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Abstract. Given a Kripke structure M and CTL formula φ, where M does not satisfy
φ, the problem of Model Repair is to obtain a new model M ′ such that M ′ satisfies φ.
Moreover, the changes made to M to derive M ′ should be minimum with respect to all
such M ′. As in model checking, state explosion can make it virtually impossible to carry
out model repair on models with infinite or even large state spaces. In this paper, we
present a framework for model repair that uses abstraction refinement to tackle state
explosion. Our framework aims to repair Kripke Structure models based on a Kripke
Modal Transition System abstraction and a 3-valued semantics for CTL. We introduce
an abstract-model-repair algorithm for which we prove soundness and semi-completeness,
and we study its complexity class. Moreover, a prototype implementation is presented
to illustrate the practical utility of abstract-model-repair on an Automatic Door Opener
system model and a model of the Andrew File System 1 protocol.

1. Introduction

Given a model M and temporal-logic formula φ, model checking [16] is the problem of
determining whether or not M |= φ. When this is not the case, a model checker will typically
provide a counterexample in the form of an execution path along which φ is violated. The
user should then process the counterexample manually to correct M .

An extended version of the model-checking problem is that of model repair : given a
model M and temporal-logic formula φ, where M 6|= φ, obtain a new model M ′, such that
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M ′ |= φ. The problem of Model Repair for Kripke structures and Computation Tree Logic
(CTL) [28] properties was first introduced in [12].

State explosion is a well known limitation of automated formal methods, such as model
checking and model repair, which impedes their application to systems having large or even
infinite state spaces. Different techniques have been developed to cope with this problem.
In the case of model checking, abstraction [18, 42, 33, 23, 31] is used to create a smaller,

more abstract version M̂ of the initial concrete model M , and model checking is performed
on this smaller model. For this technique to work as advertised, it should be the case that if
M̂ |= φ then M |= φ.

Motivated by the success of abstraction-based model checking, we present in this paper
a new framework for Model Repair that uses abstraction refinement to tackle state explosion.
The resulting Abstract Model Repair (AMR) methodology makes it possible to repair models
with large state spaces, and to speed-up the repair process through the use of smaller abstract
models. The major contributions of our work are as follows:

• We provide an AMR framework that uses Kripke structures (KSs) for the concrete model

M , Kripke Modal Transition Systems (KMTSs) for the abstract model M̂ , and a 3-valued
semantics for interpreting CTL over KMTSs [38]. An iterative refinement of the abstract
KMTS model takes place whenever the result of the 3-valued CTL model-checking problem
is undefined. If the refinement process terminates with a KMTS that violates the CTL
property, this property is also falsified by the concrete KS M . Then, the repair process
for the refined KMTS is initiated.
• We strengthen the Model Repair problem by additionally taking into account the following

minimality criterion (refer to the definition of Model Repair above): the changes made to
M to derive M ′ should be minimum with respect to all M ′ satisfying φ. To handle the
minimality constraint, we define a metric space over KSs that quantifies the structural
differences between them.
• We introduce an Abstract Model Repair algorithm for KMTSs, which takes into account

the aforementioned minimality criterion.
• We prove the soundness of the Abstract Model Repair algorithm for the full CTL and

the completeness for a major fragment of it. Moreover, the algorithm’s complexity is
analyzed with respect to the abstract KMTS model size, which can be much smaller than
the concrete KS.
• We illustrate the utility of our approach through a prototype implementation used to repair

a flawed Automatic Door Opener system [5] and the Andrew File System 1 protocol. Our
experimental results show significant improvement in efficiency compared to a concrete
model repair solution.

Organization. The rest of this paper is organized as follows. Sections 2 and 3 introduce
KSs, KMTSs, as well as abstraction and refinement based on a 3-valued semantics for CTL.
Section 4 defines a metric space for KSs and formally defines the problem of Model Repair.
Section 5 presents our framework for Abstract Model Repair, while Section 6 introduces
the abstract-model-repair algorithm for KMTSs and discusses its soundness, completeness
and complexity properties. Section 7 presents the experimental evaluation of our method
through its application to the Andrew File System 1 protocol (AFS1). Section 8 considers
related work, while Section 9 concludes with a review of the overall approach and pinpoints
directions for future work.
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Figure 1. The Automatic Door Opener (ADO) System.

2. Kripke Modal Transition Systems

Let AP be a set of atomic propositions. Also, let Lit be the set of literals:

Lit = AP ∪ {¬p | p ∈ AP}
Definition 2.1. A Kripke Structure (KS) is a quadruple M = (S, S0, R, L), where:

(1) S is a finite set of states.
(2) S0 ⊆ S is the set of initial states.
(3) R ⊆ S × S is a transition relation that must be total, i.e.,

∀s ∈ S : ∃s′ ∈ S : R(s, s′).

(4) L : S → 2Lit is a state labeling function, such that

∀s ∈ S : ∀p ∈ AP : p ∈ L(s)⇔ ¬p /∈ L(s).

The fourth condition in Def. 2.1 ensures that any atomic proposition p ∈ AP has one and
only one truth value at any state.

Example. We use the Automatic Door Opener system (ADO) of [5] as a running example
throughout the paper. The system, given as a KS in Fig 1, requires a three-digit code
(p0, p1, p2) to open a door, allowing for one and only one wrong digit to be entered at most
twice. Variable err counts the number of errors, and an alarm is rung if its value exceeds two.
For the purposes of our paper, we use a simpler version of the ADO system, given as the KS
M in Fig. 3a, where the set of atomic propositions is AP = {q} and q ≡ (open = true).

Definition 2.2. A Kripke Modal Transition System (KMTS) is a 5-tuple M̂ = (Ŝ, Ŝ0,

Rmust, Rmay, L̂), where:

(1) Ŝ is a finite set of states.

(2) Ŝ0 ⊆ Ŝ is the set of initial states.
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(3) Rmust ⊆ Ŝ × Ŝ and Rmay ⊆ Ŝ × Ŝ are transition relations such that Rmust ⊆ Rmay.
(4) L̂ : Ŝ → 2Lit is a state-labeling such that ∀ŝ ∈ Ŝ, ∀p ∈ AP , ŝ is labeled by at most one

of p and ¬p.
A KMTS has two types of transitions: must-transitions, which exhibit necessary behavior, and
may-transitions, which exhibit possible behavior. Must-transitions are also may-transitions.
The “at most one” condition in the fourth part of Def. 2.2 makes it possible for the truth
value of an atomic proposition at a given state to be unknown. This relaxation of truth
values in conjunction with the existence of may-transitions in a KMTS constitutes a partial
modeling formalism.

Verifying a CTL formula φ over a KMTS may result in an undefined outcome (⊥). We

use the 3-valued semantics [38] of a CTL formula φ at a state ŝ of KMTS M̂ .

Definition 2.3. [38] Let M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be a KMTS. The 3-valued semantics

of a CTL formula φ at a state ŝ of M̂ , denoted as (M̂, ŝ) |=3 φ, is defined inductively as
follows:

• If φ = false
– [(M̂, ŝ) |=3 φ] = false
• If φ = true

– [(M̂, ŝ) |=3 φ] = true
• If φ = p where p ∈ AP

– [(M̂, ŝ) |=3 φ] = true, iff p ∈ L̂(ŝ).

– [(M̂, ŝ) |=3 φ] = false, iff ¬p ∈ L̂(ŝ).

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = ¬φ1

– [(M̂, ŝ) |=3 φ] = true, iff [(M̂, ŝ) |=3 φ1] = false.

– [(M̂, ŝ) |=3 φ] = false, iff [(M̂, ŝ) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = φ1 ∨ φ2

– [(M̂, ŝ) |=3 φ] = true, iff [(M̂, ŝ) |=3 φ1] = true or [(M̂, ŝ) |=3 φ2] = true.

– [(M̂, ŝ) |=3 φ] = false, iff [(M̂, ŝ) |=3 φ1] = false and [(M̂, ŝ) |=3 φ2] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = φ1 ∧ φ2

– [(M̂, ŝ) |=3 φ] = true, iff [(M̂, ŝ) |=3 φ1] = true and [(M̂, ŝ) |=3 φ2] = true.

– [(M̂, ŝ) |=3 φ] = false, iff [(M̂, ŝ) |=3 φ1] = false or [(M̂, ŝ) |=3 φ2] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = AXφ1

– [(M̂, ŝ) |=3 φ] = true, iff for all ŝi such that (ŝ, ŝi) ∈ Rmay, [(M̂, ŝi) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = false, iff there exists some ŝi such that (ŝ, ŝi) ∈ Rmust and [(M̂, ŝi) |=3

φ1] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = EXφ1

– [(M̂, ŝ) |=3 φ] = true, iff there exists ŝi such that (ŝ, ŝi) ∈ Rmust and [(M̂, ŝi) |=3 φ1] =
true.

– [(M̂, ŝ) |=3 φ] = false, iff for all ŝi such that (ŝ, ŝi) ∈ Rmay, [(M̂, ŝi) |=3 φ1] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
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• If φ = AGφ1

– [(M̂, ŝ) |=3 φ] = true, iff for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...] and for all ŝi ∈ πmay it

holds that [(M̂, ŝi) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = false, iff there exists some must-path πmust = [ŝ, ŝ1, ŝ2, ...], such that

for some ŝi ∈ πmust, [(M̂, ŝi) |=3 φ1] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = EGφ1

– [(M̂, ŝ) |=3 φ] = true, iff there exists some must-path πmust = [ŝ, ŝ1, ŝ2, ...], such that

for all ŝi ∈ πmust, [(M̂, ŝi) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = false, iff for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...], there is some ŝi ∈ πmay
such that [(M̂, ŝi) |=3 φ1] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = AFφ1

– [(M̂, ŝ) |=3 φ] = true, iff for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...], there is a ŝi ∈ πmay
such that [(M̂, ŝi) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = false, iff there exists some must-path πmust = [ŝ, ŝ1, ŝ2, ...], such that

for all ŝi ∈ πmust, [(M̂, ŝi) |=3 φ1] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = EFφ1

– [(M̂, ŝ) |=3 φ] = true, iff there exists some must-path πmust = [ŝ, ŝ1, ŝ2, ...], such that

there is some ŝi ∈ πmust for which [(M̂, ŝi) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = false, iff for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...] and for all ŝi ∈ πmay,
[(M̂, ŝi) |=3 φ1] = false.

– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = A(φ1 U φ2)

– [(M̂, ŝ) |=3 φ] = true, iff for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...], there is ŝi ∈ πmay such

that [(M̂, ŝi) |=3 φ2] = true and ∀j < i : [(M̂, ŝj) |=3 φ1] = true.

– [(M̂, ŝ) |=3 φ] = false, iff there exists some must-path πmust = [ŝ, ŝ1, ŝ2, ...], such that
i. for all 0 ≤ k < |πmust| :

(∀j < k : [(M̂, ŝj) |=3 φ1] 6= false)⇒ ([(M̂, ŝk) |=3 φ2] = false)

ii. (for all 0 ≤ k < |πmust| : [(M̂, ŝk) |=3 φ2] 6= false)⇒ |πmust| =∞
– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.
• If φ = E(φ1Uφ2)

– [(M̂, ŝ) |=3 φ] = true, iff there exists some must-path πmust = [ŝ, ŝ1, ŝ2, ...] such that

there is a ŝi ∈ πmust with [(M̂, ŝi) |=3 φ2] = true and for all j < i, [(M̂, ŝj) |=3 φ1] =
true.

– [(M̂, ŝ) |=3 φ] = false, iff for all may-paths πmay = [ŝ, ŝ1, ŝ2, ...]
i. for all 0 ≤ k < |πmay| :

(∀j < k : [(M̂, ŝj) |=3 φ1] 6= false)⇒ ([(M̂, ŝk) |=3 φ2] = false)

ii. (for all 0 ≤ k < |πmay| : [(M̂, ŝk) |=3 φ2] 6= false)⇒ |πmay| =∞
– [(M̂, ŝ) |=3 φ] = ⊥, otherwise.

From the 3-valued CTL semantics, it follows that must-transitions are used to check the
truth of existential CTL properties, while may-transitions are used to check the truth of
universal CTL properties. This works inversely for checking the refutation of CTL properties.
In what follows, we use |= instead of |=3 in order to refer to the 3-valued satisfaction relation.
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Figure 2. Abstraction and Concretization.

3. Abstraction and Refinement for 3-Valued CTL

3.1. Abstraction. Abstraction is a state-space reduction technique that produces a smaller
abstract model from an initial concrete model, so that the result of model checking a property
φ in the abstract model is preserved in the concrete model. This can be achieved if the
abstract model is built with certain requirements [18, 31].

Definition 3.1. Given a KS M = (S, S0, R, L) and a pair of total functions (α : S → Ŝ, γ :

Ŝ → 2S) such that

∀s ∈ S : ∀ŝ ∈ Ŝ : (α(s) = ŝ⇔ s ∈ γ(ŝ))

the KMTS α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) is defined as follows:

(1) ŝ ∈ Ŝ0 iff ∃s ∈ γ(ŝ) such that s ∈ S0

(2) lit ∈ L̂(ŝ) only if ∀s ∈ γ(ŝ) : lit ∈ L(s)
(3) Rmust = {(ŝ1, ŝ2) | ∀s1 ∈ γ(ŝ1) : ∃s2 ∈ γ(ŝ2) : (s1, s2) ∈ R}
(4) Rmay = {(ŝ1, ŝ2) | ∃s1 ∈ γ(ŝ1) : ∃s2 ∈ γ(ŝ2) : (s1, s2) ∈ R}

For a given KS M and a pair of abstraction and concretization functions α and γ,
Def. 3.1 introduces the KMTS α(M) defined over the set Ŝ of abstract states. In our AMR
framework, we view M as the concrete model and the KMTS α(M) as the abstract model.
Any two concrete states s1 and s2 of M are abstracted by α to a state ŝ of α(M) if and only
if s1, s2 are elements of the set γ(ŝ) (see Fig 2). A state of α(M) is initial if and only if at
least one of its concrete states is initial as well. An atomic proposition in an abstract state is
true (respectively, false), only if it is also true (respectively, false) in all of its concrete states.
This means that the value of an atomic proposition may be unknown at a state of α(M). A
must-transition from ŝ1 to ŝ2 of α(M) exists, if and only if there are transitions from all
states of γ(ŝ1) to at least one state of γ(ŝ2) (∀∃− condition). Respectively, a may-transition
from ŝ1 to ŝ2 of α(M) exists, if and only if there is at least one transition from some state
of γ(ŝ1) to some state of γ(ŝ2) (∃∃ − condition).

Definition 3.2. Given a pair of total functions (α : S → Ŝ, γ : Ŝ → 2S) such that

∀s ∈ S : ∀ŝ ∈ Ŝ : (α(s) = ŝ⇔ s ∈ γ(ŝ))

and a KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), the set of KSs γ(M̂) = {M |M = (S, S0, R, L)}
is defined such that for all M ∈ γ(M̂) the following conditions hold:

(1) s ∈ S0 iff α(s) ∈ Ŝ0

(2) lit ∈ L(s) if lit ∈ L̂(α(s))
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(3) (s1, s2) ∈ R iff
• ∃s′1 ∈ γ(α(s1)) : ∃s′2 ∈ γ(α(s2)) : (α(s1), α(s2)) ∈ Rmay and,
• ∀s′1 ∈ γ(α(s1)) : ∃s′2 ∈ γ(α(s2)) : (α(s1), α(s2)) ∈ Rmust

For a given KMTS M̂ and a pair of abstraction and concretization functions α and γ, Def. 3.2
introduces a set γ(M̂) of concrete KSs. A state s of a KS M ∈ γ(M̂) is initial if its abstract
state α(s) is also initial. An atomic proposition in a concrete state s is true (respectively,
false) if it is also true (respectively, false) in its abstract state α(s). A transition from a
concrete state s1 to another concrete state s2 exists, if and only if

• there are concrete states s′1 ∈ γ(α(s1)) and s′2 ∈ γ(α(s2)), where (α(s1), α(s2)) ∈ Rmay,
and
• there is at least one concrete state s′2 ∈ γ(α(s2)) such that for all s′1 ∈ γ(α(s1)) it holds

that (α(s1), α(s2)) ∈ Rmust.

Abstract Interpretation. A pair of abstraction and concretization functions can be defined
within an Abstract Interpretation [20, 21] framework. Abstract interpretation is a theory
for a set of abstraction techniques, for which important properties for the model checking
problem have been proved [23, 24].

Definition 3.3. [23, 32] Let M = (S, S0, R, L) be a concrete KS and M̂ = (Ŝ, Ŝ0, Rmust,

Rmay, L̂) be an abstract KMTS. A relation H ⊆ S × Ŝ for M and M̂ is called a mixed
simulation, when H(s, ŝ) implies:

• L̂(ŝ) ⊆ L(s)

• if r = (s, s′) ∈ R, then there is exists ŝ′ ∈ Ŝ such that rmay = (ŝ, ŝ′) ∈ Rmay and
(s′, ŝ′) ∈ H.
• if rmust = (ŝ, ŝ′) ∈ Rmust, then there exists s′ ∈ S such that r = (s, s′) ∈ R and

(s′, ŝ′) ∈ H.

The abstraction function α of Def. 3.1 is a mixed simulation for the KS M and its abstract
KMTS α(M).

Theorem 3.4. [32] Let H ⊆ S× Ŝ be a mixed simulation from a KS M = (S, S0, R, L) to a

KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂). Then, for every CTL formula φ and every (s, ŝ) ∈ H
it holds that

[(M̂, ŝ) |= φ] 6= ⊥ ⇒ [(M, s) |= φ] = [(M̂, ŝ) |= φ]

Theorem 3.4 ensures that if a CTL formula φ has a definite truth value (i.e., true or false)
in the abstract KMTS, then it has the same truth value in the concrete KS. When we get ⊥
from the 3-valued model checking of a CTL formula φ, the result of model checking property
φ on the corresponding KS can be either true or false.

Example. An abstract KMTS M̂ is presented in Fig. 3a, where all the states labeled by q
are grouped together, as are all states labeled by ¬q.

3.2. Refinement. When the outcome of verifying a CTL formula φ on an abstract model
using the 3-valued semantics is ⊥, then a refinement step is needed to acquire a more
precise abstract model. In the literature, there are refinement approaches for the 2-valued
CTL semantics [17, 19, 22], as well as a number of techniques for the 3-valued CTL model
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Figure 3. The KS and KMTSs for the ADO system.

checking [31, 46, 47, 35]. The refinement technique that we adopt is an automated two-step
process based on [17, 46]:

(1) Identify a failure state in α(M) using the algorithms in [17, 46]; the cause of failure for
a state ŝ stems from an atomic proposition having an undefined value in ŝ, or from an
outgoing may-transition from ŝ.
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(2) Produce the abstract KMTS αRefined (M), where αRefined is a new abstraction function
as in Def. 3.1, such that the identified failure state is refined into two states. If the cause
of failure is an undefined value of an atomic proposition in ŝ, then ŝ is split into states
ŝ1 and ŝ2, such that the atomic proposition is true in ŝ1 and false in ŝ2. Otherwise, if
the cause of failure is an outgoing may-transition from ŝ, then ŝ is split into states ŝ1

and ŝ2, such that there is an outgoing must-transition from ŝ1 and no outgoing may- or
must-transition from ŝ2.

The described refinement technique does not necessarily converge to an abstract KMTS with
a definite model checking result. A promising approach in order to overcome this restriction
is by using a different type of abstract model, as in [46], where the authors propose the use
of Generalized KMTSs, which ensure monotonicity of the refinement process.

Example. Consider the case where the ADO system requires a mechanism for opening
the door from any state with a direct action. This could be an action done by an expert if
an immediate opening of the door is required. This property can be expressed in CTL as
φ = AGEXq. Observe that in α(M) of Fig. 3a, the absence of a must-transition from ŝ0

to ŝ1, where [(α(M), ŝ1) |= q] = true, in conjunction with the existence of a may-transition
from ŝ0 to ŝ1, i.e. to a state where [(α(M), ŝ1) |= q] = true, results in an undefined model-
checking outcome for [(α(M), ŝ0) |= φ]. Notice that state ŝ0 is the failure state, and the
may-transition from ŝ0 to ŝ1 is the cause of the failure. Consequently, ŝ0 is refined into two
states, ŝ01 and ŝ02, such that the former has no transition to ŝ1 and the latter has an outgoing
must-transition to ŝ1. Thus, the may-transition which caused the undefined outcome is
eliminated and for the refined KMTS αRefined (M) it holds that [αRefined (M), ŝ1) |= φ] = false.
The initial KS and the refined KMTS αRefined (M) are shown in Fig. 3b.

4. The Model Repair Problem

In this section, we formulate the problem of Model Repair. A metric space over Kripke
structures is defined to quantify their structural differences. This allows us taking into
account the minimality of changes criterion in Model Repair.
Let π be a function on the set of all functions f : X → Y such that:

π(f) = {(x, f(x)) | x ∈ X}
A restriction operator (denoted by �) for the domain of function f is defined such that for
X1 ⊆ X,

f �X1= {(x, f(x)) | x ∈ X1}
By SC , we denote the complement of a set S.

Definition 4.1. For any two M = (S, S0, R, L) and M ′ = (S′, S′0, R
′, L′) in the set KM of

all KSs, where

S′ = (S ∪ SIN )− SOUT for some SIN ⊆ SC , SOUT ⊆ S,
R′ = (R ∪RIN )−ROUT for some RIN ⊆ RC , ROUT ⊆ R,
L′ = S′ → 2LIT ,

the distance function d over KM is defined as follows:

d(M,M ′) = |S∆S′|+ |R∆R′|+ |π(L �S∩S′) ∆π(L′ �S∩S′)|
2

with A∆B representing the symmetric difference (A−B) ∪ (B −A).
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For any two KSs defined over the same set of atomic propositions AP , function d counts the
number of differences |S∆S′| in the state spaces, the number of differences |R∆R′| in their
transition relation and the number of common states with altered labeling.

Proposition 4.2. The ordered pair (KM , d) is a metric space.

Proof. We use the fact that the cardinality of the symmetric difference between any two
sets is a distance metric. It holds that:

(1) |S∆S′| ≥ 0, |R∆R′| ≥ 0 and |π(L �S∩S′)∆π(L′ �S∩S′)| ≥ 0 (non-negativity)
(2) |S∆S′| = 0 iff S = S′, |R∆R′| = 0 iff R = R′ and |π(L �S∩S′)|∆|π(L′ �S∩S′)| = 0 iff

π(L �S∩S′) = π(L′ �S∩S′) (identity of indiscernibles)
(3) |S∆S′| = |S′∆S|, |R∆R′| = |R′∆R| and |π(L �S∩S′)∆π(L′ �S∩S′)| =
|π(L′ �S∩S′)∆π(L �S∩S′)|(symmetry)

(4) |S′∆S′′| ≤ |S′∆S|+ |S∆S′′|, |R′∆R′′| ≤ |R′∆R|+ |R∆R′′|,
|π(L′ �S′∩S′′)∆π(L′′|S′∩S′′)| ≤ |π(L′ �S′∩S)∆π(L �S′∩S)|+
|π(L �S∩S′′)∆π(L′′|S∩S′′)|
(triangle inequality)

We will prove that d is a metric on KM . Suppose M,M ′,M ′′ ∈ KM

• It easily follows from (1) that d(M,M ′) ≥ 0 (non-negativity)
• From (2), d(M,M ′) = 0 iff M = M ′ (identity of indiscernibles)
• Adding the equations in (3), results in d(M,M ′) = d(M ′,M) (symmetry)
• If we add the inequalities in (4), then we get d(M ′,M ′′) ≤ d(M ′,M) + d(M,M ′′) (triangle

inequality)

So, the proposition is true.

Definition 4.3. For any two M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and M̂ ′ = (Ŝ′, Ŝ0
′
, R′must, R

′
may, L̂

′)
in the set KM̂ of all KMTSs, where

Ŝ′ = (Ŝ ∪ ŜIN )− ŜOUT for some ŜIN ⊆ ŜC , ŜOUT ⊆ Ŝ,

R̂′must = (R̂must ∪ R̂IN )− R̂OUT for some R̂IN ⊆ R̂Cmust, R̂OUT ⊆ R̂must,
R̂′may = (R̂may ∪ R̂′IN )− R̂′OUT for some R̂′IN ⊆ R̂Cmay, R̂′OUT ⊆ R̂may,
L̂′ = Ŝ′ → 2LIT ,

the distance function d̂ over KM̂ is defined as follows:

d̂(M,M ′) = |Ŝ∆ Ŝ′|+ |R̂must ∆ R̂′must|+ |(R̂may − R̂must) ∆ (R̂′may − R̂′must)|+
|π(L̂ �Ŝ∩Ŝ′) ∆π(L̂′ �Ŝ∩Ŝ′)|

2

with A∆B representing the symmetric difference (A−B) ∪ (B −A).

We note that d̂ counts the differences between R̂′may and R̂may, and those between R̂′must
and R̂must separately, while avoiding to count the differences in the latter case twice (we

remind that must-transitions are also included in R̂may).

Proposition 4.4. The ordered pair (KM̂ , d̂) is a metric space.

Proof. The proof is done in the same way as in Prop. 4.2.
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Figure 4. Abstract Model Repair Framework.

Definition 4.5. Given a KS M and a CTL formula φ where M 6|= φ, the Model Repair
problem is to find a KS M ′, such that M ′ |= φ and d(M,M ′) is minimum with respect to
all such M ′.

The Model Repair problem aims at modifying a KS such that the resulting KS satisfies
a CTL formula that was violated before. The distance function d of Def. 4.1 features all
the attractive properties of a distance metric. Given that no quantitative interpretation
exists for predicates and logical operators in CTL, d can be used in a model repair solution
towards selecting minimum changes to the modified KS.

5. The Abstract Model Repair Framework

Our AMR framework integrates 3-valued model checking, model refinement, and a new
algorithm for selecting the repair operations applied to the abstract model. The goal of this
algorithm is to apply the repair operations in a way, such that the number of structural
changes to the corresponding concrete model is minimized. The algorithm works based on a
partial order relation over a set of basic repair operations for KMTSs. This section describes
the steps involved in our AMR framework, the basic repair operations, and the algorithm.

5.1. The Abstract Model Repair Process. The process steps shown in Fig. 4 rely on
the KMTS abstraction of Def. 3.1. These are the following:

Step 1.: Given a KS M , a state s of M , and a CTL property φ, let us call M̂ the KMTS
obtained as in Def. 3.1.

Step 2.: For state ŝ = α(s) of M̂ , we check whether (M̂, ŝ) |= φ by 3-valued model checking.
Case 1.: If the result is true, then, according to Theorem 3.4, (M, s) |= φ and there is

no need to repair M .
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Case 2.: If the result is undefined, then a refinement of M̂ takes place, and:
Case 2.1.: If an M̂Refined is found, the control is transferred to Step 2.
Case 2.2.: If a refined KMTS cannot be retrieved, the repair process terminates

with a failure.
Case 3.: If the result is false, then, from Theorem 3.4, (M, s) 6|= φ and the repair process

is enacted; the control is transferred to Step 3.
Step 3.: The AbstractRepair algorithm is called for the abstract KMTS (M̂Refined or M̂ if

no refinement has occurred), the state ŝ and the property φ.

Case 1.: AbstractRepair returns an M̂ ′ for which (M̂ ′, ŝ) |= φ.

Case 2.: AbstractRepair fails to find an M̂ ′ for which the property holds true.
Step 4.: If AbstractRepair returns an M̂ ′, then the process ends with selecting the subset

of KSs from γ(M̂ ′), with elements whose distance d from the KS M is minimum with

respect to all the KSs in γ(M̂ ′).

5.2. Basic Repair Operations. We decompose the KMTS repair process into seven basic
repair operations:

AddMust: Adding a must-transition
AddMay: Adding a may-transition
RemoveMust: Removing a must-transition
RemoveMay: Removing a may-transition
ChangeLabel: Changing the labeling of a KMTS state
AddState: Adding a new KMTS state
RemoveState: Removing a disconnected KMTS state

5.2.1. Adding a must-transition.

Definition 5.1 (AddMust). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and r̂n =

(ŝ1, ŝ2) /∈ Rmust, AddMust(M̂, r̂n) is the KMTS M̂ ′ = (Ŝ, Ŝ0, R
′
must, R

′
may, L̂) such that

R′must = Rmust ∪ {r̂n} and R′may = Rmay ∪ {r̂n}.
Since Rmust ⊆ Rmay, r̂n must also be added to Rmay, resulting in a new may-transition

if r̂n /∈ Rmay. Fig. 5 shows how the basic repair operation AddMust modifies a given KMTS.
The newly added transitions are in bold.

Proposition 5.2. For any M̂ ′ = AddMust(M̂, r̂n), it holds that d̂(M̂, M̂ ′) = 1.

Definition 5.3. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be

the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = AddMust(α(M), r̂n) for

some r̂n = (ŝ1, ŝ2) /∈ Rmust. The set Kmin ⊆ γ(M̂ ′) with all KSs, whose distance d from M
is minimized is:

Kmin = {M ′ |M ′ = (S, S0, R ∪Rn, L)} (5.1)

where Rn is given for one s2 ∈ γ(ŝ2) as follows:

Rn =
⋃

s1∈γ(ŝ1)

{(s1, s2) | @s ∈ γ(ŝ2) : (s1, s) ∈ R}
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Figure 5. AddMust : Adding a new must-transition

Def. 5.3 implies that when the AbstractRepair algorithm applies AddMust on the abstract
KMTS M̂ , then a set of KSs is retrieved from the concretization of M̂ ′. The same holds for
all other basic repair operations and consequently, when AbstractRepair finds a repaired
KMTS, one or more KSs can be obtained for which property φ holds.

Proposition 5.4. For all M ′ ∈ Kmin, it holds that 1 ≤ d(M,M ′) ≤ |S|.
Proof. Recall that

d(M,M ′) = |S∆S′|+ |R∆R′|+ |π(L �S∩S′)∆π(L′ �S∩S′)|
2

Since |S∆S′| = 0 and |π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R−R′|+ |R′ −
R| = 0 + |Rn|. Since |Rn| ≥ 1 and |Rn| ≤ |S|, it is proved that 1 ≤ d(M,M ′) ≤ |S|.

From Prop. 5.4, we conclude that a lower and upper bound exists for the distance
between M and any M ′ ∈ Kmin.

5.2.2. Adding a may-transition.

Definition 5.5 (AddMay). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and r̂n =

(ŝ1, ŝ2) /∈ Rmay, AddMay(M̂, r̂n) is the KMTS M̂ ′ = (Ŝ, Ŝ0, R
′
must, R

′
may, L̂) such that

R′must = Rmust ∪ {r̂n} if |S1| = 1 or R′must = Rmust if |S1| > 1 for S1 = {s1 | s1 ∈ γ(ŝ1)}
and R′may = Rmay ∪ {r̂n}.

From Def. 5.5, we conclude that there are two different cases in adding a new may-
transition r̂n; adding also a must-transition or not. In fact, r̂n is also a must-transition if
and only if the set of the corresponding concrete states of ŝ1 is a singleton. Fig. 6 displays
the two different cases of applying basic repair operation AddMay to a KMTS.

Proposition 5.6. For any M̂ ′ = AddMay(M̂, r̂n), it holds that d̂(M̂, M̂ ′) = 1.



14 G. CHATZIELEFTHERIOU, B. BONAKDARPOUR, P. KATSAROS, AND S. A. SMOLKA

p

p

p

q

q

q

M

p q

M̂ ′

α

AddMay

p

p

p

q

q

q

M ′

p q

M̂ ′

γ

(a) Only may-transition is added

p q

q

q

M

p q

M̂ ′

α

AddMay

p q

q

q

M ′

p q

M̂ ′

γ

(b) Must-transition is also added

Figure 6. AddMay : Adding a new must-transition

Definition 5.7. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be

the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = AddMay(α(M), r̂n) for

some r̂n = (ŝ1, ŝ2) /∈ Rmay. The set Kmin ⊆ γ(M̂ ′) with all KSs, whose structural distance
d from M is minimized is given by:

Kmin = {M ′ |M ′ = (S, S0, R ∪ {rn}, L)} (5.2)

where rn ∈ Rn and Rn = {rn = (s1, s2) | s1 ∈ γ(ŝ1), s2 ∈ γ(ŝ2) and rn /∈ R}.
Proposition 5.8. For all M ′ ∈ Kmin, it holds that d(M,M ′) = 1.

Proof. d(M,M ′) = |S∆S′| + |R∆R′| +
|π(L�S∩S′ )∆π(L′�S∩S′ )|

2 . Because |S∆S′| = 0 and
|π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R − R′|+ |R′ − R| = 0 + |{rn}| = 1.
So, we prove that d(M,M ′) = 1.

5.2.3. Removing a must-transition.

Definition 5.9 (RemoveMust). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and r̂m =

(ŝ1, ŝ2) ∈ Rmust, RemoveMust(M̂, r̂m) is the KMTS M̂ ′ = (Ŝ, Ŝ0, R
′
must, R

′
may, L̂) such that

R′must = Rmust − {r̂m} and R′may = Rmay − {r̂m} if |S1| = 1 or R′may = Rmay if |S1| > 1 for
S1 = {s1 | s1 ∈ γ(ŝ1)}.

Removing a must-transition r̂m, in some special and maybe rare cases, could also result
in the deletion of the may-transition r̂m as well. In fact, this occurs if transitions to the
concrete states of ŝ2 exist only from one concrete state of the corresponding ones of ŝ1.
These two cases for function RemoveMust are presented graphically in Fig. 7.

Proposition 5.10. For any M̂ ′ = RemoveMust(M̂, r̂m), it holds that d̂(M̂, M̂ ′) = 1.
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Figure 7. RemoveMust : Removing an existing must-transition

Definition 5.11. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be

the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = RemoveMust(α(M), r̂m)

for some r̂m = (ŝ1, ŝ2) ∈ Rmust. The set Kmin ⊆ γ(M̂ ′) with all KSs, whose structural
distance d from M is minimized is given by:

Kmin = {M ′ |M ′ = (S, S0, R− {Rm}, L)} (5.3)

where Rm is given for one s1 ∈ γ(ŝ1) as follows:

Rm =
⋃

s2∈γ(ŝ2)

{(s1, s2) ∈ R}

Proposition 5.12. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|.

Proof. d(M,M ′) = |S∆S′| + |R∆R′| +
|π(L�S∩S′ )∆π(L′�S∩S′ )|

2 . Because |S∆S′| = 0 and
|π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R−R′|+ |R′−R| = |Rm|+ 0 = |Rm|.
It holds that |Rm| ≥ 1 and |Rm| ≤ |S|. So, we proved that 1 ≤ d(M,M ′) ≤ |S|.

5.2.4. Removing a may-transition.

Definition 5.13 (RemoveMay). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and

r̂m = (ŝ1, ŝ2) ∈ Rmay, RemoveMay(M̂, r̂m) is the KMTS M̂ ′ = (Ŝ, Ŝ0, R
′
must, R

′
may, L̂) such

that R′must = Rmust − {r̂m} and R′may = Rmay − {r̂m}.
Def. 5.13 ensures that removing a may-transition r̂m implies the removal of a must-

transition, if r̂m is also a must-transition. Otherwise, there are not any changes in the set of
must-transitions Rmust. Fig. 8 shows how function RemoveMay works in both cases.

Proposition 5.14. For any M̂ ′ = RemoveMay(M̂, r̂m), it holds that d̂(M̂, M̂ ′) = 1.
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Definition 5.15. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be

the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = RemoveMay(α(M), r̂m)

for some r̂m = (ŝ1, ŝ2) ∈ Rmay with ŝ1, ŝ2 ∈ Ŝ. The KS M ′ ∈ γ(M̂ ′), whose structural
distance d from M is minimized is given by:

M ′ = (S, S0, R−Rm, L} (5.4)

where Rm = {rm = (s1, s2) | s1 ∈ γ(ŝ1), s2 ∈ γ(ŝ2) and rm ∈ R}.
Proposition 5.16. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|2.

Proof. d(M,M ′) = |S∆S′| + |R∆R′| +
|π(L�S∩S′ )∆π(L′�S∩S′ )|

2 . Because |S∆S′| = 0 and
|π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |R∆R′| = |R−R′|+ |R′−R| = 0 + |Rm| = |Rm|.
It holds that |Rm| ≥ 1 and |Rm| ≤ |S|2. So, we proved that 1 ≤ d(M,M ′) ≤ |S|2.

5.2.5. Changing the labeling of a KMTS state.

Definition 5.17 (ChangeLabel). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), a state

ŝ ∈ Ŝ and an atomic CTL formula φ with φ ∈ 2LIT , ChangeLabel(M̂, ŝ, φ) is the KMTS

M̂ ′ = (Ŝ, Ŝ0, Rmust, Rmay, L̂′) such that L̂′ = (L̂ − {l̂old}) ∪ {l̂new} for l̂old = (ŝ, litold) and

l̂new = (ŝ, litnew) where litnew = L̂(ŝ) ∪ {lit | lit ∈ φ} − {¬lit | lit ∈ φ}.
Basic repair operation ChangeLabel gives the possibility of repairing a model by changing

the labeling of a state, thus without inducing any changes in the structure of the model
(number of states or transitions). Fig. 9 presents the application of ChangeLabel in a
graphical manner.

Proposition 5.18. For any M̂ ′ = ChangeLabel(M̂, ŝ, φ), it holds that d̂(M̂, M̂ ′) = 1.
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Figure 9. ChangeLabel : Changing the labeling of a KMTS state

Definition 5.19. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be

the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = ChangeLabel(α(M), ŝ, φ)

for some ŝ ∈ Ŝ and φ ∈ 2LIT . The KS M ′ ∈ γ(M̂ ′), whose structural distance d from M is
minimized, is given by:

M ′ = (S, S0, R, L− Lold ∪ Lnew} (5.5)

where
Lold = {lold = (s, litold) | s ∈ γ(ŝ), s ∈ S,¬litold 6∈ φ and lold ∈ L}
Lnew = {lnew = (s, litnew) | s ∈ γ(ŝ), s ∈ S, litnew ∈ φ and lnew /∈ L}

Proposition 5.20. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|.

Proof. d(M,M ′) = |S∆S′| + |R∆R′| + |π(L�S∩S′ )∆π(L′�S∩S′ )|
2 . Because |R∆R′| = 0 and

|R∆R′| = 0, d(M,M ′) =
|π(L�S∩S′ )∆π(L′�S∩S′ )|

2 = |Lold|+|Lnew|
2 = |Lold| = |Lnew|. It holds that

Lnew ≥ 1 and Lnew ≤ |S|. So, we prove that 1 ≤ d(M,M ′) ≤ |S|.

5.2.6. Adding a new KMTS state.

Definition 5.21 (AddState). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and a state

ŝn /∈ Ŝ, AddState(M̂, ŝn) is the KMTS M̂ ′ = (Ŝ′, Ŝ0, Rmust, Rmay, L̂′) such that Ŝ′ = Ŝ∪{ŝn}
and L̂′ = L̂ ∪ {l̂n}, where l̂n = (ŝn,⊥).

The most important issues for function AddState is that the newly created abstract
state ŝn is isolated, thus there are no ingoing or outgoing transitions for this state, and
additionally, the labeling of this new state is ⊥. Another conclusion from Def. 5.21 is the
fact that the inserted stated is not permitted to be initial. Application of function AddState
is presented graphically in Fig. 10.

Proposition 5.22. For any M̂ ′ = AddState(M̂, ŝn), it holds that d̂(M̂, M̂ ′) = 1.
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Figure 10. AddState: Adding a new KMTS state

Definition 5.23. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂)

be the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = AddState(α(M), ŝn)

for some ŝn /∈ Ŝ. The KS M ′ ∈ γ(M̂ ′), whose structural distance d from M is minimized is
given by:

M ′ = (S ∪ {sn}, S0, R, L ∪ {ln}) (5.6)

where sn ∈ γ(ŝn) and ln = (sn,⊥).

Proposition 5.24. For M ′, it holds that d(M,M ′) = 1.

Proof. d(M,M ′) = |S∆S′| + |R∆R′| + |π(L�S∩S′ )∆π(L′�S∩S′ )|
2 . Because |R∆R′| = 0 and

|π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |S∆S′| = |S − S′| + |S′ − S| = 0 + |{sn}| = 1.
So, we proved that d(M,M ′) = 1.

5.2.7. Removing a disconnected KMTS state.

Definition 5.25 (RemoveState). For a given KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and a

state ŝr ∈ Ŝ such that ∀ŝ ∈ Ŝ : (ŝ, ŝr) 6∈ Rmay ∧ (ŝr, ŝ) 6∈ Rmay, RemoveState(M̂, ŝr) is

the KMTS M̂ ′ = (Ŝ′, Ŝ′0, Rmust, Rmay, L̂
′) such that Ŝ′ = Ŝ − {ŝr}, Ŝ′0 = Ŝ0 − {ŝr} and

L̂′ = L̂− {l̂r}, where l̂r = (ŝr, lit) ∈ L̂.

From Def. 5.25, it is clear that the state being removed should be isolated, thus there
are not any may- or must-transitions from and to this state. This means that before using
RemoveState to an abstract state, all its ingoing or outgoing must have been removed
by using other basic repair operations. RemoveState are also used for the elimination of
dead-end states, when such states arise during the repair process. Fig. 11 presents the
application of RemoveState in a graphical manner.

Proposition 5.26. For any M̂ ′ = RemoveState(M̂, ŝr), it holds that d̂(M̂, M̂ ′) = 1.
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Figure 11. RemoveState: Removing a disconnected KMTS state

Definition 5.27. Let M = (S, S0, R, L) be a KS and let α(M) = (Ŝ, Ŝ0, Rmust, Rmay, L̂) be

the abstract KMTS derived from M as in Def. 3.1. Also, let M̂ ′ = RemoveState(α(M), ŝr)

for some ŝr ∈ Ŝ with l̂r = (ŝr, lit) ∈ L̂. The KS M ′ ∈ γ(M̂ ′), whose structural distance d
from M is minimized, is given by:

M ′ = (S′, S′0, R
′, L′) s.t. S′ = S − Sr, S′0 = S0 − Sr, R′ = R,L′ = L− Lr (5.7)

where Sr = {sr | sr ∈ S and sr ∈ γ(ŝr)} and Lr = {lr = (sr, lit) | lr ∈ L}.
Proposition 5.28. For M ′, it holds that 1 ≤ d(M,M ′) ≤ |S|.

Proof. d(M,M ′) = |S∆S′| + |R∆R′| + |π(L�S∩S′ )∆π(L′�S∩S′ )|
2 . Because |R∆R′| = 0 and

|π(L �S∩S′)∆π(L′ �S∩S′)| = 0, d(M,M ′) = |S∆S′| = |S − S′|+ |S′ − S| = |Sr|+ 0 = |Sr|. It
holds that |Sr| ≥ 1 and |Sr| ≤ |S|. So, we proved that 1 ≤ d(M,M ′) ≤ |S|.

5.2.8. Minimality Of Changes Ordering For Basic Repair Operations. The distance metric
d of Def. 4.1 reflects the need to quantify structural changes in the concrete model that
are attributed to model repair steps applied to the abstract KMTS. Every such repair step
implies multiple structural changes in the concrete KSs, due to the use of abstraction. In
this context, our distance metric is an essential means for the effective application of the
abstraction in the repair process.

Based on the upper bound given by Prop. 5.4 and all the respective results for the other
basic repair operations, we introduce the partial ordering shown in Fig. 12. This ordering is
used in our AbstractRepair algorithm to heuristically select at each step the basic repair
operation that generates the KSs with the least changes. When it is possible to apply more
than one basic repair operation with the same upper bound, our algorithm successively uses
them until a repair solution is found, in an order based on the computational complexity of
their application.

If instead of our approach, all possible repaired KSs were checked to identify the
basic repair operation with the minimum changes, this would defeat the purpose of using
abstraction. The reason is that such a check inevitably would depend on the size of concrete
KSs.
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Figure 12. Minimality of changes ordering of the set of basic repair operations

Algorithm 1 AbstractRepair

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ in PNF for which (M̂, ŝ) 6|= φ,

and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci is
a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.
1: if φ is false then
2: return FAILURE
3: else if φ ∈ LIT then
4: return AbstractRepairATOMIC(M̂, ŝ, φ, C)
5: else if φ is φ1 ∧ φ2 then
6: return AbstractRepairAND(M̂, ŝ, φ, C)
7: else if φ is φ1 ∨ φ2 then
8: return AbstractRepairOR(M̂, ŝ, φ, C)
9: else if φ is OPERφ1 then

10: return AbstractRepairOPER(M̂, ŝ, φ, C)
11: where OPER ∈ {AX,EX,AU,EU,AF,EF,AG,EG}

6. The Abstract Model Repair Algorithm

The AbstractRepair algorithm used in Step 3 of our repair process is a recursive, syntax-
directed algorithm, where the syntax for the property φ in question is that of CTL. The
same approach is followed by the SAT model checking algorithm in [39] and a number of
model repair solutions applied to concrete KSs [55, 14]. In our case, we aim to the repair
of an abstract KMTS by successively calling primitive repair functions that handle atomic
formulas, logical connectives and CTL operators. At each step, the repair with the least
changes for the concrete model among all the possible repairs is applied first.

The main routine of AbstractRepair is presented in Algorithm 1. If the property φ is
not in Positive Normal Form, i.e. negations are applied only to atomic propositions, then
we transform it into such a form before applying Algorithm 1.
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An initially empty set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} is passed
as an argument in the successive recursive calls of AbstractRepair. We note that these
constraints can also specify existing properties that should be preserved during repair. If
C is not empty, then for the returned KMTS M̂ ′, it holds that (M̂ ′, ŝci) |= φci for all

(ŝci , φci) ∈ C. For brevity, we denote this with M̂ ′ |= C. We use C in order to handle
conjunctive formulas of the form φ = φ1 ∧ φ2 for some state ŝ. In this case, AbstractRepair
is called for the KMTS M̂ and property φ1 with C = {(ŝ, φ2)}. The same is repeated for
property φ2 with C = {(ŝ, φ1)} and the two results are combined appropriately.

For any CTL formula φ and KMTS state ŝ, AbstractRepair either outputs a KMTS M̂ ′

for which (M̂ ′, ŝ) |= φ or else returns FAILURE, if such a model cannot be found. This is
the case when the algorithm handles conjunctive formulas and a KMTS that simultaneously
satisfies all conjuncts cannot be found.

Algorithm 2 AbstractRepairATOMIC

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ where φ is an atomic formula

for which (M̂, ŝ) 6|= φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)}
where ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: M̂ ′ := ChangeLabel(M̂, ŝ, φ)

2: if M̂ ′ |= C then

3: return M̂ ′

4: else
5: return FAILURE

Algorithm 3 AbstractRepairOR

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = φ1 ∨ φ2 for which

(M̂, ŝ) 6|= φ, and a set of constraints C = ((ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)) where

ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′), ŝ ∈ Ŝ′ and (M̂ ′, ŝ) |= φ or FAILURE.

1: RET1 := AbstractRepair(M̂, ŝ, φ1, C)

2: RET2 := AbstractRepair(M̂, ŝ, φ2, C)
3: if RET1 6= FAILURE && RET2 6= FAILURE then
4: M̂1 := RET1

5: M̂2 := RET2

6: M̂ ′ := MinimallyChanged(M̂, M̂1, M̂2)
7: else if RET1 6= FAILURE then
8: M̂ ′ := RET1

9: else if RET2 6= FAILURE then
10: M̂ ′ := RET2

11: else
12: return FAILURE
13: return M̂ ′
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Algorithm 4 AbstractRepairAND

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = φ1 ∧ φ2 for which

(M̂, ŝ) 6|= φ, and a set of constraints C = ((ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)) where

ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′), ŝ ∈ Ŝ′ and (M̂ ′, ŝ) |= φ or FAILURE.

1: RET1 := AbstractRepair(M̂, ŝ, φ1, C)

2: RET2 := AbstractRepair(M̂, ŝ, φ2, C)
3: C1 := C ∪ {(ŝ, φ1)}, C2 := C ∪ {(ŝ, φ2)}
4: RET ′1 := FAIURE, RET ′2 := FAIURE
5: if RET1 6= FAILURE then
6: M̂1 := RET1

7: RET ′1 := AbstractRepair(M̂1, ŝ, φ2, C1)
8: if RET ′1 6= FAILURE then

9: M̂ ′1 := RET ′1
10: if RET2 6= FAILURE then
11: M̂2 := RET2

12: RET ′2 := AbstractRepair(M̂2, ŝ, φ1, C2)
13: if RET ′2 6= FAILURE then

14: M̂ ′2 := RET ′2
15: if RET ′1 6= FAILURE && RET ′2 6= FAILURE then

16: M̂ ′ := MinimallyChanged(M̂, M̂ ′1, M̂
′
2)

17: else if RET ′1 6= FAILURE then

18: M̂ ′ := RET ′1
19: else if RET ′2 6= FAILURE then

20: M̂ ′ := RET ′2
21: else
22: return FAILURE
23: return M̂ ′

6.1. Primitive Functions. Algorithm 2 describes AbstractRepairATOMIC , which for a
simple atomic formula, updates the labeling of the input state with the given atomic
proposition. Disjunctive formulas are handled by repairing the disjunct leading to the
minimum change (Algorithm 3), while conjunctive formulas are handled by the algorithm
with the use of constraints (Algorithm 4).

Algorithm 5 describes the primitive function AbstractRepairAG which is called when
φ = AGφ1. If AbstractRepairAG is called for a state ŝ, it recursively calls AbstractRepair
for ŝ and for all reachable states through may-transitions from ŝ which do not satisfy φ1.
The resulting KMTS M̂ ′ is returned, if it does not violate any constraint in C.

AbstractRepairEX presented in Algorithm 6 is the primitive function for handling
properties of the form EXφ1 for some state ŝ. At first, AbstractRepairEX attempts to
repair the KMTS by adding a must-transition from ŝ to a state that satisfies property φ1. If
a repaired KMTS is not found, then AbstractRepair is recursively called for an immediate
successor of ŝ through a must-transition, such that φ1 is not satisfied. If a constraint in C is
violated, then (i) a new state is added, (ii) AbstractRepair is called for the new state and
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Algorithm 5 AbstractRepairAG

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = AGφ1 for which (M̂, ŝ) 6|=
φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci
is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: if (M̂, ŝ) 6|= φ1 then

2: RET := AbstractRepair(M̂, ŝ, φ1, C)
3: if RET == FAILURE then
4: return FAILURE
5: else
6: M̂ ′ := RET
7: else
8: M̂ ′ := M̂
9: for all reachable states ŝk through may-transitions from ŝ such that (M̂ ′, ŝk) 6|= φ1 do

10: RET := AbstractRepair(M̂ ′, ŝk, φ1, C)
11: if RET == FAILURE then
12: return FAILURE
13: else
14: M̂ ′ := RET
15: if M̂ ′ |= C then

16: return M̂ ′

17: return FAILURE

(iii) a must-transition from ŝ to the new state is added. The resulting KMTS is returned by
the algorithm if all constraints of C are satisfied.

Algorithm 7 presents primitive function AbstractRepairAX which is used when φ =
AXφ1. Firstly, AbstractRepairAX tries to repair the KMTS by applying AbstractRepair
for all direct may-successors ŝi of ŝ which do not satisfy property φ1, and in the case that
all the constraints are satisfied the new KMTS is returned by the function. If such states do
not exist or a constraint is violated, all may-transitions (ŝ, ŝi) for which (M̂, ŝi) 6|= φ1, are
removed. If there are states ŝi such that rm := (ŝ, ŝi) ∈ Rmay and all constraints are satisfied
then a repaired KMTS has been produced and it is returned by the function. Otherwise, a
repaired KMTS results by the application of AddMay from ŝ to all states ŝj which satisfy
φ1. If any constraint is violated, then the KMTS is repaired by adding a new state, applying
AbstractRepair to this state for property φ1 and adding a may-transition from ŝ to this
state. If all constraints are satisfied, the repaired KMTS is returned.

AbstractRepairEG which is presented in Algorithm 8 is the primitive function which
is called when input CTL property is in the form of EGφ1. Initially, if φ1 is not satisfied
at ŝ AbstractRepair is called for ŝ and φ1, and a KMTS M̂1 is produced. At first, a must-
transition is added from ŝ to a state ŝ1 of a maximal must-path (i.e. a must-path in which each

transition appears at most once) πmust := [ŝ1, ŝ2, ...] such that ∀ŝi ∈ πmust, (M̂1, ŝi) |= φ1.
If all constraints are satisfied, then the repaired KMTS is returned. Otherwise, a KMTS is
produced by recursively calling AbstractRepair to all states ŝi 6= ŝ of any maximal must-path
πmust := [ŝ1, ŝ2, ...] with ∀ŝi ∈ πmust, (M̂1, ŝi) 6|= φ1. If there are violated constraints in C,
then a repaired KMTS is produced by adding a new state, calling AbstractRepair for this
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Algorithm 6 AbstractRepairEX

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = EXφ1 for which (M̂, ŝ) 6|=
φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ M̂ and
φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: if there exists ŝ1 ∈ Ŝ such that (M̂, ŝ1) |= φ1 then

2: for all ŝi ∈ Ŝ such that (M̂, ŝi) |= φ1 do

3: r̂i := (ŝ, ŝi), M̂ ′ := AddMust(M̂, r̂i)

4: if M̂ ′ |= C then

5: return M̂ ′

6: else
7: for all direct must-reachable states ŝi from ŝ such that (M̂, ŝi) 6|= φ1 do

8: RET := AbstractRepair(M̂, ŝi, φ1, C)
9: if RET 6= FAILURE then

10: M̂ ′ := RET
11: return M̂ ′

12: M̂ ′ := AddState(M̂, ŝn), r̂n := (ŝ, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)
13: r̂n := (ŝn, ŝn)

14: M̂ ′ := AddMay(M̂ ′, r̂n)

15: RET := AbstractRepair(M̂ ′, ŝn, φ1, C)
16: if RET 6= FAILURE then
17: M̂ ′ := RET
18: return M̂ ′

19: return FAILURE

state and property φ1 and calling AddMust to insert a must-transition from ŝ to the new
state. The resulting KMTS is returned by the algorithm, if all constraints in C are satisfied.

AbstractRepairAF shown in Algorithm 9 is called when the CTL formula φ is in the
form of AFφ1. While there is maximal may-path πmay := [ŝ, ŝ1, ...] such that ∀ŝi ∈ πmay,
(M̂ ′, ŝi) 6|= φ1, AbstractRepairAF tries to obtain a repaired KMTS by recursively calling
AbstractRepair to some state ŝi ∈ πmay. If all constraints are satisfied to the new KMTS,
then it is returned as the repaired model.

AbstractRepairEF shown in Algorithm 10 is called when the CTL property φ is in the
form EFφ1. Initially, a KMTS is acquired by adding a must-transition from a must-reachable
state ŝi from ŝ to a state ŝk ∈ Ŝ such that (M̂, ŝk) |= φ1. If all constraints are satisfied
then this KMTS is returned. Otherwise, a KMTS is produced by applying AbstractRepair
to a must-reachable state ŝi from ŝ for φ1. If none of the constraints is violated then this
KMTS is returned. At any other case, a new KMTS is produced by adding a new state ŝn,
recursively calling AbstractRepair for this state and φ1 and adding a must-transition from
ŝ or from a must-reachable ŝi from ŝ to ŝn. If all constraints are satisfied, then this KMTS
is returned as a repaired model by the algorithm.

AbstractRepairAU is presented in Algorithm 11 and is called when φ = A(φ1Uφ2). If

φ1 is not satisfied at ŝ, then a KMTS M̂1 is produced by applying AbstractRepair to ŝ for
φ1. Otherwise, M̂1 is same to M̂ . A new KMTS is produced as follows: for all may-paths
πmay := [ŝ1, ..., ŝm] such that ∀ŝi ∈ πmay, (M̂1, ŝi) |= φ1 and for which there does not
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Algorithm 7 AbstractRepairAX

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = AXφ1 for which (M̂, ŝ) 6|=
φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ M̂ and
φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: M̂ ′ := M̂
2: RET := FAILURE
3: for all direct may-reachable states ŝi from ŝ with (ŝ, ŝi) ∈ Rmay do

4: if (M̂ ′, ŝi) 6|= φ1 then

5: RET := AbstractRepair(M̂ ′, ŝi, φ1, C)
6: if RET == FAILURE then
7: BREAK
8: M̂ ′ := RET
9: if RET 6= FAILURE then

10: return M̂ ′

11: M̂ ′ := M̂
12: for all direct may-reachable states ŝi from ŝ with r̂i := (ŝ, ŝi) ∈ Rmay do

13: if (M̂ ′, ŝi) 6|= φ1 then

14: M̂ ′ := RemoveMay(M̂ ′, r̂i)
15: if there exists direct may-reachable state ŝ1 from ŝ such that (ŝ, ŝ1) ∈ Rmay then

16: if M̂ ′ |= C then

17: return M̂ ′

18: else
19: for all ŝj ∈ Ŝ such that (M̂ ′, ŝj) |= φ1 do

20: r̂j := (ŝ, ŝj), M̂ ′ := AddMay(M̂ ′, r̂j)

21: if M̂ ′ |= C then

22: return M̂ ′

23: M̂ ′ := AddState(M̂, ŝn)
24: if ŝn is a dead-end state then
25: r̂n := (ŝn, ŝn), M̂ ′ := AddMay(M̂ ′, r̂n)

26: RET := AbstractRepair(M̂ ′, ŝn, φ1, C)
27: if RET 6= FAILURE then
28: M̂ ′ := RET , r̂n := (ŝ, ŝn), M̂ ′ := AddMay(M̂ ′, r̂n)

29: if M̂ ′ |= C then

30: return M̂ ′

31: return FAILURE

r̂m := (ŝm, ŝn) ∈ Rmay with (M̂1, ŝn) |= φ2, AbstractRepair is called for property φ2 for

some state ŝj ∈ πmay with (M̂1, ŝj) 6|= φ2. If the resulting KMTS satisfies all constraints,
then it is returned as a repair solution.

AbstractRepairEU is called if for input CTL formula φ it holds that φ = E(φ1Uφ2).
AbstractRepairEU is presented in Algorithm 12. Firstly, if φ1 is not satisfied at ŝ, then
AbstractRepair is called for ŝ and φ1 and a KMTS M̂1 is produced for which (M̂1, ŝ) |= φ1.

Otherwise, M̂1 is same to M̂ . A new KMTS is produced as follows: for a must-path
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Algorithm 8 AbstractRepairEG

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = EGφ1 for which (M̂, ŝ) 6|=
φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci
is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: M̂1 := M̂
2: if (M̂, ŝ) 6|= φ1 then

3: RET := AbstractRepair(M̂, ŝ, φ1, C)
4: if RET == FAILURE then
5: return FAILURE
6: M̂1 := RET
7: while there exists maximal path πmust := [ŝ1, ŝ2, ...] such that ∀ŝi ∈ πmust it holds that

(M̂1, ŝi) |= φ1 do

8: r̂1 := (ŝ, ŝ1), M̂ ′ := AddMust(M̂1, r̂1)

9: if M̂ ′ |= C then

10: return M̂ ′

11: while there exists maximal path πmust := [ŝ, ŝ1, ŝ2, ...] such that ∀ŝi 6= ŝ ∈ πmust it

holds that (M̂1, ŝi) 6|= φ1 do

12: M̂ ′ := M̂1

13: for all ŝi ∈ πmust do
14: if (M̂1, ŝi) 6|= φ1 then

15: RET := AbstractRepair(M̂ ′, ŝi, φ1, C)
16: if RET 6= FAILURE then
17: M̂ ′ := RET
18: else
19: continue to next path
20: return M̂ ′

21: M̂ ′ := AddState(M̂1, ŝn)

22: RET := AbstractRepair(M̂ ′, ŝn, φ1, C)
23: if RET 6= FAILURE then
24: M̂ ′ := RET
25: r̂n := (ŝ, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)
26: if ŝn is a dead-end state then
27: r̂n := (ŝn, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)

28: if M̂ ′ |= C then

29: return M̂ ′

30: return FAILURE

πmust := [ŝ1, ..., ŝm] such that ∀ŝi ∈ πmust, (M̂1, ŝi) |= φ1 and for a ŝj ∈ Ŝ with (M̂1, ŝj) |= φ2,
a must-transition is added from ŝm to ŝj . If all constraints are satisfied then the new KMTS
is returned. Alternatively, a KMTS is produced by adding a new state ŝn, recursively calling
AbstractRepair for φ2 and ŝn and adding a must-transition from ŝ to ŝn. In the case that
no constraint is violated then this is a repaired KMTS and it is returned from the function.
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Algorithm 9 AbstractRepairAF

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = AFφ1 for which (M̂, ŝ) 6|=
φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci
is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: M̂ ′ := M̂
2: while there exists maximal path πmay := [ŝ, ŝ1, ...] such that ∀ŝi ∈ πmay it holds that

(M̂ ′, ŝi) 6|= φ1 do
3: for all ŝi ∈ πmay do

4: RET := AbstractRepair(M̂ ′, ŝi, φ1, C)
5: if RET 6= FAILURE then
6: M̂ ′ := RET
7: continue to next path
8: return FAILURE
9: return M̂ ′

6.2. Properties of the Algorithm. AbstractRepair is well-defined [49], in the sense that

the algorithm always proceeds and eventually returns a result M̂ ′ or FAILURE such that
(M̂ ′, ŝ) |= φ, for any input M̂ , φ and C, with (M̂, ŝ) 6|= φ. Moreover, the algorithm steps
are well-ordered, as opposed to existing concrete model repair solutions [13, 55] that entail
nondeterministic behavior.

6.2.1. Soundness.

Lemma 6.1. Let a KMTS M̂ , a CTL formula φ with (M̂, ŝ) 6|= φ for some ŝ of M̂ , and

a set C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} with (M̂, ŝci) |= φci for all (ŝcn , φcn) ∈ C. If

AbstractRepair(M̂, ŝ, φ, C) returns a KMTS M̂ ′, then (M̂ ′, ŝ) |= φ and (M̂ ′, ŝci) |= φci for
all (ŝci , φci) ∈ C.

Proof. We use structural induction on φ. For brevity, we write M̂ |= C to denote that

(M̂, ŝci) |= φci , for all (ŝci , φci) ∈ C.

Base Case:

• if φ = >, the lemma is trivially true, because (M̂, ŝ) |= φ

• if φ = ⊥, then AbstractRepair(M̂, ŝ, φ, C) returns FAILURE at line 2 of Algorithm 1 and
the lemma is also trivially true.
• if φ = p ∈ AP , AbstractRepairATOMIC(M̂, ŝ, p, C) is called at line 4 of Algorithm 1 and

an M̂ ′ = ChangeLabel(M̂, ŝ, p) is computed at line 1 of Algorithm 2. Since p ∈ L̂′(ŝ) in

M̂ ′, from 3-valued semantics of CTL over KMTSs we have (M̂ ′, ŝ) |= φ. Algorithm 2

returns M̂ ′ at line 3, if and only if M̂ ′ |= C and the lemma is true.

Induction Hypothesis: For CTL formulae φ1, φ2, the lemma is true. Thus, for φ1 (resp. φ2),

if AbstractRepair(M̂, ŝ, φ1, C) returns a KMTS M̂ ′, then (M̂ ′, ŝ) |= φ1 and M̂ ′ |= C.
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Algorithm 10 AbstractRepairEF

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = EFφ1 for which (M̂, ŝ) 6|=
φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where ŝci ∈ Ŝ and φci
is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: for all must-reachable states ŝi from ŝ with (M̂, ŝi) 6|= φ1 or ŝi := ŝ do

2: for all ŝk ∈ Ŝ such that (M̂, ŝk) |= φ1 do

3: r̂k := (ŝi, ŝk), M̂ ′ := AddMust(M̂, r̂k)

4: if M̂ ′ |= C then

5: return M̂ ′

6: for all must-reachable states ŝi from ŝ with (M̂, ŝi) 6|= φ1 do

7: RET := AbstractRepair(M̂, ŝi, φ1, C)
8: if RET 6= FAILURE then
9: M̂ ′ := RET

10: return M̂ ′

11: M̂1 := AddState(M̂ ′, ŝn), RET := AbstractRepair(M̂1, ŝn, φ1, C)
12: if RET 6= FAILURE then
13: M̂1 := RET
14: for all must-reachable states ŝi from ŝ with (M̂, ŝi) 6|= φ1 or ŝi := ŝ do

15: r̂i := (ŝi, ŝn), M̂ ′ := AddMust(M̂1, r̂i)
16: if ŝn is a dead-end state then
17: r̂n := (ŝn, ŝn), M̂ ′ := AddMust(M̂ ′, r̂n)

18: if M̂ ′ |= C then

19: return M̂ ′

20: return FAILURE

Inductive Step:

• if φ = φ1 ∨ φ2, then AbstractRepair(M̂, ŝ, φ, C) calls AbstractRepairOR(M̂, ŝ, φ1 ∨ φ2, C)

at line 8 of Algorithm 1. From the induction hypothesis, if a KMTS M̂1 is returned by
AbstractRepair(M̂, ŝ, φ1, C) at line 1 of Algorithm 3 and a KMTS M̂2 is returned by

AbstractRepair(M̂, ŝ, φ2, C) respectively, then (M̂1, ŝ) |= φ1, M̂1 |= C and (M̂2, ŝ) |= φ1,

M̂2 |= C. AbstractRepairOR(M̂, ŝ, φ1 ∨φ2, C) returns at line 8 of Algorithm 1 the KMTS

M̂ ′, which can be either M̂1 or M̂2. Therefore, (M̂ ′, ŝ) |= φ1 or (M̂ ′, ŝ) |= φ2 and M̂ ′ |= C

in both cases. From 3-valued semantics of CTL, (M̂ ′, ŝ) |= φ1 ∨ φ2 and the lemma is true.

• if φ = φ1∧φ2, then AbstractRepair(M̂, ŝ, φ, C) calls AbstractRepairAND(M̂, ŝ, φ1∧φ2, C)
at line 6 of Algorithm 1. From the induction hypothesis, if at line 1 of Algorithm 4
AbstractRepair(M̂, ŝ, φ1, C) returns a KMTS M̂1, then (M̂1, ŝ) |= φ1 and M̂1 |= C.

Consequently, M̂1 |= C1, where C1 = C∪(ŝ, φ1). At line 7, if AbstractRepair(M̂1, ŝ, φ2, C1)

returns a KMTS M̂ ′1, then from the induction hypothesis (M̂ ′1, ŝ) |= φ2 and M̂ ′1 |= C1.
In the same manner, if the calls at lines 2 and 12 of Algorithm 4 return the KMTSs

M̂2 and M̂ ′2, then from the induction hypothesis (M̂2, ŝ) |= φ2, M̂2 |= C and (M̂ ′2, ŝ) |= φ1,

M̂ ′2 |= C2 with C2 = C ∪ (ŝ, φ2).
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Algorithm 11 AbstractRepairAU

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = A(φ1Uφ2) for which

(M̂, ŝ) 6|= φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where

ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: M̂1 := M̂
2: if (M̂, ŝ) 6|= φ1 then

3: RET := AbstractRepair(M̂, ŝ, φ1, C)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M̂1 := RET
8: while there exists path πmay := [ŝ1, ..., ŝm] such that ∀ŝi ∈ πmay it holds that (M̂1, ŝi) |=
φ1 and there does not exist r̂m := (ŝm, ŝn) ∈ Rmay such that (M̂1, ŝn) |= φ2 do

9: for all ŝj ∈ πmay for which (M̂1, ŝj) 6|= φ2 with ŝj 6= ŝ1 do

10: RET := AbstractRepair(M̂1, ŝj , φ2, C)
11: if RET 6= FAILURE then
12: M̂ ′ := RET
13: continue to next path
14: return FAILURE
15: return M̂ ′

The KMTS M̂ ′ at line 6 of Algorithm 1 can be either M̂ ′1 or M̂ ′2 and therefore,

(M̂ ′, ŝ) |= φ1, (M̂ ′, ŝ) |= φ2 and M̂ ′ |= C. From 3-valued semantics of CTL it holds that

(M̂ ′, ŝ) |= φ1 ∧ φ2 and the lemma is true.

• if φ = EXφ1, AbstractRepair(M̂, ŝ, φ, C) calls AbstractRepairEX(M̂, ŝ, EXφ1, C) at line
10 of Algorithm 1.

If a KMTS M̂ ′ is returned at line 5 of Algorithm 6, there is a state ŝ1 with (M̂, ŝ1) |= φ1

such that M̂ ′ = AddMust(M̂, (ŝ, ŝ1)) and M̂ ′ |= C. From 3-valued semantics of CTL, we

conclude that (M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 11, there is (ŝ, ŝ1) ∈ Rmust such that (M̂ ′, ŝ1) |= φ1 and

M̂ ′ |= C from the induction hypothesis, since M̂ ′ = AbstractRepair(M̂, ŝ1, φ1, C). From

3-valued semantics of CTL, we conclude that (M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 18, a must transition (ŝ, ŝn) to a new state has been added

and M̂ ′ = AbstractRepair(AddMust(M̂, (ŝ, ŝn)), ŝn, φ1, C). Then, from the induction

hypothesis (M̂ ′, ŝn) |= φ1, M̂ ′ |= C and from 3-valued semantics of CTL, we also conclude

that (M̂ ′, ŝ) |= EXφ1.

• if φ = AGφ1, AbstractRepair(M̂, ŝ, φ, C) calls AbstractRepairAG(M̂, ŝ, AGφ1, C) at line

10 of Algorithm 1. If (M̂, ŝ) 6|= φ1 and AbstractRepair(M̂, ŝ, φ1, C) returns a KMTS M̂0

at line 2 of Algorithm 5, then from the induction hypothesis (M̂0, ŝ) |= φ1 and M̂0 |= C.

Otherwise, M̂0 = M̂ and (M̂0, ŝ) |= φ1 also hold true.

If Algorithm 5 returns a M̂ ′ at line 16, then M̂ ′ |= C and M̂ ′ is the result of successive

AbstractRepair(M̂i, ŝk, φ1, C) calls with M̂i = AbstractRepair(M̂i−1, ŝk, φ1, C) and i =
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Algorithm 12 AbstractRepairEU

Input: M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂), ŝ ∈ Ŝ, a CTL property φ = E(φ1Uφ2) for which

(M̂, ŝ) 6|= φ, and a set of constraints C = {(ŝc1 , φc1), (ŝc2 , φc2), ..., (ŝcn , φcn)} where

ŝci ∈ Ŝ and φci is a CTL formula.

Output: M̂ ′ = (Ŝ′, Ŝ′0, R
′
must, R

′
may, L̂

′) and (M̂ ′, ŝ) |= φ or FAILURE.

1: M̂1 := M̂
2: if (M̂, ŝ) 6|= φ1 then

3: RET := AbstractRepair(M̂, ŝ, φ1, C)
4: if RET == FAILURE then
5: return FAILURE
6: else
7: M̂1 := RET
8: while there exists path πmust := [ŝ1, ..., ŝm] such that ∀ŝi ∈ πmust, (M̂1, ŝi) |= φ1 do

9: for all ŝj ∈ Ŝ with (M̂1, ŝj) |= φ2 do

10: r̂j := (ŝm, ŝj), M̂
′ := AddMust(M̂1, r̂j)

11: if M̂ ′ |= C then

12: return M̂ ′

13: M̂ ′ := AddState(M̂1, ŝk)

14: RET := AbstractRepair(M̂ ′, ŝk, φ2, C)
15: if RET 6= FAILURE then
16: M̂ ′ := RET
17: r̂n := (ŝ, ŝk), M̂ ′ := AddMust(M̂ ′, r̂n)
18: if ŝk is a dead-end state then
19: r̂k := (ŝk, ŝk), M̂ ′ := AddMust(M̂ ′, r̂k)

20: if M̂ ′ |= C then

21: return M̂ ′

22: return FAILURE

1, ..., for all may-reachable states ŝk from ŝ such that (M̂0, ŝk) 6|= φ1. From the induction

hypothesis, (M̂ ′, ŝk) |= φ1 and M̂ ′ |= C for all such ŝk and from 3-valued semantics of

CTL we conclude that (M̂ ′, ŝ) |= AGφ1.

We prove the lemma for all other cases in a similar manner.

Theorem 6.2 (Soundness). Let a KMTS M̂ , a CTL formula φ with (M̂, ŝ) 6|= φ, for some

ŝ of M̂ . If AbstractRepair(M̂, ŝ, φ, ∅) returns a KMTS M̂ ′, then (M̂ ′, ŝ) |= φ.

Proof. We use structural induction on φ and Lemma 6.1 in the inductive step for φ1 ∧ φ2.

Base Case:

• if φ = >, Theorem 6.2 is trivially true, because (M̂, ŝ) |= φ.

• if φ = ⊥, then AbstractRepair(M̂, ŝ,⊥, ∅) returns FAILURE at line 2 of Algorithm 1 and
the theorem is also trivially true.
• if φ = p ∈ AP , AbstractRepairATOMIC(M̂, ŝ, p, ∅) is called at line 4 of Algorithm 1 and

an M̂ ′ = ChangeLabel(M̂, ŝ, p) is computed at line 1. Because of the fact that p ∈ L̂′(ŝ)
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in M̂ ′, from 3-valued semantics of CTL over KMTSs we have (M̂ ′, ŝ) |= φ. Algorithm 2

returns M̂ ′ at line 3 because C is empty, and the theorem is true.

Induction Hypothesis: For CTL formulae φ1, φ2, the theorem is true. Thus, for φ1 (resp.

φ2), if AbstractRepair(M̂, ŝ, φ, ∅) returns a KMTS M̂ ′, then (M̂ ′, ŝ) |= φ1.

Inductive Step:

• if φ = φ1 ∨ φ2, then AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairOR(M̂, ŝ, φ1 ∨ φ2, ∅)
at line 8 of Algorithm 1.

From the induction hypothesis, if AbstractRepair(M̂, ŝ, φ1, ∅) returns a KMTS M̂1 at

line 1 of Algorithm 3 and AbstractRepair(M̂, ŝ, φ2, ∅) returns a KMTS M̂2 respectively,

then (M̂1, ŝ) |= φ1 and (M̂2, ŝ) |= φ1. AbstractRepairOR(M̂, ŝ, φ1 ∨ φ2, ∅) returns at line

8 of Algorithm 1 the KMTS M̂ ′, which can be either M̂1 or M̂2. Therefore, (M̂ ′, ŝ) |= φ1

or (M̂ ′, ŝ) |= φ2. From 3-valued semantics of CTL, (M̂ ′, ŝ) |= φ1 ∨ φ2 and the theorem is
true.
• if φ = φ1 ∧φ2, then AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairAND(M̂, ŝ, φ1 ∧φ2, ∅)

at line 6 of Algorithm 1. From the induction hypothesis, if at line 1 of Algorithm 4
AbstractRepair(M̂, ŝ, φ1, ∅) returns a KMTS M̂1, then (M̂1, ŝ) |= φ1. Consequently,

M̂1 |= C1, where C1 = ∅ ∪ (ŝ, φ1). At line 7, if AbstractRepair(M̂1, ŝ, φ2, C1) returns a

KMTS M̂ ′1, then from Lemma 6.1 (M̂ ′1, ŝ) |= φ2 and M̂ ′1 |= C1.

Likewise, if the calls at lines 2 and 12 of Algorithm 4 return the KMTSs M̂2 and M̂ ′2,

then from the induction hypothesis (M̂2, ŝ) |= φ2 and from Lemma 6.1 (M̂ ′2, ŝ) |= φ1,

M̂ ′2 |= C2 with C2 = ∅ ∪ (ŝ, φ2).

The KMTS M̂ ′ at line 7 of Algorithm 1 can be either M̂ ′1 or M̂ ′2 and therefore, (M̂ ′, ŝ) |=
φ1 and (M̂ ′, ŝ) |= φ2. From 3-valued semantics of CTL it holds that (M̂ ′, ŝ) |= φ1 ∧ φ2

and the lemma is true.
• if φ = EXφ1, AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairEX(M̂, ŝ, EXφ1, ∅) at line

10 of Algorithm 1.
If a KMTS M̂ ′ is returned at line 5 of Algorithm 6, there is a state ŝ1 with (M̂, ŝ1) |= φ1

such that M̂ ′ = AddMust(M̂, (ŝ, ŝ1)). From 3-valued semantics of CTL, we conclude that

(M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 11, there is (ŝ, ŝ1) ∈ Rmust such that (M̂ ′, ŝ1) |= φ1 from the

induction hypothesis, since M̂ ′ = AbstractRepair(M̂, ŝ1, φ1, ∅). From 3-valued semantics

of CTL, we conclude that (M̂ ′, ŝ) |= EXφ1.

If a M̂ ′ is returned at line 18, a must transition (ŝ, ŝn) to a new state has been added

and M̂ ′ = AbstractRepair(AddMust(M̂, (ŝ, ŝn)), ŝn, φ1, ∅). Then, from the induction

hypothesis (M̂ ′, ŝn) |= φ1 and from 3-valued semantics of CTL, we also conclude that

(M̂ ′, ŝ) |= EXφ1.

• if φ = AGφ1, AbstractRepair(M̂, ŝ, φ, ∅) calls AbstractRepairAG(M̂, ŝ, AGφ1, ∅) at line

10 of Algorithm 1. If (M̂, ŝ) 6|= φ1 and AbstractRepair(M̂, ŝ, φ1, ∅) returns a KMTS M̂0

at line 2 of Algorithm 5, then from the induction hypothesis (M̂0, ŝ) |= φ1. Otherwise,

M̂0 = M̂ and (M̂0, ŝ) |= φ1, M̂0 |= C also hold true.

If Algorithm 5 returns a M̂ ′ at line 16, this KMTS is the result of successive calls
of AbstractRepair(M̂i, ŝk, φ1, ∅) with M̂i = AbstractRepair(M̂i−1, ŝk, φ1, ∅) and i = 1, ...,
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for all may-reachable states ŝk from ŝ such that (M̂0, ŝk) 6|= φ1. From the induction

hypothesis, (M̂ ′, ŝk) |= φ1 for all such ŝk and from 3-valued semantics of CTL we conclude

that (M̂ ′, ŝ) |= AGφ1.

We prove the theorem for all other cases in the same way.

Theorem 6.2 shows that AbstractRepair is sound in the sense that if it returns a KMTS M̂ ′,
then M̂ ′ satisfies property φ. In this case, from the definitions of the basic repair operations,
it follows that one or more KSs can be obtained for which φ holds true.

6.2.2. Semi-completeness.

Definition 6.3 (mr -CTL). Given a set AP of atomic propositions, we define the syntax of
a CTL fragment inductively via a Backus Naur Form:

φ ::==⊥ |> | p | (¬φ) | (φ ∨ φ) |AXp |EXp |AFp
|EFp |AGp |EGp |A[pU p] |E[pU p]

where p ranges over AP .

mr -CTL includes most of the CTL formulae apart from those with nested path quantifiers
or conjunction.

Theorem 6.4 (Completeness). Given a KMTS M̂ , an mr-CTL formula φ with (M̂, ŝ) 6|= φ,

for some ŝ of M̂ , if there exists a KMTS M̂ ′′ over the same set AP of atomic propositions
with (M̂ ′′, ŝ) |= φ, AbstractRepair(M̂, ŝ, φ, ∅) returns a KMTS M̂ ′ such that (M̂ ′, ŝ) |= φ.

Proof. We prove the theorem using structural induction on φ.

Base Case:

• if φ = >, Theorem 6.4 is trivially true, because for any KMTS M̂ it holds that (M̂, ŝ) |= φ.

• if φ = ⊥, then the theorem is trivially true, because there does not exist a KMTS M̂ ′′

such that (M̂ ′′, ŝ) |= φ.

• if φ = p ∈ AP , there is a KMTS M̂ ′′ with p ∈ L̂′′(ŝ) and therefore (M̂ ′′, ŝ) |= φ. Algorithm 1

calls AbstractRepairATOMIC(M̂, ŝ, p, ∅) at line 4 and an M̂ ′ = ChangeLabel(M̂, ŝ, p) is

computed at line 1 of Algorithm 2. Since C is empty, M̂ ′ is returned at line 3 and
(M̂ ′, ŝ) |= φ from 3-valued semantics of CTL. Therefore, the theorem is true.

Induction Hypothesis: For mr -CTL formulae φ1, φ2, the theorem is true. Thus, for φ1 (resp.

φ2), if there is a KMTS M̂ ′′ over the same set AP of atomic propositions with (M̂ ′′, ŝ) |= φ1,

AbstractRepair(M̂, ŝ, φ1, ∅) returns a KMTS M̂ ′ such that (M̂ ′, ŝ) |= φ1.

Inductive Step:

• if φ = φ1 ∨ φ2, from the 3-valued semantics of CTL a KMTS that satisfies φ exists if and
only if there is a KMTS satisfying any of the φ1, φ2. From the induction hypothesis, if there
is a KMTS M̂ ′′1 with (M̂ ′′1 , ŝ) |= φ1, AbstractRepair(M̂, ŝ, φ1, ∅) at line 1 of Algorithm 3

returns a KMTS M̂ ′1 such that (M̂ ′1, ŝ) |= φ1. Respectively, AbstractRepair(M̂, ŝ, φ2, ∅)
at line 2 of Algorithm 3 can return a KMTS M̂ ′2 with (M̂ ′2, ŝ) |= φ2. In any case, if either

M̂ ′1 or M̂ ′2 exists, for the KMTS M̂ ′ that is returned at line 13 of Algorithm 3 we have

(M̂ ′, ŝ) |= φ1 or (M̂ ′, ŝ) |= φ2 and therefore (M̂ ′, ŝ) |= φ.
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• if φ = EXφ1, from the 3-valued semantics of CTL a KMTS that satisfies φ at ŝ exists if
and only if there is KMTS satisfying φ1 at some direct must-successor of ŝ.

If in the KMTS M̂ there is a state ŝ1 with (M̂, ŝ1) |= φ1, then the new KMTS

M̂ ′ = AddMust(M̂, (ŝ, ŝ1)) is computed at line 3 of Algorithm 6. Since C is empty M̂ ′ is

returned at line 5 and (M̂ ′, ŝ) |= EXφ1.

Otherwise, if there is a direct must-successor ŝi of ŝ, AbstractRepair(M̂, ŝi, φ1, ∅) is

called at line 8. From the induction hypothesis, if there is a KMTS M̂ ′′ with (M̂ ′′, ŝi) |= φ1,

then a KMTS M̂ ′ is computed such that (M̂ ′, ŝi) |= φ1 and therefore the theorem is true.
If there are no must-successors of ŝ, a new state ŝn is added and subsequently connected

with a must-transition from ŝ. AbstractRepair is then called for φ1 and ŝn as previously
and the theorem holds also true.
• if φ = AGφ1, from the 3-valued semantics of CTL a KMTS that satisfies φ at ŝ exists, if

and only if there is KMTS satisfying φ1 at ŝ and at each may-reachable state from ŝ.
AbstractRepair(M̂, ŝ, φ1, ∅) is called at line 2 of Algorithm 5 and from the induction

hypothesis if there is KMTS M̂ ′0 with (M̂ ′0, ŝ) |= φ1, then a KMTS M̂0 is computed such that

(M̂0, ŝ) |= φ1. AbstractRepair is subsequently called for φ1 and for all may-reachable ŝk
from ŝ with (M̂0, ŝk) 6|= φ1 one-by-one. From the induction hypothesis, if there is KMTS M̂ ′i
that satisfies φ1 at each such ŝk, then all M̂i = AbstractRepair(M̂i−1, ŝk, φ1, ∅), i = 1, ...,
satisfy φ1 at ŝk and the theorem holds true.

We prove the theorem for all other cases in the same way.

Theorem 6.4 shows that AbstractRepair is semi-complete with respect to full CTL: if there
is a KMTS that satisfies a mr -CTL formula φ, then the algorithm finds one such KMTS.

6.3. Complexity Issues. AMR’s complexity analysis is restricted to mr -CTL, for which
the algorithm has been proved complete. For these formulas, we show that AMR is upper
bounded by a polynomial expression in the state space size and the number of may-transitions
of the abstract KMTS, and depends also on the length of the mr -CTL formula.

For CTL formulas with nested path quantifiers and/or conjunction, AMR is looking for
a repaired model satisfying all conjunctives (constraints), which increases the worst-case
execution time exponentially to the state space size of the abstract KMTS. In general, as
shown in [10], the complexity of all model repair algorithms gets worse when raising the level
of their completeness, but AMR has the advantage of working exclusively over an abstract
model with a reduced state space compared to its concrete counterpart.

Our complexity analysis for mr -CTL is based on the following results. For an abstract
KMTS M̂ = (Ŝ, Ŝ0, Rmust, Rmay, L̂) and a mr -CTL property φ, (i) 3-valued CTL model

checking is performed in O(|φ| · (|Ŝ| + |Rmay|)) [31], (ii) Depth First Search (DFS) of

states reachable from ŝ ∈ Ŝ is performed in O(|Ŝ| + |Rmay|) in the worst case or in

O(|Ŝ|+ |Rmust|) when only must-transitions are accessed, (iii) finding a maximal path from

ŝ ∈ Ŝ using Breadth First Search (BFS) is performed in O(|Ŝ|+ |Rmay|) for may-paths and

in O(|Ŝ|+ |Rmust|) for must-paths.
We analyze the computational cost for each of the AMR’s primitive functions:

• if φ = p ∈ AP , AbstractRepairATOMIC is called and the operation ChangeLabel is
applied, which is in O(1).
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• if φ = EXφ1, then AbstractRepairEX is called and the applied operations with the highest
cost are: (1) finding a state satisfying φ1, which depends on the cost of 3-valued CTL

model checking and is in O(|Ŝ| · |φ1| · (|Ŝ|+ |Rmay|)), (2) finding a must-reachable state,

which is in O(|Ŝ| + |Rmust|). These operations are called at most once and the overall

complexity for this primitive functions is therefore in O(|Ŝ| · |φ1| · (|Ŝ|+ |Rmay|)).
• if φ = AXφ1, then AbstractRepairAX is called and the most costly operations are: (1)

finding a may-reachable state, which is in O(|Ŝ| + |Rmay|), and (2) checking if a state

satisfies φ1, which is in O(|φ1| · (|Ŝ|+ |Rmay|)). These operations are called at most |Ŝ|
times and the overall bound class is O(|Ŝ| · |φ1| · (|Ŝ|+ |Rmay|)).
• if φ = EFφ1, AbstractRepairEF is called and the operations with the highest cost are:

(1) finding a must-reachable state, which is in O(|Ŝ| + |Rmust|), (2) checking if a state

satisfies φ1 with its bound class being O(|φ1| · (|Ŝ|+ |Rmay|)) and (3) finding a state that

satisfies φ1, which is in O(|Ŝ| · |φ1| · (|Ŝ|+ |Rmay|)). These three operations are called at

most |Ŝ| times and consequently, the overall bound class is O(|Ŝ|2 · |φ1| · (|Ŝ|+ |Rmay|)).
• if φ = AFφ1, AbstractRepairAF is called and the most costly operation is: finding a

maximal may-path violating φ1 in all states, which is in O(|Ŝ| · |φ1| · (|Ŝ| + |Rmay|).
This operation is called at most |Ŝ| times and therefore, the overall bound class is

O(|Ŝ|2 · |φ1| · (|Ŝ|+ |Rmay|)).
In the same way, it is easy to show that: (i) if φ = EGφ1, then AbstractRepairEG is in O(|Ŝ|·
|φ1|·(|Ŝ|+|Rmust|), (ii) if φ = AGφ1, then AbstractRepairAG is in O(|Ŝ|·|φ1|·(|Ŝ|+|Rmay|)),
(iii) if φ = E(φ1Uφ2), then the bound class of AbstractRepairEU is O(|Ŝ|·|φ1|·(|Ŝ|+|Rmust|),
(iv) if φ = A(φ1Uφ2) then AbstractRepairAU is in O(|Ŝ|2 · |φ1| · (|Ŝ|+ |Rmay|)).

For a mr -CTL property φ, the main body of the algorithm is called at most |φ| times

and the overall bound class of the AMR algorithm is O(|Ŝ|2 · |φ|2 · (|Ŝ|+ |Rmay|)).

6.4. Application. We present the application of AbstractRepair on the ADO system from
Section 2. After the first two steps of our repair process, AbstractRepair is called for
the KMTS αRefined(M) that is shown in Fig. 3b, the state ŝ01 and the CTL property
φ = AGEXq.

AbstractRepair calls AbstractRepairAG with arguments αRefined (M), ŝ01 and AGEXq.
The AbstractRepairAG algorithm at line 10 triggers a recursive call of AbstractRepair with
the same arguments. Eventually, AbstractRepairEX is called with arguments αRefined (M),
ŝ01 and EXq, that in turn calls AddMust at line 3, thus adding a must-transition from ŝ01

to ŝ1. AbstractRepair terminates by returning a KMTS M̂ ′ that satisfies φ = AGEXq. The
repaired KS M ′ is the single element in the set of KSs derived by the concretization of M̂ ′

(cf. Def. 5.3). The execution steps of AbstractRepair and the obtained repaired KMTS and
KS are shown in Fig. 13a and Fig. 13b respectively.
Although the ADO is not a system with a large state space, it is shown that the repair
process is accelerated by the proposed use of abstraction. If on the other hand model repair
was applied directly to the concrete model, new transitions would have have been inserted
from all the states labeled with ¬open to the one labeled with open. In the ADO, we have
seven such states, but in a system with a large state space this number can be significantly
higher. The repair of such a model without the use of abstraction would be impractical.
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Figure 13. Repair of ADO system using abstraction.

7. Experimental Results: The Andrew File System 1 (AFS1) Protocol

In this section, we provide experimental results for the relative performance of a prototype
implementation of our AMR algorithm in comparison with a prototype implementation of a
concrete model repair solution [55]. The results serve as a proof of concept for the use of
abstraction in model repair and demonstrate the practical utility of our approach.

As a model we use a KS for the Andrew File System Protocol 1 (AFS1) [54], which
has been repaired for a specific property in [55]. AFS1 is a client-server cache coherence
protocol for a distributed file system. Four values are used for the client’s belief about a file
(nofile, valid, invalid, suspect) and three values for the server’s belief (valid, invalid, none).

A property which is not satisfied in the AFS1 protocol in the form of CTL is:

AG((Server.belief = valid)→ (Client.belief = valid))
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Figure 14. The KS and the KMTS of the AFS1 protocol after the 2nd
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Figure 15. The repaired KMTS and KS of the AFS1 protocol.
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Models Concrete
States

Concr. Re-
pair (Time
in sec.)

AMR (Time
in sec.)

Improvement
(%)

AFS1 26 17.4 0.14 124
AFS1(Extension1) 30 24.9 0.14 178
AFS1(Extension2) 34 35.0 0.14 250
AFS1(Extension3) 38 117.0 0.14 836

Table 1. Experimental results of AMR with respect to concrete repair

We define the atomic proposition p as Server.belief = valid and q as Client.belief =
valid, and the property is thus written as AG(p → q). The KS for the AFS1 protocol is
depicted in Fig. 14a. State colors show how they are abstracted in the KMTS of Fig. 14b,
which is derived after the 2nd refinement step of our AMR framework (Fig. 4). The
shown KMTS and the CTL property of interest are given as input in our prototype AMR
implementation.

To obtain larger models of AFS1 we have extended the original model by adding one
more possible value for three model variables. Three new models are obtained with gradually
increasing size of state space.

The results of our experiments are presented in Table 1. The time needed for the AMR
prototype to repair the original AFS1 model and its extensions is from 124 to even 836 times
less than the needed time for concrete model repair. The repaired KMTS and KS for the
original AFS1 model are shown in Fig. 15.

An interesting observation from the application of the AMR algorithm on the repair of
the AFS1 KS is that the distance d (cf. Def. 4.1) of the repaired KS from the original KS
is less than the corresponding distance obtained from the concrete model repair algorithm
in [55]. This result demonstrates in practice the effect of the minimality of changes ordering,
on which the AMR algorithm is based on (cf. Fig. 12).

8. Related Work

To the best of our knowledge this is the first work that suggests the use of abstraction as a
means to counter the state space explosion in search of a Model Repair solution. However,
abstraction and in particular abstract interpretation has been used in program synthesis [50],
a different but related problem to the Model Repair. Program synthesis refers to the
automatic generation of a program based on a given specification. Another related problem
where abstraction has been used is that of trigger querying [4]: given a system M and a
formula φ, find the set of scenarios that trigger φ in M .

The related work in the area of program repair do not consider KSs as the program model.
In this context, abstraction has been previously used in the repair of data structures [43].
The problem of repairing a Boolean program has been formulated in [48, 40, 34, 51] as the
finding of a winning strategy for a game between two players. The only exception is the
work reported in [45].

Another line of research on program repair treats the repair as a search problem and
applies innovative evolutionary algorithms [3], behavioral programming techniques [37] or
other informal heuristics [52, 1, 53].
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Focusing exclusively on the area of Model Repair without the use of abstraction, it is
worth to mention the following approaches. The first work on Model Repair with respect to
CTL formulas was presented in [2]. The authors used only the removal of transitions and
showed that the problem is NP-complete. Another interesting early attempt to introduce
the Model Repair problem for CTL properties is the work in [12]. The authors are based on
the AI techniques of abductive reasoning and theory revision and propose a repair algorithm
with relatively high computational cost. A formal algorithm for Model Repair in the context
of KSs and CTL is presented in [55]. The authors admit that their repair process strongly
depends on the model’s size and they do not attempt to provide a solution for handling
conjunctive CTL formulas.

In [14], the authors try to render model repair applicable to large KSs by using “table
systems”, a concise representation of KSs that is implemented in the NuSMV model checker.
A limitation of their approach is that table systems cannot represent all possible KSs. In [56],
tree-like local model updates are introduced with the aim of making the repair process
applicable to large-scale domains. However, the proposed approach is only applicable to the
universal fragment of the CTL.

A number of works attempt to ensure completeness for increasingly larger fragments
of the CTL by introducing ways of handling the constraints associated with conjunctive
formulas. In [41], the authors propose the use of constraint automata for ACTL formulas,
while in [13] the authors introduce the use of protected models for an extension of the CTL.
Both of the two methods are not directly applicable to formulas of the full CTL.

The Model Repair problem has been also addressed in many other contexts. In [27],
the author uses a distributed algorithm and the processing power of computing clusters to
fight the time and space complexity of the repair process. In [25], an extension of the Model
Repair problem has been studied for Labeled Transition Systems. In [6], we have provided a
solution for the Model Repair problem in probabilistic systems. Another recent effort for
repairing discrete-time probabilistic models has been proposed in [44]. In [7], model repair
is applied to the fault recovery of component-based models. Finally, a slightly different
but also related problem is that of Model Revision, which has been studied for UNITY
properties in [8, 9] and for CTL in [36]. Other methods in the area of fault-tolerance include
the work in [30], which uses discrete controller synthesis and [29], which employs SMT
solving. Another interesting work in this direction is in [26], where the authors present a
repair algorithm for fault-tolerance in a fully connected topology, with respect to a temporal
specification.

9. Conclusions

In this paper, we have shown how abstraction can be used to cope with the state explosion
problem in Model Repair. Our model-repair framework is based on Kripke Structures,
a 3-valued semantics for CTL, and Kripke Modal Transition Systems, and features an
abstract-model-repair algorithm for KMTSs. We have proved that our AMR algorithm is
sound for the full CTL and complete for a subset of CTL. We have also proved that our
AMR algorithm is upper bounded by a polynomial expression in the size of the abstract
model for a major fragment of CTL. To demonstrate its practical utility, we applied our
framework to an Automatic Door Opener system and to the Andrew File System 1 protocol.

As future work, we plan to apply our method to case studies with larger state spaces,
and investigate how abstract model repair can be used in different contexts and domains. A
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model repair application of high interest is in the design of fault-tolerant systems. In [11],
the authors present an approach for the repair of a distributed algorithm such that the
repaired one features fault-tolerance. The input to this model repair problem includes a set
of uncontrollable transitions such as the faults in the system. The model repair algorithm
used works on concrete models and it can therefore solve the problem only for a limited
number of processes. With this respect, we believe that this application could be benefited
from the use of abstraction in our AMR framework.

At the level of extending our AMR framework, we aim to search for “better” abstract
models, in order to either restrict failures due to refinement or ensure completeness for a
larger fragment of the CTL. We will also investigate different notions of minimality in the
changes introduced by model repair and the applicability of abstraction-based model repair
to probabilistic, hybrid and other types of models.
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