
Logical Methods in Computer Science
Vol. 11(3:24)2015, pp. 1–76
www.lmcs-online.org

Submitted Dec. 10, 2014
Published Sep. 30, 2015

NEW DIRECTIONS IN CATEGORICAL LOGIC,

FOR CLASSICAL, PROBABILISTIC AND QUANTUM LOGIC

BART JACOBS

Institute for Computing and Information Sciences, Radboud University Nijmegen, The Nether-
lands.
URL: www.cs.ru.nl/B.Jacobs
e-mail address: bart@cs.ru.nl

Abstract. Intuitionistic logic, in which the double negation law ¬¬P = P fails, is domi-
nant in categorical logic, notably in topos theory. This paper follows a different direction
in which double negation does hold, especially in quantitative logics for probabilistic and
quantum systems. The algebraic notions of effect algebra and effect module that emerged
in theoretical physics form the cornerstone. It is shown that under mild conditions on a
category, its maps of the form X → 1 + 1 carry such effect module structure, and can be
used as predicates. Maps of this form X → 1 + 1 are identified in many different situa-
tions, and capture for instance ordinary subsets, fuzzy predicates in a probabilistic setting,
idempotents in a ring, and effects (positive elements below the unit) in a C∗-algebra or
Hilbert space.

In quantum foundations the duality between states and effects (predicates) plays an
important role. This duality appears in the form of an adjunction in our categorical
setting, where we use maps 1 → X as states. For such a state ω and a predicate p, the
validity probability ω |= p is defined, as an abstract Born rule. It captures many forms of
(Boolean or probabilistic) validity known from the literature.

Measurement from quantum mechanics is formalised categorically in terms of ‘instru-
ments’, using Lüders rule in the quantum case. These instruments are special maps asso-
ciated with predicates (more generally, with tests), which perform the act of measurement
and may have a side-effect that disturbs the system under observation. This abstract
description of side-effects is one of the main achievements of the current approach. It is
shown that in the special case of C∗-algebras, side-effects appear exclusively in the non-
commutative (properly quantum) case. Also, these instruments are used for test operators
in a dynamic logic that can be used for reasoning about quantum programs/protocols.

The paper describes four successive assumptions, towards a categorical axiomatisation
of quantitative logic for probabilistic and quantum systems, in which the above mentioned
elements occur.

1. Introduction

Mathematical logic started in the 19th century with George Boole’s Laws of Thought. Since
then ‘Boolean algebras’ form the (algebraic) basis of formal logic. In the 20th century these

2012 ACM CCS: [Theory of computation]: Models of computation—Probabilistic computation /
Quantum computation theory; Semantics and reasoning—Program semanticsCategorical semantics.

Key words and phrases: quantum logic, measurement, categorical logic, effect algebra, side-effects.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(3:24)2015

c© B. Jacobs
CC© Creative Commons

http://creativecommons.org/about/licenses

2 B. JACOBS

✎

✍

☞

✌

categorical

quantum logic?

✎

✍

☞

✌

topos theory

type theory

✎

✍

☞

✌

effect algebras

logic & probability

OO

✎

✍

☞

✌

Intuitionistic logic

Heyting algebra

OO

✎

✍

☞

✌

Quantum logic

Orthomodular lattice

OO

✎

✍

☞

✌

Boolean

logic/algebra

drop distributivity

keep double negation

88qqqqqqqqdrop double negation

keep distributivity

ee▲▲▲▲▲▲▲

Figure 1: Generalisations of Boolean logic

Boolean algebras have been generalised, mainly in two directions, see Figure 1. Of these
two directions the one on the left is most familiar and dominant. It has given rise to the
edifice of topos theory, where the logic naturally associated with geometric structures is
intuitionistic — in the sense that the double-negation law ¬¬P = P fails. Also, it has given
rise to Martin-Löf’s intuitionistic type theory [59, 65], which forms the foundation for the
theorem prover Coq (and other such computerised formal systems). In this tradition it is
claimed that the natural logic of computation is intuitionistic.

However, there are generalisations of Boolean logic where double-negation does hold,
like linear logic or quantum logic. In this tradition negation is often written as superscript
P⊥ and called orthocomplement. The logic of the quantum world has first been formalised
by von Neumann and Birkhoff in terms of orthomodular lattices [64, 8] (see also the mono-
graph [50]). But these orthomodular lattices are rather awkward mathematical structures
that have not led to a formal calculus of propositions (or predicates) capturing relevant
logical phenomena in physics.

A second generalisation, started in the 1990s, involves so-called effect algebras [25] and
effect modules, introduced in various forms (e.g. as D-posets [18] or as weak orthoalgebras
in [29]) and by various people (see [24]), notably by theoretical physicists Foulis, Bennet,
Gudder and Pulmannová, who published their work in the physics literature, largely outside
the range of perception of traditional logicians. These effect algebras are partial commuta-
tive monoids with an orthocomplement (−)⊥. Examples come from classical logic (Boolean
algebras), quantum logic in a Hilbert space or C∗-algebra, probability theory (the unit
interval [0, 1]) and measure theory (step functions, taking finitely many values). Effect alge-
bras form a common generalisation of structures from logic and probability theory, making
it possible to see both negation P 7→ ¬P in logic and opposite probability r 7→ 1 − r

as instances of the same orthocomplement operation. Partial commutative monoids have

NEW DIRECTIONS IN CATEGORICAL LOGIC 3

appeared in programming language semantics early on, notably in the partially additive
structures of [5], and also in models of linear logic [33]. But orthocomplement is typical of
the more restrictive quantum context.

As an aside: the name ‘effect’ in ‘effect algebra’ refers to the observer effect1 that
may arise in a quantum setting, where the act of observation may disturb the system under
observation, see [57, 11, 10]. There is no historical connection with the use of the word ‘effect’
in the context of computer programming with monads (going back to [62]). However, there
is a similarity in meaning. Both usages of the word ‘effect’ — in physics and in computer
science — refer to a ‘side-effect’, that is, to a change in an underlying state space.

Effect modules are effect algebras with an additional scalar multiplication, where the
scalars are typically taken from the unit interval [0, 1]. Intuitively, these effect modules can
be seen as vector spaces, defined not over the real or complex numbers, but over [0, 1]. They
are the algebraic counterparts of quantitative logics, where predicates can be multiplied with
a scaling factor. This includes fuzzy predicates and effects in Hilbert spaces or C∗-algebras.
In fact, we present a general construction for effect modules of predicates in a category,
see Proposition 4.6. This forms an important part of our development of the right leg in
Figure 1.

The basic theory of effect algebras and modules has been developed by several physi-
cists who (understandably) lacked a background in modern logic, (program) semantics, and
categorical logic. Especially the unfamiliarity with the modern methods of categorical logic
seriously hampered, or even blocked, progress in this field. As a result these founders failed
to identify certain fundamental relationships and similarities with programming semantics
and logic (notably the categorical dualities between convex sets and effect modules [44],
described in quantum theoretic terms as the duality between states and effects, or between
Schrödinger’s and Heisenberg’s view, see [35, Chapter 2]). Here this duality is described in
terms of an adjunction EModop

⇄ Conv between categories of effect modules and convex
sets, see Figure 3 and Proposition 2.6.

One of the great contributions in the left leg of Figure 1 is the notion of a topos (see
e.g. [61]), which can be seen as a categorical formulation of intuitionistic set theory and
logic. One wonders: is there a comparably important (categorical) notion in the right leg?
Is there an analogue of a topos for the quantum world, incorporating a quantitative logic?
This question forms the main motivation for the research presented in this paper. We do
not claim to have the definitive answer at this stage, but we do think that we identify some
key properties of such an analogue, belonging to the right leg in Figure 1.

In topos theory predicates on an object X can equivalently be described as subobjects
of X and as maps X → Ω, where Ω is a special object called the subobject classifier. This Ω
carries the structure of a Heyting algebra. Here we shall use maps of the form p : X → 1+1
as predicates, where 1 is the final object and + is coproduct. Such predicates have a classical
flavour, since there is an associated orthocomplement p⊥ obtained by swapping the output
options. We write this as p⊥ = [κ2, κ1] ◦ p, where the κi : 1→ 1 + 1 are coprojections and
[−,−] is cotupling. Double negation p⊥⊥ = p holds by construction.

In the ordinary set-theoretic world there is a one-to-one correspondence between subsets
S ⊆ X of a set X and characteristic functions X → 1 + 1 on X. Both these notions can
be used as interpretation of predicates. This one-to-one correspondence fails in many other
settings. One can say that the emphasis in the left leg in Figure 1 lies on the ‘spatial’

1To be clear: we are concerned with the observer effect, on the system that is being measured, and not
with the possible effect on the measurement apparatus.

4 B. JACOBS

interpretation of predicates as subsets. The path on the right in Figure 1 rests, so we claim,
on the view of predicates as characteristic maps.

The two main discoveries wrt. these predicates as characteristic maps are:

(1) in general, these predicates X → 1 + 1 do not form a Boolean algebra, as one might
have expected, but an effect algebra — or more specifically, an effect module;

(2) these predicates X → 1 + 1 look rather simple, but, interpreted in different categories,
they naturally capture various descriptions in a common framework, including for in-
stance ordinary set-theoretic predicates X → {0, 1}, fuzzy predicates X → [0, 1], effects
in a Hilbert space or C∗-algebra, idempotents in a ring, complementable elements in a
distributive lattice, etc.

For instance, for a ring R we show that predicates R→ 1+1, in the opposite of the category
of rings, correspond to idempotents in R, and form an effect algebra. When the ring R is
commutative, this effect algebra is actually a Boolean algebra. The fact that idempotents
in a commutative ring form a Boolean algebra is well-known (see [48]). But the fact that
these idempotents form an effect algebra in the non-commutative case is new (as far as we
know).

There are four categories that will be used as leading examples. We briefly mention
them now, but refer to the Appendix for more details.

(1) The category Sets of sets and functions, as model of deterministic computation with
Boolean logic.

(2) The Kleisli category Kℓ(D) of the distribution monad D on the category Sets, as model
for discrete probabilistic computation and quantitative (fuzzy) logic.

(3) The Kleisli category Kℓ(G) of the Giry monad G on the category Meas of measur-
able spaces; this category Kℓ(G) is used for continuous probabilistic computation and
quantitative logic.

(4) The opposites (CstarPU)
op and (CstarCPU)

op of the categories of C∗-algebras and
(completely) positive unital maps, as models for quantum computation and logic. The
(common) subcategory of commutative C∗-algebras and positive unital maps captures
the probabilistic case.

In our axiomatisation of key aspects of these (and a few other) categories we start from
predicates as maps of the form X → 1+1. We then presents four successive assumptions on
a category that are important, so we think, for the right leg in Figure 1. These assumptions
on a category B can be summarised as follows.

(1) The category B is an ‘effectus’, that is, it has a final object 1 and finite coproducts 0,+
satisfying some mild properties. Then we prove that the predicates X → 1 + 1 form
an effect module. These predicates are related, via an adjunction, to states, which are
maps of the form 1 → X in B. Moreover, for these predicates p and states ω we can
define validity ω |= p via an abstract Born rule p ◦ ω, producing a scalar. This scalar
may for instance live in {0, 1} or in [0, 1], corresponding to Boolean and probabilistic
validity respectively. The table in Figure 2 gives an overview of the different forms that
this uniform definition of validity |= takes in different categories. The duality between
states and effects is an intrinsic part of our framework. The situation can be summarised
in a “state-and-effect” triangle as in Figure 3. Many more such triangles are described
in [43].

(2) For each n-test, consisting of n predicates pi : X → 1 + 1 which add up to 1, there
is a (chosen) instrument map instrp : X → n · X = X + · · · + X in B that performs

NEW DIRECTIONS IN CATEGORICAL LOGIC 5

category predicate X
p→ 1 + 1 state 1

ω→ X validity ω |= p

Sets subset p ⊆ X element ω ∈ X ω ∈ p

Kℓ(D) fuzzy p : X → [0, 1] distribution ω ∈ D(X)
∑

x∈X p(x) · ω(x)

Kℓ(G) measurable p : X → [0, 1]
probability measure

ω ∈ G(X)

∫
p dω

DLop complementable p ∈ X prime filter ω ⊆ X p ∈ ω

BAop p ∈ X ultrafilter ω ⊆ X p ∈ ω

Rngop idempotent p ∈ X ω : X → Z ω(p)

(CstarPU)
op p ∈ X with 0 ≤ p ≤ 1 ω : X → C ω(p)

special case X =
B(H) ∈ (CstarPU)

op,
for H ∈ FdHilb

H p→ H
with 0 ≤ p ≤ id

density matrix
ω ∈ DM(H) tr(ωp)

Figure 2: Examples of predicates p, states ω, and validity (ω |= p) = p ◦ ω in different
categories, where DL, BA, Rng, and FdHilb are the categories of distributive
lattices, Boolean algebras, rings, and of finite-dimensional Hilbert spaces respec-
tively. Validity ω |= p is either Boolean, in {0, 1}, or probabilistic, in [0, 1],
depending on what the scalars 1→ 1 + 1 are in the category at hand.

measurement. These maps are a categorical formalisation of (discrete) instruments in
quantum theory, see [20, 66, 35]. Intuitively, an instrument map sends an element in X
to a suitable spread over the n coproduct options in the output X+ · · ·+X, determined
by the predicates pi. Such a map instrp may have a side-effect (aka. observer effect)
on the system under observation, describing the state change resulting form measure-
ment/observation. Such state changes are typical for the quantum world. We show
that these side-effects do not occur in set-theoretic or probabilistic models, including
commutative C∗-algebras. However, side-effects do arise in proper quantum models,
given by non-commutative C∗-algebras.

Via these instruments instrp a guarded command for a programming language and
test operators for a dynamic logic can be defined. There are two of these test operations,
labelled as ‘test-andthen’ and as ‘test-then’. Both of them may have side-effects (in
quantum models). Thus, side-effects have a prominent role in our framework.

(3) The category B has tensors ⊗ which interact appropriately with the previous two points.
In particular, the unit of this tensor is the final object 1, giving a tensor with projections
X ← X ⊗Y → Y . These projections are used for weakening on predicates and for mar-
ginal / partial trace computations on states. They can be used to pinpoint dependence
in probabilistic and entanglement in quantum models.

(4) Finally, an object Q is assumed together with two states and an appropriate predicate
that capture quantum bits (qubits). This is rather standard, but is required to model
quantum computations.

6 B. JACOBS

(EModM)op
Hom(−,M)

--⊤ ConvM

Hom(−,M)

mm

B
Hom(−,1+1)=Pred

ee▲▲▲▲▲▲▲▲▲▲▲ Stat=Hom(1,−)

;;✇✇✇✇✇✇✇✇✇

Figure 3: State-and-effect triangle for an effectus B, with predicate and state functors, and
with scalars M = Pred(1) = Stat(1 + 1) = Hom(1, 1 + 1) in B.

The first of these three points apply to set-theoretic, probabilistic, and to quantum models.
Only the last, fourth point holds exclusively for quantum models (esp. C∗-algebras).

Thus, one of the achievements of this paper is the uniform description of these set-
theoretic, probabilistic and quantum models. Quantum mechanics is often described in
terms of Hilbert spaces, see textbooks like [35], but also [2, 3]. However, it is the ‘algebraic’
formulation of quantum mechanics in term of C∗-algebras that fits in the current uniform
framework. This algebraic approach stems from Heisenberg’s matrix mechanics picture, see
e.g. [58, 77].

This switch to C∗-algebras was one of three steps that were crucial in the development
of this work. We list these steps explicitly.

(1) Not to use Hilbert spaces but C∗-algebras as (categorical) model for quantum compu-
tation.

(2) Not to use C∗-algebras with standard *-homomorphisms (preserving multiplication,
involution and unit), but with (completely) positive unital maps. The latter preserve
the unit and positive elements, and, if they are completely positive, preserve positive
elements under every extension.

(3) Not to use the standard direction of maps between C∗-algebra, but to work in the oppo-
site category, and understand computations (maps) between C∗-algebras as predicate
transformers, working backwards.

These three points come together in the simple but crucial observation: maps of the form
A→ 1 + 1, i.e. predicates, in the opposite of the category of C∗-algebras with (completely)
positive unital maps are in one-to-one correspondence with elements a ∈ A satisfying 0 ≤
a ≤ 1; these elements are called effects, and form an effect module. Also, instruments
for C∗-algebras are given by Lüders rule, see (7.5), and form a completely positive map
A→ A+ · · ·+A, again in the opposite category.

From duality theory (see [48]) it is already known that some categories occur most
naturally in dual form. A well-known example is the category cHA of complete Heyting
algebras (aka. frames), whose opposite category cHAop even has a separate name, namely
the category Loc of locales. Similarly, categories of C∗-algebras occur naturally in opposite
form, as categories of non-commutative geometries. This is in line with Heisenberg’s picture
where computations act in opposite direction. Here we describe this phenomenon more
generally as: maps between ‘algebraic models of logics’ can be understood as predicate
transformers acting in the opposite direction. This applies for instance to categories of
Boolean algebras, distributive lattices, or rings (like in Figure 2).

This paper is organised as follows. Background information about effect algebras and
modules is provided in Section 2, and about our running probabilistic and quantum example
categories in the Appendix. Predicates of the form X → 1 + 1 in various categories are

NEW DIRECTIONS IN CATEGORICAL LOGIC 7

described in Section 3. Their effect structure is investigated subsequently in Section 4.
States, as maps 1 → X, are added to the picture in Section 5. At that stage we can give
our semantic framework involving the satisfaction relation |= (see the overview in Figure 2),
predicate and state transformers, and the state-and-effect triangle in Figure 3. Section 6
explains a side-topic, namely how predicates X+Y → 1+1 on coproducts X+Y correspond
(via an isomorphism of effect modules) to pairs of predicates on X and on Y . This general
result includes familiar isomorphisms, like P(X + Y) ∼= P(X) × P(Y).

Section 7 introduces the next major contribution, namely a categorical formalisation
of the notion of measurement instrument. Via these instruments we express what it means
when a predicate (or more generally, a test) has a side-effect. This is studied more system-
atically in Section 8, where side-effect-freeness is related to commutativity in C∗-algebras.
This gives mathematical expression to the idea that observations may disturb, which is
typical for the quantum setting, as modelled by non-commutative C∗-algebras. These in-
struments are used to perform the action in a dynamic logic, involving ‘andthen’ and ‘then’
test operators 〈p?〉(q) and [p?](q), for predicates p, q. These operators are defined in the
general setting provided by our axiomatisation. Instantiations in our running examples give
familiar logical constructions, like conjunction and implication, multiplication and Reichen-
bach implication, or the sequential operations from [31, 32]. These logical test operators
〈p?〉(q) and [p?](q) satisfy some of the standard properties from dynamic logic, but they
represent a new approach in that they capture side-effects of the action p, via the associated
instrument that is used in their definition.

In Sections 10 and 11 the third and fourth assumptions are discussed, involving tensor
products ⊗ and a special object Q for qubits. The tensor product ⊗ comes with projections,
which lead to weakening as predicate transformer and to marginals as state transformer. The
composition operation on scalars turns out to be commutative in the presence of tensors
— via a more-or-less standard, Eckmann-Hilton style argument — and allow us to pinpoint
dependence and entanglement. We conclude in Section 11 by elaborating the superdense
coding example in our newly developed setting.

2. Preliminaries on effect algebras, effect modules, and convex sets

This paper uses categorical language to organise its material. It assumes a basic level of
familiarity with category theory including (co)product and monoidal structure, adjunctions,
and monads (including Kleisli and Eilenberg-Moore categories), see e.g. [7, 60]. Also, it
uses examples involving the distribution and Giry monad D and G, Hilbert spaces, and
C∗-algebras. Background information about these examples is relegated to the appendix.
It may be consulted on a call-by-need basis.

This preliminary section does describe the basics of effect algebras, effect modules, and
convex sets. This material is less standard, and an essential part of the approach presented
here.

In order to define an effect algebra, we need the notion of partial commutative monoid
(PCM). Before reading the definition of PCM, think of the unit interval [0, 1] with addition
+. This + is obviously only a partial operation, which is commutative and associative in a
suitable sense. This will be formalised next.

Definition 2.1. A partial commutative monoid (PCM) consists of a set M with a zero
element 0 ∈ M and a partial binary operation > : M × M → M satisfying the three

8 B. JACOBS

requirements below. They involve the notation x ⊥ y for: x> y is defined; in that case x, y
are called orthogonal.

(1) Commutativity: x ⊥ y implies y ⊥ x and x> y = y > x;
(2) Associativity: y ⊥ z and x ⊥ (y>z) implies x ⊥ y and (x>y) ⊥ z and also x>(y>z) =

(x> y) > z;
(3) Zero: 0 ⊥ x and 0 > x = x.

Later on we shall also use ‘joint orthogonality’ of elements x1, . . . , xn. This means that
the sum x1 > · · ·> xn is defined. The associativity property means that we can write such
expressions x1 > · · · > xn without brackets.

The notion of effect algebra extends a PCM with an orthocomplement (−)⊥. It is
due to [25], and in slightly different form also to [18] and [29]. The reference [24] gives an
overview.

Definition 2.2. An effect algebra is a PCM (E, 0,>) with an orthocomplement, that is,
with a (total) unary operation (−)⊥ : E → E, such that:

• x⊥ ∈ E is the unique element in E with x> x⊥ = 1, where 1 = 0⊥;
• x ⊥ 1⇒ x = 0.

For such an effect algebra one defines,

x ≤ y ⇐⇒ ∃z. x> z = y and x⊖ y = (x⊥ > y)⊥, for x ≥ y.
We shall shortly see, in Lemma 2.3 (3), that there is at most one element z with x> z = y.

A homomorphism E → D of effect algebras is given by a function f : E → D between
the underlying sets satisfying f(1) = 1, and if x ⊥ x′ in E then both f(x) ⊥ f(x′) in D

and f(x > x′) = f(x) > f(x′). Effect algebras and their homomorphisms form a category,
written as EA.

The standard example of an effect algebra is the unit interval. In [0, 1] one has r ⊥ s

iff r+ s ≤ 1, and in that case r> s = r+ s. The orthocomplement is r⊥ = 1− r, obviously
with r ⊥ (1 − r) and r > (1 − r) = 1. But the 2-element set 2 = {0, 1} is also an example
of an effect algebra — it is in fact the initial one. Hence both Booleans and probabilities
form instances of the notion of effect algebra.

When writing x> y we shall implicitly assume that x> y is defined, i.e. that x, y are
orthogonal: x ⊥ y. Similarly for ?. The notation > might suggest that this operation is
idempotent, but this is not the case (and not intended): for instance, in the unit interval
[0, 1] one has 1

2 >
1
2 = 1 6= 1

2 . But more generally, x > x = x only holds for x = 0, since
x> x = x = x> 0 yields x = 0 by cancellativity, see Lemma 2.3 (3) below.

Aside: an alternative axiomatisation of the unit interval exists in terms of MV-algebras
[14, 63], in which the sum operation is forced to be total, via truncation: min(r + s, 1).
The partiality of > in effect algebras may look strange at first, but turns out to be quite
natural2, occurring in many categories (see Proposition 4.4 below).

2Interestingly, in his An Investigation of the Laws of Thought from 1854 George Boole himself considered
disjunction to be a partial operation. He writes, on p.66 in the original edition: “Now those laws have
been determined from the study of instances, in all of which it has been a necessary condition, that the
classes or things added together in thought should be mutually exclusive. The expression x+y seems indeed
uninterpretable, unless it be assumed that the things represented by x and the things represented by y are
entirely separate; that they embrace no individuals in common.”

NEW DIRECTIONS IN CATEGORICAL LOGIC 9

We shall see many examples of effect algebras later on. Here we just mention that each
orthomodular lattice is an effect algebra, in which elements x, y are orthogonal iff x ≤ y⊥

iff y⊥ ≤ x, and also that each Boolean algebra is an effect algebra with x ⊥ y iff x ∧ y = 0.
We summarise some basic properties, without proof.

Lemma 2.3. In an effect algebra one has:

(1) Orthocomplementing is an involution: x⊥⊥ = x;
(2) Top and bottom are each others orthocomplements: 1⊥ = 0 and 0⊥ = 1;
(3) Cancellation holds: x> y = x> z implies y = z;
(4) Positivity (or zerosumfreeness) holds: x> y = 0 implies x = y = 0;
(5) ≤ is a partial order with 1 as top and 0 as bottom element;
(6) x ≤ y implies y⊥ ≤ x⊥;
(7) x> y is defined iff x ⊥ y iff y ≤ x⊥ iff x ≤ y⊥;
(8) x ≤ y and y ⊥ z implies x ⊥ z and x> z ≤ y > z;
(9) x> y = z iff y = z ⊖ x. �

Homomorphisms of effect algebras preserve the sums > that exist. This is like for
a probability measure µ : Σ → [0, 1] satisfying µ(U ∪ V) = µ(U) + µ(V) but only if the
measurable subsets U, V ∈ Σ are disjoint, i.e. if the sum U > V is defined in the Boolean
algebra Σ of measurable subsets. Such a µ is thus a map of effect algebras. We mention
two properties.

Lemma 2.4. Let f : E → D be a homomorphism of effect algebras.

(1) Then:

f(x⊥) = f(x)⊥ f(0) = 0 x ≤ x′ =⇒ f(x) ≤ f(x′).
(2) If E,D happen to be Boolean algebras, then f is also a map of Boolean algebras: the

inclusion functor BA →֒ EA is full and faithful — where BA is the category of Boolean
algebras.

Proof. For the first point notice that 1 = f(1) = f(x>x⊥) = f(x)>f(x⊥), so f(x⊥) = f(x)⊥

by uniqueness of orthocomplements. In particular, f(0) = f(1⊥) = f(1)⊥ = 1⊥ = 0.
Monotonicity is trivial. For the second point one uses that a join x∨ y in a Boolean algebra
can equivalently be expressed as a disjoint join (x ∧ ¬y)∨ (x ∧ y) ∨ (y ∧ ¬x). Therefor it is
preserved by a map of effect algebras. �

A test, or more precisely, an n-test in an effect algebra E is given by n elements
e1, . . . , en ∈ E with e1 > · · ·> en = 1. Such tests will be used as the basis for measurement
instruments in Section 7. An n-test in E can be identified with a map of effect algebras
P(n)→ E. If E is the set of effects Ef(H) in a Hilbert space H — consisting of the positive
maps H → H below the identity — then an n-test in Ef(H) is an observable on the discrete
measure space n, in the sense of [35]3.

Two extensions of the notion of effect algebra will be used, namely extension of an effect
algebra E with:

• a multiplication x · y of its elements x, y ∈ E; we call such a structure an effect monoid ;

3An observable on an arbitrary measure space (X,Σ) can be described as a map of σ-effect algebras
Σ → Ef(H), where the σ refers to the preservation of countable joins of pairwise orthogonal elements,
see [35, Defn. 3.5].

10 B. JACOBS

• a scalar multiplication r • x, where x ∈ E and r is a scalar, belonging for instance to
[0, 1], or more generally to a given effect monoid; such a structure will be called an effect
module.

In an effect monoid we require that the multiplication operation · is associative, preserves
0,> in each argument separately, and satisfies 1 · x = x = x · 1. An effect monoid is called
commutative if its multiplication is commutative. The unit interval [0, 1] is an example of
a commutative effect monoid, with the usual multiplication of probabilities. Similarly, the
Booleans {0, 1} form a commutative effect monoid with multiplication (conjunction).

Given an effect monoid M , an effect algebra E is an effect module over M if there is a
scalar multiplication • : M ×E → E which preserves 0,> in each argument separately and
additionally satisfies: 1 • x = x and r • (s • x) = (r · s) • x. A map of effect modules is
a map of effect algebras that commutes with scalar multiplication. We write EModM for
the resulting category. There is an obvious forgetful functor EModM → EA, comparable
to the forgetful functor VectK → Ab of vector spaces over a field K to Abelian groups.

Here is an example of an effect module — many more will be given below. The set
[0, 1]X contains functions from a set X to [0, 1] that can be understood as fuzzy predicates.
This set [0, 1]X is an effect algebra, via pointwise operations, with p ⊥ q if p(x) + q(x) ≤ 1
for all x ∈ X. It is also an effect module over [0, 1] with scalar multiplication r • p ∈ [0, 1]X ,
for r ∈ [0, 1], given by (r • p)(x) = r · p(x). Thus, [0, 1]X ∈ EMod[0,1], for each set X.

In a trivial manner each effect algebra E is an effect module over {0, 1}, with obvious
scalar multiplication {0, 1} × E → E. This is like: each Abelian group is a trivial module
over the (initial) ring Z of integers.

Remark 2.5. The notions of effect monoid and module can be described more abstractly:
an effect monoid is a monoid in the category of effect algebras, just like a semiring is a
monoid in the category of commutative monoids. In [44] it is shown that the category EA of
effect algebras is symmetric monoidal with the two-element (initial) effect algebra 2 = {0, 1}
as tensor unit. Then one can consider, in a standard way, the categories Mon(EA) and
CMon(EA) of (commutative) monoids 2 → M ← M ⊗M in the category EA of effect
algebras.

For an effect monoid M ∈ Mon(EA) the category EModM of effect modules over
M is the the category ActM (EA) of M -actions M ⊗ E → E, see [60, VII,§4]. This
resembles the category ModS of modules over a semiring S which may be described as
the category ActS(CMon) of commutative monoids with S-scalar multiplication. Effect
modules over [0, 1] have appeared under the name ‘convex effect algebras’, see [68]. Via
suitable totalisations of the partial operation > (see [44]) it is shown in [45, Prop. 9] that
the category EMod[0,1] is equivalent to the category of order unit spaces: (real) partially
ordered vector spaces with an order unit 1 satisfying: for each vector v there is an n ∈ N

with −n · 1 ≤ v ≤ n · 1.
The Appendix A.1 describes the distribution monad D : Sets → Sets where D(X)

consists of formal sums
∑

i ri|xi 〉 with ri ∈ [0, 1] satisfying
∑

i ri = 1. In [39] it is shown
that such a distribution monad can be defined more generally wrt. a (commutative) effect
monoid M in place of [0, 1]. This works as follows.

DM (X) = {m1|x1 〉+ · · · +mk|xk 〉 | xi ∈ X,mi ∈M with >imi = 1 ∈M}.

NEW DIRECTIONS IN CATEGORICAL LOGIC 11

Implicitly in this formulation we assume that the finite sum >imi exists. It can be shown
that DM is a monad on Sets, just like D = D[0,1] is a monad. For the trivial effect monoid
{0, 1} the associated monad D{0,1} is the identity functor.

In a next step we can form the category ConvM = EM(DM) of Eilenberg-Moore
algebras of this monad DM . Its objects are ‘convex sets over M ’, that is, sets X in which for
each formal convex sum

∑
imi|xi 〉 ∈ DM (X) an element >i mixi ∈ X exists. Such convex

sets can also be described in terms of ‘weighted sums’ x+r y, interpreted as rx+ (1 − r)y,
see e.g. [76, 78, 38]. Morphisms in EM(DM) are affine maps; they preserve such convex
sums >imixi.

In [45, Prop. 5] (based on [38]) a (dual) adjunction between convex sets over [0, 1] and
effect modules over [0, 1] is described. This adjunction exists in fact for an arbitrary effect
monoid M — instead of [0, 1] — by using M as dualising object. It formalises the duality
between effects and states in quantum foundations, and also the dual relations between
Heisenberg’s and Schrödinger’s view on quantum computation.

Proposition 2.6. Let M be an effect monoid. By “homming into M” one obtains an
adjunction:

(
EModM

)op
Conv(−,M)

--⊤ ConvM = EM(DM)
EMod(−,M)

mm

Proof. Given a convex set X ∈ ConvM , the homset Conv(X,M) of affine maps is an
effect module, with f ⊥ g iff ∀x ∈ X. f(x) ⊥ g(x) in M . In that case one defines (f >

g)(x) = f(x) > g(x). It is easy to see that this is again an affine function. Similarly, the
pointwise scalar product (m • f)(x) = m · f(x) yields an affine function. This mapping
X 7→ Conv(X,M) gives a contravariant functor since for h : X → X ′ in ConvM pre-
composition with h yields a map (−) ◦ h : Conv(X ′,M)→ Conv(X,M) of effect modules.

In the other direction, for an effect module E ∈ EModM , the homset EMod(E,M)
of effect module maps yields a convex set: for a formal convex sum

∑
jmj |fj 〉, where

fj : E → M in EModM and mj ∈ M , we can define an actual sum f : E → M by
f(y) = >j mj • fj(y). This f forms a map of effect modules. Again, functoriality is
obtained via pre-composition.

The dual adjunction between EModM and ConvM involves a bijective correspondence
that is obtained by swapping arguments. �

3. Predicates and tests

This section introduces predicates as maps of the form X → 1 + 1 in a category, and more
generally, tests as maps X → n · 1 = 1 + · · ·+ 1. At this stage our only aim is to illustrate
what such predicates/tests are in the categories of interest. The algebraic structure of
predicates will be investigated in the next section.

In topos theory predicates are described as maps of the form X → Ω, where Ω is a
special object that carries Heyting algebraic structure. The crucial topos property is that
such maps X → Ω correspond to subobjects of X. Here we use 1 + 1 instead of Ω. This
looks extremely simple, but we shall see that predicates X → 1+1 include many interesting
examples, such as fuzzy predicates X → [0, 1] taking values in the unit interval [0, 1] of
probabilities. In this section we elaborate the overview of predicates given in Figure 2 in
the introduction.

12 B. JACOBS

Let’s be more explicit about notation: we write 0 for the initial object in a category,
with unique map ! : 0 → X to each object X. The coproduct object X + Y of two objects
X,Y comes with two coprojections κ1 : X → X+Y and κ2 : Y → X+Y which are universal:
for each pair of maps f : X → Z and g : Y → Z there is a unique cotuple [f, g] : X+Y → Z

with [f, g] ◦ κ1 = f and [f, g] ◦ κ2 = g. For two maps h : X → A and k : Y → B one
writes h + k = [κ1 ◦ h, κ2 ◦ k] : X + Y → A + B. The codiagonal map X + X → X is
written as ∇ = [id, id]. These coproducts, coprojections and cotuples generalise to n-ary
form: X1+ · · ·+Xn. If all these objects are the same, we have a so-called copower, written
as n ·X = X + · · ·+X.

For the products X × Y we use standard notation, with projections X
π1← X × Y π2→ Y

and tuples 〈f, g〉 : Z → X × Y , for maps f : Z → X, g : Z → Y . The empty product is a
final object 1, with unique map ! : X → 1 for each object X. We shall frequently use that
products in a category B form coproducts in the opposite category Bop.

Definition 3.1. Let B be a category with coproducts and with a final object 1 ∈ B. Let
n ∈ N be non-zero.

(1) An n-test on an object X ∈ B is map p : X → n · 1 = 1 + · · ·+ 1.
(2) A 2-test on X is also called a predicate on X. We write Pred(X) = Hom(X, 1 + 1) for

the homset of predicates on X. There are true and false predicates 1X , 0X ∈ Pred(X),
defined as:

1X =
(
X

!X // 1
κ1 // 1 + 1

)
0X =

(
X

!X // 1
κ2 // 1 + 1

)

Each predicate p ∈ Pred(X) has an orthocomplement p⊥ ∈ Pred(X) defined by swap-
ping the outcomes:

p⊥ =
(
X

p // 1 + 1
[κ2,κ1]

∼=
// 1 + 1

)

The predicates Pred(1) on the final object 1 ∈ B play a special role and will be called
scalars (sometimes probabilities).

(3) Each map f : Y → X in B yields a “substitution” or “reindexing” function Pred(f) =
(−) ◦ f : Pred(X)→ Pred(Y). In this way we get a functor Pred : Bop → Sets.

Several different notations are in use for this map Pred(f), namely f∗ in categorical
logic, wp(f) for ‘weakest precondition’ in programming logic’. We shall use all of these
interchangeably, so Pred(f) = f∗ = wp(f) = (−) ◦ f .

We often drop the subscripts for the predicates 0 = 0X and 1 = 1X when they are clear from
the context. Obviously, 1⊥ = 0 and 0⊥ = 1. Also, p⊥⊥ = p. Thus we have ‘double negation’
built into our logic, in line with the right leg in Figure 1. The substitution function f∗

clearly preserves truth, false and orthocomplements.

Examples 3.2. We describe some of the motivating examples.

(1) In the category Sets we identify the n-fold copower n· = 1+ · · ·+1 with the n-element
set, commonly also written as n. An n-test on a set X is thus a function p : X → n

giving a partition of X in n subsets p−1(i) ⊆ X, for i ∈ n. A predicate, or 2-test,
is a predicate described as characteristic function X → 2 = {0, 1}. The probabilities
Pred(1) are the Booleans {0, 1}.

More generally, in a topos, the maps X → 1+1 correspond to the Boolean predicates.
The set of scalars Pred(1) need not be as trivial as {0, 1}. For instance, in Sets2 one
has four maps (1, 1) → (1, 1) + (1, 1) = (1 + 1, 1 + 1), namely (κi, κj) for i, j ∈ {1, 2}.

NEW DIRECTIONS IN CATEGORICAL LOGIC 13

(2) Our next example involves the distribution monad D on Sets from Appendix A.1,
which is used to model discrete probabilistic computations. The associated Kleisli
category Kℓ(D) captures these computations, via stochastic matrices, as maps X → Y

in Kℓ(D), corresponding to functions X → D(Y). An n-test p on a set X ∈ Kℓ(D) is a
function p : X → D(n). It assigns to each element x ∈ X an n-tuple p(x) : n→ [0, 1] of
probabilities p(x)(i) ∈ [0, 1] which add up to 1, that is,

∑
i p(x)(i) = 1. A predicate on

X can be identified with a fuzzy predicate X → [0, 1]. The scalars Pred(1) are in this
case the usual probabilities in the unit interval [0, 1] ⊆ R. Thus we use the bijective
correspondences:

Kleisli map X // 2
==================
function X // D(2) ∼= [0, 1]

===================
fuzzy predicate in [0, 1]X

(3) For continuous probabilistic computation one uses the Giry monad G on the category
Meas of measurable spaces, see Appendix A.2. In the category Meas, and also in
the Kleisli category Kℓ(G) of the Giry monad G on Meas, the object n · 1 is the n-
element set with the discrete σ-algebra P(n). Therefore, G(n) ∼= D(n). Hence an
n-test on X ∈ Meas is a measurable function X → G(n). In particular, a predicate
on X ∈ Meas is simply a measurable function X → [0, 1], or a [0, 1]-valued random
variable, as used for instance in [40]. As before we have the probabilities [0, 1] as scalars:
Pred(1) ∼= G(2) ∼= D(2) ∼= [0, 1].

(4) Let CstarPU be the category of (complex unital) C∗-algebras, with positive unital maps
as morphisms between them, see Appendix A.4. The algebra C of complex numbers
is initial in CstarPU, since the only positive unital map C → A to an arbitrary C∗-
algebra A is the map z 7→ z · 1, where 1 ∈ A is the unit. The category CstarPU
has binary products A1 ⊕A2, given by the cartesian product of the underlying spaces,
with coordinate-wise operations, and supremum norm ‖(a1, a2)‖ = ‖a1‖ ∨ ‖a2‖. The
singleton space {0} is the final object in CstarPU.

We shall be working in the opposite category (CstarPU)
op. It thus has coproducts ⊕

and a final object C. The n-fold coproduct n · 1 is then the n-fold cartesian product Cn.
An n-test on A ∈ CstarPU is a map A→ C

n in (CstarPU)
op, that is, a positive unital

map p : Cn → A. It can be identified with an n-tuple of effects ei = p(|i〉) ∈ [0, 1]A
with e1 > · · · > en = 1. Indeed, |i〉 ∈ C

n is positive, and so ei = p(|i〉) ≥ 0 in A. And

>i ei =
∑

i p(|i〉) = p(
∑

i |i〉) = p(1) = 1. A predicate on A can be identified with
a pair of predicates e1, e2 ∈ [0, 1]A with e1 + e2 = 1. Hence e2 = 1 − e1, so we can
identify the predicate with a single effect e ∈ [0, 1]A, where e

⊥ = 1 − e. Thus we have
the fundamental correspondences:

A // 2 in (CstarPU)
op

=========
C
2 // A in CstarPU

===============
effect in [0, 1]A ⊆ A

(This correspondence also works for completely positive unital maps, since a positive
map f : A→ B is automatically completely positive if either A or B is commutative.)

The truth predicate in [0, 1]A is obtained by applying the map ! ◦ π1 : C2 → C→ A

to (1, 0) ∈ C
2. It yields the top/unit element 1 ∈ [0, 1]A. Similarly, false is obtained

by applying ! ◦ π2 to the pair (1, 0); this yields the bottom/zero element 0 ∈ [0, 1]A.

14 B. JACOBS

The scalars for C∗-algebras are the predicates Pred(C) on the complex numbers, and
correspond to the usual probabilities [0, 1].

For a map f : B → A in (CstarPU)
op the associated substitution function f∗ : Pred(A)→

Pred(B) is defined by function application: an effect e ∈ [0, 1]A is sent to the effect
f(e) ∈ [0, 1]B .

We briefly describe what happens in the case we do not use positive unital (PU)
but the more common *-homomorphisms between C∗-algebras, i.e. the multiplicative-
involutive-unital (MIU) maps. It is easy to see that predicates A→ 2 in (CstarMIU)

op

correspond to projections in A, that is, to idempotent effects a ∈ [0, 1]A. The resulting
scalars are the Booleans {0, 1}. Hence in the MIU-case the logic is no longer quantitative
(with [0, 1] as scalars). But the projections themselves do not form a Boolean algebra,
in general.

(5) Let Rng be the category of rings (with unit), with ring homomorphisms between them.
The set of integers Z, with its standard ring structure, is initial in the category Rng,
and thus final in the opposite category Rngop. We shall write it simply as 1. The
coproduct 1 + 1 ∈ Rngop is then the cartesian product Z×Z. We claim that there are
bijective correspondences, for R ∈ Rng,

R // 1 + 1 in Rngop

===========
Z
2 f // R in Rng

===============
idempotents e ∈ R

The correspondence arises as follows. Given a ring homomorphism f : Z2 → R we get an
element ef = f(1, 0) ∈ R which is idempotent: e2f = f(1, 0)2 = f((1, 0)2) = f(1, 0) = ef .

In the other direction, given an idempotent e ∈ R we define fe : Z
2 → R by fe(n,m) =

n · e+m · (1− e). In order to prove that fe is a ring homomorphism, in particular that
it preserves multiplication, one uses that e is an idempotent.

It is an elementary fact that the idempotent elements in a commutative ring form a
Boolean algebra, see e.g. [48, I, 1.9]. We shall see that in the non-commutative case
these idempotents form an effect algebra, see Proposition 4.8. The scalars are the
idempotents of the initial ring Z, which are the elements {0, 1}. An n-test in Rngop,
that is, a ring homomorphism Z

n → R can be identified with an n-tuple e1, . . . , en of
idempotent elements of R satisfying not only e1 + · · · + en = 1 but also ei · ej = 0 for
i 6= j. The latter multiplication property follows from the fact that these maps Zn → R

preserve multiplication.
(6) We write DL for the category of distributive lattices — with finite joins 0,∨ and meets

1,∧ distributing over each other — and lattices homomorphisms preserving these finite
joins and meets. The 2-element lattice 2 = {0, 1} is initial in DL. In the opposite
category DLop a predicate L → 1 + 1 is thus a lattice homomorphism f : 2 × 2 → L.
It can be identified with an element x ∈ L that has a complement: there is an x′ ∈ L
with x ∧ x′ = 0 and x ∨ x′ = 1. It is easy to see that such a complement, if it exists,
is necessarily unique. These ‘complementable’ elements in L form a Boolean sublattice
of L. The scalars are the elements of the 2-element lattice {0, 1} — which both have a
complement. An n-test is an n-tuple of elements x1, . . . , xn with x1 ∨ · · · ∨ xn = 1 and
xi ∧ xj = 0 for i 6= j.

(7) We conclude with three examples, as ‘sanity check’. In the category BA of Boolean
algebras, the two element algebra 2 = {0, 1} is initial, and maps of Boolean algebras

NEW DIRECTIONS IN CATEGORICAL LOGIC 15

2×2→ B correspond to elements of B. Hence all elements of B occur as predicates B →
1 + 1 in BAop. Similarly, in the category EMod of effect modules over [0, 1], this unit
interval [0, 1] is initial, and effect module maps [0, 1]2 → E correspond to elements of E.
In the category Conv = EM(D) of convex sets, the coproduct 1+ 1 is the unit interval
[0, 1], since 1+ 1 ∼= D(1) +D(1) ∼= D(1 + 1) ∼= [0, 1]. Thus, the predicates X → 1+ 1 in
Conv are the affine maps X → [0, 1], as used in the functor Hom(−, [0, 1]) : Conv →
EModop in the adjunction Conv ⇄ EModop in Proposition 2.6.

One may wonder why several of the categories in the above list occur in opposite form
(−)op. The appropriate way to see a morphism L → K between two “logical” structures
L,K as a computation is to interpret it as a predicate transformer computation going in
the other direction, from K to L: it takes predicates on the ‘post’ state to predicates on the
‘pre’ state of the computation. For C∗-algebras this corresponds to Heisenberg’s view on
quantum computation. In Dijkstra’s weakest precondition semantics [23] there is bijective
correspondence between:

computations, as functions X
f // P(Y) in the Kleisli category of the powerset monad

==
meet-preserving predicate transformers P(Y)

wp(f)
// P(X)

Notice that these predicate transformers operate in the opposite direction. They can be
described as a computations in the opposite category (CL∧)op of complete lattices and
meet-preserving functions. This is precisely like in the above ‘logical’ categories of the form
(−)op, see also [43, 42].

In general the predicates Pred(1), i.e. the probabilities, have a monoid structure. Later
on, in Proposition 10.2, it will be shown that this monoid is commutative in presence of
a (distributive) monoidal structure, following [52]. However, this fact will not be used
immediately.

Lemma 3.3. In a category B with coproduct + and a final object 1 the collection Pred(1)
of scalars, i.e. of predicates 1 → 1 + 1 on 1, has a monoid structure, given by Kleisli
composition:

s · r = s ⊚ r =
(
1

r // 1 + 1
[s,κ2] // 1 + 1

)
.

The truth predicate 1 = κ1 is unit for this multiplication, and the falsum predicate 0 = κ2
is zero element (meaning 0 · s = 0 = s · 0).
Proof. Easy, since this multiplication is Kleisli composition. �

On the Boolean scalars {0, 1} this multiplication is conjunction, but on the unit interval
[0, 1] of scalars in the other examples it is multiplication.

4. The effect algebra structure on predicates

Having seen predicates and tests in the previous section we now give a more precise descrip-
tion of the categorical properties that we require. These requirements will be formulated
below as our first out of four assumptions. A category satisfying the first assumption is now
called an effectus, since [47]. We shall use this name here too.

After the introduction of this first assumption, this section shows two things:

• that these assumptions give us effect module structure on predicates;

16 B. JACOBS

• that the example categories described in the previous section satisfy these assumptions.

Subsequent Sections 5 and 6 describe more consequences of the following assumptions.
In a category B with coproducts + and a final object 1 ∈ B the coproduct X1 +X2 in

B comes with ‘partial projections’ ⊲i : X1 +X2 → Xi, described in B as:

X1 + 1 X1 +X2
⊲1=id+!oo ⊲2=[κ2◦ !,κ1] // X2 + 1 (4.1)

These partial projections form maps ⊲i : X1 +X2 → Xi in the Kleisli category B+1 of the
lift monad (−) + 1 on B, where they can be described more symmetrically as ⊲1 = [id, 0]
and ⊲2 = [0, id]. They are natural in this Kleisli category, since ⊲i ⊚ (f1 + f2) = fi ⊚ ⊲i,
where the + on the left-hand-side is understood in B+1 — which, in B, is given by f1+f2 =
[(κ1 + id) ◦ f1, (κ2 + id) ◦ f2]. Obviously, there are n-ary versions ⊲i : X1 + · · ·+Xn → Xi

of these partial projections.

Assumption 1. We use a category B that is an effectus. This means that it has a final
object 1 and finite coproducts (+, 0) such that diagrams of the following form are pullbacks
in B.

A+X
id+f //

g+id
��

A+ Y

g+id
��

A

κ1

��

A

κ1

��
B +X

id+f
// B + Y A+X

id+f
// A+ Y

(4.2)

Additionally, we require that the following two maps are jointly monic in an effectus.

(1 + 1) + 1

·····✎✎=[⊲1,κ2]=[[κ1,κ2],κ2]
--

·····✴✴✎✎✎✎=[⊲2,κ2]=[[κ2,κ1],κ2]

11 1 + 1 (4.3)

The maps ⊲i are the partial projections from (4.1). This joint monicity requirement means
that if f, g satisfy ·····✎✎ ◦ f = ·····✎✎ ◦ g and ·····✴✴✎✎✎✎ ◦ f = ·····✴✴✎✎✎✎ ◦ g, then f = g. The symbols ·····✎✎ and ·····✴✴✎✎✎✎
should suggest what these two maps do.

The pullback requirements are rather mild and hold in many situations. The joint
monicity of the maps (4.3) however is more restrictive, see also [39]. Later on in this section,
in Example 4.9, we show that it fails in the Kleisli category of the powerset monad. Thus,
non-deterministic computation, in its standard form, does not fit in the current setting.
Lemma 4.2 elaborates on this joint monicity requirement. At this stage we note that it says
that in the Kleisli category of the lift monad the two partial projections ⊲1,⊲2 : 1 + 1→ 1
are jointly monic.

At the end of Remark 6.4 we explain how the maps ⊲i may be seen as partial projections
in the Kleisli category of the lift monad, and how the joint monicity requirement translates
to this Kleisli category.

First we obtain some more pullbacks. We show that assumptions about coproducts
imply that they are disjoint : the coprojections are monic and have empty intersection
(the pullback of different coprojections is empty). Hence our pullback requirements can be
understood as a form of ‘generalised’ disjointness. In fact, the situation is:

(
disjoint and stable

coproducts

)
+3

(
pullback requirements
in Assumption 1 (4.2)

)
+3

(
disjoint

coproducts

)

NEW DIRECTIONS IN CATEGORICAL LOGIC 17

Categories with coproducts that are disjoint and stable (under pullback) are also called
extensive, see [13].

Lemma 4.1. In an effectus B, the initial object 0 ∈ B is strict, the coprojections κi : Ai →
A1 + A2 are monic and have empty intersection, and diagrams of the following form are
pullbacks.

A
g //

κ1

��

B

κ1

��

(A+X) + 1
(g+id)+id //

[⊲1,κ2]

��

(B +X) + 1

[⊲1,κ2]

��
A+X

g+f
// B + Y A+ 1

g+id
// B + 1

(4.4)

(The diagram on the right is a bit simpler when formulated in the Kleisli category B+1 of
the lift monad, but we prefer to avoid confusion between B and B+1.)

Proof. Strictness of the initial object 0 ∈ B means that each map f : X → 0 is an isomor-
phism. For such a map, we have to prove that the composite X → 0 → X is the identity.
Consider the diagram:

X f

$$

κ2

!!

""❉
❉

❉
❉

0
❴✤

κ1
��

0

κ1=κ2
��

0 +X
id+f

// 0 + 0

The rectangle is a pullback, as in (4.2). By initiality of 0, we have κ1 = κ2 : 0 → 0 + 0, so
that the outer diagram commutes. Then we get the dashed map, as indicated, which must
be f : X → 0. But then !X ◦ f = [!X , idX] ◦ κ1 ◦ f = [!X , idX] ◦ κ2 = idX .

We now prove a special case of the diagram on the left in (4.4) with f = id:

A
g //

κ1

��

B

κ1

��
A+X

g+id
// B +X

(4.5)

This is a pullback since it can be obtained from the square on the left in 4.2:

A
❴
✤ κ2

∼= //

κ1

��

g

))
0 +A

❴
✤ id+g

//

!+id
��

0 +B
❴
✤

[!,id]

∼= //

!+id
��

B

κ1

��
A+X

[κ2,κ1]

∼=
//

g+id

55X +A
id+g // X +B

[κ2,κ1]

∼=
// B +X

18 B. JACOBS

The square on the left in (4.4) is a pullback since it can be obtained from the square on the
right in (4.2) and the previous square in (4.5):

A
❴
✤ g

//

κ1

��

g

**
B
❴
✤

κ1

��

B

κ1

��
A+X

g+id //

g+f

44B +X
id+f // B + Y

The first coprojection κ1 : A→ A+X is monic since, using the pullback on the right in (4.2),
we get a diagram as on the left below.

A
❴✤

A
❴✤

κ1 ∼=
��

A

κ1
��

A
κ1

∼=
//

κ1

88A+ 0
id+ ! // A+X

0
∼=

$$■■
■■

■■
■■

��

// X

κ2∼=
��

κ2

~~

0 + 0
❴
✤

//

��

0 +X

!+id
��

A
κ1

∼=
//

κ1

88A+ 0
id+ ! // A+X

A similar argument applies to the second coprojection κ2. The above diagram on the right
shows that the intersection (pullback) of κ1, κ2 is the initial object 0.

We turn to the square on the right in (4.4). Let f : Y → A+1 and h : Y → (B+X)+1
satisfy (g + id) ◦ f = [⊲1, κ2] ◦ h. Consider the situation below, where in general, α is
the associativity isomorphism U + (V +W)→ (U + V) +W , given explicitly by α = [κ1 ◦
κ1, κ2 + id] and α−1 = [id + κ1, κ2 ◦ κ2].

Y

f

%%

α−1◦h

((
k
''◆

◆◆◆◆

A+ (X + 1)
g+id //

id+!
��

❴✤
B + (X + 1)

id+!=[⊲1,κ2]◦α
��

A+ 1
g+id

// B + 1

Then k′ = α ◦ k : Z → (X +A) + 1 is the required mediating map. �

The joint monicity requirement in (4.3) says that the two maps ·····✎✎ , ·····✴✴✎✎✎✎ : (1+1)+1→ 1+1
are jointly monic. This simple formulation can be generalised in two ways: using arbitrary
objects X instead of 1, and using arbitrary many 1’s instead of only 2. The equivalence of
these generalisations to the formulation in (4.3) is due to Kenta Cho. (A slightly stronger
formulation is used in [47].)

Lemma 4.2. Let B be a category with finite coproducts and a final object, in which the
squares in (4.2) are pullbacks. Then the following statements are equivalent.

(1) The two maps ·····✎✎ , ·····✴✴✎✎✎✎ : (1 + 1) + 1→ 1 + 1 in (4.3) are jointly monic.
(2) The two maps ·····✎✎ , ·····✴✴✎✎✎✎ : (X + X) + 1 → X + 1 are jointly monic, where as before, ·····✎✎ =

[id+ !, κ2] and ·····✴✴✎✎✎✎ = [[κ2 ◦ !, κ1], κ2].
(3) For each n ≥ 1, the n maps [⊲i, κ2] : n ·X + 1→ X + 1 are jointly monic.

NEW DIRECTIONS IN CATEGORICAL LOGIC 19

Proof. The implication (2) ⇒ (3) works by induction. We concentrate on the implication
(1) ⇒ (2). Let f, g : Y → (X + X) + 1 satisfy [⊲i, κ2] ◦ f = [⊲i, κ2] ◦ g : Y → X + 1 for
i = 1, 2. Consider the diagram:

(X +X) + 1
❴✤

(!+id)+id //

(id+ !)+id
��

(1 +X) + 1
❴✤

[⊲2,κ2] //

(id+ !)+id
��

X + 1

!+id
��

(X + 1) + 1
❴✤

(!+id)+id //

[⊲1,κ2]
��

(1 + 1) + 1
[⊲2,κ2]

//

[⊲1,κ2]
��

1 + 1

X + 1
!+id

// 1 + 1

The lower and right rectangles are pullbacks, via the diagram on the right in (4.4). The
upper left rectangle is a pullback by the diagram on the left in (4.2), using associativity of
+.

The equations [⊲i, κ1] ◦ f = [⊲i, κ1] ◦ g imply [⊲i, κ1] ◦ ((!+ !) + id) ◦ f = [⊲i, κ1] ◦
((!+ !) + id) ◦ g, so that ((!+ !) + id) ◦ f = ((!+ !) + id) ◦ g, because the maps [⊲i, κ1] : (1 +
1) + 1→ 1 + 1 are jointly monic, by assumption. But then:

{
((! + id) + id) ◦ f = ((! + id) + id) ◦ g by the upper right pullback

((id+ !) + id) ◦ f = ((id+ !) + id) ◦ g by the lower left pullback.

Hence f = g by the upper left pullback. �

The main reason for the assumptions about coproducts in the beginning of this section
lies in the following definition and result. The specific definition of sums > via bounds that
we use below goes back to [39]. But such techniques to get partially additive structure are
much older, see [5].

Definition 4.3. Let B be a category satisfying Assumption 1 and let p, q : X → 1 + 1 be
two predicates on X ∈ B.

(1) These two predicates are orthogonal, written as p ⊥ q, if there is a bound b : X →
(1 + 1) + 1 such that:

·····✎✎ ◦ b = p and ·····✴✴✎✎✎✎ ◦ b = q.

According to Assumption 1 these two maps ·····✎✎ , ·····✴✴✎✎✎✎ : (1+1)+ 1→ 1+1 are jointly monic.
Hence there is at most one such a bound b.

(2) If p ⊥ q via bound b then we define a new “sum” predicate p> q : X → 1 + 1 as:

p> q = (∇+ id) ◦ b = ([id, id] + id) ◦ b.
Pictorially we have the following situation, with bound b for predicates p, q.

(1
❣

��✬
✬✬
✬
+ 1)

✐

��✮
✮✮
✮
+1❲

��✗✗
✗✗

X

b

;;①①①①①①①①
p

// 1 + 1

(1
②

��✾
✾✾

✾✾
✾+ 1)
❱

✖✖
✖✖

+1❲

��✗✗
✗✗
✗

X

b

<<②②②②②②②②
q

// 1 + 1

(1
❣

��✬
✬✬
✬
+ 1)
❱

✖✖
✖✖

+1❲

��✗✗
✗✗
✗

X

b

<<②②②②②②②②

p>q
// 1 + 1

p = ·····✎✎ ◦ b 1 = ·····✴✴✎✎✎✎ ◦ b p> q = (∇+ id) ◦ b.
The next result shows how the pullback properties from Assumption 1 and Lemma 4.1 yield
effect algebra structure on predicates.

20 B. JACOBS

Proposition 4.4. Let B be a category satisfying Assumption 1.

(1) For each object X ∈ B the collection Pred(X) of predicates X → 1 + 1 on X forms an
effect algebra, via >, 0, (−)⊥.

(2) For each map f : Y → X the substitution function f∗ = (−) ◦ f : Pred(X) → Pred(Y)
is a map of effect algebras.

Thus we obtain a functor Pred : B→ EAop.

Proof. The operation > is commutative, since if b is a bound for p, q, then b′ = ([κ2, κ1] +
id) ◦ b is a bound for q, p:

·····✎✎ ◦ b′ = [id, κ2] ◦ ([κ2, κ1] + id) ◦ b = [[κ2, κ1], κ2] ◦ b = q

·····✴✴✎✎✎✎ ◦ b′ = [[κ2, κ1], κ2] ◦ ([κ2, κ1] + id) ◦ b
= [[κ2, κ1] ◦ [κ2, κ1], κ2] ◦ b = [id, κ2] ◦ b = p.

This b and b′ yield the same sum:

q > p = (∇+ id) ◦ b′ = (∇+ id) ◦ ([κ2, κ1] + id) ◦ b
= ((∇ ◦ [κ2, κ1]) + id) ◦ b = (∇+ id) ◦ b = p> q.

The zero predicate 0 = κ2 ◦ !X : X → 1+1 is neutral element for >: the equation 0> p = p

holds via the bound b = (κ2 + id) ◦ p : X → (1 + 1) + 1.
For associativity of > assume predicates p, q, r : X → 1 + 1 where p ⊥ q, say via bound

a, and (p > q) ⊥ r, via bound b. Thus we have equations:

·····✎✎ ◦ a = p

·····✴✴✎✎✎✎ ◦ a = q

(∇+ id) ◦ a = p> q

·····✎✎ ◦ b = p> q

·····✴✴✎✎✎✎ ◦ b = r

(∇+ id) ◦ b = (p> q) > r.

We consider the following pullback, occurring on the left in (4.2),

X

b ��

a

++
c

++❱❱❱❱❱❱

(1 + 1) + 1

α−1

∼=
--

(1 + 1) + (1 + 1)

∇+id ��

id+∇ //
❴✤

(1 + 1) + 1

∇+id��
1 + (1 + 1)

id+∇
// 1 + 1

where α = [κ1 ◦ κ1, κ2 + id] is the obvious associativity isomorphism.
We now take c′ = [[κ2, κ1 ◦ κ1], κ2 + id] ◦ c : X → (1 + 1) + 1. This c′ is a bound for q

and r, giving q ⊥ r. Next, the map c′′ = [κ1, κ2 + id] ◦ c : X → (1 + 1) + 1 is a bound for p
and q > r = (∇ + id) ◦ c′. Finally we obtain the associativity of >:

p> (q > r) = (∇ + id) ◦ c′′ = (∇+ id) ◦ [κ1, κ2 + id] ◦ c
= [[κ1, κ1], [κ1, κ2]] ◦ c
= [[κ1, κ1], κ2] ◦ [κ1 ◦ κ1 ◦ ∇, κ2 + id] ◦ c
= [[κ1, κ1], κ2] ◦ α ◦ (∇ + id) ◦ c
= (∇+ id) ◦ b = (p> q) > r.

It is not hard to see that b = κ1 ◦ p : X → (1+ 1)+ 1 is a bound for p and p⊥ = p ◦ [κ2, κ1],
yielding p> p⊥ = 1.

NEW DIRECTIONS IN CATEGORICAL LOGIC 21

Next we show that p⊥ is the only predicate with p > p⊥ = 1. So assume also for
q : X → 1 + 1 we have p > q = 1, say via bound b. Then ·····✎✎ ◦ b = p, ·····✴✴✎✎✎✎ ◦ b = q and
(∇ + id) ◦ b = 1 = κ1 ◦ !X . We use the pullback (4.4) in:

X

!X
((

b

((
c

''❖
❖❖❖

1 + 1
∇ ��

κ1 //
❴
✤ (1 + 1) + 1

∇+id��
1

κ1

// 1 + 1

(4.6)

The fact that the bound b is of the form κ1 ◦ c is enough to obtain q = p⊥:

p⊥ = [κ2, κ1] ◦ p = [κ2, κ1] ◦ [id, κ2] ◦ b = [[κ2, κ1], κ1] ◦ κ1 ◦ c
= [[κ2, κ1], κ2] ◦ κ1 ◦ c
= [[κ2, κ1], κ2] ◦ b = q.

Finally, suppose 1 ⊥ p; we must prove p = 0: X → 1 + 1. We may assume a bound b with
·····✎✎ ◦ b = 1 = κ1 ◦ !X and ·····✴✴✎✎✎✎ ◦ b = p. Now we use the pullback on the right in (4.2) to obtain
unique map X → 1 as mediating map in:

X

!X

%%

b //
!X

##●
●

●
● (1 + 1) + 1

∼= α−1

##
ED

BC
[id,κ2]

oo

1
κ1 //

❴✤
1 + (1 + 1)

id+∇��
1

κ1

// 1 + 1

As a result, b = α ◦ κ1 ◦ !X = κ1 ◦ κ1 ◦ !X . Then:

p = ·····✴✴✎✎✎✎ ◦ b = [[κ2, κ1], κ2] ◦ κ1 ◦ κ1 ◦ !X = κ2 ◦ !X = 0.

For the second point of the proposition we have to prove that substitution preserves >. So
let f : Y → X be a map in B, and let p, q : X → 1 + 1 be orthogonal predicates, say via
bound b : X → (1 + 1) + 1. Then b ◦ f is a bound for p ◦ f = f∗(p) and q ◦ f = f∗(q).
Hence:

f∗(p) > f∗(q) = (∇+ id) ◦ b ◦ f = (p> q) ◦ f = f∗(p> q).

In Lemma 3.3 we have seen that the collection Pred(1) of scalars (or probabilities) 1→ 1+1
carries a monoid structure s · r = [s, κ2] ◦ r. By the previous result Pred(1) also carries
an effect algebra structure. It turns out that these two structures interact appropriately to
form an effect monoid, that is, a monoid in the monoidal category of effect algebras, see
Remark 2.5 and [44].

Lemma 4.5. In a category B satisfying Assumption 1 the scalars Pred(1) = Hom(1, 1 + 1)
form an effect monoid.

22 B. JACOBS

Proof. Let s, r, r′ : 1→ 1+1 be three predicates on 1, with r ⊥ r′ via bound b : 1→ (1+1)+1.
We define the following two new bounds.

c =

1
s��

1 + 1
b+id��

((1 + 1) + 1) + 1

[id,κ2]��
(1 + 1) + 1

d =

1
b��

(1 + 1) + 1

(s+s)+id��
((1 + 1) + (1 + 1)) + 1

[[κ1+id,κ2+id],κ2]��
(1 + 1) + 1

The bound c shows r ·s ⊥ r′ ·s and (r ·s)>(r′ ·s) = (r>r′) ·s. Similarly, d proves s ·r ⊥ s ·r′
and (s · r) > (s · r′) = s · (r > r′). �

There is more structure: the effect monoid Pred(1) of scalars acts on every effect algebra
Pred(X) of predicates in an appropriate manner, turning Pred(X) into an effect module
over Pred(1). Recall that we write EModM for the category of effect modules over an effect
monoid M . This subscript M will be dropped when it is clear from the context.

For a scalar s : 1 → 1 + 1 and a predicate p : X → 1 + 1 we define the predicate
s • p : X → 1 + 1 obtained by scalar multiplication as the following (Kleisli) composite.

s • p =
(
X

p // 1 + 1
[s,κ2] // 1 + 1

)
. (4.7)

Proposition 4.6. If B is a category satisfying Assumption 1, then each collection of pred-
icates Pred(X) is an effect module over Pred(1), via the scalar multiplication • from (4.7).
For X = 1 this scalar multiplication • is the same as multiplication from Lemma 3.3.

The substitution functor f∗ = (−) ◦ f : Pred(X)→ Pred(Y) induced by a map f : Y →
X in B preserves this effect module structure, in the sense that f∗(s • p) = s • f∗(p).
Thus, the functor Pred : B→ EAop from Proposition 4.4 restricts to a functor Pred : B→
(EModPred(1))

op.

Proof. The scalar multiplication properties 1 • p = p and r • (s • p) = (r · s) • p follow
from straightforward calculations. The fact that • is a bihomomorphism of effect algebras
is shown as in the proof of Lemma 4.5. The rest is easy. �

At this stage we like to emphasise that the relatively weak structure in Assumption 1
already gives us quite some logical structure, namely the indexed category of effect modules
from the previous result. Our next aim is to investigate our assumptions more concretely
in the examples listed in the previous section.

Example 4.7. The category of Sets is an effectus. In fact, every extensive category, with
disjoint and universal coproducts [13], satisfies Assumption 1. Every topos is extensive, see
e.g [9, Vol.3, §§5.9]). The proofs involve some elementary diagrammatic reasoning and will
be skipped here. A predicate of the form X → 1+1 = 2 in Sets is a characteristic function
of a subset of X. For such predicates P,Q ⊆ X the effect algebra sum P >Q is defined if
P ∩Q = ∅, and in that case equals the union: P >Q = P ∪Q. The scalars in Sets are the
Booleans 2 = {0, 1}, and scalar multiplication is trivial: 0 • P = ∅ and 1 • P = P .

The Kleisli category Kℓ(D) of the distribution monad is als an effectus. We leave the
verification of the pullback properties (4.2) to the interested reader and show that the
maps ·····✎✎ , ·····✴✴✎✎✎✎ : (1 + 1) + 1 → 1 + 1 in (4.3) are jointly monic in Kℓ(D). So let ϕ,ψ ∈ D(3)

NEW DIRECTIONS IN CATEGORICAL LOGIC 23

be distributions with equalities D(·····✎✎)(ϕ) = D(·····✎✎)(ψ) and D(·····✴✴✎✎✎✎)(ϕ) = D(·····✴✴✎✎✎✎)(ψ) in D(2) —
see (A.1) for the functor D on maps. In order to disambiguate matters we write 3 = {a, b, c}
and 2 = {u, v}. The functor applications yield convex sums:

D(·····✎✎)(ϕ) = ϕ(a)|u〉 + (ϕ(b) + ϕ(c))|v 〉 and D(·····✴✴✎✎✎✎)(ϕ) = ϕ(b)|u〉 + (ϕ(a) + ϕ(c))|v 〉.
Similarly for ψ. Hence the equations D(·····✎✎)(ϕ) = D(·····✎✎)(ψ) and D(·····✴✴✎✎✎✎)(ϕ) = D(·····✴✴✎✎✎✎)(ψ) imme-
diately give us ϕ(a) = ψ(a) and ϕ(b) = ψ(b). We still need to prove ϕ(c) = ψ(c). But ϕ
and ψ are distributions, so their probabilities add up to one:

ϕ(c) = 1− ϕ(a)− ϕ(b) = 1− ψ(a)− ψ(b) = ψ(c).

The sum > of fuzzy predicates p, q : X → 1+1 is defined if p(x)+ q(x) ≤ 1 for all x ∈ X. In
that case one takes the pointwise sum (p> q)(x) = p(x)+ q(x). Multiplication with a scalar
r ∈ [0, 1] is also defined pointwise: (r • p)(x) = r · p(x). Substitution f∗(p), for f : Y → X

in Kℓ(D), is given by Kleisli composition ⊚, and yields:

f∗(p)(y) = (p ⊚ f)(y) =
∑

x

p(x) · f(y)(x). (4.8)

Also the Kleisli category Kℓ(G) of the Giry monad G is an effectus. The verification of
Assumption 1 involve some properties of integrals — like splitting of an integral over a
coproducts into a sum of integrals, see [40, Lemma 12] — that are skipped here. Since
G(2) ∼= D(2) ∼= [0, 1] we obtain that predicates X → 1 + 1 = 2 in Kℓ(G) correspond
to measurable functions X → [0, 1]. In particular, the scalars are the probabilities [0, 1].
These measurable fuzzy predicates obviously carry the structure of an effect module over
[0, 1], via pointwise operations. For a Kleisli map f : Y → G(X), substitution f∗(p) yields a
predicate Y → [0, 1] on Y defined via Kleisli composition (written as ⊚) as integration (see
Section A.2):

f∗(p)(y) = (p ⊚ f)(y) = p∗(f(y)) =

∫
p df(y). (4.9)

This forms a ‘continuous’ version of the ‘discrete’ formula (4.8).
Next we look at opposite categories (CstarPU)

op, Rngop and DLop of C∗-algebras,
rings, and distributive lattices. We shall start reasoning in Rng, since the arguments carry
over to the other categories in a straightforward manner.

We wish to prove that the squares of (4.4) are pullbacks in the category Rngop. Thus
we have to show that they are pushouts in Rng, using products × instead of coproducts +:

A×X id×f //

g×id
��

A× Y
g×id
��

A×X id×f //

π1

��

A× Y
π1

��
B ×X

id×f
// B × Y A A

We start with the one on the left. Suppose we have ring homomorphisms α : A × Y → C

and β : B ×X → C with α ◦ (id × f) = β ◦ (g × id). Explicitly, this means that:

α(a, f(x)) = β(g(a), x), for all a ∈ A, x ∈ X.
Then we define γ : B × Y → C by:

γ(b, y) = α(0, y) + β(b, 0).

24 B. JACOBS

It is easy to see that γ preserves addition. It preserves the unit, since:

γ(1, 1) = α(0, 1) + β(1, 0) = α(0, f(1)) + β(1, 0)

= β(g(0), 1) + β(1, 0) = β(0, 1) + β(1, 0) = β(1, 1) = 1.

Via a similar trick one shows that γ preserves multiplication: the ‘cross terms’ disappear
since:

α(0, y) · β(b, 0) = α(0, y) · α(0, f(1)) · β(b, 0) = α(0, y) · β(g(0), 1) · β(b, 0) = 0.

Clearly, this γ is the unique mediating map.
We turn to the above square on the right: given α : A → B and β : A × Y → B with

α ◦ π1 = β ◦ (id × f). The only possible mediating map is α : A → B. Hence we need to
prove β = α ◦ π1 : A × Y → B, that is, β(a, y) = α(a), for all a ∈ A, y ∈ Y . Consider the
function β′ : Y → B defined by β′(y) = β(0, y). This β′ preserves finite sums (+, 0) and
multiplication ·, and satisfies:

β′(1) = β(0, 1) = β(0, f(1)) = α(0) = 0.

Then β′ = 0, since β′(y) = β′(1 · y) = β′(1) · β′(y) = 0 · β′(y) = 0. But then we are done
since:

β(a, y) = β(a, 0) + β(0, y) = β(a, f(0)) + β′(y) = α(a) + 0 = α(a).

Next we investigate the jointly monic requirement from (4.3) in the category Rngop. When
we translate this back to Rng we have to prove the corresponding maps ·····✎✎ , ·····✴✴✎✎✎✎ : Z × Z →
Z× Z× Z are jointly epic, where now ·····✎✎ = 〈id, π2〉 and ·····✴✴✎✎✎✎ = 〈〈π2, π1〉, π2〉. Explicitly:

·····✎✎ (k,m) = (k,m,m) and ·····✴✴✎✎✎✎(k,m) = (m,k,m).

Let f, g : Z× Z× Z→ A satisfy f ◦ ·····✎✎ = g ◦ ·····✎✎ and f ◦ ·····✴✴✎✎✎✎ = g ◦ ·····✴✴✎✎✎✎ . We obtain f = g from:

f(k,m, ℓ) = f(k, ℓ, ℓ) + f(0,m− ℓ, 0)
=
(
f ◦ ·····✎✎

)
(k, ℓ) +

(
f ◦ ·····✴✴✎✎✎✎

)
(m− ℓ, 0)

=
(
g ◦ ·····✎✎

)
(k, ℓ) +

(
g ◦ ·····✴✴✎✎✎✎

)
(m− ℓ, 0)

= g(k,m, ℓ).

The structure on predicates in a ring will be described separately in Proposition 4.8 below.
This line of reasoning showing that the category Rngop is an effectus can be transferred

directly to the oppositeDLop of the category of distributive lattices, and also to the opposite
(CstarPU)

op of the category of C∗-algebras with positive unital maps. The only point, in
the latter case, where some care is needed is in the demonstration that β′(1) = 0 implies
β′ = 0, where β′ is a positive unital map as defined above. It is an elementary result in the
theory of C∗-algebras that a linear positive map f with f(1) = 0 must be the zero map.
(For a proof, use that the operator norm ‖f‖ equals ‖f(1)‖, so ‖f(a)‖ ≤ ‖f(1)‖ · ‖a‖ = 0,
for each element a.)

The effect algebra structure from Definition 4.3, specialised to the subset of effects
[0, 1]A ⊆ A of a C∗-algebra A, is the standard one, with e > d defined if e + d ≤ 1, and in
that case equal to e+ d. The resulting order is the usual one for C∗-algebras.

We now formulate the structure of predicates on rings. Recall from Example 3.2 (5)
that predicates R→ 1 + 1 in the opposite Rngop of the category of rings are in one-to-one
correspondence with idempotents of the ring R.

NEW DIRECTIONS IN CATEGORICAL LOGIC 25

Proposition 4.8. The effect algebra of idempotents Pred(R) = {e ∈ R | e2 = e} in a ring
R can be described as follows. Two idempotents e, d ∈ Pred(R) are orthogonal (i.e. e ⊥ d)
iff e · d = 0 = d · e. In that case their effect algebra sum e > d ∈ Pred(R) equals their
sum e > d = e + d in R. One has e⊥ = 1 − e. The induced order relation is: e ≤ d iff
e · d = e = d · e.

In the special case that the ring R is commutative, the effect algebra Pred(R) of idem-
potents is actually a Boolean algebra with e ∧ d = ed and e ∨ d = e+ d− ed.

These mappings can be made functorial, and yield a diagram:

Rng

Pred
��

CRng?
_oo

Pred
��

EA BA?
_oo

(4.10)

where CRng is the category of commutative rings.

The second part of this result — that the idempotents of a commutative ring form a
Boolean algebra — is well-known, see for instance [48, V, Lemma 2.3]. The first part however
— that in the general case the idempotents form an effect algebra — is less familiar, but
the essence was already observed in [51].

Proof. For idempotent elements e, d ∈ R, corresponding to functions fe, fd : Z
2 → R as in

Example 3.2 (5), we have e ⊥ d iff there is a bound b : Z3 → R with b ◦ 〈id, π2〉 = fe and
b ◦ 〈〈π2, π1〉, π2〉 = fd. This means that b(n,m,m) = fe(n,m) and b(m,n,m) = fd(n,m).
Moreover, one obtains an idempotent x = b(0, 0, 1) ∈ R satisfying:

e+ d+ x = fe(1, 0) + fd(1, 0) + x = b(1, 0, 0) + b(0, 1, 0) + b(0, 0, 1) = b(1, 1, 1) = 1.

But then x = 1− e− d. Using that b is a ring homomorphism we get:

e · d = b(1, 0, 0) · b(0, 1, 0) = b
(
(1, 0, 0) · (0, 1, 0)

)
= b(0, 0, 0) = 0.

In the same way we can get d · e = 0.
In the reverse direction, if e · d = 0 = d · e, then we define a map b : Z3 → R by:

b(n,m, k) = n · e+m · d+ k · (1− e− d).
One immediately gets b(n,m,m) = fe(n,m) and b(m,n,m) = fd(n,m). With a bit more
effort, using e · d = 0 = d · e, one proves that b is a ring homomorphism. The resulting
effect algebra sum e> d ∈ R is given by their sum e> d = e+ d in R, corresponding to the
function fe>d : Z

2 → R described by fe>d(n,m) = b(n, n,m), as in Definition 4.3.
Next we prove the characterisation of the order ≤ on predicates/idempotents. Assume

e · d = e = d · e. We need to find an idempotent x ∈ R with e · x = 0 = x · e and e+ x = d.
Clearly, the only possible choice is x = d− e. This x is idempotent and satisfies e ⊥ x since

e · x = e · (d− e) = e · d− e2 = e− e = 0 = e− e = d · e− e2 = (d− e) · e = x · e.
In the other direction, assume e ≤ d. Then there is an idempotent x ∈ R with e ⊥ x and
e+ x = d. The latter equation yields x = d− e. Orthogonality e ⊥ x gives e · (e− d) = 0 =
(e− d) · e, so that e · d = e = d · e. �

Recall from Example 3.2 (5) that for a ring R an n-test R → n · 1 in Rngop consists
of a ring homomorphism f : Zn → R, corresponding to n idempotents ei = f(|i〉) ∈ R with
e1 + · · · + en = 1 and ei · ej = 0 for i 6= j. Such an n-test is an essential ingredient of the
Peirce decomposition R

∼=−→⊕
i,j eiRej of the ring R.

26 B. JACOBS

Although the requirements in Assumption 1 look rather mild, they do not hold in
all categories. Specifically, in the Kleisli category of the powerset monad they fail. This
is significant, because this powerset monad is used for the semantics of non-deterministic
computation. It is thus out of scope.

Remark 4.9. The Kleisli category Kℓ(P) of the powerset monad P can be identified with
the category of sets and relations between them. It does not satisfy the jointly monic
requirement in Assumption 1. We construct a counterexample for n = 2.

For a singleton set 1 we have 1 + 1 + 1 ∼= {a, b, c} and 1 + 1 ∼= {u, v}. We can describe
the two maps ·····✎✎ , ·····✴✴✎✎✎✎ : 3 ⇒ 2 in (4.3) as:

·····✎✎(a) = u ·····✎✎ (b) = ·····✎✎(c) = v ·····✴✴✎✎✎✎(a) = ·····✴✴✎✎✎✎(c) = v ·····✴✴✎✎✎✎ (b) = u.

The two subset S = {a, b} and T = {a, b, c} of 3 are clearly different but they satisfy:

P(·····✎✎)(S) = {u, v} = P(·····✎✎)(T) and P(·····✴✴✎✎✎✎)(S) = {u, v} = P(·····✴✴✎✎✎✎)(T).
Hence the two maps ·····✎✎ and ·····✴✴✎✎✎✎ are not jointly monic in the category Kℓ(P).

On a different level, notice that the empty set 0 is a zero object in Kℓ(P): it is both
initial and final. Hence 0 + 0 ∼= 0 is also a zero object, so that there is only one predicate
X → 0 + 0. The category Kℓ(P) is not of interest in the current setting.

We finish this section with some observations about multiple sums e1 > · · · > en.

Remark 4.10. Let B be an effectus i.e. a category for which Assumption 1 holds. Assume
we have multiple predicates p1, . . . , pn : X → 1+1. We would like to express what it means
that these pi are jointly orthogonal, i.e. that their sum p1 > · · ·> pn : X → 1 + 1 exists.

This can be done by using the n-ary maps [⊲i, κ2] : n ·1+1→ 1+1 from Assumption 1.
We say that p1, . . . , pn : X → 1 + 1 are pairwise orthogonal if there is a single bound
b : 1→ (n+1) · 1 with [⊲i, κ2] ◦ b = pi, for each i ∈ {1, . . . , n}. The sum is then defined as:

p1 > · · ·> pn =
(
X

b // (n+ 1) · 1 = n · 1 + 1
∇+id // 1 + 1

)
.

With these n-ary sums we can give an alternative description of n-tests, in line with how
they are commonly understood, namely as predicates that add up to 1. This generalises
the bijective correspondences that we have in the context of C∗-algebras between:

n-tests A −→ n · 1 in (CstarPU)
op

===========================
maps Cn −→ A in CstarPU

================================
maps of effect modules [0, 1]n −→ [0, 1]A

======================================
effects e1, . . . , en ∈ [0, 1]A with e1 > · · ·> en = 1

Here is the general formulation.

Lemma 4.11. In a category satisfying Assumption 1 there is a bijective correspondence
between:

n-tests q : X −→ n · 1
==
predicates p1, . . . , pn : X −→ 1 + 1 with p1 > · · ·> pn = 1

(4.11)

NEW DIRECTIONS IN CATEGORICAL LOGIC 27

Proof. First suppose we have such a collection of predicates pi : X → 1+1 with p1>· · ·>pn =
1. If b : X → (n+ 1) · 1 = n · 1 + 1 with [⊲i, κ2] ◦ b = pi is the bound, like in Remark 4.10,
then (∇+id) ◦ b = κ1 ◦ !X . We proceed like in diagram (4.6) in the proof of Proposition 4.4:

X

!X
((

b

((
q
''◆

◆◆◆

n · 1
! ��

κ1 //
❴
✤ (n+ 1) · 1 = n · 1 + 1

∇+id= !+id��
1

κ1

// 1 + 1

Thus we obtain an n-test q : X → n · 1. It satisfies:
[⊲i, κ2] ◦ κ1 ◦ q = [⊲i, κ2] ◦ b = pi.

This equation suggests how to proceed in the other direction: given an n-test q : X →
n · 1, define pi = ⊲i ◦ q = [⊲i, κ2] ◦ κ1 ◦ q : X → 1+1. Then, by construction, κ1 ◦ q : X →
(n+ 1) · 1 is a bound for these pi, with:

p1 > · · ·> pn = (∇ + id) ◦ κ1 ◦ q = κ1 ◦ ∇ ◦ q = κ1 ◦ !X = 1.

5. States

Having seen predicates as maps of the form X → 1 + 1, we turn to states, and describe
them as maps of the form 1 → X. They are sometimes called points. We define validity
|= for states and predicates, via an abstract Born rule, and show how these predicates and
states give rise to a state-and-effect triangle.

Definition 5.1. In a category B with final object 1 ∈ B we define a state to be a map of
the form 1→ X. We write Stat(X) = Hom(1,X) for the set of states.

For a map f : X → Y in B we get a function Stat(f) = f∗ = f ◦ (−) : Stat(X) →
Stat(Y). This yields a functor Stat : B→ Sets.

In the category Sets, states of an object (set) X are just elements of X. But in the
Kleisli category Kℓ(D), states 1 → X correspond to functions 1 → D(X), and thus to
distributions ϕ ∈ D(X), see Example 5.4 below. Similarly, states in the Kleisli category
Kℓ(G) of the Giry monad correspond to probability distributions φ ∈ G(X). And states
1 → A in the category (CstarPU)

op are positive unital maps A → C, and thus states as
they are commonly used in the theory of C∗-algebras.

Typically, states are closed under convex combinations. This can also be shown in the
current context, where the scalars are of the form 1 → 1 + 1. It requires the generalised
notion of convex set with respect to an effect monoid, as described towards the end of
section 2.

Lemma 5.2. Let B be an effectus. For each object X ∈ B the set of states Stat(X) =
Hom(1,X) is a convex set over the effect monoid Pred(1) = Hom(1, 1 + 1) of scalars in B.

For each map f : X → Y in B the associated function Stat(f) = f∗ = f ◦ (−) : Stat(X)→
Stat(Y) is affine. Thus, taking states yields a functor Stat : B→ ConvPred(1).

28 B. JACOBS

Proof. Assume we have n scalars r1, . . . , rn : 1→ 1+ 1 with r1 > · · ·> rn = 1 together with
n states ω1, . . . , ωn : 1 → X. The scalars correspond by (4.11) to an n-test q : 1 → n · 1.
Then we define a convex sum of these states as:

>i riωi =
(
1

q // n · 1 [ω1,...,ωn] // X
)
.

More formally, we describe this definition as a function α : DM (Stat(X))→ Stat(X), given
by α(

∑
i ri|ωi 〉) = >i riωi. It forms an an Eilenberg-Moore algebra since:

(
α ◦ η

)
(ω) = α(1|ω 〉)

= [ω] ◦ id
= ω(

α ◦ µ
)(∑

i ri|
∑

j∈Ji sij|ωij 〉〉
)
= α

(∑
ij ri · sij|ωij 〉

)

= >ij(ri · sij)ωij

= >i ri(>j∈Ji sijωij)

= α
(∑

i ri|α(
∑

j∈Ji sij|ωij 〉)〉
)

=
(
α ◦ DM (α)

)(∑
i ri|

∑
j∈Ji sij|ωij 〉〉

)
.

These convex sums make the set Stat(X) into a convex set. The sums are preserved by the
functions Stat(f) since:

Stat(f)
(
>i ri|ωi 〉

)
= f ◦ [ω1, . . . , ωn] ◦ q
= [f ◦ ω1, . . . , f ◦ ωn] ◦ q = >i ri|Stat(f)(ωi)〉.

Next we define validity via composition. This definition is extremely simple but turns out
to be very powerful since it can be interpreted in many categories and can mean many
different things, depending on the meaning of composition, see the overview in Figure 2.

Definition 5.3. Given a state ω : 1 → X on an object X in an effectus, and a predicate
p : X → 1 + 1 on that same object, we can define the validity probability ω |= p in Pred(1)
as the scalar:

ω |= p = p ◦ ω : 1 −→ 1 + 1. (5.1)

When the homset of scalars Hom(1, 1 + 1) is {0, 1}, this expression ω |= p is a truth value.
But ω |= p may also be a probability, when [0, 1] is set of scalars, as illustrated below. The
definition (5.1) may be seen as Born’s rule, in most elementary shape. It takes various
forms, depending on the category in which |= is interpreted. This will be elaborated next.

Examples 5.4. We shall see what the validity probability ω |= p amounts to in our running
examples. We encounter the formulations occurring in [21, Table 1], see also Figure 2. The
idea of using integration as logical validity goes back to [55, 56].

We first consider the Kleisli category Kℓ(D) of the distribution monad D on Sets. A
state ω on a set X ∈ Kℓ(D) is a function 1 → D(X), which corresponds to a discrete
probability distribution ω ∈ D(X). Thus Stat(X) = D(X) and f∗ = Stat(f) is the Kleisli
extension map D(X) → D(Y), given by f∗(ω)(y) =

∑
x ω(x) · f(x)(y), for f : X → D(Y).

NEW DIRECTIONS IN CATEGORICAL LOGIC 29

A predicate p : X → 1 + 1 corresponds to function p : X → [0, 1]. The validity probability
is obtained by Kleisli composition and looks as follows.

ω |= p =
∑

x ω(x) · p(x) ∈ [0, 1].

In the Kleisli category Kℓ(G) of the Giry monad this formula becomes integration: for
a measurable space X, a state ω : 1 → X in Kℓ(G) is a probability measure ω ∈ G(X). A
predicate p on X is a measurable map p : X → [0, 1]. Then:

ω |= p =

∫
p dω ∈ [0, 1]. (5.2)

In the category Rngop a state of a ring R is a ring homomorphism ω : R→ Z. Such a map
is sometimes called a Z-point in algebraic geometry. A predicate is an idempotent e ∈ R,
see Proposition 4.8. Validity becomes function application:

ω |= e = ω(e) ∈ {0, 1}.
The outcome ω(e) ∈ Z is in {0, 1} since e is an idempotent, and ω is a ring homomorphism,
so that ω(e)2 = ω(e).

In the category DLop of distributive lattices a state of L is a lattice homomorphism
ω : L → 2. As is well-known, it may be identified with a prime filter U = ω−1(1) ⊆ L,
that is, with a non-empty upset U that is closed under meets and satisfies: 0 6∈ U and
x ∨ y ∈ U implies either x ∈ U or y ∈ U . We can formulate validity |= either in terms of
states ω : L→ 2 or in terms of prime filters U ⊆ L, as:

ω |= e = ω(e) ∈ {0, 1} or as U |= e = (e ∈ U).

where the predicate e ∈ L has a complement, see Example 3.2 (6). Of course, instead
of prime filters one may equivalently use prime ideals, corresponding to kernels ω−1(0) of
states ω.

The same approach works in the opposite of the category of Boolean algebras, where a
state of a Boolean algebra B is a map of Boolean algebra B → 2, which corresponds to an
ultrafilter of B.

Next, we consider the opposite (CstarPU)
op of the category of C∗-algebras with positive

unital maps. A state on a C∗-algebra A is, as usual, a positive unital map ω : A→ C. It is
a map 1→ A in this opposite category (CstarPU)

op. For an effect/predicate a ∈ [0, 1]A =
{x ∈ A | 0 ≤ x ≤ 1} we obtain the validity probability simply by function application:

ω |= a = ω(a) ∈ [0, 1].

The outcome ω(a) is in the unit interval [0, 1] ⊆ R because: ω(a) ≥ 0 since a ≥ 0 and ω is
positive, and ω(a) ≤ 1 since a ≤ 1 and ω(1) = 1.

We briefly look at the special case where our C∗-algebra A is the algebra B(H) of
bounded linear maps on a finite-dimensional Hilbert space H. We recall that the subset
DM(H) →֒ B(H) of density matrices contains the positive operators with trace equal to
one. Each such density matrix ρ ∈ DM(H) gives rise to a state ωρ : B(H) → C, namely
ωρ(f) = tr(fρ) where tr is the trace operation. Then, for an effect E ∈ Ef(H) = [0, 1]B(H) =
{A : H → H | 0 ≤ A ≤ id} on H we have the usual probability formula (see e.g [21]):

(ωρ |= E) = ωρ(E) = tr(Eρ).

30 B. JACOBS

If we take the spectral decomposition of the density matrix ρ, as ρ =
∑

i λi|vi 〉〈 vi |, where
the λi ∈ [0, 1] are the eigenvalues and the |vi 〉 ∈ H are the (orthonormal) eigenvectors, then
we get the standard Born rule:

(ωρ |= E) = tr(Eρ) =
∑

i λi〈 vi |E|vi 〉.
What we use is the isomorphism between states and density matrices (for finite-dimensional
H):

Stat(B(H)) ∼= DM(H). (5.3)

At this stage we emphasise how much structure we get from the relatively mild effectus
requirements in Assumption 1: we do not only have state and effect functors, but, if we
involve the adjunction (EModM)op ⇆ ConvM between effect modules and convex sets
from Proposition 2.6, we also get a “state-and-effect” triangle of the form:

(EModM)op
Hom(−,M)

--⊤ ConvM

Hom(−,M)

mm

B
Hom(−,1+1)=Pred

ee▲▲▲▲▲▲▲▲▲▲▲ Stat=Hom(1,−)

;;✇✇✇✇✇✇✇✇✇

where M = Pred(1) = Stat(1 + 1). (5.4)

Such triangles are quite common in program semantics see [42, 43] for more information.
They capture the correspondence between programs, in the base category, state transformers
in the upper right category (in Schrödinger style), and predicate transformers in the upper
left category (in Heisenberg style).

In general, the two triangles in (5.4) do not commute, but we do have canonical natural
transformations between them, given by validity |=.

Proposition 5.5. For an effectus B there are, in the setting of diagram (5.4), natural
transformations:

(EModM)op ConvM

B

Stat
77

Hom(Pred(−),M)

EE
✼✼✼✼
��
β

Hom(Stat(−),M)

\\ Predgg

☛☛☛☛
AIα (5.5)

given as follows. For a predicate p : X → 1 + 1 and state ω : 1 → X, both α and β are
defined via validity |=, as in:

αX(p)(ω) = ω |= p = p ◦ ω = βX(ω)(p).

The maps αX and βX are each other’s transposes in the adjunction from Proposition 2.6:

Pred(X)
αX // Hom(Stat(X),M)

===========================
Stat(X)

βX

// Hom(Pred(X),M)

Note the reversal of direction for α, due to the use of the opposite of the category of effect
modules in (5.5). These α and β may be called the Born natural transformations because
they are given by the Born rule (5.1).

NEW DIRECTIONS IN CATEGORICAL LOGIC 31

Proof. It is easy to see that α and β are natural transformations. Some basic properties
have to be checked. For instance, each αX(p) = p ◦ (−) = p∗ : Stat(X)→ Stat(1 + 1) =M

is an affine map, by Lemma 5.2. And each αX : Pred(X)→ Hom(Stat(X),M) is a map of
effect modules, where the homset inherits the effect module structure from M = Pred(1) in
a pointwise manner, see Propositions 2.6 and 4.6. Similarly for β. �

The triangle (5.4) commutes up-to-isomorphism when these maps α, β from (5.5) are
both isomorphisms. This requires further assumptions, which we briefly illustrate (but do
not impose). In our two main examples (withM = [0, 1]) we do not have such commutation:

EModop

Hom(−,[0,1])
,,⊤ Conv

Hom(−,[0,1])

mm EModop

Hom(−,[0,1])
--⊤ Conv

Hom(−,[0,1])

mm

Kℓ(D)
Pred

ee▲▲▲▲▲▲▲▲▲▲ Stat

::ttttttttt
(CstarPU)

op
Pred

ggPPPPPPPPPPPP Stat

77♣♣♣♣♣♣♣♣♣♣♣

In the triangle on the left we do have:

Hom(Stat(X), [0, 1]) = Conv(D(X), [0, 1]) ∼= [0, 1]X = Pred(X).

But in the other direction we have Hom(Pred(X), [0, 1]) ∼= D(X) when X is finite. For
details, see [45], where the mapping X 7→ Hom(Pred(X), [0, 1]) = EMod([0, 1]X , [0, 1]) is
called the expectation monad E . This expectation monad is a monad on Sets that extends
the distribution monad, in the sense that E(X) ∼= D(X) for finite X.

For the C∗-algebra example on the right we do have commutation in the other direction:

Hom(Pred(A), [0, 1]) = EMod([0, 1]A, [0, 1]C) ∼= CstarPU(A,C) = Stat(A),

using that the effect functor [0, 1](−) : CstarPU → EMod is full and faithful, see [26]. In
the other direction we need to involve the (compact Hausdorff) topology on states of a
C∗-algebra. Via the validity relation |= one can put a weak-*-like topology on the homset
of states. The restriction to convex compact Hausdorff spaces gives an equivalence with
suitably complete effect modules, which is sometimes called Kadison duality after [49], see
also [45].

A natural question is to which extent effects and states determine each other.

Definition 5.6. In an effectus B we say:

(1) predicates can be separated if for each pair of predicates p1, p2 : X → 1 + 1,
(
∀ω : 1→ X. (ω |= p1) = (ω |= p2)

)
=⇒ p1 = p2.

Equivalently, if p1 6= p2, then there is a state ω with (ω |= p1) 6= (ω |= p2). This
expresses that the Born natural transformation α in (5.5) is injective.

(2) states can be separated if for each pair of states ω1, ω2 : 1→ X,
(
∀p : X → 1 + 1. (ω1 |= p) = (ω2 |= p)

)
=⇒ ω1 = ω2.

This says that β in (5.5) is injective.

Separation of predicates is the more interesting property. For instance for distributive
lattices it says that for (complementable) elements a, b in a distributive lattice with a 6= b,
there is a prime filter (or ideal) that contains one, but not the other. This separation
property holds, see [48, I, Prop. 2.5] using the Prime Ideal Theorem.

32 B. JACOBS

In C∗-algebras predicates can also be separated: let a, b ∈ [0, 1]A be effects in a C∗-
algebra A with a 6= b. Then a−b is a non-zero self-adjoint element. Hence by [6, Thm. 7.1.2]
there is a state ω : A → C with |ω(a − b)| = ‖a − b‖. From a − b 6= 0 we get ‖a − b‖ 6= 0,
and thus ω(a) 6= ω(b).

Separation of states is an easier property. For instance, if we have two states ω1, ω2 ∈
G(X) in the Kleisli category Kℓ(G) of the Giry monad with (ω1 |= p) = (ω2 |= p) for each
predicate p, then we take for p indicator functions 1M : X → [0, 1] for M ∈ ΣX . We get
by (5.2):

ω1(M) =
∫
1M dω1 = (ω1 |= 1M) = (ω2 |= 1M) =

∫
1M dω2 = ω2(M).

Hence ω1 = ω2. Also, states can be separated in C∗-algebras: let ω1, ω2 : A → C be two
states of a C-algebra A with ω1 6= ω2. Then there is an element a ∈ A with ω1(a) 6= ω2(a).
Since each element in a C∗-algebra can be written as a linear combination of (four) positive
elements — see also the proof of Lemma 8.6 later on — we may assume a is positive (and
a 6= 0). We take e = 1

‖a‖ · a, which is an effect since 0 ≤ e ≤ ‖e‖ · 1 = 1. Moreover,

(ω1 |= e) = ω1(e) = 1
‖a‖ · ω1(a) 6= 1

‖a‖ · ω2(a) = ω2(e) = (ω2 |= e).

Separation of predicates and/or states is thus a sensible additional requirement to add in
axiomatisation.

5.1. Programs, states, and predicates. Let’s take a closer look at the state-and-effect
triangle (5.4) of an effectus B. We use the following interpretations of morphisms in B.

states ω : 1 −→ X

programs f : X −→ Y

predicates q : Y −→ 1 + 1
(5.6)

Such a program, also called a computation, f : X → Y yields two ‘transformer’ maps:{
state transformer f∗ = f ◦ (−) : Stat(X) −→ Stat(Y)
predicate transformer f∗ = (−) ◦ f : Pred(Y) −→ Pred(X)

In a quantum setting the state transformer f∗ captures Schrödinger’s style of forward compu-
tation, whereas the predicate transformer f∗, going backwards, corresponds to Heisenberg’s
style. It turns a predicate on the codomain of f into a predicate on the domain of f , acting
like a weakest precondition operation wp(f).

Notice that the scalars ω |= f∗(q) and f∗(ω) |= q are the same, giving a Galois/adjoint
style correspondence:

(
ω |= f∗(q)

)
=
(
1

ω // X
f // Y

q // 1 + 1
)
=
(
f∗(ω) |= q

)
. (5.7)

These scalars (f∗(ω) |= q) = (ω |= f∗(q)) are interpreted as the expected probability that
predicate q holds after running program f in state ω. This Galois correspondence (5.7) is
described more concretely for Kℓ(G) in [40, Prop. 6], where it relates Kleisli composition
and substitution for G. This correspondence is reminiscent of the ‘satisfaction condition’ of
institutions, see [30].

When the base category B in the triangle (5.4) is (CstarPU)
op the interpretation of

the direction of computations is more subtle, because the category (CstarPU)
op already

captures Heisenberg’s picture of quantum computation — also known as matrix mechanics.

NEW DIRECTIONS IN CATEGORICAL LOGIC 33

Its restriction to observables may be understood as a quantum version of weakest precon-
dition calculation, see [21]. State transformer semantics for Hilbert spaces, considered as
C∗-algebras via their bounded maps B(−), can be described as transformations of density
matrices, via (5.3).

In the remainder of this paper we shall describe several constructions on programs and
on predicates. Ideally, these constructions should come with appropriate calculation rules
that break down the constructions to calculations with scalars/probabilities. For instance we
already know that substitution maps f∗ preserve the effect module structure. In particular,
(ω |= (−)) = ω∗ : Pred(X) → Pred(1) is a map of effect modules. Hence we can reduce
validity probabilities |= involving > and (−)⊥ on predicates to > and (−)⊥ on scalars, as
in: (

ω |= f∗(q1 > q2)
)
=
(
ω |= f∗(q1)

)
>
(
ω |= f∗(q2)

)
(
ω |= f∗(q⊥)

)
=
(
ω |= f∗(q)

)⊥
.

6. Predicates and coproducts

This section investigates the interaction in an effectus between coproducts, as in Assump-
tion 1, and predicates. The elements of an effect module may be seen as formulas in a
logic. There are truth and falsum formulas 1, 0, and formulas are closed under sum > and
orthocomplement (−)⊥. In the current categorical context where we have effect modules
Pred(X) of predicates X → 1 + 1 on an object X in a category, we can form additional
formulas. Notably, if we have two predicates p : X → 1+1 and q : Y → 1+1 we can form a
cotuple predicate [p, q] : X+Y → 1+1. This cotuple looks like a new predicate constructor.
But the isomorphism (6.1) in the next result shows that we get nothing new.

Lemma 6.1. Let B be an effectus, with its predicate functor Pred : B→ (EModM)op from
Proposition 4.6, where M = Pred(1) = Hom(1, 1 + 1) is the effect monoid of scalars. This
functor Pred preserves finite coproducts and the final object 1, i.e. it sends:

• coproducts (+, 0) in B to products (×, 1) in EModM ;
• the final object 1 ∈ B to the initial object M = Pred(1) in EModM .

In particular, for objects X,Y ∈ B there is an isomorphism of effect modules:

Pred(X + Y)

〈κ∗
1,κ

∗
2〉

--∼= Pred(X) × Pred(Y)

[−,−]

mm (6.1)

On the right-hand-side we use the obvious componentwise effect module structure. This
isomorphism is natural in X,Y .

Proof. Clearly, Pred(0) = Hom(0, 1+1) is a singleton set, which, understood as trivial effect
module, is final in the category EModM . The two functions 〈κ∗1, κ∗2〉 and [−,−] in (6.1) are
each other’s inverses. We have already seen in Proposition 4.6 that substitution functors —
in particular these κ∗i — preserve the effect module structure. So we only have to prove that
the cotuple map [−,−] : Pred(X) × Pred(Y) → Pred(X + Y) preserves the effect module
structure.

Obviously, [−,−] preserves truth:
[1, 1] = [κ1 ◦ !X , κ1 ◦ !Y] = κ1 ◦ [!X , !Y] = κ1 ◦ !X+Y = 1.

34 B. JACOBS

If we have p1 ⊥ p2 for pi ∈ Pred(X) via bound b, and q1 ⊥ q2 for qi ∈ Pred(Y) via bound
c, then one easily checks that [b, c] : X + Y → (1 + 1) + 1 proves [p1, q1] ⊥ [p2, q2] and
also [p1, q1] > [p2, q2] = [p1 > p2, q1 > q2]. Preservation of scalar multiplication from (4.7) is
obvious:

s • [p, q] = [s, κ2] ◦ [p, q] = [[s, κ2] ◦ p, [s, κ2] ◦ q] = [s • p, s • q].
Naturality of the isomorphism in (6.1) is easy and left to the reader. Finally, Pred(1) =M

is clearly an initial object in EModM , because for each E ∈ EModM there is a unique
map M → E of effect modules, namely r 7→ r • 1. �

The isomorphism (6.1) is known from many instances.

• In Sets it amounts to {0, 1}X+Y ∼= {0, 1}X×{0, 1}Y , which, in terms of powersets instead
of characteristic functions becomes: P(X + Y) ∼= P(X) × P(Y).
• In Kℓ(D) it means [0, 1]X+Y ∼= [0, 1]X × [0, 1]Y .
• And for C∗-algebras A,B it says [0, 1]A⊕B

∼= [0, 1]A × [0, 1]B .

Because Pred : B→ (EModM)op preserves finite coproducts we have isomorphisms of effect
modules:

Pred(X1 + · · · +Xn) ∼= Pred(X1)× · · · × Pred(Xn).

In particular, the right-to-left cotuple is a map of effect modules. This yields a useful
equation:

[p1, . . . , pn] > [q1, . . . , qn] = [p1 > q1, . . . , pn > qn]. (6.2)

As immediate consequence we get [p, q] = [p, 0] > [0, q]. The predicates [p, 0] and [0, q]
occurring in this equation play a special role. Informally, the predicate [p, 0] says that an
element z : X + Y must be in the first component X of the coproduct X + Y and in that
case p holds for z. The predicate [p, 1] involves an implication: if z is in the first component
X, then p holds for z. We define special operators:

FstAnd(p) = [p, 0] FstThen(p) = [p, 1].

Similarly we have:

SndAnd(q) = [0, q] SndThen(p) = [1, q].

Lemma 6.1 implies [p, q] = FstAnd(p) > SndAnd(q). It is easy to see that the “and” and
“then” versions satisfy the De Morgan equalities:

FstAnd(p⊥)⊥ = FstThen(p) and SndAnd(p⊥)⊥ = SndThen(p). (6.3)

The relevance of these operators lies in the following result. It states that substitution
functors κ∗i for coprojections automatically have adjoints. They will be useful later on in
Section 9.

Lemma 6.2. Let category B satisfy Assumption 1. Then there are (order) adjunctions:

FstAnd ⊣ κ∗1 ⊣ FstThen and SndAnd ⊣ κ∗2 ⊣ SndThen (6.4)

in a situation:

Pred(X)

FstThen=[−,1]

⊥ 44

FstAnd=[−,0]

⊥ **
Pred(X + Y)κ∗

1
oo κ∗

2
// Pred(Y)

SndAnd=[0,−]

⊥tt

SndThen=[1,−]

⊥jj

NEW DIRECTIONS IN CATEGORICAL LOGIC 35

These adjoints commute with substitution, in the sense that for each map f : Z → X in B

the following diagrams commute.

Pred(X)
FstAnd //

f∗

��

Pred(X + Y)

(f+id)∗

��

Pred(X)
FstThen//

f∗

��

Pred(X + Y)

(f+id)∗

��
Pred(Z)

FstAnd
// Pred(Z + Y) Pred(Z)

FstThen
// Pred(Z + Y)

(And similarly for Snd.) In the language of fibrations — see [37] — this means that these
adjoints form a fibred adjunction.

The adjoints in (6.4) are order adjoints (or Galois connections). In particular, the
adjoints to κ∗i are not themselves maps of effect modules, but only monotone maps. Their
properties will be described in greater detail in Lemma 6.3 below. In the categorical logic
left and right adjoints to substitution are often written as

∐
and

∏
respectively, see [37].

Hence one may also write FstAnd =
∐

κ1
and FstThen =

∏
κ1
, and similarly for the second

coprojection κ2.

Proof. We prove that there is a bijective correspondence:

FstAnd(p) ≤ q
============
p ≤ κ∗1(q)

where q is a predicate on X + Y .
First, assume FstAnd(p) ≤ q, say via FstAnd(p) > s = q, where s ∈ Pred(X + Y). Let

b : X + Y → (1 + 1) + 1 be a bound for the sum FstAnd(p)> s, so that ·····✎✎ ◦ b = FstAnd(p),
·····✴✴✎✎✎✎ ◦ b = s, and (∇ + id) ◦ b = FstAnd(p) > s = q. We take c = b ◦ κ1 : X → (1 + 1) + 1.
Then one easily checks that c is a bound showing p ⊥ κ∗1(s) and p > κ∗1(s) = κ∗1(q). Hence
p ≤ κ∗1(q).

In the other direction, assume p ≤ κ∗1(q), via p>s = κ∗1(q) with bound b : X → (1+1)+1.
We now take c = [b, (κ2 + id) ◦ q ◦ κ2] : X + Y → (1+ 1)+ 1. Then c proves FstAnd(p) ⊥ t,
where t = [s, q ◦ κ2] : X + Y → 1 + 1, and FstAnd(p) > t = q. Hence FstAnd(p) ≤ q.

Having established the adjunction FstAnd ⊣ κ∗1 we use the De Morgan equation to
prove κ∗1 ⊣ FstThen in:

q ≤ FstThen(p) = FstAnd(p⊥)⊥
===============
FstAnd(p⊥) ≤ q⊥
===============
p⊥ ≤ κ∗1(q

⊥) = κ∗1(q)
⊥

===========
κ∗1(q) ≤ p

Finally, for f : Z → X one has:

(f + id)∗(FstAnd(p)) = [p, 0] ◦ (f + id) = [p ◦ f, 0] = [f∗(p), 0] = FstAnd(f∗(p)).

There is a bit more to say about these adjoints FstAnd and FstThen. We restrict ourselves to
properties of FstAnd, because the corresponding properties for FstThen are easily obtained
since FstThen can be expressed as the De Morgan dual of FstAnd, see (6.3).

36 B. JACOBS

Lemma 6.3. The adjoint FstAnd ⊣ κ∗1 from Lemma 6.2 satisfies:

(1) κ∗1 ◦ FstAnd = id;
(2) FstAnd preserves and reflects the order: p ≤ p′ iff FstAnd(p) ≤ FstAnd(p′);
(3) FstAnd(0) = 0;
(4) FstAnd(p1 > p2) = FstAnd(p1) > FstAnd(p2), when p1 ⊥ p2;
(5) FstAnd(s • p) = s • FstAnd(p) where • is scalar multiplication from (4.7).

Proof. The results follow from the isomorphism Pred(X + Y) ∼= Pred(X) × Pred(Y) in
Lemma 6.1.

(1) Directly from the isomorphism 6.1.
(2) Idem, since the isomorphism preserves and reflects the order, so: p ≤ p′ iff [p, 0] ≤ [p′, 0].
(3) Because (6.1) is an isomorphism of effect modules. Explicitly: FstAnd(0X) = [0X , 0Y] =

0X+Y .
(4) Similarly: FstAnd(p1>p2) = [p1>p2, 0] = [p1>p2, 0>0] = [p1, 0]>[p2, 0] = FstAnd(p1)>

FstAnd(p2).
(5) Idem, using that s • 0 = 0. �

Remark 6.4. As already mentioned, the coproducts + and the final object 1 in an effectus
B give rise to the ‘lift’ or ‘maybe’ monad L = (−) + 1 on B. Its unit maps X → X +1 are
the first coprojections κ1, and its multiplication maps (X +1) + 1→ X +1 are of the form
[id, κ2]. The associated category of Eilenberg-Moore algebras EM(L) is isomorphic to the
category with states ω : 1 → X as object, corresponding to an algebra [id, ω] : X + 1 → X.
Maps correspond to commuting triangles between states.

The Kleisli category of the lift monad, written as B+1, typically captures partial com-
putations that may fail to produce an output, for instance via non-terminating behaviour.
The Kleisli category of the lift monad (−) + 1 on Sets has maps of the form X → Y + 1,
corresponding to partial functionsX → Y . With the ‘flat’ order, these maps form a directed
complete partial order (dcpo).

We can also consider the lift monad L = (−) + 1 on the Kleisli category of the dis-
tribution monad D. A map X → Y in the associated Kleisli category (of lift) is a map
X → Y + 1 in the Kleisli category Kℓ(D) of the distribution monad. Hence it is a function
X → D(Y + 1). A crucial observations is that a distribution ϕ ∈ D(Y + 1) on Y + 1 is a
subdistribution on Y : a formal convex sum

∑
i ri|yi 〉 of elements yi ∈ Y and probabilities

ri ∈ [0, 1] whose sum is below 1, as in:
∑

i ri ≤ 1. These subdistributions can be ordered
pointwise, and have the everywhere-zero subdistribution as least element. In case infinite
supports are allowed, they are directed complete.

A similar phenomenon exists for C∗-algebras: the lift monad (−) ⊕ C on the opposite
category (CstarPU)

op yields a correspondence between maps in CstarPU.

positive unital A⊕ C
f // B

========================
positive subunital A

g
// B

Subunitality of g : A→ B means 0 ≤ g(1) ≤ 1. This correspondence is given as follows. For
f : A ⊕ C → B take f(a) = f(a, 0), and for g : A → B, take g(a, z) = g(a) + z · (1 − g(1)).
When A,B are W ∗-algebras, the normal completely positive subunital maps A→ B carry
a dcpo structure, see [15, 70], which can be used to interpret loops, like while or recursion,
see also [71] for more information.

NEW DIRECTIONS IN CATEGORICAL LOGIC 37

A systematic investigation of partiality in effectuses can be found in [16]. There, the
main result shows that an effectus can equivalently be described as a finitely partially
additive category (as in [5]), with suitable effect algebra structure. This shows that partiality
is an intrinsic feature of the theory of effectuses.

Remark 6.5. The starting point of this section is Lemma 6.1, showing that the predi-
cate functor Pred : B → EModop of an effectus B automatically preserves coproducts. A
natural question to ask is: does the states functor Stat : B → Conv in a state-and-effect
triangle (5.4) also preserve coproducts?

This matter is addressed in [47]. There it is shown that preservation of + by the states
functor Stat does not come for free, but corresponds to an important property, namely
normalisation of states. This is relevant in conditional probability, as we briefly illustrate
in the Kleisli category Kℓ(D) of the distribution monad D on Sets, where this preserva-
tion/normalisation property holds. If we have a distribution ϕ ∈ D(X + Y) on a coproduct
setX+Y , then we can write ϕ as convex combination r·D(κ1)(ϕ|X)+(r−1)·D(κ2)(ϕ|Y), for
certain ‘normalised’ distributions ϕ|X ∈ D(X), ϕ|Y ∈ D(Y) and r =

∑
x∈X ϕ(κ1x) ∈ [0, 1].

Such convex combinations form the coproduct in the category Conv, see [47] for details.

7. Measurement instruments

Our second assumption introduces (discrete) measurement instruments as certain maps in
our base category. Such instruments have been introduced in [20], see also [66] and [35].
Characteristic aspects are:

(1) different measurement outcomes can be distinguished
(2) state changes caused by measurement are taken into account.

Assumption 2 below describes our categorical formalisation of discrete instruments for fini-
tary measurements, as maps of the form X → X + · · ·+X, induced by a test. The original
references [20, 66] deal with the non-finitary, continuous case, where effects are indexed via
a measurable space, see Remark 7.3 (1) below. The different measurement outcomes in the
first point correspond to the different coproduct options in the codomain X + · · ·+X. The
state changes are captured by the side-effect associated with such an instrument, which we
define as the composite with the codiagonal ∇ = [id, · · · , id] in:

X // X + · · ·+X
∇ // X

There is no side-effect if this map X → X is the identity. We use the term ‘side-effect-free’
for this situation. These side-effects will be studied systematically in the next section. In
this section we concentrate on the definition of instruments and on examples, and show how
they can be used for guarded test programs.

We should emphasise that the instrument assumption below requires the presence of cer-
tain maps, satifying certain properties. It is an open question, under which conditions, these
properties fully determine the instrument maps. Hence these instruments form structure in
the category, and their presence is not a property of the category — as long as we cannot
show that they are uniquely determined. This is not uncommon: our third assumption is
about the presence of tensors ⊗, which are also non-uniquely determined structure.

38 B. JACOBS

Assumption 2. Let B be an effectus, i.e. a category satisfying Assumption 1. For each
n-test p : X → n · 1 there is a measurement instrument map instrp : X → n ·X in B making
the following diagram commute.

X
p //

instrp %%

n · 1

n ·X
n·!

OO

Notice that the ‘1’ in the codomain of a test X → n · 1 is replaced by ‘X’ in an instrument
X → n ·X. Thus, where a test only captures the different output options (and no outcome,
in 1), an instrument has both options and an outcome (in X). The above diagram says that
annihilating these outcomes in X via the unique map ! : X → 1 returns the original test.

We do not require uniqueness of these instruments, but we do require the following
properties.

(1) (Injection) For an injective function φ : {1, . . . , n} {1, . . . ,m} and an object A, write
[φ] : n · A → m · A for the obvious map [φ] = [κφ(1), . . . , κφ(n)]. Then for each n-test
p : X → n · 1 the following diagram commutes.

X
instrp //

instr[φ]◦p))❘❘
❘❘❘

❘❘❘
❘❘❘

❘ n ·X
[φ]
��

m ·X
This property says that reordering elements of a test and adding zero (falsum) predicates
is reflected in the corresponding instrument. It implies for instance: instrp⊥ = [κ2, κ1] ◦
instrp, for a predicate p : X → 1 + 1, where p⊥ = [κ2, κ1] ◦ p is the orthocomplement.

(2) (Cotuple) For two n-tests p : X → n · 1 and q : Y → n · 1, the following diagram
commutes:

X + Y
instr[p,q] //

instrp+instrq **❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯

n · (X + Y)

∼= [κ1+κ1,...,κn+κn]
��

n ·X + n · Y
(3) (Collapse) For each n +m-test p : X → n · 1 +m · 1 one can “collapse” the m-options

in two different ways, but this gives the same outcome, as expressed by the following
commuting diagram.

n ·X +m ·X
id+ !

((
X

instrp
44

instr(id+ !)◦p
++

n ·X + 1

n ·X +X id+ !

66

(4) (Side-effect-free) Given a map q : X → n · X in B which is side-effect-free, that is
∇ ◦ q = id, then q = instrp for the n-test p = (n·!) ◦ q : X → n · 1. In diagrams:

if
X

q //

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

n ·X
∇��

X

then
X

q //

p $$❏❏
❏❏

❏❏
❏ n ·X

n·!
��

n · 1
satisfies X

q=instrp// n ·X

NEW DIRECTIONS IN CATEGORICAL LOGIC 39

When ∇ ◦ q = id as in the last property, then q : X → X+ · · ·+X is merely selecting paths
among the various coproduct options, without having any computational effect. Therefor
we call such a q side-effect-free, see the next section. The above property (4) says that
such path-selector maps q arise as instruments from the corresponding path-selector test
(n·!) ◦ q : X → 1 + · · ·+ 1. This path property is non-trivial, especially for C∗-algebras, see
Corollary 8.5. We explicitly mention two consequences.

Lemma 7.1. In a category satisfying Assumption 2 we have:

(1) instrq = q for each n-test q : 1→ n · 1 on the final object 1;
(2) instrκi◦ ! = κi : X → n ·X, for each 1 ≤ i ≤ n.
In particular, instrq = q when q is a scalar, and instr1 = κ1, instr0 = κ2, for the true and
false predicates 1, 0: X → 1 + 1.

Proof. We use property (4) from Assumption 2 in both cases. For q : 1 → n · 1 we clearly
have ∇ ◦ q = id by finality of 1. But also p = (n·!) ◦ q = q, so that instrq = q. For the
second point, notice that the coprojection κi : X → n ·X satisfies ∇ ◦ κi = id. The n-test
(n·!X) ◦ κi = κi ◦ !X : X → n · 1 gives instrκi◦ !X = κi. �

We illustrate these instruments in our leading examples.

Examples 7.2. In the category Sets, an n-test p : X → n · 1 = {1, 2, . . . , n} corresponds
to a partition of X, that is, to a cover of X given by disjoint subsets. Hence we can define
an instrument instrp : X → n · X that picks the i-th coproduct option if the input x is in
the i-th subset:

instrp(x) = κix iff p(x) = i. (7.1)

Clearly, n·! ◦ instrp = p.
For an n-test p : X → D(n) in the Kleisli category Kℓ(D) the associated instrument

instrp : X → D(n ·X) works as before, but now gives a distribution over the various coprod-
uct options, via the following convex sum:

instrp(x) = p(x)(1)|κ1x〉+ · · ·+ p(x)(n)|κnx〉 (7.2)

In the case of continuous probability, given by the Kleisli category Kℓ(G) of the Giry
monad G, an n-test is a measurable map p : X → G(n) ∼= D(n). Hence we can use basically
the same construction as before: the instrument instrp : X → G(n ·X) sends x ∈ X to the
probability measure instrp(x) : Σn·X → [0, 1] defined on basic measurable subsets κiM ∈
Σn·X as:

instrp(x)(κiM) = p(x)(i) · 1M (x) =

{
p(x)(i) if x ∈M
0 otherwise.

(7.3)

We sketch the proof of requirement (4) because it is slightly subtle. Let q : X → G(n ·X) be
a measurable map satisfying ∇ ⊚ q = id, where ⊚ is Kleisli composition. One easily checks
that this amounts to, for x ∈ X and M ∈ ΣX ,

1M (x) = η(x)(M) = id(x)(M) = q(x)(κ1M) + · · · + q(x)(κnM)

This equality gives some useful information. First, if x 6∈M , then 1M (x) = 0, so q(x)(κiM) =
0 for each i. Second, if M ⊆ N then q(x)(κiM) ≤ q(x)(κiN) by monotonicity of the prob-
ability measure q(x). But if x ∈ M this ≤ must be an equality, since also 1 = 1N (x) =
q(x)(κ1N) + · · · + q(x)(κnN). Third, q(x)(κiM) = q(x)(κiX) · 1M (x). Indeed, if x 6∈ M

40 B. JACOBS

then both sides are 0 by the first observation. And if x ∈ M , then both sides are equal by
the second one. Next we note that the test (n·!) ⊚ q : X → G(n) can be described as:

((n·!) ⊚ q)(x)(i) =
∫
(n·!)(−)(i) dq(x) =

∫
1κiX dq(x) = q(x)(κiX).

Finally we can prove instr(n·!)⊚q = q via:

instr(n·!)⊚q(x)(κiM) = ((n·!) ⊚ q)(x)(i) · 1M (x) = q(x)(κiX) · 1M (x) = q(x)(κiM).

We continue with rings and show that instruments exist for commutative rings. For a ring
R an n-test R → n · 1 consists of n idempotents ~e = e1, . . . , en ∈ R with e1 + · · · + en = 1
and ei · ej = 0 for i 6= j. If R is commutative we get an instrument instr~e : R → n · R
in the opposite category CRngop. In the category CRng it takes the form of a function
instr~e : R

n → R defined by:

instr~e(x1, . . . , xn) = e1 · x1 + · · ·+ en · xn. (7.4)

It clearly preserves sums (+, 0). It also preserves multiplications (·, 1) by the properties
of an n-test and commutativity. Of the required properties in Assumption 2 we only do
number (4): if q : Rn → R is a ‘side-effect-free’ ring homomorphism with q ◦ ∆ = id, then
q(x, . . . , x) = x. Moreover, the n-test p = q ◦ !n : Zn → R is given by p(m1, . . . ,mn) =
q(m1 · 1, . . . ,mn · 1), and corresponds to idempotents ei = q(|i〉) ∈ R, satisfying:

instr~e(x1, . . . , xn) = e1 · x1 + · · ·+ en · xn
= q(|1〉) · q(x1, . . . , x1) + · · ·+ q(|n〉) · q(xn, . . . , xn)
= q(|1〉 · (x1, . . . , x1)) + · · ·+ q(|n〉 · (xn, . . . , xn))
= q(x1, 0, . . . , 0) + · · ·+ q(0, . . . , 0, xn)

= q(x1, . . . , xn).

Along the same lines one shows that instruments exist in the opposite DLop of the category
of distributive lattices: for such a lattice L, with an n-test, consisting of elements e1, . . . , en ∈
L satisfying e1 ∨ · · · ∨ en = 1, and ei ∧ ej = 0 for i 6= j, one defines an instrument
instr~e : L

n → L by:

instr~e(x1, . . . , xn) = (e1 ∧ x1) ∨ · · · ∨ (en ∧ xn).
We turn to C∗-algebras. In a C∗-algebra A, with an n-test ~e = e1, . . . , en ∈ [0, 1]A

where e1 + · · · + en = 1, we have an instrument instr~e : A
n → A given by:

instr~e(a1, . . . , an) =
√
e1 · a1 ·

√
e1 + · · ·+

√
en · an ·

√
en. (7.5)

This map is not only positive, but completely positive. We notice that if the C∗-algebra
A is commutative, then instr~e(a1, . . . , an) = e1 · a1 + · · · + en · an, like for rings in (7.4).
This formula (7.5) is sometimes called the (generalised) Lüders rule, for unsharp predicates
(effects). It can be found, for instance, in [12, Eq.(1.3)].

Of the different properties (1)–(4) in Assumption 2 for instruments we shall demon-
strate (3). So assume we have an n+m-test, of the form p : Cn ×C

m → A. It corresponds

to n+m effects e1, . . . , en, d1, . . . , dm ∈ [0, 1]A, where ei = p(|i〉,~0) and dj = p(~0, |j 〉), with∑
i ei +

∑
j dj = 1. The test p′ = p ◦ (id× !) : Cn × C → A is given by p′(z1, . . . , zn, w) =

p(z1, . . . , zn, w, . . . , w). Hence p′ corresponds to the n + 1-tuple of effects e1, . . . , en,
∑

j dj.

NEW DIRECTIONS IN CATEGORICAL LOGIC 41

We can now compute the outcomes of the two paths in the diagram in Assumption 2 (3) in
the category CstarPU. We show that the two associated maps An×C→ A are equal. The
upper composite is:

(
instrp ◦ (id× !)

)
(a1, . . . , an, w) = instr

~e,~d
(a1, . . . , an, w · 1, . . . , w · 1)

=
(∑

i

√
ei · ai ·

√
ei
)
+
(∑

j

√
dj · (w · 1) ·

√
dj
)

=
(∑

i

√
ei · ai ·

√
ei
)
+ w · (∑j dj).

We get the same outcome if we follow the lower path:
(
instrp′ ◦ (id× !)

)
(a1, . . . , an, w) = instr~e,

∑
j dj

(a1, . . . , an, w · 1)
=
(∑

i

√
ei · ai ·

√
ei
)
+
(√∑

j dj · (w · 1) ·
√∑

j dj
)

=
(∑

i

√
ei · ai ·

√
ei
)
+ w · (∑j dj).

The verification of property (4) for C∗-algebras will be postponed to Corollary 8.5 in the
next section.

We briefly consider the special cases where the C∗-algebra is B(H), for a Hilbert space
H. The effects [0, 1]B(H) of B(H) are the positive maps H → H below the identity. Suppose

our n-test of effects p1, . . . , pn ∈ [0, 1]A consists of projections: p2i = pi. Then
√
pi = pi.

Hence the associated instrument instr~e : B(H)n → B(H) takes the familiar form:

instr~p(A1, . . . , An) = p1A1p1 + · · · pnAnpn.

Remark 7.3. The above list of examples gives rise to the following observations.

(1) For an n-test ~e in a C∗-algebra A we have an instrument instr~e(a1, . . . , an) =
∑

i

√
ei ·

a1 ·
√
ei as defined in (7.5). We briefly show how it forms a (discrete) instrument as

defined in [66, §4], see also [35, §5.1.2]. The map instr~e can be seen as a combination
of n completely positive subunital maps A → A, namely fi(a) =

√
ei · a1 ·

√
ei. These

maps fi are subunital since 0 ≤ fi(1) = ei ≤ 1. In fact, let Σn = P(n) be the set
of measurable subsets of the discrete measurable space n. Then we can define for
each (measurable) subset U ⊆ n a completely positive subunital map fU : A → A via
fU(a) =

∑
i∈U
√
ei · a1 ·

√
ei. As required for a (discrete) instrument, this mapping

U 7→ fU sends disjoint unions U > V to sums fU + fV . Moreover, the function fn
associated with the largest (measurable) subset n ⊆ n is unital.

Thus we have constructed a function from a σ-algebra Σ to the completely positive
subunital maps A→ A that is additive, and sends the top element to a unital function.
This is (the C∗-algebraic version of) an instrument as defined in [20, 66, 35].

(2) We have defined instruments in (7.4) only for commutative rings. For a non-commutative
ring R with an n-test ~e one can define a map f : Rn → R as f(x1, . . . , xn) =

∑
i ei ·xi ·ei.

However, this map does not preserve multiplication. Hence one may try to adapt the
notion of ‘ring homomorphism’ to something weaker, just like PU is a weakening of
MIU for C∗-algebras. This requires a careful balancing act, because one would still like
to have a reasonable notion of predicate as this new kind of map R → 1 + 1. There is
no obvious way to do that. This balancing act does work for C∗-algebras, by not using
MIU but PU maps.

(3) We have used the computer science terminology ‘side-effect’ for what is more commonly
called ‘observer effect’ in physics. It is an interesting question to what extent instru-
ments, as defined above are useful to capture side-effects in computer science. Here is

42 B. JACOBS

a first thought. One can imagine a database with state space X for which one may
observe certain content, say via a function X → n, where what is observed is described
here simply as a finite set n of natural numbers. Associated with such an observer map
X → n one can construct an ‘instrument’ X → n · X which has a side-effect on the
state space X of the database, for instance by logging the observation itself. This can
be done for accountability reasons, like in a medical database. The instrument used for
observation thus changes the state of the database by adding a log entry.

(4) Assumption 2 lists four coherence requirements for instruments. They suffice in the
present setting. However, we do not claim that these four requirements are ‘complete’.
Possibly, other formulations are more adequate, and guarantee that instruments are
unique. This issue is still an area of active research. For instance, in [17] instruments
are (equivalently) described via partial ‘assert’ maps X → X + 1, like in point (1). It
is illustrated that in several example categories these assert maps can be obtained from
quotient and comprehension maps, but the precise defining property remains elusive.
Recent, unpublished research shows that in ‘Boolean’ and in ‘classical’ effectuses these
assert/instrument maps are uniquely determined; but the ‘quantum’ case remains open.

We conclude this section by showing how instruments instr as in Assumption 2 give rise to
a natural programming language construct, namely a general test map in the base category
of computations: for an n-test p : X → n · 1 and n parallel maps f1, . . . , fn : X → Y we can
define a test map X → Y as:

p?[f1, . . . , fn] =
(
X

instrp // n ·X = X + · · ·+X
[f1,...,fn] // Y

)
. (7.6)

The idea is that this test map p?[f1, . . . , fn] first performs a p-test, and then, depending
on the outcome, does a suitable combination of the maps f1, . . . , fn. This combination
depends on the coproduct options in n · X that p produces and acts on the state after p,
incorporating the side-effect of p, if any.

Via the bijective correspondence (4.11) between an n-test p : X → n · 1 and n separate
predicates p1, . . . , pn : X → 1 + 1 with p1 > · · · > pn = 1, we can understand this test map
p?[f1, . . . , fn] in (7.6) also as a guarded command in the style of [23], written alternatively
as:

if
| p1 → f1

...
| pn → fn

fi

or, as we shall write
later, in Figure 4,

begin test x
| p1 → f1

...
| pn → fn

end test

(7.7)

In the set-theoretic case these pi describe a partition of X, so that for each x ∈ X precisely
one fi is selected. In the probabilistic case a suitable convex combination of the fi is
executed. And in the quantum case this test map involves a more complicated combination
using square roots of the effects, as in (7.5).

Appropriate logical “test” operators to reason about these guarded commands will be
described in Section 9. At this stage we observe the following obvious property:

g ◦
(
p?[f1, . . . , fn]

)
= p?[g ◦ f1, . . . , g ◦ fn]. (7.8)

A corresponding pre-composition property holds for so-called pure maps, see (8.6).

NEW DIRECTIONS IN CATEGORICAL LOGIC 43

The convex sum >i riωi of states ωi defined in the proof of Lemma 5.2 is an instance
of this test programming construct (7.6):

>i riωi = [ω1, . . . , ωn] ◦ p = if
| r1 → ω1

...
| rn → ωn

fi

This follows from the equation instrp = p for p : 1→ n · 1 in Lemma 7.1 (1).

8. Side-effect free predicates and pure maps

One of the advantages of the current, general approach is that it allows us to express the side-
effect — sometimes called the observer effect — of an instrument. We already encountered
it briefly in the previous section. Here we add some further results about side-effect-freeness,
notably in relation to commutativity in C∗-algebras. Also, we introduce an abstract notion
of purity for maps.

Definition 8.1. Given a choice of mesurement instruments, the side-effect of an n-test
p : X → n · 1 is the endomap X → X obtained in:

X
instrp // X + · · · +X

∇=[id,...,id] // X

This test p is called side-effect-free if its side-effect map ∇ ◦ instrp is the identity.

Tests of the form 1→ n ·1, including scalars for n = 2, and the true and false predicates
X → 1+1, are side-effect-free, simply because the composite 1→ n ·1→ 1 is necessarily the
identity. Also, p⊥ has the same side-effect as p, by the (Injection) property in Assumption 2.
The side-effect associated with an effect e ∈ [0, 1]A in a C∗-algebra A is the map A → A

given by a 7→ √e · a · √e+
√
1− e · a ·

√
1− e. If A is commutative, this map is the identity.

One of the main contributions of this section is establishing a connection between side-
effect-freeness and commutativity in C∗-algebras. We recall that commutative C∗-algebra
are not ‘quantum’ but ‘probabilistic’ models of computation. Formulated differently, having
side-effects of predicates/tests is a characteristic feature of the quantum world. Indeed, an
observation at the quantum level may change (disturb) the state of the system that is being
observed.

But first we show that there are no side-effects in classical and probabilistic logic.

Proposition 8.2. In the categories Sets, Kℓ(D) and Kℓ(G) all tests are side-effect-free. In
those cases, there is a bijective correspondence:

n-tests X
p // n · 1

=============================
maps X

f
// n ·X with ∇ ◦ f = id

(8.1)

Downwards, the map f corresponding to test p is the instrument f = instrp described in
Example 7.2. Upwards, the test p is obtained from f as in Assumption 2 (4), namely as
p = (n·!) ◦ f .

44 B. JACOBS

Proof. The properties in Assumption 2 imply the bijective correspondence, once we have
proved that tests are side-effects-free. In the set-theoretic case it is easy to see that the
instrument (7.1) satisfies ∇ ◦ instrp = id. We shall skip Kℓ(D) and do the calculation in
Kℓ(G). We must show that the instrument instrp : X → G(n · X) from (7.3), for a test
p : X → G(n), satisfies ∇ ⊚ instrp = id, with Kleisli composition in Kℓ(G) written as ⊚. Well,
for x ∈ X and M ∈ ΣX ,

(
∇ ⊚ instrp

)
(x)(M) = ∇∗

(
instrp(x)

)
(M) where (−)∗ is Kleisli extension

=
∫
∇(−)(M) d instrp(x) see (A.3)

=
∫
1κ1M∪···∪κnM d instrp(x)

= instrp(x)(κ1M ∪ · · · ∪ κnM)

= instrp(x)(κ1M) + · · ·+ instrp(x)(κnM)

= p(x)(1) · 1M (x) + · · ·+ p(x)(n) · 1M (x) see (7.3)

=
(
p(x)(1) + · · ·+ p(x)(n)

)
· 1M (x)

= 1M (x)

= η(x)(M)

= id(x)(M).

The following classical result in the theory of C∗-algebras will be used without proof.

Theorem 1 (Tomiyama [81]). Let A,B be C∗-algebras with two maps f, g in:

A

PPP
PPP

PPP
PPP

P

PPP
PPP

PPP
PPP

P
g, MIU // B

f , PU
��
A

i.e.

g preserves multiplication, involution, unit (MIU)
f preserves unit, positive elements (PU)
f ◦ g = id

Then f is a map of modules, in the sense that, for all a ∈ A, b ∈ B,

a · f(b) = f(g(a) · b) and f(b) · a = f(b · g(a)). (8.2)

This result is also used in [27]. We shall apply it here with the diagonal ∆ = 〈id, . . . , id〉 : A→
An for g. It clearly preserves multiplication. This map f is sometimes called a conditional
expectation.

The following is a key result in linking side-effect-freeness in (CstarPU)
op to commuta-

tivity. Recall that the center Z(A) ⊆ A of a C∗-algebra A is the sub-C∗-algebra of elements
that commute with everything: Z(A) = {a ∈ A | ∀x ∈ A. a · x = x · a}.
Lemma 8.3. Let A be a C∗-algebra. There is a bijective correspondence between:

n-tests e1, . . . , en ∈ [0, 1]A ∩ Z(A) of effects ei in the center
===

positive unital maps f : An → A with f ◦ ∆ = id

Proof. For effects ~e = e1, . . . , en ∈ [0, 1]A in the center Z(A) with e1 + · · ·+ en = 1 one can
define a linear map f~e : A

n → A by:

f~e(a1, . . . , an) =
∑

i ei · ai. (8.3)

NEW DIRECTIONS IN CATEGORICAL LOGIC 45

We use that the effects ei are in the center in order to show that this function f~e is positive:
if ai = x∗ixi, then f~e(a1, . . . , an) is positive, being the sum of positive elements:

f~e(a1, . . . , an) =
∑

i ei · ai =
∑

i ei · x∗i · xi
=
∑

i x
∗
i · ei · xi since ei is in the center

=
∑

i x
∗
i · (
√
ei)

∗ · √ei · xi since ei is positive

=
∑

i(
√
ei · xi)∗ · (

√
ei · xi).

Clearly, (
f~e ◦ ∆

)
(a) = f~e(a, . . . , a) =

∑
i ei · a = (

∑
i ei) · a = 1 · a = a.

In particular, f~e is unital. The effects ei can be retrieved from f~e as ei = f~e(|i〉), where
|i〉 ∈ An is the sequence with 1 ∈ A at position i and 0 ∈ A elsewhere.

Conversely, let f : An → A be a positive unital map with f ◦ ∆ = id. We obtain effects
ei = f(|i〉) ∈ [0, 1]A in the standard way. And we get f = f~e via Tomiyama’s Theorem 1:

f(a1, . . . , an) = f
(∑

i |i〉 ·∆(ai)
)
=
∑

i f
(
|i〉 ·∆(ai)

)
=
∑

i f(|i〉) · ai see (8.2)

=
∑

i ei · ai
= f~e(a1, . . . , an).

We still need to prove that the effects ei = f(|i〉) are in the center. Again, this follows from
Tomiyama’s Theorem:

ei · x = f(|i〉) · x = f
(
|i〉 ·∆(x)

)
see (8.2)

= f
(
∆(x) · |i〉

)

= x · f(|i〉) see (8.2) again

= x · ei.
Corollary 8.4. Let ~e = e1, . . . , en ∈ [0, 1]A be an n-test in a C∗-algebra A. Then:

~e is side-effect-free ⇐⇒ each effect ei is in the center Z(A).

Proof. First we observe that if e ∈ [0, 1]A ∩ Z(A), then also
√
e ∈ [0, 1]A ∩ Z(A). That the

square root
√
e is an effect is obvious. It is also in the center Z(A) →֒ A since this center

is sub-C∗-algebra, so the construction of
√
e for e ∈ Z(A) via the functional calculus takes

place entirely within Z(A). Secondly we recall that the instrument instr~e : A
n → A for the

n-test ~e is given by instr~e(~a) =
∑

i

√
ei · ai ·

√
ei, see (7.5).

For the implication (⇐=) assume that the effects ei are in the center Z(A). Then so
are the

√
ei, and thus:

instr~e(~a) =
∑

i

√
ei · ai ·

√
ei =

∑
i

√
ei ·
√
ei · ai =

∑
i ei · ai = f~e(~a),

where the function f~e is as defined in (8.3). This yields instr~e ◦ ∆ = f~e ◦ ∆ = id, as shown
in the proof of Lemma 8.3, so that the n-test ~e is side-effect-free.

For (=⇒), if instr~e ◦ ∆ = id, then by Lemma 8.3 instr~e = f~d where di ∈ [0, 1]A ∩ Z(A)
is defined as: di = instr~e(|i〉) =

√
ei · 1 ·

√
ei = ei. �

There is another conclusion we can draw at this stage: the instruments instr~e for C∗-
algebras defined in (7.5) satisfy the ‘side-effect’ property from Assumption 2 (4). This was
postponed at the end of Example 7.2.

46 B. JACOBS

Corollary 8.5. The category (CstarPU)
op satisfies the measurement Assumption 2; in

particular, the Side-effect-free property holds.

Proof. Given a positive unital map f : An → A with f ◦ ∆ = id, we obtain an n-test
q = f ◦ !n : Cn → A corresponding to effects ei = q(|i〉) = f(|i〉) in the center. But then
f = instr~e as shown in the previous proof, and thus instrq = instr~e = f . �

For our next result it is useful to make the following observation explicit.

Lemma 8.6. Let a ∈ A be an element of a C∗-algebra A. Then:

∀x ∈ A. a · x = x · a ⇐⇒ ∀e ∈ [0, 1]A. a · e = e · a.
In words: a commutes with all elements x ∈ A if and only if it commutes with all effects
e ∈ [0, 1]A.

Proof. The direction (⇒) is obvious, so we concentrate on (⇐). A standard result in
the theory of C∗-algebras says that we can write each x ∈ A as linear combination x =
x1 − x2 + ix3 − ix4 of positive elements xi ≥ 0. By suitable scaling we can write x =
1
r
(rx1 − rx2 + irx3 − irx4), where rxi ≤ 1 is an effect, for r > 0. By assumption, each
rxi ∈ [0, 1]A commutes with a. But then x itself also commutes with a since:

a · x = a · 1
r
(rx1 − rx2 + irx3 − irx4)

= 1
r
(a · rx1 − a · rx2 + ia · rx3)− ia · rx4)

= 1
r
(rx1 · a− rx2 · a+ irx3 · a− irx4 · a)

= 1
r
(rx1 − rx2 + irx3 − irx4) · a

= x · a.
Corollary 8.7. A C∗-algebra is commutative if and only if all its tests are side-effect-free.

Proof. If a C∗-algebra A is commutative, then Z(A) = A, so in particular each effect
e ∈ [0, 1]A is in the center, so that each test ~e is side-effect-free by Corollary 8.4. Conversely,
if each test is side-effect-free, then each effect e ∈ [0, 1]A, considered as predicate (i.e. 2-test),
is in the center. An arbitrary element a ∈ A thus commutes with each effect e. But this a
then commutes with all other elements, by Lemma 8.6. This makes A commutative. �

In [19] so-called von Neumann projective measurements on Hilbert spaces are described
as (Eilenberg-Moore) coalgebras of a comonad. This result can be adapted to the current
setting, but requires side-effect-freeness.

Definition 8.8. A von Neumann n-test is an n-test e1, . . . , en of effects in a C∗-algebra
satisfying, for each i, j,

ei · ej =

{
ei if i = j

0 otherwise.
(8.4)

Such test will be called a central von Neumann test if each ei is in the center.

Notice that each effect ei in a von Neumann test is a projection: e2i = ei. As a result,√
ei = ei.
In [41] it is observed that, in general, for a category with coproducts +, for each

n > 0 taking n-fold copowers X 7→ n ·X = X + · · · +X is a comonad, with counit ε and
comultiplication δ:

n ·X ε=∇=[id,...,id] // X n ·X δ=κ1+···+κn // n · (n ·X)

NEW DIRECTIONS IN CATEGORICAL LOGIC 47

We shall be using this comonad on the opposite category (CstarPU)
op. It forms a monad

(−)n on CstarPU, with unit ∆ and multiplication π1+ · · ·+πn. We then have the following
result, describing the instruments of central von Neumann tests as coalgebras of a comonad.

Theorem 2. For a C∗-algebra A there is a bijective correspondence between:

central von Neumann n-tests e1, . . . , en ∈ [0, 1]A
======================================

coalgebras f : A→ n · A in (CstarPU)
op

This is a restriction of the bijective correspondence in Lemma 8.3.

Proof. Given a central von Neumann test ~e = e1, . . . , en we already know that the cor-
responding function f~e from (8.3) satisfies f~e ◦ ∆ = id. We show that the orthogonal
projection requirement (8.4) is equivalent to the (co)algebra equation:

f~e ◦ (f~e)n = f~e ◦ (π1 ⊕ · · · ⊕ πn) :
(
An
)n −→ A. (8.5)

This equivalence is the essence of [19, Thm. 16.6]. Here it occurs in C∗-algebraic terms.
So assume ~e is a (central) von Neumann test. Then for n sequences ~ai = (ai1, . . . , ain) ∈

An we can prove (8.5):
(
f~e ◦ (f~e)n

)
(~a1, . . . , ~an) = f~e

(
f~e(~a1), . . . , f~e(~an)

)

=
∑

i ei · (
∑

j ej · aij)
=
∑

i,j ei · ej · aij
=
∑

i ei · aii by (8.4)

= f~e(a11, . . . , ann)

= f~e
(
π1(~a1), . . . , πn(~an)

)

=
(
f~e ◦ (π1 ⊕ · · · ⊕ πn)

)
(~a1, . . . , ~an).

In the reverse direction, assuming (8.5) we prove (8.4). Take the sequence of sequences:

s = (~0, . . . ,~0, |j 〉,~0, . . . ,~0) ∈
(
An
)n

with |j 〉 ∈ An at the i-th position. Then:

ei · ej = ei · f~e(|j 〉)
= f~e

(
0, . . . , 0, f~e(|j 〉), 0, . . . , 0

)

= f~e
(
f~e(~0), . . . , f~e(~0), f~e(|j 〉), f~e(~0), . . . , f~e(~0)

)

=
(
f~e ◦ (f~e)n

)
(s)

=
(
f~e ◦ (π1 ⊕ · · · ⊕ πn))(s) by (8.5)

=

{
f~e(0, . . . , 0, 1, 0 . . . , 0) if i = j

f~e(0, . . . , 0, 0, 0 . . . , 0) otherwise

=

{
ei if i = j

0 otherwise.

We conclude this section by introducing ‘pure’ maps, which commute appropriately with
instruments.

48 B. JACOBS

Definition 8.9. In an effectus with chosen instruments, as in Assumption 2, we call a map
f : X → Y pure if for each n-test q : Y → n · 1 the following diagram commutes.

X

f
��

instrf∗(q) // n ·X
n·f
��

Y
instrq

// n · Y

This makes f a map of coalgebras, for the functor n · (−).
We should point out that ‘purity’ depends on the instruments that are used. The

next result shows that by restricting ourselves to pure maps we still have a category with
coproducts.

Lemma 8.10. The pure maps form a subcategory: the identity map is pure, and if f, g
are composable pure maps, then g ◦ f is pure too. Also, the coprojections are pure, and if
fi : Xi → Y is pure for i = 1, 2, then so is the cotuple [f1, f2].

Proof. Closure under composition is obvious. We shall prove that coprojections are pure.
Closure under cotuples is done similarly, using Assumption 2 (2). Consider a coprojection
κ1 : X → X + Y and an n-test q = [q1, q2] : X + Y → n · 1 on its codomain. Then:

instrq ◦ κ1 = [κ1 + κ1, . . . , κn + κn]
−1 ◦ (instrq1 + instrq2) ◦ κ1 by Assumption 2 (2)

= [n · κ1, n · κ2] ◦ κ1 ◦ instrq1
= (n · κ1) ◦ instrκ∗

1(q)
.

The next result describes pure maps in several examples. Note that we only give sufficient
conditions, and no characterisations of pure maps in these cases.

Proposition 8.11. In our standard examples we have the following situation.

(1) In Sets all maps are pure.
(2) In Kℓ(D) all maps in the image of the inclusion J : Sets→ Kℓ(D) are pure.
(3) Similarly, in Kℓ(G) all maps in the image of the inclusion J : Meas→ Kℓ(G) are pure.
(4) In CstarPU all MIU-maps are pure, i.e. all maps in the image of CstarMIU → CstarPU.

Proof. For f : X → Y in Sets and q : Y → n we have:
(
n · f ◦ instrq◦f

)
(x) = κiy ⇐⇒ instrq◦f (x) = κix and (n · f)(κix) = κiy

⇐⇒ q(f(x)) = i and f(x) = y

⇐⇒ instrq(f(x)) = κif(x) and f(x) = y

⇐⇒
(
instrq ◦ f

)
(x) = κiy.

In Kℓ(D) a map f : X → Y of the form f = η ◦ g is pure, for a function g : X → Y in
Sets, where η is the unit Y → D(Y) given by η(y) = 1|y 〉. Then n · f : n ·X → D(n · Y) is
given by (n · f)(κix) = 1|κig(x)〉. And for a predicate q : Y → D(n) we have q ⊚ f = q ◦ g.

NEW DIRECTIONS IN CATEGORICAL LOGIC 49

Hence:
(
n · f ⊚ instrq⊚f

)
(x) = (n · f)∗(

∑
i q(g(x))(i)|κix〉) with (−)∗ from (A.2)

=
∑

i q(g(x))(i)|κig(x)〉
= instrq(g(x))

=
(
instrq ⊚ f

)
(x).

The Giry monad G is handled similarly. Finally, in the case of C∗-algebras, a MIU-map
f : B → A preserves not only multiplication but also square roots. Hence, for an n-test
C
n → B, corresponding to effects ei = q(|i〉) ∈ B with >i ei = 1, we have:

(
instrf◦~e ◦ fn

)
(b1, . . . , bn) = instr ~f(ei)

(f(b1), . . . , f(bn))

=
∑

i

√
f(ei) · f(bi) ·

√
f(ei)

=
∑

i f(
√
ei) · f(bi) · f(

√
ei)

=
∑

i f(
√
ei · bi ·

√
ei)

= f(
∑

i

√
ei · bi ·

√
ei)

=
(
f ◦ instr~e

)
(b1, . . . , bn).

Below we give an illustration of a map that is not of the form η ◦ f in Kℓ(D) and which is
not pure. Thus the condition in point (2) is necessary. It is not clear if the MIU condition
in point 4 is also necessary. For states, it is known that a MIU-map ω : A → C is pure in
the sense that each linear map f : A → C for which both f and ω − f are positive is of
the form f = r · ω for some r ∈ [0, 1]. This latter formulation is equivalent to ω being an
extreme point in the convex set of PU maps A→ C.

Example 8.12. Let state ω : 1 → D({a, b}) in Kℓ(D) be given by: ω = 1
4 |a〉 + 3

4 |b〉
and predicate q : {a, b} → [0, 1] by q(a) = 2

5 , q(b) = 1
3 . The instrument instrq : {a, b} →

D({a, b} + {a, b}) is:
instrq(a) = 2

5 |κ1a〉+ 3
5 |κ2a〉 instrq(b) = 1

3 |κ1b〉+ 2
3 |κ2b〉.

Thus instrq ⊚ ω : 1→ D({a, b} + {a, b}) is:
instrq ⊚ ω = 1

10 |κ1a〉+ 3
20 |κ2a〉+ 1

4 |κ1b〉+ 1
2 |κ2b〉.

On the other hand, ω∗(q) : 1 → [0, 1] is given by ω∗(q) = 1
4 · 25 + 3

4 · 13 = 1
10 + 1

4 = 7
20 .

The associated instrument instrω∗(q) : 1 → D(1 + 1) is instrω∗(q) = 7
20 |0〉 + 13

20 |1〉. Then
(ω + ω) ⊚ instrω∗(q) : 1→ D({a, b} + {a, b}) is the distribution

(ω + ω) ⊚ instrω∗(q) =
7
80 |κ1a〉+ 21

80 |κ1b〉+ 13
80 |κ2a〉+ 39

80 |κ2b〉.
Thus instrq ⊚ ω 6= (ω + ω) ⊚ instrω∗(q), so that ω is not pure.

Finally, we observe that for a pure map g one has the following pre-composition property
for test maps, as defined in (7.6)

(
p?[f1, . . . , fn]

)
◦ g = (g∗(p))?[f1 ◦ g, . . . , fn ◦ g]. (8.6)

50 B. JACOBS

9. Test operators in dynamic logic

At this stage both our assumptions will be used to define test operators on predicates. It
will provide the basis for a dynamic logic whose semantic basis will be investigated in this
section. We do not provide a proper logic with deduction rules, but only describe what
holds in categorical models.

Definition 9.1. Let B be an effectus with a choice of instruments instrp as in Assumptions 1
and 2. For two predicates p, q : X → 1 + 1 on the same object X ∈ B we define two new
“test” predicates on X, namely:

〈p?〉(q) = (instrp)
∗(FstAnd(q)) = [q, 0] ◦ instrp : X −→ X +X −→ 1 + 1

[p?](q) = (instrp)
∗(FstThen(q)) = [q, 1] ◦ instrp : X −→ X +X −→ 1 + 1.

We call B a commutative model if 〈p?〉(q) = 〈q?〉(p) for all predicates p, q. Also, we call
a predicate p a projection if 〈p?〉(p) = p. Such projections are sometimes called ‘sharp’
predicates, and, in contrast, effects are then the ‘unsharp’ ones.

We pronounce 〈p?〉(q) as “test p, and then q”, and [p?](q) as “test p, then q”. These
〈p?〉(q) and [p?](q) are test operators, like in dynamic logic, see [34]. Using the test map
notation from (7.7) we may also describe these test operators as:

〈p?〉(q) = if
| p → q

| p⊥ → 0
fi

[p?](q) = if
| p → q

| p⊥ → 1
fi

These notations emphasise the difference between p and q in these test operators, since p is
used for an action, namely measurement, via the associated instrument instrp, after which
q is evaluated. In dynamic logic the test p? has no side-effect, that is, it does not change
any state. But the current setting such a test p? may have a side-effect, see explicitly in
Corollary 9.5 below. Therefore, commutativity does not hold in general, as the C∗-algebra
example below demonstrates. We now review the meaning of 〈p?〉(q) and [p?](q) in our
running examples. We will see that familiar logical operations emerge from the above
general definitions.

Examples 9.2. In the category Sets, for predicates p, q : X → 2 we have:

〈p?〉(q)(x) = [q, 0](instrp(x)) =

{
q(x) if p(x) = 1

0 otherwise

}
= p(x) · q(x)

[p?](q)(x) = [q, 1](instrp(x)) =

{
q(x) if p(x) = 1

1 otherwise

}
= p(x) · q(x) + (1− p(x))

These formulas describe ordinary conjunction and implication in terms of characteristic
functions. Since p(x) ∈ {0, 1} we have p(x) · p(x) = p(x), so that each predicate is a
projection. This set-theoretic model is clearly commutative: 〈p?〉(q) = 〈p?〉(q) holds since
multiplication on {0, 1} is commutative.

In the Kleisli category Kℓ(D) of the distribution monad we get the same formulas, but
this time interpreted not in the set of Booleans {0, 1} but in the unit interval [0, 1]. For
p, q : X → [0, 1] we elaborate 〈p?〉(q) as function X → D(2). We first write the cotuple

NEW DIRECTIONS IN CATEGORICAL LOGIC 51

[q, 0] : X +X → D(2) as [q, 0](κ1x) = q(x)|1〉+ (1− q(x))|0〉 and [q, 0](κ2x) = 1|0〉. Then:
〈p?〉(q)(x) = ([q, 0] ⊚ instrp)(x)

= [q, 0]∗
(
p(x)|κ1x〉+ (1− p(x))|κ2x〉

)
with (−)∗ from (A.2)

= p(x) · q(x)|1〉 + p(x) · (1− q(x))|0〉 + (1− p(x)) · 1|0〉
= p(x) · q(x)|1〉 + (1− p(x) · q(x))|0〉.

Thus, as fuzzy predicate 〈p?〉(q) : X → [0, 1] we can write 〈p?〉(q)(x) = p(x) · q(x) like in the
set-theoretic case. Hence, Kℓ(D) is a commutative model.

The projections p are the predicates with p(x)2 = p(x), so that p(x) ∈ {0, 1}, and are
thus the Boolean predicates. One can check that the then-test is given by [p?](q)(x) =
p(x) · q(x) + (1 − p(x)). In probability theory the latter formula for the then-test is called
the Reichenbach implication, see [69].

Precisely the same formulas hold for predicates in the Kleisli category Kℓ(G) of the Giry
monad, for measurable maps X → G(2) ∼= [0, 1] where X is a measurable space, see also [40,
Prop. 13].

In the (opposite of the) category of commutative rings, assume we have two predicates
(idempotents) r, s ∈ R, considered as ring homomorphisms fr, fs : Z

2 → R, like in Exam-
ple 3.2 (5). The instrument instrr : R

2 → R associated with r is given by instrr(x, y) =
r · x + (1 − r) · y. The element 〈r?〉(s) ∈ R is defined as 〈r?〉(s) = f(1, 0) for the function
f : Z2 → R given by:

f(n,m) =
(
instrr ◦ 〈fs, f0〉

)
(n,m) = instrr(n · s+m · (1− s),m · 1)

= r · (n · s+m · (1− s)) + (1− r) · (m · 1)
= n · (r · s) +m · (1− r · s).

Hence 〈r?〉(s) = r · s. Similarly, [r?](s) = r · s + 1 − r. In a same manner one obtains,
for complementable elements x, y in a distributive lattice, 〈x?〉(y) = x ∧ y and [x?](y) =
(x ∧ y) ∨ x⊥ = y ∨ x⊥.

In a C∗-algebra A, for effects e, d ∈ [0, 1]A, we can compute 〈e?〉(d) via the map f : C2 →
A given by:

f(z, w) = instre(〈d, 0〉(z, w))
= instre(z · d+ w · (1− d), w · 1)
=
√
e · (z · d+ w · (1− d)) · √e+

√
1− e · (w · 1) ·

√
1− e

= z · √e · d · √e+ w · √e · (1− d) · √e+ w · (1− e).
We get the corresponding effect by taking z = 1, w = 0. Then:

〈e?〉(d) = f(1, 0) =
√
e · d · √e and similarly [e?](d) =

√
e · d · √e+ 1− e. (9.1)

This formula for 〈e?〉(d) is precisely the one that is used in [31, 32], for effects on a Hilbert
space, as instance of the notion of ‘sequential product’ on effect algebras.

By definition, in the current context, a projection is an effect e ∈ [0, 1]A satisfying
e = 〈e?〉(e). This means e =

√
e · e · √e = √e · √e · √e · √e = e · e = e2. Hence projections

are idempotent effects. Equivalently, following the more common description, an idempotent
is an element a ∈ A satisfying a2 = a = a∗. Notice that for such a projection a one has

52 B. JACOBS

√
a = a and thus 〈a?〉(〈a?〉(e)) = 〈a?〉(e) for each effect e, since:

〈a?〉(〈a?〉(e)) =
√
a · (√a · e · √a) · √a = a · e · a =

√
a · e · √a = 〈a?〉(e).

Hence a double andthen-test 〈a?〉(−) with a projection a is the same as a single test. This
holds not only for andthen-tests, but also for then-tests [a?](−), by the De Morgan property
from Lemma 9.3 ((7)) below.

Next we collect some basic result about our test operators.

Lemma 9.3. The andthen-test and then-test operators 〈−?〉(−) and [−?](−) in a category
satisfying Assumption 2 satisfy:

(1) 〈1?〉(p) = p = 〈p?〉(1);
(2) 〈0?〉(p) = 0 = 〈p?〉(0);
(3) 〈p?〉(q1 > q2) = 〈p?〉(q1) > 〈p?〉(q2);
(4) 〈p?〉(s • q) = s • 〈p?〉(q), for a scalar s;
(5) 〈p?〉(q) ≤ p;
(6) q1 ≤ q2 implies 〈p?〉(q1) ≤ 〈p?〉(q2);
(7) [p?](q) = 〈p?〉(q⊥)⊥;
(8) 〈p?〉(q) > p⊥ = [p?](q), and so 〈p?〉(q) ≤ [p?](q);
(9) 〈[p1, p2]?〉(q) = [〈p1?〉(q ◦ κ1), 〈p1?〉(q ◦ κ2)];
(10) f∗(〈p?〉(q)) = 〈f∗(p)?〉(f∗(q)) if f is a pure map.

Via point ((7)) (and the other points) one obtains various properties of [p?](−). For
instance,

[p?](0)
((7))
= 〈p?〉(1)⊥ ((1))

= p⊥ [p?](1)
((7))
= 〈p?〉(0)⊥ ((2))

= 0⊥ = 1.

Proof. We describe some relevant steps, using the properties of the FstAnd operator from
Lemma 6.3.

(1) Obviously, 〈1?〉(p) = (instr1)
∗(FstAnd(p)) = FstAnd(p) ◦ κ1 = [p, 0] ◦ κ1 = p. And:

〈p?〉(1) = FstAnd(1) ◦ instrp = [κ1 ◦ !, κ2 ◦ !] ◦ instrp = (!+!) ◦ instrp = p.

(2) Like in the previous point, 〈0?〉(p) = (instr0)
∗([p, 0]) = [p, 0] ◦ κ2 = 0. And for the

equation 〈p?〉(0) = 0, we use Lemma 6.3 (3) in:

〈p?〉(0) = (instrp)
∗(FstAnd(0)) = (instrp)

∗(0) = 0.

(3) Lemma 6.3 (4) says that FstAnd preserves >, and thus:

〈p?〉(q1 > q2) = (instrp)
∗(FstAnd(q1 > q2))

= (instrp)
∗(FstAnd(q1) > FstAnd(q2))

= (instrp)
∗(FstAnd(q1)) > (instrp)

∗(FstAnd(q2))

= 〈p?〉(q1) > 〈p?〉(q2).
(4) Similarly, using Lemma 6.3 (5).
(5) Using points ((3)) and ((1)) we have:

〈p?〉(q) > 〈p?〉(q⊥) = 〈p?〉(q > q⊥) = 〈p?〉(1) = p.

Hence 〈p?〉(q) ≤ p.

NEW DIRECTIONS IN CATEGORICAL LOGIC 53

(6) Assume q1 ≤ q2, say via q1 > r = q2. Then, again using point ((3)) we get:

〈p?〉(q1) > 〈p?〉(r) = 〈p?〉(q1 > r) = 〈p?〉(q2).
Hence 〈p?〉(q1) ≤ 〈p?〉(q2).

(7) Using the De Morgan duality between FstAnd and FstThen we get:

[p?](q) = (instrp)
∗(FstThen(q)) = (instrp)

∗(FstAnd(q⊥)⊥)

=
(
(instrp)

∗(FstAnd(q⊥))
)⊥

= 〈p?〉(q⊥)⊥.
(8) We define the bound b : X → (1 + 1) + 1 by b = [κ1 + id, κ1 ◦ κ2] ◦ (q+!) ◦ instrp. It

proves 〈p?〉(q) ⊥ p⊥ and 〈p?〉(q) > p⊥ = [p?](q).
(9) We use Assumption 2 (2) in:

〈[p1, p2]?〉(q) = [q, 0] ◦ instr[p1,p2]
= [q, 0] ◦ [κ1 + κ1, κ2 + κ2] ◦ (instrp1 + instrp2)

= [[q ◦ κ1, 0 ◦ κ1] ◦ instrp1 , [q ◦ κ2, 0 ◦ κ2] ◦ instrp2]
= [[q ◦ κ1, 0] ◦ instrp1 , [q ◦ κ2, 0] ◦ instrp2]
= [〈p1?〉(q ◦ κ1), 〈p2?〉(q ◦ κ2)]

(10) If f : Y → X is pure, then for p, q ∈ Pred(X),

f∗(〈p?〉(q)) = [q, 0] ◦ instrp ◦ f = [q, 0] ◦ (f + f) ◦ instrp◦f see Definition 8.9

= [q ◦ f, 0] ◦ instrf∗(p)

= 〈f∗(p)?〉(f∗(q)).
There are some further properties of test operators that we do not list in Lemma 9.3 but
describe separately because they deserve more attention. We first consider the substitution
operation f∗ = Pred(f) = wp(f) = (−) ◦ f from Proposition 4.4 (2) that makes the
mapping X 7→ Pred(X) functorial. We show that for the special case where the map f is
an instrument instrp, substitution can be defined in logical terms. This result will be useful
immediately, in a subsequent lemma, but may also be useful for Lindenbaum models where
the logic has test operators.

The result will be formulated first for predicates (2-tests), and then more generally for
n-tests. We separately mention version for n = 2 because it has an easier proof and because
it is useful on its own. It describes a form of “if-then-else”.

Proposition 9.4. Substitution for instruments, in a category satisfying Assumption 2, can
be described as follows.

(1) For predicates p : X → 1 + 1 and q : X +X → 1 + 1,

(instrp)
∗(q) = 〈p?〉(q ◦ κ1) > 〈p⊥?〉(q ◦ κ2)

(2) For an n-test p : X → n · 1, where n ≥ 2, and a predicate q : n ·X → 1 + 1 one has:

(instrp)
∗(q) = 〈p1?〉(q1) > · · ·> 〈pn?〉(qn),

for predicates pi corresponding to the n-test p as in Lemma 4.11 — via pi = ⊲i ◦
p : X → 1 + 1, with n-ary partial projections ⊲i like in (4.1) — and predicates qi = q ◦
κi : X → 1 + 1 on X.

54 B. JACOBS

Proof. For the first point we calculate:

(instrp)
∗(q) = (instrp)

∗([q ◦ κ1, q ◦ κ2])
= (instrp)

∗([q ◦ κ1, 0] > [0, q ◦ κ2]) by (6.2)

= (instrp)
∗([q ◦ κ1, 0]) > (instrp)

∗([0, q ◦ κ2])
since substitution is a map of effect algebras

= 〈p?〉(q ◦ κ1) > (instrp)
∗([q ◦ κ2, 0] ◦ [κ2, κ1])

= 〈p?〉(q ◦ κ1) > ([κ2, κ1] ◦ instrp)∗([q ◦ κ2, 0])
= 〈p?〉(q ◦ κ1) > (instrp⊥)

∗([q ◦ κ2, 0]) by Assumption 2 (1)

= 〈p?〉(q ◦ κ1) > 〈p⊥?〉(q ◦ κ2).
For the second point we need to use Assumption 2 (3) and also (1). The proof involves
some bookkeeping with coprojections. We use the maps:

⊲i = [κ2, . . . , κ2, κ1, κ2, . . . , κ2]︸ ︷︷ ︸
κ1 at the i-the position

: n · 1 −→ 1 + 1

swapi = [κi, κ2, κ3, . . . , κi−1, κ1, κi+1, . . . , κn]︸ ︷︷ ︸
κi at the first, κ1 at the i-the position

: n · Y ∼=−→ n · Y.

Then we can write pi = ⊲i ◦ p = (id+ !) ◦ swapi ◦ p, where id+ !: n·1 = 1+(n−1)·1→ 1+1.
Hence we get:

>i 〈pi?〉(qi) = >i [q ◦ κi, κ2 ◦ !] ◦ instrpi
= >i [q ◦ κi, κ2] ◦ (id+ !) ◦ instr(id+ !)◦swapi◦p
= >i [q ◦ κi, κ2] ◦ (id+ !) ◦ instrswapi◦p by Assumption 2 (3)

= >i [q ◦ κi, κ2 ◦ !] ◦ swapi ◦ instrp by Assumption 2 (1)

= >i [0, . . . , 0, q ◦ κi, 0, . . . , 0] ◦ instrp
= >i (instrp)

∗([0, . . . , 0, q ◦ κi, 0, . . . , 0]
)

= (instrp)
∗(

>i [0, . . . , 0, q ◦ κi, 0, . . . , 0]
)

= (instrp)
∗([q ◦ κ1, . . . , q ◦ κn]

)
by (6.2)

= (instrp)
∗(q).

We obtain a consequence that highlights the role of side-effects in formulas. In an informal
reading the result below says: the sum of ‘p andthen q’, and of ‘p⊥ andthen q’ is the same
as just having q. But in our present setting we have to take side-effect ∇ ◦ instrp of p into
account.

Corollary 9.5. For predicates p, q : X → 1 + 1 in a category satisfying Assumption 2 one
has:

〈p?〉(q) > 〈p⊥?〉(q) = q ◦ ∇ ◦ instrp. (9.2)

We recall from Definition 8.1 that the map ∇ ◦ instrp is the side-effect of the predicate p.
In case p is side-effect-free, that is, in case ∇ ◦ instrp = id, the above equation (9.2) reduces

to the standard result 〈p?〉(q) > 〈p⊥?〉(q) = q.

NEW DIRECTIONS IN CATEGORICAL LOGIC 55

Proof. Directly from Proposition 9.4 (1) we obtain:

〈p?〉(q) > 〈p⊥?〉(q) = 〈p?〉([q, q] ◦ κ1) > 〈p⊥?〉([q, q] ◦ κ2)
= (instrp)

∗([q, q])

= [q, q] ◦ instrp
= q ◦ ∇ ◦ instrp.

We add another result illustrating that substitution f∗(q) = q ◦ f can be understood as
weakest precondition wp(f)(q). We apply this to the (binary case of the) test map from (7.6).
It yields a formula that looks very much like the traditional weakest precondition formula
for if-then-else:

wp
(
if p then f1 else f2

)
(q) =

(
p ∧ wp(f1)(q)

)
∨
(
¬p ∧ wp(f2)(q)

)
.

In the present context the conjunctions are replaced by test operators that deal with the
side-effects involved.

Lemma 9.6. For parallel maps f1, f2 : X → Y in a category satisfying Assumption 2 and
a predicate p : X → 1 + 1 on X we have:

wp
(
p?[f1, f2]

)
(q) = 〈p?〉(wp(f1)(q)) > 〈p⊥?〉(wp(f2)(q)).

Proof. We use Proposition 9.4 (1) to obtain:

〈p?〉(wp(f1)(q)) > 〈p⊥?〉(wp(f2)(q)) = (instrp)
∗([wp(f1)(q),wp(f2)(q)]

)

= [q ◦ f1, q ◦ f2] ◦ instrp
= q ◦ [f1, f2] ◦ instrp

(7.6)
= q ◦ p?[f1, f2]
= wp

(
p?[f1, f2]

)
(q).

We continue with C∗-algebras as instance. The definition of commutativity 〈p?〉(q) = 〈q?〉(p)
used in Definition 9.1 turns out to coincide with commutativity in C∗-algebras. This is a non-
trivial result that goes back to [32]. It uses the Fuglede-Putnam-Rosenblum Theorem [73]
for C∗-algebras. This theorem says: for normal elements a, b one has for each x,

a · x = x · b =⇒ a∗ · x = x · b∗. (9.3)

We recall that a is normal if a · a∗ = a∗ · a.
Proposition 9.7. A C∗-algebra A is commutative, in the sense that its multiplication ·
is commutative, if and only if it is commutative, in the sense of Definition 9.1: 〈e?〉(d) =
〈d?〉(e) holds for all effects e, d ∈ [0, 1]A.

Proof. First assume that multiplication · of the C∗-algebra A is commutative. Then:

〈e?〉(d) =
√
e · d · √e =

√
e · √e · d = e · d = e ·

√
d ·
√
d =

√
d · e ·

√
d = 〈d?〉(e).

In the other direction, it suffices by Lemma 8.6 to prove e · d = d · e for effects e, d. By
assumption we have

√
e · d · √e = 〈e?〉(d) = 〈d?〉(e) =

√
d · e ·

√
d. The product

√
e ·
√
d is

56 B. JACOBS

normal since:
(√
e ·
√
d
)∗ ·

(√
e ·
√
d
)
=
√
d · √e · √e ·

√
d

=
√
d · e ·

√
d

=
√
e · d · √e by assumption

=
√
e ·
√
d ·
√
d · √e

=
(√
e ·
√
d
)
·
(√
e ·
√
d
)∗
.

We use Fuglede-Putnam-Rosenblum (9.3) with a =
√
e ·
√
d, b =

√
d · √e and x =

√
e. The

antecedent holds, since a · x =
√
e ·
√
d · √e = x · b. It yields as conclusion:

√
d · e =

(√
e ·
√
d
)∗ · √e (9.3)

=
√
e ·
(√
d · √e

)∗
= e ·

√
d.

But then we are done since:

e · d = e ·
√
d ·
√
d =

√
d · e ·

√
d =

√
d ·
√
d · e = d · e.

We conclude this section with an example that illustrates the use of the logical test
operators in an elementary probability calculation.

Example 9.8. The idea in the famous polarisation experiment is to send photons polarised
as | ↑ 〉 = |0〉 = (10) through filters.

(1) If these photons hit one filter with polarisation | → 〉 = |1〉 = (01), then nothing passes.
(2) Next assume there are two consecutive filters: first the | ↑ 〉-photons have to go through

a filter with polarisation | ր 〉 = 1√
2
(11), and then through a filter with polarisation

| → 〉 = |1〉 = (01). Surprisingly, now one quarter of the original photons get through.
We refer to e.g. [72] for an explanation, and focus here on a calculation of this probability
1
4 in the current quantitative logic.

For these experiments we use the C∗-algebra A = B(C2) with initial state ω↑ : A→ C given
by ω↑(M) = 〈 0 |M |0〉. The effect p→ ∈ [0, 1]A = Ef(C2) corresponding to the filter with
polarisation | → 〉 is given by:

p→ = | → 〉〈→ | = (0 1) (01) = (0 0
0 1) .

It is clearly a projection. Evaluating this predicate in the initial state ω↑ yields the proba-
bility:

ω↑ |= p→
(5.1)
= ω↑(p→) = 〈↑ |p→| ↑ 〉 = (1 0) (0 0

0 1) (
1
0) = 0.

This is the probability of the above first experiment: nothing goes through.
Things become more interesting in the second experiment, where we first send the

|0〉-photon through the filter with polarisation | ր 〉. This involves the effect:

pր = | ր 〉〈ր | = 1√
2
(11)

1√
2
(1 1) = 1

2 (
1 1
1 1) .

This pր is also a projection, so that
√
pր = pր.

We now compute the probability via the test operators from Section 9. First going
through the filter ր and then through → is expressed via the test-andthen operator. The
resulting probability is:

ω↑ |= 〈pր?〉(p→)
(9.1)
= 〈↑ |√pր p→

√
pր| ↑ 〉

= (1 0) 1
2 (

1 1
1 1) (

0 0
0 1)

1
2 (

1 1
1 1) (

1
0) = 1

4 (1 0) (1 1
1 1) (

1
0) = 1

4 .

NEW DIRECTIONS IN CATEGORICAL LOGIC 57

Instead of the andthen-test we can also use the weaker then-test. It adds the option that
the photon does not get through the first filter — which happens with probability 1

2 . Then:

ω↑ |= [pր?](p→)
(9.1)
= 〈↑ |

(√
pր p→

√
pր + 1− pր

)
| ↑ 〉

= (1 0)
(
1
2 (

1 1
1 1) (

0 0
0 1)

1
2 (

1 1
1 1) + (1 0

0 1)− 1
2 (

1 1
1 1)

)
(10)

= (1 0)
(
1
4 (

1 1
1 1) +

1
2

(
1 −1
−1 1

))
(10)

= (1 0) 1
4

(
3 −1
−1 3

)
(10)

= 3
4 .

10. Adding tensor products

Our third assumption involves tensor products, with some special properties. We recall
that a symmetric monoidal structure on a category B involves a functor ⊗ : B × B → B
and tensor unit I ∈ B, together with canonical isomorphisms:

X ⊗ (Y ⊗ Z) α

∼=
// (X ⊗ Y)⊗ Z X ⊗ I ρ

∼=
// X X ⊗ Y γ

∼=
// Y ⊗X (10.1)

One often writes λ = ρ ◦ γ : I⊗X ∼=−→ X. These isomorphisms make some obvious diagrams
commute, see [60].

Assumption 3. Our category satisfies not only Assumptions 1 and 2 but is also symmetric
monoidal with the additional requirements described in the next five points.

(1) The final object 1 is the tensor unit. As a result we have a ‘tensor with projections’,
since projections π1, π2 can be defined in:

X X ⊗ Y

id⊗ !yysss
ss
ss
ss

!⊗id %%❏❏
❏❏

❏❏
❏❏

❏
π1oo π2 // Y

X ⊗ 1

∼=ρ

OO

1⊗ Y

∼= λ

OO

(10.2)

These projections π1, π2 are natural in X and Y .
(2) The tensor product ⊗ distributes over finite coproducts. Explicitly, the following canon-

ical maps are isomorphisms:

(X ⊗A) + (Y ⊗A) [κ1⊗id,κ2⊗id]

∼=
// (X + Y)⊗A 0

!
∼=

// A⊗ 0 (10.3)

We shall write θ1 = [κ1 ⊗ id, κ2 ⊗ id]−1 for the inverse of this map on the left. There
is a similar distributivity map θ2 : A ⊗ (X + Y)

∼=−→ (A ⊗ X) + (A ⊗ Y) in the other
coordinate. These distributivity maps extend to n-ary coproducts.

(3) The monoidal isomorphisms (10.1) are pure — see Definition 8.9.
(4) If both f, g are pure maps, then f ⊗ g is pure too.
(5) For each n-test p : X → n · 1 and for each object A the following diagrams commute.

X ⊗A instrp⊗id
//

instrπ∗
1
(p)

,,

(n ·X)⊗A
∼= θ1
��

A⊗X id⊗instrp //

instrπ∗
2
(p)

,,

A⊗ (n ·X)

∼= θ2
��

n · (X ⊗A) n · (A⊗X)

(10.4)

58 B. JACOBS

This concludes our assumptions about tensors.

The projections π1, π2 in (10.2) for the tensor ⊗, like in [36], enable discarding of
resources. There are in general no associated diagonals X → X ⊗ X because of the no-
cloning Theorem [83, 22, 1].

The two distributivity isomorphisms θ1, θ2 interact in the following way.

(A+B)⊗(X+Y)
θ1

tt✐✐✐✐
✐✐✐✐

✐✐✐✐ θ2

**❚❚❚
❚❚❚❚

❚❚❚❚
❚

(A⊗(X+Y))+(B⊗(X+Y))

θ2+θ2 ��

((A+B)⊗X)+((A+B)⊗Y)

θ1+θ1��(
(A⊗X)+(A⊗Y)

)
+
(
(B⊗X)+(B⊗Y)

)
γ̂

∼= //
(
(A⊗X)+(B⊗X)

)
+
(
(A⊗Y)+(B⊗Y)

)

(10.5)
where γ̂ = [κ1 + κ1, κ2 + κ2] is the map that swaps the inner two occurrences; it is its own
inverse.

Sometimes one writes X⊗n = X ⊗ · · · ⊗X for the n-fold tensor. Because ⊗ distributes
over + and 1 is the tensor unit, we have for the object 2 = 1+1 the following isomorphism:

2⊗n = 2⊗ · · · ⊗ 2︸ ︷︷ ︸
n times

∼= 1 + · · ·+ 1︸ ︷︷ ︸
2n times

= 2n.

Further we have n ·X ∼= X ⊗ (n · 1), since:
n ·X ∼= n · (X ⊗ 1) ∼= X ⊗ (n · 1)

Hence, in presence of tensors we may describe instruments also as maps X → X ⊗ (n · 1).
The side-effect is then obtained via the composite X → X ⊗ (n · 1)→ X, using the the first
projection, as in point (10.2).

Examples 10.1. In the category Sets, or in any extensive category, we can use cartesian
products × as tensors, see Appendix A.1. They obviously distribute over coproducts. In the
Kleisli category Kℓ(D) the projections πi : X1×X2 → D(Xi) are given by πi(x1, x2) = 1|xi 〉.
It is not hard to check that instruments in Kℓ(D) commute with distributivity maps, as in
diagrams (10.4).

Tensors of C∗-algebras are a delicate matter. They exist in the category of C∗-algebras
with completely positive maps. Hence they also exist on (CstarCPU)

op, and the “minimal”
tensor even distributes over finite coproducts, as shown in [15], see Appendix A.4.

We need to check that our previous Assumptions 1 and 2 also hold in CstarCPU. This
is not a problem. A useful fact is: when either A or B is a commutative C∗ algebra,
then a positive unital map f : A → B is automatically completely positive. Hence our
predicates and tests C

n → A are completely positive. The instrument instr~e from (7.5) is
also completely positive, due to its special form.

The projection A ⊗ B → A in (CstarCPU)
op, described as a map A → A ⊗ B in

CstarCPU, is given by a 7→ a ⊗ 1. When working in CstarCPU we often call this map a
coprojection, for obvious reasons, and write it as κ1.

We check the interaction between instruments and distributivity from diagrams (10.4)
in the binary case (for n = 2). So assume we have a test e ∈ [0, 1]A, with associated
instrument instre : A × A → A given by instre(a1, a2) =

√
e · a1 ·

√
e +
√
1− e · a2 ·

√
1− e.

NEW DIRECTIONS IN CATEGORICAL LOGIC 59

We get a predicate κ∗1(e) = e ⊗ 1 ∈ [0, 1]A⊗B . Since (
√
e ⊗ 1) · (√e ⊗ 1) = (e ⊗ 1) we have√

e ⊗ 1 = (
√
e ⊗ 1). Similarly for 1− e we have:

(
√
1− e ⊗ 1) · (

√
1− e ⊗ 1) = (1− e) ⊗ 1 = 1 ⊗ 1− e ⊗ 1 = 1− e ⊗ 1,

so that
√
1− (e ⊗ 1) =

√
1− e ⊗ 1. Now we can prove (10.4):

(
instrκ∗

1(e)
◦ θ1

)
((a1, a2) ⊗ b)

= instrκ∗
1(e)

(a1 ⊗ b, a2 ⊗ b)

=
√
e⊗ 1 · (a1 ⊗ b) ·

√
e ⊗ 1 +

√
1− (e⊗ 1) · (a2 ⊗ b) ·

√
1− (e ⊗ 1)

= (
√
e⊗ 1) · (a1 ⊗ b) · (√e ⊗ 1) + (

√
1− e⊗ 1) · (a2 ⊗ b) · (

√
1− e ⊗ 1)

= (
√
e · a1 ·

√
e)⊗ b+ (

√
1− e · a2 ·

√
1− e)⊗ b

= (
√
e · a1 ·

√
e+
√
1− e · a2 ·

√
1− e)⊗ b

= instre(a1, a2) ⊗ b

= (instre ⊗ id)((a1, a2) ⊗ b).

The object 2 = 1 + 1 in a category satisfying Assumption 3 carries a special multiplication
map m : 2⊗ 2→ 2, namely m = [id, κ2 ◦ !] ◦ (ρ+ ρ) ◦ θ2, obtained by going east-south-west
in:

(1 + 1)⊗ (1 + 1)
m

��

θ2=[id⊗κ1,id⊗κ2]−1

∼=
// ((1 + 1)⊗ 1) + ((1 + 1)⊗ 1)

∼= ρ+ρ��
1 + 1 (1 + 1) + (1 + 1)

[id,κ2◦ !]
oo

(10.6)

Proposition 10.2. Let B be a category satisfying Assumption 3.

(1) The map m : 2 ⊗ 2 → 2 defined in (10.6) makes 2 = 1 + 1 ∈ B into a commutative
monoid in B, with unit scalar 1 = κ1 : 1 → 1 + 1 = 2 as multiplicative unit, and zero
scalar 0 = κ2 : 1→ 2 as zero element.

(2) Multiplication of scalars from Lemma 3.3 can be expressed via this multiplication map
m, namely as:

s · r =
(
1

λ−1=ρ−1

∼=
// 1⊗ 1

s⊗r // 2⊗ 2
m // 2

)
.

(3) This multiplication · of scalars is then also commutative: s · r = r · s. Thus, in presence
of tensors, the scalars Pred(1) form a commutative monoid.

Recall from Section 5 the distribution monad DM : Sets → Sets associated with the ef-
fect monoid M = Pred(1). This monad is commutative if M = Pred(1) is commutative,
see [39]. By a general categorical result of Kock [54, 53] — “commutative theories have
tensors” — this implies that the category ConvM = EM(DM) of Eilenberg-Moore algebras
is symmetric monoidal closed.

60 B. JACOBS

Proof. For the first point we concentrate on commutativity, which is the most interesting
part. We need to prove m ◦ γ = m. First consider the diagram:

(1+1)⊗ (1+1)
γ ∼=��

θ1

∼=
// (1⊗ (1+1)) + (1⊗ (1+1))

γ+γ∼= ��

θ2+θ2

**
(1+1)⊗ (1+1)

m
��

θ2

∼=
// ((1+1) ⊗ 1) + ((1+1) ⊗ 1)

∼= ρ+ρ��

((1⊗1)+(1⊗1))+((1⊗1)+(1⊗1))

(ρ+ρ)+(ρ+ρ)=(λ+λ)+(λ+λ)pp1 + 1 (1+1) + (1+1)
[id,κ2◦ !]

oo

Now we can use the interaction between θ2 and θ1 from (10.5) in:

m ◦ γ = [id, κ2 ◦ !] ◦ (ρ+ ρ) ◦ θ2 ◦ γ
= [id, κ2 ◦ !] ◦ ((ρ+ ρ) + (ρ+ ρ)) ◦ (θ2 + θ2) ◦ θ1

(10.5)
= [id, κ2 ◦ !] ◦ ((ρ+ ρ) + (ρ+ ρ)) ◦ γ̂ ◦ (θ1 + θ1) ◦ θ2
= [id, κ2 ◦ !] ◦ γ̂ ◦ ((ρ+ ρ) + (ρ+ ρ)) ◦ (θ1 + θ1) ◦ θ2
= [id, κ2 ◦ !] ◦ [κ1 + κ1, κ2 + κ2] ◦ (ρ+ ρ) ◦ θ2
= [id, κ2 ◦ !] ◦ (ρ+ ρ) ◦ θ2
= m.

A crucial part of this proof is that λ = ρ : 1 ⊗ 1 → 1. This is like in the Eckmann-Hilton
style argument in [52]. We also check that κ1 : 1→ 1 + 1 = 2 is the unit for m: Thus:

m ◦ (id ⊗ κ1) = [id, κ2 ◦ !] ◦ (ρ+ ρ) ◦ θ2 ◦ (id ⊗ κ1)
= [id, κ2 ◦ !] ◦ (ρ+ ρ) ◦ κ1 since θ−1

2 ◦ κ1 = id ⊗ κ1
= [id, κ2 ◦ !] ◦ κ1 ◦ ρ
= ρ.

Remaining steps to show that m : 2⊗ 2→ 2 is a monoid are left to the reader.
For the second point we first prove s · r = m ◦ (s⊗ r) ◦ λ−1 via the following diagram.

1

r

��

λ−1=ρ−1

∼=
// 1⊗ 1

id⊗r

��

s⊗r // 2⊗ 2
θ2 // 2⊗ 1 + 2⊗ 1

ρ+ρ // 2 + 2

[id,κ2◦ !]
��

2
λ−1

// 1⊗ 2

s⊗id
66♠♠♠♠♠♠♠♠♠♠♠♠ θ2 // 1⊗ 1 + 1⊗ 1

s⊗id+s⊗id

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦ ρ+ρ=λ+λ // 1 + 1

s+s
66♠♠♠♠♠♠♠♠♠♠♠♠

[s,κ2]
// 2

But now commutativity of the multiplication · of predicates follows from commutativity of
m in:

s · r = m ◦ (s⊗ r) ◦ λ−1 = m ◦ γ ◦ (s⊗ r) ◦ λ−1 by the first point

= m ◦ (r ⊗ s) ◦ γ ◦ λ−1 = m ◦ (r ⊗ s) ◦ ρ−1 = r · s.
Examples 10.3. We briefly review what the multiplication map m : 2⊗ 2→ 2 from (10.6)
is in our main examples. In the category Sets we have 2 = {0, 1} with m : 2× 2→ 2 given
by multiplication, that is, by conjunction. Similarly, in the Kleisli category Kℓ(D) of the
distribution monad the map m : 2 × 2→ D(2) ∼= [0, 1] is multiplication. In the category of

NEW DIRECTIONS IN CATEGORICAL LOGIC 61

C∗-algebras this multiplication is a positive unital map m : C2 → C
2⊗C

2, given on the two
standard basis vectors |0〉 = (10) and |1〉 = (01) in C

2 as:

m(|0〉) = |0〉 ⊗ |0〉 and m(|1〉) = |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉. (10.7)

In the remainder of this section we consider projections and pairings, both for states and for
predicates. We shall see that projections after pairings on states return the original results,
but not the other way around. The latter precisely captures dependence and entanglement,
see Example 10.9. We start with the projections described in (10.2).

Lemma 10.4. The projections X ← X⊗Y → Y in (10.2) that can be defined in a category
satisfying Assumption 3 are pure. As a consequence, also the unique maps X → 1 to the
terminal object are pure.

Proof. We show that the first projection π1 : X ⊗ Y → X is pure. So let p : X → n · 1 be
an n-test. We have to prove (n · π1) ◦ instrπ∗

1(p)
= instrp ◦ π1, see Definition 8.9. We use

requirement (5) in Assumption 3 as the upper part of the diagram:

X ⊗ Y

π1

��

instrp⊗id
//

instrπ∗
1(p)

++

(n ·X)⊗ Y
∼= θ1
��

π1

yy

n · (X ⊗ Y)

n·π1
��

X
instrp

// n ·X

In this diagram we have (n · π1) ◦ θ1 = π1 since:

π1 ◦ θ−1
1 = π1 ◦ [κ1 ⊗ id]i≤n = [π1 ◦ (κ1 ⊗ id)]i≤n = [κi ◦ π1]i≤n = n · π1.

But then we are done since by naturality of π1 the outer diagram commutes. Finally, the
unique map X → 1 is pure, since it can be written as composite of pure maps:

X
λ−1

∼=
// 1⊗X π1 // 1

In the sequel we restrict ourselves to the first projection π1 : X ⊗ Y → X, since the second
one can be handled symmetrically. Via the predicate and state functors Pred and Stat from
the state-and-effect triangle (5.4) we obtain maps (of effect modules and of convex sets):

Pred(X)
Pred(π1)=(π1)∗// Pred(X ⊗ Y) Stat(X ⊗ Y)

Stat(π1)=(π1)∗// Stat(X)

The first operation (π1)
∗ sends a predicate on X to a predicate on the extended type X⊗Y .

It corresponds to weakening in logic, that is, to addition of an unused variable. The second
operation (π1)∗ corresponds to taking the marginal, which, in the case of Hilbert spaces is
the partial trace, see Lemma 10.5 below.

In the category Sets the first projection applied to a state ω = (x, y) ∈ X×Y is simply
the ordinary projection π1ω = x ∈ X. The situation is slightly more interesting in the
Kleisli category Kℓ(D) of the distribution monad. There, for a distribution ω ∈ D(X × Y),
the projection π1ω ∈ D(X) is the marginal distribution, namely:

π1ω(x) = D(π1)(ω)(x) =
∑

y∈Y ω(x, y).

62 B. JACOBS

In (CstarCPU)
op the left marginal of a state ω : A⊗B → C is the map π1ω : A→ C given by

π1ω(a) = ω(a ⊗ 1). When the C∗-algebra is of the form A = B(H) for a finite-dimensional
Hilbert space H, we obtain the so-called partial trace.

Lemma 10.5. Let H,K be two finite-dimensional Hilbert space. The left marginal, described
on density matrices via the chain

DM(H⊗K)
(5.3)∼= Stat(B(H⊗K))

(A.4)∼= Stat(B(H)⊗ B(K)) (π1)∗ // Stat(B(H))
(5.3)∼= DM(H)

is the partial trace operation ρ 7→ trK(ρ).

Proof. Each density matrix ρ ∈ DM(H⊗K) gives rise to a state ωρ : B(H)⊗B(K)→ C given
by ωρ(M ⊗ N) = tr(ρ(M ⊗ N)). The resulting marginal π1ωρ : B(H) → C is π1ωρ(M) =
tr(ρ(M⊗id)). The partial trace trK(ρ) ∈ DM(H) precisely satisfies tr(trK(ρ)M) = tr(ρ(M⊗
id)), see also [35, Defn. 2.68]. �

We continue with pairings.

Definition 10.6. Assume we are in category B satisfying Assumption 3. For two states
ω1 : 1→ X1 and ω2 : 1→ X2 we write ω1 ⊗ ω2 : 1→ X1 ⊗X2 for the state obtained by:

ω1 ⊙ ω2 =
(
1

λ−1=ρ−1

// 1⊗ 1
ω1⊗ω2 // X1 ⊗X2

)
.

Similarly, for two predicates p1 : X1 → 1+1 and p2 : X2 → 1+1 we define a pairing predicate
p1 ⊙ p2 : X1 ⊗X2 → 1 + 1 as:

p1 ⊙ p2 = (X1 ⊗X2
p1⊗p2 // 2⊗ 2

m // 2
)
,

where m : 2⊗ 2→ 2 is the multiplication map from (10.6).
One can freely extend these pairing definitions to multiple states and predicates, like

in ω1 ⊙ · · · ⊙ ωn and p1 ⊙ · · · ⊙ pn, where we implicitly use associativity.

The next result presents some basic results about these pairings. The first one, for
instance, could be useful for modular reasoning, where separate properties for separate
states can be proved separately.

Lemma 10.7. The pairings on states and predicates defined above satisfy:

(1) (ω1 ⊙ ω2 |= p1 ⊙ p2) = m(ω1 |= p1, ω2 |= p2);
(2) πi ◦ (ω1 ⊙ ω2) = ωi;
(3) the pairing ⊙ on states is bi-affine, i.e. affine in each argument separately;
(4) weakening is pairing with truth: (π1)

∗(p) = p ⊙ 1, where 1 = κ1 ◦ ! is the truth predicate;
(5) the pairing ⊙ on predicates is a bihomomorphism of effect modules: the mappings p ⊙ (−)

and (−) ⊙ p preserve finite sums >, 0 and scalar multiplication, and satisfy 1 ⊙ 1 = 1.

Proof. The first point immediately holds, and for the second one we have:

π1 ◦ (ω1 ⊙ ω2) = ρ ◦ (id⊗ !) ◦ (ω1 ⊗ ω2) ◦ ρ−1 = ρ ◦ (ω1 ⊗ id) ◦ ρ−1 = ω1.

NEW DIRECTIONS IN CATEGORICAL LOGIC 63

We show that ⊙ is bi-affine. Suppose we have an n-test p : 1→ n ·1, and n states ωi : 1→ X.
Then for each state ω : 1→ Y ,
(
>i piωi

)
⊙ ω = (([ω1, . . . , ωn] ◦ p)⊗ ω) ◦ ρ−1

= ([ω1, . . . , ωn]⊗ ω) ◦ (instrp ⊗ id) ◦ ρ−1 by Lemma 7.1 (1)

= ([ω1, . . . , ωn]⊗ ω) ◦ θ−1
1 ◦ instrπ∗

1(p)
◦ ρ−1 by (10.4)

= [ω1 ⊗ ω, . . . , ωn ⊗ ω] ◦ n · ρ ◦ instrp
since π1 = ρ : (n · 1)⊗ 1→ n · 1 is pure by Assumption 3 (3)

= [ω1 ⊙ ω, . . . , ωn ⊙ ω] ◦ p by Lemma 7.1 (1) again

= >i pi(ωi ⊙ ω).

For the fourth point consider a ‘weakened’ predicate (π1)
∗(p) = p ◦ π1 : X⊗Y → X → 1+1.

We use that κ1 : 1→ 1+1 is the neutral element of m, see (the proof of) Proposition 10.2 (1)
in:

p ⊙ 1 = m ◦ (p⊗ 1) = m ◦ (id ⊗ κ1) ◦ (p⊗ !Y)

= ρ ◦ (p⊗ id) ◦ (id⊗ !Y)

= p ◦ ρ ◦ (id⊗ !Y)

= p ◦ π1
= (π1)

∗(p).

Finally, we show that (−) ⊙ p : Pred(X) → Pred(X ⊗ Y) preserves sums and scalar mul-
tiplication. Preservation of falsum is easy, since 0 = κ2 : 1 → 2 is zero element for m, see
Proposition 10.2 (1):

0 ⊙ p = m ◦ ((κ2 ◦ !Y)⊗ p) = κ2 ◦ !2⊗1 ◦ (!X ⊗ p) = κ2 ◦ !X⊗Y = 0.

Next, if q1 ⊥ q2, for q1, q2 : X → 1 + 1, via bound b : X → (1 + 1) + 1, then we construct a
bound c on X ⊗ Y via the east-south-west composite in:

X ⊗ Y
c
��

id⊗p // X ⊗ (1 + 1)
θ2

∼=
// X ⊗ 1 +X ⊗ 1

ρ+!
��

(1 + 1) + 1 X + 1
[b,κ2]

oo

This bound c proves q1 ⊙ p ⊥ q2 ⊙ p and (q1 ⊙ p)> (q2 ⊙ p) = (q1 > q2) ⊙ p. Preservation of
scalar multiplication, and 1 ⊙ 1 = 1 are left to the reader. �

Examples 10.8. We briefly review the above pairing operation ⊙ in the probabilistic and
quantum case. We will see that in both cases ⊙ is multiplication.

(1) In the Kleisli category Kℓ(D) of the distribution monad D on Sets the pairing ϕ ⊙
ψ ∈ D(X × Y) of two states/distributions ϕ ∈ D(X) and ψ ∈ D(Y) is given by their
product:

(ϕ ⊙ ψ)(x, y) = dst(ϕ,ψ)(x, y) = ϕ(x) · ψ(y).
where dst is the ‘double-strength’ map from Appendix A.1. The pairing p ⊙ q ∈
[0, 1]X×Y of predicates p ∈ [0, 1]X and q ∈ [0, 1]Y is obtained similarly as:

(p ⊙ q)(x, y) = p(x) · q(y).

64 B. JACOBS

Thus, indeed, as in Lemma 10.7 (1),

ϕ ⊙ ψ |= p ⊙ q =
∑

x,y(ϕ ⊙ ψ)(x, y) · (p ⊙ q)(x, y)

=
∑

x,y ϕ(x) · ψ(y) · p(x) · q(y)
=
(∑

x ϕ(x) · p(x)
)
·
(∑

y ψ(y) · q(y)
)

= (ϕ |= p) · (ψ |= q).

(2) For two C∗-algebras A,B with effects e ∈ [0, 1]A, d ∈ [0, 1]B we have the pairing effect
e ⊙ d = e ⊗ d ∈ A⊗B. It is obtained as follows. The effect e ∈ [0, 1]A corresponds to the
positive unital map fe : C

2 → A given by fe(|0〉) = e and fe(|1〉) = 1− e, and similarly
for d. The function fe⊙d : C

2 → A⊗B is then the composite fe⊙d = (fe⊗ fd) ◦ m, with
multiplication m from (10.7). Thus:

e ⊙ d = fe⊙d(|0〉) = (fe ⊗ fd)(m(|0〉)) = (fe ⊗ fd)(|0〉 ⊗ |0〉) by (10.7)

= fe(|0〉) ⊗ fd(|0〉)
= e ⊗ d.

Point (2) in Lemma 10.7 says that there is a retraction Stat(X)× Stat(Y) Stat(X ⊗ Y),
since first pairing and then projecting gives the original output. In the category of sets
the retraction is an isomorphism, but in general this is not the case. There is no such
isomorphism because of both entanglement and dependence in the quantum world, and
because of dependence in the probabilistic world. We briefly illustrate this fundamental
phenomenon in the current setting.

Examples 10.9 (Dependence and entanglement). In a probabilistic setting as given by
the category Kℓ(D), consider a state on the tensor product X × Y of two sets X,Y . It
is a discrete probability distribution ϕ ∈ D(X × Y) on X and Y . Because it describes
probabilities on two sets, such a ϕ is often called a joint distribution. One can take its two
marginals (π1)∗(ϕ) = D(π1)(ϕ) ∈ D(X) and (π2)∗(ϕ) = D(π2)(ϕ) ∈ D(Y). If we now pair
these marginals we may ask if the original joint distribution re-appears, that is if:

(π1)∗(ϕ) ⊙ (π2)∗(ϕ)
?
= ϕ.

But this equation precisely expresses that ϕ is a product distribution (i.e. is factorisable).
Hence the equation does not always hold.

Similarly, in the quantum world, a state ω : A ⊗ B → C can, in general, not be recon-
structed from its two marginals (π1)∗(ω) = ω ◦ κ1 : A→ C and (π2)∗(ω) = ω ◦ κ2 : B → C,
since in general we do not have (π1)∗(ω) ⊙ (π2)∗(ω) = ω.

Here is concrete qubit example, for A = B = B(C2). We consider the non-entangled
vector |u〉 = |00〉 = |0〉 ⊗ |0〉 ∈ C

2 ⊗ C
2 and also the entangled (EPR) vector |v 〉 =

1√
2
(|00〉 + |11〉) ∈ C

2 ⊗ C
2. There are associated states ωu, ωv : B(C2 ⊗ C

2) → C, given

by ωu(f) = 〈u |f |u〉 and ωv(f) = 〈 v |f |v 〉. The marginals are given by (π1)∗(ωu)(M) =
ωu(M ⊗ id) and (π2)∗(ωu)(N) = ωu(id⊗N), and similarly for v. The (non-entangled) state

NEW DIRECTIONS IN CATEGORICAL LOGIC 65

ωu can be reconstructed via pairing from its marginals:
(
(π1)∗(ωu) ⊙ (π2)∗(ωu)

)
(M ⊗ N) = (π1)∗(ωu)(M) · (π2)∗(ωu)(N)

= ωu(M ⊗ id) · ωu(id ⊗N)

= 〈 00 |(M ⊗ id)|00〉 · 〈 00 |(id ⊗N)|00〉
=
(
〈 0 |M |0〉 · 〈0 | 0〉

)
·
(
〈0 | 0〉 · 〈 0 |N |0〉

)

= 〈 0 |M |0〉 · 〈 0 |N |0〉
= 〈 00 |(M ⊗ N)|00〉
= ωu(M ⊗ N).

Because |v 〉 = 1√
2
(|00〉 + |11〉) is an entangled state, we do not have such an equation for

v. We step through the computation to indicate where this fails:
(
(π1)∗(ωv) ⊙ (π2)∗(ωv)

)
(M ⊗ N)

= ωv(M ⊗ id) · ωv(id ⊗N)

= 1
2(〈 00 | + 〈 11 |)(M ⊗ id)(|00〉 + |11〉) · 12(〈 00 | + 〈 11 |)(id ⊗N)(|00〉 + |11〉)

= 1
4(〈 0 |M |0〉 + 〈 1 |M |1〉) · (〈 0 |N |0〉 + 〈 1 |N |1〉) since 〈0 | 1〉 = 〈1 | 0〉 = 0

= 1
4

(
〈 0 |M |0〉 · 〈 0 |N |0〉 + 〈 0 |M |0〉 · 〈 1 |N |1〉 + 〈 1 |M |1〉 · 〈 0 |N |0〉 + 〈 1 |M |1〉 · 〈 1 |N |1〉

)

6= 1
2

(
〈 0 |M |0〉 · 〈 0 |N |0〉 + 〈 0 |M |1〉 · 〈 0 |N |1〉 + 〈 1 |M |0〉 · 〈 1 |N |0〉 + 〈 1 |M |1〉 · 〈 1 |N |1〉

)

= 1
2

(
〈 00 |(M ⊗N)|00〉 + 〈 00 |(M ⊗N)|11〉 + 〈 11 |(M ⊗N)|00〉 + 〈 11 |(M ⊗N)|11〉

)

= 1
2(〈 00 | + 〈 11 |)(M ⊗ N)(|00〉 + |11〉)

= ωv(M ⊗ N).

In the end we mention that the distribution of the tensor ⊗ over coproducts + is useful to
interpret operations in context. For instance, the guarded command p?[f1, . . . , fn] from (7.7)
can now be interpreted more generally: given an n-test p : X → n·1, and nmaps fi : X⊗Z →
Y with an additional context parameter Z we can interpret the test map p?[f1, . . . , fn]
formally via weakening as π∗1(p)?[f1, . . . , fn] in:

X ⊗ Z instrp⊗id
//

instrπ∗
1(p)

,,

(n ·X)⊗ Z
θ1∼=
��

n · (X ⊗ Z) [f1,...,fn] // Y.

(10.8)

The reasoning rule from Lemma 9.6 still applies, with weakened tests π∗1(p). As special case
we have an equation, for maps hi : X → Y ,

p?[h1, . . . , hn]⊗ id = π∗1(p)?[h1 ⊗ id, . . . , hn ⊗ id].

11. Quantum states

In this section we add our final assumption about the existence of a “quantum object”. We
use it in a subsequent quantum protocol.

66 B. JACOBS

Assumption 4. Let B be a category satisfying Assumption 3. This category contains a
special object Q ∈ B with two states and a predicate:

1
↑ // Q 1

↓ // Q Q
isup // 1 + 1

such that the following diagram commutes,

1 + 1
[↑,↓] // Q

isup
��

instrisup

��
1 + 1

↑+ ↓
// Q+Q

(11.1)

and the predicate isup is not side-effect-free, or equivalently, the map isup : Q → 1 + 1 is
not an isomorphism.

In general, the object 2 = 1+1 comes equipped with two states, namely 1 = κ1 : 1→ 2
and 0 = κ2 : 1→ 2. The identity map 2→ 1+1 can be understood as a ‘isup’ predicate. In
this way we obtain classical states, a bit like the object Q in the above assumption. But the
object Q is different, since it is explicitly required that there is not an isomorphism 2 ∼= Q.

The states ↑, ↓ correspond to the operations new0,new1 in [75], and the predicate isup

is called measure there. The above description focuses on the states and measurement oper-
ations, in line with the rest of the paper. The unitary operations for state transformations
are clearly missing. They do play an important role in quantum programming language,
see [74, 75, 82].

Example 11.1. In the opposite categories (CstarPU)
op and (CstarCPU)

op of C∗-algebras
with (completely) positive unital maps we can take Q = B(C2) = M2(C). Let’s write an
element M ∈ Q as a 2× 2 matrix:

M =
(

M00 M01
M10 M11

)
with matrix entries Mij ∈ C.

Then we can define two states ↑, ↓ as (completely) positive unital maps Q→ C via:

↑(M) = M00 = 〈 0 |M |0〉 and ↓(M) = M11 = 〈 1 |M |1〉.
As predicate isup : C2 → Q we define:

isup(z, w) = z|0〉〈 0 | + w|1〉〈 1 | = (z 0
0 w) .

It corresponds to the effect isup(1, 0) = (1 0
0 0) = |0〉〈 0 |. This effect is obviously a projection,

with orthocomplement (|0〉〈 0 |)⊥ = |1〉〈 1 |. The associated instrument instrisup : Q⊕Q→ Q

is thus:

instrisup(M,N) = |0〉〈 0 |M |0〉〈 0 | + |1〉〈 1 |N |1〉〈 1 | =
(

M00 0
0 N11

)
.

It is easy to see that Diagram (11.1) commutes:
(
〈↑, ↓〉 ◦ isup

)
(z, w) = (↑ (z 0

0 w) , ↓ (z 0
0 w)) = (z, w)

(
isup ◦ (↑⊕↓)

)
(M,N) = isup(M00, N11) =

(
M00 0
0 N11

)
= instrisup(M,N).

NEW DIRECTIONS IN CATEGORICAL LOGIC 67

Remark 11.2.

(1) In the opposite Rngop of the category of rings — not necessarily commutative — we
can use the object Q = M2(Z) of 2×2 matrices over the integers, with similar states and
predicate. (In this ring example one does have the structure described Assumption 4,
but Assumption 3 is not satisfied.)

(2) Via the isomorphisms Stat(B(C2)) ∼= DM(C2) from (5.3) the state ↑ in Example 11.1
corresponds to the density matrix |0〉〈 0 | ∈ DM(C2), since for M ∈ B(C2),

tr(|0〉〈 0 |M) = 〈 0 |M |0〉 = ↑(M).

If we have a program f : Q⊗X → Y we can insert a state like ↑ or ↓ in the first component.
Category-theoretically this involves taking the composite:

X ∼= 1⊗X ↑⊗id // Q⊗X f // Y

In the language of [75] this operation would be written as new(v.f(v,−)). More informally
we shall write it below as: let v = ↑ in f(v ⊗ −). We then have:

(
ω |= (let v = ↑ in f(v ⊗ −))∗(q)

)
=
(
↑ ⊙ ω |= f∗(q)

)
.

We conclude with a description of a familiar protocol in the setting developed in this article.

Example 11.3 (Superdense coding). In the superdense coding protocol Alice sends two
classical bits to Bob by transferring her part of a shared, entangled quantum state. In a
category with a quantum object Q as in Assumption 4 this protocol can be described as a
map sdc : 4→ 4 consisting of three consecutive steps:

sdc =
(
4

init // 4⊗Q⊗Q tA⊗id // Q⊗Q tB // 4
)

(11.2)

The correctness of the protocol means that this composite is the identity map.
We shall describe this sdc map (11.2) in greater detail in the category (CstarCPU)

op,
with Q = B(C2) as in Example 11.1. In pseudo-code this protocol sdc : C4 → C

4 is described
in Figure 4. It is not our aim to develop the syntax of this code fragment in detail. Instead
we explain its interpretation in the category (CstarCPU)

op. For the two test operations we
use the meaning described in (7.6).

We start by recalling some basic material. The Bell basis of C4 is given by the four
vectors:

|b1 〉 = 1√
2
(|00〉 + |11〉) |b2 〉 = 1√

2
(|01〉 + |10〉)

|b3 〉 = 1√
2
(|00〉 − |11〉) |b4 〉 = 1√

2
(|01〉 − |10〉)

The associated projections ei = |bi 〉〈 bi | ∈ B(C4) ∼= B(C2) ⊗ B(C2) = Q⊗Q are described
explicitly by the four matrices:

e1 = 1
2

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
e2 = 1

2

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
e3 = 1

2

(
1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

)
e4 = 1

2

(
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

)

They satisfy e1 > e2 > e3 > e4 = id and thus form a 4-test C4 → Q⊗Q, as used in Bob’s test
in Figure 4. Since e2i = ei we have

√
ei = ei. The associated instrument (Q⊗Q)4 → Q⊗Q

thus sends (x1, x2, x3, x4) to
∑

i ei · xi · ei.

68 B. JACOBS

The first element |b1 〉 = 1√
2
(|00〉+ |11〉) ∈ Q⊗Q of the Bell basis can be obtained from

the base vector |00〉 = ↑ ⊗ ↑ ∈ Q⊗Q by first applying H ⊗ id — where H is Hadamard —
and then conditional negation CNOT. This is done in the initialisation fragment in Figure 4.
The resulting initialisation map from (11.2) has type init : C4 ⊗Q⊗Q → C

4 in CstarCPU

and is given by init(~z ⊗ x) = 〈 b1 |x|b1 〉 · ~z.
For Alice’s test we need the four Pauli matrices in B(C2):

σ1 = (1 0
0 1) σ2 = X = (0 1

1 0) σ3 = Z =
(
1 0
0 −1

)
σ4 = XZ =

(
0 −1
1 0

)
.

When we apply σi ⊗ id to the Bell basis vectors |bj 〉 we see that:

σ1 ⊗ id = id changes nothing
σ2 ⊗ id exchanges |b1 〉, |b2 〉 and |b3 〉, |b4 〉
σ3 ⊗ id exchanges |b1 〉, |b3 〉 and |b2 〉, |b4 〉
σ4 ⊗ id exchanges |b1 〉, |b4 〉 and |b2 〉, |b3 〉.

(11.3)

Alice’s test map tA : Q ⊗ Q → C
4 ⊗ Q ⊗ Q in CstarCPU is given by tA(x) =

∑
i |i〉 ⊗

B(σi ⊗ id)(x), where |i〉 ∈ C
4 is a standard base vector.

Finally, the test operation performed by Bob in Figure 4 is the map tB : C4 → Q⊗Q
given by tB(~z) =

∑
i zi · ei. Now we are ready to calculate the composite (11.2), in reverse

order:
sdc(z1, z2, z3, z4) =

(
init ◦ tA ◦ tB

)
(z1, z2, z3, z4)

=
(
init ◦ tA

)(∑
i zi · ei

)

= init
(∑

j |j 〉 ⊗ B(σj ⊗ id)(
∑

i zi · ei)
)

= init
(∑

i,j zi · |j 〉 ⊗ (σj ⊗ id)†|bi 〉〈 bi |(σj ⊗ id)
)

=
∑

i,j zi · 〈 b1 |(σj ⊗ id)†|bi 〉〈 bi |(σj ⊗ id)|b1 〉|j 〉
=
∑

j zj · |j 〉 by (11.3)

= (z1, z2, z3, z4).

It remains a challenge to prove the correctness of protocols like this via the dynamic logic
that is sketched in this paper. Such a challenge requires a further syntactical and logical
development of the logic, see [4], which is beyond the scope of the current paper.

12. Conclusions and further work

This paper develops a quantitative categorical logic via four assumptions, starting from
predicates as maps X → 1+1 and states as maps 1→ X, in a dual relationship. It involves
abstract forms of validity, predicate- and state-transformers, measurement instruments, and
test programs & predicates. The theory applies to standard set-theoretic, probabilistic, and
quantum models.

The first version of the article appeared online in 2012. Since then the research has
been extended in several other publications. In particular, [4] introduces a predicate logic
based on effects, [47] elaborates the role of coproduct-preservation by the states functor
in a state-and-effect triangle (5.4), [17] describes how instruments (from Section 7 arise
in many examples from quotients and comprehension in the logic, [16] gives an equivalent
description of the notion of effectus as a category of partial maps, and [43] describes many

NEW DIRECTIONS IN CATEGORICAL LOGIC 69

sdc(z1, z2, z3, z4) = // initialisation steps
let v1 = ↑ in

let v2 = ↑ in
let b1 = CNOT(H ⊗ id)(v1 ⊗ v2) in

// Alice’s test operation
let tA = begin test (z1, z2, z3, z4)

| 1 −→ b1
| 2 −→ (X ⊗ id)(b1)
| 3 −→ (Z ⊗ id)(b1)
| 4 −→ (XZ ⊗ id)(b1)

end test in
// Bob’s test operation
let tB = begin test tA

| e1 −→ 1
| e2 −→ 2
| e3 −→ 3
| e4 −→ 4

end test in
tB

Figure 4: Pseudo code for the superdense coding function sdc from Example 11.3.

state-and-effect triangle examples. There is more as yet unpublished work, especially giving
characterisations of ‘Boolean’ and ‘classical’ (probabilistic) effectuses.

Acknowledgements. The work presented in this article acquired its current shape during
a period of roughly three years of research, discussion, revision and extension. The main
sparring partner was Bas Westerbaan to whom I owe a lot. Other colleagues that contributed
with comments and feedback include Robin Adams, Kenta Cho, Tobias Fritz, Robert Furber,
Ichiro Hasuo, Chris Heunen, Jorik Mandemaker, Frank Roumen, Sam Staton and Bram
Westerbaan. I thank them all, and also the anonymous referees for their constructive
comments.

References

[1] S. Abramsky. No-cloning in categorical quantummechanics. In S. Gay and I. Mackie, editors, Semantical
Techniques in Quantum Computation, pages 1–28. Cambridge Univ. Press, 2010.

[2] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Logic in Computer
Science, pages 415–425. IEEE, Computer Science Press, 2004.

[3] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In K. Engesser, Dov M.
Gabbai, and D. Lehmann, editors, Handbook of Quantum Logic and Quantum Structures: Quantum
Logic, pages 261–323. North Holland, Elsevier, Computer Science Press, 2009.

[4] R. Adams. QPEL: Quantum program and effect language. In B. Coecke, I. Hasuo, and P. Panangaden,
editors, Quantum Physics and Logic (QPL) 2014, number 172 in Elect. Proc. in Theor. Comp. Sci.,
pages 133–153, 2014.

[5] M. Arbib and E. Manes. Algebraic Approaches to Program Semantics. Texts and Monogr. in Comp. Sci.
Springer, Berlin, 1986.

[6] W. Arveson. An Invitation to C∗-Algebra. Springer-Verlag, 1981.

70 B. JACOBS

[7] S. Awodey. Category Theory. Oxford Logic Guides. Oxford Univ. Press, 2006.
[8] G. Birkhoff and J. von Neumann. The logic of quantum mechanics. Ann. Math., 37:823–843, 1936.
[9] F. Borceux. Handbook of Categorical Algebra, volume 50, 51 and 52 of Encyclopedia of Mathematics.

Cambridge Univ. Press, 1994.
[10] P. Busch. Effect. In D. Greenberger, K. Hentschel, and F. Weinert, editors, Compendium of Quantum

Physics, pages 179–180. Springer, 2009.
[11] P. Busch, P. Lahti, and P. Mittelstaedt. The Quantum Theory of Measurement. Springer, 2nd edition,

1996.
[12] P. Busch and J. Singh. Lüders theorem for unsharp quantum measurements. Phys. Letters A, 249:10–12,

1998.
[13] A. Carboni, S. Lack, and R. Walters. Introduction to extensive and distributive categories. Journ. of

Pure & Appl. Algebra, 84(2):145–158, 1993.
[14] C. Chang. Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc., 88:476–490, 1958.
[15] K. Cho. Semantics for a quantum programming language by operator algebras. In B. Coecke, I. Hasuo,

and P. Panangaden, editors, Quantum Physics and Logic (QPL) 2014, number 172 in Elect. Proc. in
Theor. Comp. Sci., pages 165–190, 2014.

[16] K. Cho. Total and partial computation in categorical quantum foundations. In C. Heunen en J. Vicary,
editor, Quantum Physics and Logic (QPL) 2015, Elect. Proc. in Theor. Comp. Sci., 2015.

[17] K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. Quotient comprehension chains. In C. Heunen
en J. Vicary, editor, Quantum Physics and Logic (QPL) 2015, Elect. Proc. in Theor. Comp. Sci., 2015.

[18] F. Chovanec and F. Kôpka. D-posets. In K. Engesser, Dov M. Gabbai, and D. Lehmann, editors,
Handbook of Quantum Logic and Quantum Structures: Quantum Structures, pages 367–428. North
Holland, Elsevier, Computer Science Press, 2007.

[19] B. Coecke and D. Pavlović. Quantum measurements without sums. In G. Chen, L. Kauffman, and
S. Lamonaco, editors, Mathematics of Quantum Computing and Technology, pages 559–596. Taylor and
Francis, 2008.

[20] E. Davies and J. Lewis. An operational approach to quantum probability. Communic. Math. Physics,
17:239–260, 1970.

[21] E. D’Hondt and P. Panangaden. Quantum weakest preconditions. Math. Struct. in Comp. Sci.,
16(3):429–451, 2006.

[22] D. Dieks. Communication by EPR devices. Phys. Letters A, 92(6):271–272, 1982.
[23] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications

of the ACM, 18(8):453–457, 1975.
[24] A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures. Kluwer Acad. Publ., Dor-

drecht, 2000.
[25] D. J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. Found. Physics,

24(10):1331–1352, 1994.
[26] R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras: Probabilistic Gelfand

duality. In R. Heckel and S. Milius, editors, Conference on Algebra and Coalgebra in Computer Science
(CALCO 2013), number 8089 in Lect. Notes Comp. Sci., pages 141–157. Springer, Berlin, 2013.

[27] R. Furber and B. Jacobs. Towards a categorical account of conditional probability, 2013. QPL 2013, see
arxiv.org/abs/1306.0831.

[28] M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Categorical Aspects
of Topology and Analysis, number 915 in Lect. Notes Math., pages 68–85. Springer, Berlin, 1982.

[29] R. Giuntini and H. Greuling. Toward a formal language for unsharp properties. Found. Physics, 19:769–
780, 1994.

[30] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification and programming.
Journ. ACM, 39(1):95–146, 1992.

[31] S. Gudder and R. Greechie. Sequential products on effect algebras. Reports on Math. Physics, 49(1):87–
111, 2002.

[32] S. Gudder and G. Nagy. Sequential quantum measurements. Journ. Math. Physics, 42:5212–5222, 2001.
[33] E. Haghverdi. Unique decomposition categories, geometry of interaction and combinatory logic. Math.

Struct. in Comp. Sci., 10:205–231, 2000.
[34] D Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, Cambridge, MA, 2000.

NEW DIRECTIONS IN CATEGORICAL LOGIC 71

[35] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory. From Uncertainty to
Entanglement. Cambridge Univ. Press, 2012.

[36] B. Jacobs. Semantics of weakening and contraction. Ann. Pure & Appl. Logic, 69(1):73–106, 1994.
[37] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.
[38] B. Jacobs. Convexity, duality, and effects. In C. Calude and V. Sassone, editors, IFIP Theoretical

Computer Science 2010, number 82(1) in IFIP Adv. in Inf. and Comm. Techn., pages 1–19. Springer,
Boston, 2010.

[39] B. Jacobs. Probabilities, distribution monads, and convex categories. Theor. Comp. Sci., 412(28):3323–
3336, 2011.

[40] B. Jacobs. Measurable spaces and their effect logic. In Logic in Computer Science. IEEE, Computer
Science Press, 2013.

[41] B. Jacobs. On block structures in quantum computation. In D. Kozen and M. Mislove, editors, Math.
Found. of Programming Semantics, volume 298 of Elect. Notes in Theor. Comp. Sci., pages 233–255.
Elsevier, Amsterdam, 2013.

[42] B. Jacobs. Dijkstra and Hoare monads in monadic computation. TCS, 2015. DOI
http://dx.doi.org/10.1016/j.tcs.2015.03.020 .

[43] B. Jacobs. A recipe for state and effect triangles. In L. Moss and P. Sobocinski, editors, Conference on
Algebra and Coalgebra in Computer Science (CALCO 2015), LIPIcs, 2015.

[44] B. Jacobs and J. Mandemaker. Coreflections in algebraic quantum logic. Found. of Physics, 42(7):932–
958, 2012.

[45] B. Jacobs and J. Mandemaker. The expectation monad in quantum foundations. In B. Jacobs,
P. Selinger, and B. Spitters, editors, Quantum Physics and Logic (QPL) 2011, volume 95 of Elect.
Proc. in Theor. Comp. Sci., pages 143–182, 2012.

[46] B. Jacobs and A. Westerbaan. An effect-theoretic account of Lebesgue integration, 2015. Math. Found.
of Programming Semantics XXXI.

[47] B. Jacobs, B. Westerbaan, and A. Westerbaan. States of convex sets. In A. Pitts, editor, Foundations
of Software Science and Computation Structures, number 9034 in Lect. Notes Comp. Sci., pages 87–101.
Springer, Berlin, 2015.

[48] P. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics. Cambridge
Univ. Press, 1982.

[49] R. Kadison. A representation theory for commutative topological algebra. Memoirs of the AMS, 7, 1951.
[50] G. Kalmbach. Orthomodular Lattices. Academic Press, London, 1983.
[51] F. Katrnoška. Logics of idempotents of rings. In C. Bandt, J. Flachsmeyer, and H. Haase, editors,

Topology, Measure, and Fractals, number 66 in Math. Research, pages 131–136. Academie Verlag, 1992.
[52] M. Kelly and M. Laplaza. Coherence for compact closed categories. Journ. of Pure & Appl. Algebra,

19:193–213, 1980.
[53] A. Kock. Bilinearity and cartesian closed monads. Math. Scand., 29:161–174, 1971.
[54] A. Kock. Closed categories generated by commutative monads. Journ. Austr. Math. Soc., XII:405–424,

1971.
[55] D. Kozen. Semantics of probabilistic programs. Journ. Comp. Syst. Sci, 22(3):328–350, 1981.
[56] D. Kozen. A probabilistic PDL. Journ. Comp. Syst. Sci, 30(2):162–178, 1985.
[57] K. Kraus. States, Effects, and Operations. Springer Verlag, Berlin, 1983.
[58] N.P. Landsman. Algebraic quantum mechanics. In D. Greenberger, K. Hentschel, and F. Weinert, edi-

tors, Compendium of Quantum Physics, pages 6–10. Springer, 2009.
[59] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[60] S. Mac Lane. Categories for the Working Mathematician. Springer, Berlin, 1971.
[61] S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. A First Introduction to Topos Theory.

Springer, New York, 1992.
[62] E. Moggi. Notions of computation and monads. Inf. & Comp., 93(1):55–92, 1991.
[63] D. Mundici. Advanced Lukasiewicz calculus and MV-algebras, volume 35 of Trends in Logic. Springer,

2011.
[64] J. von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer, Berlin, 1932.
[65] B. Nordström, K. Peterson, and J.M. Smith. Programming in Martin-Löf ’s Type Theory: an introduc-

tion. Number 7 in Logic Guides. Oxford Science Publ., 1990.

http://dx.doi.org/10.1016/j.tcs.2015.03.020

72 B. JACOBS

[66] M. Ozawa. Quantum measuring processes of continuous observables. Journ. Math. Physics, 25:79–87,
1984.

[67] P. Panangaden. Labelled Markov Processes. Imperial College Press, 2009.
[68] S. Pulmannová and S. Gudder. Representation theorem for convex effect algebras. Commentationes

Mathematicae Universitatis Carolinae, 39(4):645–659, 1998.
[69] H. Reichenbach. The theory of probability. Univ. California Press, 1949.
[70] M. Rennela. Towards a quantum domain theory: Order-enrichment and fixpoints in W ∗-algebras. In

B. Jacobs, A. Silva, and S. Staton, editors, Math. Found. of Programming Semantics, number 308 in
Elect. Notes in Theor. Comp. Sci., pages 289–307, 2014.

[71] M. Rennela and S. Staton. Complete positivity and natural representation of quantum computations,
2015. Math. Found. of Programming Semantics XXXI.

[72] E. Rieffel and W. Polak. Quantum Computing. A Gentle Introduction. MIT Press, Cambridge, MA,
2011.

[73] W. Rudin. Functional Analysis. McGraw-Hill Book Company, 1987. Third, intern. edition.
[74] P. Selinger. Towards a quantum programming language. Math. Struct. in Comp. Sci., 14(4):527–586,

2004.
[75] S. Staton. Algebraic effects, linearity, and quantum programming languages. In Principles of Program-

ming Languages, pages 395–406. ACM SIGPLAN-SIGACT, 2015.
[76] M. Stone. Postulates for the barycentric calculus. Ann. Math., 29:25–30, 1949.
[77] F. Strocchi. An Introduction to the Mathematical Structure of Quantum Mechanics: a short Course for

Mathematicians, volume 27 of Adv. Series in Math. Physics. World Scientific, 2005.
[78] T. Swirszcz. Monadic functors and convexity. Bull. de l’Acad. Polonaise des Sciences. Sér. des sciences

math., astr. et phys., 22:39–42, 1974.
[79] M. Takesaki. Theory of Operator Algebras I, volume 124 of Encyclopedia of Mathematical Sciences.

Springer, 2nd edition, 2001.
[80] M. Takesaki. Theory of Operator Algebras III, volume 127 of Encyclopedia of Mathematical Sciences.

Springer, 2003.
[81] J. Tomiyama. On the projection of norm one in W ∗-algebras. Proc. Japan Acad., 10:608–612, 1957.
[82] B. Valiron, N. Ross, D. Scott Alexander, P. Selinger, and J. Smith. Programming the quantum future.

Communications of the ACM, 58(8):52–61, 2015.
[83] W. Wootters and W. Zurek. A single quantum cannot be cloned. Nature, 299:802–803, 1982.

Appendix A.

This appendix describes some background information for our running examples, involving
discrete probability, continuous probability, Hilbert spaces, and C∗-algebras.

A.1. Discrete probability. To describe finite discrete probabilities categorically one uses
the distribution monad D : Sets → Sets. It maps a set X to the set D(X) of probability
distributions over X, which we describe as formal finite convex sums:

∑
i ri|xi 〉 where xi ∈ X and ri ∈ [0, 1] satisfy

∑
i ri = 1.

We use the “ket” notation | − 〉 to distinguish elements x ∈ X and their occurrences in
formal sums. Alternatively one may describe D(X) as the set of functions ϕ : X → [0, 1]
with finite support and

∑
x ϕ(x) = 1. We freely switch between these two descriptions.

Each function f : X → Y gives a function D(f) : D(X)→ D(Y), where:

D(f)
(∑

i ri|xi 〉
)
=
∑

i ri|f(xi)〉. (A.1)

The unit η : X → D(X) of this distribution monad D sends x ∈ X to the singleton/Dirac
distribution η(x) = 1|x〉. The Kleisli extension f∗ : D(X) → D(Y) of a function f : X →

NEW DIRECTIONS IN CATEGORICAL LOGIC 73

D(Y) is defined by:

f∗(ϕ)(y) =
∑

x ϕ(x) · f(x)(y). (A.2)

Like for any monad, one can form the Kleisli category Kℓ(D). In this case we get the
category of sets and stochastic matrices, as the objects of Kℓ(D) are sets, and its maps
X → Y are functions X → D(Y). The unit function η : X → D(X) is then the identity
map X → X in Kℓ(D). Composition of f : X → Y and g : Y → Z in Kℓ(D) yields a map
g ⊚ f : X → Z, which, as a function X → D(Z) is given by g ⊚ f = g∗ ◦ f , using Kleisli
extension from (A.2).

There is a forgetful functor Kℓ(D) → Sets, sending X to D(X) and f to µ ◦ D(f). It
has a left adjoint J : Sets → Kℓ(D) which is the identity on objects and sends f to η ◦ f .
The Kleisli category Kℓ(D) has coproducts X1 + X2, on objects like in Sets. There are
coprojection maps J(κi) = η ◦ κi : Xi → D(X1 + X2), where κi : Xi → X1 + X2 are the
coprojections in Sets. Cotuples in Kℓ(D) are like in Sets. We have D(1) = 1 — making
D an ‘affine’ functor. As a result, the singleton/final set 1 = {0} is final in the category
Kℓ(D). The copower n · 1 in Kℓ(D) is thus the n-element set n.

The distribution monad D is ‘commutative’: there exists a natural transformation
dst : D(X) × D(Y) → D(X × Y), given by dst(ϕ,ψ)(x, y) = ϕ(x) · ψ(y). It makes the
monad ‘monoidal’. Via this map dst the product × on Sets becomes a tensor on Kℓ(D).
Explicitly, dst is used for functoriality: for functions fi : Xi → D(Yi) we can define a function
f1 ⊗ f2 = dst ◦ (f1 × f2) : X1 ×X2 → D(Y1 × Y2). The final object 1 ∈ Kℓ(D) is the unit
for this tensor.

A.2. Continuous probability. We write Meas for the category with measurable spaces
X = (X,ΣX) as objects, where ΣX ⊆ P(X) is a σ-algebra. A measurable spaceX is discrete
if all subsets of X are measurable, i.e. if ΣX = P(X). A map f : X → Y in Meas is a
‘measurable’ function, satisfying f−1(M) ∈ ΣX for each measurable subset M ∈ ΣY . We
use the unit interval [0, 1] as measurable space, with ‘Borel’ measurable subsets generated
by the intervals [q, 1], where q is a rational number in [0, 1].

The (discrete) empty and singleton spaces 0 and 1 are initial and final in the category
Meas. The (categorical) product X1 × X2 of two measurable spaces Xi carries the least
σ-algebra making both projections πi : X1 × X2 → Xi measurable functions; equivalently,
this σ-algebra is generated by the rectangles M1 ×M2 with Mi ∈ ΣXi

. The coproduct
X1+X2 in Meas involves the disjoint union of the underlying sets with the σ-algebra given
by the direct images κiM = {κix | x ∈ M} for M ∈ ΣXi

, where κi : Xi → X1 + X2 is
the coprojection map. Thus, if X1,X2 are discrete, then so is the coproduct X1 +X2. In
particular, the copower n · 1 is the n-element discrete space.

A probability space consists of a measurable space X = (X,ΣX) together with a func-
tion φ : ΣX → [0, 1] which satisfies φ(X) = 1 and is countably additive: φ

(
>i∈I Mi

)
=∑

i∈I φ(Mi), for each pairwise disjoint, countable collection of measurable subsetsMi ∈ ΣX .
Here we use > for disjoint union, where ΣX is understood as effect algebra. We write:

G(X) = {φ : ΣX → [0, 1] | φ is a probability measure}.
For each finite discrete space n we have G(n) ∼= D(n). In particular, G(2) ∼= [0, 1] and
G(1) ∼= 1.

Each measurable subset M ∈ ΣX yields a function evM : G(X) → [0, 1], namely
evM (φ) = φ(M). Thus one can equip the set G(X) with the least σ-algebra making all

74 B. JACOBS

these maps evM measurable. We obtain the ‘Giry’ functor G : Meas→Meas from [28] (see
also [55]): for a map f : X → Y in Meas we get a measurable function G(f) : G(X)→ G(Y)
given by:

G(f)
(
ΣX

φ→ [0, 1]
)
=
(
ΣY

f−1

→ ΣX
φ→ [0, 1]

)
.

For a probability measure φ ∈ G(X) we describe integration, but only for measurable
functions (predicates) X → [0, 1], with the unit interval as codomain, and not for more
general real- or complex-valued functions (see [46] for a general effect-theoretic account).
For each M ∈ ΣX we write 1M : X → [0, 1] for the indicator function given by 1M (x) = 1
for x ∈M and 1M (x) = 0 for x 6∈M . The mapping M 7→ 1M is a homomorphism of effect
algebras form Σ to the predicates on X, i.e. to the measurable functions X → [0, 1]. A
step function is a finite linear combination r11M1 + · · ·+ rk1Mk

=
∑

i ri • 1Mi
of indicator

functions with ri ∈ [0, 1] and Mi ∈ ΣX pairwise disjoint measurable subsets. It is a basic
fact that each measurable predicate p : X → [0, 1] can be approximated (from below) by
step functions: p =

∨
n∈N pn. The (Lebesgue) integral is then defined as:

∫
p dφ =

∨
n∈N

∫
pn dφ ∈ [0, 1] where

∫ (∑
i ri1Mi

)
dφ =

∑
i riφ(Mi).

Unit η : X → G(X) and multiplication maps µ : G2(X)→ G(X) can now be defined, making
G a monad on the category Meas:

η(x)(M) = 1M (x) µ(Φ)(M) =
∫
evM dΦ.

For details, we refer to [67] or [40, 46]. The Kleisli category Kℓ(G) of the Giry monad
contains measurable spaces as objects; a morphism X → Y in Kℓ(G) is a measurable map
f : X → G(Y), which can be understood as a Markov transition map. There is an associated
Kleisli extension map, which we write as f∗ : G(X)→ G(Y), namely:

f∗(φ)(N) =
∫
f(−)(N) dφ where f(−)(N) : X → [0, 1]. (A.3)

Coproducts (+, 0) are inherited fromMeas. The final/singleton space 1 is also final inKℓ(G),
since G(1) = 1. Further, the Giry monad is also commutative, like the distribution monad D,
via a map dst : G(X)×G(Y)→ G(X×Y) determined by dst(φ,ψ)(M ×N) = φ(M)×ψ(N).
As a result, the product × of measurable spaces becomes a tensor on the Kleisli category
Kℓ(G), with the final space 1 as tensor unit. For more information, see [67].

A.3. Hilbert spaces. A Hilbert space is a vector space (over C) with an inner product
such that the induced norm makes the space complete. We write Hilb for the category
of Hilbert spaces, with linear and bounded (equivalently: continuous) maps between them.
This category is symmetric monoidal, with the complex numbers C as unit for the tensor
⊗. There are also finite biproducts (⊕, 0), given by the cartesian product of the underlying
space. Tensors ⊗ distribute over finite biproducts. Further, Hilb is a ‘dagger category’,
where f † is the conjugate transpose of a map f . A map f is an isometry (aka. dagger monic)
if f † ◦ f = id, and a unitary if not only f † ◦ f = id but also f ◦ f † = id. In that case f †

is the inverse of f . For a Hilbert space H we write B(H) for the set of endomaps H → H
in Hilb. There is a subset Ef(H) = {A ∈ B(H) | 0 ≤ A ≤ id} of effects. Hilbert spaces will
be used mostly as source of examples for C∗-algebras, via this B(−) construction.

NEW DIRECTIONS IN CATEGORICAL LOGIC 75

A.4. C∗-algebras. In the current context we use C∗-algebra over the complex numbers C,
with a multiplicative unit element 1. Thus a C∗-algebra is a vector space over C which is
*-algebra — with multiplication ·, involution (−)∗, and unit 1 — and carries a norm ‖ − ‖
that makes the space complete and interacts with multiplication via ‖a · b‖ ≤ ‖a‖ · ‖b‖ and
‖a∗ · a‖ = ‖a‖2. A C∗-algebra is called commutative if its multiplication is commutative,
and finite-dimensional if it has finite dimension when considered as a vector space.

An element a ∈ A of a C∗-algebra A is called self-adjoint if a∗ = a and positive if it
is of the form a = x∗x for some element x ∈ A. There is a partial order a ≤ b iff b − a is
positive.

A linear map f : A→ B between C∗-algebras A,B is called:

(1) multiplicative (M) if f(a · a′) = f(a) · f(a′) for all a, a′ ∈ A;
(2) involutive (I) if f(a∗) = f(a)∗ for all a ∈ A;
(3) unital (U) if f(1) = 1, and subunital (sU) if 0 ≤ f(1) ≤ 1;
(4) positive (P) if f(a) ≥ 0 for each a ≥ 0;
(5) completely positive (CP) if for each n ∈ N the map Mn(f) : Mn(A)→ Mn(B) is positive,

where Mn(A) is the C∗-algebra of n × n matrices with entries from A, with matrix
multiplication.

We call f a MIU-map if it is multiplicative, involutive, and unital, and a (C)PU-map if it
(completely) positive and unital. There are implications MIU ⇒ CPU ⇒ PU ⇒ I. A MIU-
map is traditionally called a *-homomorphism. If either A or B is commutative, then a pos-
itive map f : A→ B is automatically completely positive. We use categories of C∗-algebras
CstarMIU →֒ CstarCPU →֒ CstarPU with maps as indicated by the subscripts. There
are obvious subcategories CCstarPU and CCstarMIU of commutative C∗-algebras with
PU/MIU maps. The famous Gelfand duality involves an equivalence CH ≃ (CCstarMIU)

op

where CH is the category of compact Hausdorff spaces and continuous maps. For PU-maps
an equivalence Kℓ(R) ≃ (CCstarPU)

op is shown in [26], where R is the Radon monad on
CH.

The collection of endomaps B(H) of a Hilbert space H is a C∗-algebra, with multipli-
cation given by composition. This mapping H 7→ B(H) gives rise to functors:

Hilbunit
B // (CstarMIU)

op Hilbisom
B // (CstarCPU)

op

where Hilbunit, resp. Hilbisom, is the category of Hilbert spaces with unitaries, resp. isome-
tries, as morphisms. A map f : H → K is sent to B(f) = f †(−)f : B(K)→ B(H).

The algebra C of complex numbers is initial among C∗-algebras, in all categories
CstarMIU, CstarCPU, CstarPU. Similarly, there are finite products of C∗-algebras, via
the trivial singleton space {0} as final object, and via direct sums ⊕ of vector spaces
(i.e. products of the underlying sets) as cartesian products. The operations are used point-
wise. There are also tensor products of C∗-algebras. These are described in more detail
in [79, section IV.4], but we outline them here. The C∗-tensors for two C∗-algebras A and
B are obtained by taking the usual tensor of underlying vector spaces A ⊗ B, defining a
*-algebra structure as follows:

(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2) ⊗ (b1b2) (a ⊗ b)∗ = a∗ ⊗ b∗.

One then obtains a C∗-algebra by introducing a C∗-norm compatible with the *-algebra
structure, and taking the completion. There are minimal and maximal, or injective and
projective C∗-norms, but if A or B is finite dimensional these coincide, see [80, chapter XV,

76 B. JACOBS

1.4-1.6]. Since A ⊗ B is the completion of the algebraic tensor of A and B, the span of
elements of the form a ⊗ b is dense, and in fact in the finite dimensional case, A⊗B is just
the linear span of such elements.

The positive cone of A⊗B contains the positive elements according to the multiplication
and involution, i.e. a ∈ A⊗B is positive if a = x∗x for some other element x in the tensor
product. We note at this point that this cone is larger than the cone obtained by taking
sums of elements a ⊗ b with a ∈ A and b ∈ B both positive. The effect of this is that
no C∗-tensor is a functor on CstarPU. Instead, the maps that can be tensored are the
completely positive ones (see [79, §IV.3, and §IV.4 Prop. 23]). In short, it is the category
CstarCPU that is symmetric monoidal, with the (initial) object C as tensor unit. In [15] it
is shown that the “minimal” tensor ⊗ on CstarCPU distributes over finite products (⊕, {0}).
We use this result in the form: the opposite category (CstarCPU)

op is symmetric monoidal
with the (final) object C as tensor unit, and ⊗ distributing over finite coproducts.

For n ∈ N one can write the matrix algebra Mn(A) as tensor productMn(A) ∼= Mn(C)⊗
A = B(Cn)⊗ A. In particular, when A is of the form B(H) we can move the tensor inside
B(−) as in:

B(Cn)⊗ B(H) ∼= Mn(B(H)) ∼= B(Hn) ∼= B(Cn ⊗H), (A.4)

where Hn is the n-fold biproduct H⊕ · · · ⊕ H ∼= C
n ⊗H.

A W ∗-algebra (also called a von Neumann algebra) is a special kind of C∗ algebra that
satisfies additional closure properties, see e.g. [79] for details.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries on effect algebras, effect modules, and convex sets
	3. Predicates and tests
	4. The effect algebra structure on predicates
	5. States
	5.1. Programs, states, and predicates

	6. Predicates and coproducts
	7. Measurement instruments
	8. Side-effect free predicates and pure maps
	9. Test operators in dynamic logic
	10. Adding tensor products
	11. Quantum states
	12. Conclusions and further work
	Acknowledgements

	References
	Appendix A.
	A.1. Discrete probability
	A.2. Continuous probability
	A.3. Hilbert spaces
	A.4. C*-algebras

