2,2) j(3,2)

) · δ
j(3,2)

3

= δ
5 j(3,2)

j(3,2)3
= δ5

3 = 0

It is therefore true that (c1) j(1,1)
(c2)i(2,1)i(2,2)

(c3) j(3,1) j(3,2) j(3,3)
(c4)i(4,1)

(c5)i(5,1)
(c6)i(6,1)

(λ̄)
j
i = 0 j(7,1)

for all

c6 ∈ Perm(1, n), and so λ̄ is not a value, meaning that λ is not modelled in GC by an
MLL− transformation.

The lesson to be learned from the arithmetic above is that although cycle permutations

are being used for the permutations c1, . . . , c5 above12, this is only due to their ease in
comprehension. What is most important is that certain positions in the permutations have
value 1. The proof structure figure below shows a choice of positions in the permutations

12It should be remembered that cycle(1,n, x)i = δ
x
i .
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corresponding to each block in the proof structure from above which ensure that their
composition with the tensor λ̄ yields a zero tensor.

L⊥ M (L ⊗ L) M (L⊥ ⊗ L⊥ ⊗ L) M L M L M L M L⊥

[1] [1 , 4] [4 , 5 , 2] [2] [3]

Notice that each pair of literals in the proof structure are only given the same number for
their entry positions if they are connected by an axiom link, and that all bar one of the

linked pairs share a number, one of the rogue pair being the leaf which is the 5th block.
Because of this, it is possible to follow a chain of compositions of permutations with λ̄ in an
order such that the permutation of a block m is not considered until those of all the blocks

whose unique path to the 5th block in the block graph passes through m have been (leaving
c5 to last). This ensures that the product of all the permutations corresponding to blocks
greater than or equal to m in the block graph of the structure with respect to the partial
tree ordering induced by the vertex representing the 5th block with the primitive Kronecker
deltas of λ̄ having at least one index in common with one of the permutations reduces to
a Kronecker delta δx

i , where i is the sole remaining index relating to the literal connected
via an axiom link to a literal not in the set of blocks greater than or equal to m, and x is the
number in the tuple placed underneath the same literal. The inevitable consequence is that
the final Kronecker delta associated with the axiom link connected to the right-most leaf of
the component having its indices substituted for two distinct numbers, which is equal to
zero.

Of course, we are not in a position to assume we are only dealing with singular proof
structures and their scalar multiples — linear combinations of proof structures have not
yet been discounted. Lemma 4.9 allows us to assume that all proof structures in a linear
combination being considered are acyclic. This has a rather useful consequence, namely
that if any one proof structure in a linear combination of them is disconnected, then all the
others are as well.

Lemma 4.10. If a sequent S can be bestowed with a valid set of axiom links which induce an acyclic
yet disconnected proof structure, then all possible valid linkings are also disconnected.

Proof. Given a set of proof structures over S, we know that all the structures have the same
number of edges. The number of axiom links in a single structure is equal to the number
of pairs of literals which exist in S, and so independent of the position of the links; and
since the proof structures are built over the same parse forest (namely the one described
by S), the number of edges which are not axiom links are equal as well. The number of
M connectives is trivially only dependent on S, and so the number of M-vertices in each
structure does not vary. The number of edges in a switching of a proof structure is equal
to the number in the entire proof structure minus the number of M-vertices in it, meaning
that every switching of every proof structure over S has the same number of edges.

The number of vertices in a proof structure over S (and therefore in each of its switch-
ings), n say, is equal to the total number of literals and connectives in the sequent; for a
graph over this number of vertices to be connected the number of edges must be greater
than n − 1. If there is an acyclic and disconnected proof structure, its switchings must
have strictly fewer than n − 1 edges: acyclicity provides an upper bound of n − 1, and the
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disconnectedness discounts the possibility of the number being exactly n− 1. Therefore all
switchings of all other proof structures have strictly fewer than n − 1 edges, which implies
that the structures are all disconnected.

This fact leaves us with a slightly less daunting task. We merely need to place more
restrictions on where entries must contain the value 1 for each of the permutations being
composed with the tensor describing the incorrect MLL− proof structure. Different proof
structures clearly lead to different components, and this could be viewed as creating a
moving target. However, the claim above ensures that no problems are caused. We choose
one leaf in the example to be the block not to be given a permutation to compose with the
MDNF tensor, and let ourselves be prepared to add restrictions to permutations for any of
the other blocks if they are in a different component from that leaf for any one of the proof
structures being modelled in the linear combination.

The first task is to create a set of permutations over some [n] for an unacceptable
linear combination of proof structures over a sequent F which makes it possible to derive
a disproof of its associated tensor’s existence in the set of values [[F]](Cn,Cn).

Algorithm 4.11. Input: A linear combination of acyclic, disconnected MDNF proof struc-
tures of the same sequent containing M blocks.
Output: A number n ∈ N+; tensors b1, . . . , bM such that (bm)i1 ···iLm

∈ PPerm(Lm, n) for each
m.

(1) Let {λ1, . . . , λK} be the set of axiom links in a linear combination of acyclic yet discon-
nected MDNF proof structures which are multiplied by a non-zero scalar. For each
of the blocks containing exactly one literal (leaves) assign distinct values 1, . . . ,B. We
assign variables v1, . . . , vM to each of the M blocks, with vm = Lm as the initial setting.
We call these variables valencies. Let i = B + 1 and k = 1.

(2) Take λk and the M-free subgraph of the parse tree, and consider the component of the
graph containing the lowest numbered component which does not contain block 1.
Choose the leaf with the highest number in that component and change its valency to
0.

(3) Choose the first block m in the component such that vm = 1.
(a) If one does exist and it is a leaf, let vm = 0. If it is not adjacent to another leaf in

the graph, then assign the number given to that leaf to the literal to which it is
connected and decrement the valency of the block of the connected literal. Restart
Step 3.

(b) If one does exist but it is not a leaf, then mark the sole literal not yet allocated a
number as an ‘exit’ literal and go to Step 4.

(c) If there are no more blocks of valency 1 and k < K, create a new
Lm-tuple x for each block m in the component, and for every i ∈ [Lm] let xi be the

label given to the ith literal of the block. If the ith literal is the exit of the block, then
mark xi as an exit entry. Delete duplicate tuples associated with each block, and
remove all the labels and marks from all the literals except the leaves. Increment k
and return to Step 2.

(d) Otherwise, terminate the algorithm after declaring that n = 2i − 1 and stating that
for each m ∈ [2,M],

(bm)i1···iLm
=

{

1 if (i1, . . . , iLm) is a tuple for m
0 otherwise.



40 A. SCHALK AND H. P. STEELE

(4) Check to see whether the numbers given to each of the non-exit literals correspond
exactly to those of a tuple x = (x1, . . . , xLm) already associated with the block (meaning

that if ui is the number given to the ith literal in the block, that ui = xi for every i for
which ui is defined).
(a) If so, then assign the final unused number in x to the exit literal.
(b) If not, assign i to the exit literal and increment i.

Assign the number to the literal with which the exit literal shares an axiom link, unless
that literal is a leaf and already has been assigned a number. Decrement the valencies
of both block m and the block with which the exit literal of block m is linked by an
axiom link in λk. Go to Step 3.

Example 4.12. Consider the sum of the three linkings λ1, λ2 and λ2 provided below in red,
blue and green respectively.

L M L⊥ ⊗ L⊥ M (L ⊗ L) ⊗ (L⊥ ⊗ L⊥ ⊗ L⊥)M L M L

The linear combination’s tensor representation is

λ̄
j(2,1) j(3,1) j(5,1) j(5,2) j(5,3)

i(1,1) i(4,1) i(4,2) i(6,1) i(7,1)
= δ

j(2,1) j(3,1) j(5,1) j(5,3) j(5,2)

i(1,1) i(4,1) i(4,2) i(6,1) i(7,1)
+ δ

j(3,1) j(2,1) j(5,1) j(5,3) j(5,2)

i(1,1) i(4,1) i(4,2) i(6,1) i(7,1)
+ δ

j(2,1) j(3,1) j(5,2) j(5,3) j(5,1)

i(1,1) i(4,1) i(4,2) i(6,1) i(7,1)
.

We apply Algorithm 4.11.

1. We first attach values to the leaves in each of the proof structures described. The
value i reaches 6.

L M L⊥ ⊗ L⊥ M (L ⊗ L) ⊗ (L⊥ ⊗ L⊥ ⊗ L⊥)M L M L

λ3

λ2

λ1

[1] [2] [3] [4] [5]

We make sure all the other components have valency the same as the number of
literals within them: v3 = 1, v4 = 4, v5 = 3, v6 = 1 and v7 = 1.

2. We proceed with λ1. With this set of axiom links the first block not in the same
component as the first is the third. The component containing block 3 contains the

4th, 5th, 6th and 7th blocks as well. We change the valency of block 7 to 0.
3 & 4. We must repeat the processes contained in Steps 3 and 4 four times (once for each

axiom link in λ1 connected to the component containing block 3).
• Block 3 is a leaf and connects to the first literal of block 4. That literal is therefore

given the same number allocated to block 3 (3), and the second literal is marked
as an exit. Block 4 now has valency 1, and block 3 has valency 0.
• Block 4 is now the first block to have valency 1. Its second literal, is given i = 6

as its tuple entry, as is the first literal of the fifth block, which is adjacent. The
valencies of blocks 4 and 5 become 0 and 2. The counter i is incremented to 7.
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• Block 6, a leaf, is now the first block with valency 1. It has already been given
value 4, so we give this to its adjacent literal — the third literal in the fifth block.
We decrement the block valencies.
• Block 5 is now the only one with valency 1 in the component. Its only empty

position — the second — is allocated the value i = 7. However, it is connected to
the last leaf, and so we do not give its adjacent literal the same number (it already
has been given the entry 5).

We are left with the following tuples, with the numbers in squares emphasising exit
literals for that particular linking:

L M L⊥ ⊗ L⊥ M (L ⊗ L) ⊗ (L⊥ ⊗ L⊥ ⊗ L⊥)M L M L

λ3

λ2

λ1

[1] [2] [3] [3 , 6 ] [6 , 7 , 4] [4] [5]

2. The process is then repeated with λ2 and λ3. Particular points to note are the
following:
• The component containing block 1 can change (note that blocks 1 and 2 are not

respected with respect to λ2, but the two are adjacent with when the linkings λ1

and λ3 are used).
• In the third iteration for λ3, block 4 is reached at the same time in the same way

as in λ1. As such, the number 6 is reused for the tuple entry for its second literal.
We now have three sets of tuples for each block (possibly repeated):

L M L⊥ ⊗ L⊥ M (L ⊗ L) ⊗ (L⊥ ⊗ L⊥ ⊗ L⊥)M L M L

λ3

λ2

λ1

[1] [2] [3] [3 , 6 ] [6 , 7 , 4] [4] [5]

[1] [2] [3] [2 , 8 ] [8 , 9 , 4] [4] [5]

[1] [2] [3] [3 , 6 ] [ 10 , 6 , 4] [4] [5]

3. The algorithm finished, leaving the following set of tensors:

(b2) j(2,1)
= δ2

j(2,1)

(b3) j(3,1)
= δ3

j(3,1)

(b4)i(4,1)i(4,2)
= δ3 6

i(4,1)i(4,2)
+ δ2 8

i(4,1)i(4,2)

(b5) j(5,1) j(5,2) j(5,3)
= δ6 7 4

j(5,1) j(5,2) j(5,2)
+ δ8 9 4

j(5,1) j(5,2) j(5,2)
+ δ10 6 4

j(5,1) j(5,2) j(5,2)

(b6)i(6,1)
= δ4

i(6,1)

(b7)i(7,1)
= δ5

i(7,1)
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The above algorithm provides a set of partial permutations with entries containing the
value 1 at positions which are of use in the final proof of the necessity of connectedness
having to be satisfied. However, they are still partial permutations, and in order to discuss
objects of the form F(Cn,Cn) full permutations must be used. It is therefore necessary
to complete the permutations. Completing permutations is non-trivial, but by virtue of a
number of properties bestowed on each of the partial permutations described in Algorithm
4.11, we are indeed capable of performing such a task.

Lemma 4.13. Every partial higher-order permutation (bm)i where m ∈ [2,M] which is an output
tensor of Algorithm 4.11 can be completed to form a full higher-order permutation (cm)i.

Proof. It is known from Definition 3.3 that for any L and n it is always possible to find the
tensor cycle(L, n, 0)i1···iL in Perm(L, n). It is also well established that using a permutation
over [n] on the numbering used on a single index of a permutation in Perm(L, n) for any
L ∈N+ always produces another equally valid permutation in the same set.

Suppose that bi1 ···iL ∈ PPerm(L, n) is one of the partial permutations generated by
Algorithm 4.11 after being given appropriate inputs. Then we can refer back to the tuples

x1, . . . , xK′ created in the middle of the algorithm which describe the positions where its
entries are equal to 1, and also the positions in each of the tuples with an ‘exit marker’.
From the definition of the procedure, we can be assured that if the jth position of the kth

tuple is marked, then lkj , lk
′

j for all k , k′. In other words, the number found in the position

of a tuple’s exit marker is not used again in the same position of another tuple. With this
information, we define a set of partial functions inN+ {αl : l ∈ [L]} in the following manner:

(1) Let i = 1, k = 1 and l = 1.
(2) If αm(xk

l ) has not yet been assigned a value and the tuple position in question was not

marked an exit entry in Algorithm 4.11, then we say that αm(xk
l ) = 2i and then increment

i. Go to Step 3.
(3) If l < T, increment l and go to Step 2; otherwise increment k, set l back to 1 and go to

Step 4.
(4) If k ≤ K, then go to Step 2; otherwise, go to Step 5.
(5) Reset k and l.
(6) If αl(x

k
l ) has not yet been assigned a value, then set αl(x

k
l ) = n −

∑

j,l α j(x
k
j) and go to

Step 7. Otherwise increment l and repeat Step 6.
(7) If k < K, increment k and let l = 1, and return to Step 6. Otherwise, terminate the

algorithm.

This algorithm is well defined, and each partial function αl is injective with all defined
source and target values in [n]. As such, it is possible to restrict each of the partial
functions to act upon [n], and then to extend them to full 2-permutations over (i.e. bijective
endomorphisms on) [n]. One way in which such an extension of a partial function αm could
be formed is inductively: by assigning the lowest value in [n] not already in the image of
αm to be the image of the lowest number in [n] not in domain of definition, and continuing
similarly with the new definition of the partial function until it becomes total.

We now define the tensor ci1·iL for bi1···iL in the following manner:

ci1 ···iL =

{

1 if
∑L

j=1 α j(i j) ≡ 0 mod n

0 otherwise
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The tensor is created by using 2-permutations on each of the entry positions of cycle(L, n, 0),
and so belongs to the set Perm(L, n). Furthermore, since cx1···xT = 1 for each tuple (x1, . . . , xT)
where bx1 ···xT = 1 by design, it is a completion of bi1···iL , and as such we have satisfied the
original statement as desired.

Much in the same manner as with Lemma 4.9, we are finally in a position to prove that
the proof structures being modelled in linear combinations in the double-glued category
are always proof nets.

Proposition 4.14. Every MDNF transformation in GC modelling a linear combination of acyclic
proof structures is modelling a linear combination of cut-free proof nets.

Proof. Let F be an MDNF formula as in Lemma 4.9, and let
τ = (τR ∈ C [I, |[[F]]|(R,R)])R∈CN be an MDNF transformation in Cmodelling a linear combi-
nation of acyclic yet disconnected proof structures. We consider [[F]] (Cn,Cn)Val where n is
the output integer given by Algorithm 4.11 if the linear combination described by τ is used
as an input. From Section 4.1 we know the criteria the tensor representations of the values
of this object must satisfy.

As seen in earlier deductions, for the integer n acquired from the algorithm, we have
the tensor representation

τ
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM )
=
∑

β sβ · δ
jβ(1,1) ··· jβ(M,PM)

i(1,1) ··· i(M,PM )
.

Algorithm 4.11 and Lemma 4.13 makes it possible to obtain a set of (full) permutations
{cm : m ∈ [2,M]} for the coming argument.

Take any set of axiom links described by a bijection, ζ say, such that sζ , 0, and consider

the tensor δ
jζ(1,1) ··· jζ(M,PM )

i(1,1) ··· i(M,PM)
. It is possible to factorise this tensor into a product of Kronecker

deltas, one for each component in the switching of ζ. Multiplying the first of these smaller

component tensors not containing the indices concerning the first block, δ
jζ(θ(1),1) ··· jζ(θ(M′),Pθ(M′))

i(θ(1),1) ··· i(θ(M′),Pθ(M′))

say, with each of the permutations bθ(1), . . . , bθ(M′) corresponding to the blocks within the
component in question, the zero scalar is produced.

Claim. Using the definitions of ζ and θ given above,

δ
jζ(θ(1),1) ··· jζ(θ(M′),Pθ(M′))

i(θ(1),1) ··· i(θ(M′),Pθ(M′))
·
∏M′

m=1

(

cθ(m)
) j(θ(m),1) ··· j(θ(m),Nθ(m))

i(θ(m),1) ··· i(θ(m),Pθ(m))
= 0

Proof. It is easy to show that there is a partial ordering induced by every tree and
every choice of node within it. Given a tree G and vertex w, we can create an ordering
≤(G,w) defined as follows: if the unique path starting from a vertex u and finishing at
w passes through the vertex v, then we say that u ≤(G,w) v. The point w is therefore
maximal in this ordering. This is a partial order if we close this under reflexivity.

We consider the blocks with numbers in the image of θ (that is, the blocks of the
second component) observing the tree partial ordering induced by the leaf with the
highest block number θ(q). With block θ(q) being a leaf, the tensor cθ(q) = δL

k(θ(q),1)

for some constant L, where the k-index replaces either an i- or j-index depending on
the polarity of the literal in the block. It should also be noted that, by design of the
algorithm, L is a smaller number than any of the numbers given exit markers within
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the component which are not in a leaf block, and greater than all other numbers given
to leaves in the component. We use an inductive argument on the blocks in this order
to demonstrate that, for any block θ(m) except the reference leaf, a composition of the

tensors in {cθ(m′) : θ(m′) ≤G θ(m)} with all the Kronecker deltas pairs whose indices
are shared with two permutations in that set reduces to a constant tensor on the index
with the exit marker created at this point in Algorithm 4.11 and the number with said
marker. That is,

∏

m′<(G,θ(q))θ(m) δ
jζ(m′ ,1) ··· jζ(m′ ,Pm′ )

i(m′ ,1) ··· i(m′ ,Pm′ )
·
∏

m′≤(G,θ(q))θ(m)

(

cm′
) j(m′ ,1) ··· j(m′,Nm′ )

i(m′ ,1) ··· i(m′ ,Pθ(m′))
= δx

k

where k is the sole index not to be composed, and x is the number connected to the
exit marker in the tuple generated by the algorithm the appropriate linking.
• The base case occurs when block θ(m) is a leaf. The first product of Kronecker

deltas is then empty, and the second only contains the permutation cθ(m). Since
block θ(m) is a leaf, it must be the case that there is only one literal in the block, and
therefore the permutation is a 1-permutation, i.e. a constant tensor of dimension

1. The algorithm defines the non-zero entry to occur at the xth position, where x is
the single value given to the block in Algorithm 4.11, as desired.
• If not, then the composition can be split further. Let H(m) denote the neighbour-

hood of block m in the graph and E =
{

m′ ∈ H(θ(m)) : m′ <(G,θ(q))

}

, ∅. We can
rewrite the composition above as follows:

∏

m′∈E



δ
lξm′

km′

∏

m′′<(G,θ(q))m′

δ
jζ(m′′ ,1) ··· jζ(m′′ ,Pm′′ )

i(m′′ ,1) ··· i(m′′ ,Pm′′ )
·
∏

m′′≤(G,θ(q))m′
(

cm′′
) j(m′′ ,1) ··· j(m′′ ,Nm′′ )

i(m′′ ,1) ··· i(m′′ ,Pm′′ )

)

·
(

cθ(m)
) j(θ(m),1) ··· j(θ(m),Nθ(m))

i(θ(m),1) ··· i(θ(m),Pθ(m))

By the induction hypothesis, the inside of the bracket can be simplified, leaving
(

∏

m′∈E

δ
xm′

km
· δ

lξ(m′)

km′

)

·
(

cθ(m)
) j(θ(m),1) ··· j(θ(m),Nθ(m))

i(θ(m),1) ··· i(θ(m),Pθ(m))

=
∏

m′∈E

δ
xm′

lξ(m′)
·
(

cθ(m)
) j(θ(m),1) ··· j(θ(m),Nθ(m))

i(θ(m),1) ··· i(θ(m),Pθ(m))

=

(

cθ(m)
)x

π1(ζ−1(θ(m),1))
··· x

π1(ζ−1(θ(m),y))
··· x

π1(ζ−1(θ(m),Nm))

xπ1(ζ(θ(m),1)) ··· i(θ(m),y) ··· xπ1(ζ(θ(m),Pm))

or
(

cθ(m)
)x

π1(ζ−1(θ(m),1))
··· j(θ(m),y) ··· x

π1(ζ−1(θ(m),Nm))

xπ1(ζ(θ(m),1)) ··· xπ1(ζ(θ(m),y)) ··· xπ1(ζ(θ(m),Pm))

Since cθ(m) is a full (Pm + Nm)-permutation, it must be the case that our final
tensor, with constants taking the places of all bar one of the entry positions, is
a 1-permutation as desired. Furthermore, the Kronecker deltas which have been
fed into the equation are in agreement with exactly one set of tuples that is provided
by the algorithm for cθ(m). We therefore know that the number that the remaining
free variable for the tensor must equal the final unused number from the tuple,
which is the value at the exit marker. Our equation reduces to the form δx

k with
free index k and constant x as desired.
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Now we refer back to the original claim. The composition

δ
jζ(θ(1),1) ··· jζ(θ(M′),Pθ(M′))

i(θ(1),1) ··· i(θ(M′),Pθ(M′))
·
∏M′

m=1

(

cθ(m)
) j(θ(m),1) ··· j(θ(m),Nθ(m))

i(θ(m),1) ··· i(θ(m),Pθ(m))

= δ
jζ(θ(1),1) ··· jζ(θ(M′),Pθ(M′))

i(θ(1),1) ··· i(θ(M′),Pθ(M′))
·
∏

m,q(cθ(m))
j(θ(m),1) ··· j(θ(m),Nθ(m))

i(θ(m),1) ··· i(θ(m),Pθ(m))
· δL

k

reduces to the very simple δx
k(θ(q),1)

δL′

k(θ(q),1)
= δL

x , where the k-index is a substitute for

an i- or j-index, depending on whether the literal for the component θ(q) is positive
or negative as before. By the design of the algorithm, this final value x is assured of
being not equal to L; and therefore it must be the case that δL

x = 0 as desired.

Multiplying a zero tensor with any other tensor results in another zero tensor, and as such
we know that

δ
jζ(1,1) ··· jζ(M,PM)

i(1,1) ··· i(M,PM)
·
∏M

m=2 (cm)
j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
= 0

j(1,1) ··· j(1,N1)

i(1,1) ··· i(1,P1)
.

Since τ
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM)
is merely a linear combination of tensors like δ

jζ(1,1) ··· jζ(M,PM )

i(1,1) ··· i(M,PM)
, and ζ was

arbitrary, we know that

τ
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM)
·
∏M

m=2 (cm)
j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
= 0

j(1,1) ··· j(1,N1)

i(1,1) ··· i(1,P1)
.

This means that τ
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM)
< [[F]] (Bn,Bn)Val, and so τR does not meet the criteria to be

found in GC [I, [[F]] (Bn,Bn)]. The MLL− transformation τ in C is therefore unable to be
translated into GC either.

4.5. Uniqueness. Non-simple linear combinations of two or more proof structures can
never be proof nets themselves. Because of this, their representations must be demonstrated
to have been eradicated from the categorical model by the double glueing construction
before we can declare MDNF full completeness proved.

The sections above allow us to take as fact that every MLL− transformation in the glued
category GC is not only the representation of a linear combination of proof structures, but
a linear combination of proof nets. Furthermore, it is also known that the scalars that each
of the proof nets being modelled is multiplied by must sum to the semiring multiplicative
unit 1. Interestingly, the information here is sufficient to provide MDNF full completeness
results for a number of categories of the form GC for some categoryC: namely those whose
semiring of scalars have the property that if a sum

∑

i si happens to equal 1, then there is
exactly one x such that sx = 1, and every other si = 0. An example of this type of category
is the category of semimodules overN.

However, such grandiose claims cannot be written about the majority of compact
closed categories with finite biproducts. In particular, the categories Rel and FDVecF,
which are the examples investigated in [Tan97] in detail, do not benefit from having this
property. A more comprehensive proof for uniqueness is required, and this unsurprisingly
takes the same combinatorial form as seen throughout this chapter. We show the intuition
to the proof below.

For the sake of the coming argument, we assume that we do not have the result from
Lemma 4.2 (we use it in a more restricted form later). Suppose we have an MLL− transfor-
mation C which can be thought of as representing the sum of the two sets of axiom links
over the formula below, itself being described by a functor F.
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L M (L⊥ ⊗ L⊥)M L⊥
λ2

λ1

Both linkings successfully describe proof nets for the formula, and so we are looking
at a scenario concerning a linear combination of proof nets. The tensor representations
of the two linkings λ1 and λ2, given by the red and blue linkings respectively, using

the standard indices for each literal, are ¯(λ1)
j(2,1) j(2,2)

i(1,1) i(3,1)
= δ

j(2,1) j(2,2)

i(1,1) i(3,1)
and ¯(λ2)

j(2,1) j(2,2)

i(1,1) i(3,1)
= δ

j(2,2) j(2,1)

i(1,1) i(3,1)

respectively. The description of the linear combination of proof nets being discussed is

Λ̄
j(2,1) j(2,2)

i(1,1) i(3,1)
= δ

j(2,1) j(2,2)

i(1,1) i(3,1)
+ δ

j(2,2) j(2,1)

i(1,1) i(3,1)
.

It is simple enough to find partial permutations for both of the first two blocks in the

formula of some order which produces a constant tensor when composed with λ̄1
j(2,1) j(2,2)

i(1,1) i(3,1)

yet creates a zero tensor when composed with λ̄2
j(2,1) j(2,2)

i(1,1) i(3,1)
. If we let (u1)i(1,1)

= δ1
i(1,1)

and

(u2) j(2,1) j(2,2)
= δ1 2

j(2,1) j(2,2)
, then

¯(λ1)
j(2,1) j(2,2)

i(1,1) i(3,1)
(u1)i(1,1)

(u2) j(2,1) j(2,2)
= δ

j(2,1) j(2,2)

i(1,1) i(3,1)
δ1

i(1,1)
δ1 2

j(2,1) j(2,2)

= δ12
1i(3,1)
= δ2

i(3,1)

¯(λ2)
j(2,1) j(2,2)

i(1,1) i(3,1)
(u1)i(1,1)

(u2) j(2,1) j(2,2)
= δ

j(2,2) j(2,1)

i(1,1) i(3,1)
δ1

i(1,1)
δ1 2

j(2,1) j(2,2)

= δ21
1i(3,1)
= 0i(3,1)

By symmetry, it must also be possible to reverse this effect by letting (v1)i(1,1)
= δ1

i(1,1)
and

(v2) j(2,1) j(2,2)
= δ3 1

j(2,1) j(2,2)
.

¯(λ1)
j(2,1) j(2,2)

i(1,1) i(3,1)
(v1)i(1,1)

(v2) j(2,1) j(2,2)
= δ

j(2,1) j(2,2)

i(1,1) i(3,1)
δ1

i(1,1)
δ3 1

j(2,1) j(2,2)

= δ31
1i(3,1)
= 0i(3,1)

¯(λ2)
j(2,1) j(2,2)

i(1,1) i(3,1)
(v1)i(1,1)

(v2) j(2,1) j(2,2)
= δ

j(2,2) j(2,1)

i(1,1) i(3,1)
δ1

i(1,1)
δ3 1

j(2,1) j(2,2)

= δ13
1i(3,1)
= δ3

i(3,1)

There are two significant points in the development of these partial permutations.
Firstly, letting (u ∪ v)i = ui · vi (not using Einstein notation), the unions w1 = u1 ∪ v1 and
w2 = u2 ∪ v2 are both partial permutations, where uI ∪ vI = 0 if uI = 0 = vI and 1 otherwise.

Secondly, the constant tensors created by the compositions ¯(λ1)
j(2,1) j(2,2)

i(1,1) i(3,1)
(u1)i(1,1)

(u2) j(2,1) j(2,2)
and

¯(λ2)
j(2,1) j(2,2)

i(1,1) i(3,1)
(v1)i(1,1)

(v2) j(2,1) j(2,2)
are not identical. The effect that these properties together

have is that we can find a pair of partial permutations which act on the tensor sum
¯(λ1)

j(2,1) j(2,2)

i(1,1) i(3,1)
(v1)i(1,1)

(v2) j(2,1) j(2,2)
+ ¯(λ2)

j(2,1) j(2,2)

i(1,1) i(3,1)
(u1)i(1,1)

(u2) j(2,1) j(2,2)
, and the resulting tensor is the

sum of two constant tensors where the constants are different (meaning they cannot inter-
fere with one another and cancel each other out).

Λ̄
j(2,1) j(2,2)

i(1,1) i(3,1)
(w1)i(1,1)

(w2) j(2,1) j(2,2)
= δ

j(2,1) j(2,2)

i(1,1) i(3,1)
(u1)i(1,1)

(u2) j(2,1) j(2,2)
+ δ

j(2,2) j(2,1)

i(1,1) i(3,1)
(v1)i(1,1)

(v2) j(2,1) j(2,2)

= δ2
i(3,1)
+ δ3

i(3,1)
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There are clearly two non-zero entries in the resultant tensor, which means we can infer

that the tensor Λ̂ cannot belong to the set of values F(An,An) for any number n ≥ 3.
The idea behind the coming proof can be extrapolated from this very simple example

with relative ease. Given an MLL− transformation τ in C modelling a non-simple linear
combination of proof nets, we can show it does not manifest itself in any form in GC. An
algorithm is given which takes linkings being described by τ and creates partial permu-
tations for all bar one of the blocks in the formula such that composing them with the
tensor representation of two axiom links leaves a constant tensor, minimising interference
between tensor representations of each linking involved. Composing these permutations
with the a tensor representation of the linear combination of all the axiom links gives a
tensor containing more than one non-zero entry, and therefore the tensor τnI is not in
F(An,An)Val for some n, thus τ cannot be found in GC. We start by giving the algorithm
which begins this process.

Algorithm 4.15. Input: A non-trivial linear combination of MDNF proof nets for a sequent

containing M blocks, the mth of which having size Tm for each m.
Output: A number n ∈ N+; tensors c1, . . . , cM such that cm

i1 ···iTm
∈ PPerm(Tm, n) for each m

except for one leaf.

(1) Let λ1 and λ2 be two distinct sets of axiom links in the given linear combination of
MDNF proof structures. We set the valencies v1, . . . , vM such that vm = Tm for all
m ∈ [M], except for the last leaf, block l say, for which vl = 0. We let i = 0 and k = 1.

(2) Choose the first block m with vm = 1.
(a) If one does exist, then mark the sole literal not yet allocated a number as an ‘exit’

and go to Step 3.
(b) If there are no more blocks of valency 1, create a new Tm tuple x for each block m

in the component, and let xi = ui for every i ∈ [Tm], where ui is the label given to

the ith literal of the block. Remove all the labels. If k = 1, increment k, reset the
valencies and restart Step 2; otherwise go to Step 4.

(3) Check to see whether the numbers given to each of the non-exit literals in the block
correspond exactly to those of a tuple t = (t1, . . . , tTm) already associated with the block.
(a) If so, then assign the final unused number in t to the exit literal.
(b) If not, increment i and then assign the new value of i to the exit literal.

Assign the number to the literal with which the exit literal shares an axiom link in λk.
Decrement the valencies of both block m and the the block with which the exit literal
of block m is linked by an axiom link in λk. Restart Step 2.

(4) Declare that n = i, and we state that for each m ∈ [M],

(cm)i1 ···iTm
=

{

1 if (i1, . . . , iTm) is a tuple for m
0 otherwise.

The algorithm above certainly terminates and produces partial permutations. By virtue
of the proof structures being described by λ1 and λ2 being acyclic, there is always a block
with valency 1 at every stage of the algorithm for a single value of k when one is needed
until all the blocks bar leaf l have been visited. This assures that each block is considered in
Step 2 exactly twice, and therefore at most two entries are found in each tensor of a block
m , l. On top of that, at the point where all bar one of the positions in a new tuple have
been decided when k = 2 it is checked whether they all correspond exactly to the first tuple
created when k = 1. If they do then the second tuple is completed to be a clone of the first;
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if not then a completely new number is used in the unfilled position. This ensures that
there is never a situation where the two tuples differ in exactly one coordinate, and as such

the tuples c1, . . . , cM (excluding cl) have to be partial permutations.
The partial permutations created need to have the effect of annihilating tensor represen-

tations of all possible axiom links on a sequent other than the two that have been selected
for use in Algorithm 4.15. Fortunately, the algorithm does do this naturally, and in fact
makes sure that the representations of λ1 and λ2 only make use of one non-zero entry in
each of the permutations.

Example 4.16. Consider the sum of the three linkings λ1, λ2 and λ3 (given in red, blue and
green respectively) in the diagram below.

L M (L⊥ ⊗ L⊥)M (L ⊗ L ⊗ L⊥)M L M (L⊥ ⊗ L⊥)M L

λ3

λ2

λ1

The tensor representation of this linear combination is

δ
j(2,1) j(2,2) j(5,1) j(3,1) j(5,2)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
+ δ

j(2,2) j(2,1) j(5,1) j(3,1) j(5,2)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
+ δ

j(2,1) j(2,2) j(5,2) j(3,1) j(5,1)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
.

We apply Algorithm 4.15, choosing λ1 and λ2 as the two (synonymous) input linkings.

1. Block 6 is the right-most block containing only one literal, so the valencies of each
block are given as follows:

v1 = 1, v2 = 2, v3 = 3, v4 = 1, v5 = 2, v6 = 0

2 & 3. We deal first with λ1 (k = 1). Block 1 has valency 1, and no tuples have been given
to it already (as is always the case when k = 1), so the number 1 is allocated to it.

Continuing along the same lines, looking for blocks of valency 1 from left to right
at each iteration of Step 2, we obtain the following tuples.

L M (L⊥ ⊗ L⊥)M (L ⊗ L ⊗ L⊥)M L M (L⊥ ⊗ L⊥)M L

λ1

[1] [1 , 2] [2 , 4 , 3] [3] [4 , 5] [5]

2 & 3. The same is done for k = 2, i.e. for the linking λ2, only making sure tuples differing
in exactly one position from the ones created when considering λ1 do not occur
(which in this case only occurs at leaf blocks 1 and 3). We obtain the following:

L M (L⊥ ⊗ L⊥)M (L ⊗ L ⊗ L⊥)M L M (L⊥ ⊗ L⊥)M L

λ2

[1] [6 , 1] [6 , 7 , 3] [3] [7 , 8] [8]

4. Joining the two sets of tuples together, we get
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L M (L⊥ ⊗ L⊥)M (L ⊗ L ⊗ L⊥)M L M (L⊥ ⊗ L⊥)M L

λ3

λ2

λ1

[1] [1 , 2] [2 , 4 , 3] [3] [4 , 5] [5]

[1] [6 , 1] [6 , 7 , 3] [3] [7 , 8] [8]

Therefore the tensors u1, . . . , u5 can now be formed

(u1)i(1,1)
= δ1

i(1,1)

(u2) j(2,1) j(2,2)
= δ1 2

j(2,1) j(2,2)
+ δ6 1

j(2,1) j(2,2)

(u3)i(3,1)i(3,2) j(3,1)
= δ2 4 3

i(3,1)i(3,2) j(3,1)
+ δ6 7 3

i(3,1)i(3,2) j(3,1)

(u4)i(4,1)
= δ3

i(4,1)

(u5) j(5,1) j(5,2)
= δ4 5

j(5,1) j(5,2)
+ δ7 8

j(5,1) j(5,2)

(u6)i(6,1)
= δ5

i(6,1)
+ δ8

i(6,1)

Composing the five partial permutations with the representation ofλ1 ends with a constant
tensor.

¯(λ1)
j(2,1) j(2,2) j(3,1) j(5,1) j(5,2)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
·

5
∏

m=1

um
imjm
= δ

j(2,1) j(2,2) j(5,1) j(3,1) j(5,2)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
· δ1

i(1,1)
(δ1 2

j(2,1) j(2,2)
+ δ6 1

j(2,1) j(2,2)
)

(δ2 4 3
i(3,1)i(3,2) j(3,1)

+ δ6 7 3
i(3,1)i(3,2) j(3,1)

)δ3
i(4,1)

(δ4 5
j(5,1) j(5,2)

+ δ7 8
j(5,1) j(5,2)

)

= δ12435
1243i(6,1)

+ δ12738
1243i(6,1)

+ δ12435
1673i(6,1)

+ δ12738
1673i(6,1)

+ δ61435
1243i(6,1)

+ δ61738
1243i(6,1)

+ δ61435
1673i(6,1)

+ δ61738
1673i(6,1)

= δ5
i(6,1)

With similar equations it is easily shown that ¯(λ2)
j(2,1) j(2,2) j(3,1) j(5,1) j(5,2)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
·
∏5

m=1(um)imjm = δ
8
i(6,1)

, and

that ¯(λ3)
j(2,1) j(2,2) j(3,1) j(5,1) j(5,2)

i(1,1) i(3,1) i(3,2) i(4,1) i(6,1)
·
∏5

m=1(um)imjm = 0i(6,1)
. The components affected by the tensor rep-

resentations of λ1 and λ2 are different from one another, meaning they do not interfere with
one another. Similarly, the tensor representation for λ3 and partial permutations reduce
to the zero morphism, and therefore has no effect on any component. The permutations
composed with the tensor representation for the sum of all the linkings is therefore found
to be δ5

i(6,1)
+ δ8

i(6,1)
, which has two non-zero entries. This proves that the linking combination

cannot be modelled in GC.
It can also be seen that this lack of interference between different proof nets in the final

result means that scalar multiples of the three linkings in question in the example can be
summed together in a linear combination and the same concept of proof still holds. If
we consider an MLL− transformation τ′ in the underlying category of such a form, then
composing τ′nI with the same five partial permutations for suitable n results in a tensor with
two non-zero entries, with the fifth and eighth positions filled by the scalars multipled to
λ1 and λ2 repectively. The exact values within the entries are irrelevant—it only matters
that two are non-zero.
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Lemma 4.17. Let τ : KI −→ F be an MDNF transformation in a compact closed category C with
finite biproducts modelling a linear combination of at least two distinct proof nets, {λa : a ∈ [K]} say,

over the MDNF formula modelled by F containing M blocks, the lth of which is the last leaf. Letting
λ1 and λ2 be the two primary inputs to Algorithm 4.15, producing M − 1 partial permutations
{(um)i(m,−)j(m,−)

: m ∈ [M]\{l}}, we find that

(λ̄1)
j
i ·
∏

m,l

(um)i(m,−)j(m,−)
= δx

k , and

(λ̄2)
j
i ·
∏

m,l

(um)i(m,−)j(m,−)
= δ

y
k

where x and y are the first and second values offered to leaf l in the algorithm, and k is the index i(l,1)

or j(l,1), depending on the polarity of the literal denoted by leaf l. Furthermore, for every a > 2,

(λ̄a)
j
i ·
∏

m,l

(um)i(m,−)j(m,−)
= 0k

Proof. The tensor representation of a linking of a proof net is represented by a product of
Kronecker deltas, where two indices are in the same delta if the literals to which they are
associated are linked by an axiom link. As such, if two indices i(mi,li) and j(m j ,l j) associated

with literals connected by an axiom link in λ1 are forced to be given different values p and

q say, then we know that (λ̄1)
j
i · δ

p
i(mi ,li)

· δ
q
j(mj,l j)

= 0
j′

i′ for appropriate index sets i′ and j′.

The partial permutations, containing either one or two non-zero entries, can be mul-

tiplied together and the distribution law can be used to give a sum of 2M′ products of
constant tensors (M′ being the number of blocks given partial permutations with two non-
zero entries), with each index being given a number except k. These 2M′ assignments of
numbers are determined by the combinations of first and second tuples associated with
the sets of indices for each block—Example 4.16 provides a good example of this.

Of these combinations, only two are capable of being composed with a tensor repre-
sentation of a set of axiom links to create a non-zero tensor: the one where all the constants
are chosen to be from the top tuples of each block in the algorithm; and the one from all
the bottom tuples. This is because the algorithm continuously uses new numbers when an
arbitrary number must be selected (Step 3(b)), and so mixing up the top and bottom tuples
leaves more than one number given to only one index, thus ensuring it cannot be part of an
axiom link pairing without creating a zero tensor. An example of this argument in action
can be seen in Example 4.16 at the start of Step 4: we see that (1, 2) of block 2 and (6, 7, 3) of
block 3 only have one value 2 within the two of them together.

For the tensor representation ofλ1, only the combination developed from the top tuples
gives a non-zero tensor. The second tuples are defined so that two literals are only given
the same number in their tuples if they share an axiom link in λ2; and since λ1 and λ2

are distinct, there must be at least one pair of literals joined by an axiom link in λ1 which
does not exist in λ2, thus leading to a zero tensor. The one index from λ̄1 which does
not have a number assigned to it by a partial permutation is clearly k, which is connected
to the sole literal in a block other than l assigned the number x in the top tuple. The

composition of (λ̄1)
j
i with the contsant tensors for relating to the top tuples from the M − 1

blocks which are not block l therefore reduces to a product of Kronecker deltas of the form
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δz
z for various z and δx

k . Since δz
z = 1 for all z, this becomes simply δx

k ; and so it follows that

(λ̄1)
j
i ·
∏

m,l(u
m)i(m,−)j(m,−)

= δx
k as desired.

The argument for the representation of λ2 is fundamentally identical, replacing the
bottom tuples for the top tuples throughout the above paragraph. For every other λa in the
linear combination when composed any one of the 2M′ − 2 combinations mixing top and
bottom tuples equates to zero for the same reasons as for λ1 and λ2 before. Each of them is
also distinct from both λ1 and λ2 by definition, meaning that neither the combination of all
the top tuples nor that of the bottom tuples induce constant tensors which compose with
λ̄a to give a non-zero tensor due to the same principle as why the bottom tuples do not for
λ̄1.

We are now able to give the proof for a lemma proving the simplicity of the linear
combinations of proof nets capable of being modelled in GC.

Proposition 4.18. Every MDNF transformation in GC modelling a linear combination of proof
nets is modelling a unique proof net with scalar 1.

Proof. Let F be an MDNF formula, and consider [[F]](An,An) for arbitrary n, where An is
defined as in Section 4.1. Again, we use the criteria also given in Section 4.1 that the tensor
representation of an arrow f ∈ C[I, |[[F]](An,An)|] must satisfy in order to be found in GC.
Suppose that τ is an MDNF transformation in Cwhich models a linear combination of two
or more proof nets. Then, for R = (nI, . . . , nI), τR once again takes the tensorial form

τ
j(1,1) ··· j(M,NM)

i(1,1) ··· i(M,PM)
=
∑

β sβ · δ
jβ(1,1) ··· jβ(M,PM)

i(1,1) ··· i(M,PM )

and we know that there are two bijections, ζ1 and ζ2 say, corresponding to axiom link
sets λ1 and λ2 respectively, where sζ1

, 0 , sζ2
. We use these two sets of axiom links in

Algorithm 4.15 to produce partial permutations {cm : m ∈ [M]} for all of the blocks, and to
fix the required size of the number n ∈N+ to prove the lemma.

Let x1 and x2 be the first and second tuple values associated with the last leaf (block l)
from the algorithm. Then we find that for k ∈ {1, 2}

δxk
r(l,1)
· τ

j
i ·
∏

m,l(c
m)

j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
= sζl

, 0

where the index r(l,1) equals i(l,1) or j(l,1) depending on whether the literal of leaf l is positive
or negative.

We have shown that there are at least two non-zero entries in
τ

j
i ·
∏

m,l(c
m)

j(m,1) ··· j(m,Nm)

i(m,1) ··· i(m,Pm )
, and so τ

j
i < [[F]](An,An)Val. The arrow τR ∈ C[I, |[[F]](An,An)|] does

not therefore exist in GC[I, [[F]](An,An)], and so τ is not an MLL− transformation.
From the above, we know that every MLL− transformation in GC models a scalar

multiple of a cut-free proof net. Lemma 4.2 ensures that those scalar multiples with scalar
not equal to 1 are not possible, and so we have proved the result.

Theorem 4.19. If C is a compact closed category with biproducts satisfying feeble full completeness,
then GC satisfies MDNF full completeness.
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4.6. Extending to MLL− Full Completeness. The previous subsections contain results
which combine to produce a full completeness result for MLL− transformations to target
functors describing sequents in the multiplicative disjunctive normal form. Although a
strong connection between any family of MLL− transformations and proof nets in MLL−

is advantageous, it is certainly no substitute for a ‘complete’ MLL− full completeness
theorem. One of the remarkable properties of the categories in which we are interested is
that the earlier MDNF full completeness proof can be extended using one lemma and a
couple of supplementary algorithms so that it works for all MLL− functors, giving the full
completeness theorem originally proposed.

As stated in Chapter 2.2, in every ∗-autonomous categoryD there are natural transfor-
mations

wLL = (wLL
A,B,C : A ⊗ (BM C)→ (A ⊗ B)M C)A,B,C∈D

wLR = (wLR
A,B,C : A ⊗ (BM C)→ (A ⊗ C)M B)A,B,C∈D

wRL = (wRL
A,B,C : (AM B) ⊗ C→ BM (A ⊗ C))A,B,C∈D

wRR = (wRR
A,B,C : (AM B) ⊗ C→ AM (B ⊗ C))A,B,C∈D,

and these are canonically isomorphic to appropriate compositions of the associativity and
symmetry isomorphisms α and σ if D happens to be compact closed, making them bijec-
tions (no two distinct MLL− transformations compose with the same weak distributivity
transformation to give the same result). The tensor representations of these natural isomor-
phisms are both described solely by Kronecker deltas as demonstrated in Section 3.2. Due
to the small diagrammatic argument on page 5, an MLL− transformation τ in C may be
composed with a sequence of natural transformations built from the weak distributivity
transformations and the associativity and symmetry isomorphisms of C to produce an
MDNF transformation τ′. Furthermore, τ describes an MLL− transformation in GC only if
τ′ does.

Proposition 4.20. Let τ : KI
✲ F be an MLL− transformation in C, and let w̄ : F ✲ G be

a natural transformation built from the weak distributivity, associativity and symmetry natural
transformations of C. Then τ does not exist in GC if w̄ ◦ τ does not.

Proof. The transformation w̄ is in GC, and so we know that if τ is dinatural in the glued
category then so does w̄ ◦ τ, since both are well-defined in GC. The statement of the
proposition is the contrapositive of this fact.

It is always possible to find a natural transformations which preserves the cyclicity of
at least one modelled cyclic proof structure between MLL− transformations. As such it is
also possible to find a composition of natural transformations which not only preserves the
existence of a cyclic proof structure modelled but ensures at least one of these cycles never

passes through a M-vertex in its switching13.

Algorithm 4.21. Input: An MLL− transformation τ : KI −→ F describing a linear combi-
nation of proof structures over a common sequent with at least one structure breaking the
acyclicity criterion.
Output: An MLL− transformation τ′ describing a linear combination of proof structures
over a common sequent with at least one structure containing a switching cycle passing
through no M-vertices.

13In fact, if the cycle does not pass through aM-vertex the cycle exists in all switchings of the proof structure
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(1) Select one of the proof structures associated with τ which fails the acyclicity criterion.
Choose a cycle of minimum length from one of its switchings. We let τ0 = τ and F0 = F,
and we name the cycle C0. Let n = 0, and whenever we refer to subformulae called X,
Y and Z, we name their lowest vertices as in a parse tree x, y and z respectively.

(2) Search for a position in Fn of the form X ⊗ (Y M Z) for some subformulae X, Y and Z,
the corresponding edge ⊗ −M of which is in the cycle Cn.
(a) If one should exist, and Cn passes through y, then let

τn+1 =
(

1 · · ·wLL · · · 1
)

◦ τn.

The functor Fn+1 is defined to be the target functor of τn+1, which is the same as Fn

except that the subformula X ⊗ (YM Z) is replaced by (X ⊗ Y)M Z. The cycle Cn+1

passes through the same vertices as those in Cn in the identical sections of Fn+1 and
Fn. If Cn contains the path x−⊗−M− y, then the cycle Cn+1 is completed by adding
x − ⊗ − y; otherwise, M − ⊗ − y is used to connect the ends together. Increment n
and restart Step 2.

(b) If one should exist, but Cn passes through z instead, let

τn+1 =
(

1 · · ·wLR · · · 1
)

◦ τn.

The functor Fn+1 is defined similarly to before: X⊗(YM Z) is replaced by (X ⊗ Z)MY.
The cycle Cn+1 passes through the same vertices as those in Cn in the identical
sections of Fn+1 and Fn. If Cn contains x−⊗−M−z, then the cycle Cn+1 is completed
by adding the path x − ⊗ − z; otherwise, M − ⊗ − z. Increment n and restart Step 2.

(c) If one does not exist, then move to Step 3.
(3) Search for a position in Fn of the form (XM Y) ⊗ Z for some subformulae X, Y and Z,

the corresponding edge M − ⊗ of which is in the cycle Cn.
(a) If one should exist, and Cn passes through x, then let

τn+1 =
(

1 · · ·wRL · · · 1
)

◦ τn.

The functor Fn+1 is defined to be the target functor of τn+1, which is the same as Fn

except that the subformula (X M Y) ⊗ Z is replaced by Y M (X ⊗ Z). The cycle Cn+1

passes through the same vertices as those in Cn in the identical sections of Fn+1 and
Fn. If Cn contains the path x−M−⊗− z, then the cycle Cn+1 is completed by adding
x − ⊗ − z; otherwise, x − ⊗ − M is used to connect the ends together. Increment n
and restart Step 2.

(b) If one should exist, but Cn passes through y instead, let

τn+1 =
(

1 · · ·wRR · · · 1
)

◦ τn.

The functor Fn+1 is defined similarly to before: (X M Y)⊗Z is replaced by XM(Y ⊗ Z).
The cycle Cn+1 passes through the same vertices as those in Cn in the identical
sections of Fn+1 and Fn. If Cn contains y−⊗−M−z, then the cycle Cn+1 is completed
by adding the path y−⊗− z; otherwise,M−⊗− z. Increment n and go back to Step
2.

(c) If one does not exist, then define τ′ = τn, F′ = Fn and C′ = Cn

Intuitively it is simple to see why this algorithm works. Suppose, without loss of generality,
that one of the scenarios expected for Step 2(a) unfolds (dual arguments can be given for
each of the other four situations). We can think of the proof structure with the cycle Cn for
some n taking the form of one of the left-hand diagrams in Figures 7.1 and 7.2 below.
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Figure 1: The effect of Algorithm 4.21

X Y Z

x y z

M

⊗

X Y Z

x y z

⊗

M

Figure 2: The effect of Algorithm 4.21

X Y Z

x y z

M

⊗

X Y Z

x y z

⊗

M

The diagrams highlight the two possible key paths from Cn in Fn (which also happen
to the the edges which still exist in one of the switchings causing the cycle).

• In the first situation the path is composed of the following: the switching path linking
the subformulae X and Y, which may pass through any number of other subgraphs of a
switching; the edge from x to the ⊗-vertex; the switch edge from the M-vertex to y; and
the edge between the ⊗- and M-vertices denoting the synonymous connectives written
explicitly in X ⊗ (Y M Z). It is trivially true that there must be a path from the literals
connected to the highlighted axiom link through their respective subformulae X and Y
to x and y.

The natural transformation wLL converts that proof structure from Figure 7.1 and the
cycle described within it to the one to its right. The weak distributivity transformation
does not affect which literals are connected to one another via an axiom link, and also
does not affect any subformulae of Fn except X⊗ (YMZ). The only change is a ‘shuffling’
of the ⊗- and M-vertices in the primary subformula being considered. The cycle itself
can be thought of as having been reduced by the algorithm so it contains all the same
vertices except possibly for the M-vertex, which may have been removed.
• In the second scenario we have a slightly longer path: the switching path linking the

lowest ⊗-vertex in the subgraph back to Y at the top, which may pass through any
number of axiom links; the switch edge from theM-vertex to y; and the edge between the
⊗- andM-vertices denoting the synonymous connectives written explicitly in X⊗ (YMZ).

The natural transformation wLL converts the left proof structure of Figure 7.2 to the
one on its right, with the cycle highlighted in the second diagram still existing. In this
situation the length of the cycle has not been reduced, but a ⊗-vertex has effectively been
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moved further up the proof structure, which creates new possibilities for scenarios such
as that seen in the previous point to be found.

The lowest vertices in a cycle in the switching of a proof structure must be ⊗-vertices, with
the cycle flowing through both of its argument edges. Whenever we meet such a situation
as seen in the first case, the length of the cycle is reduced by one: a M-vertex is removed.
In the second case the length of the cycle is not changed, but the alteration in the form of
the cycle in effect pushes the M-vertex further down the structure until it inevitably meets
a ⊗-vertex of maximal depth, at which point the vertex is removed.

Since the other four steps 2(b), 3(a) and 3(b) of Algorithm 4.21 are identical in concept
to Step 2(a) they also steadily remove these vertices. Since the algorithm stops once there
are no M-vertices in the cycle, and eventually in the worst case all M-vertices will find
themselves under the ⊗-vertices, this principle assures termination.

It is also always possible to produce an MDNF transformation from an MLL− transfor-
mation using an algorithm such as the one below.

Algorithm 4.22. Input: An MLL− transformation τ : KI −→ F describing a linear combina-
tion of proof structures over a common sequent.
Output: An MDNF transformation τ′ describing a linear combination of proof structures
over a common sequent.

An algorithm which takes an MLL transformation describing a linear combination
of proof structures over a common sequent, and produces another MLL transformation
representing a linear combination of proof structures, only over an MDNF sequent. The
new sequent will preserve the number of tensor and par operators within the formulae.

(1) Let τ0 = τ : KI −→ F and F0 = F. Let n = 0, and whenever we refer to subformulae
called X, Y and Z, we name their lowest vertices as in a parse tree x, y and z respectively.

(2) Search for any position in Fn of the form X ⊗ (YM Z) for some subformulae X, Y and Z.
(a) If one should exist, then let τn+1 =

(

1 · · ·wLL · · · 1
)

◦ τn. The functor Fn+1 is defined
to be the target functor of τn+1. Increment n and go back to Step 2.

(b) If one does not exist, then move to Step 3.
(3) Search for any position in Fn of the form (X M Y) ⊗ Z for some subformulae X, Y and Z.

(a) If one should exist, then let τn+1 =
(

1 · · ·wRR · · · 1
)

◦ τn. The functor Fn+1 is defined
to be the target functor of τn+1. Increment n and go back to Step 2.

(b) If one does not exist, then let τ̂ = τn, F̂ = Fn and Ĉ = Cn.

Algorithm 4.22 is far simpler than Algorithm 4.21, because there is no need to consider
the preservation of anything: we are merely composing an MLL− transformation with a
number of natural transformations which lead to the creation of an MDNF transformation.
However, it is useful to make the following observation.

Observation 4.23. Let τ : KI −→ F be an MLL− transformation modelling a linear combi-
nation of proof structures over a sequent, at least one of which fails the acyclicity criterion.
Then applying Algorithms 4.21 and 4.22 in that order produces an MDNF transformation
τ′′ modelling a linear combination of proof structures, with at least one being cyclic.

It is now possible to prove MLL− full completeness for GC.

Theorem 4.24. If C is a compact closed category with finite biproducts satisfying feeble full
completeness then GC satisfies MLL− full completeness.



56 A. SCHALK AND H. P. STEELE

Proof. Let τ be an MLL− transformation in C modelling a linear combination of proof
structures, at least one of which is cyclic. Using Algorithms 4.21 and 4.22, we obtain a family
of arrows τ′′ modelling a linear combination of MDNF proof structures, with at least one of
these containing a switching cycle. By Proposition 4.19, τ′′ is not an MDNF transformation
in GC; and therefore it immediately follows from Proposition 4.20 that τ is not either.

If we instead assume that τ models a linear combination of acyclic yet disconnected
MLL− proof structures, Algorithm 4.22 produces an MDNF transformation τ′ when intro-
duced to τ, and this new transformation is also a linear combination of acyclic, disconnected
proof structures. Proposition 4.19 once again allows us to say that τ′—and consequently
τ—does not exist in GC. The same principle can be used for the case where τ is a non-
simple linear combination of proof nets, and so no MLL− transformations not representing
a unique proof net is found in GC.

We can in fact improve on the theorem above greatly with near enough no effort
by making a simple observation. For any choice of category C, the only objects used
in the lemmata in this section are in the sets {An : n ∈ N+} and {Bn : n ∈ N+}; and all
of these are found in the collection of objects for any orthagonality category GEC with
focus S ⊇ 2 = {0I,⊥, ι}. The values and covalues of a GEC-object Z also describe the set of
morphisms between the category’s tensor unit IS = (I, {1I}, S) and Z and between Z and I⊥S
respectively (Fact 2.10). Because of this, the arguments from previous chapters and earlier
in this chapter using the properties of the values and covalues may be replicated verbatim
to give an MLL− full completeness theorem for all categories of this more restricted form.

Theorem 4.25. If C is a compact closed category with finite biproducts satisfying feeble full
completeness then GEC satisfies MLL− full completeness for any S ⊇ {0I,⊥, ι}.

Corollary 4.26. For a tensor-generated compact closed category with biproducts C the category
GC satisfies MLL− full completeness.

Note that biproducts are necessary for this result despite the fact that we are not
addressing the additive connectives here. Indeed, it is very easy to produce a (tensor-
generated) compact closed category without biproducts which does not create a fully
complete model under the double glueing construction (the full subcategory of FDVecF
containing only the tensor unit R for example).

5. MLL−+Mix Full Completeness for G1C

The theorem given in the previous section has the effect of generalising the primary results
found in first four chapters of [Tan97], which concern the categories GRel and GFDVecF for
arbitrary field F of characteristic 0. However, the manner in which Tan proves her theorem
for GRel actually has a positive side effect that the proof above is unable to replicate. The
lemmata proving acyclicity and uniqueness are not stated with an assumption of an already
derived connectedness lemma; and the objects used in the proofs of the acyclicity and
uniqueness are found in the collection of objects in the orthogonality subcategory G1Rel
with focus the singleton {ι} for ι = λI∗ ◦ vI,I,I(ρI), which is defined earlier in Section 3.2.
The category G1Rel is known to be a categorical model of MLL−+Mix, and every dinatural
transformation in G1Rel is inherited from Rel. All these facts together allow us to conclude
the following:



CONSTRUCTING FULLY COMPLETE MODELS OF MULTIPLICATIVE LINEAR LOGIC 57

Fact 5.1. [Tan97] The category G1Rel satisfies MLL−+Mix full completeness14.

This result can in fact also be generalised, though not the same extent as that seen in
Section 4. In this section we demonstrate that the category G1C satisfies MLL−+Mix full
completeness if C is, like Rel, a zero-sum-free compact closed category with biproducts.

Definition 5.2. A semiring S is zero-sum-free if its additive unit 0 is its sole element with an
additive inverse. A compact closed category with finite biproducts is zero-sum-free if it is
enriched over a category SModS for which the S is zero-sum-free.

Though the use of counterexample test objects to show certain MLL− transformations
found in C cannot be seen in the glued category is still abundantly present, the flavour of
the coming proof resembles the deduction of Tan more closely than the earlier proofs:

(§ 5.1) We start by showing that the MLL− transformations which are found in both C and
G1C must model simple linear combinations of proof structures. This is done by
using reducing the problem to one for MLL− functors built using no tensor functors
(Proposition 5.3). By necessity the proof of uniqueness (Proposition 5.6) takes a
slightly less combinatorial shape than before and has a more algebraic feel, with its
basis being simultaneous equations.

(§ 5.2) This is followed by the proof that the proof structures being modelled must also be
acyclic and therefore correct with respect to the Danos-Regnier MLL−+Mix proof net
criterion. Algorithm 5.8 reduces the target to the most simple standard form, leaving
a comparartively simple argument for Proposition 5.10. The theorem immediately
follows.

In spite of the small change in proof style, the index notation for values and covalues of
the objects of the form (nI,U,X) that has been employed greatly in this chapter continues
to be utilised ubiquitously.

5.1. Uniqueness. In this full subcategory of GC in which we now reside, we have restric-
tions on the sets of values and covalues which we may choose for our test objects to prove
certain transformations from the underlying category do not become transformations in
our new location. Every value must compose with every covalue to produce the morphism
ι : I ✲ ⊥ and vice versa. This is remarkably restrictive, primarily because it becomes
harder to find valid test objects which are self-dual and still useful, such as the objects
An and Bn described in Section 4.1 in GC. However, this is counterbalanced by the fact
that categorical models of MLL−+Mix are equipped with the ‘Mix’ natural transformation
Mix : − ⊗ − ✲ − M −, which permits great simplifications to the set of MLL− formu-
lae which must be considered to produce the desired results. The proof of the simplicity
of all linear combinations of proof structures modelled in G1C demonstrates both these
changes to the playing field in the clearest manner.

Proposition 4.20 in the previous section allowed us to simplify the entire of the
MLL− full completeness proof of GC to one for MDNF full completeness. Now using
the mix natural transformation, we can produce a more extreme version of this proposition
whose proof follows from an identical concept, which is possible due to Mix being an
isomorphism in compact closed categories.

14The category in question was actually named S in [Tan97].
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Proposition 5.3. Let τ : KI
✲ F be an MLL− transformation in C, and let w̄ : F ✲ G be

a natural transformation built from the ‘Mix’, weak distributivity, associativity and symmetry
natural transformations of C. Then τ does not translate into G1C if w̄ ◦ τ does not.

For the uniqueness proof the actual connectives that are in each formula being modelled
become irrelevant—only the number of linkings is important. Because of this, a natural
transformation eradicating all uses of the tensor product ‘⊗’, leaving a formula of the form

M
M
m=1(Lφ(m) M L⊥φ(m)), is a reasonable suggestion for w̄ in the above proposition.

Corollary 5.4. Every MLL−+Mix transformation in G1C models a single proof structure if and
only if every MLL−+Mix transformation to a functor leading to objects of the form ParM(L,L) =

M
M
m=1(Lφ(m) M L⊥φ(m)) for some φ : [M] −→ [N] does.

We now follow the same procedure of choosing a single family of objects in G1C,
{Sn : n ∈N+}, where USn = nI for each n, so that the set of values of the object ParM(Sn, Sn)
does not contain the tensor representation of an MLL− transformation modelling a non-
simple linear combination of axiom links. We define each of the Sn as follows:

Sn := (nI, {δix : x ∈ [n]}, {1i}),

where 1i is the tensor with entries equalling 1 for all i. The values and covalues of ParM

can be found from this definition for any M easily.

Lemma 5.5. For each M ∈N+,

• ParM(Sn, Sn)Val

=

{

z
j1 ··· jM
i1 ··· iM

: ∀(x1, . . . , xM) ∈ [n]M ∀k ∈ [M] zi
j ·
∏

m,k(δxm
im

1 jm) ∈ Perm(2, n)
}

• ParM(Sn, Sn)CoVal =

{

∏M
m=1 δ

xm
im

1 jm : (x1, . . . , xM) ∈ [n]M
}

Proof. We follow a similar argument to that seen in Lemma 4.1, which is based around
induction. We start by considering the covalues. The proof that the covalues of Par1(Sn, Sn)
is near enough trivial.

Par1(Sn, Sn)CoVal = (Sn M S⊥n )CoVal = {yi · v j : yi ∈ (Sn)CoVal, (S⊥n )CoVal}

= {δx
i 1 j : x ∈ [n]}

It now takes minimal effort to show that the result desired is true for

ParM+1(Sn, Sn) = ParM(Sn, Sn)M Par1(Sn, Sn)

whilst assuming the claim is true for ParK(Sn, Sn) for all K ≤M.

ParM+1(Sn, Sn)CoVal = (ParM(Sn, Sn)M Par1(Sn, Sn))CoVal

= {t
j
i · u

jM+1

iM+1
: t

j
i ∈ ParM(Sn, Sn)CoVal, u

jM+1

iM+1
∈ Par1(Sn, Sn)CoVal}

=

{(

∏M
m=1 δ

xm
im

1 jm

)

· δxm
iM+1

1 jm : (x1, . . . , xM) ∈ [n]M, xM+1 ∈ [n]
}

=

{

∏M+1
m=1 δ

xm
im

1 jm : (x1, . . . , xM+1) ∈ [n]M+1
}
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Now we deal with the values of these object amalgamations. The base case shows us
that the values of Par1(Sn, Sn) are the permutations over [n].

Par1(Sn, Sn)Val = (Sn M S⊥n )Val = {z
j
i : ∀yi ∈ (Sn)CoVal z

j
i yi ∈ (S⊥n )Val,

∀v j ∈ (S⊥n )CoVal z
j
i v j ∈ (S⊥n )Val}

= {z
j
i : ∃y ∈ [n] z

j
i 1i = δ jy, ∀y ∈ [n]

z
j
iδ jy = z

y
i = 1i}

= Perm(2, n)

The inductive case follows.

ParM+1(Sn, Sn)Val = (ParM(Sn, Sn)M Par1(Sn, Sn))Val

= {z
j jM+1

iiM+1
: ∀w

j
i ∈ ParM(Sn, Sn)CoVal z

j jM+1

iiM+1
w

j
i ∈ Par1(Sn, Sn)Val,

∀u
jM+1

iM+1
∈ Par1(Sn, Sn)Val z

j jM+1

iiM+1
u

jM+1

iM+1
∈ ParM(Sn, Sn)Val}

= {z
j jM+1

iiM+1
: ∀(x1, . . . , xM) ∈ [n]M z

j jM+1

iiM+1
·
∏M

m=1 δ
xm
im
∈ Perm(2, n),

∀xM+1 ∈ [n] z
j jM+1

iiM+1
δmM+1

iM+1
1 jM+1

∈ ParM(Sn, Sn)Val}

= {z
j jM+1

iiM+1
: ∀x ∈ [n]M z

j jM+1

iiM+1
δx

i ∈ Perm(2, n),

∀xM+1 ∈ [n] z
j jM+1

iiM+1
δmM+1

iM+1
1 jM+1

∈ {q
j
i : ∀x ∈ [n]M ∀k ∈ [M]

qi
j ·
∏

m,k(δxm
im

1 jm) ∈ Perm(2, n)}}

= {z
j1 ··· jM+1

i1 ··· iM+1
: ∀(x1, . . . , xM+1) ∈ [n]M+1 ∀k ∈ [M + 1]

zi
j ·
∏

m,k(δxm
im

1 jm ) ∈ Perm(2, n)}

Having access to the form of the values of ParM(Sn, Sn) for each value of M and n makes it
simple enough to prove uniqueness for G1C as wished.

Proposition 5.6. Every MLL− transformation in G1C for zero-sum-free C models a unique proof
structure.

Proof. We show that transformations are as desired for the MLL− functor ParM; Corollary
5.4 forces the result to work for all MLL− functors. At this point we notice that Z = (I, {1}, {1})
utilised primarily in Section 4.2 is actually S1, and so is an object in G1C. We can therefore
use Lemma 4.2 to say that the sum of every scalar involved in a linear combination of proof
structures modelled in the category totals 1.

The formula Par1(L) is equal to LM L⊥, meaning only one valid set of axiom links can
be placed on its formula, namely the linking containing only one axiom link connecting the
only two literals. Since every MLL− transformation in the category must model a linear
combination of proof structures, this means that a transformation to Par1 has to model a
scalar multiple of this one axiom link, and therefore have a tensor representation s · δi j for
some s ∈ C[I, I]. Lemma 5.5 tells us that Par1(Sn, Sn)Val = Perm(2, n) for all n ∈ N+, which
only contains s · δi j if s = 1I. The conclusion of this is that non-identity scalar multiples of
the axiom link are not modelled by a transformation in the glued category.
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Now we consider the more general case of when M ≥ 2. It is possible to follow the
argument through for any n ≥M, so for the sake of simplicity we take ParM(SM). Lemma 5.5
states that the tensors in ParM(SM)Val are those which create full permutations when any
M− 1 of the M i- j-index pairs are composed with matrices of the form δx

i 1 j for each x. This
leads to many tensor equations, but due to the symmetry and addition properties noted
in Section 3.2 we may choose to restrict the equations somewhat without loss of generality.
We only consider equations for which each δx

ik
composing with the value tensors are such

that x = k. This leaves M simultaneous equations to be solved over the semiring C[I, I]: for
each k ∈ [M] there must be a vector of values y ∈ [n]M such that

ω
j1 ··· jk ··· jM
1 ··· k ···M ·

∏

m,k

1 jm ∈ δ jk yk
.

Again simplifying using the ideas from Section 3.2, we can look solely at the entries where
the one remaining i-indexed position, the kth position, also considered at k. This means that

the only entries of ω which are now of interest are of the form
∑

p∈SM
cp · δ

p(1) ··· p(M)
j1 ··· jM

, where

each p : [M] −→ [M] is a permutation and cp a corresponding scalar. Entries where the
j-indices do not form a permutation of [M] are therefore always zero.

For some set of y ∈ [n]M,
∑

p

cp · δ
p(1) ··· p(k) ··· p(M)
j1 ··· jk ··· jM

·
∏

m,k

1 jm = δ jk yk

This leads to M2 linear equations of consequence, all bar M of which being sums which
have to equal 0. In the context of a zero-sum-free semiring, as C[I, I] is from our original
assumption, each of the values in the sums of these (M2 −M) equations must equal 0.

Let f : [M] −→ [M] be the function which describes the vector y, i.e. for every k,
f (k) = yk. Focusing on an arbitrary k, we find that

∑

p∈SM

cp · δ
p(1) ··· p(M)
j1 ··· jM

·
∏

m,1

1 jm = 0 when jk , yk.

Therefore, by zero-sum-freeness, for every permutation p whenever jk , yk,

cp · δ
p(1) ··· p(M)
j1 ··· jM

= 0.

By symmetry, we find that for all p ∈ SM, cp · δ
p(1) ··· p(M)
j1 ··· jM

= 0 unless jk = yk for all

k ∈ [1,M], which forces us to conclude that

ω
j1 ··· jk ··· jM
1 ··· k ···M = c · δ

y1 ··· yM

j1 ··· jM

for some c ∈ C[I, I].
By the form of ω, we already know then that f (x) = yk must form a permutation, and

that
ω

j1 jM
i1 iM
= cp · δ

i f (1) ··· i f (M)

j1 ··· jM
.

The sum of the scalars must be unity, so c = 1; and so the arrow which ω describes is an
instantiation of an MLL− transformation which represents a unique proof structure.
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The proof above can be elucidated somewhat through the use of an example.

Example 5.7. We view the proof of Lemma 5.6 for the MLL− formula Par3(S3, S3) in more
detail.

We assume that ω
j1 j2 j3
1 2 3 is the tensor representation of a linear combination of linkings

on the formula modelled by Par3. Lemma 5.5 is provides us with the three tensor equations
which must be satisfied for some numbers y1, y2 and y3 found in {1, 2, 3}.

ω
j1 j2 j3
1 2 3 · 1 j2 j3 = δ j1 y1

ω
j1 j2 j3
1 2 3 · 1 j1 j3 = δ j2 y2

ω
j1 j2 j3
1 2 3 · 1 j1 j2 = δ j3 y3

Suppose that yk = k for each k, making each constant distinct from one another and the
function f proposed in the proof of the earlier lemma a permutation. This creates 32 = 9
equations:

ω123
123 + ω

132
123 = 1 (5.1)

ω213
123 + ω

231
123 = 0 (5.2)

ω312
123 + ω

321
123 = 0 (5.3)

ω213
123 + ω

312
123 = 0 (5.4)

ω123
123 + ω

321
123 = 1 (5.5)

ω132
123 + ω

231
123 = 0 (5.6)

ω231
123 + ω

321
123 = 0 (5.7)

ω132
123 + ω

312
123 = 0 (5.8)

ω123
123 + ω

213
123 = 1 (5.9)

Since we are in a zero-sum-free compact closed category, we know that all the values in
the sums equalling 0 must come to zero themselves. That means we can conclude from
looking at equations (2), (3), (4), (6), (7) and (8) that

ω213
123 = ω

231
123 = ω

312
123 = ω

321
123 = ω

132
123 = 0.

Substituting these assignments into the 9 equations leaves the six sums totalling zero as
trivial, and equations (1), (5) and (9) simplify to become

ω123
123 = 1

Note that the choices of y1, y2 and y3 coincide with the order of the three superscript

index numbers of ω. This is to be expected, since the yk = k makes it necessary for the kth

superscript index position to be k in order to for it to be in the equation for which the other
(M − 1) j-indices are changed in are added together and equate to 1. As such, the given
position is the only one which fits this criteria for all k.

Due to ω being a linear combination of Kronecker deltas representing axiom links
between positive and negative literals, the only MLL− transformation which can be said to
satisfy the criteria given here is the one modelling the unique proof structure given below.
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L M L⊥ M L M L⊥ M L M L⊥

Symmetry in permutations allows us to ascertain that all the possible linkings are possible
by changing the permutation that f describes to each of the other 3! − 1 = 5, but no
non-simple linear combinations have been shown to be possible.

Now, we choose values of y1, y2, y3 so that the induced function f is not a permutation.
Let us first consider yk = 1 for all k; these induce the following linear equations:

ω123
123 + ω

132
123 = 1 (5.10)

ω213
123 + ω

231
123 = 0 (5.11)

ω312
123 + ω

321
123 = 0 (5.12)

ω213
123 + ω

312
123 = 1 (5.13)

ω123
123 + ω

321
123 = 0 (5.14)

ω132
123 + ω

231
123 = 0 (5.15)

ω231
123 + ω

321
123 = 1 (5.16)

ω132
123 + ω

312
123 = 0 (5.17)

ω123
123 + ω

213
123 = 0 (5.18)

Earlier it is explained why the only position of ω
j1 j2 j3
1 2 3 that can be non-zero is the one where

j = y. Bearing this in mind, we can expect no valuations of the entries of interest satisfy the
above equations. Hypothetically, only ω111

123 would be allowed to be non-zero; but by the
constraints set upon it it is 0 by definition. By similar arguments, no tensor representation
of an MLL− transformation ω satisfies the equations when two or more of y1, y2, y3 are
equal.

For a tensor representation of an MLL− transformation to be in the values, it must
satisfy the 9 equations for at least one of the combinations of values y1, y2 and y3 can take.

From the evidence above we know that such an ω
j1 j2 j3
i1 i2 i3

can only do that if only one tuple

( j1, j2, j3) provides a non-zero value for ω
j1 j2 j3
1 2 3 , and that position must equal zero. The only

conclusion is, therefore, that ω
j1 j2 j3
1 2 3 = ω

jp(1) jp(2) jp(3)

i1 i2 i3
for some permutation p over 3. That is,

no non-simple linear combinations of proof structures are modelled by a tensor in Par3(S3).

5.2. Acyclicity. Now that is has been established that G1C only contains MLL− transfor-
mations modelling unique proof structures, we can now attempt to show that those proof
structures modelled are also acyclic. Once this has been shown, we will have proved
MLL−+Mix full completeness: the connectedness condition of the Danos-Regnier criteria
is rendered redundant once the ‘Mix’ rule has been installed in the logic.

Simplifying the problem down to dealing solely with the MLL− transformations ParM

for different values of M is not an option here. If we wish to prove that a cyclic structure
cannot be modelled in the glued category, we need to make sure that any natural transfor-
mations do not create a transformation modelling an acyclic structure. As such, at least
one of the ⊗-vertices must be preserved. However, ignoring the existence of Mix would be
a waste of the available attributes of the category.
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The methods utilised in Section 4 to allow us to only consider the easier-to-handle
MDNF transformations are once again of use here. There is an algorithm given below
which takes MDNF transformations modelling unique cyclic proof structures and produces
other MDNF transformations modelling a formula containing the minimum number of
⊗-vertices possible whilst preserving exactly one cycle.

Algorithm 5.8. Input: An MDNF transformation τ : KI −→ F describing a unique proof
structure, with M blocks say, breaking the acyclicity criterion.
Output: An MDNF transformation τ′ : KI −→ F′ built by composing τ with natural trans-
formations which describes a unique proof structure still breaking the acyclicity criterion
with the minimum number of ⊗-vertices within it.

(1) Choose a cycle from the proof structure described by τ passing through the minimum
number of axiom links. We let n = 0, l = 1, m = 1 τ0 = τ, and we name the cycle C
(referring only to the literals). For every n, Fn is the target functor of τn

(2) Search for the block furthest to the left in the formula modelled with literals within
C, calling it block m1. Let σ̃ be a composition of the associativity and symmetry
isomorphisms for the monoidal bifunctor −⊗−which modifies the block so it takes the
form ((X1 ⊗ Y1) ⊗ Z), where X1 and Y1 are the positions signifying the literals in C and

Z is a tensor product containing the rest of the literals. Define τn+1 = M
m1−1
m=1 1Bm M σ̃ M

M
M
m=m1+11Bm , where Bm is the mth block. If X1 and Y1 are connected via an axiom link go

to Step 4; otherwise go to Step 3.
(3) Increment l. Search for the block (which we name block ml) which contains the literal,

Xl, connected to literal Yl−1 via an axiom link. Let σ̃ be a composition of associativity
and symmetry isomorphisms which modifies the block so it takes the form ((Xl⊗Yl)⊗Z),

where Yl is the other literal position in the block which is in C. Define τn+1 = M
ml−1
m=1 1BmM

σ̃MMM
m=ml+11Bm . If Yl is connected via an axiom link to X1 then go to Step 4; otherwise

repeat Step 3.
(4) Consider block m, Bm = L1,m⊗L2,m⊗Lm where L1,m and L2,m are the functors representing

the first and second literal positions. We set the natural transformation MIXF the
maximal composition of ‘mix’ transformations on an MLL− functor F which eradicates
all instances of⊗ and replaces them withMwhilst maintaining the order and bracketing
of the inputs of the functor.

(a) If it does not contain a literal in C, then let µm =MIXBm .

(b) If it does, then let µm =Mix ◦ ((1G1C ⊗ 1G1C) ⊗MIXLm)
If m < M, then increment the number, and repeat Step 4. Otherwise let

τn+1 = M
M
m=1µm ◦ τn, increment n and go to Step 5.

(5) Let β̃ be a natural isomorphism built using the associativity and symmetry isomor-
phisms corresponding to the bifunctor −M− so that all the blocks in the proof structure
described by τn containing only one literal are to the left of all those containing two
literals, and the two-literal blocks maintain the same order with respect to each other
as found in τn. We let τ′ = β̃ ◦ τn, and terminate the algorithm.

The algorithm above certainly terminates—after all, each step changing an MLL− trans-
formation can only deal with a finite set of finite blocks. Equally, the output dinatural
transformation does indeed describe a cyclic proof structure: in every switching there is
a cycle X1 − ⊗ − Y1 − · · · − Xl − ⊗ − Yl, and the ⊗-vertices in the cycle are the only ones
which appear in the structure. Together with Algorithms 4.21 and 4.22, we can find natural
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transformations from C which continue to exist in G1C which take any MLL− transforma-
tion describing a unique cyclic proof structure in C and create another one which models
a proof structure with shape much like the proof structure given below.

L M L⊥ M · · · M L M L⊥ M (L ⊗ L⊥)M · · · M (L ⊗ L⊥)

This is a very regular form of MLL− formula being modelled. The formulae can be separated
into two distinct parts. If we instantiate the functor with tuples containing the same self-
dual object built over a C-object nI for some n ∈ N+ in every entry, D say, we can say
the tensor representations of the values and covalues in the resulting object take the form
F(D,D) = Γg(D)M ∆d(D) for the MDNF functors Γg and ∆d for some g ∈N, d ∈N+, where

Γg(D,D) = DM2g ∆d(D,D) = (D⊗2)Md

As has been the standard throughout this chapter, a single test object is required for
all inputs of the total resulting MLL− transformation to show that acyclic proof structures
are not modelled in G1C. An object which is sufficient for the task whilst remaining in the
confines of G1C is

D := (2I, {δix : x ∈ {1}}, {δix : x ∈ {1}}).

The values and covalues of objects F(D,D) = Γg(D,D) M ∆d(D,D), where the N-

dimensional tuple is D = (D, . . . ,D) ∈ (G1C)N and F is the target functor of an MDNF trans-
formation which is an output of Algorithm 5.8 can be found easily by using inductive
methods, as seen in the claim below.

Lemma 5.9. For every n ≥ 2, Γn(D,D) = ((2I)M2n,Ξ2n, {δ
1 ··· 1 1 ··· 1
i1 ··· in j1 ··· jn

}), where

Ξn = {wi1 ···in : w1···1 = 1; ∀x containing (n − 1) 1-entries, wx = 0}.

Similarly, ∆n(D,D) = (((2I)⊗2)Mn, {z
j
i : ∀k∀m,kz

j
iwim jm ∈ Ξ2, z

j
i ·
∏

m,k

wim jm = δ
1 1
i1 j2
},

n
∏

m=1

Ξ2).

Proof. The object Γn(D,D) = DM2n, and so we show that DMn has the form of Γn(D) is as seen
above, only with 2n replaced by n, starting with n = 2.

DMD = (2IM 2I, {wi j : w1 j = δ j1, wi1 = δi1}, {uiv j : ui, v j ∈ DCoVal})

= ((2I)M2,Ξ2, {δ
11
i j })

The inductive case is proved as follows:

DM(n+1) = DMn
MD

= ((2I)Mn
M (2I), {wi1 ···in j : wi1 ∈ Ξn, w1···1 j = δ j1}, {δ

1 ··· 1
i1 ··· in

· δ1
j })

= ((2I)Mn+1,Ξn+1, {δ
1 ··· 1 1
i1 ··· in j })

The result is exactly as desired, and so the claim concerning Γn(D,D) is solved by corollary.
We now move to demonstrate ∆n(D,D) takes the form wanted. We can conclude the
following due to the functor − ⊗ − being the de Morgan dual of the functor −M −:

∆1(D,D) = (2I ⊗ 2I, {δ11
i j },Ξ2)

The final result immediately follows.
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Proposition 5.3, in collaboration with Algorithms 4.21 and 5.8, means the following
statement is true: if we can show that MLL− transformations in the form seen in the above
figure are not capable of existing in G1C, then no cyclic proof structures may be modelled
in the category C under the orthogonalised glueing.

Proposition 5.10. Every MLL− transformation in G1Cmodelling a unique proof structure models
an acyclic proof structure.

Proof. Due to the earlier discussion it is only necessary to consider MLL− transformations
of the shape seen in Figure 5.2 due to Algorithms 4.21 and 5.8 and Proposition 5.3. Suppose
that F = Γ M ∆ be such a functor, with Γ containing all the one-literal blocks and ∆ all the
two-literal blocks. We use the test object D = (2I, {δix}, {δix}), meaning that we are able to
use the calculations given in Lemma 5.9 to find the values of F(D,D) = Γg(D,D)M∆d(D,D)
for some g ∈N, d ∈N+.

Suppose that Γ is a functor describing a subformula containing no literals, making
F(D,D) = ∆d(D,D) for a positive integer d. The values of this object are therefore exactly
as seen in Lemma 5.9. To simplify matters, instead of making i- and j-indices correspond
to positive and negative literal positions respectively as earlier, the indices im and jm now

relate to the first and second literals in the mth block in ∆d(D) for all m ∈ [d]. We can
therefore assume that the proof structure being discussed, which we say has linking λ, has

tensor representation λ̄
j1 ··· jd
i1 ··· id

= δ
jd j1 ··· jd−1

i1 i2 ··· id
.

For d = 1, the situation is clear: ∆1(D,D)Val = {δ
1 1
i1 j1
}, which clearly does not contain

δi1 j1 as required for the cyclic proof structure to be modelled. For larger d, we need to use
covalues from D ⊗D.

(D ⊗D⊥)CoVal = Ξ2 = {wi j : w11 = 1, w12 = 0 = w21}

For every block m ∈ [2, d], we use δ
jm
im

, which indeed does belong to the set of covalues. We
find that

λ̄
j1 ··· jd
i1 ··· id

·

d
∏

m=2

δ
jm
im
= δ

jd j1 ··· jd−1

i1 i2 ··· id
· δ

j2 ··· jd
i2 ··· id

= δ
j1
i1

The tensor δ
j1
i1

does not equal δ
1 j1
1i1

, and so it does not belong to the set of values for D ⊗D.

As such, λ̄ does not satisfy the criteria expected of all elements of the set of values for the
object ∆d(D,D). Because of this, the MDNF transformation to F does not lift to G1C.

We extend this result so that it works for an non-empty Γ. In this scenario we expect
F(D,D) = Γg(D,D)M∆d(D,D) for positive g and d, and by standard tensor calculations we
note that, when k and l act as superindices for the positive and negative literals respectively,

F(D,D)Val = {z
j
ki : ∀γk ∈ Γg(D,D)Coval z

lj
kiγk ∈ ∆d(D,D),

∀w
j
i ∈ ∆d(D,D)CoVal z

lj
kiw

j
i ∈ Γg(D,D)Val}

Lemma 5.9 tells us that there is only covalue for Γg(D,D), namely δ1 ··· 1
k1 ··· lg

. The tensor

representation of the transformation is

λ̄
l j
ki = δ

l1 ··· lg jd j1 ··· jd−1

k1 ··· kgi1 i2 ··· id
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Composing the two tensors presented above together, we find

λ̄
l j
ki · δ

1 ··· 1
k1 ··· lg

= δ
l1 ··· lg jd j1 ··· jd−1

k1 ··· kgi1 i2 ··· id
·

g
∏

m=1

δ1 1
kmlm

= δ
1 ··· 1 jd j1 ··· jd−1

1 ··· 1i1 i2 ··· id

= δ
jd j1 ··· jd−1

i1 i2 ··· id

We know from the base case when g = 0 that the tensor to which the composition
reduces is not found in the set of values for ∆d(D,D), irrespective of the size of d. We
therefore conclude that λ̄ is not found in the values of F(D,D); and so its corresponding
MDNF transformation from C does not lift into G1C.

Theorem 5.11. Let C be a zero-sum-free compact closed category with finite biproducts satisfying
feeble full completeness. Then the category G1C satisfies MLL−+Mix full completeness.

5.3. The Necessity of Zero-Sum-Freeness. The satisfaction of full completeness for the
logic MLL−+Mix by degenerate categorical models under the orthogonalised glueing con-
struction with focus {ι} is quite a strong result, but the form of the scalars required for the
proof to operate is an unfortunate stumbling block. The proof given earlier in this section
is designed to show that a compact closed category with finite biproducts satisfying feeble
full completeness creates a full complete model of MLL−+Mix when the ‘G1’-glueing is
used if the homset C[I, I] acts as a zero-sum-free semiring.

We now make clear the insurmountable hurdle which stops Tan’s method from being
further generalised. Lemma 5.6 is insufficient for compact closed categories enriched over
semimodules over semirings containing even a single additive inverse. This is confirmed
by the algorithm below.

Example 5.12. We view the limitations of the proof of Lemma 5.6 by viewing the MLL− for-
mula Par3(S3, S3) in more detail.

Suppose that C = FDVecR, and let λ be the linear combination of the following sets of
axiom links.

L M L⊥ M L M L⊥ M L M L⊥
−1

−1

2

−1

1

1

×

×

×

×

×

×

Letting Sn and An denoting the symmetric and alternating groups of n elements
respectively, the tensor representation of the MLL− transformation is written

λ̄
j1 j2 j3
i1 i2 i3

=
∑

p∈S3

spδ
jp(1)p(2)p(3)

i1 i2 i3
,

where the scalars in the set {sp : p ∈ S3} are as follows:
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sp :=







2 if p = (1 2 3)
1 if p ∈ A3\(1 2 3)
−1 otherwise

.

Note that this means the following essential entries have the following values within them:

• λ̄123
123 = 2;

• λ̄231
123 = λ̄

312
123 = 1;

• λ̄132
123 = λ̄

321
123 = λ̄

213
123 = 0.

We remind ourselves that there are three tensor equations which must be satisfied for
some y1, y2 and y3 found in {1, 2, 3}:

λ̄
j1 j2 j3
1 2 3 · 1 j2 j3 = δ j1y1

λ̄
j1 j2 j3
1 2 3 · 1 j1 j3 = δ j2y2

λ̄
j1 j2 j3
1 2 3 · 1 j1 j2 = δ j3y3

Taking the non-trivial situation from Example 5.7, where yk = k for each k, the significant
equations may be found.

λ̄123
123 + λ̄

132
123 = 1 (5.19)

λ̄213
123 + λ̄

231
123 = 0 (5.20)

λ̄312
123 + λ̄

321
123 = 0 (5.21)

λ̄213
123 + λ̄

312
123 = 0 (5.22)

λ̄123
123 + λ̄

321
123 = 1 (5.23)

λ̄132
123 + λ̄

231
123 = 0 (5.24)

λ̄231
123 + λ̄

321
123 = 0 (5.25)

λ̄132
123 + λ̄

312
123 = 0 (5.26)

λ̄123
123 + λ̄

213
123 = 1 (5.27)

It is now seen that these equations are consistent with the entries of λ̄ from earlier, and

so it is deduced that λ̄
j1 j2 j3
i1 i2 i3

∈ Par3(S3, S3)Val. As stated in Lemma 5.6, other simultaneous

equations using other entry positions in the tensor λ̄ reduce to linear combinations of those
found above using the rules from Section 3.2. Furthermore, other choices of n for the test
object Sn do not provide any more information when it comes to producing equations which
contradict the existence of a tensor representation of λ̄ in the set of values of Par3(Sn, Sn).
It follows that the proof, or any obvious minor alterations to it, is unable to be used to
disprove that λ̄ describes a transformation in the double-glued category.

It comes as no surprise that there is more than one solution once negatives are added,
especially when the values in the entries are in the genuine ring, once it is realised that
there are 6 variables and the maximal linearly independent set of equations has 5 elements.
Having fewer linear independent equations than variables within them means that the
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kernel of the equations has positive dimension, and so a myriad of solutions may be found.

(λ̄312
123 + λ̄

321
123) − (λ̄213

123 + λ̄
312
123) + (λ̄123

123 + λ̄
213
123) − (λ̄123

123 + λ̄
321
123) = 0

(λ̄123
123 + λ̄

132
123) − (λ̄213

123 + λ̄
312
123) + (λ̄312

123 + λ̄
321
123) − (λ̄132

123 + λ̄
312
123) = 0

(λ̄213
123 + λ̄

231
123) − (λ̄213

123 + λ̄
312
123) + (λ̄312

123 + λ̄
321
123) − (λ̄231

123 + λ̄
321
123) = 0

(λ̄123
123 + λ̄

132
123) + (λ̄213

123 + λ̄
231
123) + (λ̄312

123 + λ̄
321
123)

−(λ̄213
123 + λ̄

312
123) − (λ̄123

123 + λ̄
321
123) − (λ̄132

123 + λ̄
231
123)

}

= 0

The problem becomes more apparent for formulae Parn(Sn, Sn) the larger n becomes. As
stated in the proof of Lemma 5.6, the number of variable positions uniquely describing an
MLL− transformation’s tensor representation is n!, whilst the number of equations which
may be considered linearly independent from one another even in the absence of negative
elements is n2; and clearly n! > n2 for every n ≥ 4.

Of course this does not prove that non-zero-sum-free compact closed categories are
incapable of being the basis of fully complete MLL−+Mix models. After all, only one test
object has been considered; all objects in the focused glued category must be shown to still
contain the morphisms associated to a rogue MLL− transformation from C to show that it
remains a one in the glued category. Fortunately, it is possible to extend the principle from
the above example to a result on the level of MLL− transformations for all the non-zero-
sum-free categories.

Proposition 5.13. Let C be a compact closed category with finite biproducts satisfying feeble full
completeness. Then G1C does not satisfy MLL−+Mix full completeness if C is not zero-sum-free.

Proof. Suppose C is such a compact closed category, meaning that there exists at least one
arrow s ∈ C[I, I] with an additive inverse (−s). We assume without loss of generality
that we are in a strict compact closed category, suppressing the usage of the isomorphism
ι : I −→ I∗. However, at times when associativity and unit isomorphisms are silently being
used are noted for the sake of clarity, either in the equation or as a side comment. Consider
the MLL− transformation λ̄ : KI −→ −M −M −M (−)⊥ M (−)⊥ M (−)⊥ found in Cmodelling
the following linear combination of proof structures:

L M L⊥ M L M L⊥ M L M L⊥
−s

−s

(1 + s)

−s

s

s

×

×

×

×

×

×

Up to isomorphism the transformation can be written

(1 + s) · (σ̃123
123 ◦ (η ⊗ η ⊗ η)) + (−s) · (σ̃132

123 ◦ (η ⊗ η ⊗ η)) + (−s) · (σ̃321
123 ◦ (η ⊗ η ⊗ η))

+ (−s) · (σ̃213
123 ◦ (η ⊗ η ⊗ η)) + s · (σ̃231

123 ◦ (η ⊗ η ⊗ η)) + s · (σ̃312
123 ◦ (η ⊗ η ⊗ η))

where the natural transformation σ̃
p(1)p(2)p(3)
1 2 3 for given permutation p ∈ Perm(2, 3) is the

composition of associativity and symmetry natural transformations expected of symmetric



CONSTRUCTING FULLY COMPLETE MODELS OF MULTIPLICATIVE LINEAR LOGIC 69

monoidal categories containing arrows with source and target in the form below.

(σ̃
p(1)p(2)p(3)
1 2 3 )A1,A2,A3,B1,B2,B3

: A1 ⊗ B1 ⊗A2 ⊗ B2 ⊗A3 ⊗ B3 −→ A1 ⊗A2 ⊗A3 ⊗ Bp(1) ⊗ Bp(2) ⊗ Bp(3)

For short, we can write λ̄ =
∑

p∈S3
sp · σ̃

p(1)p(2)p(3)
1 2 3 , where

sp :=







s + 1 if p = (1 2 3)
s if p ∈ A3\(1 2 3)
−s otherwise

.

Let A = (R,U,X) be an arbitrary object in G1C, meaning that x ◦ u = ι = 1I for every
u ∈ U and x ∈ X. We define the following notation:

• z(l) is the tuple z missing the lth entry;

•
〈

g( j), f
〉

j
= f ◦

(

⊗

i< j gi ⊗ 1 ⊗
⊗

j<i≤n gi

)

◦ Λn, where Λ : I −→ I⊗n is the natural compo-

sition of the unit isomorphism.

We see that,

Par3(A,A)Val =

{ f ∈ C[I, |Par3(A,A)|] : ∀3
k=1u∗k ∈ U ∀xk ∈ X, ∀l

〈

((x(l),u∗)), f
〉

l
∈ U,

〈

(x, (u∗)(l)), f
〉

l+3
∈ X∗}.

If either U or X = ∅ then it is trivially true that λ̄A is in the set of values. If both sets are non-
empty, let u∗1, u

∗
2, u
∗
3 ∈ U∗ and x2, x3 ∈ X be arbitrary, not necessarily distinct morphisms.

Noting (and suppressing usage of the isomorphism ι) that (x ⊗ 1R∗) ◦ ηR = λ
−1
R∗ ◦ x∗ and

(1R⊗u∗)◦ηR = ρ
−1
R ◦u for all suitable arrows u and x inCdue to dinaturality, and that xi◦u j =

ι = 1I for any choice of i, j, the composition
〈

(x2, x3, u
∗
1, u
∗
2, u
∗
3), σ̃

p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

〉

1
can

be found for each permutation p.

(1 ⊗ x2 ⊗ x3 ⊗ u∗1 ⊗ u∗2 ⊗ u∗3) ◦ σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

= σ̃
p(1)p(2)p(3)
1 2 3 ◦ (1 ⊗ u∗p−1(1) ⊗ x2 ⊗ u∗p−1(2) ⊗ x3 ⊗ u∗p−1(3)) ◦ (η ⊗ η ⊗ η)

= σ̃
p(1)p(2)p(3)
1 2 3 ◦ (((1 ⊗ u∗p−1(1)) ◦ η) ⊗ ((1 ⊗ u∗p−1(1)) ◦ η) ⊗ ((1 ⊗ u∗p−1(1)) ◦ η))

= σ̃
p(1)p(2)p(3)
1 2 3 ◦ ((λ−1

I∗ ◦ up−1(1)) ⊗ λ
−1
I∗ ⊗ λ

−1
I∗ ) = up−1(1) ∈ U

By symmetry and a similar argument we also find
〈

((x(l),u∗)), σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

〉

l
= up−1(l) ∈ U

〈

(x, (u∗)(l)), σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

〉

l+3
= x∗p(l) ∈ X∗

Finding the compositions
〈

((x(l),u∗)), σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

〉

l
and

〈

(x, (u∗)(l)), σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

〉

l+3
now becomes a simple case of taking the correct linear
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combination of answers from the above calculations.
〈

(x(l),u∗), λ̄R

〉

l
=

〈

((x(l),u∗)),
∑

p∈S3

sp · (σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η))

〉

l

=
∑

p∈S3

sp ·
〈

((x(l),u∗)), λ̄R

〉

l

=

〈

((x(l),u∗)), σ̃
p(1)p(2)p(3)
1 2 3 ◦ (η ⊗ η ⊗ η)

〉

l

=
∑

p∈S3

sp · up−1(l)

This final sum is a linear combination of the arrows u1, u2, u3. One finds by inspection
that the scalars added together in this sum for uk for some k are s(i1i2i3) and s( j1 j2 j3), the
two scalars for which ik = l = jk. Since (i1i2i3) and ( j1 j2 j3) are distinct but they share
a value in exactly one position in this situation, it must be the case that one is an even
permutation (that is, it belongs to A3), and one is odd (and therefore is not a member of
A3). For the sake of convenience, let the former be the even permutation. If ik , k , jk,
then we know that neither of the two permutations are (1 2 3), and so we deduce that
s(i1i2i3) + s( j1 j2 j3) = s + (−s) = 0. If however, ik = k = jk, then one of them does equal (1 2 3),
meaning s(1 2 3) + s( j1 j2 j3) = (1+ s) + (−s) = 1 + (s + (−s)) = 1. We therefore conclude that

〈

(x(l),u∗), λ̄R

〉

l
= ul ∈ U

By a dual argument, we can find that
〈

(x, (u∗)(l)), λ̄R

〉

l+3
= x∗l ∈ X∗

The arrows u1, u2, u3 ∈ U and x1, x2, x3 ∈ X are arbitrary throughout the above argument,
meaning that any triple of values and covalues of A = (R,U,X) could be chosen. Thus
λ̄R ∈ (A M A M A M A⊥ M A⊥ M A⊥)Val. Furthermore, we may say that this for any choice
of A, since A is considered arbitrary in this proof as well. Naturally this means that the
C-arrows in the collection λ̄ = {λ̄R : R ∈ C} are found in all the required homsets in G1C,
and therefore the MLL− transformation λ̄ is also in G1C. The linear combination of proof
structures modelled by this transformation is non-simple, and so the category does not
satisfy MLL−+Mix full completeness.

Corollary 5.14. Let C be a compact closed category with finite biproducts satisfying feeble full
completeness. The category G1C satisfies MLL−+Mix full completeness if and only if C is zero-
sum-free.

6. Conclusions

In this paper we show that there are two simple, elegant methods of producing categorical
models for both MLL− or MLL−+Mix. The Hyland-Tan double glueing construction is
seemingly the perfect semantic description of the deductive system when applied to tensor-
generated compact closed categories with finite biproducts. Certainly the Danos-Regnier
description of proof nets has a strongly combinatorial flavour, and this paper shows that
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the same combinatorial restrictions are imposed on the categorical model by the double
glueing construction.

It is notable that the tensor representations of MLL− transformations are precisely the
isotropic tensors of even power over the semiring of scalars. Viewed as vectors in Euclidean
space, this means that such representations are exactly those which are invariant under
basis change. It is therefore reasonable to suggest that the more combinatorial proofs given
in this paper may be replaceable by geometric arguments. Such a methodology could
unveil a different perspective on the categorical models and MLL− itself.

An obvious possibility for future work is applying these techniques to the (unitless)
multiplicative additive fragment of linear logic, MALL−. Since we start from compact
closed categories with finite biproducts we know that our models, after double glueing,
have both finite sums and products [HS03] and so are models of MALL−.

However, it is known that the Hyland-Tan construction alone cannot produce fully
complete models of MALL− [Ste13]: none of the resulting categories satisfy Joyal’s soft-
ness property on the dinatural level as is required. Categories which accurately model
MALL− proof nets are in short supply: the only example whose full proof has been pub-
lished is GHypCoh — the category of hypercoherence spaces under the ‘G’-construction
— found in [BHS05].

We note that HypCoh is another example of a double-glued category, but with a tight
orthogonality upon it. We are writing an article giving the appropriate generalisation
of the definition of orthogonality found in [HS03] in order to allow the essence of this
construction to be extracted. It is hoped that this will provide a starting point for finding a
full completeness result for MALL− which is as general as ours for MLL−. One might note
in passing that the result of Blute, Hamano and Scott is based upon the MALL− proof net
criteria of Girard [Gir96] based around monomial weights, whereas there is currently no
comparable result for the Hughes-van Glabbeek proof net criteria [HvG05]. We hope that
our methods are suitable to address that situation.
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