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Abstract. We put forward a model of action-based randomization mechanisms to analyse
quantitative information flow (qif) under generic leakage functions, and under possibly
adaptive adversaries. This model subsumes many of the qif models proposed so far. Our
main contributions include the following: (1) we identify mild general conditions on the
leakage function under which it is possible to derive general and significant results on adap-
tive qif; (2) we contrast the efficiency of adaptive and non-adaptive strategies, showing
that the latter are as efficient as the former in terms of length up to an expansion factor
bounded by the number of available actions; (3) we show that the maximum information
leakage over strategies, given a finite time horizon, can be expressed in terms of a Bellman
equation. This can be used to compute an optimal finite strategy recursively, by resorting
to standard methods like backward induction.

1. Introduction

Quantitative Information Flow (qif) is a well-established approach to confidentiality ana-
lysis: the basic idea is measuring how much information flows from sensitive to observable
data, relying on tools from Information Theory [14, 3, 12, 32, 11, 4, 27, 5, 6].

Two important issues that arise in qif are: what measure one should adopt to quantify
the leakage of confidential data, and the relationship between adaptive and non adaptive
adversaries. Concerning the first issue, a long standing debate in the qif community con-
cerns the relative merits of leakage functions based on Shannon entropy (see e.g. [14, 4])
and min-entropy (see e.g. [32, 11]); other types of entropies are sometimes considered (see
e.g. [26].) As a matter of fact, analytical results for each of these types of leakage functions
have been so far worked out in a non-uniform, ad hoc fashion.
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Concerning the second issue, one sees that, with the notable exception of [26] which we
discuss later on, the treatment of confidentiality in qif has so far been almost exclusively
confined to attackers that can only passively eavesdrop on the mechanism; or, at best,
obtain answers in response to queries (or actions) submitted in a non-adaptive fashion
[7]. By passive, we mean here attackers that can eavesdrop on messages, but not interfere
with the generation process of these messages1. Clearly, there are situations where this
model is not adequate. To mention but two: chosen plaintext/ciphertext attacks against
cryptographic hardware or software; adaptive querying of databases whose records contain
both sensitive and non-sensitive fields.

In this paper, we tackle both issues outlined above. We: (a) put forward a general qif

model where the leakage function is built around a generic uncertainty measure; and, (b)
derive several general results on the relationship between adaptive and non adaptive adver-
saries in this model. In more detail, we assume that, based on a secret piece of information
X ∈ X , the mechanism responds to a sequence of queries/actions a1, a2, . . . (ai ∈ Act),
adaptively submitted by an adversary, thus producing a sequence of answers/observations
Y ∈ Y∗. Responses to individual queries are in general probabilistic, either because of the
presence of noise or by system’s design. Moreover, the mechanism is stateless, thus answers
are independent from one another. The adversary is assumed to know the distribution
according to which X has been generated (the prior) and the input-output behaviour of
the mechanism. An adaptive adversary can choose the next query based on past observa-
tions, according to a predefined strategy. Once a strategy and a prior have been fixed, they
together induce a probability space over sequences of observations. Observing a specific
sequence provides the adversary with information that modifies his belief about X, possi-
bly reducing his uncertainty. We measure information leakage as the average reduction in
uncertainty. We work with a generic measure of uncertainty, U(·). Formally, U(·) is just a
real-valued function over the set of probability distributions on X , which represent possible
beliefs of the adversary. Just two properties are assumed of U(·): concavity and conti-
nuity. Note that leakage functions commonly employed in qif, such as Shannon entropy,
guessing entropy and error probability – the additive version of Smith’s min-entropy-based
vulnerability [32] – do fall in this category.

The other central theme of our study is the comparison between adaptive and the
simpler non-adaptive strategies. All in all, our results indicate that, for even moderately
powerful adversaries, there is no dramatic difference between the two, in terms of difficulty
of analysis. A more precise account of our contributions follows.

• We put forward a general model of adaptive qif; we identify mild general conditions
on the uncertainty function under which it is possible to derive general and substantial
results on adaptive qif.

• We compare the difficulty of analyzing mechanisms under adaptive and non-adaptive
adversaries. We first note that, for the class of mechanisms admitting a “succinct” syn-
tactic description - e.g. devices specified by boolean formulae - the analysis problem is
intractable (np-hard), even if limited to very simple instances of the non-adaptive case.
This essentially depends on the fact that such mechanisms can feature exponentially many

1Passivity in this sense does not rule out attackers that can try secrets, based on some form of oracle.
Active attackers are also considered in approaches to quantitative integrity [15], a theme that will not be
considered here.
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actions in the syntactic size of the description. In the general case, we show that non-
adaptive finite strategies are as efficient as adaptive ones, up to an expansion factor in
their length bounded by the number of distinct actions available. Practically, this indi-
cates that, for mechanisms described in explicit form (e.g. by tables, like a db) hence
featuring an “affordable” number of actions available to the adversary, it may be sufficient
to assess resistance of the mechanism against non-adaptive strategies. This is important,
because simple analytical results are available for such strategies [7].

• We show that the maximum leakage over all strategies is the same for both adaptive
and non-adaptive adversaries, and only depends on an indistinguishability equivalence
relation over the set of secrets.

• We show that maximum leakage over all strategies over a finite horizon can be expressed
in terms of a Bellman equation. This equation can be used to compute optimal finite
strategies recursively. As an example, we show how to do that using Markov Decision
Processes (mdp’s) and backward induction.

• We finally give a Bayesian decision-theoretic justification of our definition of uncertainty
function. We argue that each such function arises as a measure of expected loss; and,
vice-versa, that (under a mild condition) each measure of expected loss is in fact an
uncertainty function in our sense.

Structure of the Paper. Section 2 introduces the model. This is illustrated with a few
examples in Section 3. The subsequent four sections 4, 5, 6, 7 discuss the results outlined
in (2), (3), (4) and (5) above, respectively. Section 8 contains a few concluding remarks,
discussion of related work and some directions for further research. Some technical material
has been confined to three separate appendices.

2. A model of adaptive qif

2.1. Randomization mechanisms, uncertainty, strategies.

Definition 2.1. An action-based randomization mechanism2 is a 4-tuple

S = (X , Y, Act, {Ma : a ∈ Act}) ,

where (all sets finite and nonempty): X , Y and Act are respectively the sets of secrets,
observations and actions (or queries) and for each a ∈ Act, Ma is a stochastic matrix of
dimensions |X | × |Y|.

For each action a ∈ Act, x ∈ X and y ∈ Y, the element of row x and column y of
Ma is denoted by pa(y|x). Note that for each x and a, row x of Ma defines a probability
distribution over Y, denoted by pa(·|x). A mechanism S is deterministic if each entry of
each Ma is either 0 or 1. Note that to any deterministic mechanism there corresponds
a function f : X × Act → Y defined by f(x, a) = y, where pa(y|x) = 1. Recall that a
real function F defined over a convex subset C ⊆ R

n is concave if, for each λ ∈ [0, 1] and
u, v ∈ C, it holds true that F (λu + (1 − λ)v) ≥ λF (u) + (1 − λ)F (v). In the rest of the

2The term information hiding system is sometimes found in the literature to indicate randomization
mechanisms. This term, however, is also used with a rather different technical meaning in the literature on
watermarking; so we prefer to avoid it altogether here.
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paper, we let P denote the set of all probability distributions on X ; this can of course be
seen as a convex subset of R|X | (the probability simplex.)

Definition 2.2 (Uncertainty). A function U : P → R is an uncertainty measure if it is
concave and continuous over P.

We postpone a full justification of the above definition to Section 7. For the time being,
we can explain intuitively the role of concavity as follows. Suppose the secret is generated
according to either a distribution p or to another distribution q, the choice depending on
a coin toss, with head’s probability λ. The coin toss introduces extra randomness in the
generation process. Therefore, the overall uncertainty of the adversary about the secret,
U
(
λ · p + (1 − λ) · q

)
, should be no less than the average uncertainty of the two original

generation processes considered separately, that is λU
(
p
)
+(1−λ)U

(
q
)
. As a matter of fact,

most uncertainty measures in qif do satisfy concavity. Continuity is a technical requirement
that comes into play only in Theorem 5.53.

Example 2.3. The following entropy functions, and variations thereof, are often considered
in the quantitative security literature as measures of the difficulty or effort necessary for a
passive adversary to identify a secret X, where X is a random variable over X distributed
according to a known distribution p(·). All of these functions are easily proven to be
uncertainty measures in our sense:

• Shannon entropy: H(p)
△
= −

∑

x∈X p(x) log p(x), with 0 log 0 = 0 and log in base 2;

• Error probability entropy: E(p)
△
= 1 − maxx∈X p(x);

• Guessing entropy: G(p)
△
=
∑n−1

i=1 i · p(xi) with p(x1) ≥ p(x2) ≥ . . . ≥ p(xn).

Example 2.4. For a somewhat different example of uncertainty, suppose that X ⊆ R.
Then each probability distribution over X corresponds to a real valued r.v., and we can

set U(X)
△
= var(X), where var(X)

△
= E[(X − µ)2], with µ = E[X], is the familiar variance.

This makes intuitive sense, as the higher the variability of X, the higher the uncertainty
about its value. Let us check that var(X) is concave and continuous.

Indeed, continuity follows immediately from the definition. Concerning concavity, first
note that, for any real z, E[(X − z)2] = var(X) + (µ − z)2 (easily checked by writing
(X − z)2 as ((X − µ) + (µ − z))2, then expanding the square and then applying linearity of
expectation.) This implies that E[(X−z)2] ≥ var(X). Now, let p, q be any two distributions
on X , let λ ∈ [0, 1] and r = λ · p + (1 − λ) · q. Denoting by µu and varu, respectively, the
expectation and variance of X taken according to a distribution u, we have the following.

varr(X) = Er[(X − µr)2]

= λEp[(X − µr)2] + (1 − λ)Eq[(X − µr)2]

≥ λvarp(X) + (1 − λ)varq(X) .

We note that the min-entropy function, H∞(p) = − log maxx p(x), is neither concave
nor convex, so it does not fit in the present framework. However, one can at least indirectly
express min-entropy via the error probability entropy E(·): H∞(p) = − log(1 − E(p)).

A strategy is a partial function σ : Y∗ → Act such that dom(σ) is non-empty and
prefix-closed4. A strategy is finite if dom(σ) is finite. The length of a finite strategy

3In fact, concavity does imply continuity except possibly on the frontier of P .
4A set B ⊆ Y∗ is prefix-closed if whenever σ ∈ B and σ′ is a prefix of σ then σ′ ∈ B.
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is defined as max {|ξ| : ξ ∈ dom(σ)} + 1. For each n ≥ 0 we will let yn, wn, zn, . . .
range over sequences in Yn; given yn = (y1, . . . , yn) and 0 ≤ j ≤ n, we will let yj

denote the first j components of yn, (y1, . . . , yj). Given a strategy σ and an integer
n ≥ 0, the truncation of σ at level n, denoted as σ\n, is the finite strategy σ|∪0≤i≤nYi .

a

b

y

a

b

d

y′

y

c

y′

Figure 1. Two strategy trees.

A finite strategy of length l is complete if dom(σ) =

∪0≤i≤l−1Y i. A strategy σ is non-adaptive if whenever
yn and wn are two sequences of the same length then
σ(yn) = σ(wn) (that is, the decision of which action to
play next only depends on the number of past actions);
note that finite non-adaptive strategies are necessarily
complete. We note that strategies can be described as
trees, with nodes labelled by actions and arc labelled by
observations, in the obvious way. Any non-adaptive stra-
tegy also enjoys a simpler representation as a finite or infinite list of actions: we write
σ = [a1, . . . , ai, . . .] if σ(yi−1) = ai, for i = 1, 2, . . ..

Example 2.5. Strategies σ = [ε 7→ a, y 7→ b] and σ′ = [ε 7→ a, y 7→ b, y′ 7→ c, yy′ 7→ d] can
be represented as in Figure 1. Note that the tree’s height is one less than the strategy’s
length.

Remark 2.6. It is worthwhile to comment on two possible objections to our strategy
model. First, we do not consider mixed strategies, that is strategies where the next action
is chosen probabilistically, rather than deterministically like in our case. It is true that
mixed strategies play a key role in Game Theory: equilibria typically arise in the form of
profiles of mixed strategies, as in many games any pure (deterministic) strategy could be
easily beaten by an opponent. We believe, however, that mixed strategies are irrelevant
in the present context: there is only one player here (the adversary), and consequently no
meaningful notion of equilibrium. In particular, there is no such role as a defender whose
moves depend on the adversary’s ones. In game-theoretical terms, the adversary is playing
against the Nature, represented by the mechanism.

Another possible objection is that in our model the next action depends solely on the
sequence of past observations, rather than on the whole history comprising also the past
actions played by the adversary. This limitation can be easily overcome by considering a
modified action-based mechanism, where actions are part of the observation: that is, in the

new mechanism, the set of observations is Act × Y, and one poses pa((b, y)|x)
△
= pa(y|x) if

a = b and pa((b, y)|x)
△
= 0 otherwise, where pa(·|·) is the a-stochastic matrix of the original

mechanism. This way, strategies for the new mechanism automatically take into account
the whole history.

2.2. A probability space. Informally, we consider an adversary who repeatedly queries
a mechanism, according to a predefined finite strategy. At some point, the strategy will
terminate, and the adversary will have collected a sequence of observations yn = (y1, . . . , yn).
Note that both the length n and the probability of the individual observations yi, hence of
the whole yn, will in general depend both on X and on the strategy played by the adversary.
In other words, the distribution p(·) of X and the strategy σ together induce a probability
distribution on a subset of all observation sequences: the ones that may arise as a result of
a complete interaction with the mechanism, according to the played strategy.
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Formally, let p(·) be any given probability distribution over X , which we will often refer
to as the prior. For each finite strategy σ, we define a joint probability distribution pσ(·)

on X × Y∗, depending on σ and on p(·), as follows. We let pσ(x, ε)
△
= 0 and, for each j ≥ 0:

pσ(x, y1, . . . , yj, yj+1)
△
=







p(x) · pa1(y1|x) · · · · · paj
(yj |x)paj+1(yj+1|x)

if yj ∈ dom(σ), yjyj+1 /∈ dom(σ)

0 otherwise

(2.1)

where in the first case ai = σ(yi−1) for i = 1, . . . , j + 1. In case σ = [a], a single action
strategy, we will often abbreviate p[a](·) as pa(·). Note that the support of pσ(·) is finite, in

particular supp(pσ) ⊆ X × {yjy : j ≥ 0, yj ∈ dom(σ), yjy /∈ dom(σ)}.
Let (X, Y ) be a pair of random variables with outcomes in X ×Y∗, jointly distributed ac-

cording to pσ(·): here X represents the secret and Y represents the sequence of observations
obtained upon termination of the strategy. We shall often use such shortened notations as:
pσ(x|yn) for Pr(X = x|Y = yn), pσ(yn) for Pr(Y = yn), and so on. Explicit formulas for
computing these quantities can be easily derived from the definition of pσ(·) and using Bayes
rule. We will normally keep the dependence of (X, Y ) on p(·) and σ implicit. When we
want to stress that we are considering Y according to the distribution induced by a specific
σ (e.g. because different strategies are being considered at the same time), we will write it
as Yσ.

Consider a prior p(·) and a finite strategy σ, and the corresponding pair of random
variables (r.v.) (X, Y ). We define the following quantities, expressing average uncertainty,
conditional uncertainty and information gain about X, that may result from interaction
according to strategy σ (by convention, below we let yn range over sequences with pσ(yn) >
0):

U(X)
△
= U

(

p
)

Uσ(X|Y )
△
=

∑

yn

pσ(yn)U
(
pσ(·|yn)

)
(2.2)

Iσ(X; Y )
△
= U(X) − Uσ(X|Y ) .

Again, we may drop the subscript σ from Uσ and Iσ if the strategy σ is clear from the
context. Note that, in the case of Shannon entropy, Iσ(X; Y ) coincides with the familiar
mutual information, traditionally measured in bits. In the case of error entropy, Iσ(X; Y )
is what is called additive leakage in e.g. [11] and advantage in the cryptographic literature,
see e.g. [20] and references therein.

In the rest of the paper, unless otherwise stated, we let U(·) be an arbitrary uncertainty
function. The following fact about Iσ(X; Y ) follows from U(·)’s concavity and Jensen’s
inequality, plus routine calculations on probability distributions (see Appendix).

Lemma 2.7. Iσ(X; Y ) ≥ 0. Moreover Iσ(X; Y ) = 0 if X and Y are independent.

Given the definitions in (2.2), adaptive qif can be defined quite simply.
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Definition 2.8 (qif under adaptive adversaries). Let S be a mechanism and p(·) be a prior
over X .

(1) For a finite strategy σ, let Iσ(S, p)
△
= Iσ(X; Y ).

(2) For an infinite strategy σ, let Iσ(S, p)
△
= liml→∞ Iσ\l(S, p).

(3) (Maximum IF under p(·)) I⋆(S, p)
△
= supσ Iσ(S, p).

Note that l′ ≥ l implies Iσ\l′(S, p) ≥ Iσ\l(S, p), hence the limit in (2) always exists.
Taking the distribution that achieves the maximum leakage, we can define an analog of
channel capacity.

Definition 2.9 (Adaptive secrecy capacity). C(S)
△
= supp∈P I⋆(S, p).

2.3. Attack Trees. It is sometimes useful to work with a pictorial representation of the
adversary’s attack steps, under a given strategy and prior. This can take the form of a tree,
where each node represents an adversary’s belief about the secret, that is, a probability
distribution over X . The tree describes the possible evolutions of the belief, depending on
the strategy and on the observations. We formally introduce such a representation below: it
will be extensively used in the examples. Note that attack trees are different from strategy
trees.

A history is a sequence h ∈ (Act × Y)∗. Let h = (a1, y1, . . . , an, yn) be such a history.
Given a prior p(·), we define the update of p(·) after h, denoted by ph(·), as the distribution
on X defined by

ph(x)
△
= pσh

(x|yn) (2.3)

where σh = [a1, . . . , an], provided pσh
(yn) > 0; otherwise ph(·) is undefined.

The attack tree induced by a strategy σ and a prior p(·) is a tree with nodes labelled by
probability distributions over X and arcs labelled with pairs (y, λ) of an observation y and
a probability value λ. This tree is obtained from the strategy tree of σ as follows. First,
note that, in a strategy tree, each node can be identified with the unique history from the
root leading to it. Given the strategy tree for σ: (a) for each y ∈ Y and each node missing
an outgoing y-labelled arc, attach a new y-labelled arc leading to a new node; (b) label
each node of the resulting tree by ph(·), where h is the history identifying the node, if ph(·)
is defined, otherwise remove the node and its descendants, as well as the incoming arc; (c)
label each arc from a node h to a child, represented by a history h · a · y, in the resulting
tree with λ = ph

a(y) - to be parsed as (ph)[a](y). This is the probability of observing y under

a prior ph(·) when submitting action a.
The concept of attack trees is demonstrated by a few examples in the next section. Here,

we just note the following easy to check facts. For each leaf h of the attack tree: (i) the
leaf’s label is ph(·) = pσ(·|yn), where yn is the sequence of observations in h; (ii) if we let πh

be the product of the probabilities on the edges from the root to the leaf, then πh = pσ(yn).
Moreover, (iii) each yn s.t. pσ(yn) > 0 is found in the tree. As a consequence, for a finite
strategy, taking (2.2) into account, the uncertainty of X given Y can be computed from the
attack tree as:

Uσ(X | Y ) =
∑

h is a leaf

πhU(ph) . (2.4)
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id ZIP Age Date Disease

1 z1 65 d2 Heart disease

2 z1 65 d2 Flu

3 z1 67 d2 Short breath

4 z1 68 d1 Obesity

5 z1 68 d1 Heart disease

6 z3 66 d2 Heart disease

7 z3 67 d2 Obesity

8 z3 31 d2 Short breath

9 z2 30 d3 Heart disease

10 z2 31 d3 Obesity

Figure 2. Medical db of Example 3.1.

ZIP

Date

z1

Date

z2

Age

z3

Figure 3. Strategy tree of
Example 3.1.

3. Examples

We present a few instances of the framework introduced in the previous section. We empha-
size that these examples are quite simple and only serve to illustrate our main definitions.
In the rest of the paper, we shall use the following notation: we let u{x1, . . . , xk} denote
the uniform distribution on {x1, . . . , xk}.

Example 3.1 (medical db). An attacker gets hold of the table shown in Figure 2, which
represents a fragment of a hospital’s database. Each row of the table contains: a numerical
id followed by the ZIP code, age, discharge date and disease of an individual that has been
recently hospitalized. The table does not contain personal identifiable information. The
attacker gets to know that a certain target individual, John Doe (JD), has been recently
hospitalized. However, the attacker is ignorant of the corresponding id in the table and any
information about JD, apart from his name. The attacker’s task is to identify JD, i.e. to
find JD’s id in the table, thus learning his disease. The attacker is in a position to ask a
source, perhaps the hospital db, queries concerning non sensitive information (ZIP code,
age and discharge date) of any individual, including JD, and compare the answers with the
table’s entries.5

This situation can be modeled quite simply as an action-based mechanism S, as follows.
We pose: Act = {ZIP, Age, Date}; X = {1, . . . , 10}, the set of possible id’s, and Y =
YZIP ∪ YAge ∪ YDate, where YZIP = {z1, z2, z3}, YAge = {30, 31, 65, 66, 67, 68} and YDate =
{d1, d2, d3}. The conditional probability matrices reflect the behaviour of the source when
queried about ZIP code, age and discharge date of an individual. We assume that the source
is truthful, hence answers will match the entries of the table. For example, pAge(y|1) = 1
if y = 65 and 0 otherwise;pZIP(y|2) = 1 if y = z1, 0 otherwise; and so on. Note that this
defines a deterministic mechanism. Finally, since the attacker has no clues about JD’s id,
we set the prior to be the uniform distribution on X , p(·) = u{1, . . . , 10}.

Assume now that, possibly to protect privacy of individuals, the number of queries to
the source about any individual is limited to two. Figure 3 displays a possible attacker’s
strategy σ, of length 2. Figure 4 displays the corresponding attack tree, under the given
prior. Note that the given strategy is not in any sense optimal. Assume we set U(·) = H(·),
Shannon entropy, as a measure of uncertainty. Using (2.4), we can compute Iσ(S, p) =

5That this is unsafe is of course well-known from database security: the present example only serves the
purpose of illustration.
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u{1, . . . , 10}

u{1, . . . , 5}

u{1, 2, 3}

d2
3
5

u{4, 5}

d1
2
5

z1

1
2 u{9, 10}

u{9, 10}

d3

1

z2 1
5

u{6, 7, 8}

u{8}

31
1
3

u{6}

66
1
3

u{7}

67
1
3

z3

3
10

Figure 4. The
attack tree for
Example 3.1.

u{1, . . . , 10}

u{1, . . . , 5}

u{1, 2, 3}

d2
3
5

u{4, 5}

d1
2
5

z1

1
2 u{9, 10}

u{9, 10}

d3

1

z2 1
5

u{6, 7, 8}

u{8}

3
0
, 3

1
, 3

2

1
9

u{6}

6
5

1
9

u{6, 7}

6
6
,
6
72

9

u{7}

6
8

1
9

z3

3
10

Figure 5. The attack tree for Exam-
ple 3.2. Leaves with the same label
and their incoming arcs have been co-
alesced.

H(X) − H(X|Y ) = log 10 − 3
10 log 3 − 2

5 ≈ 2.45 bits. With U(·) = E(·), the error entropy,
we have Iσ(S, p) = E(X) − E(X|Y ) = 0.5.

Example 3.2 (noisy version). We consider a version of the previous mechanism where the
public source queried by the attacker is not entirely truthful. In particular, for security rea-
sons, whenever queried about age of an individual, the source adds a uniformly distributed
offset r ∈ {−1, 0, +1} to the real answer. The only difference from the previous example is
that the conditional probability matrix pAge(·|·) is not deterministic anymore. For example,
for x = 1, we have

pAge(y|1) =

{
1
3 if y ∈ {64, 65, 66}
0 otherwise

(also note that we have to insert 29, 32, 64 and 69 as possible mechanism’s observations into
YAge.) Figure 5 shows the attack tree induced by the strategy σ of Figure 3 and the uniform

prior in this case. If U(·) = H(·) we obtain Iσ(S, p) = log 10 − 3
10 log 3 − 8

15 ≈ 2.31 bits; if

U(·) = E(·), instead, Iσ(S, p) = 13
30 ≈ 0.43.

Example 3.3 (cryptographic devices). We can abstractly model a cryptographic device as
a function f taking pairs of a key and a message into observations, thus, f : K × M → Y.
Assume the attacker can choose the message m ∈ M fed to the device, while the private
key k is fixed and unknown to him. This clearly yields an action-based mechanism S where
X = K, Act = M and Y are the observations. If we assume the observations noiseless, then
the conditional probability matrices are defined by

pm(y|k) = 1 iff f(k, m) = y .
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We obtain therefore a deterministic mechanism. This is the way, for example, modular
exponentiation is modeled in [26]. More realistically, the observations will be noisy, due e.g.
to the presence of “algorithmic noise”. For example, assume Y ⊆ N is the set of possible
Hamming weights of the ciphertexts (this is related to power analysis attacks, see e.g. [25].)
Then we may set

pm(y|k) = Pr(f(k, m) + N = y)

where N is a random variable modelling noise. For example, in the model of des S-Boxes
considered in [7], K = M = {0, 1}6, while Y = {0, 1, 2, . . .} is the set of observations: the
(noisy) Hamming weight of the outputs of the target S-Box. In this case, N is taken to
be the cumulative weight of the seven S-Boxes other than the target one. It is sensible to
assume this noise to be binomially distributed: N ∼ B(m, p), with m = 28 and p = 1

2 . See
[7] for details.

4. Comparing Adaptive and Non-adaptive Strategies

Conceptually, we can broadly classify mechanisms into two categories, depending on the
size of the set Act. The first category consists of systems with a huge - exponential, in
the size of any reasonable syntactic description - number of actions. The second category
consists of systems with an “affordable” number of actions. In the first category, we find,
for instance, complex cryptographic hardware, possibly described via boolean circuits or
other “succinct” notations (cf. the public key exponentiation algorithms considered in [26].)
In the second category, we find systems explicitly described by tables, such as databases
(Example 3.1 and 3.2) and S-Boxes (Example 3.3.) It makes sense to assess the difficulty of
analysing the security of mechanisms separately for these two categories.

4.1. Systems in Succinct Form. We argue that the analysis of such systems is in general
an intractable problem, even if restricted to simple special instances of the non-adaptive
case. We consider the problem of deciding if there is a finite strategy over a given time
horizon yielding an information flow exceeding a given threshold. This decision problem is
of course simpler than the problem of finding an optimal strategy over a finite time horizon:
indeed, any algorithm for finding the optimal strategy can also be used to answer the first
problem. We give some definitions.

Definition 4.1 (Systems in boolean forms). Let t, u, v be nonnegative integers. We say
a mechanism S = (X , Y, Act, {Ma : a ∈ Act}) is in (t, u, v)-boolean form if X = {0, 1}t,
Act = {0, 1}u, Y = {0, 1}v and there is a boolean function f : {0, 1}t+u → {0, 1}v such that
for each x ∈ X , y ∈ Y and a ∈ Act, pa(y|x) = 1 iff f(x, a) = y. The size of S is defined as
the syntactic size of the smallest boolean formula for f .

It is not difficult to see that the class of boolean forms coincides, up to suitable encodings,
with that of deterministic systems.

Definition 4.2 (Adaptive Bounding Problem in succinct form, abps). Given a mechanism
S in a (t, u, v)-boolean form, represented by a boolean expression, a prior distribution p(·),
l ≥ 1 and T ≥ 0, decide if there is a strategy σ of length ≤ l such that Iσ(S; p) > T .
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In the following theorem, we shall assume, for simplicity, the following reasonable pro-
perties of U(·): if p(·) concentrates all the probability mass on a single element, and q(·) is
the uniform distribution, then 0 = U(p) < U(q). A slight modification of the argument also
works without this assumption. The theorem says that even length 1 (hence non-adaptive)
strategies are difficult to assess.

Theorem 4.3. Assume U(·) satisfies the above stated property. Then the abps is np-hard,
even if fixing t = v = l = 1, and T = 0.

Proof. We reduce from the satisfiability problem for boolean formulae. Let φ(z1, . . . , zu) =
φ(z̃) be an arbitrary boolean formula with u free boolean variables z1, . . . , zu. We show how
to build in polynomial time out of φ(z̃) a mechanism S in (1, u, 1)-boolean form, and a prior
p(·), with the following property: there is a length 1 strategy σ s.t. Iσ(S, p) > 0 iff φ(z̃) is
satisfiable. Take X = Y = {0, 1} and Act = {0, 1}u. Let the mechanism S be defined by the
boolean function f(x, z1, . . . , zu) = x ∧ φ(z̃). Let p(·) be the uniform prior on X = {0, 1}.
Now, if there is an action b̃ = (b1, . . . , bu) ∈ Act such that φ(b̃) = 1 (φ(z̃) is satisfiable) then
clearly we will have that Y = X ∧ φ(b̃) is logically equivalent to X, hence U(X|Y ) = 0.
Consequently, setting σ = [ε 7→ b̃], we will have that Iσ(S, p) = U(X) − U(X|Y ) > 0. On
the other hand, if φ(z̃) is not satisfiable, then for any b̃ ∈ Act we will have that Y = X ∧φ(b̃)
is logically equivalent to 0, hence U(X|Y ) = U(X). Consequently, for any σ = [ε 7→ b̃], we
will have Iσ(S, p) = U(X) − U(X|Y ) = 0.

We should stress again that the above result concerns the difficulty of analyzing succinct
mechanisms under the simplest possible form of attacker; by no means it entails that the
adaptive and non adaptive attackers are equally effective. The following example should
clarify that between the two forms of attacker, there can be a huge difference in terms of
effectiveness.

Example 4.4 (envelopes). A secret bit s ∈ {b0, b1} and a numbered envelope e ∈ {1, ..., N}
are drawn according to some distribution p. A piece of paper with the value of s written on
it is put into e. All other envelopes are filled with a piece of paper revealing the envelope
containing the secret, that is e. The adversary can choose and open any of the envelopes
and examine its content: that is, actions of this mechanism are envelope numbers.

Assume the envelope is chosen uniformly at random. Clearly, the obvious adaptive
strategy leads the adversary to discover the secret after at most two actions. On the other
hand, a non-adaptive, brute-force strategy will lead him to examine one envelope after the
other, ignoring the suggestion given in the envelopes opened so far, leading to a strategy of
length N − 1.

4.2. General Systems. The following results apply in general, but they are particularly
significative for systems with a moderate number of actions. The next theorem essentially
says that, up to an expansion factor bounded by |Act|, non-adaptive strategies are as efficient
as adaptive ones. In fact, given any strategy σ, one can construct a non-adaptive σ′ that
is only moderately larger than σ and achieves at least the same leakage, as follows. In any
history induced by σ, each action can occur at most l times, where l is the length of σ, and
the order in which different actions appear in the history is not relevant as to the final belief
that is obtained. For any history of σ to be simulated by an history of σ′, it is therefore
enough that the latter offers all the distinct actions offered by σ, each repeated l times.
Note that, for a strategy σ, the number of distinct actions that appear in σ is |range(σ)|.
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Theorem 4.5. For each finite strategy σ of length l it is possible to build a non-adaptive
finite strategy σ′ of length |range(σ)| × l, such that Iσ′(S, p) ≥ Iσ(S, p).

Proof. Let range(σ) = {a1, . . . , ah} and let σ′ be any non-adaptive strategy that plays each
of a1, . . . , ah for l times, for example, σ′ = [a1, . . . , ah, . . . , a1, . . . , ah] (l times); note that
the length of σ′ is h × l, as required. For any yj (j ≤ l), we shall denote by σ′ − yj the
non-adaptive strategy of length h × l − j obtained by removing from σ′, seen as a list, j
actions b1, . . . , bj , where b1 = σ(ε), . . . , bj = σ(yj−1).

Denote by Yσ and Yσ′ the r.v. on Y∗ corresponding to σ and σ′, respectively. We will
show that U(X|Yσ) ≥ U(X|Yσ′). Take any x ∈ X s.t. p(x) > 0 and yj ∈ dom(pσ). We note
that, for any sequence yhl−j, and for an appropriate interleaving of the two sequences yhl−j

and yj that here we denote by just yhl−j, yj , we have that

pσ′−yj (yhl−j|x)pσ(yj |x) = pσ′(yhl−j, yj |x) . (4.1)

From (4.1), it follows that

pσ(yj |x) =
∑

yhl−j

pσ′−yj (yhl−j|x)pσ(yj |x) =
∑

yhl−j

pσ′(yhl−j, yj|x) . (4.2)

Now, for any x and yj such that p(x) > 0 and pσ(yj) > 0, we have the following.

pσ(x|yj) =
pσ(yj |x)p(x)

pσ(yj)

=
∑

yhl−j

pσ′(yhl−j, yj |x)
p(x)

pσ(yj)
(4.3)

=
∑

yhl−j

pσ′(x|yhl−j, yj)pσ′(yhl−j, yj)

p(x)

p(x)

pσ(yj)

=
∑

yhl−j

pσ′(x|yhl−j, yj)
pσ′(yhl−j, yj)

pσ(yj)
(4.4)

where in the second equality of (4.3) we have applied (4.2). It is an easy matter to show that
∑

yhl−j
pσ′(yhl−j ,yj)

pσ(yj)
= 1 (this is basically a consequence of (4.1); we leave the details to the

interested reader.) Thus (4.4) shows that pσ(·|yj) can be expressed as a convex combination
of the distributions pσ′(·|yhl−j , yj), for yhl−j ∈ Yhl−j. Using this fact, the concavity of U(·)
and Jensen’s inequality, we arrive at the following.

U(pσ(·|yj)) ≥
∑

yhl−j

U(pσ′(·|yhl−j, yj))
pσ′(yhl−j, yj)

pσ(yj)
. (4.5)



QUANTITATIVE INFORMATION FLOW 13

We finally can compute the following lower-bound for U(X|Yσ).

U(X|Yσ) =
∑

yj

pσ(yj)U(pσ(·|yj))

≥
∑

yj

pσ(yj)
∑

yhl−j

pσ′(yhl−j, yj)

pσ(yj)
U(pσ′(·|yhl−j, yj)) (4.6)

=
∑

yj

∑

yhl−j

pσ′(yhl−j, yj)U(pσ′(·|yhl−j, yj))

=
∑

yhl

pσ′(yhl)U(pσ′(·|yhl)) = U(X|Yσ′)

where the inequality (4.6) follows from (4.5).

In deterministic systems, repetitions of the same action are not relevant: this leads to
the following improved upper bound on the length of the non-adaptive σ′ that simulates σ.

Proposition 4.6. If the mechanism S is deterministic, then the upper-bound in the previous
theorem can be simplified to |range(σ)|.

Proof. Let σ be any finite non-adaptive strategy for S. Suppose there is an action a that
occurs at least twice in σ, seen as a tuple of actions, and let σ− be the non-adaptive strategy
obtained by removing the first occurrence of a from σ, seen as a list. Assume the two a’s
occur at position i and j, i < j, of σ. Since S is deterministic, it is easily seen that, for
each yn = (y1, . . . , yn), if yi 6= yj then for each x pσ(yn|x) = 0 (as submitting twice the
same action a cannot give rise to two different answers yi and yj), and as a consequence
pσ(yn) = 0. On the other hand, if yi = yj, then, denoting by yn−1 the sequence obtained by
removing yi from yn, for each x we have: pσ(yn|x) = pσ−(yn−1|x) (as p(yi|x) = p(yj |x) is

either 0 or 1), and as a consequence pσ(yn) = pσ′(yn−1) and pσ(x|yn) = pσ−(x|yn−1). This
implies that U(X|Yσ) = U(X|Yσ− ). Repeating this elimination step, we can eventually get
rid of all the duplicates in σ, while preserving the value of Iσ(S, p). Applying this fact to
the strategy σ′ defined in the proof of Theorem 4.5, we can come up with a strategy σ′′ of
length |range(σ)| such that Iσ′′(S, p) = Iσ−(S, p).

Example 4.7. We reconsider Example 3.1. For the adaptive strategy σ defined in Figure
3, we have already shown that, for U(·) = H(·), Iσ(S, p) ≈ 2.45. Consider now the non-
adaptive strategy σ′ = [ZIP, Date, Age], which is just one action longer than σ. The
corresponding attack tree is reported in Figure 6: the final partition obtained with σ′ is
finer than the one obtained with σ. In fact, Iσ′(S, p) = log 10 − 2

5 ≈ 2.92 > Iσ(S, p).

The results discussed above are important from the point of view of the analysis of
randomization mechanisms. They entail that, for systems with a moderate number of
actions, analyzing adaptive strategies is essentially equivalent to analyzing non-adaptive
ones. The latter task can be much easier to accomplish. For example, results on asymptotic
rate of convergence of non-adaptive strategies are available (e.g. [7, Th. IV.3].) They
permit to analytically assess the resistance of a mechanism as the length of the considered
strategies grows.
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5. Maximum Leakage

In this section we show that the class of adaptive and non adaptive strategies induce the
same maximum leakage, where the maximum is taken over all strategies. For truly proba-
bilistic mechanisms, strategies achieving maximum leakage are in general infinite. A key
notion is that of indistinguishability: an equivalence relation over X s.t. x and x′ are
indistinguishable if, no matter what strategy the adversary will play, he cannot tell them
apart.

Definition 5.1 (Indistinguishability). We define the following equivalence relation over X :

x ≡ x′ iff for each finite σ : pσ(·|x) = pσ(·|x′) .

Despite being based on a universal quantification over all finite strategies, indistin-
guishability is in fact quite easy to characterize, also computationally. For each a ∈ Act,
consider the equivalence relation defined by x ≡a x′ iff pa(·|x) = pa(·|x′). We have the
following result (see the Appendix for a proof.)

Lemma 5.2. x ≡ x′ iff for each a ∈ Act, pa(·|x) = pa(·|x′). In other words, ≡ is ∩a∈Act ≡a.

Now, consider X / ≡, the set of equivalence classes of ≡, and let c ranges over this set.
Let [X] be the r.v. whose outcome is the equivalence class of X according to ≡. Note that

p(c)
△
= Pr([X] = c) =

∑

x∈c p(x). We consistently extend our I-notation by defining

U(X | [X])
△
=
∑

c

p(c)U(p(·| [X] = c)) and I(X ; [X])
△
= U(X) − U(X | [X]) .

More explicitly, p(·|[X] = c) denotes the distribution over X that yields p(x)/p(c) for x ∈ c
and 0 elsewhere; we will often abbreviate p(·|[X] = c) just as p(·|c). Note that I(X ; [X])
expresses the information gain about X when the attacker gets to know the indistinguisha-
bility class of the secret. As expected, this is an upper-bound to the information that can
be gained by playing any strategy.

Theorem 5.3. I⋆(S, p) ≤ I(X ; [X]).

Proof. Fix any finite strategy σ and prior p(·). It is sufficient to prove that U(X|Y ) ≥
U(X | [X]). The proof exploits the concavity of U . First, we note that, for each x and yj of
nonzero probability we have (c below ranges over X / ≡):

pσ(x|yj) =
∑

c

pσ(x, yj , c)

pσ(yj)
=
∑

c

pσ(c|yj)pσ(x|yj , c) . (5.1)

By (5.1), concavity of U(·) and Jensen’s inequality

U(p(·|yj)) ≥
∑

c

pσ(c|yj)U(pσ(·|yj , c)) . (5.2)
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Now, we can compute as follows (as usual, yj below runs over sequences of nonzero proba-
bility):

U(X|Y ) =
∑

yj

pσ(yj)U(pσ(·|yj)) ≥
∑

yj ,c

pσ(yj)pσ(c|yj)U(pσ(·|yj , c)) (5.3)

=
∑

yj ,c

pσ(yj)pσ(c|yj)U(p(·|c)) =
∑

c




∑

yj

pσ(yj , c)



U(p(·|c)) (5.4)

=
∑

c

p(c)U(p(·|c)) = U(X | [X])

where: (5.3) is justified by (5.2); and the first equality in (5.4) follows from the fact that,
for each x, pσ(x|yj , c) = p(x|c) (once the equivalence class of the secret is known, the
observation yj provides no further information about the secret.)

As to the maximal achievable information, we start our discussion from deterministic
mechanism.

Proposition 5.4. Let S be deterministic. Let σ = [a1, . . . , ak] be a non-adaptive strategy
that plays all actions in Act once. Then I⋆(S, p) = Iσ(S, p).

Proof. Let (X, Y ) ∼ pσ(·). We prove that U(X | Y ) = U(X | [X]). We first note that for
each c ∈ X / ≡ there is exactly one sequence yk

c s.t. pσ(yk
c |c) = 1: this follows from S

being deterministic. Moreover, if c 6= c′ then yk
c 6= yk

c′ : otherwise, it would follow that
pai

(y|c) = pai
(y|c′) for each ai ∈ Act and y ∈ Y, contrary to Lemma 5.2 (note that p(·|c)

is the same as p(·|x), for any x ∈ c.) These facts can be used to show, through easy
manipulations, that p(x|yk

c ) = p(x|c) for each x. As a consequence, one can compute as
follows.

U(X|Y ) =
∑

yk

pσ(yk)U(pσ(·|yk))

=
∑

c

p(c)
∑

yk

pσ(yk|c)U(pσ(·|yk))

=
∑

c

p(c)U(pσ(·|yk
c ))

=
∑

c

p(c)U(pσ(·|c))

= U(X | [X]) .

Hence, in the deterministic case, the maximal gain in information is obtained by a trivial
brute-force strategy where all actions are played in any fixed order. It is instructive to
observe such a strategy at work, under the form of an attack tree. The supports of the
distributions that are at the same level constitute a partition of X : more precisely, the
partition at level i (1 ≤ i ≤ k) is given by the equivalence classes of the relation ∩i

j=1 ≡aj
.

An example of this fact is illustrated by the attack tree in Figure 6, relative to the non-
adaptive strategy [ZIP, Date, Age] for the mechanism in Example 3.1. This fact had been
already observed in [26] for the restricted model considered there. Indeed, one would obtain
the model of [26] by stripping the probabilities off the tree in Figure 6.

The general probabilistic case is more complicated. Essentially, any non-adaptive stra-
tegy where each action is played infinitely often achieves the maximum information gain.
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Figure 6. The attack tree corresponding to the the non-adaptive strategy
[ZIP, Date, Age] for Example 3.1.

The next theorem considers one such strategy; the proof of this result is reported in Appen-
dix B.

Theorem 5.5. There is a total, non-adaptive strategy σ s.t. Iσ(S, p) = I(X; [X]). Conse-
quently, I⋆(S, p) = I(X ; [X]).

Of course, as shown in the preceding section, finite adaptive strategies can be more
efficient in terms of length by a factor of |Act| when compared with non-adaptive ones.
Concerning capacity, we do not have a general formula for the maximizing distribution. In
what follows, we limit our discussion to two important cases for U(·), Shannon entropy and
error entropy. In both cases, capacity only depends on the number K of indistinguishability
classes. For guessing entropy, we conjecture that C(S) = K−1

2 , but at the moment a proof
of this fact escapes us.

Theorem 5.6. The following formulae holds, where K = |X / ≡ |.

• For U = H (Shannon entropy), C(S) = log K.
• For U = E (Error entropy), C(S) = 1 − 1

K
.

Proof. Let xi any representative of class ci, for i = 1, . . . , K.

• U = H. By the symmetry of mutual information in the case of Shannon entropy, we have

I(X; [X]) = H([X]) − H([X] | X)
︸ ︷︷ ︸

=0

= H([X])

= −
∑

ci

p(ci) log p(ci) ≤ log K

where the last inequality follows from the property of Shannon entropy that H(q) ≤
log |supp(q)|, for any distribution q. On the other hand, if we take the distribution p(·)
defined as p(xi) = 1

K
, and p(x) = 0 elsewhere, we can easily compute that I(X; [X]) =

log K.
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• U = E. Let p(·) be any prior and assume without loss of generality that p(xi) =
maxx∈ci

p(x) for each i, and furthermore that p(x1) = maxx p(x). By easy manipula-
tions, we have:

I(X; [X]) = E(X) − E(X | [X])

= (1 − p(x1)) −

(

1 −
∑

ci

p(ci)
p(xi)

p(ci)

)

=

(
K∑

i=1

p(xi)

)

− p(x1) =
K∑

i=2

p(xi) .

Now it is easily checked that the last term in this chain is ≤ 1 − 1
K

: this is done by

separately considering the two cases maxx p(x) = p(x1) ≤ 1
K

and maxx p(x) = p(x1) > 1
K

.

On the other hand, if we take, as above, the distribution p(·) defined as p(xi) = 1
K

, and

p(x) = 0 elsewhere, we can easily compute that I(X; [X]) = 1 − 1
K

.

Example 5.7. Consider the mechanism defined in Example 3.1. One has the following
capacities: for U(·) = H(·), C(S) = log 8 = 3, while for U(·) = E(·), C(S) = 7

8 = 0.875.

6. Computing Optimal Finite Strategies

We show that, for finite strategies, Iσ(S, p) can be expressed recursively as a Bellman equa-
tion. This allows for calculation of optimal finite strategies based on standard algorithms,
such as backward induction.

6.1. A Bellman Equation. Let us introduce some terminology. For each y, the y-derivative

of σ, denoted σy, is the function defined thus, for each yj ∈ Y∗: σy(yj)
△
= σ(yyj). Note that

if σ has length l > 1, then σy is a strategy of height ≤ l − 1. For l = 1, σy is the empty
function. Recall that according to (2.3), for h = ay, we have6

pay(x) = pa(x|y) .

By convention, we let Iσ(· · · ) denote 0 when σ is empty. Moreover, we write I[a](· · · ) as
Ia(· · · ).

Lemma 6.1. Let p(·) be any prior on X . Let σ be a strategy with σ(ε) = a. Then
Iσ(S; p) = Ia(S; p) +

∑

y pa(y)Iσy (S; pay).

We introduce some additional notation to be used in the proof of this lemma. Let l
denote the length of a strategy σ, and let (X, Y ) be distributed according to pσ(·). We
can decompose Y as the concatenation of the 1st observation and whatever sequence of
observations is left, thus: Y = Y1 · Ys. Here, Y1 takes values on Y, while Ys takes values on
a subset of ∪1≤j≤lY

j - in particular, if l = 1, Ys takes on the value ε with probability 1. In
what follows, we denote the marginal distribution of Y1 under σ just as pσ(y), and that of
Ys as pσ(yj), for generic y and yj.

6In terms of a given prior p(·) and of the matrices of S , this can be also expressed as: pay(x) =
pa(y|x)p(x)∑

x
′

pa(y|x′)p(x′)
.
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Proof. (of Lemma 6.1) It is an easy matter to prove the following equations, for each prior
p(·), finite strategy σ with σ(ε) = a, sequence yj, observation y, one has (below, y and
yj run over elements of nonzero probability; moreover, for any prior p(·), history h and
strategy σ, the term ph

σ is to be parsed as (ph)σ):

pσ(y) = pa(y) (6.1)

pσ(x|y) = pa(x|y) = pay(x) (6.2)

pσ(x|yyj) = pay
σy

(x|yj) (6.3)

pσ(yj|y) = pay
σy

(yj) . (6.4)

By applying equalities (6.1), (6.2), (6.3) and (6.4) above as appropriate, we have:

Iσ(S, p) = I(X; Y )

= [U(X) − U(X|Y1)] + [U(X|Y1) − U(X|Y )]

=

[

U(p) −
∑

y

pσ(y)U(pσ(·|y))

]

+

[
∑

y

pσ(y)U(pσ(·|y)) − pσ(y, yj)U(pσ(·|yyj))

]

=

[

U(p) −
∑

y

pσ(y)U(pσ(·|y))

]

+

[
∑

y

pσ(y)U(pσ(·|y)) − pσ(y)pσ(yj |y)U(pσ(·|yyj))

]

=

[

U(p) −
∑

y

pσ(y)U(pσ(·|y))

]

+
∑

y

pσ(y)



U(pσ(·|y)) −
∑

yj

pσ(yj |y)U(pσ(·|yyj))





=

[

U(p) −
∑

y

pa(y)U(pa(·|y))

]

+
∑

y

pa(y)



U(pay) −
∑

yj

pay
σy

(yj)U(pay
σy

(·|yj))





= Ia(S; p) +
∑

y

pa(y)Iσy (S; pay.)

Let us say that a strategy σ of length l is optimal for S, p(·) and l if it maximizes Iσ(S, p)
among all strategies of length l.

Corollary 6.2 (Bellman-type equation for optimal strategies). There is an optimal strategy
σ⋆ of length l for S and p(·) that satisfies the following equation

Iσ⋆(S; p) = max
a






Ia(S; p) +

∑

y: pa(y)>0

pa(y)Iσ⋆
a,y

(S; pay)






(6.5)

where σ⋆
a,y is an optimal strategy of length l − 1 for S and pay(·).

Corollary 6.2 allows us to employ dynamic programming or backward induction to
compute optimal finite strategies. We discuss this briefly in the next subsection.

6.2. Markov Decision Processes and Backward Induction. A mechanism S and a
prior p(·) induce a Markov Decision Process (mdp), where all possible attack trees are re-
presented at once. Backward induction amounts to recursively computing the most efficient
attack tree out of this mdp, limited to a given length. More precisely, the mdp M induced by
S and a prior p(·) is an in general infinite tree consisting of decision nodes and probabilistic
nodes. Levels of decision nodes alternate with levels of probabilistic nodes, starting from
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p

a b

(y , pa(y)) (y′, pa(y′))
pay pay′

(y′, pb(y′))(y , pb(y))
pby pby′

a b a b baba

y y′ y y′ y y′ y y′ y′yy′yy′yy′y

Figure 7. The first few levels of a mdp induced by a prior p(·) and a mechanism
with Act = {a, b} and Y = {y, y′}. Round nodes are decision nodes and squares
nodes are probabilistic nodes. For the sake of space, labels of the last level of arcs
and nodes are only partially shown.

the root which is a decision node. Decision nodes are labelled with probability distributions
over X , edges outgoing decision nodes with actions, and edges outgoing probabilistic nodes
with pairs (y, λ) of an observation and a real, in such a way that (again, we identify nodes
with the corresponding history):

• a decision node corresponding to history h is labelled with ph(·), if this is defined, other-
wise the node and its descendants are removed, as well as the incoming edge;

• for any pair of consecutive edges leading from a decision node h to another decision node
hay, for any a ∈ Act and y ∈ Y, the edge outgoing the probabilistic node is labelled with
(y, ph

a(y)).
Figure 7 shows the first few levels of such a mdp.

In order to compute an optimal strategy of length l ≥ 1 by backward induction, one initially
prunes the tree at l-th decision level (the root is at level 0) and then assigns rewards to
all leaves of the resulting tree. Moreover, each probabilistic node is assigned an immediate
gain. Rewards are then gradually propagated from the leaves up to the root, as follows:

• each probabilistic node is assigned as a reward the sum of its immediate gain and the
average reward of its children, average computed using the probabilities on the outgoing
arcs;

• each decision node is assigned the maximal reward of its children; the arc leading to the
maximizing child is marked or otherwise recorded.

Eventually, the root will be assigned the maximal achievable reward. Moreover, the paths
of marked arcs starting from the root will define an optimal strategy of length l. We can
apply this strategy to our problem, starting with assigning rewards 0 to each leaf node h,
and immediate gain Ia(S, ph) to each a-child of any decision node h. The correctness of the
resulting procedure is obvious in the light of Corollary 6.2.

Age

ZIP

29, 31, 65, 66

Date

30, 32, 64, 67, 68, 69

Figure 8. A Shannon entropy optimal strategy for Example 3.2. Leaves with the
same label and their incoming arcs have been coalesced.

In a crude implementation of the above outlined procedure, the number of decision
nodes in the mdp will be bounded by (|Y|×|Act|)l+1−1 (probabilistic nodes can be dispensed
with, at the cost of moving incoming action labels to outgoing arcs.) Assuming that each
distribution is stored in space O(|X |), the mdp can be built and stored in time and space
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O(|X | × (|Y| × |Act|)l+1). This is also the running time of the backward induction outlined
above, assuming U(·) can be computed in time O(|X |) (some straightforward optimizations
are possible here, but we will not dwell on this.) By comparison, the running time of the

exhaustive procedure for deterministic systems outlined in [26, Th.1] is O(l ×|Act|r
l

×|X |×
log |X |), where r is the maximal number of classes in any relation ≡a; since r can be as

large as |Y|, this gives a worst-case running time of O(l × |Act||Y|l × |X | × log |X |).

Example 6.3. Applying backward induction to the mechanism of Example 3.2 with U(·) =
H(·) and l = 2, one gets the optimal strategy σ shown in Figure 8, with Iσ(S, p) ≈ 2.4 bits.
Some details of the derivation of this strategy are reported in Appendix C.

7. The role of concavity

We elucidate a connection between our definition of uncertainty (convexity + continuity)
and a concept of scoring rule in Bayesian decision theory. A scoring rule encodes a system
of (dis)incentives: a wrong forecast about an event causes the forecaster a loss, whose
magnitude depends on both the forecast that has been put forward, and on the event
that has actually occurred. The average loss under the best forecast is named entropy
in this context. In essence, we will show that: (a) every proper scoring rule induces an
entropy function that is concave, hence necessarily continuous at least in the interior of the
probability simplex; (b) every concave function arises, under an additional mild assumption,
as the entropy induced by a certain scoring rule. This almost complete correspondence, and
its simple definition, give a strong support to our choice of the class of uncertainty functions.

The connection between concavity and uncertainty has been explored in Statistics at
least starting from the 1950’s, and it comes into many different flavours. The following
discussion is our personal take of this issue, for which we claim no technical novelty. Our
presentation is partly inspired by [17, Sections 9-10]. For notational simplicity, in what
follows we fix any ordering of the elements of X , say x1, ..., xn, so that we can identify any
distribution p with a vector (p1, ..., pn) ∈ R

n.
Formally, in the context of Bayesian decision theory, a scoring rule is a function

S : X ×
◦
P → R

where
◦
P denotes here the interior part of P, that is, the set of those distributions q s.t.

q(x) > 0 for each x ∈ X . This function is given the following interpretation. A forecaster
(in our case, the adversary) is asked to put forward a forecast about the outcome of an event
(in our case, the secret.) A forecast takes the form of a probability distribution q, which
represents the forecaster’s estimation of the probability of each possible outcome x ∈ X .
Then S(x, q) represents the loss incurred by the forecaster when the outcome is actually x
and he has put forward q. If the outcome is distributed according to p, the average loss

incurred if putting forward q ∈
◦
P is given by

S(p, q)
△
=
∑

x

p(x)S(x, q) .

This definition is extended to each q in the frontier, q ∈ P \
◦
P , by lim infq′→q S(p, q′), be this

finite or infinite. The scoring rule S is called proper if the choice q = p always minimizes
S(p, q). In other words, a proper scoring rule (PSR) encodes a penalty system that forces
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the forecaster to be honest and propose the distribution he really thinks is the true one.
For a PSR, the minimal loss corresponding to p is - perhaps not surprisingly - also called
the induced entropy

H(p)
△
= S(p, p) .

Seen as a function of p, H(p) gives a measure of the intrinsic risk associated with each p,
under the loss model encoded by the PSR S.

Proposition 7.1. Any entropy function induced by a PSR is a concave function over P.

As a consequence, it is continuous over
◦
P.

Proof. Let H(p) = S(p, p), with S a PSR. Consider any λ ∈ [0, 1] and p, q ∈ P, and let
r = λp + (1 − λ)q. Assume first that r is in the interior of P. Then

H(r) = S(r, r)

= S(λp + (1 − λ)q, r)

= λS(p, r) + (1 − λ)S(q, r)

≥ λS(p, p) + (1 − λ)S(q, q)

= λH(p) + (1 − λ)H(q)

where the second equality follows from the linearity of S w.r.t. the first argument and the
inequality follows from the definition of PSR. If r is in the frontier of P, by the properties
of lim inf, one has

H(r) = lim inf
r′→r

S(r, r′)

= lim inf
r′→r

S(λp + (1 − λ), r′)

= lim inf
r′→r

λS(p, r′) + (1 − λ)S(q, r′)

≥ λ lim inf
r′→r

S(p, r′) + (1 − λ) lim inf
r′→r

S(q, r′)

= λS(p, r) + (1 − λ)S(q, r)

and then the reasoning proceeds as above. This concludes the proof that H is concave.
Finally, it is a standard result that concavity over P implies continuity – in fact, local

lipschitzianity - over
◦
P (see e.g. [10].)

On the other hand, under a mild additional assumption, any concave function is induced
by a PSR, as we will check shortly. Let H be concave on P. It is well known that concave

functions enjoy the following supporting hyperplane property (see e.g. [10].) For each q ∈
◦
P,

there exists a vector cq = (c1, ..., cn) ∈ R
n such that, for each p ∈ P (here 〈·, ·〉 denotes the

usual scalar product between two vectors)

H(p) ≤ H(q) + 〈cq, p − q〉 = H(q) +
n∑

i=1

ci(pi − qi) . (7.1)

The above relation merely means that the graph of H is all below an hyperplane that is
tangent to the point (q, H(q)). A vector cq satisfying (7.1) is called a subgradient of H at
q. In particular, if H is differentiable at q, there is exactly one choice for cq, namely the
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gradient of H at q

cq = ∇H(q) =

(
∂H

∂x1
(q), ...,

∂H

∂xn
(q)

)

.

Now, for q ∈
◦
P , we set

S(xi, q)
△
= H(q) + ci − 〈cq, q〉 . (7.2)

Clearly, for each p, we have S(p, q) = Ep[S(X, q)] = H(q) + 〈cq, p − q〉. We extend this to

q in the frontier by S(p, q)
△
= lim infq′→q S(p, q′). Assume now that the vectors cq can be

chosen in such a way that the following property holds true for any p in the frontier

lim inf
p′→p

〈cp′ , p − p′〉 = 0 . (7.3)

This condition means that, as p′ approaches a point p in the frontier, the tangent hyperplane
at p′ does not approach a vertical hyperplane "too fast". We now check that S(x, q) is a
PSR. First, note that for any p ∈ P, we have S(p, p) = H(p). For p in the interior, this
follows by definition; while for p in the frontier, we note that S(p, p) = lim infp′ S(p, p′) =
H(p)+lim infq′〈cp′ , p−p′〉 and then exploit (7.3). Now, applying the supporting hyperplane
property (7.1) for q in the interior we have

S(p, q) = Ep[S(X, q)]

= H(q) + 〈cq, p − q〉

≥ H(p)

= S(p, p) .

For q in the frontier, the same property follows from

S(p, q) = lim inf
q′

S(p, q′) ≥ lim inf
q′

S(p, p) = S(p, p) ,

where the inequality follows from above. This shows that S(x, q) is a PSR and that the
induced entropy is precisely the given concave function H. In other words, we have just
shown the following proposition.

Proposition 7.2. Every concave function over P that respects (7.3) is the entropy induced
by some PSR.

Example 7.3. Let us consider the Shannon entropy function H(p) = −
∑

i pi log pi. By
direct calculation, it is immediate to check that S(xi, q) = − log qi is a PSR for Shannon
entropy. However, it is instructive to apply the recipe in the proof of Proposition 7.2 to
reconstruct S(x, q).

H(p) is differentiable in the interior of the probability simplex. The gradient of H at q
is

∇H(q) = (−(1 + log q1), ..., −(1 + log qn))
△
= cq .

Now easy calculations show that 〈cp′ , p − p′〉 = H(p) − H(p′) + D(p||p′) → 0 as p′ → p, thus

making the condition (7.3) true7. Noting that 〈cq, q〉 = H(q) − 1, we apply (7.2) and define

S(xi, q)
△
= H(q) − (1 + log qi) − (H(q) − 1) = − log qi .

7Here D(p||p′)
△
=
∑

i
pi log(pi/qi) is the familiar Kullback-Leibler divergence. Note in particular that

D(p||p′) → 0 as p′ → p. In passing, it is not true in general that D(p||p′) → 0 as p → p′.
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A similar calculation for H(p) = var(p) yields

S(xi, q) = var(q) + x2
i − 2xi − Eq[X2] + 2Eq[X] = (xi − 1)2 − (Eq[X] − 1)2

which leads to S(p, q) = −Eq[X]2 + 2Eq[X] + Ep[X2] − 2Ep[X] and, as expected, S(p, p) =
var(p).

We finally consider the case of error entropy, H(p) = 1 − maxi pi. For each q let us
denote by jq an index in {1, ..., n} such that qjq = maxi qi (if there is more than one such
index, choose one arbitrarily.) At each q with a single maximal element, H is differentiable
and we can set (here δxy is the Kronecker’s delta symbol)

cq
△
= ∇H(q) = (−δ1jq , ..., −δnjq ) .

Hence, applying (7.2) and noting that 〈cq, q〉 = −qjq , for each such q we let

S(xi, q)
△
= (1 − qjq) − δijq + qjq = 1 − δijq .

At points q with more than one maximal element, H is not differentiable, and the choice
of cq is not unique. However, cq = (−δ1jq , ..., −δnjq ) is still a subgradient, so the same
definition of S(xi, q) as above applies. Note that S(p, q) = 1 − pjq and, in particular,
S(p, p) = 1 − pjp = 1 − maxi pi as expected.

8. Conclusion, Related and Further Work

We have proposed a general information-theoretic model for the analysis of confidentiality
under adaptive attackers. Within this model, we have proven several results on the limits
of such attackers, on the relations between adaptive and non-adaptive strategies, and on
the problem of searching for optimal finite strategies. We have also elucidated a connection
between our notion of uncertainty function and Bayesian decision theory.

8.1. Related Work. In [26], Köpf and Basin introduced an information-theoretic model of
adaptive attackers for deterministic mechanisms. Their analysis is conducted essentially on
the case of uniform prior distributions. Our model generalizes [26] in several respects: we
consider probabilistic mechanisms, generic priors and generic uncertainty functions. More
important than that, we contrast quantitatively the efficiency of adaptive and non-adaptive
strategies, we characterize maximum leakage of infinite strategies, and we show how to
express information leakage as a Bellman equation. The latter leads to search algorithms
for optimal strategies that, when specialized to the deterministic case, are more time-efficient
than the exhaustive search outlined in [26] (see Section 6.)

Our previous paper [7] tackles multirun, non-adaptive adversaries, in the case of min-
entropy leakage. In this simpler setting, a special case of the present framework, one
manages to obtain simple analytical results, such as the exact convergence rate of the
adversary’s success probability as the number of observations goes to infinity.

Alvim et al. [1] study information flow in interactive mechanisms, described as proba-
bilistic automata where secrets and observables are seen as actions that alternate during
execution. Information-theoretically, they characterize these mechanisms as channels with
feedback, giving a Shannon-entropy based definition of leakage. Secret actions at each step
depend on previous history, but it is not clear that this gives the adversary any ability to
adaptively influence the next observation, in our sense.
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In [2], Alvim et al. study g-leakage, a generalization of min-entropy leakage, where the
adversary’s benefit deriving from a guess about a secret is specified using a gain function g:
intuitively, the closer the guess to the secret, the higher the gain. Alvim et al. derive general
results about g-leakage, including bounds between min-capacity, g-capacity and Shannon
capacity. Gain functions are conceptually very close to the proper scoring rules (PSRs) we
considered in Section 7. Abstracting from the unimportant difference of encoding gains
rather then losses, a gain function can be seen in fact as a special case of a PSR where the
forecast put forward by the forecaster is always a Dirac’s delta. One important technical
difference between [2] on one side and the framework of PSRs and our paper on the other side,
is that entropy functions, as defined in [2], are all generalizations of the familiar min-entropy.
As such, they are in general neither concave nor convex. A thorough investigation of the
connections between g-leakage and PRSs is left for future work. More or less contemporary
to the short version of the present paper is Mardziel et al.’s [29], which extends the analysis
via g-leakage functions to systems with memory. This work is similar in spirit to ours,
but now successive responses to queries may not be independent, as the secret evolves over
time. They too utilize backward induction to calculate leakage. Like in the static case, this
dynamic g-leakage does not lend itself to be recast in the present framework. A dynamic
approach is also at the core of a model in [5] based on Hidden Markov Models, where the
observed system evolves over time, although the secret is fixed.

After the publication of the short version of the present paper [8], we learned from a
statistician colleague about the existence of a large body of work in Bayesian forecasting
and PSRs. A good synthesis of this research can be found in the works of DeGroot, see
e.g. [18, 19] and references therein, although the terminology used there is slightly different
(utility functions are considered rather than scoring rules.) Remarkably, [18] contains con-
siderations on sequential observations and decisions which, despite the different terminology
and emphases, come very close to our adaptive model of qif. Dawid [17] and Gneiting and
Raftery [24] give modern accounts of these themes. The role of concavity in qif is also cen-
tral to some recent works by McIver et al. [30, 31]. An important result is the presentation
of a prior vulnerability as a “disorder test” that is, interestingly, defined in terms of con-
tinuous and concave functions. It would be interesting to see how much these approaches
share with the one based on PSRs.

The use of Bellman equation and backward induction, applied to multi-threaded pro-
grams, in a context where strategies are schedulers, is also found in [13]. [28, 23] propose
models to assess system security against classes of adversaries characterized by user-specified
‘profiles’. While these models share some similarities with ours - in particular, they too em-
ploy mdp’s to keep track of possible adversary strategies - their intent is quite different from
ours: they are used to build and assess analysis tools, rather than to obtain analytical re-
sults. Also, the strategies they consider are tailored to worst-case adversary’s utility, which,
differently from our average-case measures, is not apt to express information leakage.

8.2. Further work. There are several directions worth being pursued, starting from the
present work. First, one would like to implement and experiment with the search algorithm
described in Section 6. Adaptive querying of datasets might represent an ideal ground for
evaluation of such algorithms. Second, one would like to investigate worst-case variations
of the present framework: an interesting possibility is to devise an adaptive version of
Differential Privacy [21, 22] or one of its variants [9]. Finally, connections between (adaptive)
qif and PSRs in Statistics deserve to be further explored.
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Appendix A. Proofs of Lemma 2.7 and of Lemma 5.2

Lemma A.1 (Lemma 2.7). Iσ(X; Y ) ≥ 0. Moreover Iσ(X; Y ) = 0 if X and Y are inde-
pendent.

Proof. First note that, by a simple manipulation relying on Bayes theorem, we can express
the prior distribution p(·) as follows, for each x ∈ X (summation ranges over y of positive
probability):

p(x) =
∑

y

p(y)p(x|y) .

Hence by concavity of U and Jensens’s inequality:

U(X) = U(p)

= U

(
∑

y

p(y)p(·|y)

)

≥
∑

y

p(y)U(p(·|y))

= U(X|Y ) .

Moreover, if X and Y are independent, then for each y of positive probability, p(x) = p(x|y),
hence

∑

y p(y)p(·|y) = p(·), so that U(X) = U(p) = U(X|Y ).

Lemma A.2 (Lemma 5.2). x ≡ x′ iff for each a ∈ Act, pa(·|x) = pa(·|x′). In other words,
≡ is ∩a∈Act ≡a.

Proof. Let x, x′ ∈ X . Assume first x ≡a x′ for each action a. Let σ be any finite strategy
and ynyn+1 a sequence such that yn ∈ dom(σ) and ynyn+1 /∈ dom(σ). From (2.1), we know
that

pσ(ynyn+1|x) = pa1(y1|x) · · · pan(yn|x)pan+1(yn+1|x)

pσ(ynyn+1|x′) = pa1(y1|x′) · · · pan(yn|x′)pan+1(yn+1|x′)
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where a1 = σ(ǫ), a2 = σ(y1),..., an = σ(y1 · · · yn−1) and an+1 = σ(yn). From the above
equations, it is immediate to conclude that, as pa(·|x) = pa(·|x′) for each action a, then
pσ(ynyn+1|x) = pσ(ynyn+1|x′). Since this holds for any finite σ, we conclude x ≡ x′. The
other direction is obvious, as pa(·|x) = p[a](·|x) (where [a] is a length 1 strategy) for any a
and x.

Appendix B. Proof of Theorem 5.5

In order to prove Theorem 5.5, we introduce some terminology and concepts from the
information-theoretic method of types [16]. For distributions p(·) and q(·) on Y, we let their

Kullback-Leibler (KL) divergence be defined as: D(p‖q)
△
=
∑

y p(y) log p(y)
q(y) , with the proviso

that 0 · log 0
p(y) = 0 and p(y) · log p(y)

0 = +∞ for p(y) > 0. Given n ≥ 1, and a sequence yn ∈

Yn, the type (or empirical distribution) of yn, denoted tyn , is the probability distribution

over Y defined thus: tyn(y)
△
= n(y|yn)

n
, where n(y|yn) denotes the number of occurrences of y

in yn. In this section, H will always stand for Shannon entropy, H(p) = −
∑

x p(x) log p(x).
We will often abbreviate H(tyn) as H(yn), and D(tyn ||q) as D(yn||q), thus denoting the
type by a corresponding sequence, when no confusion arises. Given ε > 0 and a probability
distribution q(·) on Y, the “ball” of n-sequences whose type is within distance ε of q(·) is
defined thus:

B(n)(q, ε)
△
= {yn : D(yn||q) ≤ ε} .

We shall also make use of the following new terminology about sequences. Assume |Act| =
k. Given a sequence yn = (y1, y2, . . . , yn) and an integer j = 1, . . . , k, we shall denote
by yn(j) the subsequence (yj, yk+j, y2k+j, . . .), obtained by taking the symbols of yn at
position j, k + j, 2k + j, . . .. In the rest of the section, unless otherwise stated, we let σ
be the infinite non-adaptive strategy that plays actions a1, . . . , ak, a1, a2, . . ., in a lock-step

fashion: σ(yj)
△
= a(j mod k)+1. For any n ≥ 1, we let σn be the truncation at level n of σ:

σn
△
= σ\n. For a prior p(·), let pσn be the resulting joint probability distribution on X × Yn:

note that, for each x, the support of pσn(·|x) is included in Yn. Let (X, Y n) be jointly
distributed according to pσn : here we have introduced the superscript n to record explicitly
the dependence of Y from n. Let us define the set of sequences yn where the type of each
sub-sequence yn(i) is within ε distance of the distribution pai

(·|x), thus:

B̂(n)(x, ε)
△
= {yn : D ( yn(i)||pai

(·|x) ) ≤ ε for i = 1, . . . , k} . (B.1)

Furthermore, we define the following quantities depending on a given sequence yn and
x ∈ X :

Ĥ(yn)
△
=

k∑

i=1

H(yn(i)) (B.2)

D̂(yn||pσn(·|x))
△
=

k∑

i=1

D(yn(i)||pai
(·|x)) . (B.3)
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Finally, for each sequence ym ∈ Ym and for each action a ∈ Act, we let

pm
a (ym|x) =

m∏

i=1

pa(yi|x) (B.4)

(this is the probability of generating ym with i.i.d. extractions obeying distribution pa(·|x).)

Lemma B.1. Let n be a multiple of k and x ∈ X . Then

pσn(yn|x) = 2− n
k

[Ĥ(yn)+D̂(yn||pσn(·|x))] .

Proof.

pσn(yn|x) =
k∏

j=1

p
n
k
aj (yn(j)|x) (B.5)

=
k∏

j=1

2− n
k (H(yn(j))+D(yn(j)‖paj

(·|x))) (B.6)

= 2
− n

k

∑k

j=1 (H(yn(j))+D(yn(j)‖paj
(·|x)))

= 2− n
k (Ĥ(yn)+D̂(yn‖pσn(·|x))) (B.7)

where: (B.5) follows from re-arranging factors and the definition of p
n
k
aj (·); (B.6) follows

from [16, Theorem 11.1.2]; in (B.7) we have applied definitions (B.2) and (B.3).

Below, for a set A and a distribution q(·), we let q(A) denote
∑

a∈A q(a).

Lemma B.2. Let n be a multiple of k, x ∈ X and ε > 0. Then

pσn(B̂(n)(x, ε)|x) ≥ 1 − 2− n
k

ε

(
n

k
+ 1

)k|Y|

C

for some constant C, not depending on n.

Proof. Let m = n/k. We give a lower bound on the probability of B̂(n)(x, ε) as follows.

pσn(B̂(n)(x, ε)|x) =
∑

yn∈B̂(n)(x,ε)

pσn(yn|x) =
∑

yn∈B̂(n)(x,ε)

k∏

i=1

pm
ai

(yn(i)|x)

=
k∏

i=1

∑

ym∈B(m)(pm
ai

(·|x),ε)

pai
(ym|x) =

k∏

i=1

pm
ai

(

B(m)(pai
(·|x), ε) | x

)

(B.8)

≥
k∏

i=1

(

1 − 2−mε(m + 1)|Y|
)

=
(

1 − 2−mε(m + 1)|Y|
)k

(B.9)

= 1 +
k∑

i=1

(

k

i

)

(−1)i2−miε(m + 1)|Y|i ≥ 1 − 2−mε(m + 1)k|Y|C(B.10)

where: the first equality in (B.8) follows from the definition of B̂(n)(x, ε); the inequality

(B.9) follows from [16, Eq. 11.67]; in (B.10), C = k · maxi

(k
i

)
(note that

(k
i

)
is maximum

when i = ⌈k/2⌉.)
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Lemma B.3. Let x, x′ ∈ X , with x 6≡ x′. Let n ≥ 1. Then there is ε > 0 such that
B̂(n)(x, 2ε) ∩ B̂(n)(x′, 2ε) = ∅.

Proof. It is well-known that given any two distinct distributions p(·) and q(·), there is

ε > 0 such that B(n)(p, 2ε) ∩ B(n)(q, 2ε) = ∅ (this is a consequence of Pinsker’s inequal-

ity, [16, Lemma 11.6.1].) Thus, choose ε > 0 such that, for some j, B(n)
(

paj
(·|x), 2ε

)

∩

B(n)
(

paj
(·|x′), 2ε

)

= ∅: the wanted statement follows from the definition of B̂(n)(x, 2ε) and

B̂(n)(x′, 2ε).

We are now set to prove Theorem 5.5.

Theorem B.4 (Theorem 5.5). There is a total, non-adaptive strategy σ s.t. Iσ(S, p) =
I(X; [X]). Consequently, I⋆(S, p) = I(X ; [X]).

Proof. Using the notation previously introduced, we shall prove that, as n → ∞

U(X|Y n) −→ L for some L ≤ U(X|[X]) . (B.11)

This will imply the thesis, as then Iσ(S, p) ≥ I(X; [X]), which, by virtue of Theorem 5.3,
implies Iσ(S, p) = I(X; [X]).

Let the equivalence classes of ≡ be c1, . . . , cK . For each i = 1, . . . , K, choose a repre-
sentative xi ∈ ci of nonzero probability (if it exists; otherwise class ci is just discarded.) We
can compute as follows.

U(X|Y n) =
∑

yn,x

p(x)pσn(yn|x)U(pσn(·|yn))

=
∑

x

p(x)
∑

yn

pσn(yn|x)U(pσn(·|yn))

≤
∑

x

p(x)U




∑

yn

pσn(yn|x)pσn(·|yn)



 (B.12)

=
∑

ci

∑

x∈ci

p(x)U




∑

yn

pσn(yn|xi)pσn(·|yn)





=
∑

ci

p(ci)U




∑

yn

pσn(yn|xi)pσn(·|yn)





︸ ︷︷ ︸

△
=qn

i
(·)

=
∑

ci

p(ci)U(qn
i ) (B.13)

where the inequality in (B.12) stems from U ’s concavity and Jensen’s inequality. We will
now show that there is a sub-sequence of indices {nj} such that for each i = 1, . . . , K,

q
nj

i (·) −→ p(·|ci) (B.14)

(according to any chosen metrics in P.) This will imply (B.11): in fact, by virtue of U ’s con-
tinuity, we will have, on the chosen sub-sequence,

∑

ci
p(ci)U(q

nj

i ) →
∑

ci
p(ci)U(p(·|ci)) =

U(X|[X]). Hence, by virtue of (B.13), on the chosen sub-sequence and hence on every
sequence, we will have U(X|Y n) → L ≤ U(X|[X]), which is (B.11).



30 M. BOREALE AND F. PAMPALONI

In order to prove (B.14), take any n ≥ 1 that is a multiple of k, and choose any ε > 0

such that B̂(n)(x, 2ε) ∩ B̂(n)(x′, 2ε) = ∅ whenever x 6≡ x′ (the existence of such an ε is
guaranteed by Lemma B.3.) Consider a generic x ∈ ci such that p(x) > 0. We have the
following lower bound for qn

i (x).

qn
i (x) =

∑

yn

pσn(yn|xi)pσn(yn|xi)p(x)
∑

x′ pσn(yn|x′)p(x′)
=
∑

yn

pσn(yn|xi)
p(ci)
p(x) +

∑

x′ 6≡xi

pσn(yn|x′)p(x′)
pσn(yn|xi)p(xi)

(B.15)

≥
∑

yn∈B̂(n)(x,ε)

pσn(yn|xi)
p(ci)
p(x) +

∑

x′ 6≡xi
2− n

k
[D̂(yn||pσn(·|x′))−D̂(yn||pσn(·|x))] p(x′)

p(x)

(B.16)

≥
∑

yn∈B̂(n)(x,ε)

pσn(yn|xi)
p(ci)
p(x) +

∑

x′ 6≡xi
2−nε p(x′)

p(x)

(B.17)

= pσn

(

B̂(n)(xi, ε) | xi

) 1
p(ci)
p(x) + 2−nεC ′

(B.18)

≥
1 − 2− n

k
εC(n

k
+ 1)k|Y|

p(ci)
p(x) + 2−nεC ′

(B.19)

where: (B.15) follows from the definition of qn
i (x) and an application of Bayes rule, and from

the fact that pσn(yn|x) = pσn(yn|xi); (B.16) follows from a simple union bound and from

Lemma B.1; (B.17) follows from the fact that, by assumption, B̂(n)(x, 2ε) ∩ B̂(n)(x′, 2ε) = ∅

(also note that B̂(n)(x, 2ε) = B̂(n)(xi, 2ε)); (B.18) follows by definition of B̂(n)(x, ε) =

B̂(n)(xi, ε); here C ′ is a suitable constant, not depending on n; (B.19) follows from Lemma
B.2.

Now, let {nj} be a sequence of indices such that, for each x and i, q
nj

i (x) converges to a
limit, say Li(x) (such a sub-sequence must exist, by Bolzano-Weierstrass.) The inequality

qn
i (x) ≥

1 − 2− n
k

εC(n
k

+ 1)k|Y|

p(ci)
p(x) + 2−nεC ′

which holds for each n that is a multiple of k, implies that these limits satisfy Li(x) ≥
p(x)
p(ci)

. Since point-wise convergence for each x implies convergence of q
nj

i (·) to a probability

distribution, we have that, for each i and x, actually equality must hold: Li(x) = p(x)
p(ci)

.

Thus, for each i = 1, . . . , K, q
nj

i (·) → p(·|c), which proves (B.14).

Appendix C. Backward Induction

We give some details of the derivation of an optimal strategy of length 2 for the system in
Example 3.2. We take Shannon entropy as the chosen uncertainty measure. In Figure 9
we give a partial representation of the related mdp. According to the Backward Induction
method, we compute the reward of each node, starting from the leaves of the mdp-tree and
then propagating them up to the root. Let us denote by R(n) the reward assigned to a
node n. Applying the algorithm, we compute as follows (recall that levels are counted from
the root, which has level 0).

• Level 4. The reward associated to each leaf node n is R(n) = 0
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Figure 9. A partial representation of the mdp for Example 3.2. Here, the symbols
‘z’, ‘d’ and ‘a’ are abbreviations for actions ZIP , Date and Age, respectively. For
simplicity, probability distributions labelling decision nodes are not shown. More-
over, leaves with the same labels and the same father, and the corresponding incom-
ing arcs, have been coalesced.

• Level 3. Each probabilistic node, which is the a-child of a decision node h, receives as a
reward the sum of its immediate gain, I[a](S, ph), and the average reward of its children:

R(4) = R(5) = log 5 − 2
5 − 3

5 log 3, R(6) = R(8) = 0, R(7) = 1
3 , R(9) = log 3 − 4

3 , and so
on.

• Level 2. Each decision node receives as a reward the maximum of its children’ rewards
(and the corresponding action is recorded): R(B) = log 5− 2

5 − 3
5 log 3, R(C) = 1

3 , R(D) =

log 3 − 4
3 and so on.

• Level 1. Each probabilistic node receives the following rewards: R(1) = log 10 − 9
25 −

27
50 log 3 ≈ 2.11, R(2) = log 10 − 11

15 − 1
5 log 3 ≈ 2.27 and R(3) = log 10 − 3

5 − 1
5 log 3 ≈ 2.4.

• Level 0. The decision node A receives the reward R(A) = R(3) ≈ 2.4

Taking into account the maximal children’ rewards selected at each decision node, we have
the following optimal strategy of length 2 (its tree representation is given in Figure 8.)

σ ,

{
ε 7→ Age 29 7→ ZIP 30 7→ Date 31 7→ ZIP 32 7→ Date 64 7→ Date
65 7→ ZIP 66 7→ ZIP 67 7→ Date 68 7→ Date 69 7→ Date.
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