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Abstract. Positive modal logic was introduced in an influential 1995 paper of Dunn as
the positive fragment of standard modal logic. His completeness result consists of an
axiomatization that derives all modal formulas that are valid on all Kripke frames and are
built only from atomic propositions, conjunction, disjunction, box and diamond.

In this paper, we provide a coalgebraic analysis of this theorem, which not only gives a
conceptual proof based on duality theory, but also generalizes Dunn’s result from Kripke
frames to coalgebras for weak-pullback preserving functors.

To facilitate this analysis we prove a number of category theoretic results on functors on
the categories Set of sets and Pos of posets:

Every functor Set → Pos has a Pos-enriched left Kan extension Pos → Pos. Functors
arising in this way are said to have a presentation in discrete arities. In the case that
Set → Pos is actually Set-valued, we call the corresponding left Kan extension Pos → Pos

its posetification.

A set functor preserves weak pullbacks if and only if its posetification preserves exact
squares. A Pos-functor with a presentation in discrete arities preserves surjections.

The inclusion Set → Pos is dense. A functor Pos → Pos has a presentation in discrete
arities if and only if it preserves coinserters of ‘truncated nerves of posets’. A functor
Pos → Pos is a posetification if and only if it preserves coinserters of truncated nerves of
posets and discrete posets.

A locally monotone endofunctor of an ordered variety has a presentation by monotone
operations and equations if and only if it preserves Pos-enriched sifted colimits.
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1. Introduction

Consider modal logic as given by atomic propositions, Boolean operations, and a unary box,
together with its usual axiomatisation stating that box preserves finite meets. In [23], Dunn
answered the question of an axiomatisation of the positive fragment of this logic, where the
positive fragment is given by atomic propositions, lattice operations, and unary box and
diamond (but no negation).

Here we seek to generalize this result from Kripke frames to coalgebras for a weak pullback
preserving functor. Whereas Dunn had no need to justify that the positive fragment ac-
tually adds a modal operator (the diamond), the general situation requires a conceptual
clarification of this step. And, as it turns out, what looks innocent enough in the familiar
case is at the heart of the general construction.

In the general case, we start with a functor T : Set → Set. From T we can obtain by duality
a functor L : BA → BA on the category BA of Boolean algebras, so that the free L-algebras
are exactly the Lindenbaum algebras of the modal logic. We are going to take the functor
L itself as the category theoretic counterpart of the corresponding modal logic. How should
we construct the positive T -logic? Dunn gives us a hint in that he notes that in the same
way as standard modal logic is given by algebras over BA, positive modal logic is given by
algebras over the category DL of (bounded) distributive lattices. It follows that the positive
fragment of (the logic corresponding to) L should be a functor L′ : DL → DL which, in turn,
by duality, should arise from a functor T ′ : Pos → Pos on the category Pos of posets and
monotone maps.

The centrepiece of our construction is now the observation that any functor T : Set → Set

has a universal extension to a functor T ′ : Pos → Pos. Theorem 6.20 then shows that this
construction T 7→ T ′ 7→ L′ indeed gives the positive fragment of L and so generalizes Dunn’s
theorem.

An important observation about the positive fragment is the following: given any Boolean
formula, we can rewrite it as a positive formula with negation appearing only on atomic
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propositions. In other words, the translation β from positive logic to Boolean logic given
by

β(♦φ) = ¬�¬β(φ) (1.1)

β(�φ) = �β(φ) (1.2)

induces a bijection (on equivalence classes of formulas taken up to logical equivalence). More
algebraically, we can formulate this as follows.

Given a Boolean algebra B ∈ BA, let LB be the free Boolean algebra generated by the set
{�b | b ∈ B} modulo the axioms of modal logic. Given a distributive lattice A, let L′A be
the free distributive lattice generated by {�a | a ∈ A}∪{♦a | a ∈ A} modulo the axioms of
positive modal logic. Further, let us denote by W : BA → DL the forgetful functor. Then
the above observation that every modal formula can be written, up to logical equivalence,
as a positive modal formula with negations pushed to atoms, can be condensed into the
statement that the (natural) distributive lattice homomorphism

βB : L′WB →WLB (1.3)

induced by Equations (1.1)-(1.2) is an isomorphism.

Our main results, presented in Sections 6 and 7, are the following. If T ′ is an extension of T
and L,L′ are the induced logics, then β : L′W →WL exists. If, moreover, T ′ is the induced
extension (posetification) of T and T preserves weak pullbacks, then β is an isomorphism
(Theorem 6.20). Furthermore, in the same way as the induced logic L can be seen as the
logic of all predicate liftings of T , the induced logic L′ is the logic of all monotone predicate
liftings of T (Theorem 7.1).

These results depend crucially on the fact that the posetification T ′ of T is defined as
a completion with respect to Pos-enriched colimits. We devote Section 4 to establishing
some results on posetifications used later. We show that posetifications always exists (The-
orem 4.3). Moreover, we characterize those functors Pos → Pos that arise as posetifications
as the functors that preserve coinserters of ‘truncated nerves of posets’ and discrete posets
(Theorem 4.12). We also establish properties of posetifications needed in Section 6, for
example, that a functor Set → Set preserves weak pullbacks if and only if its posetification
preserves exact squares (Theorem 4.10).

On the algebraic side, the move to Pos-enriched colimits guarantees that the modal oper-
ations are monotone. In Section 5, and recalling [43, Theorem 4.7] stating that a functor
L′ : DL → DL preserves ordinary sifted colimits if and only if it has a presentation by
operations and equations, we show that L′ : DL → DL preserves enriched sifted colimits if
and only if it has a presentation by monotone operations and equations (Theorem 5.16). To
see the relevance of a presentation result specific to monotone operations, observe that in
the example of positive modal logic it is indeed the case that both � and ♦ are monotone.

From the point of view of category theory the results of Sections 4 and 5 are of independent
interest. In addition to what we already discussed, we introduce the concept of functors
Pos → Pos with presentations in discrete arities. They generalise posetifications and are
functors that arise as left Kan extensions of functors H : Set → Pos along the discrete
functor D : Set → Pos. They are characterised as those functors preserving coinserters of
‘truncated nerves of posets’ (Theorem 4.13). An important property of Pos-functors with
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presentations in discrete arities is that—like Set-functors but unlike general Pos-functors—
they preserve surjections (Proposition 4.15).

Acknowledgments. The authors would like to thank the referees for their valuable sug-
gestions.

2. A review of coalgebraic logic

A Kripke model (W,R, v) (see e.g. [15] for an introduction to modal logic) with R ⊆W×W
and v : W → 2AtProp can also be described as a coalgebra W → PW × 2AtProp, where PW
stands for the powerset of W . This point of view suggests to generalize modal logic from
Kripke frames to coalgebras

ξ : X → TX

where T may now be any functor T : Set → Set, see [52] for an introduction. We recover
Kripke models by putting TX = PX × 2AtProp. We also recover the so-called bounded
morphisms or p-morphisms as coalgebras morphisms f : (X, ξ) → (X ′, ξ′), that is, as maps
f : X → X ′ such that Tf ◦ ξ = ξ′ ◦ f .

2.A. Coalgebras and algebras. More generally, for any category K and any functor
T : K → K , we have the category Coalg(T ) of T -coalgebras with objects and morphisms
as above. Dually, Alg(T ) is the category where the objects α : TX → X are arrows in K

and where the morphisms f : (X,α) → (X ′, α′) are arrows f : X → X ′ in K such that
f ◦α = α′ ◦ Tf . It is worth noting that T -coalgebras over K are dual to T op-algebras over
K op, that is, Coalg(T )op = Alg(T op). Here K op is the category which has the same objects
and arrows as K but domain and codomain of arrows interchanged and T op : K op → K op

is the functor that has the same action on objects and morphisms as T .

2.B. Duality of Boolean algebras and sets. The abstract duality between algebras and
coalgebras becomes particularly interesting if we put it on top of a concrete duality, such
as the dual adjunction between the category Set of sets and functions and the category BA

of Boolean algebras. We denote by P : Setop → BA the functor taking powersets and by
S : BA → Setop the functor taking ultrafilters. Alternatively, we can describe these functors
by PX = Set(X, 2) and SA = BA(A,2), which also determines their action on arrows (here
2 denotes the two-element Boolean algebra). P and S are adjoint, satisfying Set(X,SA) ∼=
BA(A,PX). Restricting S and P to finite Boolean algebras/sets, this adjunction becomes
a dual equivalence [28, § VI.(2.3)].

2.C. Boolean logics for coalgebras, syntax. What now are logics for coalgebras? We
follow a well-established methodology in modal logic [15] and study modal logics via the
associated category A of modal algebras. In modal logic, major milestones are [30] and
[24]. In computer science, we have the seminal work on domain theory in logical form [2, 3].

More formally, given a modal logic L extending Boolean propositional logic with its category
A of modal algebras, we describe L by a functor

L : BA → BA
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so that the category Alg(L) of algebras for the functor L coincides with A . In particular,
the Lindenbaum algebra of L will be the initial L-algebra.

Example 2.1. Let L : BA → BA be the functor mapping an algebra A to the algebra LA
generated by �a, a ∈ A, and quotiented by the relation stipulating that � preserves finite
meets, that is,

�⊤ = ⊤ �(a ∧ b) = �a ∧�b (2.1)

Alg(L) is the category of modal algebras (Boolean algebras with operators), a result which
goes back to [1].

2.D. Boolean logics for coalgebras, semantics. The semantics of such a logic is de-
scribed by a natural transformation

δ : LP → PT op

Intuitively, each modal operator in LPX is assigned its meaning as a subset of TX. More
formally, δ allows us to lift P : Setop → BA to a functor

Coalg(T )
P ♯

→ Alg(L)

(X, ξ) 7→ P ♯(X, ξ) = (PX, LPX
δX−→ PTX

Pξ
−→ PX)

If we consider a formula φ to be an element of the initial L-algebra (the Lindenbaum algebra
of the logic), then the semantics

[[φ]](X,ξ)

of φ as a subset of a coalgebra (X, ξ) is given by the unique arrow from that initial algebra
to P ♯(X, ξ).

Remark 2.2. This account of the semantics of modal logic is typical for the coalgebraic
approach: One first defines a one-step semantics δ mapping formulas with precisely one
layer of modal operators (as described by L) to one-step-transitions on the semantic side
(as described by T ). Then one uses (co)induction to extend the ‘one-step situation’ to
arbitrary formulas and behaviors.

Example 2.3. For the logic L : BA → BA from Example 2.1 and the powerset functor
P : Set → Set we define the (one-step) semantics δX : LPX → PPopX by

�a 7→ {b ⊆ X | b ⊆ a}, for a ∈ PX. (2.2)

It is an old result in domain theory that δX is an isomorphism for finite X, see [1]. This
implies completeness of the axioms (2.1) with respect to Kripke semantics (2.2).
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2.E. Completeness and Expressiveness. Two important properties of logics, with re-
spect to their coalgebraic semantics, that can be discussed parametrically in T , L and the
semantics

δ : LP → PT op

are completeness and expressiveness. The logic given by (L, δ) is complete if [[φ]](X,ξ) ⊆
[[ψ]](X,ξ) for all coalgebras (X, ξ) implies that φ ≤ ψ holds in the initial L-algebra. The logic
is expressive if for any two elements of a coalgebra (X, ξ) which are not bisimilar, there is
a formula that separates them.

In the duality approach to logics as exemplified by work such as Goldblatt’s [24] in modal
modal logic and Abramsky’s [2] in domain theory, completeness and expressiveness follow
immediately if δ is an isomorphism. Since in that work the modal algebras and the coalge-
bras are based on dually equivalent categories, such as Boolean algebras and Stone spaces
(or distributive lattices and Priestley spaces), the requirement that δ is an isomorphism is
reasonable.

In our setting, the situation is different since we only have an adjunction, not an equivalence,
relating BA and Set (or DL and Pos). One of the consequences is that δ typically fails to be
an isomorphism and the best we can usually expect is to have δX an isomorphism for finite
X. But, as it turns out, under relatively mild conditions on the functors T and L involved,
one can show that the logic L is complete if and only if δ is injective [40, 42], and that L is
expressive if the adjoint transpose SL→ T opS of δ is injective [39, 26] or, in the case of Pos,
an embedding [31]. We will pick up this discussion again at the end of Sections 6 and 7.

2.F. Functors having presentations by operations and equations. Given that the
notion of functor is axiomatic and rather abstract, the question arises which functors L :
BA → BA can legitimately be considered to be a modal logic. For us, in this paper, the
requirement on L is that L has a presentation by operations and equations [18]. We will
discuss this notion in detail in Section 4, for now it is enough to recall an example.

For a presentation 〈ΣBA, EBA〉 of BA we let ΣBA = {⊥,⊤,¬,∨,∧} and EBA the usual
equations of Boolean algebra. For a presentation 〈ΣL, EL〉 of the functor L : BA → BA

from Example 2.1 we let ΣL = {�} and EL the equations (2.1).

The first reason why the notion of a presentation of a functor is important to us is the
following. If 〈ΣL, EL〉 is a presentation of L by operations ΣL and equations EL and if
〈ΣBA, EBA〉 is a presentation of BA then Alg(L) is presented by

〈ΣBA +ΣL, EBA + EL〉.

In such a situation, the logical description of L-algebra is obtained in a modular way from
the logical description of the base category BA and the logical description of the functor L.
We call the elements of ΣL modal operators and the elements of EL modal axioms or just
axioms.

The second reason is that the class of functors having presentations can be captured in a
purely semantic way: a functor L has a presentation by operations and equations if and only
if L is determined by its action on finitely generated free algebras, if and only if L preserves
sifted colimits, see [43]. We shall give more details on sifted colimits in Section 3.E below.

Most succinctly, endofunctors of BA having presentations by operations and equations are
precisely those that arise as left Kan extensions of their restrictions along the inclusion
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functor BAff → BA of the full subcategory BAff of BA consisting of free algebras on finitely
many generators.

2.G. The (finitary, Boolean) coalgebraic logic of a Set-functor. The question con-
sidered in this paragraph is: given the coalgebra-type T , how can we define the logic L of
T ? As there are many different logics L for T , we shall use L for the logic of T , that is, the
strongest logic that captures all aspects of T that can be expressed by a finitary Boolean
logic.

The general considerations laid out above suggest that in order to define the finitary
(Boolean) coalgebraic logic associated to a given functor T : Set → Set one first puts

LFn = PT opSFn (2.3)

where Fn denotes the free Boolean algebra over n generators, for n ranging over natural
numbers. The functor L : BA → BA is then defined as a left Kan extension. The semantics
δ is given by observing that natural transformations δ : LP → PT op are in bijection with
natural transformations

δ̂ : L → PT opS (2.4)

and we can let δ̂ to be the identity on finitely generated free algebras.

More explicitly, LA can be represented as the free Boolean algebra on the set

{σ(a1, . . . an) | σ ∈ PT opSFn, ai ∈ A,n < ω}

modulo appropriate axioms. The semantics δX : LPX → PT opX is given by putting

δσ(a1, . . . an) = PT op(â)(σ)

where â : X → SFn is the adjoint transpose of (a1, . . . an) : n→ UPX, with F ⊣ U : BA →
Set being the familiar adjunction.

It is worth noting that the elements in PT opSFn are, by the Yoneda Lemma, in one-to-one
correspondence with natural transformations Set(−, 2n) → Set(T−, 2). The latter natural
transformations are also known as predicate liftings [50]. Hence we see that the logic L
coincides with the logic of all predicate liftings of [53], with the difference that the functor
L also incorporates a complete set of axioms. The axioms are important to us as otherwise
the natural transformation β mentioned in the introduction, see Equation (1.3), might not
exist.

Of course, in concrete examples one is often able to obtain much more succinct presentations:

Proposition 2.4. For T the powerset functor, the functor L defined by Equation (2.3) is
isomorphic to the functor L of Example 2.1.

Proof. In analogy with Equation (2.4), let δ̂ : L → PT opS be the transpose of δ : LP →

PPop as defined in Equation (2.2). We know from Example 2.3 that δ̂Fn : LFn →
PT opSFn = LFn is an isomorphism. But as both L and L are determined by their
action on finitely generated free algebras, this extends to an isomorphisn L→ L.
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Remark 2.5. The functor L is universal in the sense that any other finitary Boolean
coalgebraic logic L for T is uniquely determined by the natural transformation L → L
constructed in the proof above. More formally, we can express this universality as follows:
denote by Sift[BA,BA] the category of sifted-colimit-preserving functors from BA to BA and

by I the inclusion Sift[BA,BA] → [BA,BA]. Then δ̂ : L → PT opS as given in Equation (2.4)
is a final object in the comma category I/PT opS.

Proposition 2.4 can then be understood as saying that the logic defined by finality as
above has a simple concrete presentation given by Equations (2.1)-(2.2).

2.H. Outlook: Positive coalgebraic logic. It is evident that, at least for some of the
developments above, not only the functor T , but also the categories Set and BA can be
considered to be parameters. Accordingly, one expects that positive coalgebraic logic takes
place over the category DL of (bounded) distributive lattices which in turn, is part of an
adjunction P ′ : Posop → DL, taking upsets, and S′ : DL → Posop, taking prime filters, or,
equivalently, P ′X = Pos(X,2) and S′A = DL(A,2) where 2 is, as before, the two-element
chain (now considered, depending on the context, either as a poset or as a distributive
lattice). Consequently, the ‘natural semantics’ of positive logics is ‘ordered Kripke frames’,
or coalgebras over posets. One side of this argument is formal: coalgebras over Pos are
to logics over DL what coalgebras over Set are to logics over BA. Another side of the
argument goes as follows: to provide the semantics for a logic without negation, we need
to distinguish between sets and their complements. This is most easily done by stipulating
that the semantics of formulas is given by upward closed sets with respect to some order,
as the complements then are downward closed sets.

Replaying the developments above with Pos and DL instead of Set and BA, we may define
a logic for T ′-coalgebras, with T ′ : Pos → Pos, to be given by a natural transformation

δ′ : L′P ′ → P ′T ′op (2.5)

where L′ : DL → DL is a functor determined by its action on finitely discretely generated
free distributive lattices, namely

L′F ′Dn = P ′T ′opS′F ′Dn (2.6)

and δ′ is given by its transpose in the same way as in Equation (2.4). Here, D : Set → Pos

denotes the functor equipping a set with the discrete order, and F ′ : Pos → DL is the functor
mapping a poset to the free distributive lattice on it.

Example 2.6. Given a poset X, a subset Y ⊆ X is called convex if y ≤ y′ ≤ y′′ and
y, y′′ ∈ Y imply y′ ∈ Y . The convex powerset functor P′ : Pos → Pos maps a poset to
the set of its convex subsets, ordered by the Egli-Milner order, and a monotone map to its
direct image. Let now L′ : DL → DL be the functor mapping a distributive lattice A to the
distributive lattice L′A generated by �a and ♦a for all a ∈ A, and subject to the relations
stipulating that � preserves finite meets, ♦ preserves finite joins, and that the inequalities

�a ∧ ♦b ≤ ♦(a ∧ b) �(a ∨ b) ≤ ♦a ∨�b

hold.
The natural transformation δ′X : L′P ′X → P ′P′opX is defined by putting

♦a 7→ {b ⊆ X | b is a convex subset of X and b ∩ a 6= ∅}, for a ∈ P ′X,

the clause for �a being the same as in Equation (2.2).
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Remark 2.7. Alg(L′) is the category of positive modal algebras of Dunn [23]. We shall later
see in Corollary 5.17 that it is isomorphic to Alg(L′). We have again that for a finite poset
X, δ′X is an isomorphism, a representation first stated in [28, 29], the connection with modal
logic being given by [1, 51, 59] and investigated from a coalgebraic point of view in [49].
As opposed to [49], we take the set-theoretic semantics of modal logic as fundamental. We
therefore do not have to use the topological semantics based on Stone or Priestley duality:
all we need is contained in the adjunctions S ⊣ P : Setop → BA and S′ ⊣ P ′ : Posop → DL.

2.I. Outlook: Coalgebraic logic enriched over Pos. Moving from ordinary categories
to categories enriched over Pos plays a major role in this paper. The reason is that enrich-
ment over Pos takes automatically care of the fact that positive modal logics extend the
logic of distributive lattices by monotone modal operations. This is crucial from the point
of view of our main application, namely positive modal logic.

Throughout the paper, however, we shall encounter many more reasons why to move to an
enriched setting. Some of the reasons are the following.

(1) The category Pos is the cocompletion under enriched sifted colimits of the category of
finite sets.

(2) The posetification, to be locally monotone, must be defined as an enriched left Kan
extension.

(3) Among all functors on Pos, posetifications are characterized by ‘coinserters of truncated
nerves’ where a coinserter is the enriched analogue of a coequalizer.

(4) In the ordered setting, one is frequently interested in definability by inequations (≤)
instead of definability by equations: quotienting by inequations corresponds to taking
a coinserter instead of a coequalizer.

(5) Having a presentation by monotone operations and equations in discrete arities is char-
acterized by preservation of enriched sifted colimits.

3. A review of Pos-enriched categories

Below we recall some notions of enriched category theory needed in the sequel. Most of
this section is rather technical, but we have decided to include it in order to keep the paper
self-contained. However, for more details, we refer the reader to Kelly’s monograph [33].

3.A. The category Pos of posets and monotone maps. The category Pos has partial
orders (posets) as objects and monotone maps as arrows. Pos is complete and cocomplete
(even locally finitely presentable [4]). Limits are computed as in Set, with the order on
the limit being the largest relation making the maps in the cocone monotone. Colimits are
easiest to compute in two steps. First, colimits in the category of preorders are computed
as in Set, with the preorder on the colimit being the smallest one making the maps in
the cocone monotone. Second, one quotients the preorder by anti-symmetry in order to
obtain a poset (directed colimits, however, are computed as in Set, see [4]). Pos is also
cartesian closed, with the internal hom [X,Y ] being the poset of monotone maps from X
to Y , ordered pointwise.
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3.B. Pos-enriched categories. We shall consider categories enriched in Pos. Thus, a
Pos-enriched category K is a category with ordered homsets, such that composition is
monotone in both arguments: g ◦ f ≤ k ◦ h whenever g ≤ k and f ≤ h; a Pos-enriched
functor T : K → L is a locally monotone functor, that is, it preserves the order on the
homsets: f ≤ g implies Tf ≤ Tg. A Pos-natural transformation between locally monotone
functors is just a natural transformation, the extra condition of enriched naturality being
vacuous here. Consequently, a Pos-adjunction between two Pos-categories is just an ordinary
adjunction between two locally monotone functors. The category of Pos-enriched functors
from K to L and natural transformations between them will be denoted by [K ,L ]. The
opposite category K op of K has just the sense of morphisms reversed, the order on hom-
posets remains unchanged. To avoid overloaded notation, we shall mostly employ the same
notation for a Pos-category K and its underlying ordinary category , unless it is necessary
to emphasize the distinction between them. In such case, the ordinary category will be
denoted by Ko, and we proceed similarly for Pos-functors.

Besides Pos itself, an example of a Pos-enriched category is Set, the category of sets and
functions, considered discretely enriched. In the chain

C ⊣ D ⊣ V : Pos → Set

of adjunctions between the connected components functor, the discrete functor and the
forgetful one, only the adjunction C ⊣ D : Set → Pos is enriched; in particular the discrete
functor D : Set → Pos is locally monotone, while the forgetful functor V : Pos → Set fails
to be so.

Observe also that, due to the discrete enrichment, any functor Set → Set is automatically
locally monotone.

3.C. Weighted (co)limits; coinserters; Kan-extensions. Recall from [33] that the
proper concepts of limits and colimits in enriched category theory are those of weighted
(co)limits. Specifically, the colimit of a Pos functor G : D → K weighted by a Pos-functor
ϕ : Dop → Pos is an object ϕ ∗G in K , together with an isomorphism

K (ϕ ∗G,X) ∼= [Dop,Pos](ϕ,K (G−,X))

of posets, natural in X in K .

Dually, a limit of G : D → K weighted by ϕ : D → Pos is an object {ϕ,G} in K , together
with an isomorphism

K (X, {ϕ,G}) ∼= [D ,Pos](ϕ,K (X,G−))

of posets, again natural in X in K .

One example of weighted colimits are copowers that arise from constant weights and di-
agrams. Specifically, the copower P • X of a poset P in Pos and an object X in K is
characterized by the natural isomorphism

K (P •X,−) ∼= Pos(P,K (X,−))

Another example of weighted (co)limit that will later appear in the paper is the (co)inserter:
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Example 3.1. [35] A coinserter is a colimit that has weight ϕ : Dop → Pos, where D is
the category

· //
// ·

The category D gets mapped by ϕ to the parallel pair

2 1

1
oo

0
oo

in Pos, with arrow 0 mapping to 0 ∈ 2 and arrow 1 mapping to 1 ∈ 2 (recall that 2 is the
poset {0 ≤ 1}). A functor G from D to a Pos-category K corresponds to a parallel pair
d0, d1 : X ⇒ Y of arrows in K .

In more detail, the coinserter of d0, d1 consists of an object coins(d0, d1) and an arrow
c : Y → coins(d0, d1), with c ◦ d0 ≤ c ◦ d1. The object and the arrow have to satisfy the
universal property, of course. Due to the enrichment in posets, the universal property has
two aspects:

(1) The 1-dimensional aspect of universality asserts that, given any q : Y → Z with q◦d0 ≤
q ◦ d1, there is a unique h : coins(d0, d1) → Z with h ◦ c = q.

(2) The 2-dimensional aspect of universality ensures that the above assignment q 7→ h is
monotone. That is, given q, q′ : Y → Z with q ≤ q′, q ◦ d0 ≤ q ◦ d1 and q′ ◦ d0 ≤ q′ ◦ d1,
the corresponding unique arrows h, h′ : coins(d0, d1) → Z satisfy h ≤ h′.

Y

↓

c

))❙❙❙❙❙❙❙❙ q

))X

d0
66♠♠♠♠♠♠♠♠

d1 ((◗◗◗◗◗◗◗◗◗ coins(d0, d1) h // Z

Y
c

55❦❦❦❦❦❦❦❦❦
q

55

The coinserter is called reflexive if d0 and d1 have a common right inverse i : Y → X; that
is, if the equalities d0 ◦ i = d1 ◦ i = idY hold.

By reversing the direction of the arrows, one obtains the dual notion of a (coreflexive)
inserter .

We shall later use also co-comma objects, which generalize coinserters, in the sense that this
time D is

· · //oo ·

and is mapped by ϕ to

1 2

1
//0

oo
1

while a functor G : D → K corresponds to a pair of arrows with common domain d0 : X →
Y , d1 : X → Z. More in detail, the co-comma object of d0 and d1 consists of an object
cocomma(d0, d1), together with arrows p : Y → cocomma(d0, d1), q : Z → cocomma(d0, d1),
such that p ◦ d0 ≤ q ◦ d1, as in the diagram below. We leave to the reader the explicit
description of its universal property.

X
d0

//

d1

��

Y

p
��

ւ

Z q
// cocomma(d0, d1)
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The dual notion is called the comma object .

Remark 3.2. Informally speaking, whereas coequalizers are well-known to take quotients
with respect to equivalence relations, coinserters take quotients with respect to preorders.

For later use, we recall how coinserters are built in Pos. For a pair of monotone maps
d0, d1 : X → Y , define first a binary relation r on the underlying set of the poset Y as
follows: given y, y′ ∈ Y , say that y r y′ if there are x0, . . . , xn ∈ X such that

x0
d0

��☎☎☎☎☎☎
d1

��
✿✿✿✿✿✿ x1

d0

��☎☎☎☎☎☎
d1

��
✿✿✿✿✿✿ . . . xn

d0

��✄✄✄✄✄✄
d1

��
❀❀❀❀❀❀

y ≤ d0(x0) d1(x0) ≤ d0(x1) d1(x1) ≤ . . . ≤ d0(xn) d1(xn) y′≤

It is easy to see that r is a reflexive and transitive relation, thus a preorder on Y . Then the
coinserter of d0 and d1 is the quotient of Y with respect to the equivalence relation induced
by r, with order [y] ≤ [y′] if and only if y r y′.

Reflexive coinserters play a similar role to reflexive coequalizers in ordinary category theory.
For example, one can prove the following Pos-enriched version of [27, Lemma 0.17] (see
also [37, Section 2]).

Lemma 3.3. (3× 3 lemma for coinserters) Consider in a Pos-category C the diagram

X1

f1
//

f2

//

a2

��

a1

��

X2

b2

��

b1

��

f3
// X3

c2

��

c1

��

Y1
g1

//

g2
//

a3

��

Y2
g3

//

b3

��

Y3

c3

��

Z1

h1
//

h2

// Z2
h3

// Z3

where

(1) The first two rows and columns are coinserters.
(2) The equalities below hold:

bi ◦ fj = gj ◦ ai ( i, j = 1, 2 )

These induce the arrows c1, c2, h1, h2 in an obvious way. Finally, let h3 be the coinserter
(assuming it exists in C ) of h1 and h2, and denote by c3 : Y3 → Z3 the induced unique
mediating arrow. Then:

(1) The last column is also a coinserter.
(2) If additionally the first row and columns are reflexive coinserters, then the diagonal

X1

b1◦f1
//

b2◦f2
// Y2

h3◦b3
// Z3

is again a coinserter, which is reflexive if the second row (column) is again a reflexive
coinserter.
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(3) Reflexivity of the first two rows and columns imply reflexivity of the remaining third row
and column.

Proof. To see that c3 is a coinserter, use first the 2-dimensional aspect of the coinserter
(X3, f3) to conclude c3 ◦ c1 ≤ c3 ◦ c2. Next, given w1 : Y3 → W with w1 ◦ c1 ≤ w1 ◦ c2, it
induces an arrow w2 : Z2 →W such that w2 ◦ b3 = w1 ◦ g3. Then the 2-dimensional part of
the coinserter (Z1, a3) yields w2 ◦ h1 ≤ w2 ◦ h2, thus it induces an arrow w3 : Z3 →W with
w3 ◦ h3 = w2. We have that

w3 ◦ c3 ◦ g3 = w3 ◦ h3 ◦ b3 = w2 ◦ b3 = w1 ◦ g3

and using that g3 is an epimorphism we conclude w3 ◦ c3 = w1. Finally, if w1, w̄1 : Y3 → W
are such that w1 ≤ w̄1, w1 ◦ c1 ≤ w1 ◦ c2 and w̄1 ◦ c1 ≤ w̄1 ◦ c2, then successively we obtain
w2 ≤ w̄2 and w3 ≤ w̄2 by using the 2-dimensional aspect of coinserters (Z2, b3), respectively
(Z3, h3).

For the second part, denote by i : X2 → X1 and j : Y1 → X1 the common right inverses
of the parallel pairs of morphisms f1, f2, respectively a1, a2. Notice then that for an arrow
u1 : Y2 → U such that u1 ◦b1 ◦f1 ≤ u1 ◦b2 ◦f2, precomposition with i induces the inequality
u1 ◦ b1 ≤ u1 ◦ b2, thus we can find an arrow u2 : Z2 → U with u2 ◦ b3 = u1. In order to see
that u2 ◦ h1 ≤ u2 ◦ h2, use the first that precomposing

u1 ◦ g1 ◦ a1 = u1 ◦ b1 ◦ f1 ≤ u1 ◦ b2 ◦ f2 = u1 ◦ g2 ◦ a2

with j yields u1 ◦ g1 ≤ u1 ◦ g2, and next use the 2-dimensional aspect of the coinserter
(Z1, a3). From u2 ◦h1 ≤ u2 ◦h2 we see that there is an arrow u3 : Z3 → U with u3 ◦h3 = u2,
thus u3 ◦ h3 ◦ b3 = u2 ◦ b3 = u1. The remaining 2-dimensional aspect of the requested
coinserter can be easily proved along these lines, and we leave it to the reader, as well as
the assertions on reflexivity.

The importance of reflexive coinserters for us stems from the fact that each poset can be
canonically expressed as a reflexive coinserter of discrete posets:

Proposition 3.4. Let X be a poset. Denote by X0 its underlying set, and by X1 the set
of all comparable pairs, X1 = {(x, x′) ∈ X | x ≤ x′}. Let d0, d1 : X1 → X0 be the maps
d0(x, x′) = x, d1(x, x′) = x′, with common right inverse i : X0 → X1, i(x) = (x, x). Then
the obvious (monotone) map c : DX0 → X, c(x) = x, exhibits X as the coinserter in Pos

of the reflexive pair of discrete posets (also called the truncated nerve of the poset)

DX1@AOO BC
Di

Dd0
//

Dd1
// DX0

c
// X (NX)

Proof. We leave to the reader to check the straightforward details.

Definition 3.5 (Kan extension). Let J : A → K , H : A → L be locally monotone
functors. A Pos-enriched left Kan extension of H along J , is a locally monotone functor
LanJH : K → L , such that there is a Pos-natural isomorphism

(LanJH)X ∼= K (J−,X) ∗H

for each X in K .

Remark 3.6.
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(1) For any locally monotone functor H ′ : K → L , there is an isomorphism

[K ,L ](LanJH,H
′) ∼= [A ,L ](H,H ′J) (3.1)

in analogy to the case of unenriched left Kan extensions. In particular, there is a
Pos-natural transformation α : H → (LanJH)J , called unit of the left Kan extension,
which is universal in the sense that for a locally monotone functor H ′ : K → L , any
Pos-natural transformation H → H ′J factorises through α.

In the general enriched setting, requiring the isomorphism (3.1) is strictly weaker than
Definition 3.5, but if L is powered (also called cotensored, see [33, Section 3.7]), it can
however be taken as an alternative definition of left Kan extensions (see the discussion
after Equation (4.45) in [33]).

(2) Suppose J : A → K is fully faithful. Then the unit α : H → (LanJH)J of the left
Kan extension is an isomorphism [33, Proposition 4.23].

(3) By general enriched category theory, the Pos-enriched left Kan extension LanJH exists
whenever A is small and L is cocomplete. But it might exist even when A is not
small, as we shall see later in a special case (Theorem 4.3).

(4) From Equation (3.1) it follows that any locally monotone left adjoint Q : L → L ′

preserves the Pos-enriched left Kan extension LanJH, in the sense that the canonical
natural transformation

LanJ(QH) → Q LanJH

is an isomorphism.

Example 3.7. Recall that we have denoted by D ⊣ V : Pos → Set the (ordinary, i.e.,
not locally monotone) adjunction between the discrete and the forgetful functors, and by
P : Set → Set the powerset functor. Then the Pos-enriched left Kan extension of DP along
D is the convex powerset functor (see [57], but also Example 4.5). On the other hand, the
ordinary left Kan extension of DP along D is the composite DPV , which is less interesting,
as it maps any poset to the discrete poset of its subsets.

3.D. Ordered varieties. We have seen in Section 2 a close interplay between modal logic
and varieties of algebras. The theory of (locally monotone) Pos-functors and their logics of
monotone modal operators naturally leads to the world of ordered varieties, as defined by
Bloom and Wright in [17].

More precisely, recall that a (finitary) signature Σ associates to each natural number n a set
of operation symbols Σn of arity n. A Σ-algebra consists of a poset A and, for each σ ∈ Σn, a
monotone operation σA : An → A. An ordered variety is specified by a signature Σ and a set
of inequations. Bloom [16] proved that varieties are precisely the HSP-closed subclasses of
algebras for a signature, provided that we understand closure under H as the closure under
surjective homomorphisms and the closure under S as closure under embeddings (injective
and order-reflecting homomorphisms).

The structure theory of ordered varieties is similar to the one for ordinary varieties. For
more details we refer the reader to the original [17] and to the more recent paper [45].

Example 3.8. The category DL of distributive lattices is a variety over Pos if we take
algebras to be ordered in the lattice order:

a ≤ b⇔ a ∧ b = a
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The category BA of Boolean algebras is a variety over Pos if we take Boolean algebras to
be discretely ordered.

Notice that Boolean algebras can only be discretely ordered, because of the requirement
that operations of ordered algebras should be monotone. In the case of Boolean algebras
it is not hard to show that the discrete order is the only one that makes all operations
(including negation) monotone (see Section 5.C below).

3.E. Sifted weights and sifted colimits; strongly finitary functors. There is a well-
known result that a finitary Set-endofunctor also preserves sifted colimits, or equivalently,
filtered colimits and reflexive coequalizers [5, Corollary 6.30]. Below we sketch the cor-
responding Pos-enriched theory (for more details, we refer to [19, 36, 45, 46]). A weight
ϕ : Dop → Pos is called sifted if finite products commute with ϕ-colimits in Pos [36]. Equiv-
alently, if the 2-functor ϕ ∗ − : [D ,Pos] → Pos preserves Pos-enriched finite products. A
sifted colimit is a colimit weighted by a sifted weight. Examples of sifted colimits are filtered
colimits and reflexive coequalizers, but also reflexive coinserters (see [19]).

There is a close interplay between (ordered) varieties and (enriched) sifted colimits, see
also Section 5. For now, remember that in the non-enriched setting, a functor on a variety
preserves ordinary sifted colimits if and only if it preserves filtered colimits and reflexive
coequalizers [43]. In the Pos-enriched setting, a locally monotone functor on an ordered
variety preserves (enriched) sifted colimits if and only if it preserves filtered colimits and
reflexive coinserters [45, Proposition 6.8].

Let Setf be the category of finite sets and maps, and let ι denote the inclusion

ι ≡ Setf
I
→֒ Set

D
→ Pos

In [45], following [19, Theorem 8.4], it was noticed that Pos is the free cocompletion of Setf
under enriched sifted colimits.1 Briefly, it means that every poset can be expressed as a
canonical sifted colimit of finite discrete posets. This colimit can be ‘decomposed’: every
poset is a filtered colimit of finite posets, which in turn arise as reflexive coinserters of
discrete finite (po)sets, as explained in Proposition 3.4.

Definition 3.9. ([36]) A strongly finitary functor T ′ : Pos → Pos is a locally monotone
functor isomorphic to the Pos-enriched left Kan extension along ι : Setf → Pos of its
restriction along ι, that is, T ′ ∼= Lanι(T

′ι) holds.

Thus, strongly finitary endofunctors of Pos are precisely the locally monotone endofunctors
of Pos that preserve (enriched) sifted colimits.

Recall the examples BA and DL of Pos-categories. They are connected by the monadic
enriched adjunctions

F ⊣ U : BA → Set, F ′ ⊣ U ′ : DL → Pos,

1In general, let Φ be a class of weights and let K be any Pos-category. Following [6], let Φ-Cocts be
the 2-category of Φ-cocomplete categories, Φ-cocontinuous functors, and natural transformations. The free
cocompletion of K with respect to Φ, denoted by ι : K →֒ Φ(K ), is uniquely characterized by the property
that composition with ι induces an equivalence Φ-Cocts[Φ(K ),L ] ∼= [K ,L ] of categories. Its inverse is
given by left Kan extension along ι.
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where U and U ′ are the corresponding forgetful functors. Extending the notations employed
in Section 2.F, we put

J : BAff → BA and J′ : DLff → DL

to be the inclusion functors of the full subcategories spanned by the algebras which are free
on finite (discrete po)sets.

Lemma 3.10. The inclusion functors J and J′ exhibit BA, respectively DL, as the free
enriched cocompletions under sifted colimits of BAff and DLff . In particular, these functors

are dense.2

Proof. We know that the functor J : BAff → BA exhibits BA as a free cocompletion under
sifted colimits (see [43]). Now the conclusion for J follows because of the discrete enrichment.

For the inclusion functor J′ for distributive lattices, the required result is an instance
of [45, Theorem 6.10], since DL is a finitary variety of ordered algebras (thus, DL is isomor-
phic to the category of algebras for a strongly finitary monad on Pos).

Corollary 3.11. A functor L : BA → BA has the form LanJ(LJ) if and only if it preserves
(ordinary) sifted colimits. A functor L′ : DL → DL has the form LanJ′(L′J′) if and only if
it preserves sifted colimits.

4. Presenting functors on Pos

For reasons explained in the introduction, we are interested in the posetifications of functors
T : Set → Set. Technically, posetifications can be described as enriched left Kan extensions
of the functors DT : Set → Pos. This suggests to also investigate the more general question
of when a left Kan extension of a functor H : Set → Pos exists. By general arguments,
we know that such a left Kan extension exists if the functor H is finitary, but that would
exclude the example T = P from the introduction. Therefore, in Section 4.A, we show that,
in fact, any functor H : Set → Pos has an enriched left Kan extension. Then, in Section 4.B,
we characterize posetifications among all functors Pos → Pos.

4.A. Posetifications and functors Pos → Pos with presentations in discrete arities.
In order to relate endofunctors of Set and of Pos, we give below an improved version of [8,
Definition 1]:

Definition 4.1. Let T be an endofunctor on Set. An endofunctor T ′ : Pos → Pos is said
to be a Pos-extension of T if T ′ is locally monotone and if the square

Pos
T ′

//
OO

D տα

Pos
OO

D

Set
T

// Set

(4.1)

commutes up to a natural isomorphism α : DT → T ′D.

2A general functor H : A → K is dense if the left Kan extension of H along itself is (naturally
isomorphic to) the identity functor on K ; that is, each X of K can be expressed as a canonical colimit
K (H−,X) ∗H [33, Chapter 5].
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A Pos-extension T ′ is called the posetification of T if the above square exhibits T ′ as
LanD(DT ) (in the Pos-enriched sense), having α as its unit.

Remark 4.2.

(1) Any extension of T has to coincide with T on discrete sets. One would be tempted to
take T ′ = DTV as an extension of T ; but this is not necessarily locally monotone, as V
fails to be so. There is also the possibility of choosing T ′ = DTC, which does produce
an extension, but not the posetification. In fact, DTC is the Pos-enriched right Kan
extension RanD(DT ).

(2) Extensions are not necessarily unique. For example, the identity functor on Pos obvi-
ously extends the identity functor on Set, but the same does the functor DC sending a
poset to the (discrete) set of its connected components.

(3) In general extensions do not need to inherit all the properties of the Set-functors that
they extend. For example, extensions of finitary functors are not necessarily finitary:
consider the finitary functor on Set which maps a set X to the set of almost constant
sequences on X,

TX = {l : N→ X | l(n) = l(n+ 1) for all but a finite number of n}

It admits the Pos-extension

T ′(X,≤) = {l : (N,≤) → (X,≤) | l(n) ≤ l(n+ 1) for all but a finite number of n}

mapping a poset (X,≤) to the poset of almost monotone sequences on X, ordered
component-wise. But this extension T ′ is not finitary: to see this, consider the family
of finite posets ({0, . . . , n − 1})n<ω with the usual order, with inclusion maps, whose
colimit in Pos is (N,≤). Then one can easily check that T ′ does not preserve the above
filtered colimit.

It is clear from general considerations that every finitary endofunctor of Set has a posetifi-
cation. The point of the next theorem is to drop the finitarity restriction.

Theorem 4.3. Every endofunctor of Set has a posetification.

Proof. The posetification of a functor T : Set → Set is constructed as follows. Recall from
Proposition 3.4 that each poset X can be expressed as a reflexive coinserter in Pos, as
follows:

DX1@AOO BC
DiX

Dd0X
//

Dd1X

// DX0
cX

// X

Notice that unlike Proposition 3.4, in the above we have added subscripts to emphasize the
poset X.

Denote by eX : DTX0 → T ′X the coinserter in Pos of the (reflexive) pair (DTd0X ,DTd
1
X):

DTX1@AOO BC
DTi

DTd0X
//

DTd1X

// DTX0
eX

// T ′X (4.2)

We claim that the assignment X 7→ T ′X extends to a locally monotone functor T ′ : Pos →
Pos, and that T ′ ∼= LanD(DT ) holds.

We proceed in several steps.
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(1) Consider a monotone map f : X → Y . It induces the obvious maps f0 : X0 → Y0 and
f1 : X1 → Y1. Moreover, the squares

X1
f1

//

d0X
��

Y1

d0Y
��

X1
f1

//

d1X
��

Y1

d1Y
��

X0
f0

// Y0 X0
f0

// Y0

commute. Thus, we have the inequality

eY ◦DTf0 ◦DTd
0
X ≤ eY ◦DTf0 ◦DTd

1
X

since

DTf0 ◦DTd
0
X = DTd0Y ◦DTf1 DTf0 ◦DTd

1
X = DTd1Y ◦DTf1

and
eY ◦DTd0Y ≤ eY ◦DTd1Y

hold.
Hence one can define T ′f : T ′X → T ′Y as the unique mediating monotone map

(using the co-universality of the coinserter eX).
(2) The 1-dimensional aspect of coinserters proves immediately that T ′ preserves composi-

tion and identity; that is, T ′ is an ordinary functor Pos → Pos.
(3) We show that T ′ is locally monotone; that is, T ′f ≤ T ′g whenever f ≤ g holds, for

monotone maps f, g : X → Y . Observe that f ≤ g yields a map τ : X0 → Y1,
x 7→ (f(x), g(x)), such that the triangles

X0
τ

//

f0   ❇❇❇❇❇❇❇❇ Y1

d0Y
��

X0
τ

//

g0
  ❇❇❇❇❇❇❇❇ Y1

d1Y
��

Y0 Y0

commute.
To prove T ′f ≤ T ′g, it is enough to check that T ′f ◦ eX ≤ T ′g ◦ eX holds, for we can

then use the 2-dimensional aspect of coinserter eX . This inequality follows from

T ′f ◦ eX = eY ◦DTf0 = eY ◦DTd0Y ◦DTτ

T ′g ◦ eX = eY ◦DTg0 = eY ◦DTd1Y ◦DTτ,

and from the fact that eY ◦DTd0Y ≤ eY ◦DTd1Y holds.
(4) To prove T ′ ∼= LanD(DT ), we shall show that there is an isomorphism between the

poset of natural transformations T ′ → H and the poset of natural transformations
DT → HD, for every locally monotone H : Pos → Pos (see Remark 3.6(1)).
(a) Consider a natural transformation α : DT → HD. For every poset X, we define

α̌X : T ′X → HX as the unique mediating map out of a coinserter:

DTX0
eX

//

αX0

��

T ′X

α̌X

��

HDX0
HcX

// HX

Recall that, above, cX : DX0 → X is a coinserter of Dd0X , Dd1X .
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The above definition makes sense since

HcX ◦ αX0 ◦DTd
0
X ≤ HcX ◦ αX0 ◦DTd

1
X

holds: the equalities

αX0 ◦DTd
0
X = HDd0X ◦ αX1 and αX0 ◦DTd

1
X = HDd1X ◦ αX1

follow by naturality, and

cX ◦ d0X ≤ cX ◦ d1X

holds, since cX is a coinserter.
We prove that α̌ is natural. Consider any monotone map f : X → Y and compare

DTX0
eX

//

DTf0
��

T ′X

T ′f
��

DTY0
eY

//

αY0

��

T ′Y

α̌Y

��

HDY0
HcY

// HY

with

DTX0
eX

//

αX0

��

T ′X

α̌X

��

HDX0
HcX

//

HDf0
��

HX

Hf

��

HDY0
HcY

// HY

Using naturality of α and co-universality of eX , we conclude Hf ◦ α̌X = α̌Y ◦ T ′f .
(b) Given a natural transformation β : T ′ → H, we define, for every set X0, the

mapping β̂X0 : DTX0 → HDX0 to be βDX0 : T ′DX0 → HDX0 (Here we have
used the fact that T ′DX0 is naturally isomorphic to DTX0).

(c) It is easy then to see that the assignments α 7→ α̌ and β 7→ β̂ are monotone and
inverse to each other.

As a corollary of the proof of the above theorem (replace DT by H everywhere in the above
proof) we obtain

Corollary 4.4. For every functor H : Set → Pos, the Pos-enriched left Kan extension
LanDH : Pos → Pos exists.

The following gives an example where the construction of posetification as given by Equa-
tion (4.2) can be obtained straightforwardly.

Example 4.5. Let T : Set → Set be the covariant powerset functor P and let X be a poset.
We shall see how to use Equation (4.2) to determine P′X. Taking into account that DPd0X
and DPd1X are the direct images of the projections, the coinserter (4.2) becomes

DPX1

DPd0X
//

DPd1X

// DPX0
eX

// P′X

Recall from Remark 3.2 how coinserters are built in Pos: first, consider the relation r on
PX0 given by:

Y rZ ⇔ ∃S ⊆ X1 . Pd
0
X(S) = Y and Pd1X(S) = Z (4.3)

for subsets Y,Z ⊆ X0 (in fact, in Remark 3.2 we have considered the transitive closure of
relation (4.3)). Unravelling the above, we obtain that Y rZ if and only if

∀y ∈ Y .∃z ∈ Z . y ≤ z and ∀z ∈ Z .∃y ∈ Y . y ≤ z (4.4)
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The relation r determined by Equation (4.4) is known as the Egli-Milner order: it is reflexive
and transitive (consequently, it coincides with its transitive closure), and two subsets Y,Z
of X0 are equivalent with respect to r if and only if they have the same convex closure.
Thus P′X, obtained by quotienting PX0 with respect to the equivalence relation induced
by r, is the set of convex subsets of X ordered by the Egli-Milner order.

Similarly, if we let H : Set → Pos with HX = (PX,⊆), we obtain the downset functor
D : Pos → Pos with DX ordered by inclusion as the left Kan extension of H along D.
Dually, if H : Set → Pos is given by HX = (PX,⊇), we have that LanDH is the upset
functor U : Pos → Pos with UX ordered by reverse inclusion. To verify this, note that two
subsets are equivalent according to the left-hand side of (4.4) if and only if they have the
same downset closure and two subsets are equivalent according to the right-hand side if and
only if they have the same upset closure.

Remark 4.6 (On presentations by monotone operations and equations
in discrete arities).

(1) The posetification built in Theorem 4.3 coincides with the one from [8, (3.2)] given by
the coequalizer in Pos

∐
m,n<ω

Set(m,n)× Tm× [Dn,X] //
// ∐
n<ω

Tn× [Dn,X] //LanD(DT )(X) (4.5)

if T is finitary (this follows from the fact that LanD(DT ) ∼= LanDI(DTI), where re-
member from Section 3.E that I : Setf → Set denotes the inclusion functor).

(2) Let us explain how Equation (4.5) gives a presentation by monotone operations and
equations in discrete arities. The operations of arity n are given by Tn. They are
necessarily monotone because the arguments [Dn,X] form a poset and we take the
coequalizer in Pos. The arities are discrete because m,n range over sets, not posets.
For each pair (m,n), we have a poset of equations Set(m,n) × Tm × [Dn,X] (where
the order on the equations does not play a role in the computation of the coequalizer).

(3) For an explicit example of such a presentation by operations and equations, consider
T to be the finite powerset functor. First, recall that it can be presented in Set as the
quotient of

∐
n<ωX

n by a set of equations specifying that the order and the multiplicity
in which elements of the set X occur in lists in Xn does not matter. Second, with X
now standing for a poset, note that according to [8, Proposition 5], we obtain the
posetification of T by quotienting

∐
n<ω[Dn,X] in Pos by the same equations. It is

not difficult to show that this gives us the (finite) convex powerset functor on Pos [57,
Proposition 5.1].

(4) If we generalize from the posetification of a finitary functor Set → Set to the left Kan
extension of a finitary functor Set → Pos the formula (4.5) is still available and we
obtain the same presentations as in item (2), just that the Tn need not be discrete
anymore. For example, if we let the Tn in Equation (4.5) be P(n) ordered by inclusion,
we get a presentation of the functor Pos → Pos mapping a poset X to the set of finitely
generated downsets ordered by inclusion (Hoare powerdomain).

(5) If we generalize further, giving up that the functor be finitary, we lose the formula (4.5)
since the large coproducts may not exist in Pos. Nevertheless, we can still interpret a
functor T : Set → Pos as having a presentation by monotone operations and equations in
discrete arities. This time the arities range over all cardinals, so that for each cardinal
ℵ we have a poset of operations T (ℵ) and for each pair (ℵ,ℵ′) of cardinals we have a
set of equations Set(ℵ,ℵ′)× T (ℵ)× [D(ℵ′),X].
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We summarize this discussion by making the following definition.

Definition 4.7. We say that a functor T ′ : Pos → Pos has a presentation in discrete arities
if T ′ = LanDH for some functor H : Set → Pos.

The posetification of a functor T : Set → Set has been defined by quotienting with respect to
the relation given by applying T to the nerve of a poset. Not surprisingly, this construction
is closely related to the notion of relation lifting of the functor T :

Remark 4.8 (On posetifications and relation lifting).

(1) Let T : Set → Set be an arbitrary functor. For a relation r ⊆ X × Y , recall that
the T -relation lifting of r is given by the epi-mono factorisation as on the right of the
following diagram (see for example [10, 21, 54, 56]):

r

π1

~~⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

π2

  ❆❆❆❆❆❆❆❆❆❆❆❆❆❆��

��

X X × Yoo // Y

T r

Tπ1

{{①①①①①①①①①①①①①①①

Tπ2

""❋❋❋❋❋❋❋❋❋❋❋❋❋❋❋
����

RelT (r)
��

��

TX TX × TYoo // TY

Explicitly,

RelT (r) = {(u, v) ∈ TX × TY | ∃w ∈ T r . Tπ1(w) = u ∧ Tπ2(w) = v}

The relation lifting satisfies the following properties:
(a) It preserves the equality relation: =TX = RelT (=X).
(b) It preserves the inclusion of relations: if r ⊆ s, then RelT (r) ⊆ RelT (s).
(c) If r ⊆ X × Y and s ⊆ Y × Z, then

RelT (s ◦ r) ⊆ RelT (s) ◦RelT (r)

with equality if and only if T preserves weak pullbacks.
(d) It preserves converses of relations: RelT (r

op) = RelT (r)
op.

(e) Given functions f : X → X ′, g : Y → Y ′ and relation r′ ⊆ X ′ × Y ′, then

RelT ((f × g)−1(r′)) ⊆ (Tf × Tg)−1(RelT (r
′))

with equality if T preserves weak pullbacks.
(2) In addition to the above, we should also mention the (less-known?) fact that relation

lifting commutes with functor composition, in the sense that

RelTS(r) = RelT (RelS(r))

for any relation r ⊆ X × Y and any endofunctors T , S of Set (see [21, Section 4.4],
and use that, assuming the axiom of choice, any endofunctor of Set preserves (strong)
epimorphisms, i.e., surjective maps).

(3) Recall again that the posetification T ′ of a Set-endofunctor T was obtained via coinsert-
ers,

DTX1
DTd0

//

DTd1
// DTX0

e
// T ′X

for any poset X. Observe in fact that the relation r described in Remark 3.2 at the
first stage of the coinserter construction, for the pair of (monotone) maps DTd0 and
DTd1, is precisely the transitive closure of the T -relation lifting RelT (X1) of the order
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X1 on X. By (1)(a) above, RelT (X1) is reflexive, and by (1)(c) it is also transitive
if T preserves weak pullbacks. If this is the case, then the posetification T ′ can be
explicitly described as mapping a poset X to the quotient poset of the preordered set
(TX0,RelT (X1)).

(4) The above two items provide a proof that, for T , S, endofunctors of Set preserving weak
pullbacks, the isomorphism

(TS)′ ∼= T ′S′

holds for their posetifications.

The property of a functor T : Set → Set preserving weak pullbacks plays an important role
in the theory of coalgebras [52]. In the category Pos, the following concept is the enriched
analogue of a weak pullback.

Definition 4.9 ([25]). An exact square in the category Pos of posets, or in the category
Preord of preorders, is a diagram

E
α

//

β
��

ւ

X

f
��

Y
g

// Z

(4.6)

with f ◦ α ≤ g ◦ β, such that

∀x ∈ X, y ∈ Y. f(x) ≤ g(y) ⇒ ∃ w ∈ E. (x ≤ α(w) ∧ β(w) ≤ y)

That the above concept generalises weak pullbacks in sets is seen as follows. An exact
square of discrete posets is precisely a weak pullback of their underlying sets. Equivalently,
the discrete functor D : Set → Pos maps weak pullbacks to exact squares and reflects exact
squares to weak pullbacks.

Given an endofunctor T of Set, we shall now connect the property of preserving weak
pullbacks with the preservation of exact squares by the corresponding posetification T ′.
This fact will be used in Theorem 6.20 below.

Theorem 4.10. Let T be any endofunctor of Set and let T ′ be its posetification. Then T
preserves weak pullbacks if and only if T ′ preserves exact squares.

Proof. This was proved in [8] under the additional assumption that T is finitary. Here, we
present an argument valid for all Set-functors.

We start with the easy implication. Assume T ′ preserves exact squares and consider a weak
pullback in Set

E
α

//

β
��

X

f
��

Y g
// Z

(4.7)
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Then Equation (4.7) is mapped by D to an exact square in Pos, and T ′ preserves such by
hypothesis. Using the isomorphism DT ∼= T ′D, we conclude that

DTE
DTα

//

DTβ
��

DTX

DTf
��

DTY
DTg

// Z

is an exact square of discrete posets, that is, a weak pullback in Set.

Now, we assume that T preserves weak pullbacks and we show that its posetification T ′ pre-
serves exact squares. Recall from Remark 4.8(3) that T ′X is the quotient of the preordered
set (TX0,RelT (X1)) since T is assumed to preserve weak pullbacks.

In fact, it is easy to see that for each preordered set (poset) X, the construct

TX = (TX0,RelT (X1))

yields a locally monotone functor T on the category Preord of preordered sets and monotone
mappings.

The inclusion functor Incl : Pos → Preord and its left adjoint, the quotient functor Quot :
Preord → Pos both preserve exact squares [12, Example 6.2], and the composite

Pos
Incl

// Preord
T

// Preord
Quot

// Pos

is precisely T ′. Consequently, it is enough to show that T preserves exact squares.

Consider thus an exact square in Preord:

E
α

//

β
��

ւ

X

f
��

Y
g

// Z

(4.8)

and follow the steps below:

(1) First, the inequality T (f) ◦ T (α) ≤ T (g) ◦ T (β) holds since T is locally monotone.
(2) Next, we form the three pullbacks in Set of the first diagram below, which by hypothesis

will be mapped by T to weak pullbacks. As in Proposition 3.4, here d0, d1 : Z1 → Z
stand for the projections from the set of comparable pairs to (the underlying set of) Z.

R
r0

ww♣♣♣♣♣♣♣♣ r1

&&◆◆◆◆◆◆◆◆

P
p1

&&◆◆◆◆◆◆◆

p0

��

Q
q0

xxqqqqqqq

q1

��

Z1

d0

��

d1

��

X

f ''❖❖❖❖❖❖❖❖ Y

gww♦♦♦♦♦♦♦♦

Z

7→

TR
Tr0

vv♥♥♥♥♥♥♥♥ Tr1

((PPPPPPPP

TP
Tp1

''PPPPPPP

Tp0

��

TQ
Tq0

ww♥♥♥♥♥♥♥

Tq1

��

TZ1

Td0

��

Td1

��

X

Tf ((◗◗◗◗◗◗◗◗◗ TY

Tgvv♠♠♠♠♠♠♠♠

Z

(4.9)
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Explicitly,

P = {(x, z) ∈ X × Z | f(x) ≤ z}

Q = {(z, y) ∈ Z × Y | z ≤ g(y)}

R = {(x, y) ∈ X × Y | f(x) ≤ g(y)}

r0(x, y) = (x, g(y))

r1(x, y) = (f(x), y)

(3) From the description of R above, notice that R is non-empty (as we started from an
exact square), and that given (x, y) ∈ R, there is some w ∈ E such that x ≤ α(w) and
β(w) ≤ y. Assuming the axiom of choice, fix such a w ∈ E for each (x, y) ∈ R and
define a map θ : R→ E by θ(x, y) = w. It can be considered monotone if R is taken to
be a discrete poset.

(4) Consider the cube below in Preord, where R,P,Q carry the discrete (pre)order.

R

r1

��

r0
// P

p1
��

E
$$

θ

α
//

β

��

X
$$

p0

❏❏❏❏❏❏❏❏❏❏❏

f

��

Q
q0

//

q1
$$❍❍❍❍❍❍❍❍❍❍ Z1

d0

$$■■■■■■■■■■

d1
$$■■■■■■■■■■

Y
g

// Z

The back, right-hand and bottom faces commute by Equation (4.9). The front face is
the exact square of Equation (4.8), in particular f ◦α ≤ g ◦β holds. The remaining top
and left-hand faces commute laxly, in the sense that following inequalities hold:

p0 ◦ r0 ≤ α ◦ θ and β ◦ θ ≤ q1 ◦ r1 (4.10)

(5) We are now able to show that T preserves exact squares. To that end, let u ∈ T (X),
v ∈ T (Y ) such that

T (f)(u) ≤ T (g)(v)

in T (Z) = (TZ,RelT (Z1)). That is, u ∈ TX, v ∈ TY and there exists some w ∈ T (Z1)
such that Td0(w) = Tf(u) and Td1(w) = Tg(v).

As all the squares in the second diagram in Equation (4.9) are weak pullbacks, we
can conclude that there is some w̄ ∈ TR which is mapped to u ∈ TX, respectively
v ∈ TY . Let ω = Tθ(w̄) ∈ TE. Then one can easily check using Equation (4.10) that
u ≤ Tα(ω) and Tβ(ω) ≤ v hold.

All in one, we have showed that T maps an exact square to an exact square. Thus
also the posetification T ′ of T preserves exact squares.

Example 4.11.

(1) Let T = Id on Set. Then its posetification is the identity functor on posets (recall that
the discrete-poset functor D is dense, see the last paragraph in Section 2 of [20]).

(2) If we take T = Pf to be the (finite) power-set functor, then its posetification is the
(finitely generated) convex power-set functor, with the Egli-Milner order (see Exam-
ple 4.5, but also [8, 57]).
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(3) The collection of (finitary) Kripke polynomial endofunctors of Set is inductively defined
as follows: T ::= id | TX0 | T0 + T1 | T0 × T1 | T

A | Pf , where TX0 denotes the constant
functor to the set X0; T0+T1 is the pointwise coproduct X 7→ T0X+T1X; T0×T1 is the
pointwise product X 7→ T0X × T1X; and TA denotes the pointwise exponent functor
X 7→ (TX)A, with the set A being finite.
We have just mentioned above that the posetification of the identity functor is again
the identity, while for the constant functor TX0 it is an easy exercise to check that
the posetification is again a constant functor, this time to the discrete poset DX0; the
posetification of the coproduct T0+T1 maps a poset X to the coproduct (in the category
of posets) T ′

0X + T ′
1X, where T ′

0 and T ′
1 denote the posetifications of T0, respectively

T1; and similarly for the product functors. Finally, the posetification of the exponent

functor TA is T ′DA, where T ′ stands for the posetification of T .
(4) Consider now the finitary probability functor Prob : Set → Set, given on objects by

Prob(X) = {p : X → [0, 1] |
∑

x∈X

p(x) = 1, supp(p) <∞},

where supp(p) = {x ∈ X | p(x) 6= 0}, and by

Prob(f)(p)(y) =
∑

y=f(x)

p(x) , for a function f : X → Y.

on morphisms. Recall that Prob preserves weak pullbacks [58], thus its posetification
Prob′ can be described using the relation lifting as in Remark 4.8. In fact, for the
probability functor, it happens that the relation lifting of a partial order is not just
a preorder, but even a partial order [7]. Henceforth for a poset X, Prob′(X) has the
underlying set Prob(X0), ordered as follows: for p, p′ ∈ Prob(X0), p ≤ p′ if and only if
there is some ω ∈ Prob(X0×X0) such that

∑
x′∈X ω(x, x′) = p(x) and

∑
x∈X ω(x, x

′) =
p′(x′), and ω(x, x′) > 0 ⇒ x ≤ x′.

4.B. Characterising functors Pos → Pos in discrete arities.

Recall from Proposition 3.4 that we have denoted, for each poset X, by (NX) the diagram

DX1
Dd1

//

Dd0
// DX0

of discrete posets, where X0 is the set of elements of X, X1 is the set of all pairs (x, x′) with
x ≤ x′ in X, while the maps d0, d1 are the obvious projections.

Theorem 4.12. For T ′ : Pos → Pos, the following are equivalent:

(1) There exists a functor T : Set → Set such that T ′ ∼= LanD(DT ), i.e., T
′ is a posetifica-

tion of T .
(2) T ′ preserves discrete posets and coinserters of all diagrams (NX).

Proof. We prove first that the coinserters of diagrams (NX) form the density presentation
of D : Set → Pos in the sense of [33, Section 5.4]. Indeed, all coinserters of (NX) exist
in Pos, the category Pos is the closure of Set under these coinserters, and the coinserters
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of (NX) are preserved by the functor Pos(DS,−) : Pos → Pos. To see the latter, observe
that for any set S, the poset Pos(DS,X) = XS is a coinserter of

(X1)
S

(d1)S
//

(d0)S
// (X0)

S (4.11)

We prove now that (1) implies (2). Since TD ∼= DT ′ holds, T preserves discrete posets.
By Equation (4.11), the collection of all coinserters of (NX) forms a density presentation
of D, hence by [33, Theorem 5.29], T preserves coinserters of all diagrams in (NX).

(2) implies (1). Since T ′ is assumed to preserve discrete posets, we may assume that T ′D ∼=
DT for some functor T : Set → Set. Furthermore, by [33, Theorem 5.29], T ′ ∼= LanD(T

′D)
holds. That is, T ′ ∼= LanD(DT ) holds.

Recall that by Definition 4.7, a functor has a presentation in discrete arities if it is of
the form LanDH for some H : Set → Pos. Then we can drop in the theorem above the
requirement that T preserves discrete posets to obtain the following.

Theorem 4.13. A functor Pos → Pos has a presentation in discrete arities if and only if
it preserves coinserters of all diagrams (NX).

Similarly, recalling Definition 3.9 of a strongly finitary functor, one has:

Theorem 4.14.

(1) A functor Pos → Pos is strongly finitary and preserves discrete posets if and only if it
is the posetification of a finitary functor Set → Set.

(2) A functor Pos → Pos is strongly finitary if and only if it is a left Kan extension of a
finitary functor Set → Pos.

Having in the above characterized functors Pos → Pos in discrete arities, we now turn to
a special property that these have. First, recall that every endofunctor on Set preserves
surjections [55] (assuming the axiom of choice). We shall establish below the correspondent
result for Pos, recalling again Definition 4.7.

Proposition 4.15. Let T ′ : Pos → Pos have a presentation in discrete arities. Then T ′

preserves monotone surjections between posets.

Proof. Let c : X → Y be a surjective monotone map between posets. Then it is easy to see
that c is the (reflexive) coinserter of the comma object of c with itself

P
d1

//
d0

// X
c

// Y (4.12)

where P is the poset of all pairs (x, x′) such that c(x) ≤ c(x′), ordered component-wise, and
d0, d1 are the canonical projections.

We want to show that T ′c is again surjective. In fact, we shall see more: that T ′

preserves the coinserter (4.12). As T ′ is a left Kan extension along D : Set → Pos, according
to [33, Theorem 5.29], it is enough to check that (4.12) is D-absolute, that is, that (4.12)
is preserved by Pos(DS,−) for every set S. To see the latter, let S be an arbitrary set and
form the diagram

PS

(d1)S
//

(d0)S
// XS cS

// Y S
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To prove that it is a coinserter, consider any monotone map h : XS → Z, with h ◦ (d0)S ≤
h ◦ (d1)S . Using the surjectivity of c, define k : Y S → Z by k((yi)i∈S) = h((xi)i∈S), where
c((xi)i∈S) = (yi)i∈S . Using the construction of the comma object P , one can easily check
that the above does not depend on the choice of (xi)i∈S , and that the map k thus defined
is indeed monotone. Now the universal property of coinserters follows easily.

Example 4.16. We give an example of a Pos-functor which does not preserve surjections
(and the definition of which involves a non-discrete arity). Let T ′ : Pos → Pos be the functor
mapping a poset X to the poset of monotone maps [2,X] (equivalently, it could be written
more intuitively as X2, the poset of ordered pairs in X, with the component-wise order).
The fact that [2,X] only contains monotone maps has as a consequence that the surjection
f : D2 → 2 mapping each of the 0, 1 to itself, see below

1

0 1
f

// //

0

is not preserved by T ′. Indeed T ′D2 has two elements, while T ′
2 has three elements.

5. Presenting functors on ordered varieties

Coming back to the introduction, we remind the reader that our overall strategy is—starting
with a functor T : Set → Set for the type of coalgebras—to obtain from T the Boolean logic
L : BA → BA by duality, and to obtain from the posetification T ′ of T , again by duality,
the positive logic L′ : DL → DL. The relationship between L and L′ will be studied in
the next section. Here, we are going to make sure that the functors L and L′ obtained
by abstract categorical constructions actually do have concrete presentations by operations
and equations and thus correspond indeed to modal extensions of Boolean and positive
propositional logic.

In the case of L, assuming that L preserves sifted colimits, this is known already from [43]
and we shall recall it below. In the case of L′, we need to prove the enriched analogue
of [43], which we shall obtain following the enriched generalization of [43] given in [57]. In
particular, this enriched generalization will guarantee that L′ can be presented by monotone
operations. As a final twist, this enriched generalization would give us a presentation of L′

using inequations over general ordered varieties. Therefore, it is important for us to show
that, owing to the special nature of DL, the enriched functor L′ can equally be presented
as the underlying ordinary functor L′

o, which in turn has a presentation that does not rely
on inequations.

5.A. Equational presentations of functors. We have seen, in Example 2.1, a presenta-
tion of a functor L : BA → BA and in Example 2.6 a presentation of a functor L′ : DL → DL.
Whereas it may be clear from these examples what we mean by a presentation, it is worth
spending the effort to give a formal definition.

In what follows, A will denote a variety of algebras for a finitary signature. By a
slight abuse of notation, we shall use the same notation as in case of the variety BA for the
(monadic) adjunction

F ⊣ U : A → Set
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Denote by Σn the set of n-ary modal operators, and by Γn the set of equations in n free
variables. For instance, in Example 2.1 we have Σ1 = {�} and Σn = ∅ for n 6= 1, and
Γ0 = {(�⊤,⊤)}, Γ2 = {(�(a ∧ b),�a ∧ �b)} and Γm = ∅ for m 6= 0, 2. Given a signature

Σ = (Σn)n<ω, we write Σ̂ : Set → Set for the corresponding polynomial functor

X 7→
∐

n<ω

Set(n,X) • Σn

where • denotes the copower, see Section 3.C. Observe that with this notation, in Exam-
ple 2.1 we have that Γn ⊆ UF Σ̂UFn × UF Σ̂UFn (interpret UFX as the set of Boolean
terms on X-generators).

Definition 5.1. [18, Definition 6] A functor L on a variety A has a presentation by op-
erations and equations, or, shortly, a presentation, if there are signatures Σ and Γ, with
Γn ⊆ UF Σ̂UFn×UF Σ̂UFn, such that for all A ∈ A the following diagram, where n ranges
over natural numbers and v ranges over all valuations Fn→ A (of n-variables in A)

F Γ̂n //
// F Σ̂UFn

F Σ̂Uv
// F Σ̂UA // LA (5.1)

is a joint coequalizer.

Recall that a joint coequalizer of a family of parallel pairs with common codomain is an
arrow which is a coequalizer of each pair of maps in that family.

The elements of the sets Γn, n < ω, are often called the axioms, or equations of the
presentation.

Remark 5.2 (Axioms of rank 1). We see that the format of the equations (i.e., the

elements of Γn) requires them to be pairs in UF Σ̂UFn×UF Σ̂UFn, that is, every variable
must be under exactly one modal operator. Such equations are called equations, or axioms,
of rank 1. For example, if we wanted to extend DL by negation (thinking of negation as a
unary modal operator), then ¬(a ∧ b) = ¬a ∨ ¬b and ¬1 = 0 are equations of rank 1, but
a ∧ ¬a = 0 is not. The importance of equations of rank 1 is that they capture algebras for
a functor (as opposed to general equations which correspond to algebras for a monad), see
Theorem 5.4 below.

For proofs of the following proposition and theorem see [43, Theorem 4.7].

Proposition 5.3. A functor L on a variety A has a presentation if and only if there are
polynomial functors Σ̂, Γ̂ : Set → Set such that L is a coequalizer

F Γ̂U //
// F Σ̂U // L

in the category of endofunctors of A .

Recall that any ordinary variety A can be presented by a signature ΣA and equations EA .
For instance the variety DL is presented by the constants ⊥, ⊤, the binary operations ∧, ∨
and the usual equations defining distributive lattices, see e.g. [22].

Theorem 5.4. Let L be an endofunctor of a variety A . Let A be presented by a signature
ΣA and equations EA . Then:

(1) If L has a presentation 〈Σ,Γ〉, then the category of L-algebras is isomorphic to the
category of algebras for the signature ΣA +Σ satisfying the equations EA and Γ.
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(2) An endofunctor L of a variety A has a presentation if and only if it preserves ordinary
sifted colimits.

This theorem gives a bijection between endofunctors L of a variety A that preserve sifted
colimits and logics extending A by ‘modal operators’ and axioms of rank 1. The theorem
enables us to investigate such logics using purely category theoretic means.

5.B. Equational presentations of locally monotone functors. For the purposes of
our investigations, we are interested in modal logics extending DL, given by rank 1 axioms
of monotone operations. While U : DL → Set is certainly finitary and monadic (since DL

is an ordinary variety of algebras), it is also the case that the natural forgetful functor
U ′ : DL → Pos, mapping a distributive lattice to its carrier equipped with the lattice order,
exhibits DL as an ordered variety.

For now, let us be slightly more general and consider an ordered variety

F ′ ⊣ U ′ : A → Pos

By an ordered signature Σ′ we shall mean a family of posets Σ′ = (Σ′
n)n<ω. Denote by

Σ̃′ : Pos → Pos the corresponding polynomial functor

X 7→
∐

n<ω

Pos(Dn,X) •Σ′
n.

Recall that • denotes the copower, which in the case above is just the cartesian tensor
product in Pos.

In the following, we shall call a functor Pos → Pos polynomial only if it is of the form
Σ̃′, for some ordered signature Σ′. Notice that a polynomial functor only employs discrete
arities, and that if Σ′ = DΣ for some (necessarily unique!) Set-signature Σ, then Σ̃′ is the

posetification of Σ̂ in the sense of Definition 4.1.

Definition 5.5. A functor L′ on an ordered variety A has an ordered presentation in
discrete arities, or, shortly, an ordered presentation, if there are ordered signatures Σ′ and
Γ′, with Γ′

n ⊆ U ′F ′Σ̃′U ′F ′Dn×U ′F ′Σ̃′U ′F ′Dn for each natural number n, such that for all
A in A , the following diagram, where n ranges again over natural numbers and v ranges
over all valuations F ′Dn→ A (of n-variables in A)

F ′Γ̃′Dn //
// F ′Σ̃′U ′F ′Dn

F ′Σ̃′U ′v
// F ′Σ̃′U ′A

q
// L′A (5.2)

is a joint coequalizer.

In the definition above it is not important to allow Γ′
n to be posets. On other hand, for a

general variety A it is important to allow the Σ′
n to be posets (which is the reason why

we can use a coequalizer in (5.2) instead of a coinserter). Then again, for A = DL we can
take the Σ′

n discrete since for DL the order is equationally definable, as will be discussed in
detail in Section 5.D.

Remark 5.6. An ordered presentation is monotone. In detail, let α : L′A → A be an
algebra. Consider an operation σ ∈ Σ′

n and a, a′ : Dn → U ′A with a ≤ a′, that is,
ai ≤ a′i for all 1 ≤ i ≤ n. We have to show that σ(a) ≤ σ(a′) holds in the L′-algebra

(A,α). But this is equivalent to the obvious inequality U ′α ◦ q♭(σ, a) ≤ U ′α ◦ q♭(σ, a′) where
q♭ : Σ̃′U ′A → U ′L′A is the adjoint transpose of the quotient map q : F ′Σ̃′U ′A → L′A and
(σ, a) and (σ, a′) are pairs in Σ′

n • Pos(Dn,U ′A) = Σ′
n × Pos(Dn,U ′A).
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Proposition 5.7. A locally monotone functor L′ on an ordered variety A has an ordered
presentation if and only if there are polynomial functors Σ̃, Γ̃ : Pos → Pos such that L is a
coequalizer

F ′Γ̃U ′ //
// F ′Σ̃U ′ // L′

in the category of locally monotone endofunctors.

Proof. See [57, Theorem 3.18] where the more general situation was considered.

Theorem 5.8. Let L′ : A → A be a locally monotone functor on an ordered variety.
Then L′ preserves Pos-sifted colimits if and only if it has an ordered presentation in discrete
arities.

Proof. The proof is essentially contained in [57], but for the reader’s convenience, we shall
spell out some of the details.

We denote by Aff the full subcategory of A spanned by the algebras which are free on finite
discrete posets and by F ′

f : Setf → Aff the corresponding domain-codomain restriction of

the composite F ′D : Set → Pos → A . Then we follow the next steps:

(1) Observe first that [F ′
f , U

′] : [Aff ,A ] → [Setf ,Pos], sending a functor L′ : Aff → A

to the composite U ′L′F ′
f , is of descent type. That is, [F ′

f , U
′] is right adjoint and

each component of the counit of the corresponding adjunction is a coequalizer [57,
Lemma 3.14].

(2) The functor [E,−] : [Setf ,Pos] → [|Setf |,Pos], where |Setf | is the discrete category of
finite sets and E : |Setf | → Setf is the inclusion, is monadic (again, this follows from
Lemma 3.14 of [57]).

(3) Consequently, the composite

[Aff ,A ]
[F ′

f ,U
′]
// [Setf ,Pos]

[E,−]
// [|Setf |,Pos]

is of descent type [57, Theorem 3.18].

Therefore, every locally monotone functor L′ : Aff → A (i.e., every L′ preserving sifted
colimits) arises as a coequalizer as in Proposition 5.7, that is, it admits an ordered presen-
tation in discrete arities.

5.C. Ordinary and ordered presentations of functors on BA. Let A be a Pos-
enriched category with discretely ordered hom-posets, such as BA. Then, as we are going
to show now, there is no essential difference in the presentations according to Sections 5.B
and 5.A.

Before coming to functors on varieties, let us clarify when ordinary varieties are ordered
varieties with discrete hom-sets and vice versa. Recall that we wrote C ⊣ D : Set → Pos for
the adjunction in which D is the discrete functor and C the connected components functor.

Proposition 5.9. Let F ′ ⊣ U ′ : A → Pos be an ordered variety. It has discretely ordered
hom-posets if and only if any of the following equivalent conditions are satisfied.

(1) U ′ factors through D : Set → Pos.
(2) U ′ ∼= DCU ′.
(3) ηU ′ : U ′ → DCU ′ is an isomorphism, where η is the unit of the adjunction C ⊣ D.
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If any of the above conditions is satisfied then also F ′ factors through C : Pos → Set via
F ′ ∼= F ′DC. Moreover, F ′D ⊣ CU ′ : A → Set is monadic.

Conversely, if F ⊣ U : A → Set is an ordinary variety and the only order on algebras in A

making all operations monotone is the trivial discrete order (as it is the case in BA), then
FC ⊣ DU : A → Pos is an ordered variety, see [45].

Proposition 5.10. Let A → Pos be a variety with discretely ordered homsets and let
L : A → A be a (necessarily locally monotone) functor. Then the functor L preserves
ordinary sifted colimits if and only if L preserves Pos-enriched sifted colimits. Moreover,
〈DΣ,DΓ〉 is an ordered presentation of L if and only if 〈Σ,Γ〉 is a presentation of L and
〈Σ′,Γ′〉 is an ordered presentation of L if and only if 〈CΣ′, CΓ′〉 is a presentation of L.

The proposition above guarantees that for a functor L : BA → BA, it does not matter
whether we consider it as an ordinary functor on the variety BA, or whether we consider it
as a locally monotone functor on the ordered variety BA.

5.D. Ordinary and ordered presentations of functors on DL. The aim of this section
is to show that not only does an endofunctor of DL have a presentation by operations and
equations if and only if it preserves ordinary sifted colimits, but also that a functor has
a presentation by monotone operations and equations if and only if it preserves enriched
sifted colimits.

We begin with the following:

Proposition 5.11. If A is an ordered variety and L′ : A → A is a locally monotone
functor which preserves enriched sifted colimits, then the underlying ordinary functor L′

o :
Ao → Ao preserves ordinary sifted colimits.

Proof. By [45, Theorem 6.9] we know that A is a free cocompletion by enriched sifted
colimits of the full subcategory J′ : Aff →֒ A spanned by free algebras on finite and
discrete sets of generators.
Furthermore, J′ : Aff →֒ A has the density presentation consisting of the three classes
below:

(1) reflexive coinserters,
(2) (conical) filtered colimits, i.e., by colimits weighted by ϕ : Dop → Pos where D is

ordinary filtered category and ϕ is the constant functor at the one-element poset,
(3) reflexive coequalizers.

The reason is that we can

(1) use coinserters of truncated nerves to create algebras, free on any finite poset,
(2) use (conical) filtered colimits to obtain free algebras on any poset,
(3) use a reflexive coequalizer (that is, a canonical presentation) to obtain any algebra.

Hence, we know that L′ : A → A preserves enriched sifted colimits if and only if L′ preserves
colimits in (1), (2) and (3). Since colimits in (2) and (3) are conical, they are preserved
by L′

o. But A is Pos-cocomplete, being an ordered variety, hence Ao is Set-cocomplete,
according to [33, Section 3.8]. And a functor between ordinary cocomplete categories pre-
serves sifted colimits if and only if it preserves ordinary filtered colimits and reflexive co-
equalizers [5, Theorem 7.7].
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The above proposition, together with Theorem 5.4, imply that in case Ao is an ordinary
variety, the underlying ordinary functor L′

o also has a presentation by operations and equa-
tions.

Example 5.12. Let L′ : DL → DL be the locally monotone functor presented by one unary
operation, written as �, and no equations. It follows from the proposition that monotonicity
of � is equationally definable. Explicitly, the induced equational presentation of L′

o can be
given by

�a ∧�(a ∨ b) = �a

Of course, the proposition only tells us that all finitary equations valid for a monotone �

together present L′
o. But it is not difficult to check that the equation above is enough to

force � to be monotone.

Conversely, if Ao is an ordinary variety, it makes sense to ask how a presentation of a functor
on Ao induces a presentation of a functor on A . We are thinking of a situation such as the
one of Example 2.6, where the functor L′ is defined equationally on the ordinary variety
DLo, but can also be seen as a locally monotone functor on the ordered variety DL. Consider
thus an ordered variety F ′ ⊣ U ′ : A → Pos. By slight abuse of notation, we let Ao to stand
both for the underlying ordinary category of A , and for the Pos-subcategory which has the
same objects and arrows as A but discrete homsets, and we put D̃ : Ao → A to be the
(necessarily locally monotone) inclusion. Assume that Ao is an ordinary variety. Then to
say that the following diagram

Ao
D̃

// A

Set
D

//

F

OO

Pos

F ′

OO

commutes defines F . Let 〈Σ,Γ〉 be a presentation of a functor Lo : Ao → Ao by the
coequalizer (5.1) of Definition 5.1. It induces a presentation 〈Σ′ = DΣ,Γ′ = DΓ〉 of a functor
L′ : A → A by the coequalizer (5.2) of Definition 5.5. Since D̃ preserves the coequalizer
(5.1), we obtain for all A ∈ A the dotted arrow in the diagram

D̃F Γ̂n //
//

��

D̃F Σ̂UFn
D̃F Σ̂Uv

//

��
✤
✤
✤ D̃F Σ̂UA //

��
✤
✤
✤ D̃LoA

��

F ′Γ̃′Dn //
// F ′Σ̃′U ′F ′Dn

D̃F ′Σ̃′U ′v
// F ′Σ̃′U ′A // L′A

(5.3)

Due to D̃F = F ′D and DΓ̂ = Γ̃′D, the left-most vertical arrow is an isomorphism. Even
though the two vertical dashed arrows in the middle need not be order-reflecting, they are
surjective, which implies that also the the dotted vertical arrow on the right is onto. But
since the lower row may have more inequalities, the dotted arrow need not be bijective, see
Example 5.14 below.

Definition 5.13. We say that 〈Σ,Γ〉 is a presentation by monotone operations and equa-
tions, or, shortly, a monotone presentation, if the dotted arrow (5.3) is an isomorphism for
all A ∈ A .
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This terminology is justified by Remark 5.6, according to which 〈DΣ,DΓ〉 is a presentation
by monotone operations.

Example 5.14. The presentation of Example 2.6 is a presentation by monotone operations,
since to say that � preserves meets and that ♦ preserves joins forces� and ♦ to be monotone.
On the other hand, if these axioms had been omitted from the presentation, the resulting
presentation would not have been monotone.

To summarize, given an ordered presentation 〈Σ′,Γ′〉 of a functor L′ : A → A on an ordered
variety in the sense of Definition 5.5, there is a monotone presentation by operations and
equation 〈Σ,Γ〉 of the underlying ordinary functor L′

o if Ao → Poso → Set is a variety. This
is due to the following result.

Theorem 5.15. Let L be an endofunctor on a category A that is both an ordered and an
ordinary variety. If L has an ordered presentation, then it has a presentation by monotone
operations and equations.

Proof. To say that A is both an ordered and an ordinary variety is to say that A comes
equipped with a forgetful functor A → Pos so that A → Pos is an ordered variety and Ao →
Poso → Set is an ordinary variety. If L has an ordered presentation then it preserves enriched
sifted colimits, hence Lo preserves ordinary sifted colimits, hence Lo has a presentation.

We can now conclude what we shall need to know about functors on DL.

Theorem 5.16. For a locally monotone functor L′ : DL → DL the following are equivalent:

(1) L′ has a presentation by monotone operations and equations.
(2) L′ preserves Pos-enriched sifted colimits.
(3) L′ is the Pos-enriched left Kan extension of its restriction to discretely finitely generated

free distributive lattices.

As in Proposition 2.4, we now obtain that

Corollary 5.17. If T ′ is the the convex powerset functor, then the functor L′ of Example 2.6
is isomorphic to the sifted colimits preserving functor L′ whose restriction to DLff is P ′T ′opS′

as in Equation (2.5).

6. Positive coalgebraic logic

The reader might find it useful to consult Section 6.C first, even though it relies on some
notation introduced in the next two subsections.
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6.A. Morphisms of logical connections. We recall the logical connections (dual ad-
junctions, see [44]) mentioned in Section 2 between sets and Boolean algebras, and between
posets and distributive lattices. Both are considered to be Pos-enriched, where for the first
logical connection the enrichment is discrete. They are related as follows:

Setop ⊥

P

22

Dop

��

BA
S

rr

W

��

Posop ⊥

P ′

22 DL
S′

rr

(6.1)

In the top row of the above diagram, we recall again for the reader’s convenience that
P is the contravariant powerset functor, while S maps a Boolean algebra to its set of
ultrafilters. The bottom row has P ′ mapping a poset to the distributive lattice of its upsets,
and S′ associating to each distributive lattice the poset of its prime filters. As for the
pair of functors connecting the two logical connections: D was introduced earlier as the
discrete functor, while W is the functor associating to each Boolean algebra its underlying
distributive lattice.

It is easy to see that the pair (Dop,W ) is a morphism of adjunctions in the sense of [47,
§ IV.7]. This means that the following diagrams commute, and that the coherence condition
below holds:

Setop
P

//

Dop

��

BA

W
��

Posop
P ′

// DL

BA
S

//

W
��

Setop

Dop

��

DL
S′

// Posop

ǫ′Dop = Dopǫ (6.2)

where ǫ and ǫ′ are the counits of S ⊣ P and S′ ⊣ P ′, respectively.

Remark 6.1. It will turn out useful later to use not only that D has, as mentioned in
Section 3.B, as a Pos-enriched left adjoint the connected components functor C, but also
that W has a Pos-enriched right adjoint K, mapping a distributive lattice A to the Boolean
algebra of complemented elements in A, also known as the centre of A, see [14]. Then the
mate of the first square in (6.2) under the above adjunctions, namely PCop → KP ′, is in
fact an isomorphism (to see this, use that the connected components of a poset are precisely
its minimal subsets which are both upward and downward closed).

6.B. Positive coalgebraic logic. We shall now expand the propositional logics BA and
DL by modal operators. We start with an endofunctor T of Set in the top left-hand corner
of (6.1), and an endofunctor T ′ of Pos in the bottom left-hand corner. We are mostly
interested in the case where T ′ : Pos → Pos is the posetification of T (see Definition 4.1)
and L : BA → BA and L′ : DL → DL are (the functors of) the associated logics as in (2.3)
and (2.6), in which case we denote the logics by boldface letters L and L′.

But some of the following hold under the weaker assumptions that T ′ is an arbitrary exten-
sion of T , and that L and L′ are arbitrary coalgebraic logics for T and T ′, respectively.
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Let therefore T be an endofunctor of Set, and T ′ be an extension of T to Pos as in (4.1).
Logics for T , respectively T ′ are given by functors L : BA → BA and L′ : DL → DL and by
natural transformations

δ : LP → PT op δ′ : L′P ′ → P ′T ′op

Intuitively, δ and δ′ assign to the syntax given by (presentations of) L and L′ the corre-
sponding one-step semantics in subsets, respectively upsets. To compare L and L′ we need
the isomorphism α : DT → T ′D from (4.1) saying that T ′ extends T , and also the relation
WP = P ′Dop from (6.2) (which formalizes the trivial observation that taking all upsets of
a discrete set is the same as taking all subsets). Referring back to the introduction, we now
make the following definition.

Definition 6.2. We say that a logic (L′, δ′) for T ′ is a positive fragment of the logic (L, δ)
for T , if there is a natural transformation β : L′W → WL with Wδ ◦ βP = P ′αop ◦ δ′Dop,
or, in diagrams

Setop
P

//

T op

��

BA
W

//

L
��

ւδ

DL

L′

��

ւβ =

Setop
Dop

//

T op

��

Posop
P ′

//

T ′op

��

ւαop

DL

L′

��

ւδ′

Setop
P

// BA
W

// DL Setop
Dop

// Posop
P ′

// DL

(6.3)

We call (L′, δ′) the maximal positive fragment of (L, δ) if β is an isomorphism.

Recall that we have defined in Sections 2.G and 2.H, respectively, the logics L, L′ induced
by T and (an extension) T ′ as L = PT opS and L′ = P ′T ′opS′ on discretely finitely generated
free objects. As explained in the introduction, our desired result is to prove that a certain
canonically given L′W → WL, denoted by β, is an isomorphism. The difficulty, as well as
the need for the proviso that T preserves weak pullbacks, stems from the fact that in DL (as
opposed to BA) the class of functors determined on free algebras on finitely many discrete
generators is strictly smaller than the class of functors determined on finitely presentable
(=finite) algebras, as Example 6.6 will show.

As stepping stones, therefore, we first investigate what happens in the cases where

• the functor L′ is determined by P ′T ′opS′ on all algebras,
• the functor L̄′ is determined by P ′T ′opS′ on the full subcategory DLf of finitely presentable
algebras,

before turning to the situation of the functor L′ determined by P ′T ′opS′ on the full subcate-
gory DLff of strongly finitely presentable algebras (=free algebras on finitely many discrete
generators).

6.C. Overview. To summarize the situation, consider

DL
L′, L̄′, L′

// DL

DLf

J ′

OO

L̄′
f♥♥♥♥♥

66♥♥♥♥♥

DLff

@A

GF

J′

//

J ′′

OO L
′
ff

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

(6.4)
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where we use subscripts to show the restrictions of L̄′ and L′ to the corresponding subcate-
gories of DL where these functors coincide by definition with P ′T ′opS′.

Section 6.D treats the case of L′. Using the dual adjunction of DL and Pos, one easily
obtains the required isomorphism β : L′W → WL. But on the other hand, presenting the
logic of L′ would require operations of infinite arity.

Section 6.E achieves the restriction to finitary syntax, by reducing L′ to a functor
L̄′ : DL → DL that is determined by the action P ′T ′opS′ on the full subcategory DLf on
finitely presentable distributive lattices. This setting has the advantage that DLf is dually
equivalent to Posf , from which we obtain again the required isomorphism β̄ : L̄′W → WL̄.
On the other hand, such functors L̄′ are in general not presentable by monotone operations
and equations.

Finally, Section 6.F restricts to the category DLff of discretely finitely generated free dis-
tributive lattices, which guarantees that the logic of L′ can be indeed presented by monotone
operations and equations, and that the category of L′-algebras is a(n ordered) variety of
modal algebras. In order to obtain that the corresponding β : L′W → WL is an isomor-
phism, we give conditions under which the functors L̄′ and L′ coincide. This is done by
determining when L̄′

f in (6.4) is a left Kan extension of its restriction along J ′′ : DLff → DLf .

6.D. The case of L′ = P ′T ′opS′ on all algebras. We shall associate to any extension
α : DT → T ′D the pairs (L, δ) and (L′, δ′) corresponding to T and T ′ respectively, with
L = PT opS and δ = PT opǫ : PT opSP → PT op, L′ = P ′T ′opS′ and δ′ being defined
analogously. We then immediately obtain an isomorphism β by the following:

Proposition 6.3. Given an extension α : DT → T ′D, the natural isomorphism β : L′W →
WL given by the composite below

BA
S

//

W
��

Setop

Dop

��

T op
// Setop

Dop

��

P
// BA
ED��GF

L

W
��

DL
S′

// Posop
T ′op

// Posop
P ′

//

րαop

DLBCOO@A
L′

exhibits L′ = P ′T ′opS′ as the maximal positive fragment of L = PT opS.

Proof. This follows from (Dop,W ) being a morphism of adjunctions (see (6.2)).

6.E. The case of L̄′ = P ′T ′opS′ on finitely presentable algebras. A similar result
holds if we define logics via PT opSA for finitely presentable A, as we are going to show now.
To this end, we use the subscript (−)f to denote the restriction of categories and (domain-
codomain) functors to finite objects as e.g. when writing as earlier the dense inclusions
I : Setf → Set, I ′ : Posf → Pos, J : BAf → BA and J ′ : DLf → DL.

Since Pos is locally finitely presentable as a closed category, and the underlying ordinary
categories Seto, DLo, BAo are also locally finitely presentable, it follows from [34] that the
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finitely presentable objects in all the above categories are precisely the same as in the
ordinary case i.e., the ones for which the underlying sets are finite.

Note that we have the following commuting diagram

Sf ⊣ Pf

(Dop
f ,Wf )

//

(Iop,J)

��

S′
f ⊣ P ′

f

(I′op,J ′)
��

S ⊣ P
(Dop,W )

// S′ ⊣ P ′

(6.5)

in the category of transformations of adjoints.

Define now (L̄, δ̄) for T as

L̄ = LanJ(PT
opSJ) and δ̄ : L̄P → PT op

as the adjoint transpose of L̄→ PT opS arising from the universal property of the left Kan
extension L̄. By construction, L̄ is finitary and is given by PT opS on finite(ly presentable)
Boolean algebras. Similarly, obtain (L̄′, δ̄′) for T ′ on distributive lattices.

The forgetful functor W : BA → DL is finitary, being a left adjoint (Section 6.A). Thus
in order to obtain an (iso)morphism β̄ : L̄′W → WL̄ between finitary functors, it will be
enough to provide its restriction along J to finitely presentable objects. But we can get
such a transformation from the isomorphism of Proposition 6.3, namely

β̄f : L̄′WJ ∼= L̄′J ′Wf
∼= P ′T ′opS′J ′Wf

∼=WPT opSJ ∼=WL̄J (6.6)

where the second and the last isomorphisms are given by the units of left Kan extensions.

Remark 6.4. Recall the definition of L from Equation (2.3). Since every finitely presentable
non-trivial Boolean algebra is a retract of a finitely generated free algebra, we can identify
L = L̄, see e.g. [43, Proposition 3.4].

According to the above, we then have

Proposition 6.5. The isomorphism β̄ exhibits L̄ = LanJ ′(P ′T ′opS′J ′) as the maximal
positive fragment of (L, δ).

Proof. The easiest way to check Equation (6.3) is to show that β̄f , defined by Equation (6.6),
fulfills

Pos
op
f P ′

f

((◗◗◗◗◗◗◗◗

Set
op
f

Dop
f 66❧❧❧❧❧❧❧❧

Pf

))❘❘❘❘❘❘❘❘❘

T opIop

��

DLf

L′J ′

��↓δf I
op

BAf

Wf
66❧❧❧❧❧❧❧❧❧

LJ

��

↓β̄f

Setop

P **❯❯❯❯❯❯❯❯❯ DL

BA W

44❥❥❥❥❥❥❥❥❥❥

=

Pos
op
f P ′

f

((◗◗◗◗◗◗◗◗◗

T ′opI′op

��

Set
op
f

Dop
f

66♠♠♠♠♠♠♠♠♠

T opIop

��

↓αopIop ↓δ′f I
′op

DLf

L′J ′

��

Posop

P ′ ))❚❚❚❚❚❚❚❚❚❚

Setop
Dop

55❥❥❥❥❥❥❥❥❥

P **❚❚❚❚❚❚❚❚❚❚ DL

BA
W

55❥❥❥❥❥❥❥❥❥❥❥

But this follows from Proposition 6.3 and Equation (6.5).
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This proposition does not yet give us the desired result, as the endofunctor L̄′ on DL is
not necessarily determined by its action on discretely finitely generated free algebras and,
therefore, is not guaranteed to be equationally definable and to give rise to a variety of
modal algebras.

Example 6.6. We give an example of a locally monotone functor L̄′ : DL → DL that
is finitary but does not preserve sifted colimits i.e., it is not determined by its action on
discretely finitely generated free algebras. Consider the composite (comonad)

L̄′ : DL
K

// BA
W

// DL

where K is the right adjoint of the forgetful functor W (recall that we met K in Remark 6.1
assigning to each distributive lattice A the Boolean subalgebra KA of its complemented
elements). We shall exhibit below a reflexive coinserter that it is not preserved by L̄′. Since
reflexive coinserters are sifted colimits, this means that L̄′ : DL → DL does not preserve
(all) sifted colimits.

Let e : D2 → X be the obvious embedding of the two-element discrete poset into the
poset X with three elements 0, 1 and ⊤, satisfying 0 < ⊤ and 1 < ⊤. Then e is a coreflexive
inserter in Pos of the pair f, g : X → Y , where Y is the poset

⊤1 ⊤2

0 1

❄❄❄❄❄
⑧⑧⑧⑧⑧

and f(0) = g(0) = 0, f(1) = g(1) = 1, f(⊤) = ⊤1, g(⊤) = ⊤2.
By applying P ′ : Posop → DL to the above coreflexive inserter in Pos we obtain a

reflexive coinserter in DL, which can either be checked directly or by appealing to Propo-
sition 6.15 below. Observe that P ′e : P ′D2 → P ′X is the embedding of the four-element
Boolean algebra into the distributive lattice

{0,⊤} {1,⊤}

{⊤}

{0, 1,⊤}

∅

❄❄❄❄ ⑧⑧⑧⑧

⑧⑧⑧⑧
❄❄❄❄

Then it is easy to see that L̄′P ′e : L̄′P ′X → L̄′P ′D2 fails to be surjective (since L̄′P ′D2
has four elements and L̄′P ′X only two elements). Hence L̄′P ′e is not the coinserter in DL

of the parallel pair L̄′P ′f , L̄′P ′g.
Although the locally monotone functor L̄′ =WK fails to preserve reflexive coinserters,

it is however finitary, being a composite of such. Indeed,W is left adjoint, while forK notice
the following: K is a right adjoint functor between locally finitely presentable categories,
whose left adjoint W preserves finitely presentable objects (see paragraph (2) in the proof
of [4, Theorem 1.66]).

The next paragraph will investigate when the functor given by L̄′A = P ′T ′opS′A on finitely
presentable A is not only finitary but also preserves sifted colimits.
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6.F. The case of L′ = P ′T ′opS′ on discretely finitely generated free algebras. Recall
that in Section 3.E we have denoted by J : BAff → BA and J′ : DLff → DL the inclusion
functors of the full subcategories spanned by the algebras which are free on finite discrete
posets.

Definition 6.7. Let T ′ be an endofunctor of Pos. We define the logic for T ′ to be the pair
(L′, δ′), where:

(1) L′ : DL → DL is an endofunctor of Pos preserving sifted colimits, whose restriction
to discretely finitely generated free distributive lattices is P ′T ′opS′J′, that is, L′ =
LanJ′(P ′T ′opS′J′).

DLff

ր

J
′

//

J′

��

DL

L′

��

DL
P ′

// Posop
T ′op

// Posop
S′

// DL

(2) δ′ : L′P ′ → P ′T ′op is the pasting composite

DL

L
′

��

S′
// Posop

T ′op

// Posop

P ′

��

ED
❫❫❫❫❫❫❫

✥✥
✥✥=<❫❫❫❫❫❫❫

✥✥
✥✥
✥

DL

ր

DL
S′

//

րε′

Posop

that is, the adjoint transpose of the natural transformation L′ → P ′T ′opS′, which in
turn is given by the universal property of the left Kan extension L′.

Remark 6.8. By Corollary 3.11, L′ defined above preserves sifted colimits. Thus, by
Theorem 5.8, the functor L′ admits an equational presentation by monotone operations,
which subsequently gives rise to a positive modal logic concretely given in terms of modal
operators and axioms.

Recall from the previous section that we have introduced the functor L̄′, which on finitely
presentable distributive lattices is P ′T ′opS′, while now we have defined L′ = P ′T ′opS′ only
on discretely finitely generated free distributive lattices. The next theorem will provide
sufficient conditions for these two functors L̄′ and L′ to coincide.

First note that the restrictions of L̄′ and L′ to DLff coincide by definition with P ′T ′opS′J′.
Abbreviate as in (6.4) L̄′

f = L̄′J ′ and L′
ff = L′J′. Also observe that due to [33, Theorem 4.47],

the functor L′ = LanJ′L′
ff can equally be expressed as the iterated Kan extension

LanJ ′(LanJ ′′L′
ff )
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Because L̄′ = LanJ ′L̄′
f , it will be then enough to show that L̄′

f = LanJ ′′L′
ff , or, in other

words, that P ′T ′opS′J ′ is the left Kan extension of its restriction to J ′′.

DL
L̄′ , L′

// DL

DLf

J ′

OO

L̄′
f♥♥♥♥♥

66♥♥♥♥♥

DLff

@A

GF

J′

//

J ′′

OO L
′
ff

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

(6.7)

This will follow once we have shown that J ′′ is dense and that P ′T ′opS′J ′ preserves the
colimits of its density presentation.

Theorem 6.9. The inclusion J ′′ : DLff → DLf from discretely finitely generated free dis-
tributive lattices to finitely presentable distributive lattices is dense. A density presentation
is given by reflexive coinserters.

Proof. According to the definition of density presentation [33, Theorem 5.19], we have to
show that reflexive coinserters exist in DLf , that they are J ′′-absolute, and that every object
in DLf can be constructed from objects in DLff using reflexive coinserters.

First, note that DLf has reflexive coinserters since a distributive lattice is in DLf if and
only if it is finite, and since a coinserter of finite distributive lattices is finite.

Second, to say that a reflexive coinserter is J ′′-absolute is to say that it is preserved
by DL(F ′Dn,−) for all finite sets n. But DL(F ′Dn,−) ∼= Pos(Dn,U ′−), which preserves
reflexive coinserters since finite products preserve reflexive coinserters, and so does U ′.

Finally, we have to prove that every finite distributive lattice is in the closure of DLff
under reflexive coinserters. Notice that every distributive lattice F ′X which is free over a
finite poset X is such a reflexive coinserter. This is immediate from F ′ preserving colimits
and from Proposition 3.4 which presents any poset X as a reflexive coinserter of discrete
posets. It remains to show that every finite distributive lattice A is a reflexive coinserter of
finitely generated free ones. Let A be a finite distributive lattice and consider the counit

εA : F ′U ′A→ A

of the Pos-enriched adjunction F ′ ⊣ U ′ : DL → Pos. Since εA is surjective, it is a coinserter
of some pair

A′
l′

//

r′
// F ′U ′A

(by factoring the pair through its image, we can assume without loss of generality that A′

is finite). Now pre-compose this pair with εA′ : F ′U ′A′ → A′ to obtain

F ′U ′A′
l′◦εA′

//

r′◦εA′

// F ′U ′A
εA

// A (6.8)

which is again a coinserter of free distributive lattices on finite posets since εA′ is surjective.
Notice that we can always turn the coinserter (6.8) into a reflexive one, namely

F ′U ′A+ F ′U ′A′
l

//

r
// F ′U ′A

εA
// A (6.9)
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where the parallel arrows l = [idF ′U ′A, l
′ ◦ εA′ ] and r = [idF ′U ′A, r

′ ◦ εA′ ] are given by the
universal property of the coproduct, with common splitting in : F ′U ′A→ F ′U ′A+ F ′U ′A′

provided by the canonical injection into the coproduct, as the diagram below indicates:

F ′U ′A′
εA′

//

in′

��

A′

r′

��
l′

��

F ′U ′A+ F ′U ′A′
r

//
l

// F ′U ′A
εA

// A

F ′U ′A

in

OO

BC
id

❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵❵

NN✢✢✢✢✢:;
id ❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴

OO✤✤✤✤✤

To see that (6.9) is indeed a coinserter, notice first that the inequality εA ◦ l ≤ εA ◦ r follows
from εA ◦ l′ ≤ εA ◦ r′ and from the 2-dimensional property of the Pos-enriched coproduct.

Next, let h : F ′U ′A→ B be an arrow with h ◦ l ≤ h ◦ r. It follows that

h ◦ l′ ◦ εA′ = h ◦ l ◦ in ≤ h ◦ r ◦ in = h ◦ r′ ◦ εA′

and since εA′ is onto, we obtain
h ◦ l′ ≤ h ◦ r′

But εA is the coinserter of the pair l′, r′, therefore there is an arrow k : A → B such that
h = k ◦ εA. Since εA is onto, k is unique. We have therefore shown that in (6.9), the
morphism εA is the reflexive coinserter of the pair l, r.

Using now in (6.9) that

F ′U ′A+ F ′U ′A′ ∼= F ′(U ′A+ U ′A′)

we see that the finite distributive lattice A can be obtained as a reflexive coinserter of
distributive lattices that are free over finite posets. Since we have already established that
the latter are in the closure of DLff under reflexive coinserters, the proof is finished.

Remark 6.10. Since the class of reflexive coinserters is definable by a weight, the theorem
also shows that DLf is the free cocompletion of DLff by reflexive coinserters, see Proposi-
tion [38, Proposition 4.1]. Note that the only particular property of the ordered variety DL

used in the proof is that DL is locally finite, that is, that finitely generated algebras are
finite.

It follows from the theorem that a functor with domain DLf is the left Kan extension of its
restriction along J ′′ : DLff → DLf if it preserves reflexive coinserters. Being interested in the
composite functor P ′T ′opS′J ′ : DLf → DL, our next step is to establish that P ′ : Posop → DL

preserves reflexive coinserters. We split this in several lemmas.

Lemma 6.11. Let e : E → X be an embedding (i.e., a monotone and order-reflecting map)
of posets. Then [e,2] has a right inverse.

Proof. Remember that any poset can be seen as a category enriched over the two-elements
poset 2, and any monotone map e : E → X as a 2-enriched functor.

Pre-composition with e gives a monotone map (hence, a 2-functor) [e,2] : [X,2] →
[E,2] which always has a left adjoint ∃e : [E,2] → [X,2], given by left Kan extension along
e (but also a right adjoint ∀e : [E,2] → [X,2], provided by the right Kan extension along e).
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Explicitly, for a monotone map f : E → 2, the left adjoint acts as follows: ∃e(f) : X → 2

is the monotone map given by

∃e(f)(x) = 1 ⇐⇒ ∃a ∈ E . (f(a) = 1 ∧ e(a) ≤ x)

for any x ∈ X.
The unit and counit of the adjunction ∃e ⊣ [e,2] are the inequalities

id[E,2] ≤ [e,2] ◦ ∃e (6.10)

∃e ◦ [e,2] ≤ id[X,2] (6.11)

By hypothesis, e is an embedding. This means precisely that e is fully faithful as a 2-
enriched functor. Therefore, the unit f ≤ [e,2] ◦ ∃e(f) of the left Kan extension ∃e(f)
of f : E → 2 along e is an isomorphism [33, Proposition 4.23]. But since 2 is a poset,
isomorphism means equality and we obtain

id[E,2] = [e,2] ◦ ∃e. (6.12)

improving (6.10).

Remember the notion of an exact square from Definition 4.9. We shall give now an equivalent
formulation:

Lemma 6.12 (Beck-Chevalley Property). The diagram (4.6) exhibits an exact square if
and only if [g,2] ◦ ∃f = ∃α ◦ [β,2]. That is

E
α

//

β
��

ւ

X

f
��

Y
g

// Z

is exact ⇐⇒

[E,2]

∃β
��

[X,2]

∃f
��

[α,2]
oo

[Y,2] [Z,2]
[g,2]
oo

commutes.

Proof. It follows easily by direct computation.

As in the proof of subsequent Proposition 6.15 we shall encounter split coinserters – the
ordered analogue of split coequalizers [47, § VI.6], we provide below the precise definition:

Definition 6.13. In a Pos-category, the diagram below is called a split coinserter if it
satisfies the following equations and inequations:

A
d0

//

d1
//

GF�� ED
t

B
c

//@AOO BC
s

C





c ◦ d0 ≤ c ◦ d1

c ◦ s = idC

d0 ◦ t = idB

d1 ◦ t = s ◦ c ≤ idB

(6.13)

Proposition 6.14.

(1) A split coinserter is a coinserter.
(2) Split coinserters are absolute: they are preserved by all locally monotone functors.

Proof. The second statement is immediate. To show the first one, let h : B → D be an
arrow such that h ◦ d0 ≤ h ◦ d1. Define k : C → D by k = h ◦ s. We have

k ◦ c = h ◦ s ◦ c ≤ h



POSITIVE FRAGMENTS OF COALGEBRAIC LOGICS 43

and
k ◦ c = h ◦ s ◦ c = h ◦ d1 ◦ t ≥ h ◦ d0 ◦ t = h

Therefore k ◦ c = h. And k is unique with this property since c is (split) epi.

We have now all ingredients to come back to the question of P ′ preserving reflexive coin-
serters.

Proposition 6.15. The functor P ′ : Posop → DL preserves reflexive coinserters.

Proof. Notice that U ′P ′ = [−,2] and that U ′ is monadic. Since DL is an ordered variety, it
has all (sifted) colimits, in particular reflexive coinserters, and U ′ creates them. Thus it is
enough to show that [−,2] : Posop → Pos preserves reflexive coinserters.

But reflexive coinserters in Posop are coreflexive inserters in Pos; consider therefore two
monotone maps with common left inverse in Pos

X
f

//

g
//

GF�� ED
i

Y (6.14)

The inserter of the above data is realized as the poset ins(f, g) = {x ∈ X | f(x) ≤ g(x)} with

the order inherited from X, together with the inclusion map ins(f, g)
e
→ X. In particular,

the diagram below is an exact square:

ins(f, g)
e

//

e

��

ւ

X

f

��

X g
// Y

By Lemma 6.12, we obtain [g,2] ◦ ∃f = ∃e ◦ [e,2]. Additionally, as both e and f are
embeddings (recall that the inserter pair f, g was assumed to have a common left inverse),
[e,2] ◦ ∃e = id[ins(f,g),2] and [f,2] ◦ ∃f = id[X,2] by Lemma 6.11.

That is, by applying [−,2] to the diagram (6.14) augmented by ins(f, g)
e
→ X and

∃e,∃f , we obtain the split coinserter

[Y,2]
[f,2]

//

[g,2]
//

GF�� ED
∃f

[X,2]
[e,2]

//@AOO BC
∃e

[ins(f, g),2]





[e,2] ◦ [f,2] ≤ [e,2] ◦ [g,2]

[e,2] ◦ ∃e = id[ins(f,g),2]
[f,2] ◦ ∃f = id[X,2]

[g,2] ◦ ∃f = ∃e ◦ [e,2] ≤ id[X,2]

(6.15)

where the first inequation is due to [−,2] being a locally monotone functor, the next two
equations correspond to (6.12), the last equation follows from Lemma 6.12, while the last
inequality is due to (6.11). Use then Proposition 6.14 to conclude that [−,2] maps coreflex-
ive inserters to (split and reflexive) coinserters.
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The following theorem is the technical result around which this section revolves.

Theorem 6.16. Let L̄ = LanJ ′(P ′T ′opS′J ′) and L = LanJ′(P ′T ′opS′J′). If T ′ sends core-
flexive inserters of finite posets into coreflexive inserters, then L̄′ ∼= L′.

Proof. Taking up the reasoning preceding (6.7), we need to show that P ′T ′opS′J ′ is the
left Kan extension of its restriction along J ′′. We know that P ′T ′opS′J ′ preserves reflexive
coinserters of finite distributive lattices. Indeed, J ′ is a completion by filtered colimits and
preserves all finite colimits [4]; S′ as a left adjoint preserves all colimits (hence it maps
reflexive coinserters to coreflexive inserters) and maps finite distributive lattices to finite
posets; T ′op preserves coreflexive inserters of finite posets by hypothesis, and P ′ sends them
to reflexive coinserters, due to Proposition 6.15. Our claim now follows from Theorem 6.9
and [33, Theorem 5.29].

As a result about modal logics, the theorem can be reformulated as follows.

Corollary 6.17. Let T be an endofunctor on Set and T ′ a Pos-extension of T which pre-
serves coreflexive inserters. Then (L̄′, δ̄′) and (L′, δ′) coincide. In particular, it follows from
Proposition 6.5 that L′ is the maximal positive fragment of L.

The next example shows what can go wrong in case that T ′ does not preserve coreflexive
inserters.

Example 6.18. For T = Id, the corresponding finitary logics is L = Id on BA, with trivial
semantics δ : LP → PT op. It was noticed in Remark 4.2(2) that the identity functor also
admits as extension the discrete connected components functor T ′ = DC. But the latter
preserves neither embeddings, nor coreflexive inserters. The corresponding logic L′ for T ′ is
given by the constant functor to the distributive lattice 2. Thus the natural transformation
β : L′W → WL from Definition 6.2 fails to be an isomorphism (it is just the unique
morphism from the initial object).

Whereas the associated ‘strongly finitary’ logic L′ of T ′ = DC is just the logic of the
constant functor 2 (i.e., plain positive propositional logic), the associated ‘finitary logic’ L̄′

is given by the functorWK on DL. This can be seen as follows: on finite distributive lattices,
L̄′ is P ′DopCopS′ ∼= WPCopS′ ∼= WKP ′S′ ∼= WK. As WK is finitary (Example 6.6), it
coincides with L̄′ on all distributive lattices, not just on the finite ones.

The next lemma shows that for a locally monotone functor on Pos, preservation of exact
squares entails the condition needed in Theorem 6.16, namely the preservation of coreflexive
inserters:

Lemma 6.19. If T ′ is a locally monotone endofunctor on Pos which preserves exact squares,
then it preserves embeddings and coreflexive inserters.

Proof. The first assertion follows from the observation [25] that each embedding e : X → Y
can be realized as an exact square, namely

X
id

//

id
��

ւ

X

e
��

X
e

// Y
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For the second one, let

ins(f, g)
e

// X
f

//

g
//

GF�� ED
i

Y

be a coreflexive inserter. In particular,

ins(f, g)

ւ

e
//

e

��

X

f

��

X
g

// Y

is an exact square as remarked in the proof of Proposition 6.15, thus T ′ maps it to the exact
square

T ′ins(f, g)

ւ

T ′e
//

T ′e
��

T ′X

T ′f
��

T ′X
T ′g

// T ′Y

Let now u : U → T ′X a monotone map such that T ′f ◦ u ≤ T ′g ◦ u. For each x ∈
U , T ′f(u(x)) ≤ T ′g(u(x)), thus there is some w ∈ T ′ins(f, g) with u(x) ≤ T ′e(w) and
T ′e(w) ≤ u(x), that is, u(x) = T ′e(w). As T ′e is an embedding, such element w is uniquely
determined. Moreover, the assignment x 7→ w is monotone, as if x1 ≤ x2, then T

′e(w1) =
u(x1) ≤ u(x2) = T ′e(w2) and T

′e is again an embedding as shown earlier, hence w1 ≤ w2.
This covers the 1-dimensional aspect of inserters. For the rest, use one more time that T ′e
is an embedding.

As a consequence of all the results of this section and of Theorem 4.10, we obtain our main
theorem on positive modal logic.

Theorem 6.20. Let T : Set → Set be a weak-pullback preserving functor and T ′ : Pos →
Pos its posetification. Let (L, δ) and (L′, δ′) be the associated logics of T and T ′, that is
L = LanJ(PT

opSJ) and L′ = LanJ′(P ′T ′opS′J′). Then (L′, δ′) is the maximal positive
fragment of (L, δ).

Corollary 6.21. Under the hypotheses of Theorem 6.20, the adjunction W ⊣ K : DL → BA

lifts to an adjunction W̃ ⊢ K̃ : Alg(L′) → Alg(L).

Proof. Recall from Definition 6.2 that the statement of Theorem 6.20 implies that there is
a natural isomorphism

β : L′W →WL.

By Remark 6.1, and by standard doctrinal adjunction [32], we know then that the adjunction
W ⊣ K : DL → BA lifts to an adjunction between the corresponding categories of algebras,

where the lifting W̃ of W maps an L-algebra

LB
b

// B

to the L′-algebra

L′WB
β

// WLB
Wb

// WB
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The above corollary shows in particular that Alg(L) is a full coreflective subcategory of

Alg(L′) (using that W̃ is fully-faithful, property inherited from W ), and that W̃ preserves
initial algebras. In other words, the Lindenbaum algebra for L is the same as the one for L′

(the analogous statement for free algebras only holds if the generating atomic propositions
are closed under complement).

Remark 6.22. Our introductory example of positive modal logic is now regained as an
instance of this theorem. It can also easily be adapted to Kripke polynomial functors.
More interesting are the cases of probability distribution functor and of multiset functor.
We know from the theorem above that they have maximal positive fragments, but their
explicit description still needs to be worked out.

To see how Dunn’s completeness result can be obtained in our setting, we first remark
that, from an algebraic point of view, completeness follows from Theorem 6.20. Indeed,
let I, I ′ be the initial algebras (i.e., the Lindenbaum algebras) for the functors L and L′,
respectively. Then the induced arrow I ′ → WI is an isomorphism. Hence, if two elements
(i.e., formulas) are equal in I they also must be equal in I ′, which implies, by completeness of
equational logic, that every proof with L-axioms can be imitated with L′-axioms. Here, the
terminology of axioms refers to presentations of the functors in the sense of Definitions 5.1
and 5.5.

From the point of view of Kripke semantics, completeness means that if two formulas have
the same semantics, then they are equal. In other words, recalling Section 2.E, with (X, ξ)
ranging over all coalgebras, the family [[·]](X,ξ) : I → PX, or rather [[·]](X,ξ) : I

′ → P ′X must
be jointly injective. As in [40], this follows from the one-step semantics δ′ : L′P ′ → P ′T ′

being injective. We sketch below (Paragraphs A-D) some of the details.

A. First, we show that for all posetifications T ′ : Pos → Pos and X ′ in Pos the one-step
semantics δ′X′ : L′P ′X ′ → P ′T ′X ′ is injective. Up to replacing δ, L, P, T by δ′,L′, P ′, T ′, the
proof is verbatim the same as in [42, Lemma 6.12], using Theorem 6.16 in order to know
that L′P ′X ′ is given as a filtered colimit as in [42, (44)] and using Proposition 4.15 in order
to know that the posetification T ′ preserves surjections.

B. Next, in analogy with [42, Lemma 6.14], we show that L′ preserves injections. Let us em-
phasize that whereas all functors BA → BA with a presentation by operations and equations
preserve injections, the same is not true for functors DL → DL, see [48, Section 5.3].

Proposition 6.23. Assume that the hypotheses of Theorem 6.20 hold. Then L′ preserves
monomorphisms of distributive lattices.

Proof. We shall proceed in two steps:

(1) L′ preserves monomorphisms between finite distributive lattices. This can be seen as
follows: recall that on finite distributive lattices, L′ is P ′T ′opS′ (Theorem 6.16), and let
m : A→ B be an injective morphism between two finite distributive lattices. According
to [60, Theorem 4.2], m is the coreflexive inserter of its co-comma square:

A
m

// B
p

//

q
// C
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Notice that C is also finite. But on finite distributive lattices, S′ is an equivalence.
Therefore S′m is the reflexive coinserter of its comma object (S′p, S′q), in particular,
a monotone surjection. By Proposition 4.15, T ′S′m will also be a surjective monotone
map between posets, thus a monomorphism in Posop. As P ′ is right adjoint, it sends
T ′opS′m to a monomorphism in DL. Thus L′m ∼= P ′T ′opS′m is again a monomorphism.

(2) L′ preserves arbitrary monomorphisms. Letm : A→ B be a monomorphism of distribu-
tive lattices. But DL is a locally finitely presentable category, the finitely presentable
objects being precisely the finite ones. Thus [13, Corollary 4.3] applies to conclude that
m can be expressed as a filtered colimit of monomorphisms between finite distributive
lattices. We can now use step (1) and that L′ preserves filtered colimits, to obtain that
L′m is again a monomorphism (see also [4, Corollary 1.60]).

Remark 6.24. The above proposition shows that the modal logic given by any presentation
of L′ has the bounded proof property in the sense of [11].

C. We can now continue the reasoning begun in Paragraphs A-B. Using Proposition 6.23,
we are able to repeat the proof of [42, Theorem 6.15], showing by induction that the n-step
semantics

(L′)n2→ P ′(T ′)n1 (6.16)

is injective for all n ∈ N, which implies completeness with respect to the Kripke semantics
given by T ′-coalgebras.

D. Finally, since T ′ is an extension of T , we have T ′D ∼= DT , which implies together with
P ′D ∼= WP that P ′(T ′)n1 ∼= WPT n1, so that (6.16) also gives completeness with respect
to the Kripke semantics given by T -coalgebras.

Remark 6.25. As in Corollary 6.21, or rather dually, the fact that we have T ′D ∼= DT

means that the adjunction C ⊣ D : Set → Pos lifts to an adjunction C̃ ⊣ D̃ : Coalg(T ) →

Coalg(T ′) so that Coalg(T ) is a full reflective subcategory of Coalg(T ′). In particular, D̃
preserves limits and therefore ‘behaviours’ as given by final coalgebras or the final sequence
of T .

7. Monotone predicate liftings

We show that the logic of the posetification T ′ of T coincides with the logic of all monotone
predicate liftings of T .

Recall from [50, 53] that a predicate lifting of arity n for T is a natural transformation

♥ : Set(−, 2n) → Set(T−, 2)

Using the (ordinary!) adjunction D ⊣ V : Pos → Set, a predicate lifting can be described
as a natural transformation

♥′ : Pos(D−, [Dn,2]) → Pos(DT−,2)

It is called monotone if each component is monotone (as a map between hom-posets). By
Yoneda lemma, one can also identify a predicate lifting with a map ♥ : T (2n) → 2. Then
the above simply says that ♥ is monotone if for all a1 ≤ a2 : DX → [Dn,2], we have that
♥ ◦ Ta1 ≤ ♥ ◦ Ta2, where f : DX → Y denotes the adjoint transpose of f : X → V Y .
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Consider now a locally monotone Pos-functor T ′ and a finite poset p. By mimicking the
above, we define a predicate lifting for T ′ of arity p as being a Pos-natural transformation

♥′ : Pos(−, [p,2]) → Pos(T ′−,2)

which again can be identified with ♥′ ∈ Pos(T ′([p,2]),2).

Theorem 7.1. Let T be an endofunctor of Set and T ′ : Pos → Pos its posetification. Then
there is a bijection between the predicate liftings of T ′ of discrete arity Dn and the monotone
predicate liftings of T of arity n, for each finite n.

Proof. Let p be an arbitrary finite poset. Consider the composition of the two following
monomorphisms:

Pos(T ′([p,2]),2) → Set(V T ′([p,2]), V 2) → Set(TV ([p,2]), V 2) (7.1)

The first arrow above is monic by faithfulness of V . The second one is also, as it is given by
pre-composition with the natural epimorphism τ : TV → V T ′ (the mate of the isomorphism
α : DT → T ′D under the adjunction D ⊣ V ). The latter is indeed epic because for each
poset X, τX is exactly the coinserter map TX0 → T ′X.

In case the arity is discrete as p = Dn, notice that by V ([Dn,2]) = 2n, the right hand
side of Equation (7.1) is precisely Set(T (2n), 2). A predicate lifting ♥′ ∈ Pos(T ′([Dn,2]),2)
is then sent to

♥ := V♥′ ◦ τ[Dn,2] : T (2
n) → 2

Now, for a : X → 2n, easy diagram chasing shows that

♥ ◦ Ta = ♥′ ◦ T ′(a) ◦ αX

hence the monotonicity of ♥ follows. Thus the predicate liftings of T ′ of discrete arity are
among the monotone predicate liftings for T .

To show the inverse correspondence, recall one more time that the posetification T ′ is
constructed as a coinserter (Theorem 4.3). Let ♥ : T (2n) → 2 be a predicate lifting for T .
Then, from the universal property of coinserters, one can easily check that ♥ : DT (2n) → 2

factorizes to a predicate lifting for T ′ of discrete arity, T ′([Dn,2]) → 2, if and only if ♥ is
monotone in the sense mentioned above. More in detail: let X0 be the set 2n = V [Dn,2];
that is, the underlying set of the poset [Dn,2], and X1 the underlying set of the order on
[Dn,2], with projections denoted as usual d0, d1 : X1 → X0. Then with notations as above,

one has d0 ≤ d1; thus if ♥ is monotone, this entails ♥ ◦ Td0 ≤ ♥ ◦ Td1, thus ♥ : DTX0 → 2

factorizes in Pos to a predicate lifting for T ′ of discrete arity ♥′ : T ′[Dn,2] → 2.

T ′DX1

α−1
X1

��

T ′Dd1
//

T ′Dd0
// T ′DX0

T ′ǫ[Dn,2]

**❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

α−1
X0

��

DTX1
DTd1

//
DTd0

// DTX0
e

//

♥
**❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯ T ′[Dn,2]

♥′

��

2

From the above diagram we have that ♥′ ◦ T ′ǫ[Dn,2] ◦ αV [Dn,2] = ♥, thus we see we can
recover the original monotone predicate lifting for T :

V♥′ ◦ τ[Dn,2] = V♥′ ◦ V T ′ǫ[Dn,2] ◦ V αV [Dn,2] = V♥ = ♥
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Finally, note that we have used the assumption that T ′ is the posetification of T in order
to have an extension such that TV → V T ′ is epi.

Remark 7.2. The theorem should be seen in the light of [31, Theorem 4.16] saying that
for a finitary and embedding preserving functor T ′ : Pos → Pos the logic L′ of (necessarily
monotone) predicate liftings is expressive. We also would like to recall [41, Corollary 6.9]
which describes an expressive and monotone subset of all predicates liftings for any finitary
weak-pullback preserving T : Set → Set.

8. Conclusions

In the area of semantics of programming languages one encounters a wide variety of base
categories including various metric spaces and various (complete) partial orders. It would
be of interest to draw the landscape of these different categories together with a toolkit
connecting them. This paper can be seen as a rudimentary effort in this direction. Indeed,
we relate systems and their logics across the morphism of connections

(S ⊣ P : Setop → BA) −→ (S′ ⊣ P ′ : Posop → DL)

Moreover, we transfer functors along this morphism via left Kan-extensions and characterize
the functors that arise in that way as those preserving certain classes of colimits. Finally,
we show how results about modal logics can be derived from such a framework. It will be
interesting to explore whether similar techniques apply to more sophisticated domains than
Set and Pos.
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[55] V. Trnková, Some properties of set functors. Comment. Math. Univ. Carolin. 10(2):323–352 (1969)
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