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Abstract. In functional analysis it is well known that every linear functional defined
on the dual of a locally convex vector space which is continuous for the weak∗ topology
is the evaluation at a uniquely determined point of the given vector space. M. Schröder
and A. Simpson have obtained a similar result for lower semicontinuous linear functionals
on the cone of all Scott-continuous valuations on a topological space endowed with the
weak∗upper topology, an asymmetric version of the weak∗ topology. This result has given
rise to several proofs, originally by Schröder and Simpson themselves and, more recently,
by the author of these Notes and by J. Goubault-Larrecq. The proofs developed from very
technical arguments to more and more conceptual ones. The present Note continues on
this line, presenting a conceptual approach inspired by classical functional analysis which
may prove useful in other situations.

1. Introduction

Recently, a theorem announced by Schröder and Simpson in [15] and presented with a proof
in [16] has attracted some attention. Before stating this result we need some preparations.

Let X be an arbitrary topological space. The emphasis is on non-Hausdorff spaces
like directed complete partially ordered sets (= dcpos) with the Scott topology (see [4]) and
quotients of countably based spaces (qcb-spaces, see [2]). But, of course, compact and locally
compact Hausdorff spaces are classical examples. We consider functions defined on X with
values in R+, the set R+ of nonnegative real numbers extended by +∞ as top element. Such
functions f are lower semicontinuous if, for every r ∈ R+, the set {x ∈ X | f(x) > r} is
open in X. We denote by LX the set of all lower semicontinuous functions f : X → R+ with
the pointwise defined order. The pointwise supremum of any family of lower semicontinuous
functions is lower semicontinuous so that LX is a complete lattice. The pointwise defined
sum f + g of two lower semicontinuous functions f, g as well as the scalar multiple rf for
r ∈ R+ are also lower semicontinuous.
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The maps µ : LX → R+ which are linear and Scott-continuous, that is, those satisfying

µ(f + g) = µ(f) + µ(g), µ(rf) = rµ(f), µ(
∨↑

i

fi) =
∨↑

i

µ(fi)

for all f, g ∈ LX, r ∈ R+ and for every directed family (fi)i in LX, form the valuation

powerdomain VX. On VX one also has a pointwise defined order, addition and multiplica-
tion by nonnegative real numbers. We endow VX with the weak∗upper topology, that is,
the coarsest topology such that the evaluation maps µ 7→ µ(f) : VX → R+ remain lower
semicontinuous for all f ∈ LX. The Schröder-Simpson theorem says:

Theorem 1.1. For every linear functional ϕ : VX → R+ which is lower semicontinuous

with respect to the weak∗upper topology, there is an f ∈ LX such that ϕ(µ) = µ(f) for all

µ ∈ VX.

This theorem sounds exactly like a simple general fact from classical functional analysis
(see, e.g., [14, Chapter IV, 1.2]): Let V be a topological vector space over the field of real

numbers and V ∗ the dual vector space of all continuous linear functionals µ : V → R, then

every linear functional ϕ defined on the topological dual V ∗ which is continuous with respect

to the weak∗ topology is the evaluation at some f ∈ V , that is, ϕ(µ) = µ(f) for every µ ∈ V ∗.

Here the weak∗ topology is the coarsest topology on V ∗ such that all the evaluation maps
µ → µ(f) : V ∗ → R, f ∈ V , remain continuous. (Here R is meant to carry the usual
Hausdorff topology). The idea behind the quite simple proof of this classical result is to
reduce the question to the finite dimensional case, where it is trivial.

The Schröder-Simpson Theorem is a kind of asymmetric version of this classical fact in a
special situation. Its original proof was technical and involved. A new proof in a conceptual
framework was published in [9]. A short proof by J. Goubault-Larrecq [5] has appeared just
recently. Let us remark that the Schröder-Simpson theorem has a predecessor in Domain
Theory: If X is a continuous dcpo (with the Scott topology), then VX is a continuous dcpo,
too, and every Scott-continuous linear functional on VX is the evaluation at some f ∈ LX
(see C. Jones [7] and Kirch [11]). For a continuous dcpo X, the Scott topology on VX agrees
with the weak∗upper topology as Kirch [11] has shown, a fact that is now longer true for
more general spaces. Thus, the Schröder-Simpson Theorem is a far reaching generalization.

The proofs of the Schröder-Simpson theorem due to Keimel and Goubault-Larrecq are
based on two lemmas that hold for every lower semicontinuous linear functional ϕ from
the valuation powerdomain VX with the weak∗upper topology into R+, where X is any
topological space:

Lemma 1.2. (Lemma 2 in [5], Theorem 5.3 in [9]) There is a family (fi)i of functions in

LX such that ϕ(µ) = supi µ(fi) for every µ ∈ VX.

Lemma 1.3. (Lemma 1 in [5], Lemma 5.5 in [9]) The set of all f ∈ LX such that ϕ(µ) ≥
µ(f) for all µ ∈ VX is directed.

The Schröder-Simpson Theorem 1.1 can now be deduced as follows: Given a lower
semicontinuous linear ϕ : VX → R+, Lemma 1.2 gives us a family of (fi)i of functions in LX
such that ϕ(µ) = supi µ(fi) for all µ ∈ VX. By Lemma 1.3 the family (fi)i can be chosen to
be directed and we let f = supi fi. Since the valuations µ ∈ VX are Scott-continuous on LX,
they preserve directed suprema and we obtain that ϕ(µ) = supi µ(fi) = µ(supi fi) = µ(f)
for all µ ∈ VX. In fact, it suffices to find a subcone C of LX and to prove the two lemmas
above for subfamilies of C, for example for the subcone of step functions.



WEAK UPPER TOPOLOGIES 3

It is desirable to prove an analogue of the Schröder-Simpson Theorem for situations dif-
ferent from the valuation powerdomain. For the moment I do not know how to generalize
Lemma 1.3. For Lemma 1.2, a general conceptual argument had been developed in [9, Sec-
tion 5.1] by reducing the problem to a situation close to the classical vector space situation;
but this argument needed some quite heavy background from the theory of quasi-uniform
locally convex cones. Goubault-Larrecq found a simple direct argument for the proof of
Lemma 1.2 for the special situation of the valuation powerdomain. In this note we present
a direct approach to Lemma 1.2 based on Goubault-Larrecq’s idea but in an appropriate
generality. It uses the classical idea to reduce the problem to the finite dimensional case.

Let us recall the motivation behind all of this. The Schröder-Simpson theorem concerns
the probabilistic powerdomain over arbitrary topological spaces used in semantics for mod-
elling probabilistic phenomena in programming. Goubault-Larrecq [6] recently has applied
the result in his work on modelling probabilistic and ordinary nondeterminism simultane-
ously.

2. Cones and separation

The Schröder-Simpson Theorem cannot be proved with methods from classical functional
analysis, since the real-valued lower semicontinuous functions on a topological space X do
not form a vector space. For a lower semicontinuous function f : X → R, its negative −f is
not necessarily lower semicontinuous. Similarly, we are in an asymmetric situation for the
valuations, those being Scott-continuous linear functionals. We therefore work with cones, a
weakening of the notion of a vector space by restricting scalar multiplication to nonnegative
reals and not requiring the existence of additive inverses. This offers the advantage of
including infinity. In this section we provide some basic concepts. The connection to our
goal will appear only later.

We denote by R+ the set of nonnegative real numbers with the usual linear order,
addition and multiplication. The letters r, s, t, . . . will always denote nonnegative reals.
Further

R+ = R+ ∪ {+∞}

denotes the nonnegative reals extended by +∞ as a top element. We also extend addition
and multiplication from R+ to R+ by defining r +∞ = +∞+ r = +∞ for all r ∈ R+ and

r · (+∞) = +∞ · r =

{
+∞ for r > 0

0 for r = 0

Definition 2.1. A cone is a commutative monoid C carrying a scalar multiplication by
nonnegative real numbers satisfying the same axioms as for vector spaces; that is, C is
endowed with an addition (x, y) 7→ x+ y : C × C → C and a neutral element 0 satisfying:

x+ (y + z) = (x+ y) + z

x+ y = y + x

x+ 0 = x
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and with a scalar multiplication (r, x) 7→ r · x : R+ × C → C satisfying:

r · (x+ y) = r · x+ r · y
(r + s) · x = r · x+ s · x

(rs) · x = r · (s · x)
1 · x = x

0 · x = 0

for all x, y, z ∈ C and all r, s ∈ R+. An ordered cone is a cone C endowed with a partial
order ≤, such that addition and multiplication by fixed scalars r ∈ R+ are order preserving,
that is, for all x, y, z ∈ C and all r ∈ R+:

x ≤ y =⇒ x+ z ≤ y + z and r · x ≤ r · y

Unlike for vector spaces, addition in cones need not satisfy the cancellation property,
and cones need not be embeddable in vector spaces. For example R+ = R+ ∪ {+∞} is an

ordered cone that is not embeddable in a vector space. The same holds for finite powers R
n

+

and for infinite powers R
I

+ with the pointwise defined order x ≤ y iff xi ≤ yi for all indices i.

Maps ϕ from a cone C into R+ are simply referred to as functionals. Thus, functionals are
allowed to have the value +∞. On any set of functionals we consider the pointwise order
ϕ ≤ ψ if ϕ(x) ≤ ψ(x) for all x ∈ C.

Definition 2.2. Let C be a cone. A functional1 ϕ : C → R+ is called

homogeneous, if: ϕ(r · a) = r · ϕ(a) for all a ∈ C and all r ∈ R+ ,

additive, if: ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ C ,

superadditive if: ϕ(a+ b) ≥ ϕ(a) + ϕ(b) for all a, b ∈ C ,

subadditive if: ϕ(a+ b) ≤ ϕ(a) + ϕ(b) for all a, b ∈ C .

We say that ϕ is sublinear (superlinear, linear, respectively), if it is homogeneous and
subadditive (superadditive, additive, respectively).

As in real vector spaces, we have a notion of convexity:

Definition 2.3. A subset K of a cone C is convex if, for all a, b ∈ K, the convex combina-
tions ra+ (1− r)b belong to K for all real number r with 0 ≤ r ≤ 1.

Convex sets in cones may look different than those in vector spaces because of the
presence of infinite elements. Indeed, in R+ not only intervals I are convex but also the sets
I ∪ {+∞}.

To every functional ϕ : C → R+ we assign the sets

Uϕ = {x ∈ C | ϕ(x) > 1}, Aϕ = {x ∈ C | ϕ(x) ≤ 1}

which are complements one of the other. These sets reflect properties of the functionals:

Remark 2.4. For homogeneous functionals ϕ and ψ on a cone C we have:
(a) ϕ ≤ ψ if and only if Uϕ ⊆ Uψ if and only if Aϕ ⊇ Aψ.

Indeed, ψ ≤ ϕ iff, for all 0 < r < +∞, ψ(x) ≤ r =⇒ ϕ(x) ≤ r. For 0 < r < +∞,
ψ(x) ≤ r =⇒ ϕ(x) ≤ r iff ψ(x

r
) ≤ 1 =⇒ ϕ(x

r
) ≤ 1 iff x

r
∈ Aψ =⇒ x

r
∈ Aϕ iff

x ∈ rAψ =⇒ x ∈ rAϕ iff rAψ ⊆ rAϕ iff Aψ ⊆ Aϕ.

1We simply call homogeneous what is usually called positively homogeneous. Previously authors always
supposed ϕ(0) = 0 for homogeneous functionals; note that we omit this requirement.



WEAK UPPER TOPOLOGIES 5

(b) If ϕ is sublinear then Aϕ is convex.
Indeed, if ϕ is sublinear and a, b are elements in Aϕ, then ϕ(ra+(1− r)b) ≤ ϕ(ra)+ϕ((1−
r)b) = rϕ(a) + (1− r)ϕ(b) ≤ 1, whence ra+ (1− r)b ∈ Aϕ.

(c) If ψ is superlinear then Uψ is convex.

The following technical result is the key to our main result:

Lemma 2.5. Let V = {(y1, . . . , yn) ∈ R
n

+ | yi > 1 for all i = 1, . . . , n} and K be a convex

subset in R
n

+ disjoint from V . Then there are nonnegative real numbers a1, . . . , an such that∑n
i=1 ai = 1 and

∑

i

aixi ≤ 1 <
∑

i

aiyi for all (x1, . . . , xn) ∈ K, (y1, . . . , yn) ∈ V

Proof. Let V and K be as in the statement of the lemma. The convex hull of K ∪ [0, 1]n

does not meet V . Indeed, if x ∈ K, then xi ≤ 1 for some coordinate xi of x; as yi ≤ 1 for
every coordinate of y ∈ [0, 1]n, the i-th coordinate of every convex combination of x and y

is ≤ 1. As V is an upper set, the lower set L of all elements z ∈ R
n

+ that are below some
element in the convex hull of K ∪ [0, 1]n does not meet V , and L is convex, too.

We now consider the convex subset L′ = L ∩ Rn and the convex open subset V ′ =
V ∩Rn of Rn which are disjoint. By a standard separation theorem (see the remark below),
there is a linear functional f : Rn → R such that f(x) ≤ 1 < f(y) for all x ∈ L′ and all
y ∈ V ′. As for every linear functional on Rn, there are real numbers a1, . . . , an such that
f(x1, . . . , xn) =

∑
i aixi for every x = (x1, . . . , xn) ∈ Rn. Let us show that ai ≥ 0 for every

i and
∑

i ai = 1.
Since (1, 1, . . . , 1) ∈ L′, we have

∑
i ai = f(1, 1, . . . , 1) ≤ 1. Since (1+ ε, . . . , 1+ ε) ∈ V ′

for every ε > 0, we have
∑

i ai+nε = f(1+ε, . . . , 1+ε) > 1 for all ε > 0, whence
∑

i ai ≥ 1.
We finally show that a1 ≥ 0. Since the vector (2 + ε, 1 + ε, . . . , 1 + ε) belongs to V ′ for
every ε > 0, we have 1 < f(2 + ε, 1 + ε, . . . , 1 + ε) = a1 +

∑n
i ai + nε = a1 +1+ nε, that is,

0 < a1 + nε for every ε > 0, which implies a1 ≥ 0. Similarly, ai ≥ 0 for all i.
The restriction of f to the positive cone Rn+ has a unique Scott-continuous extension

to R
n

+ also given by
∑

i aixi for all x = (x1, . . . , xn) ∈ R
n

+ which has the desired separation
property for K and V .

Remark 2.6. In the proof of the preceding Lemma 2.5 we have used a standard Separation
Theorem which can be proved for arbitrary topological vector spaces E over the reals (see,
e.g., [13, Theorem 3.4(a)]): For every open convex subset V ′ and every convex subset L′

disjoint from V ′ there are a continuous linear functional f : E → R and a real number r

such that f(x) ≤ r < f(y) for every x ∈ L′ and every y ∈ V ′. Since r 6= 0 in the situation

in the proof above, one may choose r = 1 by replacing f by 1
r
f .

The proof of this standard Separation Theorem uses the axiom of choice. We only
need this Separation Theorem for finite dimensional real vector spaces. For this special
case, there exist constructive proofs. One of the referees for this paper has worked out
such a constructive proof. One may also use a separation theorem for convex subsets in
finite dimensional vector spaces (see Aliprantis and Border [1, Theorem 7.35, p. 279])
often attributed to Minkowski. In [3], K. C. Border discusses the same result under the
name of ’Finite Dimensional Separating Hyperplane Theorem 11’, and Border’s proof looks
constructive, as far as I can see. Thus, our Lemma 2.5 has a constructive proof, not using the

axiom of choice or any weak form thereof, and the same holds for the following proposition.
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I am indebted to one of the referees for a detailed discussion on the issue of a constructive
proof. Moreover, the proof of Lemma 2.5 has been simplified by a suggestion of this referee,
namely to replace K by the convex hull of K with the cube [0, 1]n.

The following key result uses the reduction to the finite dimensional case as indicated
in the Introduction:

Proposition 2.7. Consider a cone D together with a sublinear functional ϕ : D → R+ and

finitely many linear functionals ψi : D → R+, i = 1, . . . , n, such that ψ1 ∧ · · · ∧ ψn ≤ ϕ.

Then there are nonnegative real numbers a1, . . . , an such that
∑

i ai = 1 and ψ1 ∧ · · · ∧ψn ≤∑n
i=1 aiψi ≤ ϕ.

Proof. Let A = Aϕ be the set of all x ∈ D such that ϕ(x) ≤ 1. Since ϕ is supposed to be
sublinear, A is convex. Further let U be the set of all x ∈ D such that (ψ1 ∧ · · · ∧ψn)(x) =

mini ψi(x) > 1. Consider the map Ψ: D → R
n

+ defined by Ψ(x) = (ψ1(x), . . . , ψn(x)). This
map Ψ is linear, since all the ψi are linear . For x ∈ U we have ψi(x) > 1 for every i, that
is Ψ(x) ∈ V = {(x1, . . . , xn) ∈ R+ | xi > 1, i = 1, . . . , n}. Since Ψ is linear, the image
K = Ψ(A) of A is convex. For a ∈ A, we have (ψ1 ∧ · · · ∧ ψn)(a) ≤ ϕ(a) ≤ 1, whence

(ψ1(a), . . . , ψn(a)) 6∈ V . Thus, K = Ψ(A) is a convex subset of R
n

+ disjoint from V . By the
Separation Lemma 2.5 there are nonnegative real numbers a1, . . . , an such that

∑
i ai = 1

and
∑

i aici ≤ 1 <
∑

i aidi for all c ∈ K and all d ∈ V . We denote by G : R
n

+ → R+

the linear map G(x) =
∑

i aixi. Then, on one hand, G ◦ Ψ is a linear functional on D.
If (ψ1 ∧ · · · ∧ ψn)(x) > 1, then x ∈ U , hence Ψ(x) ∈ V which implies G(Ψ(x)) > 1,
whence ψ1 ∧ · · · ∧ ψn ≤ G ◦ Ψ by Remark 2.4(a). On the other hand, if ϕ(a) ≤ 1, then
a ∈ A, whence G(Ψ(a)) ≤ 1; thus G ◦ Ψ ≤ ϕ again by Remark 2.4(a). Noticing that,
G(Ψ(x)) =

∑n
i=1 aiψi(x), that is, G ◦Ψ =

∑n
i=1 aiψi, we have the desired result.

In the above lemma, the maps ψi are supposed to be linear; so the linear combination∑
i aiψi is linear, too. In particular, we have interpolated a linear functional between ϕ and

ψ1 ∧ · · · ∧ ψn. Under the hypotheses of the preceding lemma, there are general separation
theorems that yield directly the existence of a linear functional ψ between the sublinear
functional ϕ and the superlinear functional ψ1 ∧ · · · ∧ψn. Our Lemma above gives us more
information as it tells us that ψ may be chosen to be a convex combination of the ψi and
this property will be crucial in the following.

One may prove the preceding lemma also under the weaker hypothesis that the maps
ψi are only superlinear and not linear. But we have no use for this generalization.

3. Semitopological cones and lower semicontinuous functionals

Every partially ordered set P can be endowed with a simple topology, the upper topology ν:
a subbasis for the closed sets is given by the principal ideals ↓x = {y ∈ P | y ≤ x}, x ∈ P .

If not specified otherwise, we will use the upper topology on R+ and on R+. The proper
nonempty open subsets are simply the open upper intervals ]r,+∞[= {x | x > r} on R+

and the open upper intervals ]r,+∞] on R+, where r ∈ R+.
This asymmetric upper topology on R+ is appropriate to talk about lower semiconti-

nuity. In agreement with classical analysis, for an arbitrary topological space X, we call
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lower semicontinuous2 those functions f : X → R+ which are continuous with respect to
the upper topology on R+. Extended addition and multiplication are lower semicontinuous
as maps R+ × R+ → R+ also at infinity.

For topological spaces X,Y,Z, a function f : X × Y → Z will be said to be separately

continuous if, for each fixed x ∈ X, the function y 7→ f(x, y) : Y → Z and, for each fixed
y ∈ Y , the function x 7→ f(x, y) : X → Z is continuous. We say that f is jointly continuous

if it is continuous for the product topology on X × Y .

Definition 3.1. A semitopological cone is cone equipped with a topology satisfying the T0

separation axiom such that addition (x, y) 7→ x+ y : C × C → C and scalar multiplication
(r, x) 7→ rx : R+ × C → C are separately continuous. If these maps are jointly continuous,
we have a topological cone.

Example 3.2. For a nonnegative integer n, clearly R
n

+ is a cone ordered by the coordi-

natewise order. The upper topology on R
n

+ is the product of the upper topology on R+.

Addition and extended scalar multiplication are continuous for the upper topology on R
n

+

so that R
n

+ is a topological cone. The same holds for infinite powers R
I

+.

Any topological T0 space X comes with an intrinsic partial order, the specialization

preorder defined by x ≤ y if the element x is contained in the closure of the singleton {y}
or, equivalently, if every open set containing x also contains y. In this paper, an order
on a topological space will always be the specialization order. Open sets are upper (=
saturated) sets and closed sets are lower sets with respect to the specialization preorder.
The saturation ↑A of a subset A can also be characterized to be the intersection of the
open sets containing A. In Hausdorff spaces, the specialization order is trivial. On R+, the
specialization order for the upper topology agrees with the usual linear order. Continuous
maps between topological T0 spaces preserve the respective specialization preorders. For
more details, see e.g. [4], Section 0-5.

As we use the upper topology on R+, a semitopological cone C cannot satisfy the
Hausdorff separation property: Since continuous maps preserve the respective specialization
preorders, the continuity of scalar multiplication implies firstly that, for every a ∈ C, the
map r 7→ ra : R+ → C is order preserving, that is, the rays in the cone are linearly ordered,
and secondly that the cone is pointed; indeed, 0 = 0 · a ≤ 1 · a = a for all elements a of
the cone. In particular, the specialization order on C is nontrivial and the topology is far
from being Hausdorff except for the trivial case C = {0}. As continuous maps preserve the
specialization order, we conclude that every semitopological cone is an ordered cone with

bottom element 0.
Let D be a semitopological cone. There is a close relation between classes of open

subsets of D and classes of lower semicontinuous functionals on D.
An arbitrary functional ϕ : D → R+ is lower semicontinuous if and only if, for every

r ∈ R+, the set {x ∈ D | ϕ(x) > r} is open. For a homogeneous functional this simplifies:
A homogeneous functional is lower semicontinuous3 if and only if the set

Uϕ = {y ∈ D | ϕ(y) > 1}

2It is somewhat unfortunate that those functions are called lower semicontinuous which are continuous
with respect to the upper topology. But we do not want to deviate from the terminology in classical analysis
and the one adopted in [4].

3Homogeneous lower semicontinuous functionals on cones of lower semicontinuous maps are called previ-

sions by Goubault-Larrecq.



8 K. KEIMEL

is open. Since ϕ(0) = 0, the open set Uϕ does not contain 0. Conversely, for any open
subset U ⊆ D containing 0, the upper Minkowski functional

ϕU (y) = sup{r > 0 | y ∈ r · U}

is lower semicontinuous and homogeneous; it is understood that ϕU (x) = 0, if x 6∈ rU for
all r > 0.

For any nonempty finite family ϕ1, . . . , ϕn of homogeneous lower semicontinuous func-
tions the pointwise infimum

(ϕ1 ∧ · · · ∧ ϕn)(x) = min(ϕ1(x), . . . , ϕn(x))

is again homogeneous and lower semicontinuous. The same holds for the pointwise supre-
mum

(∨
i ϕi

)
(x) = supi ϕi(x) of an arbitrary family (ϕi)i of homogeneous lower semicon-

tinuous functionals.
We have the following properties sharpening Remark 2.4 (see [8, Propositions 7.4 and

7.5] and [12]):

Lemma 3.3.

(a) The assignment ϕ 7→ Uϕ establishes an order isomorphism between the collection HX

of all lower semicontinuous homogeneous functionals ϕ : D → R+ ordered pointwise

and the collection O∗X of all proper open subsets U of D ordered by inclusion; the

inverse map is given by assigning to every U ∈ O∗X its Minkowski functional ϕU (x).
For homogeneous lower semicontinuous functionals we have:

ϕ ≤ ψ ⇐⇒ Uϕ ⊆ Uψ, (3.1)

Uϕ1
∩ · · · ∩ Uϕn

= Uϕ1∧···∧ϕn
, (3.2)⋃

i

Uϕi
= U(

∨
i
ϕi). (3.3)

(b) A homogeneous functional ϕ is superlinear if and only if the corresponding open set Uϕ
is convex.

(c) A homogeneous functional ϕ is sublinear if and only if the complement Aϕ = D \Uϕ of

the corresponding open set is convex.

4. Weak upper topologies and the main result

We fix a dual pair of cones which, by definition, consists of two cones C and D together
with a bilinear map (x, y) 7→ 〈x, y〉 : C ×D → R+. Bilinearity means that for each x ∈ C,
the map

x̂ = (y 7→ 〈x, y〉) : D → R+

is linear and similarly for fixed y ∈ D. We will always suppose this bilinear map to be
non-singular, that is, for any two different elements y 6= y′ ∈ D there is an x ∈ C such that
〈x, y〉 6= 〈x, y′〉.

As before, we endow R+ with the upper topology. We consider the coarsest topology
w(D,C) on D rendering lower semicontinuous the maps x̂ = (y 7→ 〈x, y〉) : D → R+ for all
x ∈ C. We call it the weak upper topology on D. A subbasis of this topology is given by
the sets

Ux = {y ∈ D | x̂(y) = 〈x, y〉 > 1}, x ∈ C.



WEAK UPPER TOPOLOGIES 9

Addition and scalar multiplication are jointly continuous for the weak upper topology
w(D,C) so that D with the weak upper topology is a topological cone. Alternatively, D

may be mapped into the product space R
C

+ via the map x 7→ x̂. The weak upper topology

w(D,C) is the topology induced by the upper topology on the product space R
C

+.
As we suppose the bilinear form to be non-singular, the weak upper topology w(D,C)

satisfies the T0 separation axiom. The specialization order is given by y ≤ y′ if 〈x, y〉 ≤

〈x, y′〉 for all x ∈ C, that is, if ŷ(x) ≤ ŷ′(x) for all x ∈ C.

Remark 4.1. We may define a weak upper topology w(D,B) for any subset B by taking
the coarsest topology rendering continuous the maps x̂ for all x ∈ B. This weak upper
topology agrees with the weak upper topology w(D,Cone(B)), where cone(B) denotes the
subcone of C generated by B. This follows from the fact that finite linear combinations of
lower semicontinuous functionals are also lower semicontinuous.

As the weak upper topology is generated by the subbasic open sets Ux, x ∈ C, the finite
intersections

UF = {y ∈ D | 〈x, y〉 > 1 for all x ∈ F}

where F is a finite subset of C form a basis of the weak upper topology. Since these basic
open sets are convex, this topology is locally convex in the sense that every point has a
neighborhood basis of open convex sets. Every w(D,C)-open set is the union of a family of
basic open sets UF . Translating this statement to the homogeneous functionals according
to Lemma 3.3 we obtain:

Lemma 4.2. If D carries the weak upper topology w(D,C), the homogeneous lower semi-

continuous functionals ψ : D → R+ are those obtained from the functionals x̂, x ∈ C, as

pointwise sups of finite pointwise infs.

We now come to our general form of Lemma 1.2:

Theorem 4.3. Let C,D be a pair of cones together with a non-singular bilinear map

C × D → R+. We equip D with the weak upper topology w(D,C). Then every lower

semicontinuous sublinear functional ψ : D → R+ is the pointwise supremum of a family of

point evaluations x̂; more explicitly: For every y ∈ D,

ψ(y) = sup{x̂(y) | x ∈ C, x̂ ≤ ψ} = sup{〈x, y〉 | ∀z ∈ D. 〈x, z〉 ≤ ψ(z)}

Proof. By the preceding lemma every homogeneous lower semicontinuous functional ψ on
D is the pointwise sup of finite pointwise meets x̂1 ∧ · · · ∧ x̂n where the xi range over finite
families of elements in C. If ψ is sublinear, Proposition 2.7 tells us that there is a convex
combination

∑n
i=1 aix̂i, ai ∈ R+,

∑
i ai = 1, such that x̂1 ∧ · · · ∧ x̂n ≤

∑n
i=1 aix̂i ≤ ψ. Since∑n

i=1 aix̂i =
̂

∑n
i=1 aixi, we have found an element x =

∑n
i=1 aixi in C with x̂1 ∧ · · · ∧ x̂n ≤

x̂ ≤ ψ. Thus ψ is the pointwise sup of functionals x̂.

Concerning the previous proof, note that the functional x̂1 ∧ · · · ∧ x̂n is superlinear
and lower semicontinuous. Thus the Sandwich Theorem [8, 8.2] allows to find a continuous
linear functional ϕ with x̂1 ∧ · · · ∧ x̂n ≤ ϕ ≤ ψ. But that is not what we want. We want to
show that we can choose ϕ = x̂ for some x ∈ C. For this we use Proposition 2.7 which was
proved through a reduction of the problem to the finite dimensional case.

In the following we rephrase our theorem for some special situations.
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4.1. Dual pairs of ordered cones. One specializes the cones C and D above by a dual
pair of ordered cones C and D with an order preserving nonsingular bilinear map (x, y) 7→
〈x, y〉 : C×D → R+. Note that the given order onD may be stronger than the specialization
preorder induced by the weak upper topology w(D,C). Both orders agree if and only if
the bilinear form is order non-singular in the sense that for x 6≤ x′ in C there is a y ∈ D

such that 〈x, y〉 6≤ 〈x′, y〉, and similarly for the other argument. Under these hypotheses,
Theorem 4.3 specializes to:

Corollary 4.4. For every sublinear functional ψ : D → R+ which is lower semicontinuous

with respect to the weak upper topology w(D,C) we have ψ(y) = sup{x̂(y) | x ∈ C, x̂ ≤ ψ}
for every y ∈ D.

4.2. Dual pairs of semitopological cones. We now consider a pair C,D of semitopo-
logical cones together with a separately continuous non-singular bilinear form (x, y) 7→
〈x, y〉 : C ×D → R+. The weak upper topology w(D,C) is coarser than the given topology
on D. Applying Theorem 4.3 under these hypotheses we obtain:

Corollary 4.5. For every sublinear functional ψ : D → R+ which is lower semicontinuous

with respect to the weak upper topology w(D,C) we have ψ(y) = sup{〈x, y〉 | x ∈ C, x̂ ≤ ψ}
for every y ∈ D.

Since the given topology on D may be strictly coarser than the weak upper topology
w(D,C), the claim of the corollary need not be true for the sublinear functionals ψ : D → R+

which are lower semicontinuous with respect to the original topology on D.

4.3. Dual pairs of d-cones. Recall that a poset D is directed complete (a dcpo, for short),

if every directed family (xi)i of elements in D has a least upper bound, denoted by
∨↑

i xi. A
map f : C → D between dcpos is called Scott-continuous if it preserves least upper bounds

of directed sets, that is, if it is order preserving and if f(
∨↑

i xi) =
∨↑

i f(xi) for every
directed family of elements in C. These are precisely the functions that are continuous
for the respective Scott topologies, where a subset A of a dcpo is called Scott-closed if A

is a lower set and if
∨↑

i xi ∈ A for every directed family of xi ∈ A. We refer to [4] for
background on dcpos.

A d-cone is a cone equipped with directed complete partial order in such a way that
scalar multiplication (r, x) 7→ rx : R+ × C → C and addition (x, y) 7→ x + y : C × C → C

are Scott-continuous. With respect to the Scott topology a d-cone is a semitopological cone.
R+ with its usual order is a d-cone; its Scott topology agrees with the upper topology. Thus
the Scott-continuous functionals on a d-cone are the lower semicontinuous ones.

We can specialize our results to dual pairs of d-cones C,D with a Scott-continuous
non-singular bilinear form 〈−,−〉 : C×C → C. But here we want to consider also subcones
C0 ⊆ C which are d-dense in C, that is, the only d-subcone of C that contains C0 is C
itself. We have:

Lemma 4.6. The weak upper topology w(D,C0) agrees with the weak upper topology w(D,C).

Proof. In order to verify our claim, we first notice: If (xi)i is a directed family in C and x =∨↑

i xi, then Ux =
⋃
i Uxi . Indeed, y ∈ Ux if and only if 1 < 〈x, y〉 = 〈

∨↑

i xi, y〉 =
∨↑

i〈xi, y〉
(by the Scott-continuity of the bilinear form) if and only if 1 < 〈xi, y〉 for some i if and
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only if y ∈ Uxi for some i. This shows that adding suprema of directed sets to the set C0

does not refine the weak upper topology. By [10, Corollary 6.7] this suffices to justify our
claim.

Under the hypotheses of this subsection, Theorem 4.3 now specializes to the following:

Corollary 4.7. Let C,D be a dual pair of d-cones and C0 a d-dense subcone of C. We

endow D with the weak upper topology w(D,C0) and consider a Scott-continuous sublinear

functional ψ : D → R+. Then ψ(y) = sup{x̂(y) | x ∈ C0, x̂ ≤ ψ} for every y ∈ D.

5. Dual cones and the Schröder-Simpson Theorem

The standard situation for applying the previous setting is to start with a cone C, to form
the algebraic dual D = C ′ of all linear functionals µ : C → R+ which is again a cone under
pointwise addition and scalar multiplication and to take the bilinear map 〈x, µ〉 = µ(x) for
x ∈ C, µ ∈ C ′ which is non-singular for obvious reasons.

For ordered cones C it is natural to restrict to the order dual of all order preserving
linear functionals.

If we start with a semitopological cone C, we consider the topological dual C∗ of all
lower semicontinuous linear functionals on C which is a subcone of the algebraic dual C ′.
We consider the weak upper topology w(C∗, C) on C∗ which is also called the weak∗upper

topology in agreement with the terminology in functional analysis. It is the coarsest topology
for which the evaluation maps

x̂ = (µ 7→ µ(x)) : C∗ → R+

are lower semicontinuous for all x ∈ C. The bilinear map (x, µ) 7→ µ(x) : C × C∗ → R+ is
separately lower semicontinuous. We ask:

Question 5.1. Characterize those semitopological cones C with the property that, for every
linear functional ϕ : C∗ → R+ that is lower semicontinuous for the weak∗upper topology,
there is a unique element x ∈ C such that ϕ(µ) = µ(x) for every µ ∈ C∗, that is, ϕ = x̂ for
a uniquely determined x ∈ C.

Since the evaluation maps are linear, x 7→ x̂ yields a map from C to the double dual
C∗∗ which is linear. The question formulated above is equivalent to the question whether
the map x 7→ x̂ : C → C∗∗ is an isomorphism of cones.

A simple example for cones having this property are the ’finite dimensional’ cones R
n

+

endowed with the upper topology (which agrees with the product topology with respect
to the upper topology on R+). This follows from the fact that the dual cone of all lower

semicontinuous linear functionals on R
n

+ is isomorphic to R
n

+ and its weak∗upper topology
agrees with the upper topology. For the proof we just need the following:

Lemma 5.2. 3.2 For every lower semicontinuous linear functional G : R
n

+ → R+ there are

r1, . . . , rn ∈ R+ such that G(x1, . . . , xn) = r1x1 + · · ·+ rnxn.

Proof. Given G : R
n

+ → R+, let ri = G(ei) ∈ R+ where ei is the standard basis vector all
entries of which are zero, except the i-th entry which is 1. By linearity, G(x1, . . . , xn) =∑

i rixi for all (x1, . . . , xn) ∈ Rn+. By lower semicontinuity this formula extends to all of

R
n

+.
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The Schröder-Simpson Theorem yields a whole class of examples for which the answer
to Question 5.1 is affirmative. Indeed, for any topological space X, the cone C = LX
of lower semicontinuous functions f : X → R+ is a d-cone and its dual is the valuation
powerdomain C∗ = VX.

Of course, Question 5.1 can be split. The injectivity of the map x 7→ x̂ is equivalent to
the question whether the lower semicontinuous linear functionals on C separate the points
of C. Indeed, for elements x 6= y in C, there is a µ ∈ C∗ such that µ(x) 6= µ(y) if, and
only if, x̂(µ) 6= ŷ(µ), that is, x̂ 6= ŷ. This criterion for injectivity is equivalent to the
property that, whenever x 6≤ y, there is a convex open set U ⊆ C containing x but not y.
This is a consequence of the Separation Theorem ([8, 9.1]). This property is in particular
guaranteed by local convexity: A semitopological cone is locally convex if every point has a
neighborhood base of open convex sets. Thus, injectivity is not the problem; surjectivity is
the issue.

We are mainly interested in the case of a d-cone C with its Scott topology. We then form
the dual cone D = C∗ of all Scott-continuous linear maps µ : C → R+ which is a d-cone, too,
for the pointwise defined order. The bilinear map 〈x, µ〉 = µ(x) is Scott-continuous. Again,
the topology w(C∗, C) on C∗ is called the weak∗upper topology. By Lemma 4.6 above, we
can replace C by any d-dense subcone C0 since then w(C∗, C) = w(C∗, C0). Theorem 4.3
now specializes to the following general version of Lemma 1.2 in the Introduction:

Corollary 5.3. Let C be a d-cone and C∗ its dual cone of Scott-continuous linear function-

als µ : C → R+ endowed with its weak∗-upper topology. Let C0 be a d-dense subcone of C in

the sense that there is no proper d-subcone of C containing C0. Then for every lower semi-

continuous sublinear functional ϕ : C∗ → R+ we have ϕ(µ) = sup{µ(x) | x ∈ C0, x̂ ≤ ϕ} for

every µ ∈ C∗, that is, ϕ = sup{x̂ | x ∈ C0, x̂ ≤ ϕ}.

What we are lacking is a general version of Lemma 1.3. So we are left with the ques-
tion: Characterize the d-cones C for which the conclusion of the previous corollary can be
strengthened as follows:

For every lower semicontinuous linear functional ϕ : C∗ → R+ there is a directed family

xi of elements in C such that ϕ(µ) =
∨↑
i µ(xi) for all µ ∈ C∗.

If this is the case, then we may form x =
∨↑
i xi and we obtain ϕ(µ) =

∨↑
i µ(xi) = µ(

∨↑
i xi) =

µ(x), since all the µ ∈ C∗ are Scott-continuous.

6. Comments

The following example may be instructive. Even in the finite dimensional case not every
linear functional on a cone with values in R+ may be lower semicontinuous for a weak upper
topology.

Example 6.1. Take the discrete two elements space 2 = {0, 1} and the Sierpinski space Σ,
the two element set {0, 1} with {1} as the only proper nonempty open subset, let D = L2 =
R2
+ and C = LΣ = {(x1, x2) ∈ R2

+ | x1 ≥ x2}. The standard inner product is a bilinear map
C ×D → R+. One might think that this situation gives a counterexample to Theorem 4.3.
Indeed, the second projection π2 = ((y1, y2) 7→ y2) : D → R+ is a linear functional, but there
is no x = (x1, x2) ∈ C such that π2(y1, y2) = 〈(x1, x2), (y1, y2)〉. (The only point x satisfying
this equation is x = (0, 1) which does not belong to C.) Also, it is not possible to obtain π2
as the pointwise sup of functionals of the type x̂ = (y 7→ 〈x, y〉) with x ∈ C. But there is
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not contradiction to Theorem 4.3. The point is, that π2 is not lower semicontinuous with
respect to the weak upper topology w(D,C). Indeed, the specialization order ≤s associated
with the topology w(D,C) has to be preserved by functionals that are lower semicontinuous
with respect to the weak upper topology w(D,C). In this case the specialization order on
D is given by

(y1, y2) ≤s (y
′
1, y

′
2) ⇐⇒ y1 ≤ y′1, y1 + y2 ≤ y′1 + y′2

The projection π2 does not preserve ≤s, since (1, 1) ≤ (2, 0) but π2(1, 1) = 1 6≤ 0 = π2(2, 0).

In the following we show a phenomenon that looks surprising:

Example 6.2. Let C and D be subcones of Rn which are closed and have interior points

for the usual Euclidean topology. Suppose in addition that, for the standard inner product,

〈c, d〉 ≥ 0 for all c ∈ C, d ∈ D. We claim: C is the dual D∗ of D in the sense that for every

linear functional ϕ : D → R+, which is lower semicontinuous for the weak upper topology

w(D,C), there is a unique x ∈ C such that ϕ = x̂ for some x ∈ C.

For the proof consider such a linear functional ϕ. It may be extended in a unique way
to a linear functional on Rn. Thus there is a unique element x0 ∈ Rn such that ϕ = x̂0. By
Proposition 4.3, 〈x0, y〉 = supv∈X〈v, y〉 for all y ∈ D, where X is the set of all v ∈ C such
that v̂ ≤ x̂0, that is 〈v, y〉 ≤ 〈x0, y〉, that is 〈x0 − v, y〉 ≥ 0 for all y ∈ D. This amounts to
say that x0−v ∈ D∗, that is v ≤D∗ x for the order ≤D∗ defined by the cone D∗. This shows
that the set X is compact. Clearly, X is convex. If x0 6∈ C, then x0−X = {x0−x | x ∈ X}
is compact and convex but does not contain 0. Take any y0 in the interior of D. Then
ŷ0 is a strictly positive functional on D∗, that is, 〈x, y0〉 > 0 for all x 6= 0 in D∗. Hence,
〈x− v, y0〉 > 0 for all v ∈ X. Since X is compact, it follows that supv∈X 〈v, y0〉 < 〈x, y0〉, a
contradiction.

Similar results as above hold for d-subcones of R
n

+. But note that C is not the dual of
D, in general, if we use the usual Euclidean topology on D.
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