
Logical Methods in Computer Science
Vol. 11(4:2)2015, pp. 1–38
www.lmcs-online.org

Submitted Sep. 30, 2014
Published Oct. 15, 2015

LOGIC AND BRANCHING AUTOMATA ∗

NICOLAS BEDON

LITIS (EA 4108) – Université de Rouen – France
e-mail address: Nicolas.Bedon@univ-rouen.fr

Abstract. In this paper we study the logical aspects of branching automata, as defined
by Lodaya and Weil. We first prove that the class of languages of finite N-free posets
recognized by branching automata is closed under complementation. Then we define a logic,
named P-MSO as it is a extension of monadic second-order logic with Presburger arithmetic,
and show that it is precisely as expressive as branching automata. As a consequence of the
effectiveness of the construction of one formalism from the other, the P-MSO theory of the
class of all finite N-free posets is decidable.

1. Introduction

Sequential programs can naturally be modeled with Kleene automata, or equivalently with
rational expressions, finite monoids, or monadic second-order (MSO) logic. The algebraic
approach of automata provides an huge toolbox for the study of properties of programs,
and has been widely used as a base for a lot of algorithms that manipulate logic formulas.
The links between Kleene automata, rational expressions, finite monoids and MSO have
important consequences in a lot of domains of computer science and mathematics, some
of them are concretely applied as for example in program verification, others are more
theoretical as for example in set theory.

Introducing commutativity allows access to models of programs with permutation of
instructions, or to concurrent programming. Among the formal tools for the study of
commutativity in programs, let us mention for example Mazurkiewicz’s traces, integer vector
automata or commutative monoids. In this paper we focus on the notion of branching
automata introduced by Lodaya and Weil [LW98a, LW98b, LW00, LW01]. Branching
automata are an extension of Kleene automata with particular transitions that naturally
model parallelism. Traces of paths in branching automata are not (totally ordered) words as
in Kleene automata, but partially ordered sets (posets) of letters, which are structured as
traces of programs using the fork-join primitive for concurrency. Those particular posets,
called N-free, are widely used in the study of concurrency. The fork-join primitive splits
an execution flow f into f1, . . . , fn concurrent execution flows and joins f1, . . . , fn before

2012 ACM CCS: [Theory of computation]: Models of computation; Logic; Formal languages and
automata theory.

Key words and phrases: N-free posets, series-parallel posets, sp-rational languages, automata, commutative
monoids, monadic second-order logic, Presburger logic.
∗ This paper is a long version, with full proofs, of [Bed13].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:2)2015
c© N. Bedon
CC© Creative Commons

http://creativecommons.org/about/licenses

2 N. BEDON

it continues. Divide-and-conquer concurrent programming naturally uses this fork-join
principle. Lodaya and Weil generalized several important results of the theory of Kleene
automata to branching automata, for example, a notion of rational expression with the same
expressivity as branching automata. They also investigated the question of the algebraic
counterpart of branching automata: the sp-algebras are sets equipped with two different
associative products, one of them being also commutative. Contrary to the theory of Kleene
automata, branching automata do not coincide any more with finite sp-algebras.

An interesting particular case is the bounded-width rational languages [LW00], where
the cardinality of the antichains of the posets of languages are bounded by an integer n. They
correspond to fork-join models of concurrent programs with n as the upper bound of the
number of execution flows (n is the number of physical processors). Bounded-width rational
languages have a natural characterization in rational expressions, branching automata, and
sp-algebras. Taking into account those characterizations, the expressiveness of branching
automata corresponds exactly to the finite sp-algebras. Furthermore, Kuske [Kus00] proved
that in this case, branching automata coincide also with monadic second-order logic, as it is
the case for the rational languages of finite words. As in the general case monadic-second
order logic is less expressive than branching automata, the question of an equivalent logic
was left open.

In this paper we investigate the question of defining a logic equivalent to branching
automata in the general case.

This paper contains two results regarding branching automata:

• we prove that the class of languages defined by branching automata is closed under
complementation;
• we define a logic, named P-MSO as it is basically monadic second-order logic enriched

with Presburger arithmetic, that is exactly as expressive as branching automata.

The (effective) proof of the first result essentially relies on the closure under complemen-
tation of rational languages of a finitely generated commutative monoid (Theorem 4.2, by
Schützenberger and Eilenberg). The proof of the second result relies on effective construc-
tions from one formalism to the other. As a consequence, the P-MSO theory of the class of
finite N-free posets is decidable.

The paper is organized as follows. Section 2 recalls basic definitions on posets. Section 3 is
devoted to branching automata, rational expressions and sp-algebras. The complementation
of rational languages is discussed in Section 4. Section 5 is devoted to the logical approach
of branching automata. Finally, we present an alternative definition for branching automata
in Section 6.

2. Notation and basic definitions

Let E be a set. We denote by P(E), P+(E) and M>1(E) respectively the set of subsets of
E, the set of non-empty subsets of E and the set of multi-subsets of E with at least two
elements. For any integer n, the set {1, . . . , n} is denoted [n] and the group of permutations
of [n] by Sn. The cardinality of E is denoted by |E|. We use the same notation for sets and
multi-sets. We sometimes denote by ek the multiplicity k of an element e of a multi-set.

A poset (P,<P) is composed of a set P equipped with a partial ordering <P . In this
paper we consider only finite posets. For simplicity, by poset we always mean finite poset.
A chain of length n in P is a sequence p1 <P · · · <P pn of elements of P . An antichain E
in P is a set of elements of P mutually incomparable for <P . The width of P is the size of

LOGIC AND BRANCHING AUTOMATA 3

a maximal antichain of P . An alphabet is a nonempty finite set whose elements are called
letters. A poset (P,<P , ρ) labeled by A is composed of a poset (P,<P) and a map ρ : P → A
which associates a letter A with any element of P . Observe that the posets of width 1
labeled by A correspond precisely to the usual finite words: finite totally ordered sequences
of letters. Throughout this paper, we use labeled posets as a generalization of words. In
order to lighten the notation we write P for (P,<P , ρ) when no confusion is possible. The
unique empty poset is denoted by ε.

Let (P,<P , ρP) and (Q,<Q, ρQ) be two disjoint posets labeled respectively by the
alphabets A and A′. The parallel product of P and Q, denoted P ‖ Q, is the set P ∪ Q
equipped with the orderings on P and Q such that the elements of P and Q are incomparable,
and labeled by A∪A′ by preservation of the labels from P and Q. It is defined as (P ∪Q,<, ρ)
where x < y if and only if:

• x, y ∈ P and x <P y or
• x, y ∈ Q and x <Q y

and ρ(x) = ρP (x) if x ∈ P , ρ(x) = ρQ(x) if x ∈ Q.
The sequential product of P and Q, denoted by P ·Q or PQ for simplicity, is the poset

(P ∪Q,<, ρ) labeled by A∪A′, such that x < y if and only if one of the following conditions
is true:

• x ∈ P , y ∈ P and x <P y;
• x ∈ Q, y ∈ Q and x <Q y;
• x ∈ P and y ∈ Q
and ρ(x) = ρP (x) if x ∈ P , ρ(x) = ρQ(x) if x ∈ Q.

Observe that the parallel product is an associative and commutative operation on
posets, whereas the sequential product does not commute (but is associative). The parallel
and sequential products can be generalized to finite sequences of posets. Let (Pi)i≤n be a
sequence of posets. We denote by

∏
i≤n Pi = P0 · · · · · Pn and ‖i≤n Pi = P0 ‖ · · · ‖ Pn.

The class of series-parallel posets, denoted SP , is defined as the smallest set containing
the posets with zero and one element and closed under finite parallel and sequential product.
It is well known that this class corresponds precisely to the class of N-free posets [Val78,
VTL82], in which the exact ordering relation between any four elements x1, x2, x3, x4 cannot
be x1 < x2, x3 < x2 and x3 < x4. The class of series-parallel posets labeled by an alphabet
A is denoted SP (A). We write SP+ for SP − {ε} and SP+(A) for SP+(A)− {ε}.

A poset P has a sequential (resp. parallel) factorization if P = P1 ·P2 (resp. P = P1 ‖ P2)
for some nonempty posets P1 and P2. A sequential factorization P = P1 · · · · · Pn is maximal
if each Pi, i ∈ [n], has no sequential factorization. The definition of the notion of maximal
parallel factorization is similar. Posets having a parallel factorization are called parallel
posets. The sequential posets are those of cardinality 1 and those having a sequential
factorization.

3. Rational languages, automata and recognizability

A language of a set X is a subset of X. Let A be an alphabet. The sequential and
parallel product of labeled posets can naturally be extended to languages of SP (A). If
L1, L2 ⊆ SP (A), then L1 · L2 = {P1 · P2 : P1 ∈ L1, P2 ∈ L2} and L1 ‖ L2 = {P1 ‖ P2 : P1 ∈
L1, P2 ∈ L2}.

4 N. BEDON

3.1. Rational languages. Let A and B be two alphabets and let P ∈ SP (A), L ⊆ SP (B)
and ξ ∈ A. We define the language L ◦ξ P ⊆ SP (A ∪ B) by substituting non-uniformly
in P each element labeled by ξ by a labeled poset of L. This substitution L◦ξ is the
homomorphism from (SP (A), ‖, ·) into the power-set algebra (P(SP (A ∪ B)), ‖, ·) with
a 7→ {a} for all a ∈ A, a 6= ξ, and ξ 7→ L. It can be easily extended from labeled posets to
languages of posets. Using this, we define the substitution and the iterated substitution on
languages. By the way the usual Kleene rational operations [Kle56] are recalled. Let L and
L′ be languages of SP (A):

L ◦ξ L′ = ∪
P∈L′

L ◦ξ P

L∗ξ = ∪
i∈N

Liξ with L0ξ = {ξ} and L(i+1)ξ = (∪
j≤i

Ljξ) ◦ξ L

L∗ = {
∏
i<n

Pi : n ∈ N, Pi ∈ L} L+ = {
∏
i<n

Pi : 0 < n ∈ N, Pi ∈ L}

A language L ⊆ SP+(A) is rational if it is empty, or obtained from the letters of the
alphabet A using usual rational operators : finite union ∪, finite concatenation ·, and
finite iteration +, and using also the finite parallel product ‖, substitution ◦ξ and iterated

substitution ∗ξ, provided that in L∗ξ any element labeled by ξ in a labeled poset P ∈ L is
incomparable with another element of P . This latter condition excludes from the rational
languages those of the form (aξb)∗ξ = {anξbn : n ∈ N}, for example, which are known to be
not Kleene rational. Observe also that the usual Kleene rational languages are a particular
case of the rational languages defined above, in which the operators ‖, ◦ξ and ∗ξ are not
allowed.

Example 3.1. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ. Then L is the smallest language
containing c and such that if x ∈ L, then a ‖ (bx) ∈ L:

L = {c, a ‖ (bc), a ‖ (b(a ‖ (bc))), . . . }

Let L be a language where the letter ξ is not used. In order to lighten the notation we
use the following abbreviation:

L~ = {ε} ◦ξ (L ‖ ξ)∗ξ = {‖i<n Pi : n ∈ N, Pi ∈ L} L⊕ = L~ − {ε}
L∗ and L+ are the sequential iterations of L whereas L~ and L⊕ are its parallel iterations.

3.2. Branching automata. Branching automata are a generalization of usual Kleene
automata. They were introduced by Lodaya and Weil [LW98a, LW98b, LW00].

A branching automaton (or just automaton for short) is a tuple A = (Q,A,E, I, F)
where Q is a finite set of states, A is an alphabet, I ⊆ Q is the set of initial states, F ⊆ Q
the set of final states, and E is the set of transitions of A. The set of transitions of E is
partitioned into E = (Eseq, Efork, Ejoin), according to the different kinds of transitions:

• Eseq ⊆ (Q × A × Q) contains the sequential transitions, which are usual transitions of
Kleene automata;
• Efork ⊆ Q×M>1(Q) and Ejoin ⊆M>1(Q)×Q are respectively the sets of fork and join

transitions.

LOGIC AND BRANCHING AUTOMATA 5

Sequential transitions (p, a, q) ∈ Q×A×Q are sometimes denoted by p
a→ q. The arity of a

fork (resp. join) transition (q,R) ∈ Q×M>1(Q) (resp. (R, q) ∈M>1(Q)×Q) is |R|.
We now turn to the definition of paths in automata. The definition we use in this paper

is different, but equivalent to, the one of Lodaya and Weil [LW98a, LW98b, LW00, LW01].
Paths in automata are posets labeled by transitions. A path γ from a state p to a state q is
either the empty poset (in this case p = q), or a non-empty poset labeled by transitions,
with a unique minimum and a unique maximum element. The minimum element of γ is
mapped either to a sequential transition of the form (p, a, r) for some a ∈ A and r ∈ Q or to
a fork transition of the form (p,R) for some R ∈ M>1(Q). Symmetrically, the maximum
element of γ is mapped either to a sequential transition of the form (r′, a, q) for some a ∈ A
and r′ ∈ Q or to a join transition of the form (R′, q) for some R′ ∈M>1(Q). The states p
and q are respectively called source (or origin) and destination of γ. Two paths γ and γ′

are consecutive if the destination of γ is also the source of γ′. Formally, the paths γ labeled
by P ∈ SP+(A) in A are defined by induction on the structure of P :

• for any transition t = (p, a, q), then t is a path from p to q, labeled by a;
• for any finite set of paths {γ0, . . . , γk} (k ≥ 1) respectively labeled by P0, . . . , Pk ∈
SP+(A), from p0, . . . , pk to q0, . . . , qk, if t = (p, {p0, . . . , pk}) is a fork transition and
t′ = ({q0, . . . , qk}, q) a join transition, then γ = t(‖j≤k γj)t′ is a path from p to q and
labeled by ‖j≤k Pj ;
• for any non-empty finite sequence γ0, . . . , γk of consecutive paths respectively labeled by
P0, . . . , Pk, then

∏
j<k+1 γj is a path labeled by

∏
j<k+1 Pj from the source of γ0 to the

destination of γk;

Observe that non-empty paths are labeled posets of two different forms: t or tP t′ for some
transitions t, t′ and some labeled poset P . In an automaton A, the existence of a path γ

from p to q labeled by P ∈ SP (A) is denoted by γ : p
P

=⇒
A
q. A state s is a sink if s is the

destination of any path originating in s.
A labeled poset is accepted by an automaton if it is the nonempty label of a path, called

successful, leading from an initial state to a final state. The language L(A) is the set of
labeled posets accepted by the automaton A. A language L is regular if there exists an
automaton A such that L = L(A).

Example 3.2. Figure 1 represents an automaton on the alphabet A = {a, b} that accepts
P ∈ SP+(A) iff P contains at least one a. It has one initial state 1 and one final state 2, two
sequential transitions labeled by a from 1 to 2 and from 2 to 2, two sequential transitions
labeled by b from 1 to 1 and from 2 to 2, two fork transitions (1, {1, 1}) and (2, {2, 2}), and
three join transitions ({1, 1}, 1), ({2, 2}, 2) and ({1, 2}, 2).

1 2
a

b
a, b

Figure 1: An automaton that accepts P ∈ SP+(A) iff P contains at least one a.

Theorem 3.3 (Lodaya and Weil [LW98a]). Let A be an alphabet, and L ⊆ SP+(A). Then
L is regular if and only if it is rational.

6 N. BEDON

Example 3.4. On its left side, Figure 2 represents the automaton

A = ({1, 2, 3, 4, 5, 6}, {a, b}, E, {1}, {6})
where the set of sequential transitions is Eseq = {(2, a, 4), (3, b, 5)}, the set of fork tran-
sitions is Efork = {(1, {1, 1}), (1, {2, 3})} and finally the set of join transitions is Ejoin =
{({6, 6}, 6), ({4, 5}, 6)}. On the right side of the Figure is pictured an accepting path labeled
by a ‖ b ‖ a ‖ b. Actually, L(A) = (a ‖ b)⊕.

1

2

3

4

5

6

a

b 1

1
2

1

3

2

3

5

4

5
6

6
4

6

a

b

b

a

Figure 2: An automaton A with L(A) = (a ‖ b)⊕ and an accepting path labeled by
a ‖ b ‖ a ‖ b.

Example 3.5. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ be the language of Examples 3.1
and 4.7. Figure 3 represents an automaton A such that L(A) = L.

1

2

3 4

5

b c

a

Figure 3: An automaton A such that L(A) = c ◦ξ (a ‖ (bξ))∗ξ.

Proposition 3.6 (Lodaya and Weil [LW00]). Let A be an alphabet. The class of regular
languages of SP+(A) is closed under finite union. Furthermore, if B is an alphabet,
φ : SP+(A) → SP+(B) a morphism of free sp-algebras, and L a regular language of
SP+(A), then φ(L) is a regular language of SP+(B).

Proof. The closure under finite union is a direct consequence of the generalization of the
notion of cartesian product of automata to branching automata. The closure under direct
image by φ is also an easy generalization of the construction for Kleene rational languages.

Proposition 3.7 (Lodaya and Weil [LW01]). Let p and q be two states of a branching
automaton A. It is decidable, in polynomial time, if there is a path from p to q in A.

An automaton is sequentially separated if, for all pairs (p, q) of states, all labels of paths
from p to q are parallel posets, or all labels of paths from p to q are sequential posets.

The following proposition will be used later in the paper.

Proposition 3.8. For every automaton A there is a sequentially separated automaton B
such that L(A) = L(B).

Proof. Let A = (Q,A,E, I, F). The states of B are the elements of Q× B. In B, there is

• a sequential transition ((p, b), a, (q, true)) iff (p, a, q) ∈ E,
• a fork transition ((p0, b0), {(p1, b1), . . . , (pn, bn)}) iff (p0, {p1, . . . , pn}) ∈ E,

LOGIC AND BRANCHING AUTOMATA 7

• a join transition ({(p1, b1), . . . , (pn, bn)}, (p0, false)) iff ({p1, . . . , pn}, p0) ∈ E.

The initial (resp. final states) of B are those of the form (p, b) with p ∈ I (resp. i ∈ F).
Clearly L(A) = L(B) and B is sequentially separated.

3.3. Rationality and semi-linearity. A subset L of A~ is linear if it has the form

L = a1 ‖ · · · ‖ ak ‖
(
∪i∈I(ai,1 ‖ · · · ‖ ai,ki)

)~
where the ai and ai,j are elements of A and I is a finite set. It is semi-linear if it is a finite
union of linear sets.

The class of ‖-rational languages of A~ is the smallest containing the empty set, ε,
and closed under finite union, parallel product ‖, and finite parallel iteration ~. We refer
to [ES69] for a proof of the following result:

Theorem 3.9. Let A be an alphabet and L ⊆ A~. Then L is ‖-rational if and only if it is
semi-linear. Furthermore, the construction from one formalism to the other is effective.

Proposition 3.10. Let A be an alphabet and L be a rational language of SP+(A). Then
L ⊆ A~ if and only if L is ‖-rational.

Proof. The inclusion from right to left follows immediately from the definition. Let us turn
to the inclusion from left to right. There exists an automaton A = (Q,A,E, I, F) such that
L = L(A). For each pair (p, q) of states of A define Lp,q as the set of posets labeling paths
from p to q. As P · P ′ 6∈ L for all P, P ′ ∈ SP+(A) we can assume that P · P ′ 6∈ Lp,q for all
P, P ′ ∈ SP+(A) and p, q ∈ Q. Then

Lp,q =
⋃

(p,{p1,...,pn})∈Efork
({q1,...,qn},q)∈Ejoin

σ∈Sn

‖ Lpi,qσ(i)
⋃

(p,a,q)∈Eseq

{a}

The set of all such equalities forms a finite system of equations, which can immediately
be re-written as a context-free grammar G where the usual concatenation is replaced by ‖,
which commutes. By Parikh’s Theorem (see [Par66], Theorem 2), each Lp,q is a semi-linear
set of A~ with ε 6∈ Lp,q, which can be effectively be computed from G. As L = ∪(i,f)∈I×FLi,f ,
and the class of semi-linear sets is closed under finite union, then L is also semi-linear, hence
‖-rational by Theorem 3.9.

The definitions of linearity, semi-linearity, rationality and ‖-rationality, which are given
above over free algebras, can naturally be generalized over (non-free) algebras.

4. Complementation of rational languages

The first result of this paper is stated by the following Theorem which claims, together with
Proposition 3.6, that the class of rational languages of N-free posets is closed under boolean
operations.

Theorem 4.1. Let A be an alphabet. The class of rational languages of SP+(A) is effectively
closed under complement.

The proof of Theorem 4.1 relies on the closure under complementation of the class of
‖-rational languages of commutative monoids (Theorem 4.2).

8 N. BEDON

Theorem 4.2 (Eilenberg and Schützenberger, Theorem III of [ES69]). If X and Y are
‖-rational subsets of a commutative monoid M , then X ∩ Y and Y −X are also ‖-rational
subsets of M .

As emphasized in [Sak03], if M is finitely generated then Theorem 4.2 is effective.
Theorem 4.2 was first proved by Ginsburg and Spanier [GS64] in the case of finitely generated
free commutative monoids. The following proposition is a corollary of Theorem 4.2:

Proposition 4.3 (Eilenberg and Schützenberger, Corollary III.2 of [ES69]). If ϕ : M ′ →M
is a morphism of commutative monoids, M ′ is finitely generated and X is a ‖-rational subset
of M , then ϕ−1(X) is a ‖-rational subset of M ′.

Before going into the details we need to introduce the necessary notions on algebras
for languages of N-free posets. For the basic notions on algebra we refer to [Alm94]. An
sp-algebra (S, ·, ‖) consists of a set S equipped with two operations · and ‖, respectively
called sequential and parallel product, such that (S, ·) is a semigroup (· is associative) and
(S, ‖) is a commutative semigroup. Observe that the notion of an sp-algebra equipped with
a neutral element 1 (verifying 1 · x = x · 1 = x ‖ 1 = x for any element x of the sp-algebra)

corresponds to bimonoid in [BÉ96]. For each alphabet A there exists a free sp-algebra
which is isomorphic to SP (A) (and which is also denoted by SP (A)). For simplicity we
often denote an sp-algebra (S, ·, ‖) by S. A morphism ϕ : S → T between two sp-algebras
recognizes X ⊆ S if X = ϕ−1(R) for some R ⊆ T . Sometimes the reference to ϕ is omitted
and we say that T recognizes X. The following propositions are easy generalizations of
well-known results on semigroups (see [Pin84, Prop. 1.8 and 1.9] for the semigroup versions).

Proposition 4.4. If ϕ : A→ S is a map from an alphabet A to an sp-algebra S, there exists
a unique morphism ϕ : SP+(A)→ S such that ϕ(a) = ϕ(a) for all a ∈ A. Furthermore, ϕ
is surjective iff ϕ(A) is a generator of S.

Proposition 4.5. Let A be an alphabet, ϕ : SP+(A)→ S and ψ : T → S two morphisms of
sp-algebras, with ψ surjective. There exists a morphism µ : SP+(A)→ T such that ϕ = ψµ.
Furthermore, µ recognizes any L ⊆ SP+(A) recognized by ϕ.

A subset X of an sp-algebra S is recognizable if there exists a finite sp-algebra T and
a morphism ϕ : S → T such that ϕ recognizes X. A congruence ∼ of sp-algebras is an
equivalence relation compatible with the operations, ie. x ∼ y implies that (1) : u·x·v ∼ u·y·v
and (2) : u ‖ x ‖ v ∼ u ‖ y ‖ v for all u, v. Actually, as the parallel product commutes in
sp-algebras, the condition (2) is equivalent to x ‖ u ∼ y ‖ u for all u. An equivalence relation
has finite index if it has a finite number of equivalence classes. It is well-known that the map
ϕ∼ : S → S/∼ which associates to any element of S its equivalence class in the quotient
sp-algebra S/∼ can be extended in a unique way into a morphism of sp-algebras. Let X
be a set whose elements are called variables and S be an sp-algebra. A term on S is a full
binary tree whose leafs are either variables or elements of S, and nodes are a sequential or a
parallel product. Formally, the set T of terms on S is defined inductively by X ⊆ T , each
element of S is in T and, for all t, t′ ∈ T , t · t′ ∈ T and t ‖ t′ ∈ T . Observe that a N-free
poset labeled by A can be thought of as a term of A (which may not be unique) without
variables, and reciprocally (note that a term corresponds to a unique N-free poset). A value
can be associated to any term t whose leaves are all elements of S by the partial function
e : T → S inductively defined by e(s) = s for all s ∈ S, e(t ‖ t′) = t ‖ t′ and e(t · t′) = t · t′.

LOGIC AND BRANCHING AUTOMATA 9

Let L ⊆ S. The syntactic congruence ∼L of L on S is defined by: for all x, y ∈ S, x ∼L y if,
for any term t(x0, . . . , xn) on S and any s1, . . . , sn ∈ S,

e(t(x, s1, . . . , sn)) ∈ L ⇐⇒ e(t(y, s1, . . . , sn)) ∈ L
It is well-known that the quotient sp-algebra S/∼L recognizes L. Furthermore, the following
property holds on S/∼L:

Proposition 4.6 (see [Alm94] or [LW00]). Let S and T be two sp-algebras, L ⊆ S and
ϕ : S → T be an onto morphism. Then L = ϕ−1ϕ(L) if and only if, for any x, y ∈ S,
ϕ(x) = ϕ(y) implies x ∼L y.

Example 4.7. Let A = {a, b, c} and L = c ◦ξ (a ‖ (bξ))∗ξ be the language of Example 3.1.
Let (S, ·, ‖) be the sp-algebra defined by S = {a, b, c, s, 0, 1}, bc = s, a ‖ s = c, 1 is the neutral
element for both sequential and parallel products, and all other products are mapped to 0.
Then S recognizes L. Indeed, let ϕ : SP+(A)→ S be the morphism defined by ϕ(a) = a,
ϕ(b) = b and ϕ(c) = c. Then ϕ(L) = {c} and L = ϕ−1(c). Furthermore S = SP+(A)/∼L.

Lodaya and Weil have proved the following connection between recognizable and rational
languages:

Theorem 4.8 (Lodaya and Weil, Theorem 1 of [LW98a]). Recognizable languages are
rational.

However, the following example (from [LW98a]) shows that in general, rational languages
are not recognizable.

Example 4.9. Let A = {a, b} and L = (a ‖ b)⊕. Let ϕ : SP+(A)→ Z∪ {⊥} the morphism
defined by ϕ(a) = 1, ϕ(b) = −1, xy = ⊥ for all x, y ∈ Z ∪ {⊥}. Then L = ϕ−1(0), and
thus ϕ recognizes L. Furthermore, SP+(A)/∼L is isomorphic to Z ∪ {⊥}, thus L is not
recognizable as a consequence of Proposition 4.6. Example 3.4 gives an automaton A with
L(A) = L.

Let us return to the proof of Theorem 4.1. The first step is the construction of an
algebra from an automaton. We need to introduce some new definitions, which are applied
in Example 4.29 at the end of this section.

Let L ⊆ SP+(A) and A = (Q,A,E, I, F) be an automaton such that L(A) = L.
For every pair (p, q) of states, define Kp,q to be the set of multi-sets of pair of states as

follows:

Kp,q = {{(p1, qσ(1)), . . . , (pn, qσ(n))} : (p, {p1, . . . , pn}) ∈ Efork,

({q1, . . . , qn}, q) ∈ Ejoin, σ ∈ Sn and pi
Pi=⇒
A
qσ(i), Pi ∈ SP+(A), for all i ∈ [n]}

Define also Fp,q to be the smallest set of multi-sets of pairs of states as follows. Let

F0
p,q =

{{(p, q)}} if there exists p
P

=⇒
A
q, P ∈ SP+(A),

∅ otherwise.

and

F i+1
p,q = F ip,q ∪ {M − (pj , qj) ∪X : M = {(p1, q1)k1 , . . . , (pn, qn)kn} ∈ F ip,q,

j ∈ [n], kj > 0, X ∈ K(pj ,qj)}

10 N. BEDON

Now let Fp,q = ∪i∈NF ip,q. Observe that ∅ 6∈ Fp,q. If P = P1 ‖ · · · ‖ Pn is a N-free poset

such that there exists a path γ : p
P

=⇒
A
q which is the parallel composition of n > 0 paths

γi : pi
Pi=⇒
A
qi, for some pi, qi ∈ Q, Pi ∈ SP+(A), i ∈ [n], observe that by construction the

multi-set {(p1, q1), . . . , (pn, qn)} belongs to Fp,q. Reciprocally, if {(p1, q1), . . . , (pn, qn)} ∈
Fp,q, there exist paths pi

Pi=⇒
A
qi for some Pi ∈ SP+(A) for all i ∈ [n], that can be composed

to build a path p
P1‖···‖Pn

=⇒
A

q.

Let E, I be sets, X = {Xi : i ∈ I} and Y be respectively a set of multi-sets of elements
of E and a multi-set of elements of E. Set

{Xi : i ∈ I}\\Y = {Xi − Y : Y ⊆ Xi, i ∈ I}
When P ∈ SP+(A), define

R(P) = {{(p1, q1), . . . , (pn, qn) : pi
Pi=⇒
A
qi for all i ∈ [n]} :

P = P1 ‖ · · · ‖ Pn, Pi ∈ SP+(A) for all i ∈ [n]}

Thus R(P) is the set of all finite multi-sets {(p1, q1), . . . , (pn, qn)} over Q2 such that P =

P1 ‖ · · · ‖ Pn and, for all i ∈ [n], Pi ∈ SP+(A) and pi
Pi=⇒
A
qi.

Let ∼A be the relation defined on SP+(A) by P ∼A P ′ if and only if, for all p, q ∈ Q,⋃
x∈R(P)

Fp,q\\x =
⋃

x∈R(P ′)

Fp,q\\x (4.1)

Equivalently, P ∼A P ′ if and only if, for all multi-sets M over Q2, there is some x ∈ R(P)
such that x ∪M ∈ Fp,q if and only if there is some x′ ∈ R(P ′) such that x′ ∪M ∈ Fp,q.
Obviously, ∼A is an equivalence relation. Also, for all p, q ∈ Q, P ∈ SP+(A), we have

∅ ∈
⋃
x∈R(P)Fp,q\\x if and only if p

P
=⇒
A
q. Immediately,

Lemma 4.10. If P ∼A P ′ then p
P

=⇒
A
q iff p

P ′
=⇒
A
q for all p, q ∈ Q.

The following lemma shows in particular that SP+(A)/∼A is equipped with a structure
of sp-algebra.

Lemma 4.11. ∼A is a congruence of sp-algebra.

Proof. First we prove that if P ∼A P ′ then LPR ∼A LP ′R for all L,R ∈ SP (A). Let
r ∈

⋃
x∈R(LPR)Fp,q\\x. If L = R = ε the conclusion is trivially reached. Otherwise, LPR is

a sequential poset of SP+(A). Assume r = {(r1, s1), . . . , (rk, sk)}. By definition of r, there

exists a path γ : p′
LPR
=⇒
A

q′ such that r ∪ {(p′, q′)} ∈ Fp,q. By definition of Fp,q there exists a

path γi : ri
Si=⇒
A
si for some Si ∈ SP+(A) and for all i ∈ [k], and the paths (γi : ri

Si=⇒
A
si)i∈[k]

and γ : p′
LPR
=⇒
A

q′ can be used to compose a path p
LPR‖S1‖···‖Sk

=⇒
A

q. The path γ : p′
LPR
=⇒
A

q′

can be decomposed into γ : p′
L

=⇒
A
t1

P
=⇒
A
t2

R
=⇒
A
q′ for some t1, t2 ∈ Q. As P ∼A P ′ by

Lemma 4.10 we also have t1
P ′

=⇒
A
t2, thus there exists γ′ : p′

L
=⇒
A
t1

P ′
=⇒
A
t2

R
=⇒
A
q′, which can be

LOGIC AND BRANCHING AUTOMATA 11

used in parallel with the paths (γi : ri
Si=⇒
A
si)i∈[k] to build a path p

LP ′R‖S1‖···‖Sk
=⇒
A

q. Thus,

r ∈
⋃
x∈R(LP ′R)Fp,q\\x.

We now show that if P ∼A P ′ then P ‖ P ′′ ∼A P ′ ‖ P ′′ for all P ′′ ∈ SP (A). The
case P ′′ = ε is a triviality, so we assume that P ′′ 6= ε. Let r = {(r1, s1), . . . , (rk, sk)} ∈⋃
x∈R(P‖P ′′)Fp,q\\x. There exist a decomposition P ‖ P ′′ = X1 ‖ · · · ‖ Xn of P ‖ P ′′,

(pi, qi)i∈[n], Si ∈ SP+(A) for all i ∈ [k], paths (pi
Xi=⇒
A
qi)i∈[n] and (ri

Si=⇒
A
si)i∈[k], that

can be composed to form a path p
X1‖···‖Xn‖S1‖···‖Sk

=⇒
A

q. If X1 ‖ · · · ‖ Xn is not a max-

imal parallel factorization of P ‖ P ′′ then the paths (pi
Xi=⇒
A
qi)i∈[n] can be replaced by

(p′i
X′i=⇒
A
q′i)i∈[n′] where X ′1 ‖ · · · ‖ X ′n′ is a maximal parallel factorization of P ‖ P ′′, such

that the paths (p′i
X′i=⇒
A
q′i)i∈[n′] and the paths (ri

Si=⇒
A
si)i∈[k] can be composed to form a path

p
X′1‖···‖X′n′‖S1‖···‖Sk

=⇒
A

q. Since X ′1 ‖ · · · ‖ X ′n′ is a maximal parallel factorization of P ‖ P ′′

there exists a partition (I, J) of [n′] such that P =‖i∈I X ′i and P ′′ =‖j∈J X ′j . As P ∼A P ′
we have

{(p′j , q′j) : j ∈ J} ∪ {(ri, si) : i ∈ [k]} ∈ (Fp,q\\{(p′i, q′i) : i ∈ I}) ∩ (Fp,q\\x)

for some x ∈ R(P ′), so r ∈ (Fp,q\\x)\\{(p′j , q′j) : j ∈ J}, ie. r ∈ Fp,q\\y with y = x∪{(p′j , q′j) :

j ∈ J}. So ∼A is a congruence of sp-algebra.

Let ϕ∼A : SP+(A)→ SP+(A)/∼A the morphism which associates to each poset P ∈
SP+(A) its equivalence class in SP+(A)/∼A. Then ϕ∼A recognized L, since L(A) = ϕ−1(X)
where

X = {ϕ∼A(P) : ∅ ∈
⋃

x∈R(P)

Fi,f\\x for some (i, f) ∈ I × F}

Observe that X may be infinite.

Example 4.12. Let A be the automaton of Example 3.5. Then SP+(A)/∼A is isomorphic
to SP+(A)/∼L(A) (see Example 4.7 for SP+(A)/∼L(A)).

Observe that ∼A may have an infinite index (take, for example, any automaton of
language (a ‖ b)⊕ - see Example 3.4).

Lemma 4.13. The number of equivalence classes for ∼A containing a sequential poset (of
SP+(A)) is finite.

Proof. By contradiction, assume that there exists an infinite sequence (Pi)i∈N of sequential
posets such that for all i, j ∈ N, if i 6= j then Pi 6∼A Pj . To each equivalence class

[Pi]∼A we associate the set KPi = {(p, q) ∈ Q2 : p
Pi=⇒
A
q}. Clearly there exist a finite

number of such sets, so there exist i, j, with i 6= j such that KPi = KPj . For all p, q ∈ Q,

S ∈ SP+(A), let Xp,q(R) =
⋃
x∈R(S)Fp,q\\x. As Pi 6∼A Pj there exist p, q ∈ Q and

wlog. r = {(r1, s1), . . . , (rn, sn)} ∈ Xp,q(Pi) −Xp,q(Pj). As r ∈ Xp,q(Pi) there exist paths

γi : ri
Si=⇒
A
si for some Si ∈ SP+(A) and for all i ∈ [n], and γ : p′

Pi=⇒
A
q′, such that the paths

12 N. BEDON

(γi)i∈[n] and γ can be used to compose a path δ : p
Pi‖S1‖···‖Sn

=⇒
A

q. In δ, γ can be replaced by

γ′ : p′
Pj

=⇒
A
q′ to form a path p

Pj‖S1‖···‖Sn
=⇒
A

q. Thus r ∈ Xp,q(Pj), which is a contradiction.

Let X ⊆ SP+(A). We denote the set of sequential posets of X by

Seq(X) = {P ∈ X : P ∈ A or ∃P1, P2 ∈ SP+(A) such that P = P1P2}
Denote also by Lp,q the set of non-empty labels of paths from state p to state q in A. We
are now going to prove that ϕ∼A(L(A)) is a ‖-rational language of (ϕ∼A(Seq(SP+(A))))~.
If ∼A has a finite index this is a triviality, so assume that it has an infinite number of
equivalence classes, and recall that ϕ∼A(Seq(L(A))) is finite by Lemma 4.13.

We have

Lp,q =
⋃

X∈Fp,q

‖
(r,s)∈X

Seq(Lr,s) and ϕ∼A(Lp,q) =
⋃

X∈Fp,q

‖
(r,s)∈X

ϕ∼A(Seq(Lr,s))

So, it suffices to show that Fp,q is a ‖-rational set of (Q × Q)⊕ in order to prove that
ϕ∼A(Lp,q) is a ‖-rational set of elements of ϕ∼A(Seq(SP+(A))), and thus so is ϕ∼A(L(A)) =
∪(i,f)∈I×Fϕ∼A(Li,f).

Lemma 4.14. Fp,q is a ‖-rational set of (Q×Q)⊕.

Proof. First observe that ∅ 6∈ Fp,q. Build an automaton B whose alphabet is Q×Q as follows.
Take two copies Q1 and Q2 of the states of A. For each fork transition (r, {r1, . . . , rn}) of A,
add the same fork transition in Q1. For each join transition ({s1, . . . , sn}, s) of A, add the
same join transition in Q2. For each pair of states (r, s) such that there is a non-empty path
from r to s in A, add a sequential transition from r in Q1 to s in Q2, labeled by (r, s). The
initial state is p in Q1 and the final state is q in Q2. The language of B is Fp,q. There is no
path in B with a sequential transition or a join transition followed by a sequential transition
or by a fork transition. As a consequence of Theorem 3.3 and Proposition 3.10, L(B) is
‖-rational.

Observe that the construction given in the proof of Lemma 4.14 is effective as a
consequence of Proposition 3.7.

Define the equivalence relation ∼SP
+(A)

∅ over the elements of SP+(A) by P ∼SP
+(A)

∅ P ′

iff {(p, q) ∈ Q2 : p
P

=⇒
A
q} = {(p, q) ∈ Q2 : p

P ′
=⇒
A
q}, or equivalently P ∼SP

+(A)
∅ P ′ iff

{(p, q) ∈ Q2 : ∅ ∈
⋃
x∈R(P)Fp,q\\x} = {(p, q) ∈ Q2 : ∅ ∈

⋃
x∈R(P ′)Fp,q\\x}. Note that

∼SP
+(A)

∅ has finite index, since Q2 is finite. When D ∈ P(Q2), denote by ∆
SP+(A)
D = {P ∈

SP+(A) : p
P

=⇒
A
q iff (p, q) ∈ D}.

Lemma 4.15. Let ϕ : SP+(A)→ S be a morphism of sp-algebras. The following conditions
are equivalent:

(1) P ∼SP
+(A)

∅ P ′ for all P, P ′ ∈ ϕ−1(s), s ∈ S;

(2) ϕ recognizes Lp,q for all (p, q) ∈ Q2.

Proof. If (1) is true then ϕ recognizes Lp,q for all (p, q) ∈ Q2 since

Lp,q =
⋃

D∈P(Q2)
(p,q)∈D

ϕ−1(ϕ(∆
SP+(A)
D))

LOGIC AND BRANCHING AUTOMATA 13

Conversely assume (2) and, by contradiction, that (1) is false, ie. there exist s ∈ S,

P, P ′ ∈ ϕ−1(s) such that P ∈ ∆
SP+(A)
D , P ′ ∈ ∆

SP+(A)
D′ with D 6= D′. Then ϕ can not

recognize Lp,q with (p, q) ∈ D and (p, q) 6∈ D′, or the converse.

Let ϕ : SP+(A) → S be a morphism of sp-algebras such that P ∼SP
+(A)

∅ P ′ for all

P, P ′ ∈ ϕ−1(s), s ∈ S. We define the equivalence relation ∼S∅ over the elements of S by

s ∼S∅ s
′ iff there exist P ∈ ϕ(s), P ′ ∈ ϕ(s′) such that P ∼SP

+(A)
∅ P ′. We have P ∼SP

+(A)
∅ P ′

iff ϕ(P) ∼S∅ ϕ(P ′). If ϕ is surjective then ∼S∅ has finite index, and each equivalence class of

∼S∅ can be denoted ∆S
D = {ϕ(P) ∈ S : P ∈ ∆

SP+(A)
D } for some D ∈ P(Q2). Furthermore,

ϕ(∆
SP+(A)
D) = ∆S

D and ϕ−1(∆S
D) = ∆

SP+(A)
D .

Lemma 4.16. Let ϕ : SP+(A)→ S be a surjective morphism of sp-algebras such that

• ϕ recognizes Lp,q for all (p, q) ∈ Q2,
• ϕ(Lp,q) is a ‖-rational of S for all (p, q) ∈ Q2.

Each equivalence class ∆S
D of ∼S∅ is a ‖-rational set of S.

Proof. We have ϕ−1(∆S
D) = ∆

SP+(A)
D = ∩(p,q)∈DLp,q − ∪(p,q) 6∈DLp,q; as ϕ(Lp,q) is ‖-rational

and ϕ recognizes Lp,q for all (p, q) ∈ Q2, and as by Theorem 4.2 the class of ‖-rational
sets is closed under finite boolean operations, ∆S

D = ϕ(∩(p,q)∈DLp,q − ∪(p,q)6∈DLp,q) =
∩(p,q)∈Dϕ(Lp,q)− ∪(p,q)6∈Dϕ(Lp,q) is ‖-rational.

It is clear that the morphism of sp-algebras ϕ∼A : SP+(A)→ SP+(A)/∼A verifies the
conditions of Lemma 4.16.

When S is an sp-algebra, define also the equivalence relation ∼Sseq on the elements of S

by s ∼Sseq s
′ iff xs = xs′ and sx = s′x for all x ∈ S. The relation between ∼SP

+(A)/∼A
∅ and

∼SP
+(A)/∼A

seq is given by the following lemma:

Lemma 4.17. If s ∼SP
+(A)/∼A

∅ s′ then s ∼SP
+(A)/∼A

seq s′.

Proof. Let P ∈ ϕ−1
∼A(s) and P ′ ∈ ϕ−1

∼A(s′). We have P ∼SP
+(A)

∅ P ′, then p
P

=⇒
A
q iff p

P ′
=⇒
A
q for

all p, q ∈ Q, thus p
TP
=⇒
A
q iff p

TP ′
=⇒
A
q, for all T ∈ SP+(A), p, q ∈ Q. It follows that R(TP) =

R(TP ′), and thus TP ∼A TP ′, ie. ϕ∼A(TP) = ϕ∼A(T)ϕ∼A(P) = ϕ∼A(T)ϕ∼A(P ′) =
ϕ∼A(TP ′) for all T ∈ SP+(A). As ϕ∼A : SP+(A) → SP+(A)/∼A is surjective, it follows
that xϕ∼A(P) = xϕ∼A(P ′) (and, using symmetrical arguments, ϕ∼A(P)x = ϕ∼A(P ′)x) for

all x ∈ S, thus ϕ∼A(P) ∼SP
+(A)

seq ϕ∼A(P ′).

Lemma 4.18. ∼SP
+(A)/∼A

seq has finite index, and each of its equivalence classes is a ‖-rational
set of SP+(A)/∼A.

Proof. As ∼SP
+(A)

∅ has finite index, then so is ∼SP
+(A)/∼A

∅ , and thus ∼SP
+(A)/∼A

seq as a

consequence of Lemma 4.17. Each equivalence class of ∼SP
+(A)/∼A

seq is a finite union of

equivalence classes of ∼SP
+(A)/∼A

∅ . As the class of ‖-rational sets is closed under finite union,

it follows from Lemma 4.16 that each equivalence class of ∼SP
+(A)/∼A

seq is ‖-rational.

14 N. BEDON

We have SP+(A)−L =
⋃

D∈P(Q2)
D∩I×F=∅

ϕ−1
∼A(∆

SP+(A)/∼A
D). Since the class of rational sets of

SP+(A) is closed under finite union, it suffices to show that ϕ−1
∼A(∆

SP+(A)/∼A
D) is a rational

set of SP+(A) for each D ∈ P(Q2) in order to show that SP+(A)− L is a rational set of
SP+(A). This will be achieved by Lemma 4.28 below.

We need to introduce the notion of ‖-quotient of a language. Let L,L′ ⊆ SP (A). The
‖-quotient of L′ by L is

L′\\L = {P ∈ SP (A) : ∃P ′ ∈ L such that P ‖ P ′ ∈ L′}

Lemma 4.19. Let A be an alphabet, and X, Y be two ‖-rational languages of A~. Then
Y \\X is ‖-rational.

Proof. By Theorem 3.9, X and Y are semi-linear. By Theorem 5.2, X and Y are also
Presburger sets of some formulæ ϕX(x1, . . . , xn) and ϕY (y1, . . . , yn). Up to a change in
variables names we can assume that the free variables of both formulæ are disjoint. Then
Y \\X is the Presburger set of

ϕY \\X(z1, . . . , zn) = ∃x1, . . . , xn, y1, . . . , yn ϕX(x1, . . . , xn)∧ϕY (y1, . . . , yn)∧i∈[n] zi+xi = yi

Using Theorems 5.2 and 3.9 again, Y \\X is ‖-rational.

Lemma 4.20. Let ϕ : SP+(A) → S be a morphism of sp-algebras. If S is finite, then
ϕ−1(s) is a regular set of SP+(A), for all s ∈ S.

Proof. We build an automaton Bs such that L(Bs) = ϕ−1(s). The construction is a
generalization of the well-know construction from finite semigroups to automata for finite
words. Consider all the elements of S as the states of Bs, with one new state 1. The unique
initial state is 1, the unique final state is s. Furthermore, in the following, 1 is considered
as a neutral element for both sequential and parallel product regarding the definition of
transitions The sequential transitions are as usual: for each state t and letter a, add a
sequential transition from s to tϕ(a). Let us deal now with the parallel product. For each
t ∈ S, add two new states t1 and t2, a new letter t in the alphabet of Bs, and a sequential
transition (t1, t, t2). We name the states of the form t1 and t2 special states, and the new
letters of the form t special letters. For each t ∈ S, add a fork transition (t, {1, 1, t1}). For
each t, u, v ∈ S, add a join transition ({v2, t, u}, v · (t ‖ u)). Let B be the set of special letters.
Consider the projection p : SP+(A ∪ B) → SP+(A) which removes special letters from
posets. We have p(L(Bs)) = ϕ−1

∼A(s). We now have to show that p(L(Bs)) is rational (note
that in general, projection does not preserve rationality). This is achieved by replacing, in the
system of equations in the McNaughton-Yamada-like construction of a rational expression
from an automaton (see [LW98a, Section 4.2]), the equations of the form ξs1,s2 = s, whose
solution is Lp,q, by ξs1,s2 = {∅}: those replacements do not affect the form of the system,
whose solution remains rational.

Lemma 4.20 proves that ϕ−1
∼A(s) is regular, for all s ∈ SP+(A)/∼A, when SP+(A)/∼A

is finite. We are now going to prove that ϕ−1
∼A(∆

SP+(A)/∼A
D) is regular for every equivalence

class ∆
SP+(A)/∼A
D of ∼SP

+(A)/∼A
∅ , even when SP+(A)/∼A is not finite. The idea is to build

an automaton B
∆
SP+(A)/∼A
D

as in the proof of Lemma 4.20, by showing that a finite subset of

SP+(A)/∼A can be used for the states of B
∆
SP+(A)/∼A
D

. Actually we prove this by translating

the problem into an sp-algebra Nk∗ with more properties than SP+(A)/∼A. Very informally

LOGIC AND BRANCHING AUTOMATA 15

SP+(A)
ϕ∼A- SP+(A)/∼A

Nk∗

µ

?

ψ

-

Figure 4: The morphisms between the sp-algebras. Full arrows represent morphisms of
sp-algebras, and dashed arrows morphisms of commutative semigroups.

speaking, denote by {g1, . . . , gk} the set of equivalence classes of ∼A containing a sequential
poset of SP+(A) (which is finite by Lemma 4.13). For every P ∈ SP+(A) whose maximal
parallel factorization is P = P1 ‖ · · · ‖ Pn, the morphism µ : SP+(A) → Nk∗ enables the
count of #i, i ∈ [n], such that Pi ∈ gj , for every j ∈ [k]. Also, every language recognized by

SP+(A)/∼A is recognized by Nk∗.
Let G = {g1, . . . , gk} = {ϕ∼A(P) : P ∈ Seq(SP+(A))}. Then G is a (finite, by

Lemma 4.13) generator of (SP+(A)/∼A, ‖). We may suppose, by Proposition 3.8, that A
is sequentially separated. Thus that the elements of G are indecomposable with respect
to the parallel product, that is to say, each gi ∈ G can not be written gi = s ‖ s′ with
s, s′ ∈ SP+(A)/∼A.

Denote by (Nk∗,+) the commutative semigroup whose elements are k-tuples of non-
negative integers, without (0, . . . , 0). It is generated by the k-tuples with all components set
to 0, except one which is set to 1. For short we denote by 1i the element of the generator of Nk∗
with the ith component set to 1. The parallel product + of (Nk∗,+) is the sum componentwise.
We define a morphism of commutative semigroups ψ : (Nk∗,+) → (SP+(A)/∼A, ‖) by
ψ(1i) = gi for all i ∈ [k]. Note that ψ is surjective, and that ψ−1(gi) = {1i} for all i ∈ [k]. As
a consequence ψ−1(ss′) is a singleton for all ss′ ∈ SP+(A)/∼A. Now we equip (Nk∗,+) with a
sequential product, by setting, for all n1, n2 ∈ Nk∗, n1n2 = ψ−1(ψ(n1)ψ(n2)). This sequential
product equips Nk∗ with a structure of semigroup since (n1n2)n3 = ψ−1(ψ(n1n2)s3) =
ψ−1(ψ(ψ−1(s1s2))s3) = ψ−1(s1s2s3) = n1(n2n3), considering ψ(ni) = si for all i ∈ [3].
Thus, Nk∗ equipped with its parallel and sequential products is an sp-algebra. Observe that
ψ(n1n2) = ψ(n1)ψ(n2). Now, we define a morphism of sp-algebras µ : SP+(A)→ Nk∗ by
µ(a) = ψ−1ϕ∼A(a) for all a ∈ A. The diagram of Figure 4 sums up the situation.

Lemma 4.21. For all s ∈ SP+(A)/∼A, ϕ−1
∼A(s) = µ−1ψ−1(s).

Proof. We show by induction on P ∈ SP+(A) that if P belongs to one side of the equality
then it also belongs to the other. Let P = a ∈ A. If P ∈ ϕ−1

∼A(s) (thus s ∈ G), by definition

µ(P) = ψ−1(s). If µ(P) ∈ ψ−1(s) then s = ϕ∼A(P). Assume now that P has the form
P = P1 ‖ P2 for some P1, P2 ∈ SP+(A). If P ∈ ϕ−1

∼A(s) then ϕ∼A(P) = s = ϕ∼A(P1) ‖
ϕ∼A(P2). Denote by si = ϕ∼A(Pi), i ∈ [2]. By induction hypothesis Pi ∈ µ−1ψ−1(si). Thus
P1 ‖ P2 ∈ (µ−1ψ−1(s1)) ‖ (µ−1ψ−1(s2)) ⊆ µ−1ψ−1(s). On the other side, if P ∈ µ−1ψ−1(s),
it follows from the induction hypothesis that ψµ(Pi) = si, i ∈ [2]. As ψµ(P) = ψµ(P1 ‖
P2) = ψµ(P1) ‖ ψµ(P2) = s1 ‖ s2, we have P ∈ µ−1ψ−1(s1 ‖ s2), thus s1 ‖ s2 = s and thus
P ∈ ϕ−1

∼A(s). Finally assume that P has the form P = P1P2 for some P1, P2 ∈ SP+(A). If

P ∈ ϕ−1
∼A(s) we proceed as in the case P = P1 ‖ P2, observing that ψ−1(s1)ψ−1(s2) ⊆ ψ−1(s)

16 N. BEDON

if s1s2 = s: if ni ∈ ψ−1(si), i ∈ [2], then by definition n1n2 = ψ−1(s1s2) = ψ−1(s). On the
other side, if P ∈ µ−1ψ−1(s), it follows from the induction hypothesis that ψµ(Pi) = si,
i ∈ [2]. We have ψµ(P) = ψµ(P1P2) = ψ(µ(P1)µ(P2)) = ψ(µ(P1))ψ(µ(P2)) = s1s2, so
s1s2 = s. As ϕ∼A(P) = ϕ∼A(P1)ϕ∼A(P2) = s1s2 = s.

Lemma 4.22. µ is a surjective morphism of sp-algebras.

Proof. Let n ∈ Nk∗. If n = 1i for some i ∈ [k] then n = ψ−1(gi). As ϕ∼A is surjective
there exists P ∈ ϕ−1

∼A(gi), thus P ∈ µ−1(n). Otherwise, n = 1i1 + · · ·+ 1ir for some r > 1

and i1, . . . ir ∈ [k]. As for all j ∈ [r], 1ij = ψ−1(gij), there is some Pj ∈ ϕ−1
∼A(gij), and

µ(P1 ‖ · · · ‖ Pr) = µ(P1) + · · ·+ µ(Pr) = 1i1 + · · ·+ 1ir = n.

Lemma 4.23. µ verifies the conditions of Lemma 4.16.

Proof. First, µ is surjective by Lemma 4.22. That µ recognizes Lp,q for all (p, q) ∈ Q2 is
a consequence of Lemma 4.21. Because µ(Lp,q) =

⋃
X∈Fp,q ‖(r,s)∈X µ(Seq(Lr,s)), and as

µ(Seq(SP+(A))) is finite, then µ(Lp,q) is a ‖-rational set of Nk∗.

It follows from Lemmas 4.21 and 4.15 that the equivalence relation ∼Nk∗
∅ can be defined

over the elements of Nk∗. Furthermore, recall that µ is surjective by Lemma 4.22. As a

consequence of Lemmas 4.21, 4.23 and 4.16, each of the equivalence class ∆Nk∗
D of ∼Nk∗

∅ is a

‖-rational of Nk∗, and thus, by Theorem 3.9, has the form ∆Nk∗
D = ∪i∈ID(aD,i+B

~
D,i) for some

finite set ID, aD,i ∈ Nk∗, BD,i some finite part of Nk∗. For all i ∈ ID set ∆Nk∗
D,i = aD,i +B~

D,i.

We may assume that all the ∆Nk∗
D,i are pairwise disjoint [ES69, Theorem IV]. Note that the

decomposition of ∆Nk∗
D into ∆Nk∗

D = ∪i∈ID∆Nk∗
D,i is not unique. This decomposition may

influence the constructions below, but not the main result (Lemma 4.28).

The following lemma links the equivalence classes of ∼SP
+(A)/∼A

∅ and ∼Nk∗
∅ .

Lemma 4.24. For all n1, n2 ∈ Nk∗, n1 ∼Nk∗
∅ n2 iff ψ(n1) ∼SP

+(A)/∼A
∅ ψ(n2).

Proof. Assume first there exist P1 ∈ µ−1(n1), P2 ∈ µ−1(n2) with P1 ∼SP
+(A)

∅ P2. As a con-

sequence of Lemma 4.21 we have ϕ∼A(Pi) = ψµ(Pi) for all i ∈ [2], thus ψµ(P1) ∼SP
+(A)/∼A

∅
ψµ(P2). Assume now, for the inclusion from right to left, that there exist Pi ∈ ϕ−1

∼A(ψ(ni)) for

all i ∈ [2], with P1 ∼SP
+(A)

∅ P2, but P ′1 6∼
SP+(A)
∅ P ′2 for all P ′1 ∈ µ−1(n1), P ′2 ∈ µ−1(n2). As a

consequence of Lemma 4.21 we have, for all i ∈ [2], ψµ(P ′i) = ψ(ni), thus Pi, P
′
i ∈ ϕ−1

∼A(ψ(ni))

and thus Pi ∼SP
+(A)

∅ P ′i . As P ′1 ∼
SP+(A)
∅ P1 ∼SP

+(A)
∅ P2 ∼SP

+(A)
∅ P ′2 we have P ′1 ∼

SP+(A)
∅ P ′2,

which is a contradiction.

Lemma 4.25. For all t, t′ ∈ Nk∗, if t ∼Nk∗
∅ t′ then t ∼Nk∗

seq t′.

Proof. We first show ψ(tn) = ψ(t′n) and ψ(nt) = ψ(nt′). Indeed, let P, P ′, N ∈ SP+(A)

such that µ(P) = t, µ(P ′) = t′ and µ(N) = n. If t ∼Nk∗
∅ t′ then for all (p, q) ∈ Q2, P is the

label of a path from p to q in A iff so is P ′. As a consequence, for all (p, q) ∈ Q2, PN is
the label of a path from p to q in A iff so is P ′N . Thus R(PN) = R(P ′N). This implies
ϕ∼A(PN) = ϕ∼A(P ′N), thus ψ(tn) = ψ(t′n). Now, by definition tn = ψ−1(ψ(t)ψ(n)), thus
ψ(tn) = ψ(t)ψ(n) = gi = ψ(t′n) for some gi ∈ G, thus tn = t′n = 1i. We show that nt = nt′

using symmetrical arguments.

LOGIC AND BRANCHING AUTOMATA 17

Lemma 4.26. For all n ∈ Nk∗, µ−1(n) is a regular set of SP+(A).

The construction given in the proof of Lemma 4.26 below is illustrated by Example 4.29
located at the end of this section.

Proof. The lemma is achieved by constructing an automaton Bn from Nk∗. Take m an
element of Nk∗ which is greater than n and all aD,i + bi, for all bi ∈ BD,i, i ∈ ID, D ∈ P(Q2).
The finite set S of states of Bn consists in

• S1 = {x ∈ Nk : x ≤ m};
• for each ∆Nk∗

D,i = aD,i +B~
D,i, a new state ∆D,i (set S2 = {∆D,i : i ∈ ID, D ∈ P(Q2)});

• for each element x ∈ S1 ∪ S2, two additional special states x1 and x2 (set S3 = {xi : i ∈
[2], x ∈ S1 ∪ S2}) and a new letter x.

For uniformity with the construction given in the proof of Lemma 4.20, we denote by
1 = (0, . . . , 0). We have S = S1∪S2∪S3. For all s, s′ ∈ S1, ∆D,i ∈ S2, s′′, s′′′ ∈ (S1∪S2)−{1},
define ◦ : (S1 ∪ S2)2 → S1 ∪ S2 such that 1 is a neutral element for ◦, ∆D,i ◦ s′′′ = aD,i ◦ s′′′,
s′′ ◦∆D,i = s′′ ◦ aD,i, s ◦ s′ = s · s′. Note that x ◦ y ∈ S2 iff one of x, y belongs to S2 and
the other is 1. It is just verification to check that ◦ is associative, as a consequence of
the associativity of ·. The sequential and fork transitions whose source belongs to S1 ∪ S2

are defined as in the construction in the proof of Lemma 4.20, by replacing the sequential
product of SP+(A)/∼A by ◦. For all s, s′ ∈ S1 ∪ S2, add a sequential transition (s1, s, s2).
Define also

s⊕ s′ =

δ(s+ s′) if s, s′ ∈ S1,

∆D,i if s = ∆D,i and s′ ∈ BD,i,
∆D,i if s ∈ BD,i and s′ = ∆D,i,

undefined otherwise

where δ : Nk → S1 ∪ S2 is given by, for all n ∈ Nk,

δ(n) =

{
n if n ≤ m,
∆D,i if n ∈ ∆Nk∗

D,i and not n ≤ m.

The join transitions are defined as follows. For each s, t ∈ (S1 ∪ S2)− {1}, u2 ∈ S3, add a
join transition ({u2, s, t}, u ◦ (s⊕ t)) if u ◦ (s⊕ t) is defined. The unique initial state of Bn is
1, and its unique final state is n. From now we slightly change our notation for simplicity:

we denote by v
P

=⇒
Bn

x the existence of a poset P ′ ∈ SP+(A ∪ B) such that p(P ′) = P (p

is defined as in the proof of Lemma 4.20) and of path in Bn from v to x labeled by P ′.

We claim that, for all P ∈ SP+(A), v, x ∈ S1 ∪ S2, v
P

=⇒
Bn

x iff x = v ◦ δµ(P). First, the

implication from left to right. We proceed by induction on P . If P = a ∈ A then necessarily
µ(P) ≤ m. By construction there is a sequential transition labeled by a from v to x iff

x = v◦µ(a) = v◦δµ(a). Assume now P = P1P2 for some P1, P2 ∈ SP+(A). A path γ : v
P

=⇒
Bn

x

can be decomposed into γ : v
P1=⇒
Bn

y
P2=⇒
Bn

x, and by induction hypothesis we have y = v◦δµ(P1),

thus x = (v ◦ δµ(P1)) ◦ δµ(P2) = v ◦ (δµ(P1) ◦ δµ(P2)) with the help of the associativity of ◦.
As a consequence of Lemma 4.25 and by definition of δ, we have (δ(n)) ◦ x = n · x for all
n, x ∈ Nk∗, thus δµ(P1) ◦ δµ(P2) = µ(P1) · µ(P2) = µ(P1P2) = δµ(P1P2) since µ(P1P2) ≤ m
because µ(P1P2) has the form 1i for some i ∈ [k]. Finally assume P = P1 ‖ P2 for some

18 N. BEDON

P1, P2 ∈ SP+(A). If there is a path γ : v
P

=⇒
Bn

x, then by construction and with the help of the

induction hypothesis it has the form γ = (v, {1, 1, v1})(γ1 ‖ γ2 ‖ γ3)({δµ(P ′1), δµ(P ′2), v2}, x)

where γi : 1
P ′i=⇒
Bn

δµ(P ′i) for all i ∈ [2], and for some P ′1, P
′
2 ∈ SP+(A) such that P = P ′1 ‖

P ′2, and γ3 is the path consisting of the sequential transition (v1, v, v2). By definition
of the join transitions we have x = v ◦ (δµ(P ′1) ⊕ δµ(P ′2)). Thus δµ(P ′1) ⊕ δµ(P ′2) is
defined and we have three cases. In the first case δµ(P ′1), δµ(P ′2) ∈ S1 and we have
δµ(P ′1) ⊕ δµ(P ′2) = δ(µ(P ′1) + µ(P ′2)) = δµ(P). Up to a symmetry, the second and third
cases are similar, so assume wlog. we are in the second case: δµ(P ′1) ⊕ δµ(P ′2) = ∆D,i

with δµ(P ′1) = ∆D,i and δµ(P ′2) ∈ BD,i. Necessarily µ(P ′1) = aD,i + bi,1 + · · · + bi,r for
some r ∈ N, bi,j ∈ BD,i for all j ∈ [r], and µ(P ′2) = bi,r+1 for some bi,r+1 ∈ BD,i. Thus
µ(P) = aD,i + bi,1 + · · ·+ bi,r + bi,r+1 and δµ(P) = ∆D,i. Let us turn now to the implication
from right to left. The cases P = a and P = P1P2 for some P1, P2 ∈ SP+(A) are as
above, so assume P = P1 ‖ P2. Up to a parallel refactorization of P we may assume, if
δµ(P) = ∆D,i for some ∆D,i, that µ(P1) = aD,i + bi,1 + · · ·+ bi,r for some r ∈ N, bi,j ∈ BD,i
for all j ∈ [r], and µ(P2) = bi,r+1 for some bi,r+1 ∈ BD,i. So assume first δµ(P) = ∆D,i:
either µ(P1), µ(P2) ∈ S1, or δµ(P1) = ∆D,i and µ(P2) ∈ S1. In the first case, for all

i ∈ [2], µ(Pi) = δµ(Pi), and by induction hypothesis there is a path γi : 1
Pi=⇒
Bn

1 ◦ δµ(Pi) =

δµ(Pi) = µ(Pi). By construction there is a fork transition f = (v, {1, 1, v1}), a sequential
transition t = (v1, v, v2) and a join transition j = ({µ(P1), µ(P2), v2}, v ◦ (µ(P1) ⊕ µ(P2))
with v ◦ (µ(P1)⊕ µ(P2)) = v ◦ δ(µ(P1) + µ(P2)) = v ◦ δµ(P), thus f(γ1 ‖ γ2 ‖ t)j forms a

path γ : v
P

=⇒
Bn

v ◦ δµ(P). In the second case, by induction hypothesis there exist a path

γ1 : 1
Pi=⇒
Bn

1 ◦ δµ(P1) = ∆D,i and a path γ2 : 1
Pi=⇒
Bn

1 ◦ δµ(P2) = µ(P2). By construction

there is a fork transition f = (v, {1, 1, v1}), a sequential transition t = (v1, v, v2) and a
join transition j = ({∆D,i, µ(P2), v2}, v ◦ (∆D,i ⊕ µ(P2))) that can be used to form a path

γ : v
P

=⇒
Bn

v ◦ δµ(P) because ∆D,i ⊕ µ(P2) = ∆D,i = µ(P). Finally the case δµ(P) ∈ S1 is

identical to the case δµ(P) = ∆D,i with µ(P1), µ(P2) ∈ S1.

Lemma 4.27. For all D ∈ P(Q2), i ∈ ID, µ−1(∆Nk∗
D,i) is a regular set of SP+(A).

Proof. The construction is almost the same as in the proof of Lemma 4.26. We only change
m to be greater than all aD,i + bi, for all bi ∈ BD,i, i ∈ ID, D ∈ P(Q2), without considering
n, and the final states are ∆D,i, and all states belonging to aD,i +B~

D,i.

Lemma 4.28. For all D ∈ P(Q2), ϕ−1
∼A(∆

SP+(A)/∼A
D) is a regular set of SP+(A). Similarly,

for each equivalence class c of ∼SP
+(A)/∼A

seq , ϕ−1
∼A(c) is a regular set of SP+(A).

Proof. By Lemmas 4.23 and 4.15, ϕ−1
∼A(∆

SP+(A)/∼A
D) = ∆

SP+(A)
D = µ−1(∆Nk∗

D). Because

µ−1(∆Nk∗
D) = ∪i∈IDµ−1(∆Nk∗

D,i), with ID finite, and regular sets are closed under finite union,

it follows from Lemma 4.27 that ϕ−1
∼A(∆

SP+(A)/∼A
D) is a regular set of SP+(A). As by

Lemma 4.17 an equivalence class c of ∼SP
+(A)/∼A

seq is a finite union of equivalence classes of

∼SP
+(A)/∼A

∅ , ϕ−1
∼A(c) is also a regular set of SP+(A).

LOGIC AND BRANCHING AUTOMATA 19

We now give an example illustrating the construction given in the proof of Lemma 4.26.

Example 4.29. We consider the rational language L = ((aa) ‖ a)⊕a of SP+(A) with
A = {a}, and the automaton A pictured in Figure 5 which verifies L(A) = L. We have

1

2

3

5

6

4

7 8

a a

a
a

Figure 5: An automaton A with L(A) = ((aa) ‖ a)⊕a.

F(p,q) =

⋃
n,m∈N
n+m>0

{{(1, 7)n, (2, 5)m, (3, 6)m}} if (p, q) = (1, 7);

{{(p, q)}} if (p, q) ∈ {(2, 4), (4, 5), (2, 5),

(3, 6), (7, 8), (1, 8)};
∅ otherwise.

As stated in Lemma 4.14, F(p,q) is a ‖-rational set of (Q×Q)⊕, with Q the set of states of

A, for all (p, q) ∈ Q×Q. For example, F(1,7) = ((1, 7) + (2, 5) ‖ (3, 6))⊕. We now compute

SP+(A)/∼A. First observe that (k > 0 in the equalities below):⋃
x∈R((aa)‖k)

F(1,7)\\x =
⋃

n,m∈N
m≥k

{{(1, 7)n, (2, 5)m−k, (3, 6)m}}

⋃
x∈R(a‖k)

F(1,7)\\x =
⋃

n,m∈N
m≥k

{{(1, 7)n, (2, 5)m, (3, 6)m−k}}

⋃
x∈R((a‖(aa))‖k)

F(1,7)\\x =
⋃

n,m∈N
{{(1, 7)n, (2, 5)m, (3, 6)m}}

with

R(a‖k) ={x1, . . . , xk} with xi ∈ {(2, 4), (3, 6), (4, 5), (7, 8)} for all i ∈ [k]

R((aa)‖k) ={{(2, 5)k}}

R((a ‖ (aa))‖k) ={{(1, 7)k}}

As ∅ ∈
⋃
x∈R((a‖(aa))‖k)F(1,7)\\x (take n = m = 0) then 1

(a‖(aa))‖k
=⇒
A

7 for all k > 0. On the

other side, as ∅ 6∈
⋃
x∈R(a‖k)F(1,7)\\x (resp. ∅ 6∈

⋃
x∈R((aa)‖k)F(1,7)\\x), then for all k > 0, not

1
a‖k
=⇒
A

7 for all k > 0 (resp. not 1
(aa)‖k
=⇒
A

7). As
⋃
x∈R((aa)‖k)F(1,7)\\x 6=

⋃
x∈R((aa)‖k′)F(1,7)\\x

and
⋃
x∈R(a‖k)F(1,7)\\x 6=

⋃
x∈R(a‖k′)F(1,7)\\x for all k, k′ > 0 with k 6= k′, then SP+(A)/∼A

has not finite index. Actually SP+(A)/∼A is composed of the following equivalence classes
(recall that ϕ∼A : SP+(A)→ SP+(A)/∼A is the morphism which associates to each poset
P ∈ SP+(A) its equivalence class in SP+(A)/∼A):

• for all k > 0, one class denoted by a‖k, such that ϕ∼A(a‖k) = a‖k;

• for all k > 0, one class denoted by (aa)‖k, such that ϕ∼A((aa)‖k) = (aa)‖k;

20 N. BEDON

• one class denoted by (aa) ‖ a, such that ϕ∼A(((aa) ‖ a)‖k) = (aa) ‖ a for all k > 0;

• one class denoted by ((aa) ‖ a)a, such that ϕ∼A((((aa) ‖ a)‖k)a) = ((aa) ‖ a)a for all
k > 0;
• one class denoted by 0, such that ϕ∼A(P) = 0 for all P ∈ SP+(A) which are not mentioned

above.

The sp-algebra SP+(A)/∼A is equipped with the parallel product ‖ verifying

a‖k ‖ (aa)‖k
′

=

a‖(k−k

′) if k > k′

(aa)‖(k
′−k) if k′ > k

(aa) ‖ a otherwise

• a‖k ‖ a‖k′ = a‖(k+k′);

• (aa)‖k ‖ (aa)‖k
′

= (aa)‖(k+k′);

• ((aa) ‖ a) ‖ ak = ak;
• ((aa) ‖ a) ‖ (aa)k = (aa)k.

with (aa) ‖ a idempotent, and the sequential product · verifying

• a · a = aa; • ((aa) ‖ a) · a = ((aa) ‖ a)a.

such that 0 is a zero for both products, and all products undefined above are mapped to 0.
It recognizes L since L = ϕ−1

∼A(((aa) ‖ a)a). We have ϕ∼A(Seq(SP+(A))) = {a, aa, ((aa) ‖
a)a, 0}, whose cardinality is 4. Consider N4∗, and define the morphism of commutative
semigroups ψ : (N4∗,+)→ (SP+(A)/∼A, ‖) by

• ψ((1, 0, 0, 0)) = a;
• ψ((0, 1, 0, 0)) = aa;

• ψ((0, 0, 1, 0)) = ((aa) ‖ a)a;
• ψ((0, 0, 0, 1)) = 0.

Equip N4∗ with its sequential product. We have n(1, 0, 0, 0) = (0, 0, 1, 0) for all n ∈
{(k, k, 0, 0) : k > 0}, (1, 0, 0, 0)(1, 0, 0, 0) = (0, 1, 0, 0) and all other sequential products
are mapped to (0, 0, 0, 1). Define also the morphism of sp-algebras µ : SP+(A) → N4∗

by µ(a) = ψ−1ϕ(a) for all a ∈ A. Note that L = µ−1((0, 0, 1, 0)) and SP+(A) − L =
µ−1(N4∗ − {(0, 0, 1, 0)}) with N4∗ − {(0, 0, 1, 0)} a ‖-rational language of N4∗, since

N4∗ − {(0, 0, 1, 0)} =(1, 0, 0, 0) ‖ B~ + (0, 1, 0, 0) ‖ B~ + (0, 0, 1, 0) ‖ B⊕ + (0, 0, 0, 1) ‖ B~

where B = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
Set

• D1 = {(2, 4), (4, 5), (3, 6), (7, 8)};
• D2 = {(2, 5)};

• D3 = {(1, 8)};
• D4 = {(1, 7)}.

We have

• ∆Nk∗
D1

= {(1, 0, 0, 0)};
• ∆Nk∗

D2
= {(0, 1, 0, 0)};

• ∆Nk∗
D3

= {(0, 0, 1, 0)};

• ∆Nk∗
D4

= {(k, k, 0, 0) : k > 0};
• ∆Nk∗

D = ∅ for all D ∈ P+(Q2) −
{D1, D2, D3, D4};
• ∆Nk∗

∅ = N4∗ − (∪i∈[4]∆
Nk∗
Di

).

Now, from any element s ∈ N4∗, say for example s = (1, 2, 1, 0), we construct on automa-
ton As such that L(As) = µ−1(s), following the construction of the proof of Lemma 4.26.

LOGIC AND BRANCHING AUTOMATA 21

Note that µ−1((1, 2, 1, 0)) = {a ‖ (aa) ‖ (aa) ‖ ((a ‖ (aa))‖ka) : k > 0}. The first step of the

construction consists in writing all the sets ∆Nk∗
D , D ∈ P(Q2), as a union of disjoint linear

sets of N4∗. This is trivial when D is one of D1, D2, D3, or D ∈ P+(Q2)− {D1, D2, D3, D4}.
For ∆Nk∗

D4
, we have ∆Nk∗

D4
= (1, 1, 0, 0) ‖ (1, 1, 0, 0)~. This could also easily be done for ∆Nk∗

∅ ,

but it can be avoided. Indeed, assume that ∆Nk∗
∅ is partitioned into finitely many linear

sets: ∆Nk∗
∅ = ∪i∈I∅∆Nk∗

∅,i with I∅ a finite set. Assume also that As has one state ∆∅,i for

each i ∈ I∅. Take one of those states ∆∅,i. Following the construction of As, it can be easily
checked that if a path uses one of the states ∆∅,i or (0, 0, 0, 1) then it continues either in
∆∅,i or in (0, 0, 0, 1): the final state s of As is unreachable.

Let us then return to the construction of As. Choosing m as small as possible using the
remark above, we have m = (2, 2, 1, 0), then S1 = {(x1, x2, x3, 0) ∈ N4 : x1, x2 ≤ 2, x3 ≤ 1},
and we can reduce S2 to S2 = {∆D4}. The initial and final states are respectively 1 and s.
The (useful) sequential transitions are

• (1, a, (1, 0, 0, 0)),
• ((1, 0, 0, 0), a, (0, 1, 0, 0)),

• ((k, k, 0, 0), a, (0, 0, 1, 0)) for all 0 < k ≤ 2,
• (∆D4 , a, (0, 0, 1, 0)).

The fork transitions are from all state t to {1, 1, t1}. Finally, the join transitions are

• ({12, (x1, x2, x3, 0), (x′1, x
′
2, x
′
3, 0)}, (x1 + x′1, x2 + x′2, x3 + x′3, 0)) when x1 + x′1, x2 + x′2 ≤ 2

and x3 + x′3 ≤ 1,
• ({12, (x1, x2, 0, 0), (x′1, x

′
2, 0, 0)},∆D4) when x1 + x′1 = x2 + x′2 > 2,

• ({12,∆D4 , (1, 1, 0, 0)},∆D4).

Figure 6 represents a successful path in As labeled by a ‖ (aa) ‖ (aa) ‖ ((a ‖ (aa))‖3a).

1 1000
a

1

1
1

1

1

1

1

1000

1000
1100

0200
1000

∆D4

0100

1000

0100

0100
a

a

a

a

a

a

a

1

1
1

1

1

1

1

1000
1100

1100
1000

2200

1000

0100

1000

0100
a

a

a

a a

a
1

1

0010
a

0210

s

Figure 6: A path labeled by a ‖ (aa) ‖ (aa) ‖ ((a ‖ (aa))‖3a) in As. In order to lighten the
picture, states of the form (x1, x2, x3, x4) are denoted x1x2x3x4. Also, the special
states and transitions using them have been removed or simplified.

5. P-MSO

In this section we define a logical formalism called P-MSO, which is a mix between Pres-
burger [Pre30] and monadic second-order logic, and that has exactly the same expressivity
as branching automata. As all the constructions involved in the proof are effective, then the
P-MSO theory of the class of finite N-free posets is decidable.

22 N. BEDON

Let us recall useful elements of monadic second-order logic, and settle some notation.
For more details about MSO logic we refer e.g. to Thomas’ survey paper [EF99, Tho97].
The monadic second-order (MSO) logic is classical in set theory, and was first set up by
Büchi-Elgot-Trakhtenbrot for words [Büc60, Elg61, Tra62]. In our case, the domain of
interpretation is the class of finite N-free posets.

Monadic second-order logic is an extension of first-order logic that allows to quantify
over elements as well as subsets of the domain of the structure. Given a signature L, one
can define the set of MSO-formulæ over L as well-formed formulæ that can use first-order
variable symbols x, y, . . . interpreted as elements of the domain of the structure, monadic
second-order variable symbols X,Y, . . . interpreted as subsets of the domain, symbols from
L, and a new unary predicate X(x), also denoted x ∈ X for readability, interpreted as “the
interpretation of x belongs to the interpretation of X”. We call sentence any formula without
free variable. As usual, we will often confuse logical symbols with their interpretation.

Given a signature L and an L−structure M with domain D, we say that a relation
R ⊆ Dm ×P(D)n is MSO-definable in M if and only if there exists an MSO-formula over L,
say ψ(x1, . . . , xm, X1, . . . , Xn), which is true in M if and only if (x1, . . . , xm, X1, . . . , Xn) is
interpreted by an (m+ n)-tuple of R.

Given a finite alphabet A, let us consider the signature LA = {<, (Ra)a∈A} where < is a
binary relation symbol and the Ra’s are unary predicates (over first-order variables). One can
associate to every poset (P,<, ρ) labeled over A the LA−structure M(P,<,ρ) = (P ;<; (Ra)a∈A)
where < is interpreted as the ordering over P , and Ra(x) holds if and only if ρ(x) = a.
In order to take into account the case P = ∅, which leads to the structure M∅ which has
an empty domain, we will allow structures to be empty. Given an MSO sentence ψ over
the signature LA, we define the language Lψ as the class of posets (P,<, ρ) labeled over
A that satisfy ψ, or, using formal notation, such that M(P,<,ρ) |= ψ. Two formulæ ψ and
ψ′ are (logically) equivalent, denoted by ψ ≡ ψ′, if Lψ = Lψ′ . We will say that a language
L ⊆ SP+(A) is definable in MSO logic (or MSO-definable) if and only if there exists an
MSO-sentence ψ over the signature LA such that L = Lψ.

In order to enhance readability of formulæ we use several notations and abbreviations
for properties expressible in MSO. The shortcut a(x) is used instead of Ra(x). The following
are usual and self-understanding: φ → ψ, X ⊆ Y , x = y. An existential (resp. universal)
quantification ∃xψ(X) (resp. ∀xψ(X)) is relative to X if ∃xψ(X) ≡ ∃x x ∈ X ∧ψ(X) (resp.
∀xψ(X) ≡ ∀x x ∈ X → ψ(X)). Relative existential (resp. universal) quantification of x
over X is denoted ∃Xx (resp. ∀Xx). The notion of relative quantification naturally extends
to second-order variables.

MSO logic is strictly less expressive than automata. There is no MSO-formula that
defines the language (a ‖ b)⊕. On the contrary, MSO-definability implies rationality.

In order to capture the expressiveness of automata with logic we need to add Presburger
expressivity to MSO. Presburger logic is the first-order logic over the structure (N,+)
where + = {(a, b, c) : a + b = c}. A language L ⊆ Nn is a Presburger set of Nn if
L = {(x1, . . . , xn) : ϕ(x1, . . . , xn) is true } for some Presburger formula ϕ(x1, . . . , xn). If
ϕ(x1, . . . , xn) is given then L is called the Presburger set of ϕ(x1, . . . , xn) (or of ϕ for short).
Presburger logic provides tools to manipulate semi-linear sets of A~ with formulæ. Indeed,
let A = {a1, . . . , an} be an alphabet. As a word u of A~ can be thought of as a n-tuple
(|u|a1 , . . . , |u|an) of non-negative integers, where |u|a denotes the number of occurrences of
letter a in u, then A~ is isomorphic to Nn.

LOGIC AND BRANCHING AUTOMATA 23

Example 5.1. Let A = {a, b, c} and L = {u ∈ A~ : |u|a ≤ |u|b ≤ |u|c}. Then L is
isomorphic to {(na, nb, nc) ∈ N3 : na ≤ nb ≤ nc}, and thus the Presburger set of

ϕ(na, nb, nc) ≡ (∃x nb = na + x) ∧ (∃y nc = nb + y)

Semi-linear sets and Presburger sets are connected by the following Theorem:

Theorem 5.2 (Ginsburg and Spanier, Theorem 1.3 of [GS66]). Let A = {a1, . . . , an} be an
alphabet and L ⊆ A~. Then L is semi-linear if and only if it is the Presburger set of some
Presburger formula ϕ(x1, . . . , xn). Furthermore, the construction of one description from
the other is effective.

The P-MSO logic is a melt of Presburger and MSO logics. From the syntactic point of
view, P-MSO logic contains MSO logic, and in addition formulæ of the form

QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn))

where X is the name of a new second-order variable, Z is the name of a (free) second-order
variable, ψi(X) (for each i ∈ [n]) a P-MSO formula having no free first-order variables,
and only quantifications relative to X, and ϕ(x1, . . . , xn) a Presburger formula with n free
variables x1, . . . , xn. As the variable X is for the internal use of QX , then it is bounded
by QX : it is a free variable of all the ψi(X), i ∈ [n], but it is not a free variable of
ψ(Z) = QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn)). Similarly, x1, . . . , xn are free
variables of ϕ(x1, . . . , xn), but they must not be considered as free in ψ(Z).

As in monadic second-order logic, the class of syntactically correct P-MSO formulæ is
closed under boolean operations, and existential and universal quantification over first and
second-order variables of a P-MSO formula that are interpreted over elements or sets of
elements of the domain of the structure. Semantics of P-MSO formulæ is defined by extension
of semantics of Presburger and MSO logics. The notions of a language and definability
naturally extend from MSO to P-MSO. Let us turn to the semantics of

QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn))

A block B of a poset (P,<) is a nonempty subset of P such that, if b, b′ ∈ B such that
b < b′, then for all elements of p ∈ P , if b ≤ p ≤ b′ then p ∈ B. A subset G of P is good
if, for all p ∈ P , if p is comparable to an element of G and incomparable to another, then
p ∈ G. A connected block C of a block X of a poset is a block such that, for any different
and incomparable c, c′ ∈ C there exists c′′ ∈ C such that c, c′ ≤ c′′ or c′′ ≤ c, c′.

Before continuing with formal definitions, let us give some intuition on the meaning of
QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn)). Let Y be an interpretation of a second-
order variable Z in P , such that Y is a good block of P . That means, Y is the poset
associated with a sub-term of a term on A describing P , and is the parallel composition of
m ≥ 1 connected blocks: Y = Y1 ‖ · · · ‖ Ym. Take n different colors c1, . . . , cn. To each Yi
we associate a color cj with the condition that Yi satisfies ψj(Yi). Observe that this coloring
may not be unique, and may not exist. Denote by xj the number of uses of cj in the coloring
of Y . Then P, Y |= QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn)) if there exists such a
coloring with x1, . . . , xn satisfying the Presburger condition ϕ(x1, . . . , xn).

More formally, let P ∈ SP+(A), QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn)) be
a P-MSO formula, Y ⊆ P be an interpretation of Z in P such that Y is a good block of P .
Then P, Y |= QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn)) if there exist non negative
integers v1, . . . , vn and a partition (Y1,1, . . . , Y1,v1 , . . . , Yn,1, . . . , Yn,vn) of Y into connected
blocks Yi,j such that

24 N. BEDON

• (v1, . . . , vn) belongs to the Presburger set of ϕ(x1, . . . , xn),
• y ∈ Yi,j , y′ ∈ Yi′,j′ implies that y and y′ are incomparable, for all possible (i, j) and (i′, j′)

with (i, j) 6= (i′, j′),
• P, Yi,j |= ψi(Yi,j) for all i ∈ [n] and j ∈ [vi].

Example 5.3. Let L be the language of Example 5.1, and ϕ(na, nb, nc) be the Presburger
formula of Example 5.1. For all α ∈ A, set ψα(X) ≡ Card1(X)∧∀Xx α(x), where Card1(X)
is a MSO formula (thus a P-MSO formula) which is true if and only if the interpretation of
X has cardinality 1. Then L is the language of the following P-MSO sentence:

∀P (∀p p ∈ P)→ QX(P, (ψa(X), na), (ψb(X), nb), (ψc(X), nc), ϕ(na, nb, nc))

Theorem 5.4. Let A be an alphabet, and L ⊆ SP+(A). Then L is rational if and only if is
P-MSO definable. Furthermore the construction from one formalism to the other is effective.

The remainder of this Section is devoted to the proof of Theorem 5.4.

5.1. From automata to P-MSO. The inclusion from left to right of Theorem 5.4 relies
on the ideas of Büchi on words: the encoding of accepting paths of a branching automaton A
into a P-MSO formula. More precisely, for words this part of the proof consists in mapping
each letter of the word to a state of the automaton, consistently with the transitions. In our
case, each letter of the poset is mapped to a sequential transition of A, and each part of the
poset of the form P = P1 ‖ · · · ‖ Pn (n > 1), as great as possible relatively to inclusion and
such that each Pi is a connected block of P , is mapped to a pair (p, q) of states; informally
speaking, p and q are the states that are supposed to respectively begin and finish the
part of the path labeled by P . The formula guarantees that pairs of states and sequential
transitions are chosen consistently with the transitions of A, and that, if P = P1 ‖ · · · ‖ Pn
as above and pi

Pi=⇒
A
qi for all i ∈ [n], then there exists a combination of fork transitions that

connects p to p1, . . . , pn, a sequence of join transitions that connects q1, . . . , qn to q, such

that a path p
P

=⇒
A
q in A is formed.

Let us give this construction more formally.
Given two second-order variables representing sets, the properties X ⊂ Y , X ⊆ Y ,

X ∩ Y = ∅ are clearly definable in MSO. The equality x = y of two elements is clearly
expressible with a MSO formula, that states for example that {x} ⊆ {y} ∧ {y} ⊆ {x}. We
denote “there exists an unique x” by ∃!x, “x and y are different and not comparable” by
x ‖ y, “there exists a non-empty set X” by ∃X, “set X has cardinality j” by Cardj(X),
where j is any integer, “set X has cardinality > j” by Card>j(X), where j is any integer,
“there exists (resp. for all) x in X” by ∃Xx (resp. ∀Xx), “X contains all the elements” by
Universe(X). All those properties are definable in MSO. In the further we will use the

LOGIC AND BRANCHING AUTOMATA 25

following shortcuts:

y < X ≡∀x x ∈ X → y < x

y ‖ X ≡(¬y ∈ X) ∧ (∀x x ∈ X → y ‖ x)

X ‖ Y ≡X ∩ Y = ∅ ∧ ∀x∀y(x ∈ X ∧ y ∈ Y)→ x ‖ y
Pred(X,Y) ≡∀x x ∈ X → ∃y y ∈ Y ∧ x < y ∧ ¬∃z x < z ∧ z < y

∧ ∀y∀x(y ∈ Y ∧ x < y ∧ ¬∃z x < z < y)→ x ∈ X
Antichain(X) ≡∀Xx∀Xx′ ¬(x < x′ ∨ x′ < x)

Min(M,X) ≡M ⊆ X ∧ Antichain(M) ∧ ∀Xx∃Mm m ≤ x
The formal definitions of a block, a good block and a connected block can be directly
translated into MSO formulæ as follows:

ConnectedBlock(C,X) ≡Block(C,X) ∧ (∀Cc∀Cc′ (c 6= c′ ∧ Incomp(c, c′))→
∃Cc′′ Comp(c, c′′) ∧ Comp(c′, c′′))

GoodBlock(R,X) ≡Block(R,X) ∧ (∀Rr∀Rr′∀Xx(Comp(x, r) ∧ Incomp(x, r′))→ R(x))

Comp(x, y) ≡x < y ∨ y < x

Incomp(x, y) ≡(¬x < y) ∧ (¬y < x)

Block(R,X) ≡R ⊆ X ∧ Card>0(R) ∧ (∀Rr∀Xx∀Rr′ r < x ∧ x < r′ → R(x))

Let A be an alphabet and L be a rational language of SP+(A) given by an automaton
A = (Q,A,E, I, F) and P ∈ SP+(A). Following Büchi’s ideas [Büc60], this section is

devoted to the construction of a P-MSO sentence φA such that i
P

=⇒
A
f for some i ∈ I, f ∈ F ,

if and only if P |= φA.
Informally speaking, the sentence annotates P using second-order variables that encode

the transitions of A, consistently with the notion of a path. To each transition (p, a, q) we
attach a second-order variable X(p,a,q), and use the following formula

MarkSeq ≡ ∀x ∧
a∈A

(a(x)→ ∨
(p,a,q)∈E

X(p,a,q)(x))

∧ (∀x ∧
(p,a,q)∈E

(X(p,a,q)(x)→ ¬ ∨
a′∈A

(p′,a′,q′)∈E
(p′,a′,q′)6=(p,a,q)

X(p′,a′,q′))))

in order to express that each element of P labeled by a is the label of a unique transition
(p, a, q) in a path. In order to express that if (p, a, q) and (p′, b, q′) are two consecutive
transitions in a path then q = p′, we use the following formula

ConsistentSeq ≡ ∀x∀y(Succ({y}, {x}) ∧ Pred({x}, {y}))
→ ∧

(p,a,q)∈E
(X(p,a,q)(x)→ ∨

(q,b,r)∈E
X(q,b,r)(y))

We now turn to a more technical part of the construction of φA: expressing that each part
of P of the form R1 ‖ · · · ‖ Rn, n > 1, is the label of path from a state s to a state t that
uses fork and join transitions consistently to the definition of a path in A. Second-order
variables X−s,t and X+

s,t are used to express that the part of the path labeled by R starts in s

26 N. BEDON

G1 G2 G3 G4

a

b

c

d

e
f

g

h

i

j

·

j‖ (G1)

i·

h‖ (G4)

gf

e‖ (G3)

dc

‖ (G2)

ba

Figure 7: A N-free poset and its good maximal parallel blocks.

and finishes in t. The sets X−s,t and X+
s,t are composed of particular elements of P which are

named witnesses of R, and are attached unambiguously to R.
A good maximal parallel block of X ⊆ P is a good block R of X such that R = P1 ‖ P2

for some nonempty P1 and P2, and maximal relatively to parallel decomposition, ie. there is
no good block R′ of X such that R′ = R ‖ P3 for some nonempty P3. The property “R is a
good maximal parallel block of X” can easily be translated into a formula GMPB(R,X).

GMPB(R,X) ≡ R ⊆ X ∧ GoodBlock(R,X) ∧ (∃R1∃R2 R = R1 ‖ R2)∧
∀R′ (R′ ⊆ X ∧ GoodBlock(R′, X) ∧ ∃R1∃R2 R

′ = R1 ‖ R2)→ ¬∃T R′ = R ‖ T
Example 5.5. Figure 7 represents a N-free poset P and its good maximal parallel blocks G1,
G2, G3 and G4. The good maximal parallel block G1 can be decomposed into G1 = C1 ‖ C2

where C1 = {i} and C2 = G1 − C1 are two connected blocks. The good maximal parallel
block G4 has two connected blocks: {f} and {g}. Any N-free poset P can be represented
by a labeled tree, as in the figure, where internal nodes are labeled by sequential or parallel
products, and leaves by elements of P , and such that no internal node has the same label as
one of its sons. Formally, these trees are not terms as we defined them because of the arity
of internal nodes. Good maximal parallel blocks of P correspond to the sub-trees whose
root is a node labeled by ‖.

The following Lemma holds.

Lemma 5.6. Let P be a N-free poset, X ⊆ P , and R,R′ be two good maximal parallel blocks
of X. Then either R < R′ or R′ < R or R ‖ R′ or R ⊆ R′ or R′ ⊆ R.

Proof. First assume R ∩ R′ = ∅. Let R1, R2, R
′
1, R

′
2 be such that R = R1 ‖ R2 and

R′ = R′1 ‖ R′2. Assume that there exist r ∈ R, r′ ∈ R′ such that r and r′ are comparable.
Wlog suppose r < r′. As R is a good block, then x < r′ for all x ∈ R. It follows easily that
R < R′. If all the elements of R and R′ are incomparable then R ‖ R′.

Assume now that there exists x ∈ R ∩ R′. Assume that one is not included into the
other. Thus there exist r ∈ R−R′ and r′ ∈ R′ −R. Assume that x and r are comparable,
say wlog. r < x. If r and r′ are incomparable then r ∈ R′ because R′ is a good block. So
necessarily r < r′ otherwise R′ would not be a good block. If x and r′ are incomparable then
R is not a good block, so x and r′ are comparable and necessarily x < r′ otherwise R would
not be a block. Now, as R and R′ are both parallel blocks, there exist a ∈ R and b ∈ R′ such
that a is incomparable to r and x, and b is incomparable to r′ and x. As R and R′ are good

LOGIC AND BRANCHING AUTOMATA 27

blocks then a < r′ and r < b. Because P is N-free then a < b. Thus {r, x, a, b} forms an N,
which is a contradiction. So r (and r′) is uncomparable to x. As a consequence r and r′

are also incomparable, otherwise R and R′ would not be good blocks. As r is incomparable
to x, we also have that if R = R1 ‖ · · · ‖ Rn is a decomposition of R and x ∈ Ri for some
i ∈ [n] then Ri ⊆ R ∩R′. Also, decomposing R′ into R′ = R′1 ‖ · · · ‖ R′m, if Ri, R

′
j 6⊆ R ∩R′,

then the elements of Ri are incomparable to those of R′j . Thus, consider R ∪ R′: it is a

parallel block. Assume it is not good. There exist x ∈ X − (R ∪R′), a, b ∈ R ∪R′ such that
x is comparable to a and incomparable to b. If a, b ∈ R (resp. a, b ∈ R′) then R (resp. R′)
is not a good block. So assume a ∈ R − R′ and b ∈ R′ − R. Necessarily r is comparable
to all the elements of R and incomparable to those of R′. Thus R ∩ R′ = ∅, which is a
contradiction. As a conclusion, R ∪ R′ is a good parallel block, R,R′ ⊂ R ∪ R′, so R and
R′ are not maximal: the intersection of two good maximal parallel blocks is necessarily
empty.

The following Lemma shows that the set of minimum (or maximum) elements of a good
maximal parallel block G characterizes G:

Lemma 5.7. Two different good maximal parallel blocks of P can not have the same set of
minimum (resp. maximum) elements.

Proof. Assume by contradiction that G and G′ have the same set M of minimum elements
(the proof is the same if M is the set of maximum elements). According to Lemma 5.6,
G ⊂ G′ or G′ ⊂ G, say wlog. G ⊂ G′. There exists x ∈ G′ −G. Necessarily x 6∈ M , thus
there exists m1 ∈ M such that m1 < x. Observe that x is necessarily greater than all
the elements of M , otherwise G′ would not be a good part of P . But this implies that G′

can not be decomposed into G′ = G′1 ‖ G′2, so G′ is not a good maximal parallel block, in
contradiction with the hypothesis.

Let G be a good maximal parallel block of a N-free poset P. The set of witnesses of G
is the union of the set of left witnesses of G and the set of right witnesses of G, respectively
denoted WitL(G) and WitR(G) and defined by:

WitL(G) :the greatests x ∈ P such that x < G and there is no y ∈ P −G
such that y ‖ G and x < y;

WitR(G) :the smallests x ∈ P such that x > G and there is no y ∈ P −G
such that y ‖ G and x > y.

or equivalently:

WitL(G) = {w ∈ max{x ∈ P : x < G} : Succ(w) = min(G)}
WitR(G) = {w ∈ min{x ∈ P : G < x} : Pred(w) = max(G)}

Example 5.8. In Example 5.5,

• WitL(G1) = ∅ and WitR(G1) = {j},
• WitL(G2) = ∅ and WitR(G2) = {c, d},

• WitL(G3) = {a, b} and WitR(G3) = {e},
• WitL(G4) = {e} and WitR(G4) = {h}.

Example 5.9. Figure 8 represents a N-free poset P and its good maximal parallel blocks
G1, G2, G3 and G4. We have

28 N. BEDON

G1

G2

G3

G4

a

b

d

e

f
g

h

j

ic
·

j‖ G1

i·

‖ G4

hg

f‖ G3

edc

‖ G2

ba

Figure 8: A N-free poset and its good maximal parallel blocks.

• WitL(G1) = ∅ and WitR(G1) = {j},
• WitL(G2) = ∅ and WitR(G2) = {c, d, e},

• WitL(G3) = {a, b} and WitR(G3) = {f},
• WitL(G4) = {f} and WitR(G4) = ∅.

Observe that f is both a right witness of G3 and a left witness of G4. Observe also that
j is not a right witness of G4.

Let us denote W−(G) = Pred(minG), W+(G) = Succ(maxG) and W (G) = W−(G) ∪
W+(G).

Lemma 5.10. Either W−(G) or W+(G) or W (G) is the set of witnesses of G.

Proof. Observe that WitL(G) ⊆W−(G) and WitR(G) ⊆W+(G), thus the witnesses of G
are a subset of W (G). Observe also that if x ∈W−(G) (resp. W+(G)) is a witness of G, then
all the elements of W−(G) (resp. W+(G)) are witnesses of G. Indeed, let G = G1 ‖ · · · ‖ Gn
with n > 1 and x ∈ W−(G) such that x is a witness of G. Then x is a predecessor of a
minimum of G. As G is a good block, then x is also less than all the minimums of G, and x
is necessarily a predecessor of all those minimums. As in a N-free poset all the predecessors
of an element have the same successors it follows that if x is a witness of G then W−(G)
contains only witnesses of G. We argue similarly with the elements of W+(G). Now let
w ∈W (G). Wlog., assume that w ∈W−(G). Assume that w is not a witness of G: there
exists r such that r ‖ G and w < r. Let R = GB(r,G) be the smallest block of elements
r′ ∈ P such that

• r ∈ GB(r,G) and
• if r′ is comparable to some r′′ ∈ GB(r,G) and r′ ‖ G then r′ ∈ GB(r,G)

Observe that GB(r,G) is a good block for all r such that r ‖ G. Indeed, assume that it is
not: there exist r′, r′′ ∈ GB(r,G), g ∈ G and t ∈ P −GB(r,G) such that t is comparable to
g and r′ and incomparable to r′′, and it is just verification to check that P is not N-free.

Assume there exists r′ ∈ R such that w is incomparable with r′. If r′ < r then w, g, r′, r
form an N for any g ∈ G. If r′ and r are incomparable then there exists r′′ ∈ R such that
either r, r′ < r′′ or r′′ < r, r′, otherwise R would not be as small as possible. If r, r′ < r′′

then w, g, r′′, r′ is an N for any g ∈ G. The case r′′ < r, r′ is similar. Thus w < R.
As G ∪R is not a good parallel block, but G and R are, there exists z ∈ P − (G ∪R)

such that z is comparable to all the elements of G and incomparable to all the elements of

LOGIC AND BRANCHING AUTOMATA 29

R, or z is incomparable to all the elements of G and comparable to all the elements of R.
As this latter case would imply that z ∈ R, then only the first case is possible. If z < G
and z ‖ R then z and w are different, and z ‖ w is impossible, otherwise there would be an
N formed by w, z, r and any element of G. It is impossible that z < w because it implies
z < w < r. It is also impossible that w < z < G. Now take z as small as possible such
that G < z and z ‖ R. By contradiction, assume that z is not a witness of G; there exists
p ∈ P − (R ∪G) such that p < z and G ‖ p. Let Q = GB(p,G). Then Q is a good block,
Q ‖ G, Q ‖ R and Q < z. As Q ∪G can not be a good parallel block (otherwise G would
not be a maximal good parallel block), then exists t ∈ P − (Q ∪G) such that either

• t is comparable to an element of Q and incomparable to an element of G, and so to all
the element of G because G is a good block; this implies t ∈ Q which is in contradiction;
• or t is incomparable to an element of Q (and thus to all the elements of Q) and comparable

to an element of G (and thus to all the elements of G). They are two cases. If t < G then
t is necessarily incomparable and different to w, thus for all g ∈ G, t, p, w, g form an N,
which is a contradiction. Otherwise, if G < t, then necessarily t < z and t ‖ R, and thus z
is not as small as possible such that G < z and z ‖ R, which is also a contradiction.

Thus z is a witness of G, and z ∈W+(G).
We use similar arguments to show that if x ∈W+(G) is not a witness of G then W−(G)

is the set of witnesses of G.

Corollary 5.11. Every good maximal parallel block G of P which is not P itself has a
witness.

Proof. If W (G) is empty then there is no p ∈ P − G which is comparable to an element
of G. Thus (P − G) 6= ∅ is a good block, and (P − G) ∪ G a good parallel block, which
contradict the maximality of G. If W−(G) is not empty but has no witnesses of G, then
using the same arguments as in proof of Lemma 5.10 the witnesses of G are the elements of
W+(G) which is not empty. Similarly, if W+(G) is not empty but has no witnesses of G
then the witnesses of G are the elements of W−(G) which is not empty.

Lemma 5.12. Let P be a N-free poset, and a, b, c, d ∈ P such that a is a predecessor of b, c
a predecessor of d, a < d and c < b. Then a is a predecessor of d and c a predecessor of b.

Proof. Necessarily a ‖ c and b ‖ d. By contradiction assume that the statement of the
Lemma is false, for example that a is not a predecessor of d. Then, there exists x successor
of a such that x < d. Then x is incomparable with b and to c, thus x, a, b, c is an N.

Lemma 5.13. Every x ∈ P is a left (resp. right) witness of at most one good maximal
parallel block of P .

Proof. Assume that x is a left witness of two different good maximal parallel blocks G1 and
G2. Then x ∈W−(G1)∩W−(G2), and thus there exists g1 ∈ minG1, g2 ∈ minG2 such that
x is a predecessor of both g1 and g2. A consequence of the definition of left witness is that
g1 ∈ G2 (and thus g1 ∈ minG2) and g2 ∈ G1 (and thus g2 ∈ minG1). Now, let y ∈W−(G1).
There exists g′1 ∈ minG1 such that y is a predecessor of g′1. According to Lemma 5.10 y is a
left witness of G1, and thus y < g1 and x < g′1. As a consequence of Lemma 5.12 x, y are
both predecessors of g1, g

′
1, g2. It follows that W−(G1) = W−(G2), and as a consequence

minG1 = minG2. Assume that G1 6= G2, and wlog. that there exists g2 ∈ G2 such that
g2 6∈ G1. Then g2 is comparable to a minimum m of G2, which is also a minimum of G1,
and, because G2 can be decomposed into G2 = G2,1 ‖ G2,2, g2 is incomparable to another

30 N. BEDON

minimum m′ of G2, which is also a minimum of G1. Thus, because G1 is good, we should
have g2 ∈ G1, which is a contradiction.

Being a left witness of a good maximal parallel block G can easily be encoded into a
MSO-formula:

WitL(x,G) ≡ ∃M∃R Min(M,G) ∧ Pred(R,M) ∧R(x)

A similar formula WitR(x,G) can be written for right witnesses.
We now come back to the definition of a P-MSO formula that expresses that the (strict)

part of P identified by X is the label of a path in A. To each good maximal parallel block
G of X we attach a unique couple of states (p, q) ∈ Q×Q using the witnesses of G, with
the help of a two second-order variables, X−p,q for left witnesses and X+

p,q for right witnesses:

MarkPar ≡ ∀X∀G Universe(X) ∧ GMPB(G,X)→

∨
(p,q)∈Q×Q

(∀Xx(WitL(x,G)→ X−p,q(x)) ∧ (WitR(x,G)→ X+
p,q(x)))

∧ (∀Xx ∧
(p,q)∈Q×Q

((WitL(x,G) ∧X−p,q(x))→ ¬ ∨
(p′,q′)∈Q×Q
(p′,q′)6=(p,q)

X−p′,q′(x)))

∧ (∀Xx ∧
(p,q)∈Q×Q

((WitR(x,G) ∧X+
p,q(x))→ ¬ ∨

(p′,q′)∈Q×Q
(p′,q′)6=(p,q)

X+
p′,q′(x)))

and we check that

• for every block of P of the form Ga with G a good maximal parallel block of P and a ∈ A,

if p
G

=⇒
A
q and s

a
=⇒
A
r then q = s (and symmetrically for blocks of P of the form aG);

• for every block of P of the form GG′ with G,G′ good maximal parallel blocks of P , if

p
G

=⇒
A
q and s

G′
=⇒
A
r then q = s.

The check is done with the formula ConsistentPar1 below. For convenience, we start
by defining a formula GMPBMinStartsq(M,G,X) for every q ∈ Q such that P,X,M,G |=
GMPBMinStartsq(M,G,X) if and only if G is the good maximal parallel block of X whose
set of minimum elements is M (the uniqueness of G is guaranteed by Lemma 5.7) and the
part of the path labeled by G starts with q.

GMPBMinStartsq(M,G,X) ≡ GMPB(G,X) ∧ Min(M,G)→
∀x((WitL(x,G)→ ∨

r∈Q
X−q,r(x)) ∧ (WitR(x,G))→ ∨

r∈Q
X+
q,r(x))

Formulæ GMPBMinEndsq(M,G,X), GMPBMaxStartsq(M,G,X) and GMPBMaxEndsq(M,G,X)
could similarly be written in order to define the good maximal parallel block G according to
its set of minimal/maximal elements, and to express that the part of the path labeled by G
starts/ends with q.

LOGIC AND BRANCHING AUTOMATA 31

Returning to the definition of ConsistentPar1:

ConsistentPar1 ≡ ∀X∀G∀M−∀M+∀Y −∀Y +

Universe(X)∧GMPB(G,X)∧Min(M−, G)∧Max(M+, G)∧Pred(Y −,M−)∧Succ(Y +,M+)→
∀x ∧

(p,q)∈Q×Q
((WitL(x,G) ∧X−p,q(x)) ∨ (WitR(x,G) ∧X+

p,q(x)))→

((Card1(Y +)→ ∀y Y +(y)→ ∨
a∈A
r∈Q

(q,a,r)∈E

Xq,a,r(y))∧

(Card>1(Y +)→ ∀G′ GMPBMinStartsq(Y +, G′, X)))

∧
((Card1(Y −)→ ∀y Y −(y)→ ∨

a∈A
r∈Q

(r,a,p)∈E

Xr,a,p(y))∧

(Card>1(Y −)→ ∀G′ GMPBMaxEndsp(Y −, G′, X)))

Now we define ψp,q(X) that tests if the connected block X begins in p and ends in q.

ψp,q(X) ≡ ∀XM−∀XM+ Min(M−, X) ∧ Max(M+, X)→
((Card1(M−)→ ∀m M−(m)→ ∨

a∈A
r∈Q

Xp,a,r(m))∧

(Card>1(M−)→ ∀G′ GMPBMinStartsp(M−, G′, X)))

∧
((Card1(M+)→ ∀m M+(m)→ ∨

a∈A
r∈Q

Xr,a,q(m))∧

(Card>1(M+)→ ∀G′ GMPBMaxEndsq(M+, G′, X)))

Observe that in ψp,q(X) all quantifications can be assumed relative to X. Actually, the
formula GMPBMinStartsp(M

−, G′, X) ensures that G′ ⊆ X, and, as X is a connected block
and G′ ⊂ X, the witnesses of G′ are necessarily in X.

Let Q × Q = {(p1, q1), . . . , (pn, qn)}. For every (p, q) ∈ Q × Q we define a P-MSO
formula QY (X, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕp,q(x1, . . . , xn)) such that, for any good
maximal parallel block G of P ,

P,G |= QY (G, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕp,q(x1, . . . , xn))

if and only if G can be decomposed into G = G1,1 ‖ · · · ‖ G1,x1 ‖ · · · ‖ Gn,1 ‖ · · · ‖ Gn,xn
such that pi

Gj,i
=⇒
A
qi for every i ∈ [n] and j ∈ [xi], and {(p1, q1)x1 , . . . , (pn, qn)xn} ∈ Fp,q. In

other words, P,G |= QY (G, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕp,q(x1, . . . , xn)) if and only

if there is a path p
G

=⇒
A
q.

As a consequence of Lemma 4.14 and Theorems 3.9 and 5.2, Fp,q is the Presburger
set (over the alphabet Q×Q) of some Presburger formula ϕp,q(x1, . . . , xn), from which we
deduce directly QY (X, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕp,q(x1, . . . , xn)).

We now write a formula ConsistentPar2 that applies the adequate

QY (G, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕp,q(x1, . . . , xn))

32 N. BEDON

to all good maximal parallel blocks of P (except P itself if it is a good maximal parallel
block).

ConsistentPar2 ≡ ∀X∀G(X ⊂ P ∧ GMPB(G,X))→
∀x ∧

(p,q)∈Q×Q
(((WitL(x,G) ∧X−p,q(x)) ∨ (WitR(x,G) ∧X+

p,q(x)))→

QY (G, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕp,q(x1, . . . , xn)))

We are ready to define a P-MSO sentence φA that defines L. Set ConsistentPar ≡
ConsistentPar1 ∧ ConsistentPar2. Observe that for any nonempty N-free poset, either
P = P1 ‖ P2 for some nonempty P1, P2, in which case P is a maximal good parallel block of
itself, or P is a connected block. Assuming A = {a, b}, define

φA ≡ ∃X(p1,a,q1)∃X(p1,b,q1)∃X−p1,q1∃X
+
p1,q1 . . . ∃X(pn,a,qn)∃X(pn,b,qn)∃X−pn,qn∃X

+
pn,qn

MarkSeq ∧ ConsistentSeq ∧ MarkPar ∧ ConsistentPar ∧ (∀X Universe(X)→
((Card>0(X)→ ((GMPB(X,X)→
∨
i∈I
f∈F

QY (X, (ψp1,q1(Y), x1), . . . , (ψpn,qn(Y), xn), ϕi,f (x1, . . . , xn))

∧ ((¬GMPB(X,X))→ ∨
i∈I
f∈F

ψi,f (X))))

∧ (Card0(X)→ ∨
i∈I∩F

true)))

Then P |= φA if and only if there is a path i
P

=⇒
A
f for some i ∈ I, f ∈ F .

5.2. From P-MSO to automata. Let A be an alphabet and ψ(x1, . . . , xn, X1, . . . , Xm) be
a P-MSO formula which has a set V1 = {x1, . . . , xn} of free first-order variables interpreted
over elements of posets (we do not consider here the variables that are interpreted over
non-negative integers) and a set V2 = {X1, . . . , Xm} of free second-order variables. A (V1, V2)-
poset labeled by A is a N-free poset (P,<, ρ) labeled by A×P(V1)×P(V2) such that for all
i ∈ [n] there exists exactly one p ∈ P such that xi ∈ π2(ρ(p)), where πk((c1, . . . , cr)) = ck (k ∈
[r]) is the projection of a tuple on its kth component. Observe that a poset labeled by A can
be viewed as a (∅, ∅)-poset labeled by A. Observe also that an interpretation of the variables
x1, . . . , xn, X1, . . . , Xm in P induces a unique (V1, V2)-poset P (x1, . . . , xn, X1, . . . , Xm), and
reciprocally. This allows us to use indifferently one representation or the other in order to
lighten the notation. The (V1, V2)-posets are a generalization from words to N-free posets of
an idea of [PP86].

This section is devoted to the construction of an automaton Aψ on the alphabet
A× P(V1)× P(V2) such that P, x1, . . . , xn, X1, . . . , Xm |= ψ(x1, . . . , xn, X1, . . . , Xm) if and
only if P (x1, . . . , xn, X1, . . . , Xm) ∈ L(Aψ) for any P ∈ SP+(A). If ψ is a sentence, then
P |= ψ if and only if P ∈ L(Aψ). The construction of Aψ is by induction on the structure
of ψ, and is a generalization of the well-known construction of a Kleene automaton from
a MSO-formula when MSO is interpreted over words (see for example [Str94] for a clear
presentation of this case).

It is easy to build an automaton A(V1, V2)-poset that tests if a poset P ∈ SP+(A) labeled
by A× P(V1)× P(V2) is a (V1, V2)-poset for some V1, V2. It suffices to test in P , for each
v ∈ V1, if v appears exactly once into the sets that appear as second components of the

LOGIC AND BRANCHING AUTOMATA 33

letters. Example 3.2 exhibits an automaton that tests if a particular letter a appears at least
once: it can easily be transformed in order to test if a appears exactly once, from which we
deduce A(V1, V2)-poset.

As a consequence of Proposition 3.6 and Theorem 4.1, from now we consider that inputs
of branching automata are (V1, V2)-posets.

The construction of an automaton Axi<xj that tests if xi < xj for some first-order
variables in the input (V1, V2)-poset has P(V1) ∪ {⊥} as set of states with ⊥ a sink state.
The state ∅ is the only initial state and all states V ∈ P(V1) such that xi, xj ∈ V are final.
The sequential transition from state V ∈ P(V1) labeled by (a,W1,W2) goes to

• ⊥ if xi 6∈ V and xj ∈W1, or xi, xj ∈W1;
• V ∪W1 otherwise.

Each state s which is not ⊥ is the source of a fork transition (s, {s, s}), and for every pair of
states (W1,W2) ∈ P(V1)× P(V1) there is a join transition ({W1,W2},W1 ∪W2).

As the test automata for the atomic formulæ a(xi) and Xi(xj) use the same principle we
only give the construction of an automaton AXi(xj) that tests the latter. It has Q = {⊥,>}
as set of states with ⊥ as unique initial state and > as unique final state. The only sequential
transitions from ⊥ to > are labeled by (a,W1,W2) such that xj ∈ W1 and Xi ∈ W2. All
other sequential transitions are from s to s for all states s. The fork transitions are (s, {s, s})
for all states, and the join transitions are ({s1, s2}, s3) where s3 = > if at least one of s1, s2

is >, s3 = ⊥ otherwise.
Constructions of automata for the boolean connectors ∨, ∧ and ¬ are a consequence of

Proposition 3.6 and Theorem 4.1.
Assume now that ψ(x1, . . . , xn, X1, . . . , Xm) is a P-MSO formula with free first-order

variables V1 = {x1, . . . , xn} and free second-order variables V2 = {X1, . . . , Xm}. Assume that
by induction hypothesis an automaton Aψ = (Q,A×P(V1)×P(V2), E, I, F) can effectively
be constructed from ψ(x1, . . . , xn, X1, . . . , Xm), and let i ∈ [n]. We use Aψ in order to build
an automaton A∃xiψ = (Q× B, A× P(V1 − {xi})× P(V2), E′, I × {false}, F × {true}) such
that P, x1, . . . , xi−1, xi+1, . . . , xn, X1, . . . , Xm |= ∃xiψ(x1, . . . , xn, X1, . . . , Xm) if and only
if P (x1, . . . , xi−1, xi+1, . . . , xn, X1, . . . , Xm) ∈ L(A∃xiψ), for any P ∈ SP+(A). There is a
sequential transition ((q, b), (a,W1,W2), (q′, b)) ∈ E′ if and only if (q, (a,W1,W2), q′) ∈ E and
xi 6∈W1, and a sequential transition ((q, false), (a,W1−{xi},W2), (q′, true)) ∈ E′ is and only
if (q, (a,W1,W2), q′) ∈ E and xi ∈W1. There is a fork transition ((q1, b), {(q2, b), (q3, b)}) ∈
E′ if and only if (q1, {q2, q3}) ∈ E, and a join transition ({(q1, b1), (q2, b2)}, (q3, b1 or b2)) ∈ E′
if and only if ({q1, q2}, q3) ∈ E.

The construction for quantification over a second-order variable is similar to the one of
first-order variable.

Remark 5.14. We have proved by all the constructions above that for any MSO-sentence
ψ there exists an automaton Aψ such that P |= ψ if and only if P ∈ L(Aψ).

We finally turn to the last case where ψ has the form

QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn))

Recall here that x1, . . . , xn are variables that are interpreted over non-negative integers,
and that each ψi, i ∈ [n], has one free variable X, which is second-order, all quantifications
relative to X and no free first-order variables. By induction hypothesis, there is an automaton
Aψi such that P,R |= ψi(R) if and only if P,R ∈ L(Aψi). According to the semantics of
QX(Z, (ψ1(X), x1), . . . , (ψn(X), xn), ϕ(x1, . . . , xn)), the only interpretations of R in P verify

34 N. BEDON

(1) R = P and (2) P is a connected block. The conjunction of (1) and (2) is a MSO-definable
property of R, and thus according to Remark 5.14 above it can be checked by an automaton
B. As a consequence of Proposition 3.6 and Theorem 4.1 there exists an automaton A′ψi
such that Li = L(A′ψi) = L(Aψi) ∩ L(B). Now, let B = {b1, . . . , bn} be a new alphabet
disjoint from A. As a consequence of Theorems 5.2, 3.9 and 3.3 there is an automaton C
over the alphabet B such that L(C) is the Presburger set of ϕ(x1, . . . , xn) over B. Then
L = L1 ◦b1 (. . . (Ln ◦bn L(C))) thus L is regular according to Theorem 3.3.

Example 5.15. Let A = {a, b} and L ⊆ SP+(A) be the language composed of the nonempty
posets of the form P = P1 · · · · ·Pn, where each Pi, i ∈ [n], has the form Pi = Pi,1 ‖ · · · ‖ Pi,ni
with each Pi,j a totally ordered nonempty poset (that is to say, a nonempty word), and such
that for each i ∈ [n] the number of Pi,j that starts with an a is 2

3ni. Set L1 = aA∗ = a∪aA+

and L2 = bA∗. Then L is the language of the rational expression ((L1 ‖ L1 ‖ L2)⊕)+. We
define L by a P-MSO sentence as follows. Given two elements of the poset denoted by first
order variables x and y, one can easily write a MSO formula Succ(x, y) (resp. Pred(x, y))
that is true if and only if x is a successor (resp. predecessor) of y. Set

Lin(X) ≡∀Xx∀Xy∀Xz (Succ(y, x) ∧ Succ(z, x)→ y = z)∧
(Pred(y, x) ∧ Pred(z, x)→ y = z)

ψ1(X) ≡Lin(X) ∧ ∃Xx a(x) ∧ ∀Xy x = y ∨ x < y

ψ2(X) ≡Lin(X) ∧ ∃Xx b(x) ∧ ∀Xy x = y ∨ x < y

ϕ(na, nb) ≡na = 2nb

Then L is the language of the following P-MSO sentence

ψ ≡ ∀P (∀p p ∈ P)→ ∃X1∃X2 P = X1 ⊕X2

∧∀U((MaxBlock(U,X1)∨MaxBlock(U,X2))→ QY (U, (ψ1(Y), na), (ψ2(Y), nb), ϕ(na, nb))

with X = U ⊕ V ≡ Partition(U, V,X) ∧ (∀u∀v u ∈ U ∧ v ∈ V → ¬u ‖ v). In the formula
above, Partition(U, V,X) and u ‖ v respectively express with MSO formulæ that (U, V)
partitions X, and that u and v are different and not comparable. The MSO formula
MaxBlock(U,X) express that U is a block of X, maximal relatively to inclusion.

6. Another definition for branching automata

In this section we introduce another notion of automata for languages of SP+(A), which is
actually equivalent, in expressiveness, to branching automata.

Denote by Pres(n) the class of Presburger formulæ ϕ(x1, . . . , xn) with n free variables.
A Presburger-branching automaton (or P-branching automaton for short) is a tuple A =
(Q,A,E, I, F) where Q = {q1, . . . , qn} is a finite set of states, A is an alphabet, I ⊆ Q is the
set of initial states, F ⊆ Q the set of final states, and E = (Eseq, Efork, Ejoin) is the set of
transitions of A, which are of three kinds:

• Eseq ⊆ (Q × A × Q) contains the sequential transitions, which are usual transitions of
Kleene automata;
• Efork and Ejoin, respectively the fork and join transitions, are finite subsets of Q×Pres(n).

LOGIC AND BRANCHING AUTOMATA 35

Let F be a multi-set of elements of Q. By µ(F) we denote the Parikh’s image of F , ie.
the element (v1, . . . , vn) of Nn such that F is the multi-set with vi occurrences of qi, for all
i ∈ [n]. Paths in P-branching automata are defined as in branching automata, except for
the parallel case: for any finite set of paths {γ0, . . . , γk} (with k ≥ 1) respectively labeled
by P0, . . . , Pk ∈ SP+(A), from r0, . . . , rk to s0, . . . , sk, if t = (p, ϕ(x1, . . . , xn)) is a fork
transition, t′ = (q, ϕ′(x′1, . . . , x

′
n)) a join transition, then γ = t(‖j≤k γj)t′ is a path from p to

q and labeled by ‖j≤k Pj if µ({r0, . . . , rk}) = (v1, . . . , vn) and µ({s0, . . . , sk}) = (v′1, . . . , v
′
n)

are respectively in the Presburger set of ϕ and of ϕ′, and
∑

i∈[n] vi,
∑

i∈[n] v
′
i > 1.

The notions of accepting paths and languages of a P-branching automaton are defined as
in branching automata. A language L ⊆ SP+(A) is P-regular if there exists a P-branching
automaton A such that L = L(A).

Theorem 6.1. Let A be an alphabet and L ⊆ SP+(A). Then L is regular if and only if it
is P-regular.

Proof. It is immediate that regularity implies P-regularity, since a fork transition (the same
applies for join transitions) (p, {r0, . . . rk}) of a branching automaton can be interpreted
as a fork transition (p, ϕ(x1, . . . , xn)) of a P-branching automaton, with µ({r0, . . . rk}) the
unique element of the Presburger set of ϕ(x1, . . . , xn).

The converse needs more attention since the Presburger set of a formula ϕ may be
infinite. Assume that A is a P-branching automaton with Q = {q1, . . . , qn} as set of states.
We replace one by one all of its fork transitions (p, ϕ(x1, . . . , xn)) by fork transitions of
branching automata, by the following construction that add new states to A. Denote
by Lϕ = {F ∈ M>1(Q) : µ(F) is in the Presburger set of ϕ}. Each element of Lϕ can
equivalently be represented as an element of Q~. We first build a branching automaton Aϕ
on the alphabet Q such that L(Aϕ) = Lϕ. It has exactly one initial state, which is not the
destination of any transition, and one final state which is not the source of any transition.
By Theorem 5.2, Lϕ is a semi-linear set of Q~:

Lϕ =
⋃
i∈I

qji,1 ‖ · · · ‖ qji,li ‖ (
⋃
k∈Ki

qjk,1 ‖ · · · ‖ qjk,lk)~

for some finite set I, disjoint finite sets Ki, i ∈ I, with ji,r, jk,s ∈ [n] for all i ∈ I, k ∈ Ki,
r ∈ [li], s ∈ [lk]. Wlog. we may assume that each multi-set of Lϕ has at least two elements,
so li > 1 for all i ∈ I. Then Aϕ is composed of one initial state 1, one final state f , two
states qji,r and qji,r and one sequential transition (qji,r , qji,r , qji,r) for all i ∈ I, r ∈ [li], two

states qjk,r and qjk,r and one sequential transition (qjk,r , qjk,r , qjk,r) for all i ∈ I, k ∈ Ki,
r ∈ [lk]. For each i ∈ I, there is one fork transition from 1 to all the qji,r , r ∈ [li], and

symmetrically, one join transition from all the qji,r , r ∈ [li], to f . For each i ∈ I, add also

two states ui and ui, a fork transition (ui, {ui, ui}), a join transition ({ui, ui}, ui), and, for
all k ∈ Ki, a fork transition (ui, {qjk,1 , . . . , qjk,lk}) and a join transition ({qjk,1 , . . . , qjk,lk}, ui)
if lk > 1, a sequential transition (ui, qjk,1 , ui) if lk = 1. For each i ∈ I, add a fork transition

(1, {qji,1 , . . . , qji,li , ui}) and a join transition ({qji,1 , . . . , qji,li , ui}, f). We have L(Aϕ) = Lϕ.

Now, remove all sequential transitions, all join transitions, f and all states of the form q from
Aϕ and name A′ϕ the new automaton. Consider the disjoint union of A and A′ϕ. Remove
(p, ϕ(x1, . . . , xn)). Replace 1 by p and all states of the form q, q ∈ Q, by q. Join transitions
(p, ϕ(x1, . . . , xn)) are removed with a similar mechanism.

36 N. BEDON

7. Conclusion

The effectiveness of the constructions involved in the proof of Theorem 5.4 have several
consequences. The P-MSO theory S of SP+(A) consists of all sentences φ of P-MSO such
that P |= φ for every P ∈ SP+(A). The P-MSO theory of SP+(A) is decidable if there
exists a decision procedure that tests if φ ∈ S. Because emptiness is decidable for languages
of branching automata (see Proposition 3.7), we have:

Theorem 7.1. Let A be an alphabet. The P-MSO theory of SP+(A) is decidable.

In [LW00], Lodaya and Weil asked for logical characterizations of several classes of
rational languages. As it is equivalent to branching automata, P-MSO is the natural logic
to investigate such questions, that are still open.

Extending the work of Lodaya and Weil, and those of Kleene-Schützenberger, Kuske and
Meinecke [KM04] proposed to attach costs to paths in branching automata. They defined
and studied branching automata with costs, and extended to this case the machinery from
the theory of weighted automata. They provided in particular a Kleene-like theorem for
branching automata with costs, in the particular case of bounded-width languages.

Among the works connected to ours, let us mention Ésik and Németh [ÉN02], which
itself has been influenced by the work of Hoogeboom and ten Pas [HtP96, HtP97] on text
languages. They study languages of bi-posets from an algebraic, automata and regular
expressions based point of view, and the connections with MSO. A bi-poset is a set equipped
with two partial orderings; thus, N-free posets are a generalization of N-free bi-posets, where
commutation is allowed in the parallel composition.

MSO and Presburger logic were also mixed in other works, but for languages of trees
instead of N-free posets. Motivated by reasoning about XML documents, Dal Zilio and
Lugiez [DZL03], and independently Seidl, Schwentick and Muscholl [SSM08], defined a
notion of tree automata which combines regularity and Presburger arithmetic. In particular
in [SSM08], MSO is enriched with Presburger conditions on the children of nodes in order
to select XML documents, and proved equivalent to unranked tree automata. Observe that
unranked trees are a particular case of N-free posets.

Acknowledgement

The author would like to thank the referees of this paper, whose comments helped in
improving its quality. Among many remarks, the content of Section 6 was suggested by one
of them.

References

[Alm94] Jorge Almeida. Finite semigroups and universal algebra, volume 3 of Series in algebra. World
Scientific, 1994.

[BÉ96] Stephen L. Bloom and Zoltán Ésik. Free shuffle algebras in language varieties. Theoretical Computer
Science, 163(1-2):55–98, 1996.

[Bed13] Nicolas Bedon. Logic and branching automata. In Krishnendu Chatterjee and Jiri Sgall, editors,
MFCS, volume 8087 of Lecture Notes in Computer Science, pages 123–134. Springer, 2013.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik. Grund.
Math., 6:66–92, 1960.

LOGIC AND BRANCHING AUTOMATA 37

[DZL03] Silvano Dal-Zilio and Denis Lugiez. XML Schema, Tree Logic and Sheaves Automata. In Robert
Nieuwenhuis, editor, RTA, volume 2706 of Lecture Notes in Computer Science, pages 246–263.
Springer, 2003.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer monographs in mathematics.
Springer, 2nd edition, 1999.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Amer.
Math. Soc., 98:21–51, January 1961.

[ÉN02] Zoltán Ésik and Z.L. Németh. Automata on series-parallel biposets. In W. Kuich, G. Rozenberg,
and A. Salomaa, editors, DLT’2001, volume 2295 of Lect. Notes in Comput. Sci., pages 217–227.
Springer-Verlag, 2002.

[ES69] Samuel Eilenberg and Marcel-Paul Schützenberger. Rational sets in commutative monoids. Journal
of Algebra, 13(2):173–191, 1969.

[GS64] Seymour Ginsburg and Edwin H. Spanier. Bounded algol-like languages. Transactions of the
American Mathematical Society, 113(2):333–368, November 1964.

[GS66] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages. Pacific
Journal of Mathematics, 16(2):285–296, 1966.

[HtP96] H. J. Hoogeboom and P. ten Pas. Text languages in an algebraic framework. Fund. Inform.,
25:353–380, 1996.

[HtP97] H. J. Hoogeboom and P. ten Pas. Monadic second-order definable languages. Theory Comput. Syst.,
30:335–354, 1997.

[Kle56] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In Shannon and
McCarthy, editors, Automata studies, pages 3–42, Princeton, New Jersey, 1956. Princeton University
Press.

[KM04] Dietrich Kuske and Ingmar Meinecke. Branching automata with costsa way of reflecting parallelism
in costs. Theoret. Comput. Sci., 328(1–2):53–75, 2004. Implementation and Application of Automata.

[Kus00] Dietrich Kuske. Infinite series-parallel posets: logic and languages. In ICALP 2000, volume 1853 of
Lect. Notes in Comput. Sci., pages 648–662. Springer-Verlag, 2000.

[LW98a] Kamal Lodaya and Pascal Weil. A Kleene iteration for parallelism. In Foundations of Software
Technology and Theoretical Computer Science, pages 355–366, 1998.

[LW98b] Kamal Lodaya and Pascal Weil. Series-parallel posets: algebra, automata and languages. In
M. Morvan, Ch. Meinel, and D. Krob, editors, STACS’98, volume 1373 of Lect. Notes in Comput.
Sci., pages 555–565. Springer-Verlag, 1998.

[LW00] Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property. Theoret.
Comput. Sci., 237(1–2):347–380, 2000.

[LW01] Kamal Lodaya and Pascal Weil. Rationality in algebras with a series operation. Inform. Comput.,
pages 269–293, 2001.

[Par66] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, October 1966.

[Pin84] Jean-Éric Pin. Variétés de langages formels. Masson, Paris, France, 1984. English version: Varieties
of formal languages, Plenum Press, New-York, 1986.

[PP86] Dominique Perrin and Jean-Éric Pin. First order logic and star-free sets. J. Comput. System Sci.,
32:393–406, 1986.

[Pre30] Mojzesz Presburger. Über die vollstandigkeit eines gewissen systems der arithmetic ganzer zahlen,
in welchem die addition als einzige operation hervortritt. In Proc. Sprawozdaniez I Kongresu
Matematykow Krajow Slowianskich, Warsaw, pages 92–101, 1930. English translation: On the
completeness of certain system of arithmetic of whole numbers in which addition occurs as the only
operation. Hist. Philos. Logic, 12:92–101, 1991.

[Sak03] Jacques Sakarovitch. Éléments de théorie des automates. Vuibert, 2003. English (and revised)
version: Elements of automata theory, Cambridge University Press, 2009.

[SSM08] Helmut Seidl, Thomas Schwentick, and Anca Muscholl. Counting in trees. In Jörg Flum, Erich
Grädel, and Thomas Wilke, editors, Logic and Automata, volume 2 of Texts in Logic and Games,
pages 575–612. Amsterdam University Press, 2008.

[Str94] Howard Straubing. Finite automata, formal logic and circuit complexity. Birkhäuser, 1994.
[Tho97] Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,

Handbook of Formal Languages, volume III, pages 389–455. Springer-Verlag, 1997.

38 N. BEDON

[Tra62] Boris Avraamovich Trakhtenbrot. Finite automata and monadic second order logic. Siberian Math.,
3:101–131, 1962. (Russian). English translation in AMS Transl. 59 (1966), 23-55.

[Val78] Jacobo Valdes. Parsing flowcharts and series-parallel graphs. Technical Report STAN-CS-78-682,
Computer science departement of the Stanford University, Standford, Ca., 1978.

[VTL82] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler. The recognition of series parallel digraphs.
SIAM J. Comput., 11:298–313, 1982.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Notation and basic definitions
	3. Rational languages, automata and recognizability
	3.1. Rational languages
	3.2. Branching automata
	3.3. Rationality and semi-linearity

	4. Complementation of rational languages
	5. P-MSO
	5.1. From automata to P-MSO
	5.2. From P-MSO to automata

	6. Another definition for branching automata
	7. Conclusion
	Acknowledgement
	References

