
Logical Methods in Computer Science
Vol. 11(3:10)2015, pp. 1–31
www.lmcs-online.org

Submitted Nov. 17, 2014
Published Sep. 16, 2015

DETECTING UNREALIZABILITY OF DISTRIBUTED

FAULT-TOLERANT SYSTEMS

BERND FINKBEINER AND LEANDER TENTRUP

Saarland University, 66123 Saarbrücken
e-mail address: {finkbeiner,tentrup}@cs.uni-saarland.de

Abstract. Writing formal specifications for distributed systems is difficult. Even simple
consistency requirements often turn out to be unrealizable because of the complicated
information flow in the distributed system: not all information is available in every com-
ponent, and information transmitted from other components may arrive with a delay or
not at all, especially in the presence of faults. The problem of checking the distributed
realizability of a temporal specification is, in general, undecidable. Semi-algorithms for
synthesis, such as bounded synthesis, are only useful in the positive case, where they con-
struct an implementation for a realizable specification, but not in the negative case: if
the specification is unrealizable, the search for the implementation never terminates. In
this paper, we introduce counterexamples to distributed realizability and present a method
for the detection of such counterexamples for specifications given in linear-time temporal
logic (LTL). A counterexample consists of a set of paths, each representing a different
sequence of inputs from the environment, such that, no matter how the components are
implemented, the specification is violated on at least one of these paths. We present a
method for finding such counterexamples both for the classic distributed realizability prob-
lem and for the fault-tolerant realizability problem. Our method considers, incrementally,
larger and larger sets of paths until a counterexample is found. For safety specifications
in weakly ordered architectures we obtain a decision procedure, while counterexamples
for full LTL and arbitrary architectures may consist of infinitely many paths. Experimen-
tal results, obtained with a QBF-based prototype implementation, show that our method
finds simple errors very quickly, and even problems with high combinatorial complexity,
like the Byzantine Generals’ Problem, are tractable.

1. Introduction

The goal of program synthesis, and systems engineering in general, is to build systems that
satisfy a given specification. Sometimes, however, this goal is unattainable, because the
conditions of the specification are impossible to satisfy in an implementation. A textbook
example for such a case is the Byzantine Generals’ Problem, introduced in the early 1980s by
Lamport et al. [LSP82]. Three generals of the Byzantine army, consisting of one commander
and two lieutenants, need to agree on whether they should “attack” or “retreat.” For this
purpose, the commander sends an order to the lieutenants, and all generals then exchange

2012 ACM CCS: [Theory of computation]: Logic—Modal and temporal logics; [Computer systems

organization]: Dependable and fault-tolerant systems and networks.
Key words and phrases: Distributed Synthesis, Fault-tolerance, Coordination Logic.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(3:10)2015

c© Finkbeiner and Tentrup
CC© Creative Commons

http://creativecommons.org/about/licenses

2 FINKBEINER AND TENTRUP

messages with each other, reporting, for example, to one general which messages they have
received from the other general. The problem is that one of the generals is a traitor and
can therefore not be assumed to tell the truth: the tale of the Byzantine generals is, after
all, just an illustration for the problem of achieving fault tolerance in distributed operating
systems, where we would like to achieve consensus even if a certain subset of the nodes fail.
Of course, we cannot expect the traitor to agree with the loyal generals, but we might still
expect a loyal lieutenant to agree with the order issued by a loyal commander, and two loyal
lieutenants to reach a consensus in case the commander is the traitor. This specification
is, however, unrealizable in the setting of the three generals (and, more generally, in all
settings where at least a third of the nodes are faulty).

Detecting unrealizable specifications is of great value because it avoids spending imple-
mentation effort on specifications that are impossible to satisfy. If the system consists of a
single process, then unrealizable specifications can be detected with synthesis algorithms,
which detect unrealizability as a byproduct of attempting to construct an implementation.
For distributed systems, the problem is more complicated: in order to show that there is no
way for the three generals to achieve consensus, we need to argue about the knowledge of
each general. The key observation in the Byzantine Generals’ Problem is that the loyal gen-
erals have no way of knowing who, among the other two generals, is the traitor and who is
the second loyal general. For example, the situation where the commander is the traitor and
orders one lieutenant to “attack” and the other to “retreat” is indistinguishable, from the
point of view of the loyal lieutenant who is ordered to attack, from the situation where the
commander is loyal and orders both lieutenants to attack, while the traitor claims to have
received a “retreat” order. Since the specification requires the lieutenant to act differently
(agree with the other lieutenant vs. agree with the commander) in the two indistinguishable
situations, we reach a contradiction.

Since realizability for distributed systems is in general an undecidable problem [PR90],
the only available decision procedures are limited to special cases, such as pipeline and ring
architectures [KV01b,FS05]. There are semi-algorithms for distributed synthesis, such as
bounded synthesis [FS13], but the focus is on the search for implementations rather than on
the search for inconsistencies: if an implementation exists, the semi-algorithm terminates
with such an implementation, otherwise it runs forever. In this paper, we take the opposite
approach and study counterexamples to realizability. Intuitively, a counterexample collects
a sufficient number of scenarios such that, no matter what the implementation does, an
error will occur in at least one of the chosen scenarios. As specifications, we consider
formulas of linear-time temporal logic (LTL). It is straightforward to encode the Byzantine
Generals’ Problem in LTL. Another interesting example is the famous CAP Theorem, a
fundamental result in the theory of distributed computation conjectured by Brewer [Bre00].
The CAP Theorem states that it is impossible to design a distributed system that provides
Consistency, Availability, and Partition tolerance (CAP) simultaneously. We assume there
is a fixed number n of nodes, that every node implements the same service, and that there are
direct communication links between all nodes. We use the variables reqi and outi to denote
input and output of node i, respectively. The consistency and availability requirements
can then be encoded as the LTL formulas

∧

1≤i<n(outi ↔ outi+1) and (
∨

1≤i≤n reqi) ↔
(

∨

1≤i≤n outi). The partition tolerance is modeled in a way that there is always at most
one node partitioned from the rest of the system, i.e., we have n different fault-tolerance
scenarios where in every scenario all communication links to one node are faulty.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 3

In both examples, a finite set of input sequences suffices to force the system into violating
the specification on at least one of the input sequences. In this paper, we present an efficient
method for finding such counterexamples. It turns out that searching for counterexamples
is much easier than the classic synthesis approach of establishing unrealizability by the non-
existence of strategy trees [PR90,KV01b,FS05]. The difficulty in synthesis is to enforce the
consistency condition that the strategy of a process must act the same way in all situations
the process cannot distinguish. On the strategy trees, this consistency condition is not an ω-
regular (or even decidable) property. When analyzing a counterexample, on the other hand,
we only check consistency on a specific set of sequences, not on a full tree. This restricted
consistency condition is an ω-regular property and can, in fact, simply be expressed in
LTL as part of the temporal specification. Our QBF-based prototype implementation finds
counterexamples for the Byzantine Generals’ Problem and the CAP Theorem within just a
few seconds.

Related Work. To the best of the authors’ knowledge, there has been no attempt in
the literature to characterize unrealizable specifications for distributed systems beyond
the restricted class of architectures with decidable synthesis problems, such as pipelines
and rings [KV01b,FS05]. By contrast, there is a rich literature concerning unrealizability
for open systems, that is, single-process systems interacting with the environment [Chu63,
ALW89,KV97]. Schuppan [Sch12] introduced the notion of unrealizable cores to identify a
minimal subformula that contains the reason for unrealizability. In robotics, there have been
recent attempts to analyze unrealizable specifications [RKG11]. The results are also focused
on the reason for unrealizability, while our approach tries to determine if a specification is
unrealizable. Moreover, they only consider the simpler non-distributed synthesis of GR(1)
specifications, which is a subset of LTL. There are other approaches concerning unrealizable
specifications in the non-distributed setting that also use counterexamples [CHJ08,LDS11].
There, the system specifications are assumed to be correct and the information from the
counterexamples are used to modify environment assumptions in order to make the spec-
ifications realizable. The Byzantine Generals’ Problem is often used as an illustration for
knowledge-based reasoning in epistemic logics, see [HM84] for an early formalization. Con-
cerning the synthesis of fault-tolerant distributed systems, there is an approach to synthesize
fault-tolerant systems in the special case of strongly connected architectures [DF09]. A pre-
liminary version of this paper appeared as [FT14]. The present paper extends our earlier
work by removing restrictions to acyclic architectures and providing a completeness result
for safety specifications and weakly ordered architectures, as well as a general encoding of
fault-tolerant synthesis.

2. Distributed Realizability

A specification is realizable if there exists an implementation that satisfies the specification.
For distributed systems, the realizability problem is typically stated with respect to a specific
system architecture. Figure 1 shows some typical example architectures: an architecture
consisting of independent processes, a pipeline architecture, and a join architecture. The
architecture describes the communication topology of the distributed system. For example,
an edge from p1 to p2 labeled with (x, b) indicates that x and b are shared variables between
processes p1 and p2, where p1 writes to x and p2 reads from b. The classic distributed
realizability problem is to decide whether there exists an implementation (or strategy) for

4 FINKBEINER AND TENTRUP

each process in the architecture, such that the joint behavior satisfies the specification. In
this case, the distinction between the shared variables is unnecessary as the valuation of the
variable that is read from is always equal to the valuation of the variable that is written to.
In this paper, we are furthermore interested in the synthesis of fault-tolerant distributed
systems, where the processes and the communication between processes may become faulty.
Here, the distinction of the shared variables is used to model the different types of faults.

LTL. We use linear-time temporal logic (LTL) [Pnu77] to express linear-time properties,
that are properties P ⊆ (2Σ)ω for a finite alphabet Σ, also called atomic propositions. LTL
consists of the temporal operators Next and Until U . The syntax is given by the grammar

ϕ ::= x | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ ,

where x ∈ Σ. We define ϕ ∧ ψ as ¬(¬ϕ ∨ ¬ψ), the Weak Until operator ϕ W ψ as
ϕ ∨ (ϕ U ψ), and the Release operator ϕ R ψ as ¬(¬ϕ U ¬ψ). We use the standard

abbreviations true ≡ x∨¬x and false ≡ x∧¬x, for some x ∈ Σ, as well as ϕ→ ψ ≡ ¬ϕ∨ψ,
ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ), ϕ ≡ false R ϕ, and ϕ ≡ true U ϕ.

For i ≥ 0, the satisfaction of a path σ ∈ (2Σ)ω on position i with respect to formula ϕ,
denoted by σ, i �LTL ϕ, is inductively defined as

• σ, i �LTL x :⇔ x ∈ σ(i),

• σ, i �LTL ¬ϕ :⇔ σ, i 2LTL ϕ,

• σ, i �LTL ϕ ∨ ψ :⇔ σ, i �LTL ϕ or σ, i �LTL ψ,

• σ, i �LTL ϕ :⇔ σ, i+ 1 �LTL ϕ, and

• σ, i �LTL ϕ U ψ :⇔ ∃n ≥ i. σ, n �LTL ψ and ∀m ∈ {i, . . . , n− 1}. σ,m �LTL ϕ ,

where x ∈ Σ and ϕ,ψ are LTL formulas. We say a path σ ∈ (2Σ)ω is satisfied by ϕ, if
σ, 0 �LTL ϕ. The language of an LTL formula JϕK ⊆ (2Σ)ω is defined as the set of paths
that satisfy ϕ. In Section 6, we use the syntactically restricted fragments safety LTL and
co-safety LTL [KV01a]. These fragments are given by the grammars

ϕ ::= x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕ | ϕ R ϕ, and (safety LTL)

ϕ ::= x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕ | ϕ U ϕ , (co-safety LTL)

respectively, where x ∈ Σ. Safety and co-safety formulas are dual with respect to negation.

Coordination Logic. We use Coordination logic (CL) [FS10] to give uniform and precise
definitions of the various realizability problems of interest. CL is a game-based extension
of LTL that makes strategies—and their observations—to first class citizens of the logic.
CL divides the set of atomic propositions into strategic and coordination variables, where
the latter represent observations for the strategies represented by strategic variables. The
strategy quantifier ∃C ⊲ s introduces a strategy for s that bases its decisions only on the
history of valuations of the variables in C. This allows us to pose queries on the existence of
strategies, with specific observations, within the logic. In order to specify the realizability
of distributed systems, we use the strategy quantifier ∃C ⊲ s to express the existence of an
implementation for a process output s based on input variables C.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 5

penv

p1

p2

x

y

a

b

(a)

penv p1 p2
a

x
b

y

(b)

p3

p1

p2

penv
z

x
b

y

c

a

a

(c)

Figure 1: Example architectures

CL Syntax. CL formulas contain two types of variables: the set C of input (or coordina-
tion) variables, and the set S of output (or strategy) variables. In addition to the usual
LTL operators Next , Until U , and Release R, CL has the strategy quantifier ∃C ⊲ s,
which introduces an output variable s whose values must be chosen based on the history of
valuations of the inputs C. The syntax1 is given by the grammar

ϕ ::= x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕ U ϕ | ϕ R ϕ | ∃C ⊲ s. ϕ | ∀C ⊲ s. ϕ ,

where x ∈ C ∪̇ S, C ⊆ C, and s ∈ S. Beside the standard abbreviations true ≡ x ∨ ¬x,
false = x ∧ ¬x, ϕ ≡ true U ϕ, and ϕ ≡ false R ϕ, we use n ϕ as an abbreviation of n
consecutive Next operators.

We denote by Q the (possibly empty) quantification prefix of a formula and call the
remainder the body. For Q ∈ {∃,∀}, we use QQ if the prefix contains only Q-quantifiers.
For the purposes of this paper, it suffices to consider the fragment CL∃ that contains only
existential quantifiers. We furthermore assume that the body is quantifier-free, i.e., that
the formulas are in prenex normal form (PNF).

Examples. We demonstrate how to express distributed realizability problems in CL∃ with
the example architectures from Fig. 1. The realizability of an LTL formula ψ1 in the
architecture from Fig. 1(a) is expressed by the CL∃ formula

∃{a} ⊲ x.∃{b} ⊲ y. ψ1 . (2.1)

Interprocess communication via a shared variable b, as in the pipeline architecture from
Fig. 1(b), is expressed by separating the information read from b from the output written
to b. In the following CL∃ formula we use output variable x to denote the output written
to b:

∃{a} ⊲ x.∃{b} ⊲ y. (b = x) → ψ2 (2.2)

The LTL specification ψ2 is qualified by the input-output specification (b = x), which
expresses that ψ2 is required to hold under the assumption that the information written to
b by process x is also the information read from b by process y. This separation between sent
and received information is useful to model faults that disturb the transmission. Failing
processes are specified by omitting the input-output specifications that refer to the failing
processes. As an example, consider the architecture in Fig. 1(c). The CL∃ formula

∃{a} ⊲ x, y.∃{b, c} ⊲ z.
(

(c = y) → ψ3

)

∧
(

(b = x) → ψ3

)

(2.3)

specifies that there exists an implementation such that ψ3 is guaranteed to hold even if
process x or y (but not both) fails.

1This logic is called Extended Coordination Logic in [FS10].

6 FINKBEINER AND TENTRUP

{y}

∅

{y}

∅
...

(a) Strategy for y

∅

{x}

{x}

{x} ∅

∅

{x} ∅

a

∅

{x}

{x} ∅

∅

{x} ∅

¬a

...

(b) Strategy for x

{y}

{x}

{y, x}

{x} ∅

{y}

{x} ∅

a

∅

{y, x}

{x} ∅

{y}

{x} ∅

¬a

...

(c) Computation tree

Figure 2: In (a) and (b) we sketch example strategies for y and x satisfying the CL∃ formula
∃∅ ⊲ y.∃{a} ⊲ x. (x ↔ a) ∧ (y ↔ ¬y). In (c) we visualize the resulting
computation tree on which the body (LTL) formula is evaluated.

For a formula Φ, we differentiate two types of coordination variables, external and
internal. A coordination variable c ∈ C is internal iff the value of c is uniquely defined by
the input-output specifications. In contrast, external coordination variables provide input
from the environment. For example, the input a in (2.2) is external while b is internal.

CL∃ Semantics. We give a quick definition of the CL∃ semantics for formulas in PNF and
refer the reader to [FS10] for details and for the semantics of full CL. The semantics is
based on trees as a representation for strategies and computations. Given a finite set of
directions Υ and a finite set of labels Σ, a (full) Σ-labeled Υ-tree T is a pair 〈Υ∗, l〉, where
l : Υ∗ → Σ assigns each node υ ∈ Υ∗ a label l(υ). For two trees T and T ′, we define the joint
valuation T ⊕ T ′ to be the widened tree with the union of both labels. We refer to [FS10]
for a formal definition. A path σ in a Σ-labeled Υ-tree T is an ω-word σ0σ1σ2 . . . ∈ Υω and
the corresponding labeled path σT is (l(ǫ), σ0)(l(σ0), σ1)(l(σ0σ1), σ2)(l(σ0σ1σ2), σ3) . . . ∈
(Σ ×Υ)ω.

For a strategy variable s that is bound by some quantifier QC ⊲ s. ϕ, we refer to C as
the scope of s, denoted by Scope(s). The meaning of a strategy variable s is a strategy or

implementation fs : (2Scope(s))∗ → 2{s}, i.e., a function that maps a history of valuations
of input variables to a valuation of the output variable s. We represent the computa-
tion of a strategy fs as the tree 〈(2Scope(s))∗, fs〉 where fs serves as the labeling function
(cf. Fig. 2(a)–(b)). CL∃ formulas are interpreted over computation trees, that are the joint
valuations of the computations for strategies belonging to the strategy variables in S, i.e.,
⊕

s∈S〈(2
Scope(s))∗, fs〉 (cf. Fig. 2(c)). Given a CL∃ formula Q∃. ϕ in prenex normal form

over strategy variables S and coordination variables C, the formula is satisfiable if there
exists a computation tree T (over S), such that all paths in T satisfy the LTL formula ϕ,
i.e., ∀σ ∈ (2C)ω. σT , 0 �LTL ϕ.

From Distributed Realizability to CL∃. We formally introduce the distributed realiz-
ability problem and show reductions from the distributed realizability problem to CL∃. Let
V be a finite set of variables. An architecture A is a tuple (P, penv , {Ip}p∈P , {Op}p∈P), where
P is the set of processes and penv /∈ P is the distinct environment process. Ip ⊆ V denotes
the set of input variables for process p and Op ⊆ V denotes the set of output variables for
process p. We denote by I =

⋃

p∈P Ip the set of all input variables and by O =
⋃

p∈P Op

the set of all output variables. The input given by the environment is Ienv := I \ O, the
communication variables are I ∩ O. While some input may be shared across processes in

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 7

the case of broadcasting, the output variables of every pair of processes are assumed to
be disjoint, i.e., Op ∩ Op′ = ∅ for all p 6= p′ ∈ P . We represent the architecture A by a
directed graph GA = (N,E), where N = P ∪Penv is the set of vertices and E = N ×N the
set of edges. There is an edge between two vertices (p, p′) ∈ E if Op ∩ Ip′ , i.e., there is a
communication over shared variables between p and p′.

An implementation of a process p is a function fp : (2
Ip)∗ → 2Op which maps the history

of valuation of the input variables to a subset of output variables. We say an implementation
is finite state, if it can be represented by a finite transducer. An implementation forA is a set
of implementations for each process. The distributed realizability problem for architecture
A and LTL formula ϕ is to decide whether there is a finite state implementation for every
process in A such that the system satisfies ϕ against the environment, i.e., the joint behavior
of the implementations satisfies ϕ against all input sequences given by the environment:
∀σ ∈ (2I)ω. σT , 0 �LTL ϕ where T =

⊕

p∈P 〈(2
Ip)∗, fp〉.

The distributed realizability problem is decidable for the class of weakly ordered archi-
tectures [FS05], which includes pipelines and rings. Weakly ordered architectures are char-
acterized by the absence of pairs of processes, called information forks, that each have access
to some information that is hidden from the other process. Consider a tuple (P ′, V ′, p, p′),
where P ′ is a subset of the processes P ∪{penv}, V

′ is a subset of the variables disjoint from
Ip ∪ Ip′ , and p, p

′ ∈ P r (P ′ ∪ {penv}) are two different system processes. Such a tuple is
an information fork if P ′ together with the edges that are labeled with at least one variable
from V ′ forms a subgraph rooted in the environment and there exist two nodes q, q′ ∈ P ′

that have edges to p, p′, respectively, but are labeled with incomparable sets of variables
(i.e., neither set is a subset of the other). For example, the architecture in Fig. 1(a) contains
the information fork ({penv}, ∅, p1, p2). A weakly ordered architecture is an architecture that
does not contain an information fork.

Definition 2.1. Given a CL∃ formula Φ = Q∃. ϕpath → ϕ, where ϕpath =
∧

(s,c)∈R(c = s)

for some R ⊆ C × S, the induced architecture AΦ = (P, penv , {Ip}p∈P , {Op}p∈P) is defined
as follows. By abuse of notation, we use V = S∪C as the set of variables in the architecture
and define a process p ∈ P as a set of strategy variables p ⊆ S.

Let P be the quotient of S according to the equivalence relation + ⊆ (S × S) with
s + s′ if Scope(s) = Scope(s′), i.e., we group the strategy variables with the same inputs
together as a single process. For all p ∈ P , we define Ip as Scope(s) for some s ∈ p and Op

as the union over the defined communication variables {c | (s, c) ∈ R for some s ∈ p} and
the strategy variables that are not used for communication {s | (s, c) /∈ R for all c ∈ C}.

Theorem 2.1. The distributed realizability problem over architecture A and LTL formula ϕ
can be encoded as CL∃ formula Φ = Q∃. ϕpath → ϕ with only prenex existential quantifica-
tion.

Proof. Consider an arbitrary architecture A = (P, penv , {Ip}p∈P , {Op}p∈P) and an LTL for-
mula ϕ. We give a CL∃ formula Φ that is satisfiable if, and only if, ϕ is realizable in A.
For variable v ∈ V , we denote the coordination variable and strategy variable used in the
encoding by cv and sv, respectively. Analogously we use C := {cv | v ∈ I} as the set of
coordination variables and S := {sv | v ∈ O} as the set of strategy variables.

For each process p ∈ P we introduce a set of strategy variables Sp := {sv | v ∈ Op} with
the scope Cp := {cv | v ∈ Ip}. We take care of the input-output specifications by restricting
the paths such that ϕpath :=

∧

v∈I∩O (cv = sv) holds, i.e., we only consider paths where
the valuation of the strategy variables S representing the output variables is equal to the

8 FINKBEINER AND TENTRUP

valuation of the coordination variables I ∩O representing the input variables. The resulting
formula Φ for processes p1, . . . , pn is

∃Cp1 ⊲ Sp1 . . . ∃Cpn ⊲ Spn . ϕpath → ϕ .

The correctness of the encoding follows from the semantics of CL∃ and A = AΦ.

Realizability under Byzantine faults. We model the occurrence of a Byzantine fault
as a modification of the architecture, where a process reading from some shared variable
no longer reads the output written by the other process, but instead some arbitrary input.
An implementation is fault-tolerant if it works both in the original architecture and in the
modified architecture. We encode fault-tolerant realizability as CL∃ formulas of the general
form

Φ = Q∃.
∧

1≤i≤n

(

ϕpathi
→ ϕi

)

, (2.4)

where the formulas ϕpathi
are obtained from ϕpath by omitting constraints (c = s), which

indicates that there is a Byzantine fault on the shared variable s: the coordination variable
c can deviate arbitrarily from s.

A disadvantage of this encoding is that we can no longer partition the coordination vari-
ables into internal and external variables, because the coordination variable c is external in
the architecture where the shared variable is faulty and internal in the other architectures. In
order to retain the partitioning, we use the following satisfiability preserving transformation
partition(Φ): For each coordination variable c that is neither internal nor external, we intro-
duce a fresh coordination variable c∗ that represents the external information given in the
fault architectures. Consequently, we add the condition (c = c∗) to all path specifications
ϕpathi

where c is not contained, thus, making the value c deterministic in all architectures.
In the transformed formula partition(Φ), c is an internal coordination variable as its value
is in every architecture uniquely determined and c∗ is an external coordination variable as
it provides environmental input to the system.

3. Counterexamples to Distributed Realizability

We now introduce counterexamples to realizability, which are actually counterexamples to
satisfiability for the CL∃ formula encoding the realizability problem. The satisfiability
problem for a CL∃ formula in prenex form asks for an implementation for all strategy
variables in the quantification prefix of the formula such that the temporal specification in
the body is satisfied.

Let Φ = Q∃. ϕ be a CL∃ formula in prenex form over coordination variables C and
strategy variables S, where the body of the formula is the LTL formula ϕ. A counterexample
to satisfiability for Φ is a (possibly infinite) set of paths P ⊆ (2C)ω, such that, no matter
what strategies are chosen for the strategy variables in S, there exists a path σ ∈ P that
violates the body ϕ. Formally, P ⊆ (2C)ω is a counterexample to satisfiability iff, for each

s ∈ S and every strategy fs : (2Scope(s))∗ → 2{s}, it holds that there exists a path σ ∈ P
such that σT �LTL ¬ϕ where T =

⊕

s∈S〈(2
Scope(s))∗, fs〉.

Proposition 3.1. A CL∃ formula Φ over coordination variables C and strategy variables S
is unsatisfiable if, and only if, there exists a counterexample to satisfiability P ⊆ (2C)ω.

Proof. By the semantics of CL∃ and P = (2C)ω.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 9

The distributed realizability problem without faults corresponds to CL∃ formulas of the form
Φ = Q∃. ϕpath → ϕ, where the ϕpath defines the architecture AΦ: there is an edge from
one strategy variable to another if the input-output specification occurs in ϕpath. A finite

counterexample to satisfiability of Φ is a finite set of paths P ⊆ (2Cext)ω corresponding
to external coordination variables Cext = {c | c is an external coordination variable in Φ},
such that for every implementation T there exists a path σ ∈ P such that an extension
σ′ ∈ (2C)ω of σ violates ϕ. We say that σ′ ∈ (2C)ω is an extension of σ ∈ (2Cext)ω if for
all i ≥ 0, it holds that σi = σ′i ∩ Cext. Note that the extension of σ by the valuation of
the internal coordination variables is uniquely specified by the input path σ and the system
implementation T .

Proposition 3.2. A CL∃ formula Φ = Q∃. ϕpath → ϕ over coordination variables C and
strategy variables S is unsatisfiable if there exists a finite counterexample to satisfiability
P ⊆ (2Cext)ω of Φ.

As an example consider again the CL∃ formula (2.1) ∃{a} ⊲ x.∃{b} ⊲ y. ψ1, corresponding
to the architecture from Fig. 1(a) in the previous section. Let ψ1 := (y ↔ a), i.e., y
must output the input a with an one-step delay. A simple counterexample for this formula
consists of two paths P1 := { ∅ω , {a}ω} that differ in the values of a, but not in the values
of b. Since process y cannot distinguish the two paths, but must produce different outputs,
this leads to contradiction. Consider the same formula ψ1 for the pipeline architecture
specified by (2.2) ∃{a} ⊲ x.∃{b} ⊲ y. (b = x) → ψ1. The formula is unsatisfiable due to the
delay when forwarding the input a over shared variable b (cf. CL∃ semantics in Section 2,
the current output of x is only visible to y in the next step). P1 is a finite counterexample
in this case, too: Given an implementation of x and y, we extend both paths such that the
input-output specification (b = x) is satisfied.

The fault-tolerant distributed realizability problem corresponds to CL∃ formulas of the
form Φ = Q∃.

∧

1≤i≤n

(

ϕpathi
→ ϕi

)

. If ϕi = ϕ for all i, the formula states that there exists
an implementation such that the specification ϕ should hold in all architectures induced
by the path specifications ϕpathi

. Omitted specifications (b = x) in one of these formulas
ϕpathi

represent an arbitrary communication error at input b in architecture i. In this case,
a counterexample identifies for each implementation one of these architectures where a
contradiction occurs. A finite counterexample to satisfiability of Φ are n finite sets of paths

Pi ⊆ (2C
i
ext)ω each corresponding to external coordination variables Ci

ext in the respective
architecture i, such that for any implementation T there exists an architecture j and a path
σ ∈ Pj such that an extension σ′ ∈ (2C)ω of σ violates ϕj .

Proposition 3.3. A CL∃ formula Φ = Q∃.
∧

1≤i≤n

(

ϕpathi
→ ϕi

)

over coordination vari-
ables C and strategy variables S is unsatisfiable if there exists a finite counterexample to
satisfiability of Φ.

A counterexample for the CL∃ specification (2.3)

∃{a} ⊲ x, y.∃{b, c} ⊲ z.
(

(c = y) → ψ3

)

∧
(

(b = x) → ψ3

)

introduces paths for inputs as well as for every faulty node such that some paths model the
exact input-output specification and other paths model the arbitrary node failures. The
node that reads from a shared variable can, in contrast to incomplete information, react
differently on the given paths, but the reaction must be consistent regarding its observations
on all paths. Consider for example the specification ψ3 := (2 z ↔ a) for the CL formula

10 FINKBEINER AND TENTRUP

penv p3

p1

p2

z

x

y

c

a

a

b

(a)

penv p3

p1

p2

z

x
b

y

a

a

c

(b)

Figure 3: Visual interpretation of the fault-tolerance specification (2.3): There exists a
strategy for x, y, and z such that the specification is satisfied in both architectures.

in (2.3), that is, process z should output the input a of nodes x and y. In both architectures,
depicted in Fig. 3, we introduce additional paths for the coordination variable that is omitted
in the input-output specification, i.e., b and c for the first and second conjunct, respectively.
Process z cannot tell which of its inputs come from a faulty node. Since z must produce
the same output on two paths it cannot distinguish, the implementation of z contradicts
the specification in either architecture.

4. Computing Finite Counterexamples

We encode the existence of finite counterexamples to realizability as a formula of quantified
propositional temporal logic (QPTL) [KP95]. QPTL extends LTL with a path quantifier ∃p,
where a path σ ∈ 2Σ satisfies ∃p. ϕ at position i ≥ 0, denoted by σ, i �QPTL ∃p. ϕ, if there

exists a path σ′ ∈ 2Σ∪{p} which coincides with σ except for the newly introduced atomic
proposition p, such that σ′, i �QPTL ϕ. We define the universal path quantifier ∀p. ϕ as
¬∃p.¬ϕ. In the following encoding, we use the path quantifier to explicitly name the paths
in the counterexample.

Distributed Realizability. We consider first the distributed realizability problem, repre-
sented by CL∃ formula Φ = Q∃. ϕpath → ϕ. Before proceeding with the general encoding,
we show an example query that encodes the existence of a counterexample to satisfiability
of CL∃ formula (2.2) ∃{a} ⊲ x.∃{b} ⊲ y. (b = x) → (y ↔ a) by using two external
paths, represented by the path variables a1 and a2. The QPTL query is

∃a1, a2.∀x1, x2.∀y1, y2.∃b1, b2.

(x1 = x2 R a1 6= a2) ∧ (y1 = y2 R b1 6= b2) → (4.1)
∧

i∈{1,2}

(bi = xi) ∧
∨

i∈{1,2}

(yi = ai) . (4.2)

This query is satisfiable, one satisfying assignment for a1 and a2 is {a1}∅
ω and ∅ω, respec-

tively. The assignments for bi is a (alpha renamed) copy of the assignment for xi, satisfying
the condition (bi = xi) for i ∈ {1, 2}. As already mentioned in the previous section, the
value of bi is uniquely determined by the strategies. Thus, we could optimize the query

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 11

by removing bi altogether. However, we need the distinction between reading and writing
variables later in this section.

The valuations of a1 and a2 represent two paths in the computation tree of the original
CL∃ formula. In the query above, the strategies for x and y are also evaluated on these
two paths. To make the connection between the path variables x1 and x2 and the strategy
variable x, we introduce consistency conditions between all paths considered in the query.
These consistency conditions (4.1) state that valuations of universal path variables are only
valid if they can be generated by the corresponding strategy. For example, the consistency
condition for x, (x1 = x2 R a1 6= a2), states that a1 and a2 must be different in some
step i ≥ 0 before x1 and x2 can be different in some step j > i. Hence, according to (4.1),
x1 = x2 and y1 = y2 hold in the first step. As b1 = b2 holds in the first step as well, the
consistency condition for y1 = y2 extends to the second step as well. Hence, we have two
paths, given by the assignments for a1 and a2, where a1 and a2 differ in the first position,
but y1 = y2 in the second position. Consequently, either (y1 = a1) or (y2 = a2) holds
and we have obtained a counterexample to satisfiability of the CL∃ formula.

In the following, we introduce the general encoding for computing finite counterexam-
ples of CL∃ formulas Φ = Q∃. ϕpath → ϕ by bounding the number of paths regarding the
external coordination variables Cext. The bound on the number of paths is given as a func-
tion K : C → N that maps each coordination variable to the number of branchings that
should be considered for this variable. W.l.o.g. we can assume that K(c) = 0 for every
internal coordination variable c ∈ Cint. For example, for coordination variables a and b, and
K(a) = K(b) = 1, we encode 4 different paths, one per possible combination for the two
paths for each variable. We fix an arbitrary strict order ≺⊆ C×C between the coordination
variables. For a set C ⊆ C, we identify K(C) by the vector in N|C| where the position of
the value K(c) for a coordination variable c ∈ C is determined by ≺. For our encoding in
QPTL, we use the following helper functions:

• deps(v) returns the set of external coordination variables that influence variable v. An
external coordination variable c ∈ Cext influences variable v if there is a directed path
from c to v in AΦ. For example in the architecture of Fig. 1(c), x, y, and z are influenced
by a. A coordination variable is influenced by itself.

• branches(C,K) returns the set of branches belonging to coordination variables C. A

branch π is referenced by a vector in N|C| and the set of branches is
{

(nc1 , . . . , nck) | {c1 ≺ · · · ≺ ck} = C and 1 ≤ nc ≤ 2K(c) for all c ∈ C
}

• paths(C,K) and strategies(S,K) represent the set of (path) variables in the QPTL for-
mula that belong to the variables of the CL∃ formula. For a variable v ∈ C ∪ S it intro-
duces for each branch π ∈ branches(deps(v),K) a separate variable pvπ that represents
the variable v belonging to this branch π. Formally, we define the sets

paths(C,K) := {pcπ | c ∈ C ∧ π ∈ branches(deps(c),K)} and

strategies(S,K) := {psπ | s ∈ S ∧ π ∈ branches(deps(s),K)} .

• header (S,K) creates the alternating introductions of strategies and paths according to
the (partial) order given the subset relation of the strategy variables on deps . For every
strategy variable s ∈ S we introduce all paths belonging to external coordination variables

12 FINKBEINER AND TENTRUP

c ∈ deps(s) prior to s and avoid duplicate path introductions:

header (S,K) := ∃ paths(deps(s1),K) ∀ strategies({s1},K)

∃ paths(deps(s2) \ deps(s1),K) ∀ strategies({s2},K)
. . .

∃ paths(deps(sn) \
(

⋃

i=1,...,n−1

deps(si)
)

,K) ∀ strategies({sn},K)

∃ paths(Cint) ,

where s1, . . . , sn are ordered such that for all i, j with i < j ≤ n, either deps(si) ⊆
deps(sj) or deps(sj) * deps(si), i.e., either deps(si) is a subset of deps(sj) or both are
incomparable.

• consistent(S,K) specifies the consistency condition for the variables belonging to the
strategy variables on the different branches. The variables psπ1

, . . . , psπk
belonging to a

strategy variable s ∈ S must be equal as long as the coordination variables in the scope
of s on the branches π1, . . . , πk are equal. This is expressible in LTL as we only consider
a finite number of branches. In detail, the formula

consistent(S,K) :=
∧

s∈S

∧

(π, π′) ∈
branches(deps(s), K)2

(

psπ = psπ′ R
(

∨

c∈Scope(s)

pcπ 6= pcπ′

)

)

(4.3)

states that for every strategy variable s ∈ S and every pair of branches (π, π′) that belongs
to s, we ensure that the valuation of s on these two branches differ only if one of the
variables in the scope of s was different in a prior step.

Finally, we define the QPTL encoding for CL∃ formula Φ and function K : C → N as

unsatdist(Φ,K) := header (S,K). consistent (S,K) →
(

∧

π∈branches(C,K)

ϕpath(π)
)

∧
(

∨

π∈branches(C,K)

¬ϕ(π)
)

, (4.4)

where ϕ(π) is the initialization of LTL formula ϕ on branch π, that is we exchange v by
pvπ′ for v ∈ C ∪ S where π′ is the subvector of π that contains the values for coordination
variables in deps(v).

Fault-tolerant Realizability. In the case of possible failures, the CL∃ formulas Φ have
the more general form Q∃.

∧

1≤i≤n

(

ϕpathi
→ ϕi

)

. In this setting, the set of coordination
variables C is in general not partitioned into external and internal coordination variables.
In the first step, we apply the transformation partition(Φ) given in Section 2 in order to get
a partitioning into external and internal coordination variables. Furthermore, we generalize
deps(v) to multiple architecture: An external coordination variable c ∈ Cext influences
variable v if there is a directed path from c to v in one of the architectures. The QPTL
query for counterexamples to CL∃ formula Φ and a bound on the number of paths, given
by the functions K1 . . . Kn : C → N, is

unsat fault (Φ,K1, . . . ,Kn) := header (S,K). consistent (S,K) →
∨

1≤i≤n

(

∧

π∈branches(C,Ki)

ϕpathi
(π)
)

∧
(

∨

π∈branches(C,Ki)

¬ϕi(π)
)

, (4.5)

where K : C → N is defined as K(c) := max1≤i≤nKi(c) for every c ∈ C.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 13

p1 p2
a

x b

yc
z

(a)

p1 p2
a

b

yc
z

(b)

Figure 4: Visualization of the two architectures given by the fault-tolerance specification
∃{a, c} ⊲ x.∃{b} ⊲ z, y. (((c = y) ∧ (b = x)) → ϕ) ∧ ((c = y) → ϕ′). In
architecture (b), the link between shared variables b and x is faulty, hence, b is
an external input.

Consider the example formula

∃{a, c} ⊲ x.∃{b} ⊲ z, y. (((c = y) ∧ (b = x)) → ϕ) ∧ ((c = y) → ϕ′)

that models the two-way pipeline architecture, depicted in Fig. 3, where the connection
between shared variables b and x may fail. We apply the transformation partition(Φ) and
get the formula

∃{a, c} ⊲ x.∃{b} ⊲ z, y.
(

(

(c = y) ∧ (b = x)
)

→ ϕ
)

∧
(

(

(c = y) ∧ (b = b∗)
)

→ ϕ′
)

,

where b∗ is a free coordination variable. The QPTL encoding unsat fault (Φ
∗,K1,K2) with

K1(a) = K2(a) = K1(b
∗) = 0 and K2(b

∗) = 1 is

∃a, b∗1, b
∗
2.∀x1, x2, y1, y2, z1, z2.∃b1, b2, c1, c2.

(x1 = x2 R c1 6= c2) ∧ (y1 = y2 R b1 6= b2) ∧ (z1 = z2 R b1 6= b2)

→ ((c1 = y1) ∧ (b1 = x1)) ∧ ¬ϕ(1) (4.6)

∨





∧

i∈{1,2}

((ci = yi) ∧ (bi = b∗i))



 ∧





∨

i∈{1,2}

¬ϕ(i)



 . (4.7)

In difference to distributed realizability, the encoding states that there must be a violation
of the specification in some architecture. Also, not every architecture is challenged with
all paths, e.g., in the query (4.6) for the first architecture, we use only one path as the
path specification states that the connection between b and x is correct, while in the second
architecture (4.7) we use two paths that are generated by the external inputs b∗1 and b∗2.

Theorem 4.1 (Correctness unsat fault). Given a CL∃ formula Φ = Q∃.
∧

1≤i≤n

(

ϕpathi
→ ϕi

)

over coordination variables C and strategy variables S. Φ is unsatisfiable if there exist
functions K1 . . . Kn : C → N such that the QPTL formula unsat fault(Φ,K1, . . . ,Kn) is
satisfiable.

Proof. Let Φ′ be an arbitrary CL∃ formula after applying the transformation partition(Φ)
given in Section 2 in order to recover the partitioning into external and internal coordination
variables. Assume there exists functions K1 . . . Kn : C → N such that the QPTL formula
unsat fault (Φ

′,K1, . . . ,Kn) is satisfiable. From the satisfiability of this QPTL formula we
construct the proof that the CL∃ formula Φ′ is unsatisfiable (Proposition 3.3), i.e., that for
all strategies there exists a path σ that satisfies

∨

1≤i≤n

(

ϕpathi
∧ ¬ϕi

)

.

We introduce the following auxiliary notation for this proof. We define Prev(v) to be
the set of variables that are quantified prior to v. PrevQ(v) denotes the set Prev(v) when

14 FINKBEINER AND TENTRUP

only considering the existential variables (Q = ∃), respectively universal variables (Q = ∀).
For a variable v ∈ C∪S and a branch π, we define the branching operator v[π] := pvπ′ , where
π′ is the subvector of π that contains only values for variables in deps(v). v[π] is used to
relate CL variables to QPTL variables, i.e., it selects the variable in QPTL formula that
belongs to the branch π. Note that one QPTL variable can belong to more than one branch,
for example, v[π] = v[π′] if the branches π and π′ differ only in the values for variables not
contained in deps(v). For V ⊆ C ∪ S, we write V [π] := {v[π] | v ∈ V } for the set of QPTL
variables belonging to the CL variables V on branch π.

Let s1, . . . , sm be the strategy variables S ordered according to the subset relation
on deps(s). Let α(s) : (2Scope(s))∗ → 2{s} be an arbitrary strategy for strategy variable
s ∈ S and fix a set of strategies A = {α(s) | s ∈ S}. By the semantics of CL∃ we need
to show that in the composition of these strategies

⊕

α∈A α there exists a path such that

the LTL formula
∨

1≤i≤n

(

ϕpathi
∧ ¬ϕi

)

is satisfied. We build the paths that satisfy the

LTL formula from the branches Π = branches(C,K) encoded in the QPTL formula. Let

β(c, π) : (2Prev∀(c[π]))ω → (2{c})ω be the valuation of the existential path variable in the
QPTL formula belonging to coordination variable c on branch π ∈ Π. Note that β(c, π)
depends on all prior universal quantified variables, especially also on universal quantified
variables (representing strategy variables) on different branches. The strategies β(c, π) for
c ∈ Cext correspond to the external coordination variables, while strategies β(c, π) for c ∈
Cint correspond to the extensions defined in the finite counterexamples (Section 3). We
view the existential quantified variables in the formula that correspond to the external
coordination variables as inputs to our system strategies A and get the canonical tuple of
paths P = (σπ1

, . . . , σπk
), one path σπ ⊆ (2C∪S)ω for each branch π ∈ Π.

In the construction of the paths P, we restrict a strategy αs ∈ A to a single branch,
that is the function αω

s : (2Scope(s))ω → (2{s})ω where αω
s (σ) = αs(ǫ) ·αs(σ0) ·αs(σ0σ1)

Let γ(s, π) : (2Prev∃(s[π]))ω → (2{s})ω be the strategy corresponding to the strategy variable
s ∈ S in the QPTL formula for branch π. We have to make sure that γ(s, π) is not more con-
strained than αs, i.e., the QPTL path-strategies γ(s, π) must be able to handle all behaviors
of αs. As deps(s)[π] ⊆ Prev∃(s[π]) the strategy γ(s, π) subsumes the strategy αω

s , i.e., for
every branch π, . . . , πn we can embed every strategy αs in strategies γ(s, π1), . . . , γ(s, πn)
when only considering these branches instead of the whole computation tree. We build the
paths P according to the inductive definition for every π ∈ Π and i ≥ 1

σ1π =
⋃

c∈deps(s1)

β(c, π)(∅ω),

σ2iπ = σ2i−1
π ∪ αω

si
(σ2i−1

π |Scope(s)), and

σ2i+1
π = σ2iπ ∪

⋃

c∈deps(si)

β(c, π)(σ2iπ) ,

where σ|V denotes the projection of path σ to the variables V .
Since the αω

s are derived from the system strategies, it holds that they satisfy the
consistency condition consistent({s},K) (4.3) in the QPTL encoding. From the satisfaction
of the QPTL formula, we conclude that

∨

1≤i≤n

(

∧

π∈branches(C,Ki)

ϕpathi
(π) ∧

∨

π∈branches(C,Ki)

¬ϕi(π)
)

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 15

is satisfied, i.e., there exists an index i and branches Πi = branches(C,Ki) such that
∧

π∈Πi
ϕpathi

(π) ∧
∨

π∈Πi
¬ϕi(π) holds. From the first conjunct it follows that each path

σπ from P corresponding to a branch π ∈ Πi satisfies the path specification ϕpathi
. We

conclude with the second conjunct that one of the branches from Π violates the specifica-
tion ϕi.

Corollary 4.2 (Correctness unsatdist). Given a CL∃ formula Φ = Q∃. ϕpath → ϕ over
coordination variables C and strategy variables S. Φ is unsatisfiable if there exists a function
K : C → N such that the QPTL formula unsatdist (Φ,K) is satisfiable.

Remark 4.3 (Monotonicity of K). For the distributed synthesis encoding it holds thatK is
monotone with respect to the satisfiability of unsatdist (Φ,K), however, for the fault-tolerant
synthesis this is not necessarily true because of the complex information dependencies be-
tween different architectures. By increasing the number of paths for a coordination variable
c in an architecture i where c is not involved in a fault, i.e., (c = s) is contained in ϕpathi

,
we restrict the choice of the environment in another architecture (where c could be involved
in a fault). Hence, we have the following monotonicity condition: K1 . . . Kn is monotone
with respect to the satisfiability of unsat fault (Φ,K1, . . . ,Kn) if Ki(c) is only increased if c
is not contained in the input-output specification ϕpathi

.

Example. We consider again the Byzantine Generals’ Problem with three nodes g1, g2,
and g3. The first general is the commander who forwards the input v that states whether
to attack the enemy or not. The encoding as CL∃ formula is

Φbgp := ∃{v} ⊲ g12, g13.∃{c12} ⊲ g23.∃{c13} ⊲ g32.∃{c12, c32} ⊲ g2.∃{c13, c23} ⊲ g3.

(operational 2,3 → consensus2,3) ∧
∧

i∈{2,3}

(operational 1,i → correctval i) , (4.8)

where we use the following definitions

operational 2,3 := (c23 = g23 ∧ c32 = g32),

operational 1,3 := (c12 = g12 ∧ c13 = g13 ∧ c32 = g32),

operational 1,2 := (c12 = g12 ∧ c13 = g13 ∧ c23 = g23),

consensus i,j := 3 (gi = gj), and

correctval i := v ↔ 3 gi .

The quantification prefix introduces the strategies for the generals g2 and g3, as well as
the communication between the three generals as depicted in the architecture in Fig. 5(a).
Note that we omit the vote of the commander g1 as it is not used in the specification. In
the temporal part, we specify which failures can occur. The first conjunct, corresponding
to Fig. 5(b), states that the commander is a traitor (operational 2,3) which implies that
the other two generals have to reach a consensus whether to attack or not (consensus2,3).
The other two cases, depicted in Fig. 5(c)–(d), are symmetric and state that whenever one
general is traitor the other one should agree on the decision made by the commander. The

16 FINKBEINER AND TENTRUP

g1

g2 g3

c12 c13

c23

c32

v

(a)

g1

g2 g3

c12 c13

c23

c32

v

(b)

g1

g2 g3

c12 c13

c23

c32

v

(c)

g1

g2 g3

c12 c13

c23

c32

v

(d)

Figure 5: The Byzantine Generals’ architecture. Figure (a) shows the architecture in cases
all generals are loyal. Figures (b)–(d) show the possible failures, indicated by the
dashed communication links.

QPTL encoding unsat fault (Φbgp,K1,K2,K3) is given as

∃ paths({v},K). ∀ strategies({g12, g13},K). ∃ paths({c12, c13},K).

∀ strategies({g23, g32},K). ∃ paths({c23, c32},K). ∀ strategies({g2, g3},K).

consistent({g12, g13, g23, g32, g2, g3},K) →
((

∧

π∈branches(C,K1)

operational 2,3(π) ∧
∨

π∈branches(C,K1)

¬consensus2,3(π)
)

∨

(

∧

π∈branches(C,K2)

operational 1,3(π) ∧
∨

π∈branches(C,K2)

¬correctval 3(π)
)

∨

(

∧

π∈branches(C,K3)

operational 1,2(π) ∧
∨

π∈branches(C,K3)

¬correctval 2(π)
))

.

By using the functions Ki for 1 ≤ i ≤ 3 which are defined as

K1(v) = K2(v) = K3(v) = 1,

K1(c12) = K1(c13) = K2(c23) = K3(c32) = 1 ,

and 0 otherwise, we get a satisfying QPTL instance and, hence, proved the unsatisfiability
of Φbgp. This resembles the manual proof for the Byzantine Generals’ Problem. In every
situation where one of the generals is a traitor, one has to consider the possible deviations
from the loyal behavior.

5. Completeness

In practice, finite external counterexamples are often sufficient to detect unrealizable speci-
fications. In this section, we show that our method is in fact complete for the case of safety
specifications and weakly ordered architectures. It turns out that if one of these restrictions
is dropped, i.e., if one is interested in general LTL specifications, or in architectures that
are not weakly ordered, then finite counterexamples may no longer exist, and the method,
therefore, becomes incomplete.

A universal safety (tree) automaton is a tuple U = (Σ,Υ, Q, q0, δ) where Σ denotes a
finite set of labels, Υ denotes a finite set of directions, Q is a finite set of states, q0 ∈ Q
the designated initial state, and δ denotes the transition function. The transition function

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 17

δ : Q × Σ → B+
∧ (Q × Υ) maps a state and a input letter to a positive and conjunctive

Boolean formula over Q×Υ. We allow the abbreviations δ(q, σ) = true and δ(q, σ) = false.
A Σ-labeled Υ-transition system is a tuple T = (T, t0, τ, o) where T is a finite set of

states, t0 ∈ T is the designated initial state, τ : T × Υ → T is the transition function, and
o : T → Σ is the state labeling function. A universal safety automaton accepts a Σ-labeled
Υ-transition system T if T has a run graph. A run graph is a directed graph G = (G,E)
that satisfies the following constraints:

• The vertices G ⊆ Q× T are a subset of the product of Q and T .
• The pair of initial states (q0, to) ∈ G is a vertex of G.
• For each vertex (q, t) ∈ G, the set {(q′, υ) ∈ Q×Υ | ((q, t), (q′, τ(t, υ))) ∈ E} satisfies
σ(q, o(t)).

Since U is universal, the run graph on a transition system is unique.
If we start with a temporal specification instead of a universal safety automaton, we

first need the following transformations. As we only consider safety languages, we restrict
the temporal specifications to syntactically safe [Sis94] formulas, i.e., LTL formulas where
the only temporal operator is the weak until ϕW ψ. (The weak until subsumes the globally
operator ϕ, which is equivalent to ϕW false.)

Proposition 5.1 ([KV01a]). Given a syntactically safe LTL formula ϕ, we can construct a
non-deterministic automaton N¬ϕ on finite words that accepts the (not necessarily minimal)

good prefixes of the co-safety formula ¬ϕ. The size of N¬ϕ is on 2O(|ϕ|).

Using this result, we build the universal safety automaton Uϕ by simulating the automaton
N¬ϕ along each path: if each path is not a good prefix for the negation of ϕ, then ϕ holds
on every path.

Proposition 5.2. Given a syntactically safe LTL formula ϕ, we can construct a universal
safety automaton Uϕ with 2O(|ϕ|) states that accepts a transition system T if, and only if,
T satisfies ϕ.

We use the bound on the size of a transition system that is accepted by a universal safety
automaton U in order to derive a upper bound on the number of counterexample paths
needed to refute the existence of an implementation.

Proposition 5.3 ([FS13]). If a universal safety automaton U with n states accepts a tran-
sition system, then U accepts a finite transition system T with (n!)2 states.

Theorem 5.4. Given a syntactically safe LTL formula ϕ over inputs I and outputs O, ϕ
is unrealizable if, and only if, there exists a finite counterexample.

Proof. Let U be the universal safety automaton for ϕ according to Proposition 5.2. By
the contraposition of Lemma 5.3 it holds that U rejects all transition systems if U rejects
all finite transition systems with (n!)2 states. Hence, all finite transition systems with size
(n!)2 have a finite counterexample path in the run of U . We show that every minimal
counterexample path is bounded by d = (n!)2 · p, where p is the longest loop-free path in
the safety automaton U .

Assume by contradiction that there exists a transition system T of size (n!)2, where
the length of the minimal counterexample path σ ∈ (Q× T)∗ exceeds d. As d is the size of
the product of U and T , there must be a repetition on σ, i.e., there exists i < j ≤ |σ| such
that σ[i] = σ[j]. Thus, we can shorten the counterexample to σ0..i−1 · σj..n−1 violating our
minimality assumption.

18 FINKBEINER AND TENTRUP

As the length of the minimal counterexample is bounded by d, all minimal counterex-
amples are contained in the full tree of depth d that has (2|I|)d paths.

This argumentation can be generalized to weakly ordered architectures since we have an
upper bound on the size of implementations, too. Given an architecture A and an imple-
mentation for each process, we call the resulting system the distributed product according
to architecture A as the system state consist of the product of the states of the process
implementations. The meaning of the distributed product is a strategy (2Ienv) → 2O that
maps finite input sequences from the environment to the valuations of the process outputs.

Proposition 5.5 ([FS05]). For a weakly ordered architecture and a realizable specification ϕ,
the size of the smallest implementation of every process is n-exponential, where n is the
number of processes.

Theorem 5.6. Given a syntactically safe LTL formula ϕ and a weakly ordered architecture
A, ϕ is unrealizable in A if, and only if, there exists a finite counterexample.

Proof. Let U be the universal safety automaton for ϕ. By Proposition 5.5 and the unrealiz-
ability of ϕ in A it holds that there does not exist n-exponential strategies for the processes.
Let t1, . . . , tn be arbitrary n-exponential strategies for the n processes and T : (2Ienv)∗ → 2O

be the (n-exponential) distributed product according to architecture A.
We choose a bound d that is greater than the size of the product of U and T . By the

same argument as in the proof of Theorem 5.4, it follows that the length of the minimal
counterexample for every such T is bounded by d, hence the number of paths is bounded
by (2|Ienv |)d.

Proposition 3.1 states that the characterization of unsatisfiable formulas with counterex-
amples is complete. Our method, however, searches for counterexamples involving only a
bounded number of external paths. In general, this is not enough, as the following proposi-
tions show.

Proposition 5.7. For full LTL, the unrealizability of a specification does not imply the
existence of a finite counterexample.

Proof. Consider the CL∃ formula Φinf := ∃{x} ⊲ y. ϕinf with temporal specification ϕinf :=

(y = x). Φinf is unsatisfiable because for every strategy fy : (2{x})∗ → 2{y} it holds that
fy cannot correctly guess the future value of x on every path, as the formula is evaluated
over the full binary tree that branches by the valuation of x (cf. CL∃ semantics in Section 2).

Assume for contradiction that a finite set of paths P ⊆ (2{x})ω suffices to satisfy ¬ϕinf =
(y 6= x) against every strategy fy. As there are only a finite set of paths P , there exists a

level in the full binary tree such that every node in this level has at exactly one successor
path in P . Choose the strategy fy that assigns the nodes in this level with one successor
the labeling of the next input. Such a finite state strategy exists because the nodes in each
level are distinguishable by the strategy. Hence, for all paths in P it holds that (y = x)
and thus no path satisfies ¬ϕinf.

Proposition 5.8. For the architecture in Fig. 1(a), the unrealizability of a safety specifica-
tion does not imply the existence of a finite counterexample.

Proof. Let D be a deterministic Turing machine that implements a unary counter. We
use the encoding of D into the realizability problem of a safety LTL formula ϕD in the
architecture of Fig. 1(a) [Sch14]. There does not exist a finite state implementation that

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 19

satisfies ϕD, but for every finite set of environment input paths, only a finite number of
correct configurations of D can be asserted. Hence, for every such finite set of paths, there
exists an implementation that fulfills these assertions.

6. Approximations

Presently available QPTL solvers were unable to handle even small instances of our problem.
In this section, we present two simplifications of the finite counterexample problem and their
corresponding encodings. We consider the problem where we restrict the counterexample
paths to a finite length by using a weak monadic second order logic of one successor (WS1S)
encoding. Afterwards, we show a practical encoding in quantified Boolean formulas (QBF)
that bounds the length of a counterexample path. We only consider the more general form
of CL∃ formulas modeling the fault-tolerance case, i.e., Φ = Q∃.

∧

1≤i≤n

(

ϕpathi
→ ϕi

)

.

From QPTL to S1S. We give a short introduction to the monadic second-order theory
of one successor (S1S) and show the equisatisfiable reduction from QPTL to S1S. Let V1 =
{x, y, . . . } and V2 = {X,Y, . . . } be finite sets of first-order and second-order variables,
respectively. A term t is given by the grammar

t ::= 0 | x | S(t) ,

where x is a first-order variable and S denotes the successor function of the natural numbers.
We build formulas ϕ over terms by using the grammar

ϕ ::= t ∈ X | t = t | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ | ∃X.ϕ ,

where t is a term, x is a first-order variable, and X is a second-order variable. We define
∀X.ϕ as ¬∃X.¬ϕ, x /∈ X as ¬(x ∈ X), and x 6= y as ¬(x = y). Furthermore, we use the
abbreviations X ⊆ Y ≡ ∀z. (z ∈ X → z ∈ Y) and X = Y ≡ X ⊆ Y ∧ Y ⊆ X.

The semantics of S1S is defined over first-order and second-order valuations σ1 : V1 → ω
and σ2 : V2 → 2ω, respectively. The semantics of terms is defined as

• [0]σ1
= 0,

• [x]σ1
= σ1(x), and

• [S(t)]σ1
= [t]σ1

+ 1 ,

where t is a term and x ∈ V1. The semantics of formulas is defined as

• σ1, σ2 �S1S t ∈ X :⇔ [t]σ1
∈ σ2(X),

• σ1, σ2 �S1S t1 = t2 :⇔ [t1]σ1
= [t2]σ1

,

• σ1, σ2 �S1S ¬ϕ :⇔ σ1, σ2 2S1S ϕ,

• σ1, σ2 �S1S ϕ ∨ ψ :⇔ σ1, σ2 �S1S ϕ or σ1, σ2 �S1S ψ,

• σ1, σ2 �S1S ∃x. ϕ :⇔ ∃a ∈ ω. σ′1(y) =

{

σ1(y) if y 6= x

a otherwise
∧ σ′1, σ2 �S1S ϕ, and

• σ1, σ2 �S1S ∃X.ϕ :⇔ ∃A ⊆ ω. σ′2(Y) =

{

σ2(Y) if Y 6= X

A otherwise
∧ σ1, σ

′
2 �S1S ϕ ,

where t, t1, t2 are terms, ϕ,ψ are formulas, x, y ∈ V1, and X,Y ∈ V2. A formula ϕ is
satisfiable, if the exists first-order and second-order valuations σ1 and σ2 for the free variables
such that σ1, σ2 �S1S ϕ.

20 FINKBEINER AND TENTRUP

It is well known that QPTL and S1S are equally expressive [SVW85]. We use the
following transformation from QPTL to S1S.

Lemma 6.1. For every QPTL formula ϕ there exists an equisatisfiable S1S formula ψ.

Proof. We encode the (infinite) sequences in the QPTL formula as second-order valuations
in the S1S formula. For a path variable p, we denote by V p the corresponding second-
order variable. For a sequence ρ ∈ (2{p})ω and the corresponding second-order valuation
σ2(V

p) ⊆ ω we impose the invariant that p ∈ ρi if and only if i ∈ σ2(V
p) for every i ≥ 0.

Given a QPTL formula ϕ over a finite set of atomic propositions Σ and an arbitrary S1S
term t over V1 = ∅. We define a S1S formula s1s(ϕ, t) over V2 = {V p | p ∈ Σ} such that
for all ρ ∈ (2Σ)ω it holds that ρ, [t]σ1

�QPTL ϕ if and only if σ1, σ2 �S1S s1s(ϕ, t), where
σ2(V

p) = {i ∈ ω | p ∈ ρi}:

• s1s(p, t) := t ∈ V p, for p ∈ Σ,

• s1s(¬ϕ, t) := ¬s1s(ϕ, t),
• s1s(ϕ ∨ ψ, t) := s1s(ϕ, t) ∨ s1s(ψ, t),

• s1s(ϕ, t) := s1s(ϕ, S(t)),

• s1s(ϕ U ψ, t) := ∃y. (y ≥ t ∧ s1s(ψ, y) ∧ ∀z. (t ≤ z < y → s1s(ϕ, z))), and

• s1s(∃p. ϕ, t) := ∃V p. s1s(ϕ, t) ,

where y and z are fresh first order variables.

Finite-length Counterexamples. When we restrict the counterexamples to finite length,
we lose the ability to detect violations of liveness properties. Thus, we restrict the LTL spec-
ifications ϕi in Φ to syntactic safety properties [KV01a]. As these specifications are negated
in the encoding, the resulting LTL specifications describe co-safety properties [KV01a]. A
property P ⊆ (2Σ)ω is co-safety if every ρ ∈ P has a good prefix, that is a prefix w ∈ (2Σ)∗

of ρ such that for all ρ′ ∈ (2Σ)ω it holds that w · ρ′ ∈ P .
In the weak version of S1S, the second-order quantification is restricted to finite sets.

While syntactically equivalent to S1S, we change the semantics �S1S by replacing the second-
order quantification rule by

σ1, σ2 �WS1S ∃X.ϕ :⇔ ∃ finite set A ⊆ ω. σ′2(Y) =

{

σ2(Y) if Y 6= X

A otherwise
∧ σ1, σ

′
2 �WS1S ϕ .

We define a S1S formula Fin(X) that asserts that the valuation of the second-order variable
X is a finite set:

Fin(X) := ∃Y. (X ⊆ Y ∧ (∃y. y /∈ Y) ∧ (∀z. (z /∈ Y → S(z) /∈ Y))) .

We define ws1s(ϕ, i) as s1s(ϕ, i) with the difference that we interpret the result of ws1s(ϕ, i)
as a WS1S formula and we only apply it to co-safety LTL formulas.

Lemma 6.2. Given a QPTL formula Φ = Q. ϕ where ϕ is a co-safety LTL formula. If
ws1s(Φ, 0) is satisfiable then Φ is satisfiable.

Proof. Let ws1s(Φ, 0) be satisfiable. By Lemma 6.1, it suffices to argue that s1s(Φ, 0) is sat-
isfiable. First, we can extend any existential quantification ∃X.ϕ to infinite quantification
as the WS1S restriction to quantification over finite sets are special cases of the S1S seman-
tics (these where ∃X.Fin(X)∧ϕ holds). Next, we show that finite universal quantification
is as powerful as infinite universal quantification. Consider the co-safety LTL formula ϕ. It

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 21

holds that every satisfying assignment has a good prefix [KV01a]. Hence, the satisfaction
of an infinite word ρ ∈ (2Σ)ω depends only on a finite prefix. Thus, a satisfying assignment
against universal quantified finite sequences implies the satisfaction against universal quan-
tified infinite sequences.

The WS1S encoding of CL∃ formula Φ and functions K1 . . . Kn : C → N is

unsatWS1S
fault (Φ,K1, . . . ,Kn) := headerWS1S (S,K). consistentWS1S (S,K) →
∨

1≤i≤n

(

∧

π∈branches(C,Ki)

ϕWS1S
path i

(π)
)

∧
(

∨

π∈branches(C,Ki)

ws1s(¬ϕi(π), 0)
)

, (6.1)

where K : C → N is defined as K(c) := max1≤i≤nKi(c) for every c ∈ C. headerWS1S

introduces the second-order variables V x that correspond to the path variables x, but is
otherwise identical to the QPTL version. Furthermore, ϕWS1S

path uses second-order equivalence

V s = V c for (c↔ v). The consistency condition consistentWS1S (S,K) in WS1S is defined
as the conjunction of

∧

(π,π′)∈branches(deps(s),K)2

(

V s
π = V s

π′ ∨ ∃i ≥ 0.
(

∨

c∈Scope(s)

i ∈ V c
π = i ∈ V c

π′

)

∧ ∀j ≤ i. j ∈ V s
π ↔ j ∈ V s

π′

)

for every s ∈ S. This formula ensures different reactions of a universal variable on two
branches is based on different prior valuations of the dependencies (cf. QPTL consistency
condition (4.3)).

We give an example query based on CL∃ formula (2.2) ∃{a} ⊲ x.∃{b} ⊲ y. (b = x) →
(y ↔ a). The WS1S query is

∃A1, A2.∀X1,X2.∀Y1, Y2.∃B1, B2.
(

X1 = X2 ∨
(

∃i ≥ 0. (i ∈ A1 = i ∈ A2) ∧ ∀j ≤ i. j ∈ X1 ↔ j ∈ X2

)

)

∧
(

Y1 = Y2 ∨
(

∃i ≥ 0. (i ∈ B1 = i ∈ B2) ∧ ∀j ≤ i. j ∈ Y1 ↔ j ∈ Y2
)

)

→
∧

i∈{1,2}

(Bi = Xi) ∧
∨

i∈{1,2}

∃k ≥ 0. (S(k) ∈ Yi = k ∈ Ai) . (6.2)

Theorem 6.3 (Correctness unsatWS1S
fault). Given a CL∃ formula Φ = Q∃.

∧

1≤i≤n

(

ϕpathi
→

ϕi

)

over coordination variables C and strategy variables S. Let ϕi be a syntactically safe LTL
formula for each 1 ≤ i ≤ n. Φ is unsatisfiable if there exists functions K1 . . . Kn : C → N
such that the WS1S formula unsatWS1S

fault (Φ,K1, . . . ,Kn) is satisfiable.

Proof. Assume unsatWS1S
fault (Φ,K1, . . . ,Kn) is satisfiable. We show that this implies the sat-

isfiability of unsat fault (Φ,K1, . . . ,Kn) and use Theorem 4.1 that states the correctness of
the QPTL encoding. Lemma 6.2 states that we only have to consider finite state sequences
for the LTL specifications ϕi. What is missing in the argumentation are the paths spec-
ifications ϕWS1S

pathi
and the consistency condition consistentWS1S (Φ,K). The transformed

path specifications are equisatisfiable under WS1S and QPTL semantics as the (existen-
tial quantified) input variables appear after the (universal quantified) strategy variables

in headerWS1S (S,K). Lastly, the consistency condition restricts the finite behavior of the
universal quantified strategy variables and the infinite behavior does not affect the satisfi-
ability of the co-safety properties. Hence, there exists an infinite path extension for every

22 FINKBEINER AND TENTRUP

existentially quantified second-order variable, and the formula remains satisfiable against
any infinite path extension of the universally quantified second-order variables.

WS1S is supported by the Mona [HJJ+95] tool. Some of our smaller instances were solved
by Mona, but the Byzantine Generals’ Problem failed due to memory constraints in the
BDD library.

Bounded-length Counterexamples. Taking the simplifications even further, we not only
bound the number of paths but also the length of the paths by translating the problem to the
satisfiability problem of quantified Boolean formulas (QBF). Quantified Boolean formulas
are the extension of Boolean formulas by quantification over variables. Let V = {v1, . . . , vn}
be a finite set of variables. The syntax of QBF is given by the grammar

ϕ ::= x | ¬ϕ | ϕ ∨ ϕ | ∃x. ϕ ,

where x ∈ V . We define the usual abbreviations ∧, ∀, true, false, →, and ↔. The semantics
is defined over valuations σ : V → {0, 1}. The satisfaction of an valuation σ is defined as

• σ �QBF x :⇔ σ(x) = 1,

• σ �QBF ¬ϕ :⇔ σ 2QBF ϕ,

• σ �QBF ϕ ∨ ψ :⇔ σ �QBF ϕ or σ �QBF ψ, and

• σ �QBF ∃x. ϕ :⇔ ∃a ∈ {0, 1}. σ′(y) =

{

σ(y) if y 6= x

a otherwise
∧ σ′ �QBF ϕ .

The encoding translates a QPTL variable x to Boolean variables x0, . . . , xk−1, each rep-
resenting one step in the system where k is the length of the paths. We build the QBF
formula by unrolling the QPTL formula unsat fault (Φ,K1, . . . ,Kn) for k-steps: Each vari-
able in the quantification prefix of the QPTL formula is transformed into k Boolean vari-
ables in the QBF prefix, e.g., the 3-unrolling of ∃x.∀y. ϕ is ∃x0, x1, x2.∀y0, y1, y2. ϕunroll .
The unrolling of the remaining LTL formula is given by the expansion law for Until,
ϕ U ψ ≡ ψ ∨ (ϕ ∧ ϕ U ψ). After the unrolling, the QBF formula is transformed into
Conjunctive Normal Form (CNF) and encoded in the QDIMACS file format, that is the
standard format for QBF solvers. Already with this encoding we could solve more examples
than using the WS1S approach.

Formally, we define the transformation function qbf (Φ, i, k) that takes a QPTL formula
Φ over alphabet Σ and transforms it into the k-unrolling:

• qbf (p, i, k) := pi, for p ∈ Σ,

• qbf (¬p, i, k) := ¬pi, for p ∈ Σ,

• qbf (ϕ1 ◦ ϕ2, i, k) := qbf (ϕ1, i, k) ◦ qbf (ϕ2, i, k) for ◦ ∈ {∨,∧},

• qbf (ϕ, i, k) :=

{

qbf (ϕ, i+ 1, k) if i < k

false otherwise
,

• qbf (ϕ U ψ, i, k) :=

{

qbf (ψ, i, k) ∨ (qbf (ϕ, i, k) ∧ qbf (ϕ U ψ, i+ 1, k)) if i < k

false otherwise
,

• qbf (Qp.ϕ, i, k) := Qp0, . . . , pk−1. qbf (ϕ, i, k) for Q ∈ {∃,∀} .

Corollary 6.4. Given a QPTL formula Φ = Q. ϕ where ϕ is a syntactically co-safe LTL
formula. If qbf (Φ, 0, k) is satisfiable for some k > 0 then Φ is satisfiable.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 23

0 v g12 g13 g23 g32 g2 g3

1 v g12 g13 g23 g32 g2 g3

2 v g12 g13 g23 g32 g2 g3

3 v g12 g13 g23 g32 g2 g3

(a)

0 v g12 g13 g23 g32 g2 g3

1 v g12 g13 g23 g32 g2 g3

2 v g12 g13 g23 g32 g2 g3

3 v g12 g13 g23 g32 g2 g3

(b)

Figure 6: Example for a dependency graph of the Byzantines’ Generals Problem. The graph
identifies all variables that influence the variables used in the LTL specifications
consensus i,j := 3 (gi = gj) and correctval i := v ↔ 3 gi (variables with red
circle). All variables that do not influence the LTL formula can be safely removed,
e.g., the input v in step 2 and 3 never reaches the strategies g2 and g3.

The QBF encoding of CL∃ formula Φ and functions K1 . . . Kn : C → N is

unsatQBF
fault (Φ, k,K1, . . . ,Kn) := headerQBF (S,K, k). consistentQBF (S,K, k) →
∨

1≤i≤n

(

∧

π∈branches(C,Ki)

ϕQBF
path i

(π)
)

∧
(

∨

π∈branches(C,Ki)

qbf (¬ϕi(π), 0, k)
)

, (6.3)

where K : C → N is defined as K(c) := max1≤i≤nKi(c) for every c ∈ C and k > 0.

headerQBF introduces the variables x0, . . . , xk−1 that correspond to the path variables x,

but is otherwise identical to the QPTL version. Furthermore, ϕQBF
path uses the equivalence

∧

i<k(s
i ↔ ci) for (c ↔ v). The consistency condition consistentQBF (S,K, k) in QBF is

defined as the conjunction of
∧

(π,π′)∈branches(deps(s),K)2

(

∧

i<k

(

siπ ↔ siπ′ ∨
∨

j<i

∨

c∈Scope(s)

cjπ = cjπ′

)

)

for every s ∈ S. This formula ensures different reactions of a strategy variable on two
branches is based on different prior valuations to the dependencies (cf. QPTL consistency
condition (4.3)). In this simple translation, one cause of high complexity is due to the
consistency conditions between the strategy variables across different paths. However, most
of these variables are not used for the counterexample itself but appear only in the consis-
tency condition. One optimization removes these unnecessary variables from the encoding.
Therefore, we collect all strategy variables and (when possible) their temporal occurrence
from the LTL specification. For every used strategy variable we build the dependency graph
that contains all variables which can influence the outcome of the strategy. In the last step,
we remove all variables that are not contained in any dependency graph. This optimization
is depicted in Fig. 6.

24 FINKBEINER AND TENTRUP

Let us consider again the pipeline example given by the CL∃ formula (2.2) ∃{a} ⊲
x.∃{b} ⊲ y. (b = x) → (y ↔ a). The QBF encoding with unrolling depth of 2 is

∃a01, a
1
1, a

0
2, a

1
2.∀x

0
1, x

1
1, x

0
2, x

1
2.∀y

0
1 , y

1
1, y

0
2 , y

1
2 .∃b

0
1, b

1
1, b

0
2, b

1
2.

(x01 ↔ x02) ∧ (x11 ↔ x12 ∨ a
0
1 = a02)∧

(y01 ↔ y02) ∧ (y11 ↔ y12 ∨ b
0
1 = b02) →

∧

i∈{1,2}

(

(b0i ↔ x0i) ∧ (b1i ↔ x1i)
)

∧
∨

i∈{1,2}

(y1i = a0i) . (6.4)

Theorem 6.5 (Correctness unsatQBF
fault). Given a CL∃ formula Φ = Q∃.

∧

1≤i≤n

(

ϕpathi
→

ϕi

)

over coordination variables C and strategy variables S. Let ϕi be a syntactically safe LTL
formula for each 1 ≤ i ≤ n. Φ is unsatisfiable if there exists functions K1 . . . Kn : C → N
such that the QBF query unsatQBF

fault (Φ, k,K1, . . . ,Kn) is satisfiable for some k > 0.

Proof. The encoding is a special case of Theorem 6.3. If the Boolean formula that is a
finite k-unrolling of the LTL formula is satisfied against a finite sequence of length k, i.e.,
we found a counterexample within the first k steps, then it is also satisfied against any
(possibly infinite) strategy.

7. Experimental Results

We have carried out our experiments on a 2.6GHz Opteron system. For solving the QBF
instances, we used a combination of the QBF preprocessor Bloqqer [BLS11] in version 031
and the QBF solver DepQBF [LB10] in version 3.0.3. For solving the WS1S instances, we
used Mona [HJJ+95] in version 1.4-15.

Byzantine Generals’ Problem. Table 1 demonstrates that the Byzantine Generals’ Prob-
lem remains, despite the optimizations described above, a nontrivial combinatorial prob-
lem: we need to find a suitable set of paths for every possible combination of the strate-
gies of the generals. The bound given in the first row reads as follows: The first com-
ponent is the number of branchings for the input variable v in all three architectures.
The last three components state the number of branchings for the outputs of the faulty
nodes in their respective architectures. For example, bound (1, 1, 0, 0) means that we
have two branches for v, c12, and c13, while we have only one branch for c23 and c32.
More precisely, starting from constant zero functions K1,K2,K3, the bound (1, 1, 0, 0) sets

Table 1: Result of the Byzantine Generals’ Problem example

Bound (0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0) (1, 1, 1, 1)

Result Unsatisfiable Unsatisfiable Unsatisfiable Unsatisfiable Satisfiable
#Clauses 57 228 2286 2904 3522
#Variables 44 143 1095 1375 1655
Time (s) 0.09 0.16 0.98 1.01 23.61

The table shows the solving time of the Byzantine Generals’ Problem Φbgp (Equation 4.8)

using the QBF encoding with a fixed length of 3 unrollings. The QBF queries are solved

using a combination of Bloqqer 031 and DepQBF 3.0.3.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 25

K1(v) = K2(v) = K3(v) = K1(c12) = K1(c13) = 1 and K2(c23) = K3(c32) = 0. To prove
the unrealizability, we need one branching for the input v and one branching for every coor-
dination variable that serves as a shared variable for a faulty node, i.e., the bound (1, 1, 1, 1).
The number of branches and thereby the formula size grows exponentially with the number
of branchings for the input variables.

Table 2: Result of the Byzantine Firing Squad Problem example

Instance Result #Clauses #Variables Time (s)

bfsp 3 Satisfiable 803 435 0.21
bfsp 5 Satisfiable 1773 967 0.43
bfsp 10 Satisfiable 7348 3942 3.07
bfsp 20 Satisfiable 42 198 22 042 15.58
bfsp 30 Satisfiable 128 648 66 342 66.29
bfsp 40 Satisfiable 290 698 148 842 190.90
bfsp 50 Satisfiable 552 348 281 542 396.20

The table shows the solving time of the Byzantine Firing Squad Problem

Φbfsp (Equation 7.1) using the QBF encoding with a fixed length of 3

unrollings. The QBF queries are solved using a combination of Bloqqer 031

and DepQBF 3.0.3.

Byzantine Firing Squad Problem. We consider another classical consensus problem, the
Byzantine Firing Squad Probem [FLM85]. In this setting, we have a set of synchronous pro-
cesses, each having a distinct input and a broadcasting mechanism for communication with
the other processes, depicted in Fig. 7(a). The goal of these processes is to synchronously
enter a fire state whenever the input was initially given at one process. As before, we con-
sider architectures with up to one faulty process, but in contrast to the Byzantine Generals’
Problem, we require that this specification holds only if all processes are correct. Further-
more, we require that the non-faulty processes act uniformly, i.e., if a non-faulty process
enters the firing state, all other non-faulty processes enter the firing state. It was shown
in [FLM85] that there is no protocol that ensures correct behavior in the presence of faults.
The encoding Φbfsp for three nodes is given by the CL∃ formula

∃{req1} ⊲ bcast1.∃{req1, chan21, chan31} ⊲ out1.

∃{req2} ⊲ bcast2.∃{req2, chan12, chan32} ⊲ out2.

∃{req3} ⊲ bcast3.∃{req3, chan13, chan23} ⊲ out3.
(

operational 2,3 → consistent2,3
)

∧
(

operational 1,3 → consistent1,3
)

∧
(

operational 1,2 → consistent1,2
)

∧
(

operational 1,2,3 → consistent1,2,3 ∧ uniform1,2,3

)

, (7.1)

26 FINKBEINER AND TENTRUP

where

consistentN :=
∧

i<j∈N2

(

outi = outj
)

and

uniformN :=

(

∨

i∈N

reqi

)

→ 3

(

∨

i∈N

outi

)

. (7.2)

Table 2 shows that our method can detect conflicts quickly even though the CL∃ encoding
Φbfsp grows quadratically in the number of nodes.

CAP Theorem. The CAP Theorem due to Brewer [Bre00] states that it is impossi-
ble to design a distributed system that provides Consistency, Availability, and Partition
tolerance (CAP) simultaneously. For the encoding in CL∃, we assume there is a fixed
number n of nodes, that every node implements the same service, and that there are di-
rect communication links between all nodes, depicted in Fig. 7(b). We use the variables
reqi and outi to denote input and output of node i, respectively. The consistency and
availability requirements are encoded as the LTL formulas

∧

1≤i<n(outi ↔ outi+1) and

(
∨

1≤i≤n reqi) ↔ (2
∨

1≤i≤n outi). The partition tolerance is modeled in a way that there
is always at most one node partitioned from the rest of the system, i.e., we have n different
architectures and in every architecture all communication links to one node are faulty. For
two nodes, we get the CL∃ formula Φcap

∃{req1} ⊲ com1.∃{req1, chan2} ⊲ out1.∃{req2} ⊲ com2.∃{req2, chan1} ⊲ out2.

((chan1 = com1) → ((out1 = out2) ∧ ((req1 ∨ req2) ↔ 3 (out1 ∨ out2)))) ∧

((chan2 = com2) → ((out1 = out2) ∧ ((req1 ∨ req2) ↔ 3 (out1 ∨ out2)))) . (7.3)

Table 3 shows that our method is able to find conflicts in a specification with an architecture
up to 50 nodes within reasonable time. When we drop either Consistency, Availability,
or Partition tolerance, the corresponding instances (AP, CP, and CA) become satisfiable.
Hence, our tool does not find counterexamples in these cases.

Table 3: Result of the CAP Theorem example

Instance Result #Clauses #Variables Time (s)

ap 2 Unsatisfiable 1232 619 0.41
ca 2 Unsatisfiable 1408 763 1.11
cp 2 Unsatisfiable 48 42 0.09
cap 2 Satisfiable 110 84 0.11
cap 5 Satisfiable 665 426 0.28
cap 10 Satisfiable 2590 1556 1.07
cap 25 Satisfiable 15 865 9146 20.60
cap 50 Satisfiable 62 990 35 796 781.16

The table shows the solving time of the CAP Theorem Φcap (Equation 7.3)

using the QBF encoding with a fixed length of 3 unrollings. The QBF

queries are solved using a combination of Bloqqer 031 and DepQBF 3.0.3.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 27

N1

N
2 N 3

c1
c2 c1

c3

c2

c3

r1

r2

r2

(a)

N1

N
2 N 3

c12
c21 c13

c31

c23

c32

r1

r2

r2

(b)

Figure 7: Broadcasting (a) and non-broadcasting (b) communication topologies. (We omit
the environment process to increase readability.)

Discussion. Table 4 shows a comparison of the the different encodings that we have pre-
sented in the paper. There does not exist an algorithm that decides whether a given CL∃

formula is unsatisfiable. We presented an approach that bounds the number of paths and
used an encoding to QPTL. The reason for incompleteness was shown in Section 5: for live-
ness properties one may need infinitely many paths to show unsatisfiability. Our encoding
in WS1S (Mona) loses the ability to find counterexample paths of infinite length, e.g., the
CL∃ formula

∃∅ ⊲ y. (y ↔ x) (7.4)

with free coordination variable x is unsatisfiable and two paths that are infinitely often
different are sufficient to prove it. The QPTL encoding is capable of finding these paths
while neither the WS1S, nor the QBF, encoding is applicable. However, Mona failed to
solve larger instances from Tables 1 to 3, especially it could not handle the encoding of
the Byzantine Generals’ Problem. For the translation to QBF we bounded the length of
the paths to k where k is an additional parameter. With this encoding we approximate
the reactive behavior of our system by a finite prefix. Despite this restriction, we could
prove unsatisfiability for many interesting specifications from literature. In some instances,
the WS1S approximation provides stronger unrealizability guarantees. For example in the
Byzantine Firing Squad Problem, the WS1S encoding is able to prove that any finite uniform
reaction

uniformN :=

(

∨

i∈N

reqi

)

→

(

∨

i∈N

outi

)

(7.5)

leads to an unrealizable instance (cf. Table 4), while in the QBF encoding, we have to
bound the uniform reaction (7.2) to a fixed length. In practice, one would first use the QBF
approximation in order to find “cheap” counterexamples. After hitting the number of paths
that the QBF solver can no longer handle within reasonable time, one proceeds with more
costly approximations like the WS1S encoding.

28 FINKBEINER AND TENTRUP

Table 4: Comparison of different encodings

independent pipeline join bgp bfsp cap infinite bfsp-finite
(2.1) (2.2) (2.3) (4.8) (7.1) (7.3) (7.4) (7.1),(7.5)

QPTL X (X) (X) (X) (X) (X) X (X)
WS1S X X X (X) X(5) X(6) - X(5)
QBF X X X X X X - -

The table compares the expressiveness of the encodings and the experimental verifia-

bility on the examples presented in this paper. The (X) symbol denotes that the tool

failed to solve the query, the number behind the checkmark indicates up to how many

nodes the query was successful. We used GOAL, Mona 1.4-15, and a combination of

Bloqqer 031 and DepQBF 3.0.3 for the QPTL, WS1S, and QBF queries, respectively.

8. Beyond the Byzantine Fault Model

We formalize the fault-tolerant synthesis problem regarding multiple types of faults, their
durations, observability, and the fault-tolerance requirements and provide a uniform encod-
ing into CL∃. Faults are modeled by allowing the environment to take over the control of
the faulty processes.

Types of Faults. We review types of faults that were considered in previous work [DS86,
AAE04, DF09]. Stuck-at faults occur when a process stops reacting on new inputs and
keep their last outputs. On fail-stop faults or crashes the process halts immediately, i.e.,
they stop producing any outputs. While fail-stop faults are detectable, crashes are not
detectable [DS86]. Omission faults subsume these faults and are characterized as failures
on the specified input-output specification. The most general fault type are the Byzantine
faults, where a process can deviate arbitrarily from its specification, even in a malicious
way.

The duration of a fault can be permanent, intermittent, or transient. Some failures may
be detectable or undetectable depending on the architecture and the type of fault.

Lastly, the system usually has to fulfill different kind of specifications in the presence
of faults and we use the classification of fault-tolerance requirements from [DF09]: Masking
tolerance means that the system has to fulfill both safety and liveness specifications, non-
masking tolerance allows the system to temporarily violate its safety properties while fail-
safe tolerance specifies that after a fault, only the safety requirements have to be fulfilled.

Fault-tolerance Specifications. For simplicity, we restrict the failures to processes, but
it can be easily adapted to failures of individual communication links. Consider an ar-
bitrary architecture A = (P, penv , {Ip}p∈P , {Op}p∈P). A fault-tolerance scenario F is a
tuple (Pf , T,D,Obs , ϕ) where Pf ⊆ P is a subset of processes that simultaneously suf-
fer from a fault of type T ∈ {stuck -at , fail-stop, omission,Byzantine} and duration D ∈
{permanent , intermittent , transient}, Obs ∈ {⊤,⊥} denotes the observability, and ϕ is an
LTL formula specifying the fault-tolerance requirements. Not all combinations of fault types
and durations are possible, e.g., stuck-at faults and fail-stop faults are always permanent.
A fault-tolerance specification F is a set of fault-tolerance scenarios.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 29

Fault-tolerant Realizability. The distributed fault-tolerant realizability problem is to
decide, given an architecture A and a fault-tolerance specification F , whether there exists
a finite state implementation for the processes in A such that the system satisfies the
fault-tolerance specification F . We formalize this problem by giving a CL∃ formula Φ =
Q∃.

∧

F∈F

(

ϕpathF
→ ϕF

)

that models the description of the fault-tolerance scenarios given
above.

Consider an arbitrary architectureA = (P, penv , {Ip}p∈P , {Op}p∈P) and a fault-tolerance
specification F . Using Theorem 2.1 we get the CL∃ encoding Ψ = Q∃. ϕpath → ϕ of the
distributed realizability problem for architecture A and an arbitrary LTL formula ϕ. For
every fault-tolerance scenario F ∈ F , we introduce a new architecture that modifies the
input-output specifications for processes affected by F according to the scenario. We de-
note the resulting path specification by the LTL formula ϕpathF

and the fault-tolerance
requirement for F as ϕF . The resulting CL∃ formula contains a conjunct over all scenarios
F :

Φ = Q∃.
∧

F∈F

(

ϕpathF
→ ϕF

)

We now define the path specifications ϕpathF
. Let F = (Pf , T,D,Obs , ϕF) be a fault-

tolerance scenario. For every process p ∈ Pf we introduce a fresh coordination variable

faultFp that immediately signals whether a fault occurred at process p in the last step. If
the faults are observable (Obs = ⊤) we extend the scope of every strategy variable by
{faultFp | p ∈ Pf}

2.
Let ϕpathF

= ϕpath =
∧

v∈I∩O (cv = sv). We remove every conjunct (cv = sv) from
ϕpathF

where v ∈ OPf
is the output of a faulty process. For every v ∈ I ∩ OPf

we add the
following new constraints to ϕpathF

depending on the type of faults T . For readability, we

replace faultFp by fault , cv by i, and sv by o.

• T = stuck -at :
(

(¬fault ∧ (i = o)
)

W
(

fault ∧ i↔ i
)

.

• T = fail-stop:
(

¬fault ∧ (i = o)
)

W
(

(fault ∧ ¬i)
)

.

• T = omission :
(

fault ∧ ¬i ∨ ¬fault ∧ (i = o)
)

.

• T = Byzantine :
(

fault ∨ ¬fault ∧ (i = o)
)

.

Lastly, we add a requirement for every faultFp variable regarding the specified duration D:

• D = permanent : ¬fault W (fault)
• D = intermittent : ¬fault . If we want to have tighter control about the duration
of faults we can use the parametric LTL operators [AELP01] to bound the length n of
a fault ≤n ¬fault , or require that length of a correct behavior is longer than m by

formula
(

fault → fault U (¬fault U>m fault)
)

.

• D = transient : ¬fault W
(

fault U≤n ¬fault
)

where n is the maximal duration of the
fault.

We simplify the undetectable permanent fault encoding by removing the fault variables, as
these variables are not used in the specification. Our formulation allows for many types
and durations of faults that cannot be captured with a fault-tolerance scenario. Indeed,
it is possible to use arbitrary LTL formulas to specify the type and duration of a fault.
Computing counterexamples for these general types of faults can be integrated into the
method described in Section 4.

2These signals are called fault-notification variables in [DF09] as only detectable faults were considered.

30 FINKBEINER AND TENTRUP

9. Conclusion

We have introduced counterexamples for distributed realizability and shown how to auto-
matically derive counterexamples from given specifications in CL∃. We used encodings in
QPTL, WS1S, and QBF. In our experiments, the QBF encoding was the most efficient.
Even problems with high combinatorial complexity, such as the Byzantine Generals’ Prob-
lem, are handled automatically. Given that QBF solvers are likely to continue to improve
in the future, even larger instances should become tractable. In future work, we plan to
extend the method to a larger class of infinite counterexamples, which will support live-
ness specifications. Furthermore, we want to investigate approximation techniques for more
general types of faults.

Acknowledgments

This work was partially supported by the German Research Foundation (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR 14 AVACS). We thank Swen Jacobs for comments on an
earlier version of this paper.

References

[AAE04] Paul C. Attie, Anish Arora, and E. Allen Emerson. Synthesis of fault-tolerant concurrent pro-
grams. ACM Trans. Program. Lang. Syst., 26(1):125–185, 2004.

[AELP01] Rajeev Alur, Kousha Etessami, Salvatore La Torre, and Doron Peled. Parametric temporal logic
for ”model measuring”. ACM Trans. Comput. Log., 2(3):388–407, 2001.

[ALW89] Mart́ın Abadi, Leslie Lamport, and Pierre Wolper. Realizable and unrealizable specifications of
reactive systems. In ICALP, volume 372 of LNCS, pages 1–17. Springer, 1989.

[BLS11] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for QBF. In CADE,
volume 6803 of LNCS, pages 101–115. Springer, 2011.

[Bre00] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC, page 7. ACM, 2000.
[CHJ08] Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environment assump-

tions for synthesis. In CONCUR, volume 5201 of LNCS, pages 147–161. Springer, 2008.
[Chu63] Alonzo Church. Logic, arithmetic and automata. In Proc. 1962 Intl. Congr. Math., pages 23–25,

Upsala, 1963.
[DF09] Rayna Dimitrova and Bernd Finkbeiner. Synthesis of fault-tolerant distributed systems. In ATVA,

volume 5799 of LNCS, pages 321–336. Springer, 2009.
[DS86] Danny Dolev and H. Raymond Strong. A simple model for agreement in distributed systems. In

Fault-Tolerant Distributed Computing, volume 448 of LNCS, pages 42–50. Springer, 1986.
[FLM85] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed

consensus problems. In PODC, pages 59–70. ACM, 1985.
[FS05] Bernd Finkbeiner and Sven Schewe. Uniform distributed synthesis. In LICS, pages 321–330. IEEE

Computer Society, 2005.
[FS10] Bernd Finkbeiner and Sven Schewe. Coordination logic. In CSL, volume 6247 of LNCS, pages

305–319. Springer, 2010.
[FS13] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. STTT, 15(5-6):519–539, 2013.
[FT14] Bernd Finkbeiner and Leander Tentrup. Detecting unrealizable specifications of distributed sys-

tems. In TACAS, volume 8413 of LNCS, pages 78–92. Springer, 2014.
[HJJ+95] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, Robert Paige, Theis

Rauhe, and Anders Sandholm. Mona: Monadic second-order logic in practice. In TACAS, volume
1019 of LNCS, pages 89–110. Springer, 1995.

[HM84] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a distributed envi-
ronment. In PODC, pages 50–61. ACM, 1984.

DETECTING UNREALIZABILITY OF DISTRIBUTED FAULT-TOLERANT SYSTEMS 31

[KP95] Yonit Kesten and Amir Pnueli. A complete proof systems for QPTL. In LICS, pages 2–12, 1995.
[KV97] Orna Kupferman and Moshe Y. Vardi. Synthesis with incomplete information. In ICTL, 1997.
[KV01a] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal Methods in

System Design, 19(3):291–314, 2001.
[KV01b] Orna Kupferman and Moshe Y. Vardi. Synthesizing distributed systems. In LICS, pages 389–398.

IEEE Computer Society, 2001.
[LB10] Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver. JSAT, 7(2-3):71–

76, 2010.
[LDS11] Wenchao Li, Lili Dworkin, and Sanjit A. Seshia. Mining assumptions for synthesis. In MEM-

OCODE, pages 43–50. IEEE, 2011.
[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem.

ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.
[PR90] Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In FOCS,

pages 746–757, 1990.
[RKG11] Vasumathi Raman and Hadas Kress-Gazit. Analyzing unsynthesizable specifications for high-level

robot behavior using LTLMoP. In CAV, volume 6806 of LNCS, pages 663–668. Springer, 2011.
[Sch12] Viktor Schuppan. Towards a notion of unsatisfiable and unrealizable cores for LTL. Sci. Comput.

Program., 77(7-8):908–939, 2012.
[Sch14] Sven Schewe. Distributed synthesis is simply undecidable. Inf. Process. Lett., 114(4):203–207,

2014.
[Sis94] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Asp. Comput., 6(5):495–

512, 1994.
[SVW85] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation problem for büchi

automata with applications to temporal logic (extended abstract). In ICALP, pages 465–474,
1985.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Distributed Realizability
	3. Counterexamples to Distributed Realizability
	4. Computing Finite Counterexamples
	5. Completeness
	6. Approximations
	7. Experimental Results
	8. Beyond the Byzantine Fault Model
	9. Conclusion
	Acknowledgments
	References

