
Logical Methods in Computer Science
Vol. 11(4:9)2015, pp. 1–41
www.lmcs-online.org

Submitted Nov. 5, 2014
Published Dec. 11, 2015

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK

AGAIN

JESÚS DOMÍNGUEZ AND MARIBEL FERNÁNDEZ

Department of Informatics, King’s College London, Strand WC2R 2LS, UK
e-mail address: {jesus.dominguez alvarez, maribel.fernandez}@kcl.ac.uk

Abstract. We present a translation function from nominal rewriting systems (NRSs) to
combinatory reduction systems (CRSs), transforming closed nominal rules and ground
nominal terms to CRSs rules and terms, respectively, while preserving the rewriting rela-
tion. We also provide a reduction-preserving translation in the other direction, from CRSs
to NRSs, improving over a previously defined translation. These tools, together with exist-
ing translations between CRSs and other higher-order rewriting formalisms, open up the
path for a transfer of results between higher-order and nominal rewriting. In particular,
techniques and properties of the rewriting relation, such as termination, can be exported
from one formalism to the other.

1. Introduction

Programs and logical systems often include binding operators. Term rewriting systems [1, 4],
in their standard form, do not provide support for reasoning on binding structures. This
motivated the study of combinations of first-order rewriting systems with the λ-calculus [2],
which offers a notion of variable binding and substitution. Combinatory reduction systems
(CRSs) [24, 25] are well-known examples of higher-order rewriting formalisms, where a
meta-language based on the untyped λ-calculus was incorporated to a first-order rewriting
framework. Other approaches followed, such as HRSs [29] and ERSs [23, 20] for example.

Techniques to prove confluence and termination of higher-order rewriting systems were
studied in [28, 25, 21] amongst others. However, the syntax and type restrictions imposed on
rules in these systems have prevented the design of completion procedures for higher-order
rewriting systems [30].

More recently, the nominal approach [19, 31] has been used to design rewriting systems
with support for binding [14]. Nominal rewriting systems do not rely on the λ-calculus,
instead, two kinds of variables are used: atoms, which can be abstracted but behave similarly
to constants thus allowing explicit manipulation, and meta-level variables or just variables,
which are first-order in that they cannot be abstracted and substitution does not avoid
capture of unabstracted atoms. On nominal terms [34, 35, 14] α-equivalence is axiomatised
using bijective mappings on atoms, known as permutations, and a freshness relation between

2012 ACM CCS: [Theory of computation]: Logic—Equational logic and rewriting.
Key words and phrases: rewriting, nominal syntax, Combinatory Reduction Systems, higher-order syntax,

translation tool.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:9)2015

c© J. Domínguez and M. Fernández
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. DOMÍNGUEZ AND M. FERNÁNDEZ

atoms and terms. Nominal syntax enjoys many useful properties, for instance, unification
modulo α-equivalence is decidable and unitary [34, 35] and nominal matching is linear [5].
Nominal rewriting can be implemented efficiently if rules are closed (roughly speaking,
closed rules do not contain free atoms, and preserve the free/abstracted status of atoms
during reduction — a natural restriction, which is also imposed on CRSs, HRSs and ERSs
by definition).

The availability of efficient algorithms to solve unification problems on nominal terms
motivated the study of the relationship between higher-order and nominal syntax in a
series of papers [6, 16, 27]. In this paper, we focus on the relationship between higher-order
and nominal rewriting, specifically between CRSs and NRSs. The translations provided
in [6, 27] preserve the unifiability relation, whereas ours preserves the rewriting relation,
which is key to the translation of properties such as confluence and termination. We define
a translation function from closed NRS rules and ground nominal terms to CRS rules
and terms, preserving the rewriting relation. Then, we give a translation function from
CRSs to NRSs, improving over a previous translation described in [16]. Since we now have
reduction-preserving translations in both directions, properties and techniques developed
for one formalism can be exported to the other (e.g., termination techniques based on
the construction of a well-founded reduction ordering). A Haskell implementation of the
translation functions, along with a tool to prove termination using the nominal recursive
path ordering [17], are available from [10, 9].

Related work. CRSs, HRSs and ERSs are well-known examples of higher-order rewriting
formalisms. A comparison of various higher-order rewriting formalisms, with many inter-
esting examples, is provided in [37]; see also [22] for a concise presentation of higher-order
rewrite systems. In [36, 20], CRSs are compared with HRSs and ERSs respectively, and in [3]
CRSs are expressed in terms of the ρ-calculus [7, 8]. In [26], a termination-preserving trans-
lation between Algebraic Functional Systems and other higher-order formalisms is presented.
Although in this paper we focus on the relationship between NRSs and CRSs, thanks to
the existing translations between CRSs and other higher-order rewriting formalisms, this is
sufficient to obtain a bridge between nominal and higher-order rewriting.

Our work is closely related to the work reported in [6, 27]: Cheney [6] represented higher-
order unification as nominal unification, and Levy and Villaret [27] transformed nominal
unification into higher-order unification, providing a translation that preserves unifiers. Our
translation differs from [6, 27] in that our requirement is to have a mapping of NRS ground
terms and rules to CRS terms and rules in such a way that reductions are preserved.

This paper is an updated and extended version of [11]. We have included here, in
addition to the translation from NRSs to CRSs given in [11], all the proofs previously
omitted due to space constraints as well as a translation from CRSs to NRSs, improving
on a previous result given in [16]. We provide detailed explanations, and illustrate the
translations with examples.

Overview of the paper. The rest of the paper is organised as follows. In section 2 we recall
both formalisms, CRSs and NRSs, as defined in [24] and [14] respectively. In section 3 we
describe in detail the translation of nominal terms to CRS meta-terms, while in section 4 we
extend it to take into account rules and substitution. In Section 5 we prove that nominal
rewrite steps can be simulated in CRSs via the translation function. Section 6 presents

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 3

a translation from CRSs to NRSs. In section 7 we show examples of application of the
translations. Section 8 concludes and discusses future work.

2. Preliminaries

We start by briefly recalling the main concepts of nominal rewrite systems and combinatory
reduction systems — two rewriting formalisms that extend the syntax of first-order terms
and the notion of rewriting, to facilitate the specification of systems with binding operators.
We refer the reader to [25, 14] for more details and examples.

2.1. Nominal Rewriting. A nominal signature Σ is a set of term-formers, or function
symbols, f, g, . . ., each with a fixed arity. Fix a countably infinite set X of variables ranged
over by X,Y,Z, . . ., and a countably infinite set A of atoms ranged over by a, b, c, . . ., and
assume that Σ, X and A are pairwise disjoint. We follow the permutative convention [18,
Convention 2.3] where a, b, c, . . . range over distinct atoms unless stated otherwise.

Permutations π are bijections on A such that the set of atoms for which a 6= π(a) is
finite; this is called the support of π, written as support(π). A swapping is a pair of atoms,
written (a b). Permutations are represented by lists of swappings, Id denotes the identity
permutation. We write π−1 for the inverse of π and π ◦ π′ for the composition of π′ and π.
For example, if π = (a b)(b c), then π(a) = b, π−1 = (b c)(a b) and π−1(a) = c.

Definition 2.1 (Syntax). Nominal terms, or just terms if there is no ambiguity, are gener-
ated by the grammar

s, t ::= a | π·X | [a]s | fs | (s1, . . . , sn)

and called, respectively, atoms, moderated variables or simply variables, abstractions, func-
tion applications (which must respect the arity of the function symbol) and tuples; if the
arity of f is 0 we may omit the parentheses in the application. We abbreviate Id·X as X

if there is no ambiguity. An abstraction [a]t is intended to represent t with a bound; we
say that the scope of [a] is t. Call occurrences of a abstracted if they are in the scope of an
abstraction, and unabstracted (or free) otherwise.

For example, f(X, (a b)·X) is a nominal term, and so is f([a]X, [b]b). The latter term
has X in the scope of [a] and b in the scope of [b]. For more examples, we refer the reader
to [34, 35, 14].

Definition 2.2. The functions V (t) and A(t) are used to compute the sets of variables and
atoms in a nominal term t, respectively. They are inductively defined as follows:

V (a) = ∅ V ([a]t) = V (t) V (π ·X) = {X}

V (fs) = V (s) V ((s1, . . . , sn)) = V (s1) ∪ . . . ∪ V (sn)

A(a) = {a} A([a]t) = A(t) ∪ {a} A(π ·X) = support(π)

A(fs) = A(s) A((s1, . . . , sn)) = A(s1) ∪ . . . ∪A(sn)

Ground terms have no variables: V (t) = ∅.

Notice that V (t) is a syntactic notion, whereas A(t) takes into account the semantics of
permutations (represented as lists of swappings). For example, A(f(a, [b](c d)(e f)(f e)·X))
= {a, b, c, d}.

4 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Definition 2.3 (Positions and subterms of nominal terms). Let s be a nominal term. The
set Pos(s) of positions in s is a set of strings of positive integers, inductively defined below.
We also define below the subterms of s: s|p denotes the subterm of s at position p.

• if s = a or s = π·X, then Pos(s) = {ǫ} and s|ǫ = s, where ǫ denotes the empty string;
• if s = [a]t, then Pos(s) = {ǫ} ∪ {1 · p | p ∈ Pos(t)}, s|ǫ = s and s|1·p = t|p;
• if s = ft, then Pos(s) = {ǫ} ∪ {1 · p | p ∈ Pos(t)}, s|ǫ = s and s|1·p = t|p;

• if s = (t1, . . . , tn), then Pos(s) = {ǫ} ∪
n
⋃

i=1
{i · p | p ∈ Pos(ti)}, s|ǫ = s and s|i·p = ti|p.

The position ǫ is called the root position of the term s, and the symbol at this position is
called the root symbol of s.

We now extend the action of permutations to terms. Recall we use the permutative
convention, so atoms a, b, c are considered distinct among them.

Definition 2.4 (Permutation action). The action of a permutation π on a term t, written
π·t, is defined by induction: Id·t = t and (a b)π·t = (a b)·(π·t), where a swapping acts
inductively on the structure of terms as follows:

(a b)·a = b (a b)·b = a (a b)·c = c

(a b)·(π·X) = ((a b) ◦ π)·X (a b)·[c]t = [c](a b)·t

(a b)·[a]t = [b](a b)·t (a b)·[b]t = [a](a b)·t

(a b)·ft = f(a b)·t (a b)·(t1, . . . , tn) = ((a b)·t1, . . . , (a b)·tn).

Substitutions map variables to terms, and act on terms without avoiding capture of atoms,
according to the following definition.

Definition 2.5 (Substitution). Substitutions are generated by the grammar:

σ ::= Id | [X 7→s]σ

We use the same notation for the identity substitution and permutation, and also for com-
position, since there will be no ambiguity.

Write tσ for the application of σ on t, defined as follows:

tId = t t[X 7→s]σ = (t[X 7→s])σ where

a[X 7→s] = a (π·X)[X 7→s] = π·s (π·Y)[X 7→s] = π·Y (X 6= Y)

([a]t)[X 7→s] = [a](t[X 7→s]) (ft)[X 7→s] = ft[X 7→s]

(t1, . . . , tn)[X 7→s] = (t1[X 7→s], . . . , tn[X 7→s]).

The domain of a substitution σ, dom(σ), is the set of variables such that Xσ 6= X. The
restriction of a substitution σ to a set of variables V , written σ|V , is defined as σ|V = [X →
Xσ | X ∈ V].

The semantics of nominal terms is defined using nominal sets [32]. A Perm(A)-set is a
set T equipped with a permutation action, such that Id·x = x and π·(π′·x) = (π ◦ π′)·x for
each object x ∈ T . A set S of atoms supports x ∈ T if for all atoms a, b 6∈ S, (a b)·x = x. A
nominal set is a Perm(A)-set where each element has finite support. Nominal terms form
a nominal set, using α-equivalence as equality [32]. To define the support of a term, we
introduce the notion of freshness. The support set of a term t, abbreviated supp(t), is the

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 5

complement of the set of fresh atoms in t. When a term t is ground, supp(t) coincides with
the syntactic notion of unabstracted atoms in t.

Definition 2.6 (Freshness). A freshness constraint is a pair a#t of an atom and a term.
A freshness context (ranged over by ∆,∇,Γ), is a set of constraints of the form a#X.
Freshness judgements, written ∆ ⊢ a#t, are derived using the rules below.

(#ab)
∆ ⊢ a#b

π-1·a#X ∈ ∆
(#X)

∆ ⊢ a#π·X

∆ ⊢ a#s
(#f)

∆ ⊢ a#fs

∆ ⊢ a#s1 · · · ∆ ⊢ a#sn
(#tupl)

∆ ⊢ a#(s1, . . . , sn)
(#[a])

∆ ⊢ a#[a]s

∆ ⊢ a#s
(#[b])

∆ ⊢ a#[b]s

For example, a#X ⊢ b#(a b)·X can be derived using rule (#X), since (a b)·a = b.
In nominal languages, one is interested in terms t that have finite support, because for

them there exists always a fresh atom a such that a#t (recall the set A of atoms is infinite).

Definition 2.7 (α-equivalence). An α-equality constraint is a pair s ≈α t of terms. Equi-
valence judgements, written ∆ ⊢ s ≈α t, are derived using the rules below, where ds(π, π′) =
{a ∈ A | π·a 6= π′·a} (difference set).

(≈αa)
∆ ⊢ a ≈α a

∀a ∈ ds(π, π′) : a#X ∈ ∆
(≈αX)

∆ ⊢ π·X ≈α π′·X

∆ ⊢ s ≈α t
(≈αf)

∆ ⊢ fs ≈α ft

∆ ⊢ s1 ≈α t1 · · · ∆ ⊢ sn ≈α tn
(≈αtupl)

∆ ⊢ (s1, . . . , sn) ≈α (t1, . . . , tn)

∆ ⊢ s ≈α t
(≈α[a])

∆ ⊢ [a]s ≈α [a]t

∆ ⊢ (b a)·s ≈α t ∆ ⊢ b#s
(≈α[b])

∆ ⊢ [a]s ≈α [b]t

Let Pi be a freshness or α-equality constraint (for 1 ≤ i ≤ n). We write ∆ ⊢ P1, . . . , Pn

when proofs of ∆ ⊢ Pi exist (for 1 ≤ i ≤ n), using the derivation rules above.

The relation ≈α is indeed an equivalence relation [34, 35].

Example 2.8. We can derive a#X ⊢ [a](a b)·X ≈α [b]X as follows.

ds((b a)(a b), Id) = ∅
(≈αX)

a#X ⊢ (b a)(a b)·X ≈α X
(#X)

a#X ⊢ b#(a b)·X
(≈α[b])

a#X ⊢ [a](a b)·X ≈α [b]X

Property 2.9 ([14], Lemma 23). For any a ∈ A, if ∆ ⊢ a#s and ∆ ⊢ s ≈α t then ∆ ⊢ a#t.
Hence, if ∆ ⊢ s ≈α t then s and t have the same support set.

Definition 2.10 (Nominal rewrite system). A nominal rewrite rule R = ∇ ⊢ l → r is a
tuple of a freshness context ∇ and terms l and r such that V (r) ∪ V (∇) ⊆ V (l).

A nominal rewrite system (NRS) is an equivariant set R of nominal rewrite rules, that
is, a set of nominal rules that is closed under permutations. We shall generally equate a set
of rewrite rules with its equivariant closure.

Definition 2.11. We extend the notions given in Definition 2.2 for both variables, V (t),
and atoms, A(t), to include rules, contexts, substitutions, etc. Particularly, for contexts
A(∆) = {a | a#X ∈ ∆ for some X} and for substitutions, A(σ) = {A(Xσ) | X ∈ dom(σ)}.

6 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Example 2.12. The following rules are used to compute prenex normal forms in first-order
logic. The signature has term-formers forall, exists, not, and. Intuitively, equivariance
means that the choice of atoms in rules is not important (see [14] for more details), therefore
we could change below a to b, for instance.

a#P ⊢ and(P, forall([a]Q)) → forall([a]and(P,Q))
a#P ⊢ and(forall([a]Q), P) → forall([a]and(Q,P))
a#P ⊢ or(P, forall([a]Q)) → forall([a]or(P,Q))
a#P ⊢ or(forall([a]Q), P) → forall([a]or(Q,P))
a#P ⊢ and(P,exists([a]Q)) → exists([a]and(P,Q))
a#P ⊢ and(exists([a]Q), P) → exists([a]and(Q,P))
a#P ⊢ or(P,exists([a]Q) → exists([a]or(P,Q))
a#P ⊢ or(exists([a]Q), P) → exists[a]or(Q,P)

⊢ not(exists([a]Q)) → forall([a]not(Q))
⊢ not(forall([a]Q)) → exists([a]not(Q)).

Nominal rewriting [14] operates on terms-in-contexts, written ∆ ⊢ s or just s if ∆ = ∅.
Below, C[] varies over terms with exactly one occurrence of a distinguished variable Id·-,
or just -. We write C[s] for C[-7→s], and ∆ ⊢ ∇θ for {∆ ⊢ a#Xθ | a#X ∈ ∇}.

Definition 2.13 (Nominal rewriting). A term s rewrites with R = ∇ ⊢ l → r to t in ∆,
written ∆ ⊢ s →R t (as usual, we assume V (R) ∩ (V (∆) ∪ V (s)) = ∅), if s = C[s′] and
there exists θ such that ∆ ⊢ ∇θ, ∆ ⊢ lθ ≈α s′, and ∆ ⊢ C[rθ] ≈α t. Since ∆ does not
change during rewriting, a rewriting derivation is written ∆ ⊢ s1 →R s2 →R . . . →R sn,
abbreviated as ∆ ⊢ s1 →

∗ sn.

When rules are closed, nominal rewriting can be efficiently implemented using nominal
matching (then, there is no need to consider equivariance). We define closed rewriting
below, after defining closed terms.

Closed terms are, roughly speaking, terms without unabstracted atoms, such that vari-
ables behave uniformly with respect to their support. We give a definition below.

Definition 2.14 (Closedness). A term-in-context ∆ ⊢ t is closed if it satisfies the following
conditions:

(1) if t|p = a then t|p is in the scope of an abstraction for a;
(2) if π ·X occurs in the scope of an abstraction of π ·a then any occurrence of π′ ·X occurs

in the scope of an abstraction of π′ · a or a#X ∈ ∆;
(3) for any pair π1·X,π2·X occurring in t, and a ∈ ds(π1, π2), if a is not abstracted in one

of the occurrences then a#X ∈ ∆.

A rewrite rule ∇ ⊢ l→ r is closed if ∇ ⊢ (l, r) is a closed term.

The first condition in the definition specifies that no atom occurs unabstracted in a
closed term. The second condition states that if an atom a in an instance of a variable π·X
is captured (i.e. π·X is under an abstraction for π·a) then it is captured in all occurrences
of X, otherwise it is fresh for X. The third condition says that if two occurrences of X have
different suspended permutations, then any atom in the difference set that could occur in
an instance of X is captured.

For example, [a]f(X, a) is closed, but f(X, a) and f(X, [a]X) are not, however a#X ⊢
f(X, [a]X) is closed. All the rewrite rules in Example 2.12 are closed.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 7

Closedness can be easily checked using the nominal matching algorithm [5] as follows.
First, given a term in context ∇ ⊢ t, or more generally, a pair P = ∇ ⊢ (l, r) (this could
be a rule R = ∇ ⊢ l → r), let us write P N= ∇ N⊢ (l N, r N) to denote a freshened variant
of P , i.e., a version where the atoms and variables have been replaced by ‘fresh’ ones. We
shall always explicitly say what P N is freshened for when this is not obvious. For example,
a freshened version of (a#X ⊢ f(X) → X) with respect to itself and to a′#X ⊢ a′ is
(a′′#X ′ ⊢ f(X ′)→ X ′). We will write A(P ′)#V (P) to mean that all atoms in P ′ are fresh
for each of the variables occurring in P . Let ∇ N⊢ t Nbe a freshened version of ∇ ⊢ t. Then
∇ ⊢ t is closed if there exists a substitution σ such that ∇, A(∇ N⊢ t N)#V (∇ ⊢ t) ⊢ ∇ Nσ

and ∇, A(∇ N⊢ t N)#V (∇ ⊢ t) ⊢ t Nσ ≈α t. A similar check can be done for nominal rewrite
rules.

Definition 2.15 (Closed rewriting). Let R N be a freshened version of the rule R with
respect to ∆, s, t (i.e., a version where the atoms and variables in R have been replaced by
fresh ones; as shown in [14], it does not matter which particular freshened R Nwe choose).
We write ∆ ⊢ s→c

R t if ∆,∆′ ⊢ s→R Nt, where ∆′ = A(R N)#V (∆, s), and call this a closed
rewriting step. The subindex R may be omitted if it is clear from the context.

Closed NRSs inherit properties of first-order rewriting systems such as the Critical Pair
Lemma [14].

Example 2.16. We show a closed rewriting step for the term ⊢ and(X, forall([b]f(b))) using
the first rule in Example 2.12:

⊢ and(X, forall([b]f(b)))→c forall([a′]and(X, f(a′)))

To generate it, we first obtain a freshened variant of the rule with respect to itself and the
given term: a′#P ′ ⊢ and(P ′, forall([a′]Q′)) → forall([a′]and(P ′, Q′)). Notice that there is a
rewrite step

a′#X ⊢ and(X, forall([b]f(b)))→ forall([a′]and(X, f(a′))).
using the matching substitution θ = [P ′ 7→ X][Q′ 7→ f(a′)], since a′#P ′θ holds.

2.2. Combinatory Reduction Systems. A combinatory reduction system (CRS) [24, 25]
is a pair consisting of an alphabet A and a set of rewrite rules.

The CRS alphabet A consists of:

(1) a countably infinite set V of variables ranged over by a, b, c, . . .;
(2) a countably infinite setMV of meta-variables with fixed arities, written as Zn

i where n
is the arity of Zn

i (when there is no ambiguity, n is omitted);
(3) an abstraction operator [·]·;
(4) function symbols f, g, . . . with fixed arities; and
(5) improper symbols ‘(’, ‘)’and ‘,’.

Definition 2.17 (Syntax). CRS meta-terms are generated by the grammar

s, t ::= a | Zn
i t | [a]t | ft | (t1, . . . , tn) (n ≥ 0)

Only variables can be abstracted; in a function application ft (resp. meta-application Zn
i t),

t is a n-tuple respecting the arity of the function symbol f (resp. meta-variable Zn
i); when

the arity is 0, we omit the brackets in applications and meta-applications (so Z0
i is a meta-

term).

8 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Definition 2.18. We write MV (t) and V ar(t) for the set of meta-variables and variables
occurring in a meta-term t, respectively (the same notation is used for rules, etc.). They
are inductively defined as follows:

MV (a) = ∅ MV (Zn
i t) = MV (t) ∪ {Zn

i } MV (ft) = MV (t)

MV ([a]t) = MV (t) MV ((t1, . . . , tn)) = MV (t1) ∪ · · · ∪MV (tn)

V ar(a) = a V ar(Zn
i t) = V ar(t) V ar(ft) = V ar(t)

V ar([a]t) = V ar(t) ∪ {a} V ar((t1, . . . , tn)) = V ar(t1) ∪ · · · ∪ V ar(tn)

In CRSs a distinction is made between meta-terms and terms. Meta-terms are the ex-
pressions built from the symbols in the alphabet, in the usual way (see Definition 2.17).
Variables that occur in the scope of the abstraction operator are bound, and free otherwise.
Meta-terms are defined modulo renaming of bound variables, that is, a meta-term repres-
ents an α-equivalence class. Terms are meta-terms that do not contain meta-variables, and
are also defined modulo α-equivalence. A (meta-)term is closed if every variable occurrence
is bound.

Definition 2.19. Let s be a CRS meta-term. The set Pos(s) of positions in s is a set of
strings of positive integers, which is inductively defined as follows:

• if s = a, then Pos(s) = {ǫ}, where ǫ denotes the empty string;
• if s = Zn

i t then Pos(s) = {ǫ} ∪ {1 · p | p ∈ Pos(t)};
• if s = [a]t, then Pos(s) = {ǫ} ∪ {1 · p | p ∈ Pos(t)};
• if s = ft, then Pos(s) = {ǫ} ∪ {1 · p | p ∈ Pos(t)};

• if s = (t1, . . . , tn), then Pos(s) = {ǫ} ∪
n
⋃

i=1
{i · p | p ∈ Pos(ti)}.

The position ǫ is called the root position of the term s, and the symbol at this position is
called the root symbol of s.

Definition 2.20 (CRS rewrite rules). A rewrite rule is a pair of meta-terms, written l⇒ r,
where l, r are closed, l has the form f(s1, . . . , sn) where n ≥ 0 (when n = 0 we omit the
parentheses), MV (r) ⊆ MV (l), and MV (l) occur only in the form Zn

i (a1, . . . , an), where
a1, . . . , an are pairwise distinct bound variables.

Example 2.21. The β-reduction rule for the λ-calculus is written:

app(lam([a]Z(a)), Z ′)⇒ Z(Z ′)

where Z is a unary meta-variable and Z ′ is 0-ary.

The reduction relation is defined on terms. To extract from rules the actual rewrite
relation, each meta-variable is replaced by a special kind of λ-term, and in the obtained term
all β-redexes and the residuals of these β-redexes are reduced (i.e., a complete development
is performed). Formally, the rewrite relation is defined using substitutes and valuations.

Definition 2.22 (Substitute). An n-ary substitute is an expression of the form λ(a1 . . . an).s,
where s is a term and a1, . . . , an are different variables bound in λ(a1 . . . an).s. We use a
meta-lambda λ to emphasise that this is part of the meta-language.

An n-ary substitute λ(a1 . . . an).s may be applied to a n-tuple (t1, . . . , tn) of terms,
resulting in the following simultaneous substitution:

(λ(a1 . . . an).s)(t1, . . . , tn) = s[a1 7→ t1, . . . , an 7→ tn]

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 9

where we denote by s[a 7→t] the capture-avoiding substitution of variable a by term t in the
CRS term s.

Definition 2.23 (Valuation). A valuation σ assigns an n-ary substitute to each n-ary
meta-variable:

σ(Zn
i) = λ(a1, . . . , an).s.

It is extended to a mapping from meta-terms to terms as follows:

(1) First, replace all meta-variables in the term for their images in σ as shown below.

σ(a) = a for a ∈ V σ([a]t) = [a]σ(t) σ(ft) = fσ(t)

σ((t1, . . . , tn)) = (σ(t1), . . . , σ(tn)) σ(Zn
i t) = σ(Zn

i)σ(t).

(2) Next, perform the developments of the β-redexes created.

Valuations must satisfy some safety conditions. Before stating the conditions, we recall
a standard naming convention used in CRSs, originally stated by Barendregt for the λ-
calculus [2].

Remark 2.24 (Barendregt’s variable convention). CRSs adopt the following naming con-
ventions:

• all bound variables are chosen to be different among them, that is, each binder uses a
distinct variable name;
• bound variables are also chosen to be different from free variables.

In CRSs, rewriting is performed under the following conditions.

Definition 2.25 (Safety conditions). The CRS rule l⇒ r is safe for the valuation σ if free
variables occurring in substitute σ(Z) are different from the bound variables in both l, r

for all Z ∈ dom(σ) and also, we say σ is safe with respect to itself when there are no two
substitutes σ(Z), σ(Z ′) where a free variable in σ(Z) occurs bound in σ(Z ′) or vice versa.

In the rest of the paper we adopt, without loss of generality, Barendregt’s convention for
CRSs and assume that all valuations are safe with respect to themselves and the reduction
rules to which they are applied.

A context is a term with an occurrence of a special symbol [] called hole. A rewrite
step is now defined in the usual way.

Definition 2.26 (Rewrite step). Let σ be a valuation and C[] a context. If l ⇒ r is a
rewrite rule, then C[σ(l)]⇒ C[σ(r)] is a rewrite (or reduction) step.

Example 2.27. The following is a rewrite step using the β-rule given in Example 2.21:

app(lam([a]f(a, a)), t)⇒β f(t, t).

To generate the reduction, a valuation σ that maps Z to λ(b).f(b, b) and Z ′ to the term
t is applied to the rule. Then, σ(app(lam([a]Z(a)), Z ′)) is the term app(lam([a]f(a, a)), t)
obtained by first replacing Z and Z ′ as indicated by σ and then reducing the β-redex
(λ(b).f(b, b))(a). Also, σ(Z(Z ′)) is the term f(t, t) obtained by first replacing Z and Z ′,
resulting in (λ(b).f(b, b))(t), and then β-reducing to f(b, b){b 7→t}.

10 J. DOMÍNGUEZ AND M. FERNÁNDEZ

2.3. Symmetric groups. The following definitions and properties, well-known in group
theory [33], will be useful later, in Section 6, when translating CRSs into NRSs.

Definition 2.28. The symmetric group Sn is the group of bijections (permutations) of
{a1, . . . , an} to itself. A standard notation for the permutation that maps ai to π(ai) is the
two-line notation or array form

(

a1 a2 a3 . . . an
π(a1) π(a2) π(a3) . . . π(an)

)

Under composition of mappings, the permutations of {a1, . . . , an} are a group.
A permutation π ∈ Sn is a k-cycle if there are distinct elements a1, a2, . . . , ak such

that π(a1) = a2, π(a2) = a3, . . . , π(ak) = a1 and π fixes every other element. A 2-cycle
permutation is known as a transposition, or swapping. There is a standard notation for
k-cycle forms:

(a1, a2, a3, . . . , ak)

A pair of cycles (a1, . . . , an) and (a′1, . . . , a
′
n) are disjoint when the sets {a1, . . . , an} and

{a′1, . . . , a
′
n} are disjoint.

Lemma 2.29. Every permutation is uniquely expressible as a product of disjoint cycles.
Disjoint cycles commute.

Theorem 2.30 (Product of transpositions). Every permutation in Sn, n > 1, can be
expressed as a product of 2-cycles.

Theorem 2.30 justifies our choice of representation for permutations as lists of swappings
in Section 2.1.

Property 2.31 (k-cycle as a product of transpositions). A k-cycle (a1, a2, . . . , ak−1, ak) in
Sn can be decomposed into transpositions:

(a1, a2, . . . , ak−1, ak) = (a1 ak)(a1 ak−1) . . . (a1 a2)

following the grammar of permutations given in Section 2.1.

Using this property, when given a permutation defined as a bijection, we can find its
corresponding list of swappings by first writing it as a product of disjoint cycles, and then
decomposing each cycle into 2-cycles as shown in the example below.

Example 2.32. The following bijective function:

f(a) = c f(b) = d f(c) = e

f(d) = f f(e) = g f(f) = h

f(g) = a f(h) = b f(i) = i

has the following array form associated with it.

f =

(

a b c d e f g h i

c d e f g h a b i

)

In this case, the first row represents the elements in the domain, in lexicographic order, and
the second row their respective image.

To convert array form notation into cycle notation we follow these steps:

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 11

• Start with the smallest letter in the set, in this case a, since f(a) = c we begin the cycle
by writing

(a, c, . . .) . . .

Notice we could start with any letter since there are a number of equivalent represent-
ations of f in cycle form. Non-unique representation does not alter the action of the
permutations in f .
• Next, c maps to e, so we continue building the cycle

(a, c, e, . . .) . . .

• Continuing in this way we construct (a, c, e, g, . . .) . . . and since g maps back to a, then
we close off the cycle

(a, c, e, g) . . .

• Next, we pick the smallest letter that does not appear in any previously constructed cycle,
this is letter b in this case, and repeat the previous steps to construct a new cycle:

(a, c, e, g)(b, d, f, h) . . .

• Finally the last letter i is picked and the cycle is constructed. In this case i maps to itself:

(a, c, e, g)(b, d, f, h)(i)

• Decomposition into 2-cycle form by application of Property 2.31 produces:

(b h)(b f)(b d)(a g)(a e)(a c)

where the 1-cycle (i) is discarded since it produces (i i).

This simple method of converting bijective mappings in array form into a 2-cycle represent-
ation of permutations, while preserving the action of the mappings, is instrumental for a
correct translation of meta-applications in CRSs into permutations suspended on variables
in NRSs. We postpone further discussion along with the formal definition of the conversion
procedure for Section 6, where CRS rules and terms are translated to NRSs.

3. Translating from Nominal to CRS Syntax

In this section, we give an overview of the main issues surrounding the translation between
NRS and CRS syntax, along with our approach to solve them. Further examples and formal
proofs are given after defining the translation function.

3.1. Overview of the Problem. In order to design a function that transforms NRSs to
CRSs, we must take into account the following distinctions between formalisms:

• CRS rules are closed by definition, but this is not the case for nominal rules. Thus, the
translation is restricted to closed NRS rules.
• CRSs make a distinction between meta-terms and terms and rewriting is defined only on
terms. Such a distinction does not occur in NRSs. To solve such issue, nominal rewriting
is restricted to operate only on ground terms.
• NRSs contain a (possibly empty) set of freshness assumptions to avoid accidental name
capture. Such a mechanism does not exist in CRSs, where (meta-)terms are defined
modulo α. Therefore, freshness assumptions must be considered when constructing both
meta-applications and CRS substitutes.

12 J. DOMÍNGUEZ AND M. FERNÁNDEZ

• Nominal variables have arity zero whereas CRS meta-variables may have non-zero arity.
Hence, a unique arity for all occurrences of a meta-variable must be correctly enforced
when applying the translation function.
• A moderated variable π ·X contains a suspended permutation π which is applied immedi-
ately after instantiation of X. There are no permutations in CRSs. Intuitively, we must
observe the potential effects of applying the permutation to any instantiation of X and
translate accordingly to CRSs to simulate the action of π.
• Nominal substitution allows capture, whereas substitution in CRSs is non-capturing.
Therefore, the translation algorithm must recognise abstractions and build CRS sub-
stitutes that replicate the behaviour of the substitutions in NRSs.

First, we discuss the simulation of capturing substitution in CRSs. For this, we use an
auxiliary function Λ which traverses a nominal term t and outputs, for each nominal variable
X in t, a set of distinct atoms that occur abstracted above any of the occurrences of X in
t. For instance, if t = g([a][b]X, [a][b]X) then Λt(X) = {a, b}. Atoms in Λt(X) would be
captured if X is instantiated by a term that contains these atoms free, e.g.: σ(X) = f(a, b).
However, in CRSs, a distinct representative of the term class would be chosen if any of the
a, b variables were to appear free in a substitute. Since variable capture must be allowed,
Λt(X) is used to create the variable binding list for a substitute of a meta-variable X, in the
case of the example, σ = [X 7→λ(a.b).f(a, b)]. Moreover, as CRS rules must be closed, Λt(X)
also aids in constructing the list of bound variables (thus occurring in Λt(X)) associated
with each occurrence of a meta-variable X in a rule. Therefore, the example above would
translate to t̂ = g([a][b]X(a, b), [a][b]X(a, b)). Indeed, our translation algorithm outputs
closed CRS meta-terms when applied to closed nominal terms.

Additionally, when translating a term-in-context ∆ ⊢ t, we take into account the fresh-
ness constraints in ∆ such that, if a ∈ Λt(X) and a#X ∈ ∆, then a is not considered
when simulating variable capture in CRSs, since a cannot occur free in any substitution σ

for X. However, there are some special cases. The application of a permutation π to σ

after instantiation may alter the final outcome of the instantiation. CRSs rely on the list of
variable arguments and binders along with the mechanism of β-reduction to simulate the
process of swapping atoms. This means that variables that were not initially part of the
argument list are now introduced back into the meta-application in order to deal with the
necessary renamings.

In our translation, the list of variable arguments occurring in each meta-application is
ordered with respect to a total ordering.1 By doing so, there is no relation between the
position of each variable in the argument list of the meta-application and the position of
the abstractions in the CRS meta-term. On the other hand, there is a bijection between the
variables in the binding list added to the substitute for X and the variables in the argument
list, as expected. Furthermore, when translating nominal substitutions, we will show that,
for all occurrences of a meta-application, each substitute built by the translation function
is equivalent modulo α. This property allows us to choose just one of the occurrences (we
choose the leftmost one) to work with and then apply it back to all the occurrences in the
translated CRS term. We give examples below.

Permutations are the main cause of variations among occurrences of the same variable
in a term when instantiated, leading to possible modifications of the binding structure.

1We have chosen a lexicographic ordering but any other total ordering also works.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 13

Consider for example,
t = ⊢ f([a][b]X, [a][b](a b)·X)

and the substitution σ = [X 7→ g(a, b)], which produces the term

tσ = f([a][b]g(a, b), [a][b]g(b, a))

where atoms a, b have been swapped on the second occurrence of X. How should we take
into account these permutations in the CRS syntax?.

Intuitively, we apply each π directly to the set of atoms Λt(X) = {a, b}, for each
occurrence of π ·X in t, resulting in two argument lists: (a, b) for the first occurrence of X
and (b, a) for the second one. However, this approach is not effective when we encounter
occurrences of π · X where swappings in π contain atoms which do not occur abstracted
above X, therefore not contained in Λ. Take for instance the nominal term

s = [a](a b)·X

where Λs(X) = {a}. A direct application of π to Λs(X) results in the CRS meta-term

ŝ = [a]X(b).

We immediately notice two problems with this translation: the possibility of atom b occur-
ring in an instantiation of X in s has not been accounted for in the CRS translation ŝ. We
expect b to be renamed to a by the swapping (a b) and captured by the abstraction in s,
yet a does not appear in the variable argument list after application of π to Λs(X) in ŝ.
Furthermore, if our goal is to translate NRS rules into CRS rules, and CRS rules are closed
by definition, the application of π to Λs(X) produces a list of atoms no longer bound above
X, and thus not suitable for CRSs.

Alternatively, we order lexicographically the set π−1·Λs(X), obtaining an intermediate
list: xs. It contains those atoms that could be captured if occurring free in a substitution
for X (notice in the example xs = {b} where b is captured because of (a b)). In other words,
xs is the initial list of binders that allow our translation to capture variables. Next, π is
applied to xs to return an ordered and filtered version of Λs(X) as a list, which we call xs
(in the example, xs = a). The list xs contains variables occurring in Λ and thus bound
so that it can finally be displayed as the variable argument list for the meta-application of
an occurrence of X. Therefore, at this point we have a bijection from the atoms in xs to
those in xs such that xsi 7→ xsi is the mechanism that maps a captured variable a ∈ xs

at position i to the variable π(a) ∈ xs at position i when a substitution is provided. In
addition, π must also be applied to the nominal substitution σ(X) prior translation, to
rename atoms in support(π) not in scope of Λt(X). As a result, π is also applied to the
binding list xs, π·xs, to preserve the original binding structure when added to π·σ(X), i.e.,
λ(π·xs).(π·σ(X)). Note that π·xs is xs.

A more detailed explanation of the algorithm is provided after its definition. Now, we
look at the examples again, applying the new approach:

(t = ⊢ f([a][b]X, [a][b](a b)·X), σ = [X 7→ g(a, b)])

is translated as

(t̂ = f([a][b]X(a, b), [a][b]X(b, a)), σ̂ = [X 7→ λ(a.b). g(a, b)])

since the leftmost one is chosen, where

σ̂(t̂) = f([a][b]g(a, b), [a][b]g(b, a))

14 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Also,
s = [a](a b)·X

translates to the CRS meta-term
ŝ = [a]X(a)

which is now closed. And a nominal substitution σ = [X 7→g(a, b))] to instantiate nominal
term s would translate into the valuation σ̂ = [X 7→λ(a).g(b, a)].

We have discussed the main issues in the translation of NRSs to CRSs, together with
strategies to solve such issues. In the rest of the section we formalise this approach and
provide examples.

3.2. Translating Nominal Terms. For each nominal signature Σ, and sets A and X
of atoms and variables, we consider a CRS alphabet containing Σ, variables A and meta-
variables X .

First we define an auxiliary function, Λ, to compute, for each nominal term t, and each
variable X in t, the set of atoms that may be captured when X is instantiated.

Intuitively, Λt(X) = {a1, . . . , an} if X ∈ V (t) has k occurrences in t, Ai is the set of
atoms abstracted above the ith occurrence of X, and {a1, . . . , an} = A1 ∪ . . .∪Ak. In other
words, Λt(X) is the set of all the atoms abstracted above occurrences of X in t.

Definition 3.1 (Mapping Λt). For each nominal term t, the mapping Λt : V (t)→ P(A) is
defined by Λt(X) = Λ′(∅, t)(X), where Λ′(·, ·) is an auxiliary function defined inductively
over the structure of t as follows:

Λ′(A, a)(X) = ∅,

Λ′(A, π·X)(X) = A,

Λ′(A, π·Y)(X) = ∅,

Λ′(A, [a]s)(X) = Λ′(A ∪ {a}, s)(X),
Λ′(A, fs)(X) = Λ′(A, s)(X),
Λ′(A, (s1, . . . , sn))(X) = Λ′(A, s1)(X) ∪ . . . ∪ Λ′(A, sn)(X).

For example, if t = ([a]X, [b]X, [c]Y) then Λt(X) = {a, b} and Λt(Y) = {c}.
Next, we define the translation of nominal terms into CRS (meta-)terms.

Definition 3.2 (Term translation). Let ∆ ⊢ t be a nominal term-in-context and Λt as
in Definition 3.1. Then T (∆, t) = JtK∆Λt

, where J·K∆Λt
is an auxiliary function defined by

induction over the structure of nominal terms as follows:

(atom) JaK∆Λt
= a,

(var) Jπ ·XK∆Λt
= X(xs) where

xs , π · xs (we omit (xs) if empty)

xs , toAscList([π−1·Λt(X)] − {a | a#X ∈ ∆}),
(abs) J[a]sK∆Λt

= [a]JsK∆Λt
,

(fun) JfsK∆Λt
= fJsK∆Λt

,
(tuple) J(s1, . . . , sn)K

∆
Λt

= (Js1K
∆
Λt
, . . . , JsnK∆Λt

).

where toAscList is a function

that builds a sorted list2 from a set of atoms. When there is no ambiguity, we refer to
the translation of a term t as t̂.

2List of atoms in ascending lexical order.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 15

The interesting case in the translation is that of a variable. Intuitively, the list xs

contains atoms ai that will be captured if occurring free in any instance of X, because π·X
occurs in the scope of an abstraction for π·ai. Note that if a 6∈ xs then if π−1·a is in a
substitution for X, then a will be in supp(t) (it will not be captured). In other words,
a 6∈ xs implies that if π−1·a ∈ supp(X) then a ∈ supp(t).

The examples below illustrate the translation of nominal terms to CRS terms. Prior to
that, we highlight a property of the translation and introduce some terminology.

Lemma 3.3 (Preservation of variables as meta-variables in the translation). Suppose ∆ ⊢ t

is a term-in-context and t̂ = JtK∆Λt
its translation by Definition 3.2. Then, π ·X occurs in t

at position p if and only if X(xs) occurs in t̂ at position p for some xs.

Proof. By induction on the structure of t and the fact that there is a one-to-one correspond-
ence between the elements of t and t̂ as shown in the syntax-directed translation function
in Definition 3.2, namely a variable π ·X occurs at position p in t if and only if there exists
a meta-variable X at p in its translation t̂ along with a list of variable arguments xs.

Remark 3.4 (Translation of a moderated variable). Let T (∆, t) = t̂, where ∆ ⊢ t is a
term-in-context and T is the translation function given in Definition 3.2. If π ·X occurs in
t at position p then X(xs) = Jπ · XK∆Λt

occurs in t̂ at position p, by Lemma 3.3. We say

that X(xs) is the translation of π ·X in t̂ and call xs the arguments of X.

Example 3.5. According to Definition 3.2, the (closed) nominal term ⊢ [a][b]X is translated
as the CRS meta-term [a][b]X(a, b), where we include both variables in the meta-application
as they may appear free in a substitution for X.

Freshness constraints are taken into account in the translation of variables. Consider
a#X ⊢ [a][b]X, which is translated to the CRS meta-term [a][b]X(b). Since any substitution
for X must satisfy ∆ (that is, ⊢ a#Xσ), a is not included in the arguments of X.

However, a freshness constraint does not always produce this effect, it depends on the
permutations in the term. We adjust our example to show this. Consider

a#X ⊢ [a][b](a b)·X.

In this case we should take into account the mapping b 7→ a but not a 7→ b since a#X ∈ ∆.
Our translation outputs the CRS meta-term

[a][b]X(a),

which suggests that a may occur free in an instance of X contradicting the nominal con-
straint a#X ∈ ∆. However, since any nominal substitution σ that instantiates X must also
satisfy ∆, the atom a does not occur unabstracted in Xσ or in its CRS translation. Hence
the mapping a 7→ b is discarded.

Example 3.6. Let t be the (closed) nominal term ⊢ [a][b](a c)·X, where ∆ = ∅. Then
Λt(X) = {a, b}, xs = [b, c], and xs = [b, a]. The swapping (a c) maps the abstracted
atom a to the unabstracted atom c. This particular kind of mapping cannot be explicitly
represented at term level thus it will be applied to the substitute that instantiates X, if any.
This is shown in more detail in Section 4 when describing the translation of substitutions.
The translation function for terms (Definition 3.2) produces the meta-term

[a][b]X(b, a)

which effectively takes into account the rest of the mappings in the permutation, that is,
b 7→ b, c 7→ a, generating a closed CRS meta-term.

16 J. DOMÍNGUEZ AND M. FERNÁNDEZ

The following example illustrates the case of a term with multiple occurrences of a
variable with different suspended permutations.

Example 3.7. The translation of the (closed) nominal term-in-context

f#X ⊢ g([a][b][c][d](c f)(a b)·X, [a][b][c][d](c f)(d b)(a d)·X)

is the CRS meta-term

g([a][b][c][d]X(b, a, d), [a][b][c][d]X(b, d, a))

where

• Λt(X) = {a, b, c, d},
• xs1 = xs2 = [a, b, d] (the sub-indices are used to refer to the two occurrences of X),
• π1·xs1 = xs1 = [b, a, d] and π2·xs2 = xs2 = [b, d, a]

Notice that if atom c occurs unabstracted in an instance Xσ of X, there exists a mapping
c 7→f in both permutations that renames c to f when translating Xσ. This renaming
cannot be dealt with at term level because it would involve including variable f in the list
of arguments and the result would not be closed. However, the function that translates
nominal substitutions (see Definition 5.1) takes care of this renaming.

The following lemma states the uniqueness of the intermediate list of atoms xs com-
puted by the translation function for each of the occurrences of a variable X in a closed
nominal term. This is important when proving preservation of arities among meta-variable
occurrences and closedness of the translated CRS meta-term.

Lemma 3.8 (Equivalence). Let ∆ ⊢ t be a closed term-in-context and T (∆, t) = t̂ its
CRS translation. If π1 ·X and π2 ·X are two occurrences of the same variable X in t, and
X(xs1), X(xs2) are their respective translations in t̂, then π−1

1 · xs1 = π−1
2 · xs2.

Proof. This is a consequence of the definition of xs and the fact that the term is closed.
More precisely, by Definition 3.2, the translation of π ·X is X(xs) where xs , π · xs and

xs , toAscList([π−1·Λt(X)] − {a | a#X ∈ ∆}).
It is sufficient to prove that if an atom a ∈ xs1 at a position i then a ∈ xs2 at a position j

such that i = j, and vice versa.
Now, for any a such that a ∈ xs1, it is also the case that π1(a) ∈ Λt(X) (since π−1◦π·a =

a) and a#X 6∈ ∆ by definition of xs, then either
(1) π2(a) 6∈ Λt(X), or
(2) π2(a) ∈ Λt(X), thus a ∈ xs2,
No other cases are possible.

In case (1), any substitution of X containing atom a unabstracted is in the scope of an
abstraction in π1·X since π1(a) ∈ Λt(X), but unabstracted under π2·X, since π2(a) 6∈ Λt(X).
Since the term is closed it must be the case that a#X ∈ ∆ by Definition 2.14, contradicting
the fact that a ∈ xs1. Hence it is the case that π2(a) ∈ Λt(X) too, as stated in (2). Thus,
we have established that for each a in xs1 at some position i, a ∈ xs2 at some position
j. Similarly, we can prove a ∈ xs2 implies a ∈ xs1. Since toAscList is applied to both
xs1, xs2, then i = j leading to xs1 = xs2.

Therefore, for any pair X(xs1),X(xs2) in t̂, π−1
1 · xs1 = π−1

2 · xs2.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 17

Next we prove that the translation function produces CRS (meta-)terms (in particular,
meta-applications respect variable arities).

Property 3.9 (Arity). Let ∆ ⊢ t be a closed term-in-context and T (∆, t) = t̂ its CRS
translation. For each occurrence of X in t, there is a corresponding occurrence of X in
t̂; moreover, there exists n (the arity of X) such that all the occurrences of X in t̂ are in
meta-applications of arity n. In other words, in the translated term all the occurrences of
X respect the arity of X.

Proof. The translation is syntax directed. For every π · X in t, Jπ · XK∆Λt
= X(xs) where,

by Property 3.8, π−1 ·xs is a unique list of variables for all occurrences of X(xs) in t̂ . This
leads to xs having the same length n for all X in t̂, where n is the arity of n.

Property 3.10 (Preservation of closedness).

(a) If ∆ ⊢ t is a closed nominal term then its CRS translation t̂ (according to Definition
3.2) is a closed CRS meta-term.

(b) Moreover, if the nominal term t is ground, then its translation is a CRS term.

Proof. First we prove that the translation t̂ is a CRS meta-term. This is due to:

(1) Our translation respecting the structure of t, which maps atoms to variables, moderated
variables to meta-applications consisting of a meta-variable and its corresponding list of
arguments in the form Xn(a1, . . . , an) (where the arity n ≥ 0 can be read directly from
the meta-term and thus omitted), nominal abstraction to CRS abstraction, nominal
functions to CRS functions and nominal tuples to CRS tuples.

(2) As a direct consequence of Properties 3.8 and 3.9, every meta-application Xn(xs) re-
spects the arity n = |xs| for all occurrences of X in t̂.

Hence, if t is ground, t̂ is a CRS term.
It remains to prove that t̂ is closed. By definition of closedness of a nominal term, see

Definition 2.14, every occurrence of an atom in t is in the scope of an abstraction, since our
translation respects the structure of t, see (1). Finally, we prove that variable arguments
in a meta-application are bound. For this we show that for all occurrences of X(xs) in t̂,
xs is a list of bound variables: by definition of T (∆, t) we know that xs = π·xs for some

π such that π · X occurs in t. Also, xs , toAscList([π−1·Λt(X)] − {a | a#X ∈ ∆}),
that is, for each a ∈ xs it is a requirement that π(a) ∈ Λt(X) (since π−1 ◦ π·a = a). If
π(a) ∈ Λt(X), by Definition 3.1, π(a) must occur abstracted above X. Moreover, as a
consequence of Property 3.8, this is the case for all occurrences of X, otherwise a#X ∈ ∆
leading to π(a) 6∈ xs.

Therefore all the variables in xs are bound, for all occurrences of X(xs) in t̂. Hence we
conclude that t̂ is a closed meta-term.

The following auxiliary lemmas are used to prove that α-equivalent closed nominal
terms have the same CRS translation. Intuitively this is the case since CRS terms are, by
definition, considered modulo α.

Lemma 3.11. If ∆ ⊢ s ≈α t and ∆ ⊢ s, ∆ ⊢ t are closed, then for any variable X such
that πs·X occurs in s and πt·X occurs in t, π−1

s ·xss = π−1
t ·xst, where X(xss) and X(xst)

are the translations of πs·X in s with arguments xss and πt·X in t with arguments xst,
respectively.

Proof. Direct consequence of Lemma 3.8 and the fact that α-equivalent terms have the same
support.

18 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Lemma 3.12. Let ∆ ⊢ s be a nominal term-in-context and Λs as defined in Definition 3.1.
Then J(a b)·s′K∆(a b)·Λs

= Js′K∆Λs
{a 7→b, b 7→a} for all subterms s′ of s.

Proof. By induction on the structure of s′.

• The case (s′ = c). There are three cases to consider: c = a, c = b, and c 6= a, c 6= b.
• Suppose c = a. Then, by Definition 3.2, JbK∆(a b)·Λs

= b = JaK∆Λs
{a 7→b, b 7→a}.

• Suppose c = b. Then, by Definition 3.2, JaK∆(a b)·Λs
= a = JbK∆Λs

{a 7→b, b 7→a}.

• Suppose c 6= a and c 6= b. By Definition 3.2, JcK∆(a b)·Λs
= c = JcK∆Λs

{a 7→b, b 7→a}.

• The case (s′ = π · X). By Definition 3.2, we have J(a b)·(π·X)K∆(a b)·Λs
= J((a b) ◦

π)·XK∆(a b)·Λs
= X(xs) and also Jπ ·XK∆Λs

{a 7→b, b 7→a} = X(xs′{a 7→b, b 7→a}).

For this case we must take into account each atom c ∈ xs at a position p, then prove
it also occurs at p in the argument list xs′{a 7→b, b 7→a}.

We consider first the case where xs = ∅ then the case where xs 6= ∅.
(1) For the case where xs = ∅, it is also the case that (a b)·Λs(X) = ∅. Hence

xs′{a 7→b, b 7→a} = ∅ by Definition 3.2 and the result follows.
(2) For the case where xs 6= ∅, we distinguish cases depending on whether c = a,

c = b and finally for any other atom c such that a 6= c 6= b. Notice that for any atom c,
if c ∈ xs at p then, observing Definition 3.2, xs = ((a b) ◦ π)·xs such that, by property
of permutations, (π−1 ◦ (a b))·xs = xs thus (π−1 ◦ (a b))·c ∈ xs also at p. Hence,
c ∈ (a b)·Λs(X) and (π−1 ◦ (a b))·c#X 6∈ ∆. This remark is implicitly applied in the
three cases below.

• Suppose c = a such that a ∈ xs at position p. Then a ∈ (a b)·Λs(X), thus b ∈ Λs(X).
Following Definition 3.2 and the remark above, if a ∈ xs at position p then π−1·b ∈ xs at
p, for both translations, as stated in Lemma 3.8, resulting in π ◦ π−1·b ∈ xs′ thus b ∈ xs′

by properties of permutations. Hence a ∈ xs′{a 7→b, b 7→a} at p.
• Suppose c = b such that b ∈ xs at position p. Then b ∈ (a b)·Λs(X), thus a ∈ Λs(X).

Following Definition 3.2 and the remark above, if b ∈ xs at position p then π−1·a ∈ xs at
p, for both translations, as stated in Lemma 3.8, resulting in π ◦ π−1·a ∈ xs′ thus a ∈ xs′

by properties of permutations. Hence b ∈ xs′{a 7→b, b 7→a} at p.
• Suppose now c 6= a, c 6= b such that c ∈ xs at position p. Then c ∈ (a b)·Λs(X),

thus c ∈ Λs(X). Following Definition 3.2 and the remark above, π−1·c ∈ xs at p, for
both translations, as stated in Lemma 3.8, resulting in π ◦ π−1·c ∈ xs′ thus c ∈ xs′ by
properties of permutations. Hence c ∈ xs′{a 7→b, b 7→a} at p.
• The case (s′ = [a]t). By Definition 3.2, J[b](a b)·tK∆(a b)·Λs

= [b]J(a b)·tK∆(a b)·Λs
where

b ∈ (a b)·Λs(X) for any X ∈ X occurring in t. Take any variable c not occurring free in
the CRS meta-term J(a b)·tK∆(a b)·Λs

. Then one could choose another CRS representat-

ive [c]J(a b)·tK∆(a b)·Λs
{b 7→c} in its α-equivalence class. The induction hypothesis impliess

[c](J(a b)·tK∆(a b)·Λs
){b 7→c} = [c](JtK∆Λs

{a 7→b, b 7→a}){b 7→c} where (JtK∆Λs
{a 7→b, b 7→a}){b 7→c}

= JtK∆Λs
{a 7→c}{b 7→a}. Since variable c does not occur free in J(a b)·tK∆(a b)·Λs

, we can as-

sume [c](JtK∆Λs
{a 7→b, b 7→a}){b 7→c} = [c]JtK∆Λs

{a 7→c, c7→a}{b 7→a} without loss of generality.

Furthermore, J[a]tK∆Λs
{a 7→b, b 7→a} = [a](JtK∆Λs

{b 7→a}) where a ∈ Λs(X) for any X ∈ X

occurring in t. Since there exists a variable c not free in JtK∆Λs
{b 7→a} as explained above,

we choose an α-equivalent CRS meta-term [c](JtK∆Λs
{a 7→c, c7→a}){b 7→a} without loss of

generality. And the result follows.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 19

The case (s = [b]t) is similarly solved and thus omitted here.
• The case (s′ = [c]t). By Definition 3.2, J[c](a b)·tK∆(a b)·Λs

= [c]J(a b)·tK∆(a b)·Λs
where

c ∈ (a b)·Λs(X) for any X ∈ X occurring in t.
Furthermore, J[c]tK∆Λs

{a 7→b, b 7→a} = [c]JtK∆Λs
{a 7→b, b 7→a} where c ∈ Λs(X) for any X ∈

X occurring in t.
By induction hypothesis, J(a b)·tK∆(a b)·Λs

= JtK∆Λs
{a 7→b, b 7→a} and the result follows.

• The case (s′ = ft). By Definition 3.2, Jf((a b)·t)K∆(a b)·Λs
= f(J(a b)·tK∆(a b)·Λs

).

Furthermore, JftK∆Λs
{a 7→b, b 7→a} = fJtK∆Λs

{a 7→b, b 7→a}.

By induction hypothesis, J(a b)·tK∆(a b)·Λs
= JtK∆Λs

{a 7→b, b 7→a} and the result follows.

• The case (s′ = (s1, . . . , sn)). Note that

J(a b)·(s1, . . . , sn)K
∆
(a b)·Λs

= J((a b)·s1, . . . , (a b)·sn)K
∆
(a b)·Λs

,

and by Definition 3.2,

J((a b)·s1, . . . , (a b)·sn)K
∆
(a b)·Λs

= (J(a b)·s1K
∆
(a b)·Λs

, . . . , J(a b)·snK∆(a b)·Λs
) .

Furthermore,

J(s1, . . . , sn)K
∆
Λs
{a 7→b, b 7→a} = (Js1K

∆
Λs
{a 7→b, b 7→a}, . . . , JsnK∆Λs

{a 7→b, b 7→a}).

By induction hypothesis, J(a b)·siK
∆
(a b)·Λs

= JsiK
∆
Λs
{a 7→b, b 7→a} where 0 ≤ i ≤ n and the

result follows.

Theorem 3.13 (Uniformity w.r.t. α). Let ∆ ⊢ t, ∆ ⊢ s be a pair of closed nominal
terms-in-context such that ∆ ⊢ s ≈α t and let ŝ = T (∆, s), t̂ = T (∆, t) be their respective
CRS translations according to Definition 3.2. Then ŝ = t̂.

Proof. We prove a more general property:
Let ∆ ⊢ s′ ≈α t′ be a subderivation of ∆ ⊢ s ≈α t. Hence, s′ = π·s|p and t′ = ρ·t|p, for

some permutations π, ρ. Then, Js′K∆Λπ·s
= Jt′K∆Λρ·t

.

From this property we deduce in particular ŝ = t̂ when p = ǫ.
To prove this property, we proceed by induction on the derivation and distinguish cases

according to the last rule used.

• (≈αa). In this case, s′ = a = t′. By Definition 3.2, Js′K∆Λπ·s
= a = Jt′K∆Λρ·t

.

• (≈αX). In this case, s′ = πs′ ·X, t′ = ρt′ ·X, and ∆ ⊢ ds(πs′ , ρt′)#X. The result follows
by Lemma 3.11.
• (≈α[a]). In this case, s′ = [a]s′′, t′ = [a]t′′, and ∆ ⊢ s′′ ≈α t′′. The result follows by
induction hypothesis.
• (≈α[b]). In this case, s′ = [a]s′′, t′ = [b]t′′, ∆ ⊢ (b a)·s′′ ≈α t′′ and ∆ ⊢ b#s′′.

By induction hypothesis, J(b a)·s′′K∆(b a)◦π·Λs
= Jt′′K∆ρ·Λt

.

By Lemma 3.12, J(b a)·s′′K∆(b a)◦π·Λs
= Js′′K∆π·Λs

{a 7→b, b 7→a}. Since ∆ ⊢ b#s′ then

Js′′K∆π·Λs
{a 7→b, b 7→a} = Js′′K∆π·Λs

{a 7→b}. Therefore, Js′′K∆π·Λs
{a 7→b} = Jt′′K∆ρ·Λt

.

Then, Js′K∆π·Λs
= [a]Js′′K∆π·Λs

= [b]Js′′K∆π·Λs
{a 7→b} since b does not occur free in the

translation of s′′. And Jt′K∆ρ·Λt
= [b]Jt′′K∆ρ·Λt

. The result follows.

• (≈αf). In this case, s′ = fs′′, t′ = ft′′ and ∆ ⊢ s′′ ≈α t′′. The result follows directly by
induction hypothesis.
• (≈αtupl). In this case, s′ = (s′1, . . . , s

′
n), t

′ = (t′1, . . . , t
′
n) and ∆ ⊢ s′1 ≈α t′1, . . . ,∆ ⊢ s′n ≈α

t′n. The result follows directly by induction hypothesis.

20 J. DOMÍNGUEZ AND M. FERNÁNDEZ

4. Transforming NRS Rules

NRS rules are more general than CRS rules in that unabstracted atoms may occur in rules.
In this section, we impose some conditions on NRS rules to obtain a class of rules that can
be translated to CRS rules.

Definition 4.1 (Standard nominal rule). A nominal rule is called standard when it is closed
and the left-hand side has the form fs.

Definition 4.2 (Rule translation function). Let R = ∇ ⊢ l → r be a standard nominal
rule. The translation of R is T R(∇, l, r) = T (∇, l) ⇒ T (∇, r), where T (∆, t) is given in
Definition 3.2.

Lemma 4.3 (Well-defined rule translation). Let R = ∇ ⊢ l → r be a standard nominal

rule. If R′ = l̂⇒ r̂ is its translation according to Definition 4.2, then R′ is a CRS rule.

Proof. First, note that if a nominal rule ∇ ⊢ l → r is closed (i.e., ∇ ⊢ (l, r) is closed), then
∇ ⊢ l and ∇ ⊢ r are both closed terms. Hence:

• By Property 3.10 both l̂ and r̂ are closed CRS meta-terms.
• By definition of a nominal rule, the variables in r are also in l. It is easy to see, by induction
on Definition 3.2, that r̂ contains only those meta-variables occurring in l̂, and meta-
variables occur only in meta-applications where the arguments are lists of bound variables
respecting the arity of the meta-variable (see Property 3.9). Moreover, JlK∇Λl

= JlK∇Λ(l,r)

and JrK∇Λr
= JrK∇Λ(l,r)

. This is because V (r) ⊆ V (l), the rule is closed and ∇ is shared by

all functions.
• By definition of a standard rule (see Definition 4.1), l has the form fs.

Hence R′ is a CRS rule (see Section 2.2).

Example 4.4. The (closed) nominal rules to compute prenex normal forms (see Example
2.12) can be translated to CRS rules by application of our algorithm. We show the CRS
translation computed by our Haskell implementation (see [10]):

and(P, forall([a]Q(a))) ⇒ forall([a]and(P,Q(a)))
and(forall([a]Q(a)), P) ⇒ forall([a]and(Q(a), P))
or(P, forall([a]Q(a))) ⇒ forall([a]or(P,Q(a)))
or(forall([a]Q(a)), P) ⇒ forall([a]or(Q(a), P))
and(P,exists([a]Q(a))) ⇒ exists([a]and(P,Q(a)))
and(exists([a]Q(a)), P) ⇒ exists([a]and(Q(a), P))
or(P,exists([a]Q(a)) ⇒ exists([a]or(P,Q(a)))
or(exists([a]Q(a)), P) ⇒ exists[a]or(Q(a), P)
not(exists([a]Q(a))) ⇒ forall([a]not(Q(a)))
not(forall([a]Q(a))) ⇒ exists([a]not(Q(a))).

Note that the nominal variable P becomes the CRS meta-variable P of arity 0. Hence, by
definition (see [25]), if a substitute of P contains the free variable a, then the bound variable
a in the meta-term will be renamed to avoid name clashes. On the other hand, the nominal
variable Q becomes the CRS meta-variable Q of arity 1, which has the bound variable a as
argument.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 21

Example 4.5. The next set of nominal rules are inspired by the simulation of β-reduction
and η-reduction as defined in [15].

(βapp) app(lam([a]app(X,X ′)), Y) →
app(app(lam([a]X ′), Y),app(lam([a]X), Y))),

(βvar) app(lam([a]a),X) → X,

(βΛ) a#Y ⊢ app(lam([a]Y),X) → Y,

(βlam) b#Y ⊢ app(lam([a]lam([b]X)), Y) → lam([b]app(lam([a]X), Y)),
(η) a#X ⊢ lam([a]app(X, a)) → X.

The CRS translation is:

(βapp) app(lam([a]app(X(a),X ′(a))), Y) ⇒
app(app(lam([a]X ′(a)), Y),app(lam([a]X(a)), Y))),

(βvar) app(lam([a]a),X) ⇒ X,

(βΛ) app(lam([a]Y),X) ⇒ Y,

(βlam) app(lam([a]lam([b]X(a, b))), Y) ⇒ lam([b]app(lam([a]X(a, b)), Y)),
(η) lam([a]app(X, a)) ⇒ X.

In rule (βlam), notice how both occurrences of the meta-variable X share the same ordered
list of bound variables, regardless of the fact that in the left-hand side, [a] is above [b] in the
syntax tree while in the right-hand side it is the opposite. This ensures that substitutions
work well, as explained in more detail in the next section.

5. Simulating Nominal Rewrite Steps

We consider next the relationship between the rewriting relation on nominal terms generated
by a set of nominal rules R and the rewriting relation on CRS terms generated by its
translation. Our goal is to show that the rewriting relation is preserved when nominal
terms and rules are translated to CRSs.

Translation of a rewrite relation is not as straight-forward as one could expect. The
rewriting relation generated by a set of CRS rules is defined on terms, not on meta-terms.
Recall that CRS substitutes are terms, containing no meta-variables, preceded by the binder
λ and a list of pairwise distinct variables (the length of the list corresponds with the arity
of the meta-variable it substitutes). In order to preserve the rewriting relation, we need
to consider only ground nominal substitutions. Moreover, substitutions are not translated
on their own, but together with the term-in-context to be instantiated (since permutations
are also applied to the substitution in order to preserve the meaning of the term). For
this reason, we will define a translation function for pairs of a term-in-context ∆ ⊢ t and a
substitution σ.

Moreover, there are swappings occurring in a permutation that can only be dealt with
by applying directly the permutation to the nominal substitution before translation. These
swappings correspond to mappings from atoms to unabstracted atoms occurring in the term.
Dealing with these swappings at term level would contradict the property of closedness of
a CRS rule. Take for instance the example

(⊢ (a b)·X, [X 7→f(a, b)]).

The term ⊢ (a b)·X is trivially closed (no unabstracted atoms occur in the term and there
is only one variable). The CRS translation given in Definition 3.2 for nominal terms and

22 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Definition 5.1 for substitution, given below, produce the pair

(X, [X 7→f(b, a)])

where the permutation (a b) has been directly applied to the instantiation of X, f(b, a)
to construct the CRS substitute and not in the nominal term, since neither a nor b are
abstracted above X. Further examples are considered after Definition 5.1, where we present
the nominal substitution translation function.

We must ensure a nominal substitution is correctly translated with respect to the nom-
inal term it instantiates. For this, we apply the function toAscList equally in both Defini-
tion 3.2 and Definition 5.1, over the set of mappings Λ (see Definition 3.1), which produces
a fixed and ordered list of atoms [a1, . . . , an] for each nominal variable in the term. These
lists are added to the substitutes for meta-variables, which have the form λ(a1, . . . , an).t.

Definition 5.1 (Substitution translation). Let ∆ ⊢ t be a closed nominal term-in-context,
Λt as in Definition 3.1, and σ a nominal substitution satisfying ∆, such that σ = [Xi 7→
ti], 1 ≤ i ≤ n where dom(σ) ⊆ V (t) and tσ is ground.

Then T ∫ (∆, t, σ) = [Xi 7→ λ(xsi).si] is defined as follows:

• xsi , πi · xsi and,

• xsi , toAscList([π−1
i ·Λt(Xi)]− {a | a#Xi ∈ ∆}),

• si , T (∆, πi · ti) where πi is the permutation suspended in the leftmost occurrence of Xi

in t.

Lemma 5.4 justifies the use of the leftmost occurrence of π · X in t. Intuitively, each
substitute generated by application of the translation function to distinct occurrences of
a moderated variable is indeed α-equivalent. Hence the leftmost occurrence is used as a
representative.

We denote by (t̂, σ̂) the result of (T (∆, t),T ∫ (∆, t, σ)).

Example 5.2. Consider the following pair of a nominal term-in-context and substitution

(t = ⊢ f([a][b]X, [b][a]X), σ = [X 7→g(a, b)])

where
tσ = f([a][b]g(a, b), [b][a]g(a, b)).

Then, applying (T ,T ∫) we obtain the pair

(t̂ = f([a][b]X(a, b), [b][a]X(a, b)), σ̂ = [X 7→λ(a.b).g(a, b)]).

The CRS term σ̂(t̂) is computed as follows:

f([a][b](λ(a, b).g(a, b))(a, b), [b][a](λ(a, b).g(a, b))(a, b)) →β

f([a][b]g(a, b), [b][a]g(a, b))

which corresponds to the nominal term tσ.

Example 5.3. We revisit the nominal term

⊢ [a][b](a c)·X

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 23

given in example 3.6, for a more detailed view on its translation to CRSs.
Assume we are given the pair

(⊢ [a][b](a c)·X, σ = [X 7→f(a, b, c)]).

Its CRS translation is

([a][b]X(b, a), σ̂ = [X 7→λ(b, a).f(c, b, a)])

with xs = [b, c], xs = [b, a] and (a c)·σ(X) = f(c, b, a). Notice we must apply (a c) to xs in
order to permit the capture of the variable a occurring in (a c)·σ(X). Thus, the obtained
meta-term mimics the behaviour of the nominal term and substitution.

Later we formally prove the application of permutations to the nominal substitution
σ does not affect the uniqueness of σ̂ modulo α, when more than one occurrence of the
same meta-variable appears in the term. Intuitively, if there are more occurrences of X,
Property 3.10 implies the initial list of bindings we call xs is syntactically equivalent for
all occurrences of X thus it binds the same atoms. Considering π is applied to both xs

and Xσ, renamings do not affect the structure of the binding. Moreover, for any other
renaming of atoms a 7→ π(a) occurring during application of π·σ(X), an identical mapping
must exist in all other occurrences of π·X else it contradicts the property of closedness (see
Definition 2.14) therefore a#X ∈ ∆.

For instance, consider the following pair of a closed term-in-context and a substitution.

(a, c#X ⊢ g([a][b][c](a d)(e f)·X, [a][b][c](c d)(e f)·X), [X 7→f(b, d, e, f)]).

The term translation function produces a CRS meta-term

g([a][b][c]X(b, a), [a][b][c]X(b, c))

and the substitution translation produces the corresponding substitute

[X 7→λ(b, a).f(b, a, f, e)].

Note that, if translation of the substitution is done with respect to each variable in the
term, we obtain:
[X 7→λ(b, a).f(b, a, f, e)] and [X 7→λ(b, c).f(b, c, f, e)] for each occurrence of X. These substi-
tutes are indeed α-equivalent and our algorithm outputs the leftmost [X 7→λ(b, a).f(b, a, f, e)].

Moreover, applying the lexical ordering directly to xs instead of xs would produce
substitutes which are no longer α-equivalent, providing incorrect instantiations.

We now formalise the property of equivalence modulo α of substitution occurrences after
translation. The intuition is they are equivalent because of terms being closed (see Defini-
tion 2.14) and sharing an initially equivalent variable binding list, xs (see Property 3.8).

Lemma 5.4 (α-equivalence of substitutes). Let ∆ ⊢ t be a closed nominal term-in-context,
Λt as defined in Definition 3.1, and σ a nominal substitution satisfying ∆ such that dom(σ) ⊆
V (t) and tσ is ground. Let πi ·X, πj ·X be two occurrences of the same variable in t, and let
[X 7→ λ(xsi).si] and [X 7→ λ(xsj).sj] be translations according to Definition 5.1 but using
πi and πj respectively. Then [X 7→ λ(xsi).si] ≈α [X 7→ λ(xsj).sj].

Proof. By definition, T ∫ (∆, t, [Xi 7→ ti]) = [Xi 7→ λ (xsi). si] with xsi , πi·xsi, xsi ,

toAscList([π−1
i ·Λt(Xi)]−{a | a#Xi ∈ ∆}) and si , T (∆, πi·ti) where πi ·Xi is the leftmost

occurrence of Xi.

24 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Hence, each atom a ∈ support(πi) with πi(a) 6∈ Λt(X) must satisfy πi(a) = πj(a), so
that when πi, πj are applied to each occurrence of ti during translation, they remain equi-
valent, therefore si = sj. Otherwise a ∈ ds(πi, πj) such that a#X ∈ ∆ by Definition 2.14.
Since σ must also satisfy ∆, it is the case that a#ti, and application of either πi or πj to ti
produces no changes.

Now we look at the binding list added to the substitute (i.e., xsi, xsj). Property 3.8
states that xs is shared by all occurrences, and the term is closed, then it is the case that
each variable in xs binds the same variable in ti for both occurrences. It immediately follows
that by application of πi, πj to each occurrence of xs and ti, the renaming of bound variables
does not affect the binding structure, hence they are α-equivalent. Finally, for any other
atom a ∈ Λt(X) but a 6∈ xs it can only be that π−1(a)#X ∈ ∆ hence π−1(a) 6∈ xs. It also
does not occur free in ti since it must satisfy ∆, as previously stated. Therefore it does not
alter the outcome of the translation.

This shows that the choice of the leftmost element in the translation does not affect
correctness.

We are now ready to prove that substitutions are correctly translated.

Lemma 5.5 (Instantiation). Let ∆ ⊢ t be a closed nominal term-in-context, Λt as defined
in Definition 3.1, and σ a substitution satisfying ∆ such that dom(σ) ⊆ V (t) and tσ is
ground.

Suppose (Jt′K∆Λt
,T ∫ (∆, t, σ)) = (t̂′, σ̂), for any subterm t′ of t (e.g. t′ = t), is a recursive

call in the translation process.
Then Jt′σK∆Λt

= σ̂(t̂′).

Proof. By induction on the structure of t′.

(atom): If t′ = a, the property holds trivially.
(var): If t′ = π ·X, then we distinguish cases with respect to Λt(X).
(1) If Λt(X) = ∅, then it immediately follows that (Jπ · XK∆∅ , T

∫ (∆, t, σ)) = (X, σ̂)

where σ̂(X) = s , T (∆, π·σ(X)) by definition of substitution translation. Therefore
σ̂(X) = s. This is equivalent to Jπ ·XσK∆∅ = s.

(2) If Λt(X) 6= ∅, then (Jπ · XK∆Λt
, T ∫ (∆, t, σ)) = (X(xs), σ̂(X) = λ(xs).s), where s =

T (∆, π·σ(X)). Therefore (X(xs))σ̂(X) = (λ(xs).s)(xs) = s. This is also equivalent
to J(π ·X)σ(X)K∆Λt

= s.

(abs): If t′ = [a]s, then J([a]s)σK∆Λt
= J[a]sσK∆Λt

= [a]JsσK∆Λt
= [a]σ̂(ŝ) = σ̂([a]ŝ) where

σ̂(ŝ) = JsσK∆Λt
by the induction hypothesis.

(fun): If t′ = fs, then J(fs)σK∆Λt
= Jf(sσ)K∆Λt

= fJ(sσ)K∆Λt
= f(σ̂(ŝ)) = σ̂(f ŝ) where

σ̂(ŝ) = JsσK∆Λt
by the induction hypothesis.

(tuple): If t′ = (s1, . . . , sn), then J(s1, . . . , sn)σK∆Λt
= J(s1σ|V (s1), . . . , snσ|V (sn))K

∆
Λt

=

(σ̂1(ŝ1), . . . , σ̂n(ŝn)) where each σ̂i(ŝi) = Jsiσ|V (si)K
∆
Λt

by the induction hypothesis. And
σ̂(ŝi)|V (si) = σ̂i(ŝi), as a consequence of Lemma 5.4.

Nominal variable translation depends both on freshness context and abstractions occurring
above the variable. The translation function uses them to build both the list of arguments
of a meta-application and the list of binders added to a substitute, whereas the syntax-
directed nature of the translating function transforms the rest of the elements directly. By
keeping track of the abstractions above a variable via function Λ, translating any subterm t′

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 25

of t with Λt(X) results in the same term as translating t′ within t, as stated in the following
lemma.

Note that C[] is a term, as explained in the paragraph above Definition 2.13, and is

translated to Ĉ[] using Definition 3.2.

Lemma 5.6 (Context). Let ∆ ⊢ t be a nominal term-in-context such that t = C[s] (i.e.,

t = C[− 7→ s]), where s is a ground nominal term. Assume JCK∆ΛC
= Ĉ and JsK∆∅ = ŝ.

Then JC[s]K∆Λt
= Ĉ[ŝ].

Proof. This is a particular case of Lemma 5.5, where σ = [− 7→ s]. If T ∫ (∆, t, σ) = σ̂ then

JC[s]K∆Λt
= Ĉ[ŝ] since s is ground, hence ΛC = Λt.

We can now derive the main result of the paper: the preservation of the rewrite relation
under the translation.

Theorem 5.7 (Preservation of reduction). Let R = ∇ ⊢ l → r be a standard nominal
rule. Let t be a ground nominal term and t̂ = T (∅, t). If t →R u then t̂ ⇒R′ û using
R′ = T R(∇, l, r), and û = T (∅, u).

Proof. If t →R u then there exists C, σ such that t ≈α C[lσ] with σ a ground nominal
substitution satisfying ∇ such that dom(σ) ⊆ V (l).

Also R′ = T R(∇, l, r) = JlK∇Λl
⇒ JrK∇Λr

= l̂ ⇒ r̂ by Definition 4.2, where Lemma 4.3
asserts that the translation is a CRS rule.

If we have, by application of Definition 5.1, T ∫ (∇, l, σ) = σ̂l then, by Lemma 5.5

JlσK∇Λlσ
= σ̂l(l̂). Hence we have t̂ = Ĉ[σ̂l(l̂)] by Lemmas 5.6 and Property 3.13.

Similarly, since u ≈α C[rσ] we have T ∫ (∇, r, σ) = σ̂r, leading to û = Ĉ[σ̂r(r̂)] by
application of Definition 5.1, followed by Lemmas 5.5, 5.6 and Property 3.13. Notice that
dom(σ̂r) ⊆ dom(σ̂l) and σ̂r(X̂) ≈α σ̂l(X̂) by Lemma 5.4.

Hence we conclude by stating that if lσ →R rσ then t̂⇒R′ û as expected.

Corollary 5.8 (Termination). Termination of the translated CRS implies termination of
the NRS.

6. Translating from CRSs to NRSs: An Improved Approach

Our goal is to obtain a tool capable of translating rules back and forth between CRSs and
NRSs. Based on the CRS to NRS translation defined in [16], we now provide an improved
algorithm to translate CRS rules to closed nominal rules.

Since CRSs follow Barendregt’s naming convention (each abstraction uses a different
bound variable to avoid name clashes), we will work with closed rewriting (see Defini-
tion 2.15), where in each rewriting step a freshened copy of the rule is chosen, making the
translation easier.

6.1. Translating Meta-terms in CRS Rewrite Rules. We begin by defining a pair of
auxiliary functions.

Function Φ provides the leftmost meta-application for each meta-variable occurring in
the left-hand side of a CRS rule l. More precisely, Φl(Z

n
i) = [a1, . . . , an] if Z

n
i (a1, . . . , an) is

the leftmost occurrence of Zn
i in l. We use it in the translation to ensure the preservation of

both closedness (see Lemmas 6.13 & 6.14) and the rewriting relation (see Theorem 6.25).

26 J. DOMÍNGUEZ AND M. FERNÁNDEZ

The second auxiliary function, Ψ, is used to convert each meta-application Zn
i (a1, . . . , an)

occurring in the left-hand side l of a CRS rule into a list πi of swappings, such that πi·Zi,
when instantiated, simulates the β-reduction of a valuation σ applied to each occurrence of
Zn
i . To accomplish this, Ψ is parameterised by Φl(Z

n
i), and applied locally to each argu-

ment list (b1, . . . , bn) in a meta-application of Zn
i which is not the leftmost one, in order to

preserve α-equality along the NRS translation.
Both auxiliary functions will be used when defining the translation algorithm for left-

and right-hand sides of CRS rules (Definitions 6.5 & 6.10). We start by providing a formal
definition of Φ.

Definition 6.1. Given a closed CRS meta-term t, the partial mapping Φt from meta-
variables to lists of variables is defined such that

Φt(Z
n
i) = [a1, . . . , an]

if the leftmost occurrence of the meta-variable Zn
i in t has the form Zn

i (a1, . . . , an), where
a1, . . . , an are pairwise distinct bound variables. We denote by Φt(Z

n
i)k the kth element in

the list Φt(Z
n
i).

To provide a behaviour similar to that of CRSs, NRSs must maintain the relation among
argument lists occurring for a meta-variable Zn

i along a CRS meta-term. This relation is one
of position within the argument list such that all (possibly distinct) variables at a position
k (where 1 ≤ k ≤ n), for each argument list adjacent to an occurrence of Zn

i , are β-reduced
by application of binder λxk in a substitute for a valuation σ(Zn

i). Furthermore, consider a
non left-linear closed meta-term (i.e., more than one occurrence of a meta-variable exists)
of the form ([a]Zn

i (a), [b]Z
n
i (b)). By the property of α-equivalence in CRSs, [a]Zn

i (a) and
[b]Zn

i (b) are considered syntactically equal. A direct translation of this meta-term to the
NRS term ([a]Z, [b]Z) is not suitable: [a]Z and [b]Z are not α-equivalent and, moreover, this
is not a closed NRS term. Both translation issues are approached by the same methodology:
making use of the NRSs tools to check α-equivalence of terms, that is, swappings and the
freshness relation.

To construct a list of swappings for an occurrence of a non-leftmost NRS variable
Z with respect to both Φt(Z

n
i) and a variable argument list (b1, . . . , bn) adjacent to that

same CRS occurrence Zn
i , we need to convert a permutation in two-line notation into a

series of k-cycles where k ≥ 2 (Id permutations are discarded) followed by a decomposition
into swappings, as explained in Example 2.32. Notice that the set of variables in Φt(Z

n
i)

and (b1, . . . , bn) can be equivalent, disjoint or sharing some variables, therefore it is not a
bijection per se. However, the variables in each list are distinct among them and the length
of the list is the same in both cases, so there is a one-to-one correspondence between each
variable in Φt(Z

n
i) and (b1, . . . , bn). This is enough to define a cycle notation (therefore

forcing the construction of bijections).

Example 6.2. Consider the closed CRS meta-term

t = [c]([a][b]Z(a, b, c), [x][y]Z(x, c, y))

where variable name c is shared between meta-applications. Application of Φ to t generates
Φt(Z) = [a, b, c] and, to convert the set of mappings {a → x, b → c, c → y}, going from
the leftmost argument list to the rightmost one, into a list of swappings, we transform the
implicit two-line notation (variables in the domain of the mapping on the top row and their
respective image on the bottom row) into the cycle notation (a, x)(b, c, y) and finally into

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 27

the list of swappings πZ = (y b)(c b)(x a) as informally described in Section 2.3. Then,
πZ(a) = x, πZ(b) = c, πZ(c) = y as expected. Also, πZ(x) = a and πZ(y) = c, however both
variables x, y do not belong to the domain Φt(Z) of the mappings therefore their image is
irrelevant for a correct translation of the permutation list. Moreover, it will be shown in
the translation (Definition 6.5) that both atoms must be fresh for the nominal variable Z,
i.e., x#Z, y#Z ∈ ∆ to preserve closedness of the NRS translation. Hence one could say
that auxiliary function Ψ upgrades directed paths (i.e., finite sequence of edges connecting
distinct vertices without repetition) to cycles.

Next is the formal definition of Ψ.
When constructing cycles, the main difficulty originates when a variable chosen by Ψ

as the initial element of the sequence is part of a directed path. As a result, there may be
elements preceding in the sequence which are not reachable by constructing the sequence
rightwards from the initial element. The solution: construct the sequence leftwards from
the initial element only in the case Ψ is not dealing with a real cycle (thus we must know
whether Ψ is dealing with a cycle or a directed path at each recursive step). Here is how.

Definition 6.3. Let s = [a1, . . . , an] and t = [b1, . . . , bn] be any two pairs of lists of length n

over the set V of variables, and f : [a1, . . . , an]7→[b1, . . . , bn], f
−1 : [b1, . . . , bn]7→[a1, . . . , an]

a pair of mappings such that bk = f(ak) and ak = f−1(bk), for 1 ≤ k ≤ n. Then, Ψ(s, t)
returns a list π of swappings over the set A of atoms, recursively defined as follows:

Ψ(nil, nil) = Id

Ψ([a1, . . . , an], [b1, . . . , bn]) = (am bk)(am bj) · · · (am b1)(am a1)(am ai) · · · (am al)
◦ Ψ(s1, t1) where 1 ≤ i, j, k, l,m ≤ n and

• (am bk)(am bj) · · · (am b1)(am a1)(am ai) · · · (am al) is the 2-cycle decomposition (see
Property 2.31) of the permutation in cycle form C = (am, al, . . . , ai, a1, b1, . . . , bj , bk);
• C is constructed by successive applications of functions f and f−1 over a1 (as many times
as possible) as follows:

am
f−1(al)
←− [al · · ·

f−1(ai)
←− [ai

f−1(a1)
←−[a1

f(a1)
7−→ b1

f(b1)
7−→ · · · bj

f(bj)
7−→ bk

where f−1(a1) and f(bj) are only applicable when bk 6= a1. Otherwise, if bk = a1 then the
cycle form would be (a1, b1, . . . , bj), generating then a list of swappings (a1 bj) · · · (a1 b1).
• s1 = s \ C,
• t1 = t \ C.

Example 6.4. Using the definition on the ordered pair of variable lists [a, b, c], [x, c, y] from
the above example results in mappings:

f(a) = x f(b) = c f(c) = y f−1(x) = a f−1(c) = b f−1(y) = c

Then, function Ψ begins by applying f to variable a such that

a
f(a)
7−→ x

and since x 6∈ domain(f), a 6∈ domain(f−1):

Ψ([a, b, c], [x, c, y]) = (a x) ◦Ψ([b, c], [c, y])

where lists [b, c], [c, y] are obtained by elimination of variables a, x from both lists. Finally,

Ψ([b, c], [c, y]) = (b y)(b c) ◦ Id

28 J. DOMÍNGUEZ AND M. FERNÁNDEZ

is created as follows. Starting with variable b,

b
f(b)
7−→ c

f(c)
7−→ y

where y 6∈ domain(f) and b 6∈ domain(f−1) and thus the cycle is (b, c, y), converting to
(b y)(b c). Also, Ψ(nil, nil) = Id.

Notice the positioning of swapping (a x) is different from the previous example solution.
Previously we had πZ = (y b)(c b)(x a) whereas, by application of Definition 6.3, it resolves
to (x a)(y b)(c b) instead (Id is omitted). However, Lemma 2.29 stated that disjoint cycles
commute therefore both permutations perform equivalent actions.

To translate a CRS rule l⇒ r, two different functions, called Left and Right , are applied
to l and r respectively, both parameterised by Φl. We define them separately.

The translation function Left uses an auxiliary function working on pairs: (∆, l)ΛΦl
, such

that Left(l) = (∅, l)∅Φl
where l is a meta-term and ∆, Λ are recursively constructed. ∆ has

freshness constraints to avoid certain names appearing, in order to keep the nominal term
consistently named throughout, since there are no naming conventions in NRSs. Λ is a set
of variables such that the recursive call (∆, Zn

i (a1, . . . , an))
Λ
Φl

has in Λ those variables bound
above Zn

i .
For any occurrence of a meta-variable Zn

i in l that is not the leftmost, Λ \ Φl(Z
n
i)

contains the set of atoms that must be fresh for Zi in the NRS translation to translate
consistently from CRSs to NRSs and back again. That is, Λ \ Φl(Z

n
i) is the set of all

variables bound above Zn
i that cannot occur in the translated NRS term, otherwise the

NRS term is no longer closed (see Definition 2.14). We provide examples after the formal
definition.

Definition 6.5 (Left translation). Let s be a closed CRS meta-term where all the meta-
applications have the form Z(a1, . . . , an) such that a1, . . . , an are different bound variables.
Let Φ be the function given in Definition 6.1 and Ψ the function in Definition 6.3. Then
Left(s) = (∅, s)∅Φs

, where (∆, s)ΛΦs
is inductively defined as follows:

(∆, a)ΛΦs
= (∆, a)

(∆, [a]t)ΛΦs
= (∆′, [a]t′),

where (∆′, t′) = (∆, t)
Λ∪{a}
Φs

(∆, f t)ΛΦs
= (∆′, f t′),

where (∆′, t′) = (∆, t)ΛΦs

(∆, (t1, . . . , tn))
Λ
Φs

= (∆′, (t′1, . . . , t
′
n)),

where (∆, tk)
Λ
Φs

= (∆k, t
′
k), for 1 ≤ k ≤ n

and ∆′ =
⋃

k ∆k

(∆, Zn
i (a1, . . . , an))

Λ
Φs

= (∆ ∪∆′, Zi) if leftmost occurrence of Zn
i in s

where ∆′ = {a#Zi | a ∈ Λ \ Φs(Z
n
i)}

(∆, Zn
i (b1, . . . , bn))

Λ
Φs

= (∆ ∪∆′, Ψ(Φs(Z
n
i), [b1, . . . , bn])·Zi) otherwise,

where ∆′ = {b#Zi | b ∈ Λ \ Φs(Z
n
i)}

Therefore, the left-hand side translation function does the following: for each meta-variable
Zn
i in s, if Zn

i is the leftmost subterm of the form Zn
i (a1, . . . , an), it is replaced by Zi and for

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 29

each a ∈ Λ but not in Zn
i (a1, . . . , an), a#Zi is added to ∆, whereas the rest of the subterms

with the form Zn
i (b1, . . . , bn) are replaced by Ψ(Φs(Z

n
i), [b1, . . . , bn])·Zi. Additionally, bj#Zi

is added to ∆ for each bj ∈ Λ \ Φs(Z
n
i), 1 ≤ j ≤ n, that is, for any binder with variables

distinct to the binders in the leftmost occurrence, a freshness constraint is added in the
translated term to preserve closedness. No further freshness constraints are needed since
we are working with closed nominal rewriting.

For the examples in this and next sections, X,Y,Z, . . . range over the meta-variables
instead of Zn

i , without loss of generality. This notation is closer to nominal rewriting
notation and we also find it more readable. We write Zn

i when providing definitions to
follow the standard CRS notation.

The following lemma is similar to Lemma 3.3, but we are now translating from CRS
meta-terms to NRS terms.

Lemma 6.6 (Preservation of meta-variables as variables in the Left translation). Sup-
pose t is a CRS meta-term and (∆, t′) = Left(t) its translation by Definition 6.5. Then,
Zn
i (a1, . . . , an) is an occurrence of a meta-application in t with Zn

i at position p if and only
if π·Zi occurs in t′ at position p.

Proof. By induction over the structure of t and the fact that there is a one-to-one corres-
pondence between the elements of t and t′ as it is shown in the syntax-directed translation
function in Definition 6.10. Therefore, a meta-variable Zn

i occurs at position p in t, along
with a list of variable arguments (a1, . . . , an) (when n > 0), if and only if there exists a
variable π·Zi at p in its translation t′.

Lemma 6.7 (Preservation of free variables as unabstracted atoms in the Left translation).
Let l be a closed CRS meta-term, Φl as defined in Definition 6.1 and (∇, l′) = Left(l) as
in Definition 6.5. Assume (∆, s)ΛΦl

= (∆′, s′) is computed in the translation of l, where s is

any subterm of l (e.g. s = l). Then, a is free in s if and only if a is an unabstracted atom
in s′. Hence, there are no unabstracted atom subterms in l′, since l is closed.

Proof. By induction on the definition of Left .

(var): If s = a then (∆, a)ΛΦl
= (∆, a) and the property holds. Note that, since l is closed, s

is a strict subterm of l and there exists an abstraction for a in l and above s. Therefore
[a] occurs above a in the translated term too, by the syntax-directed nature of the
translation function.

(Mvar): If s = Zn
i t, then (∆, Zn

i t)
Λ
Φl

= (∆′, π·Zi) and the property holds trivially.

(abs): If s = [a]t then (∆, [a]t)ΛΦl
= (∆′, [a]t′) where (∆′, t′) = (∆, t)

Λ∪{a}
Φl

and the property

holds for (∆, t)
Λ∪{a}
Φl

by induction hypothesis.

(fun): If s = ft then (∆, f t)ΛΦl
= (∆′, f t′) where (∆′, t′) = (∆, t)

Λ∪{a}
Φl

and the property

holds for (∆, t)
Λ∪{a}
Φl

by induction hypothesis.

(tuple): If s = (t1, . . . , tn) then (∆, (t1, . . . , tn))
Λ
Φl

= (∆′, (t′1, . . . , t
′
n)) where each (∆′

i, t
′
i) =

(∆, ti)
Λ
Φl
, ∆′ =

⋃

∆′
i for 1 ≤ i ≤ n and the property holds for each (∆, ti)

Λ
Φl

by induction
hypothesis.

The other direction is similar.

Example 6.8. The CRS meta-term f([a]X, [b]X) is translated using Left as the closed
nominal term

a#X, b#X ⊢ f([a]X, [b]X).

30 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Thanks to the use of closed nominal rewriting, less freshness constraints are needed
in the translation than when using (standard) nominal rewriting. However, in some cases
freshness constraints are generated, even if a translation without freshnesses might be pos-
sible. For example, the CRS meta-term f([a]X(a), [b]X(b)) produces the closed nominal
translation

b#X ⊢ f([a]X, [b](a b)·X)

where b#X ensures that the term is closed (see Definition 3.2); however, ⊢ f([a]X, [a]X)
would also be a correct translation (note that b#X ⊢ f([a]X, [b](a b)·X) ≈α f([a]X, [a]X)).

The translation function Right(·) for the right-hand side of a CRS rule, when applied to
a closed meta-term r, produces (∆r, [[r]]Φl

), where subterms of the form Zn
i (t1, . . . , tn) in r

are translated as terms of the form (π·Zn
i)[Φr(Z

n
i)k 7→[[tk]]Φl

] such that, for the cases where
tk ∈ (t1, . . . , tn) is not a variable in r, the translation to NRS introduces a notation for
explicit atom substitution by means of an extra set of rules (see Definition 6.9) added to the
given system. These explicit substitution rules are handled separately from the specified
rules in the NRS, namely they are discarded if translating back into CRSs by application
of the function defined in Section 4.

On the other hand, a swapping (Φl(Z
n
i)k tk) is added to π where tk is a variable

occurring in r (i.e. tk is a variable occurring bound above Zn
i by definition of a closed CRS

meta-term). Also ∆r contains fresh atoms for each bound variable occurring in the term.
We remark that function Ψ is not needed here. CRSs are assumed to follow the usual

naming conventions, that is, different bound variables are used in each abstraction. Hence,
there are no clashes among variable names both in Φl(Z

n
i) and other occurrences of Zn

i in
the right-hand side meta-term.

We use the notation for explicit atom substitution given in [16], where t[a 7→ s] is an
abbreviation for sub([a]t, s). We recall below the rules, then continue by formalising the
definition of the right-hand side rule translation.

Definition 6.9 (Explicit substitution rules). The following (closed) nominal rewrite rules
define the behaviour of the binary function symbol sub. The notation t[a 7→ s] is syntactic
sugar for sub([a]t, s)

(σvar) ⊢ a[a 7→X] → X

(σǫ) a#Y ⊢ Y [a 7→X] → Y

(σf) ⊢ (f X)[a 7→Y] → fX[a 7→Y] for each f in Σ
(σprod) ⊢ (X1, . . . ,Xn)[a 7→Y] → (X1[a 7→Y], . . . ,Xn[a 7→Y])
(σabs) b#Y ⊢ ([b]X)[a 7→Y] → [b](X[a 7→Y])

Definition 6.10 (Right translation). Let l ⇒ r be a CRS rule. Let Φl be the function
defined in Definition 6.1 applied to the CRS meta-term l. Then Right(r) = (∆r, [[r]]Φl

)
where

∆r = {ak#Zn
i | ak occurs bound above Zn

i in r}

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 31

and [[r]]Φl
is defined by:

[[a]]Φl
= a

[[fs]]Φl
= f [[s]]Φl

[[[a]s]]Φl
= [a][[s]]Φl

[[(t1, . . . , tn)]]Φl
= ([[t1]]Φl

, . . . , [[tn]]Φl
)

[[Zn
i t]]Φl

= π·Zi with π = Id if n = 0, otherwise
n > 0, t = (t1, . . . , tn) such that
(π·Zi)[Φl(Z

n
i)m1 7→[[tm1]]Φl

] . . . [Φl(Z
n
i)mk 7→[[tmk]]Φl

] where
π = (Φl(Z

n
i)j1 [[tj1]]Φl

)· . . . ·(Φl(Z
n
i)jk [[tjk]]Φl

), and
j1 . . . jk,m1 . . . mk ∈ {1, . . . , n},
[[tj1]]Φl

, . . . , [[tjk]]Φl
∈ A

Similar to Definition 6.5, we take into account abstracted variables which do not appear in
the meta-application.

Note that, compared with the translation given in [16], we generate less freshness con-
straints and have also improved the flow when translating back and forth between CRS and
NRS rules, namely by converting explicit substitution among atoms into swappings added
to π (see Example 6.17 and further examples in Section 7).

The following pair of lemmas state that function Right also preserves meta-variables as
variables and free variables as unabstracted atoms during the translation of a CRS meta-
term.

Lemma 6.11 (Preservation of meta-variables as variables in the Right translation). Suppose
t is a CRS meta-term and (∆, t′) = Right(t) its translation by Definition 6.10. Then,
Zn
i (t1, . . . , tn) is an occurrence of a meta-application in t with Zn

i at position p if and only
if π·Zi occurs in t′ at position p.

Proof. By induction over the structure of t. The proof is similar to the proof in Lemma 6.6
and thus omitted.

Lemma 6.12 (Preservation of free variables as unabstracted atoms in the Right translation).
Let l, r be a pair of closed CRS meta-terms, Φl as defined in Definition 6.1 and (∆, r′) =
Right(r) as in Definition 6.10. Assume [[s]]Φl

= s′ is computed in the translation of r, where
s is any subterm of r (e.g. s = r). Then, a is free in s if and only if a is an unabstracted
atom in s′. Hence, there are no unabstracted atom subterms in r′, since r is closed.

Proof. By induction on the definition of Right . The interesting case is that of a meta-
variable since the rest of the cases are solved similarly to the proof given in Lemma 6.7 (and
thus omitted here).

(Mvar): If s = Zn
i t, then [[Zn

i t]]Φl
= π·Zi[bk 7→t′k] where t′k = [[tk]]Φl

, for some bk = φl(Z
n
i)k

and tk ∈ t|p ∧ tk 6∈ V where p is a position in t. The property holds by induction
hypothesis on t′k.

Next, we prove that Definitions 6.5 and 6.10 produce closed nominal terms, separately, and
also as part of the translation of a CRS rule.

Lemma 6.13. Let t be the left-hand side of a CRS rule following Barendregt’s naming
convention (i.e., variable names are pairwise distinct), and (∅, t)∅Φt

= (∆, t′) its translation

as in Definition 6.5, where Φ is the function in Definition 6.1. Then ∆ ⊢ t′ is a closed
nominal term-in-context.

32 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Proof. For ∆ ⊢ t′ to be a closed term-in-context (see Definition 2.14) we must prove the
following:

(1) no unabstracted atoms occur in t′,
(2) any pair πa · Zi, πb · Zi occurring in t′ satisfy conditions 2 & 3 in Definition 2.14.

Condition (1) holds because, by definition, CRS rules are closed and the translation does
not introduce new atoms as proved in Lemma 6.7.

For condition (2), assume Zn
i (a1, . . . , an), Z

n
i (b1, . . . , bn) are two occurrences of a meta-

application for the same meta-variable in t along with their respective list of distinct vari-
ables (possibly empty, thus Z0

i), then their translation results in πa ·Zi, πb ·Zi (Lemma 6.6).
We must consider three possible cases: the case where the list of atoms is empty, (a), the
case where one of the occurrences is the leftmost, (b), and finally the case where none of
the occurrences is the leftmost, (c). No other cases are possible.

(a) If the list of atoms is empty (thus Z0
i), both support(πa), support(πb) = ∅ in πa · Zi,

πb · Zi by definition of the translation function where for each variable a ∈ Λ in the
recursive call (∆, Z0

i)
Λ
Φt

(i.e., any abstraction occurring above the meta-variable), a#Zi

is added to ∆. Hence the property of closedness holds for this case.
(b) If one of the occurrences is the leftmost in t, for instance Zn

i (a1, . . . , an), then its transla-
tion is πa ·Zi with support(πa) = ∅ and Φt(Z

n
i) = [a1, . . . , an] where (a1, . . . , an)#Zi 6∈

∆. On the other hand, Zn
i (b1, . . . , bn) is translated as πb·Z with Ψ(Φt(Z

n
i), [b1, . . . , bn]) =

πb and bk#Zi ∈ ∆ such that bk ∈ Λ \ Φt(Z
n
i).

This means that (a1, . . . , an) may appear unabstracted in an instance of Zi but not any
of {b1, . . . , bn} distinct from {a1, . . . , an}. If so, (a1, . . . , an) are all abstracted above
πa ·Zi since the meta-term is closed and (πb(a1) = b1, . . . , πb(an) = bn) thus (a1, . . . , an)
are also abstracted above πb · Zi. For any other atom that may appear in an instance
of Zi, the atom is unabstracted above both occurrences. Hence the property also holds
for this case.

(c) If none of these occurrences is leftmost, let Zn
i (c1, . . . , cn) be the leftmost one. Now

Φt(Z
n
i) = [c1, . . . , cn], and the translation of both occurrences in question is πa ·Zi with

{c1, . . . , cn, a1, . . . , an}∈support(πa) and πb·Zi with {c1, . . . , cn, b1, . . . , bn}∈support(πb)
where ak, bk#Zi ∈ ∆ for any ak ∈ Λa\Φt(Z

n
i) and bk ∈ Λb\Φt(Z

n
i) with Λa,Λb the set of

variables bound over meta-applications Zn
i (a1, . . . , an) and Zn

i (b1, . . . , bn), respectively.
This means that any of {c1, . . . , cn} may appear unabstracted in an instance of Zi

but not any of {a1, . . . , an, b1, . . . , bn} distinct from {c1, . . . , cn}. If so, (πa(c1) =
a1, . . . , πa(cn) = an) and (πb(c1) = b1, . . . , πb(cn) = bn) by Definition 6.3, therefore
(c1, . . . , cn) are abstracted above both πa · Zi, πb · Zi respectively. For any other atom
that may appear in an instance of Zi, the atom is unabstracted above both occurrences.

Hence ∆ ⊢ t′ is a closed nominal term-in-context as expected.

Lemma 6.14. Let t be the right-hand side meta-term of a CRS rule following Barendregt’s
naming convention, Φ the function defined in Definition 6.1 and for each meta-variable Zn

i

in t, Zn
i ∈ dom(Φs) for the left-hand side meta-term s such that Φs(Z

n
i) = [a1, . . . , an].

Let Right(t) = (∆t, [[t]]Φs) be the translation as in Definition 6.10, then ∆t ⊢ [[t]]Φs is a
closed term-in-context.

Proof. Similarly to Lemma 6.13, for ∆t ⊢ [[t]]Φs to be a closed term-in-context we must prove
that no atom subterm occurs unabstracted in [[t]]Φs . This is the case due to CRS rules being
closed by definition (see Definition 6.16) and Lemma 6.12 stating that no unabstracted

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 33

atoms are introduced in the term by the translation function [[·]]Φs . Moreover, it must also
be proved that any π ·Zi occurring in t′ satisfy conditions 2 & 3 in Definition 2.14. We have
already proved this case in Lemma 6.13 where none of the meta-variable occurrences is the
leftmost (case (c) in the proof). Function [[·]]Φs treats each meta-variable occurrence as a
non-leftmost one and there exists a leftmost meta-application Zn

i (a1, . . . , an) in s. Then,
the result follows using Lemma 6.11 and the fact that ∆t contains a freshness constraint,
b#X, for all atoms b abstracted in t′ and all variables X ∈ V (t′) (see Definition 6.10).

In the right-hand side of a rule, there is the possibility of explicit substitutions of
form r′[ak 7→u′] appearing in the translated nominal term where ak ∈ Φs(Z

n
i). Notice

that r′[ak 7→u′] is syntactic sugar for sub([ak]r
′, u′) where r, u are subterms of the closed

meta-term t. Then, any free variable in r, u is in the scope of an abstraction in t and, by
Lemma 6.12, the same happens in their translations r′ = [[r]]Φs and u′ = [[u]]Φs

Remark 6.15 (CRS term translation). For any CRS term t, t is also a nominal ground
term, trivially, since there are no meta-variables.

6.2. Transforming CRS Rules. In this section we show how CRS rules are converted
into closed NRS rules.

Definition 6.16. We define the translation of the CRS rule l⇒ r as CR(l, r) = ∆ ⊢ l′ → r′,
where Left(l) = (∆l, l

′), Right(r) = (∆r, r
′) and ∆ = ∆l ∪∆r.

We give some examples to illustrate the definition.

Example 6.17. The translation of the β-rule shown in Example 2.21 according to Defini-
tion 6.16 is

⊢ app(lam([a]Z), Z ′)→ Z[a 7→Z ′].

Now, consider the CRS differentiation operator rule as taken from [16]:

diff([a]sin(Z(a)))⇒ [b]mult(app(diff([c]Z(c)), b), cos(Z(b))).

The translation of this rule is

b#Z, c#Z ⊢ diff([a]sin(Z))→ [b]mult(app(diff([c](a c)·Z), b), cos((a b)·Z))

where the freshness conditions are needed to preserve closedness, and mappings of atoms
on the right-hand side are transformed into permutations.

Further examples can be found in Section 7.

Lemma 6.18. Let R = l ⇒ r be a CRS rule. If ∆ ⊢ l′ → r′ is its translation according to
Definition 6.16, then ∆ ⊢ l′ → r′ is a closed nominal rewrite rule.

Proof. Consequence of Lemmas 6.13 and 6.14, and the fact that Φl is shared by the trans-
lation functions for both sides of the rule.

34 J. DOMÍNGUEZ AND M. FERNÁNDEZ

Next, we proceed by providing a mechanism to translate valuations to nominal substi-
tutions, that is, to convert each CRS substitute into a ground nominal term. Recall that
we are assuming each binder binds a different variable (Barendregt’s convention), and that
CRS terms coincide with nominal ground terms (Remark 6.15).

The intuition behind the definition of the translation for a valuation, which is used to
instantiate a CRS rule, is to rename bound variables from the list of binders, λ(· · ·), in a
substitute for Zn

i to match those in the list of arguments for the leftmost meta-application
of Zn

i in the left-hand side of the rule.

Definition 6.19 (Valuation translation). Let t be a closed CRS meta-term, Φt as in Defin-
ition 6.1, and σ a safe valuation such that σ = [Zn

i 7→λ(a1, . . . , an).si] for 1 ≤ i ≤ m

where dom(σ) ⊆ MV (t) and σ(t) is ground. Then, 〈σ〉Φt , [Zi 7→πi·si] where πi =
(an Φt(Z

n
i)n) · · · (a1 Φt(Z

n
i)1).

Below we denote by (∇ ⊢ t′, σ′) the result of (Left(t), 〈σ〉Φt).

Example 6.20. We revisit the closed CRS meta-term t = [c]([a][b]Z(a, b, c), [x][y]Z(x, c, y))
given in Example 6.2, adding a safe valuation σ = [Z 7→λ(d, e, f).g(d, e, f, z)]. where

σ(t) = [c]([a][b]g(a, b, c, z), [x][y]g(x, c, y, z)).

Then,

(Left(t), 〈σ〉Φt) = (x#Z, y#Z ⊢ [c]([a][b]Z, [x][y](y b)(c b)(x a)·Z), σ′ = [Z 7→g(a, b, c, z)])

where g(a, b, c, z) was obtained by applying (f c)(e b)(d a) to g(d, e, f, z).
Since σ′ satisfies the freshness constraints (i.e., ∅ ⊢ x#σ′(Z), y#σ′(Z)), the instantiation
resolves to

t′σ′ = [c]([a][b]g(a, b, c, d), [x][y]g(x, c, y, d))

which corresponds with the CRS term σ(t).

A proof of correctness for the translation of valuations follows. Since there are two
distinct functions to translate the left and right hand side of rules, we must also provide a
proof for each.

Lemma 6.21 states the correctness property for the left-hand side instantiation. Sup-
pose (Left(t), 〈σ〉Φt) = (∇ ⊢ t′, σ′). The proof of correctness is more involved than the
instantiation proof in Lemma 5.5, due to the presence of the freshness context ∇. It is not
sufficient to prove that σ′ correctly instantiates t′, we must also verify that σ′ satisfies the
constraints in ∇. This is the case since the valuation σ is safe with respect to the CRS meta-
term t by Definition 2.25, hence free variables in σ cannot occur in t, and the function 〈·〉Φ
renames bound variables in σ(Zn

i) to coincide with the list of variables (a1, . . . , an) in the
leftmost occurrence of a meta-application for each meta-variable Zn

i in t. Recall that Left
creates freshness constraints for all abstractions in a meta-term, except for the abstractions
whose variables occur in the list of arguments for the leftmost meta-application of each Zn

i .

Lemma 6.21 (Left instantiation). Let l be the left-hand side of a CRS rule (hence, a closed
CRS meta-term); ∇,∆,∆′ freshness contexts and Φ the function given in Definition 6.1.
Assume Left(l) = ∇ ⊢ l′ according to Definition 6.5, and let σ be a safe valuation such that
dom(σ) ⊆MV (l) and σ(l) is a CRS term.

Suppose ((∆, s)ΛΦl
, 〈σ〉Φl

) = ((∆′, s′), σ′), for any subterm s of l (e.g., s = l), is a
recursive call in the translation process.

Then, (∅, σ(s))ΛΦl
= (∅, s′σ′) where σ′ satisfies ∆′, that is, ⊢ ∆′σ′.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 35

Proof. By induction on the structure of s and the fact that ∇ ⊢ l′ is a closed term-in-context
by Lemma 6.13.

(var): If s = a, the property holds trivially.
(Mvar): If s = Zn

i t, there are three cases to consider: n = 0, n > 0 and Zn
i t is the leftmost

occurrence of the meta-variable Zn
i in l, and n > 0 and Zn

i t is not the leftmost occurrence
of Zn

i in l. No other cases are possible. We assume, without loss of generality, σ =
[Zn

i 7→λ(a1, . . . , an).si] with si a CRS term for all i, where distinct variables a1, . . . , an
are bound in si. Then,
(1) In the case where n = 0, that is, the meta-variable has arity 0, it is a fact that t = ()

and also σ = [Z0
i 7→si]. Therefore, (∅, σ(Z0

i))
Λ
Φl

= (∅, si) by Remark 6.15. Now,

((∆, Z0
i)

Λ
Φl
, 〈σ〉Φl

) produces a pair, where the substitution is σ′ = [Zi 7→πi·si], and

∆′ contains constraints of the form a#Z (possibly empty) for each a ∈ Λ (i.e., for
any abstraction occurring above s), and πi = Id since t = (a1, . . . , an) = (). Then,
Ziσ

′ = si.
Finally, for each a#Z ∈ ∆′, ∅ ⊢ a#si as a result of the safety conditions for rewriting
in CRSs stated in Definition 2.25, which, in the nominal framework translates to:
supp(si) 6= A(∆′ ⊢ l′). Hence σ′ satisfies ∆′, i.e., ⊢ ∆′σ′ as required.

(2) In the case where n > 0 and Zn
i t is the leftmost occurrence of this metavariable in

l, we proceed as follows: since the meta-variable has arity n, t = (b1, . . . , bn), where
the variables bj , 1 ≤ j ≤ n, are all different, and also different from the variables in
(a1, . . . , an), since we are using Barendregt’s convention. Then,

(∅, σ(Zn
i t))

Λ
Φl

= (∅, (λ(a1, . . . , an).si)(b1, . . . , bn)⇒β si[a1 7→b1, . . . , an 7→bn]) .

Note that

((∆, Zn
i (b1, . . . , bn))

Λ
Φl
, 〈σ〉Φl

) = ((∆′, Zi), σ
′ = [Zi 7→πi·si]) ,

where ∆′ contains constraints of the form a#Z (possibly empty) for each a ∈ Λ \
{b1, . . . , bn}, and πi = (an bn) · · · (a1 b1). Then, Ziσ

′ = πi·si where b1, . . . , bn 6∈ A(si)
following the convention.
Finally, for each a#Z ∈ ∆′, ⊢ a#πi·si as a result of the safety conditions for rewriting
in CRSs (see Definition 2.25); note that a 6∈ {b1, . . . , bn} since this tuple is the
leftmost argument list in l for Zn

i . Hence σ′ satisfies ∆′, i.e., ⊢ ∆′σ′ as required.
(3) In the case where n > 0 and Zn

i t is not the leftmost occurrence, the proof is similar
to the previous case: t = (b1, . . . , bn), where the variables bj , 1 ≤ j ≤ n are all
different and also different from the variables in (a1, . . . , an). Then,

(∆, σ(Zn
i t))

Λ
Φl

= (∅, (λ(a1, . . . , an).si)(b1, . . . , bn)⇒β si[a1 7→b1, . . . , an 7→bn]) .

Also, we have

((∆, Zn
i (b1, . . . , bn))

Λ
Φl
, 〈σ〉Φl

) = ((∆′σ′, π′·Zi), σ
′ = [Zi 7→πi·si]) ,

where ∆′ contains constraints of the form a#Z (possibly empty) for all a ∈ Λ\Φl(Z
n
i);

πi = (an Φl(Z
n
i)n) · · · (a1 Φl(Z

n
i)1) and π′ maps π′(Φl(Z

n
i)1) = b1, . . . , π

′(Φl(Z
n
i)n) =

bn by Definition 6.3 (Ψ). Then, (π′·Zi)σ
′ = π′·(πi·si) = (π′ ◦ πi)·si, by applica-

tion of Definition 2.4, such that (π′ ◦ πi)(a1) = b1, . . . , (π
′ ◦ πi)(an) = bn where

Φl(Z
n
i)1, . . .Φl(Z

n
i)n, b1, . . . , bn 6∈ A(si) by convention.

36 J. DOMÍNGUEZ AND M. FERNÁNDEZ

To conclude, for each bi ∈ {b1, . . . , bn} \ Λ, bi#Z ∈ ∆′, and ∅ ⊢ bi#πi·si as a result
of the safety conditions for rewriting in CRSs stated in Definition 2.25, thus it is a
fact that bi does not range over {a1, . . . , an} ∪ Λ. Hence σ′ satisfies ∆′, as required.

Then, the result follows.

(abs): If s = [a]t, then (∆, [a]t)ΛΦl
= (∆′, [a]t′), where (∆, t)

Λ∪{a}
Φl

= (∆′, t′).

By the induction hypothesis, (∅, σ(t))
Λ∪{a}
Φl

= (∅, t′σ′). Also by induction, ⊢ ∆′σ′.

The result follows, since ([a]t′)σ′ = [a]t′σ′.

(fun): If s = ft, then (∆, f t)ΛΦl
= (∆′, f t′), where (∆, t)ΛΦl

= (∆′, t′). By induction hypo-

thesis, (∅, t′σ′) = (∅, σ(t))ΛΦl
, and ⊢ ∆′σ′. The result follows, since σ(ft) = fσ(t).

(tuple): If s = (s1, . . . , sn), then (∆, (s1, . . . , sn))
Λ
Φl

= (∆′, (s′1, . . . , s
′
n)), where (∆, si)

Λ
Φl

=

(∆′
i, s

′
i) and ∆′ = ∆′

1 ∪ · · · ∪ ∆′
n. By induction, (∅, σ(si))

Λ
Φl

= siσ
′, and ⊢ ∆′

iσ
′ for

1 ≤ i ≤ n. Therefore ⊢ ∆′σ′, and the result follows since (s′1, . . . , s
′
n)σ

′ = (s′1σ
′, . . . , s′nσ

′).

The proof for function Right is similar to Left because of the syntax-directed nature of the
translation. However, there is a difference in the case of a meta-application Zn

i t, because in
the right-hand side of a CRS rule the list of arguments t may contain any kind of CRS meta-
term, not just variables. The translation function Right deals with non-variable arguments
by introducing explicit substitutions for atoms. Unlike Lemma 6.21, the instantiation lemma
for Right relies on the use of the explicit substitution rules (see Definition 6.9). We first
state the correctness property for the rules in Definition 6.9, namely that the rules indeed
specify the non-capturing atom-substitution operation.

Definition 6.22 (σ-normal form of a term-in-context). We denote by nfσ(∆ ⊢ t) the
normal form of the term-in-context ∆ ⊢ t with respect to the rules in Definition 6.9. It is
uniquely defined modulo α-equivalence [16].

Lemma 6.23 (Correctness of explicit substitution rules). Let t, s be CRS terms (and
therefore also nominal terms). Then nfσ(t[a 7→s]) ≈α t{a 7→s}, where in the right-hand side
t{a 7→s} denotes the term obtained by substituting (using the capture-avoiding substitution
of the CRS) a by s in t.

Proof. The proof by induction is omitted since it is standard in explicit substitution calculi.

We have already proved in Lemma 6.14 that Right translates closed CRS meta-terms to
closed NRS terms, and thanks to the safety conditions (see Definition 2.25) and Barendregt’s
convention (see Remark 2.24), bound variable names are all different, and also different
from free variables, both in meta-terms and valuations. This ensures that, in the nominal
translation, the explicit substitutions for atoms preserve the semantics of terms.

Lemma 6.24 (Right instantiation). Let l ⇒ r be a CRS rule and Φl the function given
in Definition 6.1 applied to l. Assume Right(r) = ∆ ⊢ r′, where according to Defini-
tion 6.10 ∆ = {ak#Zn

i | ak occurs bound above Zn
i in r}. Let σ be a safe valuation such

that dom(σ) ⊆MV (l) (hence, σ(r) is a CRS term).
Suppose s′ = [[s]]Φl

is a recursive call in the translation of Right(r), for any subterm s

of r (e.g., s = r), and σ′ = 〈σ〉φl
by Definition 6.19.

Then, [[σ(s)]]Φ∅
≈α nfσ(s

′σ′) and σ′ satisfies ∆, i.e., ⊢ ∆σ′.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 37

Proof. By induction on the structure of s, using the fact that ∆ ⊢ r′ is closed by Lemma 6.14,
the syntactic equivalence between CRS terms and ground nominal terms (Remark 6.15) and
the safety conditions given in Definition 2.25 and Remark 2.24.

Interesting cases to consider are s = (s1, . . . , sn) and also s = Zn
i t.

• The case s = (s1, . . . , sn). By Definition 6.10 we have ([[(s1, . . . , sn)]]Φl
= (s′1, . . . , s

′
n)

where V (s′1, . . . , s
′
n) ⊆ dom(σ′) and, by Remark 2.24, A(img(σ′)) ∩ A(s′1, . . . , s

′
n) = ∅

such that ⊢ ∆σ′|V (s′1,...,s
′
n)

follows by induction hypothesis.
Now,

(s′1, . . . , s
′
n)σ

′ = (s′1σ
′, . . . , s′nσ

′) and [[σ(s1, . . . , sn)]]Φ∅
= ([[σ(s1)]]Φ∅

, . . . , [[σ(sn)]]Φ∅
)

such that
[[σ(s1)]]Φ∅

≈α nfσ(s
′
1σ

′), . . . , [[σ(sn)]]Φ∅
≈α nfσ(s

′
nσ

′)

by induction hypothesis.

• The case (s = Zn
i t). For the case where t = (), the result follows similarly to case (1) of

(Mvar) in Lemma 6.21
For the case where t = (t1, . . . , tn), there is Φl(Z

n
i) = [a1, . . . , an] by Definition 6.1

where [a1, . . . , an] is a list of distinct atoms by Remark 6.15 and then

[[Zn
i (t1, . . . , tn)]]Φl

= ((aj1 [[tj1]]Φl
) · · · (ajk [[tjk]]Φl

)·Zi)[am1 7→[[tm1]]Φl
] . . . [amk 7→[[tmk]]Φl

] ,

where j1, . . . , jk,m1, . . . ,mk ∈ {1...n} and [[tj1]]Φl
, . . . , [[tjk]]Φl

∈ A by Definition 6.10.
Assume, without loss of generality, σ(Zn

i) = λ(b1 . . . bn).si. Following Definition 6.19
for 〈σ〉Φl

, σ′(Zi) = (a1 b1) · · · (an bn)·si where si is a NRS ground term by Remark 6.15
where {a1, . . . , an} 6∈ A(si) by Remark 2.24. Moreover, following the same remark we
have V (σ) ∩ V (r) = ∅, therefore it is the case that σ′|Zi

satisfies ∆, ⊢ ∆σ′|Zi
.

Hence, by application of explicit rules in Definition 6.9, nfσ(s
′σ′) ≈α

si{b1 7→[[t1]]Φl
σ′} · · · {bn 7→[[tn]]Φl

σ′} since nfσ(·) correctly computes the substitution as
stated in Lemma 6.23.

Now, [[σ(Zn
i (t1, . . . , tn))]]Φ∅

= si{b1 7→[[σ(t1)]]Φl
} · · · {bn 7→[[σ(tn)]]Φl

}, and the result fol-
lows by induction hypothesis.

The rest of the cases are omitted.

Let us denote by R the nominal rewriting system obtained by translating all the rules
of the CRS R according to Definition 6.16 and adding the rules for explicit substitution in
Definition 6.9.

We are now ready to prove the correctness of the translated reduction relation.

Theorem 6.25 (Translation of CRS Rewrite Steps). Let R = l ⇒ r be a CRS rule. Let u
be a CRS term.
If u⇒R v then ⊢ u

+
−−−→
R∪σ

c
v using R = CR(l, r) and the explicit substitution rules.

Proof. By Definition 6.16, R = CR(l, r) = ∇l ∪ ∇r ⊢ l′ → r′. It is a closed NRS rule
by Lemma 6.18. Since u, v are terms in CRS R, they are also ground terms in NRS R
by Remark 6.15, and without loss of generality we can assume that ∇l ∪ ∇r ⊢ l′ → r′

does not mention any atom in u (i.e., it is already freshened for u). If u ⇒R v then
there exists p, σ such that u|p = σ(l) where p is a position in u, σ a CRS valuation where
MV (l) = dom(σ) and v = u[σ(r)]p. Let σ′ = 〈σ〉Φl

according to Definition 6.19. By
Lemma 6.21, if Left(l) = (∇l, l

′) then Left(lσ) = (∅, l′σ′) where σ′ satisfies ∇l. Then, it is

38 J. DOMÍNGUEZ AND M. FERNÁNDEZ

also the case that ⊢ u|p ≈α l′σ′ by Remark 6.15. Moreover, σ′ also satisfies ∇r since we are
using Barendregt convention.

It remains to prove that u[r′σ′]p →
∗ v. But this follows from Lemma 6.24, since

Right(σ(r)) = (∅, nfσ(r
′σ′)) where Right(r) = (∇r, r

′). Hence, u ⇒R v with v = u[σ(r)]p

implies ⊢ u
+
−−−→
R∪σ

c
v where v = u[nfσ(r

′σ′)]p.

We have designed an algorithm that correctly transforms CRS rules inot NRS closed
rules. It improves over the function defined in [16] in two ways: we have fixed a bug in
the translation of meta-variables in the scope of abstractions, and by using closed rewriting
(see Definition 2.15) we are able to simulate the variable naming convention without adding
extra freshness constraints, as shown in Example 6.17.

Next, we provide examples where both transformations are applied (NRSs to CRSs and
back).

7. Examples

After describing the tools required to translate NRSs to CRSs (section 4) and back to NRSs
(section 6), in this section we give two examples, which have been translated using the
implementation available from [10].

7.1. Prenex Normal Form. We present here a translation back to NRSs by application
of Definition 6.16 to the CRS rules obtained in Example 4.4. Beforehand we have applied
the usual naming convention in rules (renaming bound variable a to b on the right-hand
side). The resulting NRS is:

b#P, b#Q ⊢ and(P, forall([a]Q)) → forall([b]and(P, (ab)·Q))
b#P, b#Q ⊢ and(forall([a]Q), P) → forall([b]and((ab)·Q,P))
b#P, b#Q ⊢ or(P, forall([a]Q)) → forall([b]or(P, (ab)·Q))
b#P, b#Q ⊢ or(forall([a]Q), P) → forall([b]or((ab)·Q,P))
b#P, b#Q ⊢ and(P,exist s([a]Q)) → exists([b]and(P, (ab)·Q))
b#P, b#Q ⊢ and(exists([a]Q), P) → exists([b]and((ab)·Q,P))
b#P, b#Q ⊢ or(P,exists([a]Q) → exists([b]or(P, (ab)·Q))
b#P, b#Q ⊢ or(exists([a]Q), P) → exists[b]or((ab)·Q,P)

b#Q ⊢ not(exists([a]Q)) → forall([b]not((ab)·Q))
b#Q ⊢ not(forall([a]Q)) → exists([b]not((ab)·Q)).

Notice that a matching σ = [Q 7→ a] with the left-hand side of a rule leads to the expected
result when applied to the right-hand side of the rule thanks to the swapping (a b). Also,
the freshness condition a#P in the initial set of NRS rules (see Example 2.12) is shown
here as b#P because of the variable convention applied beforehand, b#Q is added to the
set of freshness conditions (so, the rules remain closed). This does not alter the semantics,
as we can see by translating back. When we translate back to CRS the first NRS rule

b#P, b#Q ⊢ and(P, forall([a]Q))→ forall([b]and(P, (ab)·Q))

using Definition 4.2, we obtain the CRS rule

and(P, forall([a]Q(a))) → forall([b]and(P,Q(b)))

as expected.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 39

7.2. Simulating β-reduction. Consider the (βlam) rule given in Example 4.5. First, we
apply Barendregt’s convention to the CRS rule so that each bound variable is distinct,
obtaining:

app(lam([a]lam([b]X(a, b))), Y)⇒ lam([d]app(lam([c]X(c, d)), Y))

Its translation to NRSs is the following:

d#Y, d#X, c#X ⊢ app(lam[a]lam[b]X,Y)→ lam[d]app(lam[c](a c)(b d)·X,Y)

And when translated back to CRSs by means of Definition 4.2, we obtain the same CRS
rule as expected.

8. Conclusions and Future Work

We have shown two extensions of first-order rewriting, CRSs and NRSs, to be closely related.
The main differences are in the meta-language used, NRSs do not rely on the λ-calculus, em-
ploying instead permutations of atoms and a freshness relation to axiomatise α-equivalence.
Also NRS rules are more general than CRS rules in that unabstracted atoms may occur in
rules. On the other hand, CRSs rely on the λ-calculus to generate its rewrite relation and
CRS rules are closed by definition.

We have shown that despite these differences it is possible to translate between these
formalisms, under certain conditions. We have given a translation function which transforms
the class of closed nominal rewriting systems into CRS systems. We have shown some non-
trivial examples to support our work; see [10, 9] for a Haskell implementation.

Moreover, existing translation algorithms between CRSs and HRSs [36], ρ-calculus [3]
and ERSs [20] allow transformations from NRSs to any of these systems and vice versa.

Although previous translations between nominal and higher-order syntax exist [27, 6],
our work differs from these by focusing on a syntax-directed translation of terms and rewrite
rules that preserves the rewriting relation, which is key to the translation of properties such
as confluence and termination. We have also corrected and improved a previous algorithm
translating CRSs to NRSs originally found in [16].

Since nominal terms have good algorithmic properties, we could translate CRSs to NRSs
in order to take advantage of existing nominal procedures (i.e., orderings, completion) and
then transfer back the results. The extension to typed systems (adapting the type systems
developed for NRSs [12, 13] to CRSs) is also left for future work.

Acknowledgements. We thank Elliot Fairweather and Christian Urban for many helpful
discussions, and Jamie Gabbay for providing the macro for N. We also thank the anonymous
referees for their valuable comments.

References

[1] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1988.
[2] H. P. Barendregt. The lambda calculus, its syntax and semantics, volume 103 of Studies in Logic and

the Foundation of Mathematics. North-Holland, revised edition, 1984.
[3] C. Bertolissi, H. Cirstea, and C. Kirchner. Expressing combinatory reduction systems derivations in the

rewriting calculus. Higher-Order and Symbolic Computation, 19:00110869, 2006.
[4] M. Bezem, J. W. Klop, and R. de Vrijer, editors. Term rewrite systems by TeReSe, volume 55 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003.

40 J. DOMÍNGUEZ AND M. FERNÁNDEZ

[5] C. Calvès and M. Fernández. Matching and alpha-equivalence check for nominal terms. Journal of

Computer and System Sciences, 2009. Special issue: Selected papers from WOLLIC 2008.
[6] J. Cheney. Relating nominal and higher-order pattern unification. In Proceedings of International Work-

shop in Unification, pages 104–119, 2005.
[7] H. Cirstea and C. Kirchner. The rewriting calculus — Part I. Logic Journal of the Interest Group in

Pure and Applied Logics, 9(3):427–463, May 2001.
[8] H. Cirstea and C. Kirchner. The rewriting calculus - Part II. IGPL, 9(3):377–410, 2001.
[9] J. Domı́nguez. A tool to apply nominal recursive path ordering to nominal rules. 2014. Available from

http://www.inf.kcl.ac.uk/pg/domijesu/nrpo.tgz.
[10] J. Domı́nguez. A tool to translate between closed NRSs and CRSs. 2014. Available from

http://www.inf.kcl.ac.uk/pg/domijesu/NRS2CRS.tar.gz.
[11] J. Domı́nguez and M. Fernández. Relating nominal and higher-order rewriting. In Mathematical Found-

ations of Computer Science 2014 - 39th International Symposium, Budapest, Hungary, August 25-29,

2014. Proceedings, Part I, pages 244–255, 2014.
[12] E. Fairweather, M. Fernández, and M. J. Gabbay. Principal types for nominal theories. Lecture Notes

in Computer Science, 6914 LNCS:160–172, 2011.
[13] M. Fernández and M. J. Gabbay. Curry-style types for nominal terms. In T. Altenkirch and C. McBride,

editors, Types for Proofs and Programs, volume 4502 of Lecture Notes in Computer Science, pages 125–
139. Springer Berlin Heidelberg, 2007.

[14] M. Fernández and M. J. Gabbay. Nominal rewriting. Information and Computation, 205(6):917–965,
2007.

[15] M. Fernández and M. J. Gabbay. Closed nominal rewriting and efficiently computable nominal algebra
equality. In Proceedings of International Workshop on Logical Frameworks and Meta-Languages: Theory

and Practice, pages 37–51, 2010.
[16] M. Fernández, M. J. Gabbay, and I. Mackie. Nominal rewriting systems. In Proceedings of the 6th ACM

SIGPLAN international conference on Principles and practice of declarative programming, PPDP ’04,
pages 108–119, New York, NY, USA, 2004. ACM.

[17] M. Fernández and A. Rubio. Nominal completion for rewrite systems with binders. In A. Czumaj,
K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Automata, Languages, and Programming, volume
7392 of Lecture Notes in Computer Science, pages 201–213. Springer Berlin Heidelberg, 2012.

[18] M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a nominal algebra. Formal Aspects

of Computation, 20(4-5):451–479, 2008.
[19] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal

Aspects of Computing, 13(3-5):341–363, 2002.
[20] J. Glauert, D. Kesner, and Z. Khasidashvili. Expression reduction systems and extensions: An overview.

In A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and R. Vrijer, editors, Processes, Terms and

Cycles: Steps on the Road to Infinity, volume 3838 of Lecture Notes in Computer Science, pages 496–553.
Springer Berlin Heidelberg, 2005.

[21] M. Hamana. Semantic labelling for proving termination of combinatory reduction systems. In S. Escobar,
editor, Functional and Constraint Logic Programming, volume 5979 of Lecture Notes in Computer

Science, pages 62–78. Springer Berlin Heidelberg, 2010.
[22] J.-P. Jouannaud. Higher-order rewriting: Framework, confluence and termination. In A. Middeldorp,

V. van Oostrom, F. van Raamsdonk, and R. Vrijer, editors, Processes, Terms and Cycles: Steps on the

Road to Infinity, volume 3838 of Lecture Notes in Computer Science, pages 224–250. Springer Berlin
Heidelberg, 2005.

[23] Z. Khasidashvili. Expression reduction systems. In Proc. of I. Vekua Institute of Applied Mathematics,
volume 36, pages 200–220, 1990.

[24] J. W. Klop. Combinatory reduction systems. PhD thesis, Utrecht University, 1980.
[25] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: Introduction

and survey. Theoretical Computer Science, 121:279–308, 1993.
[26] C. Kop. Simplifying algebraic functional systems. In F. Winkler, editor, Algebraic Informatics, volume

6742 of Lecture Notes in Computer Science, pages 201–215. Springer Berlin Heidelberg, 2011.
[27] J. Levy and M. Villaret. Nominal unification from a higher-order perspective. ACM Transactions in

Computer Logic, 13(2):10:1–10:31, 2012.

FROM NOMINAL TO HIGHER-ORDER REWRITING AND BACK AGAIN 41

[28] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theoretical Computer

Science, 192(1):3 – 29, 1998.
[29] T. Nipkow. Higher-order critical pairs. In Proceedings of IEEE Symposium on Logic in Computer Science,

pages 342–349, 1991.
[30] T. Nipkow and C. Prehofer. Higher-order rewriting and equational reasoning. In W. Bibel and P. Schmitt,

editors, Automated Deduction — A Basis for Applications. Volume I: Foundations, volume 8 of Journal
of Applied Logic, pages 399–430. Kluwer, 1998.

[31] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation,
186:165–193, 2003.

[32] A. M. Pitts. Nominal sets: names and symmetry in computer science, volume 57 of Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 2013.
[33] B. Sagan. The symmetric group, volume 203. Springer-Verlag New York, 2 edition, 2001.
[34] C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. In M. Baaz and J. Makowsky, editors,

Computer Science Logic, volume 2803 of Lecture Notes in Computer Science, pages 513–527. Springer
Berlin Heidelberg, 2003.

[35] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science,
323(13):473 – 497, 2004.

[36] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems and higher-order
rewrite systems. In J. Heering, K. Meinke, B. Mller, and T. Nipkow, editors, Higher-Order Algebra,

Logic, and Term Rewriting, volume 816 of Lecture Notes in Computer Science, pages 276–304. Springer
Berlin Heidelberg, 1994.

[37] F. van Raamsdonk. Higher-order rewriting. In P. Narendran and M. Rusinowitch, editors, Rewrit-

ing Techniques and Applications, volume 1631 of Lecture Notes in Computer Science, pages 220–239.
Springer Berlin Heidelberg, 1999.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Nominal Rewriting
	2.2. Combinatory Reduction Systems
	2.3. Symmetric groups

	3. Translating from Nominal to CRS Syntax
	3.1. Overview of the Problem
	3.2. Translating Nominal Terms

	4. Transforming NRS Rules
	5. Simulating Nominal Rewrite Steps
	6. Translating from CRSs to NRSs: An Improved Approach
	6.1. Translating Meta-terms in CRS Rewrite Rules
	6.2. Transforming CRS Rules

	7. Examples
	7.1. Prenex Normal Form
	7.2. Simulating -reduction

	8. Conclusions and Future Work
	References

