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Abstract. We construct a denotational model of linear logic, whose objects are all the
locally convex and separated topological vector spaces endowed with their weak topology.
The negation is interpreted as the dual, linear proofs are interpreted as continuous linear
functions, and non-linear proofs as sequences of monomials. We do not complete our
constructions by a double-orthogonality operation. This yields an interpretation of the
polarity of the connectives in terms of topology.

Introduction

Linear logic can be seen as a refinement of intuitionistic logic, providing an analysis of
classical logic through the notion of polarities and involutive linear negation [LR03]. The
linearity hypothesis was made by Girard [Gir87] after an investigation of models of lambda-
calculus [Gir88]. Models of linear logic have provided a fresh point of view and new intuitions
that was applied to traditional fields of study, such as game semantics [AM99]. It even led
to the discovery of new computational languages, such as differential λ-calculus [ER03].

One of the challenges in the semantical study of linear logic is to get closer to the
algebraic intuitions of the syntax. This is done by interpreting (linear) proofs as linear
maps between vector spaces [Blu96, Ehr02, Gir04, Ehr05, BET12]. There is one standard
issue with this kind of work : the interpretation of the exponential connectives asks for
infinite dimensional spaces, while interpreting the involutive linear negation is much easier
in finite dimensional spaces. Indeed, the equivalence between a formula and its double
negation in linear logic asks for the vector spaces considered to be isomorphic to their
double dual. This is immediate when the spaces are finite dimensional, but much harder to
obtain for infinite dimensional vector spaces.

Models of linear logic are often inspired by coherent spaces, or by the relational model
of linear logic. Coherent Banach spaces [Gir99], coherent probabilistic or coherent quantum
spaces [Gir04] are Girard’s attempts to extend the first model, as finitenes spaces [Ehr05]
or Köthe spaces [Ehr02] were designed by Ehrhard as a vectorial version of the relational
model.
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Our approach takes another direction, and provides a model capturing a very large class
of vector spaces. We propose to interpret formulas, which are isomorphic to their double
negation, by any locally convex Hausdorff topological vector space, endowed with a specific
topology. It allow us to step away from the combinatorial point of view, and introduce a
basis-free vectorial interpretation of the connectives of linear logic. As in Scott domains, we
interpret proofs by continuous functions. More precisely, proofs will be interpreted by linear
continuous functions between topological vector spaces. We interpret the linear negation of
a formula by the space of all continuous linear forms on the interpretation of the formula
(that is, the topological dual of this space).

We do not settle for a model of linear logic (LL) obtained by a Chu construction [Bar79].
We want the involutivity of negation to be an intrinsic property of our objects. This leads
us to the only real restricting choice of this paper: we endow our spaces with their weak
topology. The weak topology on a topological vector space E is the coarsest topology
induced by its dual : a sequence of elements of E converges for the weak topology if and
only if it converges when composed with any (continuous) linear form on E. A symmetric
definition yields the weak* topology on E′. Endowing a space with its weak topology and
its dual with its weak* topology result in an isomorphism between the space and its double
dual. Every other construction in the interpretation of LL will stem from this first choice.

Note that we don’t ask for our spaces to be Cauchy-complete, thus there is no completion
on the interpretation of our connectives. This reduces drastically the possibilities for the
interpretation of the exponential. Indeed, the latter is tied to the induced (co-Kleisli)
cartesian closed category of non-linear functions. To deal with these non-linear functions,
completion is usually necessary [Ehr05, BET12, KT15]. The lack of completion explains
the form of our interpretation of non-linear proofs, as simple sequences of monomials. Thus,
even though the model interprets differential linear logic, we are far from capturing the
intuition of smoothness of proofs behind the notion of differentiation (as done for example
in [BET12, KT15]).

Most models of linear logic (denotational semantics [Gir87, Ehr02, Ehr05], phase seman-
tics [Gir87], ludics [Gir01, Ter11], Geometry of Interaction [Gir11, Sei12]) interpret negation
through an orthogonality relation. The negation of a space E is the set of all elements which
are in the orthogonality relation with all elements of E. This is not the way the duality is
constructed here: reflexivity is not based on an orthogonality. Polarity of the connectives
matters nonetheless when endowing a space with its weak topology, as when interpreting
the negation as an orthogonality. The negative connectives are those who preserve the fact
to be endowed with the weak topology, while the positive connectives are those who need to
be applied a shift, that is a change of polarity corresponding in the model to the enforcement
of weak topology.

Synthesis of the constructions. Our constructions are very simple, as they only use well-
known tools of the theory of topological vector spaces. Formulas of linear logic are inter-
preted by any locally convex and separated topological vector space, endowed with its weak
topology. The negation of a formula is interpreted by the dual of the interpretation of this
formula, endowed with its weak* topology.

The multiplicative conjunction ⊗ is interpreted by a specific topological tensor product
endowed with its weak topology: choosing the topology of the algebraic tensor product is
indeed one of the determining steps in the construction of this model. The ` is interpreted
as the topological dual of ⊗. As a result of these constructions, the type of linear proofs
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between two formulas is interpreted as the space of linear continuous functions between the
interpretation of these formulas, endowed with the topology of simple convergence.

As for additive connectives, & is interpreted by the binary topological product, and⊕ by the binary topological co-product endowed once again with its weak topology. They
coincide on finite indexes.

Finally, the exponential is constructed so that non-linear proofs between two spaces are
interpreted by the sequences of monomials between these two spaces. This construction
follows the idea of quantitative semantics, which is at the heart of linear logic [Gir88].

Related works. The linear negation is often interpreted with an orthogonality relation [Ehr02,
Ehr05, Gir04] or with a Chu construction as in coherent Banach spaces [Gir99].

The construction presented here is very general, as any locally convex and separated
topological vector space is turned into an object of our category. Our approach differs
from the one presented in the finiteness spaces [Ehr05], or in the Hopf algebras as model of
multiplicative linear logic [Blu96]: the topologies used there are Lefschetz topologies, that
is topologies where neighbourhoods of 0 are sub-vector spaces, opposed to the intuitive idea
of unit ball coming from normed spaces.

This generality allows us to define our tensor product as an algebraic tensor product,
and not as its bidual or biorthogonal, contrasting with what happens in finiteness spaces
[Ehr02] or Köthe spaces [Ehr05]. On the contrary to what happens in Ehrhard’s model,
our constructions are basis-free. Note that Köthe spaces [Ehr02] are endowed with a polar
topology (the normal topology) which is in general finer than the weak topology.

Moreover, the interpretation of the classical duality is internalized, and not obtained
as the result of a Chu construction as in coherent Banach spaces [Gir99] or as in works by
M. Barr [Bar00, Bar79, Bar91]. With an adjunction between Chu spaces and the category
of topological vector spaces, Barr obtains a ∗-autonomous category of spaces endowed with
their weak topology, where the spaces of linear functions are the same as ours. However,
the tensor product is completed, as E⊗F is defined as L(E,F ′)′. Here, our tensor product
is not completed, as E⊗F is the algebraic tensor product endowed with some topology, and
our constructions avoid the digression through the Chu category. This work can therefore
be seen as an extension of Barr’s work to a Seely category.

One could think of the interpretation of polarized linear logic (LLP) in a control-
category by its negative connectives, described by O. Laurent in his thesis [Lau02]. However,
this is not what is used here, as positive connectives are not primarily interpreted as the
dual of the interpretation of their negation. This model neither corresponds to the interpre-
tation of LLP in a co-control category, as positive connectives do not preserve the property
of being endowed with one’s weak topology.
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1. Topologies on vector spaces and spaces of functions

Recall that a topological vector space is a vector space endowed with a topology making
the sum and multiplication by a scalar continuous [Jar81, I.2.1]. The vector space is said
to be Hausdorff when the topology is so, that is when given any two distinct point in the
vector space, they belong respectively to two open sets with empty intersection.

In a topological space, a basis U of open sets is a collection of open sets such that
every open set is the union of elements of U . In a topological vector space, we only need to
know the neighbourhoods of 0 to retrieve the entire topology, as the addition is continuous.
Therefore, we will most of the time describe the topology on our spaces by giving a basis of
0-neighbourhoods, or some time by giving a subbasis of 0-neighbourhoods. A subbasis U of
a vector topology is a collection of open sets such that every open set is the union of finite
intersections of elements of U . See the definition of the weak* topology for an example of
basis and subbasis of an topological vector space.

Definition 1.1. [Jar81, 6.7] A Hausdorff locally convex topological vector space is a Haus-
dorff topological vector space with a subbasis of neighbourhoods of 0 consisting of convex
subsets. We write lctvs to denote such vector spaces.

From now on, E, F and G are lctvs. All our lctvs are vector spaces over K = R or
K = C.

Let us begin with the heart of our construction, that is the dual E′ of a vector space
E. The space E′ is fundamental, as it defines the weak topology on E, and as the topology
on itself allows us to interpret the classical duality.

Definition 1.2. If E is a lctvs, we will denote by E′ the space of all continuous linear forms
l ∶ E → K on E, endowed with its weak* topology. The space E′ is called the dual of E, or
the topological dual of E when there is an ambiguity.
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1.1. Weak and weak* topologies. We will endow our spaces with their weak topology,
that is with the topology generated by their continuous duals. The original topology of a
space E is also called its strong topology, and it allows to compute the continuous dual
E′. Practically all the definitions presented here are well-known definition from functional
analysis, and proofs can be found for example in the literature [Jar81, Köt69].

Definition 1.3. The weak* topology on E′ is the topology of pointwise convergence on
E. The weak* topology is also the inductive topology generated by E on E′, that is the
coarsest topology on E’ making the evaluation functions l ∈ E′ ↦ l(x) continuous for all
x ∈ E.

A basis for the weak* topology on E′ is the collection of all

Wx1,...xn,ǫ = {l ∈ E′ ∣ ∣l(x1)∣ < ǫ, ...∣l(xn)∣ < ǫ}
where n ∈ N, xi ∈ E and ǫ > 0. A subbasis for the weak* topology is the collection of all

Wx,ǫ = {l ∈ E′ ∣ ∣l(x)∣ < ǫ} .
Definition 1.4. The weak topology on a lctvs E is the inductive topology generated by
E′, that is the coarsest topology on E making all the functions l ∈ E′ continuous.

A basis for the weak topology on E is the collection of all

Wl1,...ln,ǫ = {x ∈ E ∣ ∣l1(x)∣ < ǫ, ...∣ln(x)∣ < ǫ}
where n ∈ N, li ∈ E′ and ǫ > 0. Let us generalize the description of the basis of the weak and
weak* topology.

Consider F(E,F ) a vector space of functions between E and F . When B ⊂ E and
U ⊂ F , we write WB,U = {f ∈ F(E,F ) ∣ f(B) ⊂ U} .
When B = {x1, ..., xn} is finite, then WB,U is written Wx1,..xn,U . When F = K and U = {y ∈
F ∣ ∣y∣ < ǫ}, then WB,U is written WB,ǫ. Note that algebraically E can be considered as
a sub-vector space of E′′ through the application ev ∶ x ↦ (evx ∶ l ↦ l(x)). The notation
used in the definition 1.2 is then coherent with the one described above. Note that WB,U

is convex as soon as U is convex.

Notation 1.5. From now on Ew will denote a lctvs endowed with its weak topology. The
original topology on E is called its strong topology.

Proposition 1.6. When E is a lctvs, then so are Ew and E′.

Proof. As a consequence of Hahn-Banach separation theorem [Jar81, 7.2.2.a], we have that
E′ separates the points of E: if x, y ∈ E are distinct, then there is l ∈ E′ such that l(x) ≠ l(y).
This makes E endowed with its weak topology a Hausdorff topological vector space. It is
locally convex as WB,U is convex as soon as U is convex. The same arguments make E′ a
lctvs.

Notation 1.7. We work in the category of lctvs endowed with their weak topology and
continuous linear maps. Let us denote this category by Weak. The relation ≃ denotes an
isomorphism in Weak between two lctvs. When we need to speak about an isomorphism in
the category of vector spaces and linear maps, we will use the symbol ∼.

In Weak the spaces (Ew)′ and E′ corresponds.
Proposition 1.8. [Jar81, II.8.1.2] For any lctvs E, (Ew)′ is linearly homeomorphic to E′.
That is, (Ew)′ ≃ E′.
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The demonstration of this proposition uses the following lemma:

Lemma 1.9. Consider E a vector space and l, l1, ...ln linear forms on E. Then l is in
the vector spaces generated by the family l1, . . . , ln (denoted Vect(l1, ...ln)) if and only if⋂n

k=1Ker(lk) ⊂ Ker(l).
We can continue to write E′ for the dual of a space E, regardless whether it may be

endowed with its weak topology. We will write E′ for (Ew)′ and E′w for (E′)w.
1.2. Reflexivity. Let us define

ev ∶
⎧⎪⎪⎨⎪⎪⎩
E → E′′

x ↦ evx = (l ∈ E′ ↦ l(x))
The function ev is linear and injective as E′ separates E. It is continuous and open as

both E (resp E′′) are endowed with the weak (resp. weak*) topology induced by E′.

The starting point of this paper is the fact that when E′ is endowed with its weak*
topology, E can be considered as a reflexive space, that is Ew ≃ E′′w. This equality models
the involutive linear negation of linear logic, and will make our category of topological vector
spaces and linear maps ∗-autonomous.

Proposition 1.10. [Jar81, II.8.1.2] The function ev is an isomorphism from E to E′′.

Proof. The proof is done as in the Proposition 1.8, using Lemma 1.9. The key to this proof
is the fact that E′ is endowed with the weak* topology, and thus for every l ∈ E′′ there is
x1, ..., xn ∈ E such that

l(Wx1,...xn,1) ⊂ {x ∈ K ∣ ∣x∣ < 1} .
This implies ⋂iKer(evxi

) ⊂ Ker(l), and thus through Lemma 1.9 l ∈ Vect(evxi
). That is,

there are λ1, ..., λn ∈ K and y = ∑n
1 λixi such that l = evy.

As ev is bicontinuous, we have:

Proposition 1.11. The function ev is a linear homeomorphism from Ew to E′′w.

As a consequence of this result, our decision to put the weak* topology on E′ makes it
an object of Weak, without any further operation on its topology:

Corollary 1.12. E′ is linearly homeomorphic to (E′)w through the identity function Id ∶
E′ → (E′)w.
Proof. The topology of E′ is the weak* topology induced by E, and the topology of (E′)w
is the weak topology induced by E′′ ∼ E.

This theory of weak and weak* topology fits in the more general theory of dual pairs
[Jar81, Chapter 8].
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2. Multiplicative connectives

We will now use the evaluation function from E to other domains. Indeed, consider F(E,C)
some vector space of functions between E and C and ev ∶ E → F(E,K)′. When F(E,K)
contains only linear functions, ev is linear. When E′ ⊂ F(E,K), ev is injective, as E′

separates the points of E.

Notation 2.1. We write the following function as evF(E,K):

ev ∶ {E → F(E,K)′
x↦ (evx ∶ f ↦ f(x))

If there is no ambiguity in the context, we will write ev for evE
′ ∶ E ↦ E′′.

2.1. Spaces of linear maps.

Definition 2.2. Let us denote L(E,F ) the space of all continuous linear maps between E
and F , endowed with the topology of pointwise convergence on points of E.

A basis for the topology of simple convergence on L(E,F ) is the collection of all

Wx1,...xn,V = {l ∈ L(E,F ) ∣ l(x1) ∈ V, ..., l(xn) ∈ V }
where n ∈ N, xi ∈ E and V is a neighbourhood of 0 in F .

The weak* topology on E′ is exactly the topology of simple convergence on points of
E, thus:

Fact 2.3. For all lctvs E, E′ ≃ L(E,K).
Let us write for the moment E⊗F for the algebraic tensor product between two vector

space E and F . Later on, we will endow the tensor product with a suitable topology.

Proposition 2.4 ([Jar81, 15.3.5],[Köt79, 39.7]). L(Ew, Fw)′ is algebraically isomorphic to
E ⊗ F ′.
Proof. We will sketch here the proof due to Köthe [Köt79], as the proof by Jarchow uses the
projective tensor product1. Consider first the space L(E,F ) of all linear and not necessarily
continuous maps between E and F , endowed with the topology of simple convergence on
points of E. If we choose an algebraic basis X of E, we have L(E,F ) ≃∏x∈X Fx where Fx

is a copy of F , and where the product ∏x∈X Fx is endowed with the product topology. Thus
L(E,F )′ ≃ (∏x∈X Fx)′ ≃ ⊕X F

′
x (the dual of a cartesian product is the direct sum of the

duals, see Proposition 3.4). Linear forms in ⊕X F
′
x are exactly finite sums of linear forms in

F ′, each one with a different domain Fx = {f(x) ∣ f ∈ L(E,F )}. When we consider linear
forms on ⊕X F

′
x as elements of L(E,F )′, we write them as finite sums ∑1≤i≤n li ○ evxi

with
xi ∈X and li ∈ F ′. Thus the following linear application is well-defined and surjective :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E ⊗ F ′ → L(E,F )′

∑
1≤i≤n

(xi ⊗ li)↦ ∑
1≤i≤n

li ○ evxi

Köthe shows in detail in his proof why this morphism is injective, proving that L(E,F )′
is algebraically isomorphic to E ⊗F ′.

1The definition of the projective tensor product is recalled after the definition 2.16 of the cotensor.
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Now let us get back to L(E,F ). This space is dense in L(E,F ) when it is endowed with
the topology of simple convergence on E, as for every pairwise distinct x1, ...xn ∈ E and for
every open set V in F we can find a continuous linear map f such that f(xi) ∈ V . Indeed,
without loss of generality, we suppose the family {xi} free. If it is not, one can reason as
follows by extracting a free family from {xi}. Select y ≠ 0 ∈ V , and for every i ≤ n li ∈ E′
such that for every j ≤ n li(xj) = δi,j. The function f ∶ x ↦ ∑i li(x)y is linear continuous,
and sends xi to y.

Thus the dual of L(E,F ) is algebraically isomorphic to the dual of L(E,F ), that is to
E ⊗ F ′.

This proposition allows us to write every linear function f ∈ L(E,F )′ as a unique finite
sum

f = n

∑
i=1

li ○ evxi

where li ∈ F ′ and xi ∈ E.
Let us now describe how linear functions behave with respect to weak topologies.

Lemma 2.5. Functions in L(E,Fw) are exactly the linear maps from E to F which, when
postcomposed with any map from F ′, results in a map belonging to E′.

Proof. By definition of the weak topology on F , a function f ∶ Ew → Fw is continuous if and
only if for every l ∈ F ′ f ○ l ∶ E → K is continuous. If f is linear, this means that f ○ l ∈ E′.
Proposition 2.6. For all E, F lctvs, we have L(E,Fw) ≃ L(Ew, Fw).
Proof. A continuous linear map from Ew to Fw is continuous from E to Fw, as the weak
topology is coarser than the initial topology on E. Consider now f ∈ L(E,Fw). For every
l ∈ F ′ we have f ○ l ∈ E′, thus f ○ l ∈ (Ew)′ by Proposition 1.8. By the preceding lemma, we
have f ∈ L(Ew, Fw).
2.2. Tensor and cotensor. Various ways exist to create a lctvs from the tensor product
of two lctvs E and F . That is, several topologies exist on the vector space E ⊗ F , the
most prominent in the literature being the projective topology [Jar81, III.15] and the in-
jective topology [Jar81, III.16]. These topologies behave particularly well with respect to
the completion of the tensor product, and were originally studied in Grothendieck’s thesis
[Gro66].

However, we would like a topology on E ⊗F that would endow Weak with a structure
of symmetric monoidal closed category. This is mainly why we use the inductive tensor
product [Gro66, I.3.1]. So as to define this topology, we need to mention the topological
product of two lctvs.

Definition 2.7. Consider E and F two lctvs. E × F is the algebraic cartesian product of
the two vector spaces, endowed with the product topology, that is the coarsest topology
such that the projections pE ∶ E ×F → E and pF ∶ E × F → F are continuous.

Neighbourhoods of 0 in E × F are generated by the sets U × V , where U is a 0-
neighbourhood in E and V is a 0-neighbourhood in F .

Definition 2.8. Let us denote by B(E × F,G) the space of all bilinear and separately
continuous functions from E × F to G, and by B(E × F ) the space of all bilinear and
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separately continuous functions from E ×F to K. We endow it with the topology of simple
convergence on E × F . The vector space B(E × F,G) is then a lctvs.

Indeed, a basis of 0 for this topology is the family of all

Wx1,...xn,y1,...,yn,V = {l ∈ B(E × F,G) ∣ l(x1, y1) ∈ V, ..., l(xn, yn) ∈ V }
with x1, ...xn ∈ E, y1, ..., yn ∈ F and V a 0-neighbourhood in G. These sets are absolutely
convex if V is, and absorbent. Beware that is we had wanted our space of bilinear functions
to be endowe with the topology of uniform convergence on bounded sets, it would not
have been enough to have separately continuous function (hypocontinuity would have been
necessary [Trè06, Ch. 42]).

Proposition 2.9. Consider E, F and G three lctvs, and f a bilinear map from E × F to
G. Then f ∈ B(E × F,Gw) if and only if for every l ∈ G′, l ○ f ∈ B(E ×F ).
Definition 2.10. Consider E and F two lctvs. We endow E⊗F with the inductive topology,
which is the finest topology making the canonical bilinear map E × F → E ⊗ F separately
continuous.

Proposition 2.11. [Gro66, I.3.1.13] For every lctvs G, we have L(E⊗F,G) ∼ B(E ×F,G).
Especially, (E ⊗F )′ ∼ B(E × F ).
Proof. Let us write B(E;F,G) for the vector space of all bilinear maps from E×F to G. As
E×F → E⊗F is separately continuous, the canonical isomorphism L(E⊗F,G) ∼ B(E×F,G)
induces an injection from L(E ⊗ F,G) to B(E × F,G). Let us show by contradiction that

this injection is onto. Consider f ∈ B(E × F,G) such that its linearisation f̃ ∈ L(E ⊗ F,G)
is not continuous. Let us denote E ⊗τ F the vector space E ⊗F endowed with the coarsest
topology τ making f̃ continuous. Then, because f is separately continuous, E×F → E⊗τ F
is separately continuous. Thus τ is coarser than the inductive topology. This would implies
that f̃ ∶ E ⊗ F → G would be continuous. We have a contradiction.

Proposition 2.12 (Associativity of ⊗ in Weak). Consider E, F , and G three lctvs. Then(Ew ⊗ (Fw ⊗Gw)w)w ≃ ((Ew ⊗ Fw)w ⊗Gw)w
Proof. As the algebraic tensor product is associative we have (Ew⊗(Fw⊗Gw)w)w ∼ ((Ew⊗
Fw)w ⊗Gw)w. Let us show that the two spaces bear the same topology. The dual of the
first space is (Ew ⊗ (Fw ⊗ Gw)w)′ ∼ B(Ew × (Fw ⊗ Gw)w) according to Proposition 2.11.
One can show as above that B(Ew × (Fw ⊗Gw)w) corresponds to the space of all trilinear
separately continuous functions on Ew × Fw ×Gw. Likewise, the dual of the second space
is ((Ew ⊗ Fw)w ⊗Gw) ∼ B((Ew ⊗ Fw)w ×Gw), which corresponds also to the space of all
trilinear separately continuous functions on Ew ×Fw ×Gw. Then (Ew ⊗ (Fw ⊗Gw)w)w and((Ew ⊗ Fw)w ⊗Gw)w are algebraically isomorphic and have the same dual, thus the same
weak topology.

The associativity mapping obviously satisfies the coherence diagrams for a monoidal
category [Mac98, VII.1].

Proposition 2.13. Consider E, F and G three lctvs. Then we have

L((Ew ⊗Fw)w,Gw) ∼ B(Ew × Fw,Gw).
Proof. A map f lies in L((Ew ⊗Fw)w,Gw) if and only if for every l ∈ G′, l ○ f ∈ (Ew ⊗Fw)′.
But according to Proposition 2.11, we have (Ew ⊗ Fw)′ ∼ B(Ew × Fw). Thus f ∈ L((Ew ⊗
Fw)w,Gw) if and only if the bilinear map corresponding to f is in B(Ew × Fw,Gw).
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Proposition 2.14. Consider E, F and G three lctvs. Then we have

B(Ew × Fw,Gw) ∼ L(Ew,L(Fw,Gw)w).
Proof. Remember from Proposition 2.4 that L(Fw,Gw)′ ∼ F ⊗G′. Consider g a continuous
linear function from Ew to L(Fw,Gw)w. As the codomain of g is L(Fw,Gw), we have that
for x ∈ E fixed, for all l ∈ G′, y ↦ l(g(x)(y)) is continuous. So as to be continuous g must
satisfy that for y and l ∈ G′ both fixed, x ↦ l(g(x)(y)) is continuous. Consider l ∈ G′ fixed.
We see that l ○ g transforms into a separately continuous map in B(Ew × Fw). Thus g can
be seen as a function g̃ in B(Ew×Fw,Gw). The transformation of a map in B(Ew, Fw ×Gw)
into a map of L(Ew,L(Fw,Gw)w) is done likewise.

Thus we have an algebraic isomorphism between L(Ew,L(Fw,Gw)w) and L((Ew ⊗
Fw)w,Gw). To show that they bear the same weak topology, we just have to show that
they have the same dual. But according to Proposition 2.4, L(Ew,L(Fw,Gw)w)′ ∼ Ew ⊗
L(Fw,Gw)′ ∼ Ew ⊗ Fw ⊗G′w ∼ L((Ew ⊗Fw)w,Gw)′.
Theorem 2.15. The category Weak is monoidal closed, as we have for each lctvs Ew, Fw,
Gw: L(Ew,L(Fw,Gw)w) ≃ L((Ew ⊗Fw)w,Gw)w.
Definition 2.16. The co-tensor ` of linear logic is interpreted by E ` F ≃ B(E′, F ′).
Proposition 2.17. The ` connective preserves the weak topology: indeed, for every lctvs
E and F , (E ` F )w ≃ Ew ` Fw.

Proof. As E ` F ≃ (E′ ⊗F ′)′, the result follows immediately from Proposition 1.8.

2.3. A ∗-autonomous category. According to Theorem 2.15, Weak is a monoidal closed
category, with evE ∶ E → E′′ ≃ L(E,L(E,K)) being an isomorphism in this category for
every object E. The use of weal topologies gives use a model of the classical part of linear
logic, that is a ∗-autonomous category [Bar79].

Theorem 2.18. Weak is a ∗-autonomous category, with dualizing object K.

Proof. Let us take K = � = 1 the dualizing object. Then the evaluation map

(A⊸ �) ⊗A → �
leads by symmetry of ⊗ and closure exactly to ev ∶ A → ((A⊸ �)⊸ �, that is ev ∶ A → A′′.
As shown in Proposition 1.11, ev ∶ A → A′′ is an isomorphism in the category Weak, and
Weak is ∗-autonomous.

3. Additive connectives

The additive connectives of linear logic are of course interpreted by the binary product and
co-product between lctvs. Sadly, finite product and co-product coincide. However, they
behave differently with respect to weak topology: the product preserves the weak topology,
while the coproduct doesn’t. See Proposition 3.6 and Section 5 for an interpretation of this
phenomenon in terms of polarities.

Practically all the results in this section are classical results from functional analysis.
We nonetheless detail their proofs, which can also be found in the literature [Jar81, Sch71,
Köt69].
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Definition 3.1. Consider I is a set, and for all i ∈ I Ei a lctvs. We define ∏i∈I Ei as the
vector space product over I of the Ei, endowed with the coarsest topology on E such that
all pi are continuous.

If Uj is a basis of 0-neighbourhoods in Ej , then a subbasis for the topology on ∏iEi

consists of all the

U = Ui0 ×∏i∈I,i≠i0 Ei with Ui0 ∈ Ui0 .
Definition 3.2. We define E ≃⊕j∈J Ei as the algebraic direct sum of the vector spaces Ei,
endowed with the finest locally convex topology such that every injection Ij ∶ Ej → E is
continuous. Remember that the algebraic direct sum E is the subspace of ∏j Ej consisting
of elements (xj) having finitely many non-zero xj .

If Uj is a 0-basis in Ej, then a 0-basis for ⊕j Ej [Jar81, 4.3] is described by all the sets:

U = ⋃∞n=1∑n
k=1⋃j Uj,k with Uj,k ∈ Uj , j ∈ J , k ∈ N .

Note that this topology is finer than the topology induced by ∏Ei on ⊕Ei.

Proposition 3.3 ([Jar81, 4.3.2]). I is finite if and only if the canonical injection from

⊕i∈I Ei to ∏i∈I Ei is surjective.

Proposition 3.4. For any index I and all lctvs Ei (⊕i∈I Ei)′ ∼ ∏i∈I E
′
i and (∏i∈I Ei)′ ∼

⊕i∈I E
′
i.

Proposition 3.5 ([Jar81, II.8.8 Theorem 5 and Theorem 10]). We have always (∏i∈I Ei)w ≃
∏i∈I(Ei)w, but (⊕i∈I Ei)w ≃ ⊕i∈I(Ei)w holds only when I is finite.

Proof. Let us show first that (∏i∈I Ei)w ≃ ∏i∈I(Ei)w. The topology of (∏iEi)w is the
coarsest one of ∏Ei making all elements of (∏Ei)′ continuous. But as (∏Ei)′ ∼ ⊕E′i,
every l ∈ (∏Ei)′ is continuous from ∏(Ei)w to K. Thus the topology of ∏(Ei)w is finer
than the topology of (∏i∈I Ei)w. The topology of ∏(Ei)w is the coarsest one making all
the projections pi,w ∶∏(Ei)w ↦ (Ei)w continuous. But as the pi ∶∏Ei ↦ Ei are continuous,
all the pi ∶ (∏Ei)w ↦ (Ei)w are continuous. Thus the topology of (∏i∈I Ei)w is finer than
the topology of ∏(Ei)w, and the two are equal.

When I is finite, Proposition 3.3 and the result above tells us that (⊕i∈I Ei)w ≃
⊕i∈I(Ei)w. Suppose that I is not finite, and that Ei ≠ {0} for all i. To follow the proof by Jar-
chow we introduce the notion of equicontinuity: a set B of linear continuous functions from
E to F is equicontinuous if for every 0-neighbourhood V in F there is a 0-neighbourhood U
in E such that B(U) ⊂ V . One can check as in Proposition 1.11, and thanks to Lemma 1.9
that equicontinuous subsets of (Fw)′ are the finite ones. Thus if Bi is a finite but nonempty
subset of E′i, ∏Bi is equicontinuous in (⊕i∈I(Ei)w)′, but not in ((⊕i∈I Ei)w)′ as it is not
finite dimensional. Thus (⊕i∈I Ei)w ≄ ⊕i∈I(Ei)w.

We can now characterize the dual of a product and of a coproduct in the category
Weak.

Proposition 3.6. We have always (⊕i∈I Ei)′ ≃ ∏i∈I E
′
i but (∏i∈I Ei)′ ≃ ⊕i∈I E

′
i holds only

when I is finite.
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4. A quantitative model of linear logic

4.1. Quantitative semantics. Introduced by Girard [Gir88], quantitative semantic refine
the analogy between linear functions and linear programs (consuming exactly once their
input). Indeed, programs consuming their resources exactly n-times are seen as monomials
of degree n. General programs are seen as the disjunction of their executions consuming
n-times their resources. Mathematically, one can apply this semantic idea by interpreting
non-linear proofs as sums of n-monomials.

The structure presented here is very simple, our spaces providing us with practically
no tools except the Hahn-Banach theorem. In particular, as they satisfy no completeness
condition, the notion of converging power series is not available. Power series are converging
sums of monomials, and convergence in topological vector spaces is mainly possible thanks to
completeness2. This is why we simply chose to represent non-linear maps as finite sequences
over N of n-monomials. We also explore another possible exponential, inspired by what
happens in the theory of formal power series, in Section 4.6.

We have no difficulties in defining n-linear mappings f̂ on topological vector spaces.
From them, we define n-monomials as the functions matching x to f̂(x, ..., x). Note however
that to construct monomials concretely, we need a ring structure on our topological vector
space, that is we need an algebra structure. We don’t restrict ourselves to topological
algebras, as they are particular cases of our spaces.

The exponential we define here has a lot of similarities with the free symmetric algebra
studied by Mellies, Tabareau and Tasson [MTT09]. The difference here is that we consid-
ered sequences of monomials in the co-Kleisli category and not n-linear symmetric maps.
Therefore our exponential is the direct sum over n ∈ N of the dual spaces of the spaces of
n-monomials, and not a direct sum of symmetric n-tensor product of A.

4.2. The exponential.

Definition 4.1. Lns (E,F ) is the space of symmetric n-linear separately continuous func-
tions from E to F , We write Ls(E,F ) for the space of all symmetric n-linear maps from E

to F .

An n-monomial from E to F is a function f ∶ E → F such that there is f̂ ∈ Ln(E,F )
verifying that for all x ∈ E f(x) = f̂(x, ..., x). It is symmetric when for every permutation
σ ∈ Sn, for every x1, ..xn ∈ E we have f(xσ(1), ..., xσ(n)) = f(x1, ..., xn).
Proposition 4.2 (The Polarization formula [KM97, 7.13]). Consider f a n-monomial from

E to F . Then we have f(x) = f̂(x, ..., x) where f̂ is a symmetric n-linear function from E

to F defined by:

For every x1, ...xn ∈ E, f̂(x1, ..., xn) = 1
n! ∑

1
ǫ1,...,ǫn=0(−1)n−∑j ǫjf(∑j ǫjxj).

Proof. Let us write for the multinomial coefficient :

( n

k1, k2, . . . , km
) = n!

k1!k2!⋯km!
= (k1

k1
)(k1 + k2

k2
)⋯(k1 + k2 +⋯+ km

km
) .

2It appears that the weakest completeness condition necessary to model quantitative linear logic should
be Mackey completeness [KT15].
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For every x1, ..., xn , we have

f( n

∑
j=1

xj) = ∑
j1+...+jn=n

( n

k1, k2, . . . , kn
)f̂(x1, ..., x1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k1 times

, ..., xn, ..., xn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn times

)
Thus

f(∑
j

ǫjxj) = ∑
j1+...+jn=n

ǫk11 ...ǫ
kn
n ( n

k1, k2, . . . , kn
)f̂(x1, ..., x1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k1 times

, ..., xn, ..., xn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn times

)
and

1

n!

1

∑
ǫ1,...,ǫn=0

(−1)(n−∑j ǫj)f(∑
j

ǫjxj)

= 1

∑
ǫ1,...,ǫn=0

∑
j1+...+jn=n

(−1)(n−∑j ǫj)ǫk11 ...ǫ
kn
n

1

j1!⋯jn! f̂(x1, ..., x1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1 times

, ..., xn, ..., xn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn times

)

= ∑
j1+...+jn=n

1

j1!⋯jn! f̂(x1, ..., x1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k1 times

, ..., xn, ..., xn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn times

) 1

∑
ǫ1,...,ǫn=0

(−1)(n−∑j ǫj)ǫk11 ...ǫ
kn
n

Let us show that ∑1
ǫ1,...,ǫn=0(−1)n−∑j ǫj ǫk11 ...ǫ

kn
n is non-zero if and only if k1 = ⋯ = kn = 1.

Indeed, if there is an i such that ki ≠ 1, then there is j such that kj = 0, as k1 + ... + kn = n.
Let us suppose k1 = 0. Then

1

∑
ǫ1,...,ǫn=0

(−1)(n−∑j ǫj)ǫk11 ...ǫ
kn
n =

1

∑
ǫ2,...,ǫn=0

(−1)(n−1−ǫ2−...−ǫn)ǫk22 ...ǫknn
+ 1

∑
ǫ2,...,ǫn=0

(−1)n−ǫ2−...−ǫnǫk22 ...ǫknn
= 0

Thus
1

n!

1

∑
ǫ1,...,ǫn=0

(−1)(n−∑j ǫj)f(∑
j

ǫjxj) = f̂(x1, ..., xn) .
Definition 4.3. Let us write Hn(E,F ) for the space of n-monomials over E endowed with
the topology of simple convergence on points of E. For every lctvs E and F , Hn(E,F ) is
a lctvs.

As a consequence of the previous proposition, we know that there is is a unique sym-
metric n-linear map f̂ associated to a n-monomial f .

Corollary 4.4. There is bijection between Hn(E,F ) and Lns (E,F ).
As we will endow Hn(E,F ) with its weak topology, we need to get a better understand-

ing of its dual. To do so, we retrieve information from the dual of Lns (E,F ).
Proposition 4.5. For every lctvs E and F , for every n ∈ N, we have

Hn(E,F ) ≃ Lns (E,F ).
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Proof. The algebraic isomorphism between the two vector spaces follows from the previous
corollary, as the function mapping a n-linear symmetric mapping to the corresponding
n-monomial is clearly. As they are respectively endowed with the topology of pointwise
convergence of points of E (resp E × ... ×E), this mapping is bicontinuous.

If we write E⊗
n

s for the symmetrized nth-tensor product of E with himself, we have

Lns (E,F )w ≃ L(E⊗n

s , F ).
As also we have Hn(Ew, Fw) ≃ Hn(E,Fw) ≃ Lns (E,Fw) by Proposition 4.5, the dual of
Hn(E,F )′ is the dual of L(E⊗n

s , F ). Proposition 2.4 thus gives us a way to compute it :

Proposition 4.6. For every lctvs E and F , Hn(E,K)′ = E⊗n

sym ⊗ F ′. That is, every con-
tinuous linear form θ on Hn(E,F ) can be written as a finite sum of functions of the type
l ○ evx1⊗...⊗xn with l ∈ F ′ and x1, ...xn ∈ E.

From this, we deduce that Hn(Ew, Fw) is a weak space: it is already endowed with its
weak topology.

Corollary 4.7. For every lctvs E and F , we have that Hn(Ew, Fw)w ≃ Hn(E,Fw) ≃
Hn(Ew, Fw).
Proof. The topology on Hn(Ew, Fw) is the topology of simple convergence on E⊗

n

sym, with

weak convergence on F . This is exactly the topology induced by its dual E⊗
n

sym ⊗ F ′.
The exponential. The exponential ! ∶Weak →Weak is defined as a functor on the category
of linear maps. Suppose we want non-linear proofs E ⇒ F to be interpreted as some space
of functions F(E,F ). As the category of weak spaces and these functions is the co-Kleisli

category Weak!, we have:

(!E)w ≃ ((!E)w)′′
≃ L(!E,K)′
≃ F(E,K)′

As we want our non-linear proofs to be interpreted by sequences of monomials, the definition
of !E is straightforward.

Definition 4.8. Let us define !E as the lctvs ⊕n∈NHn(E,K)′.
As usual, we need to endow !E with its weak topology.

Proposition 4.9. We have (!E)′ ∼∏nH
n(E,K), and thus (!E)w ≃ (∏nH

n(E,K))′.
Proof. According to Proposition 3.4, we have that

(!E)′ ∼∏
n

Hn(E,K)′′ ∼∏
n

Hn(E,K).
Thus, (!E)′ ≃ (∏nH

n(E,K))w , as both spaces in this equality are endowed by the topology
of pointwise convergence on !E. Then (!E)′ ≃ ∏nH

n(E,K)w ≃ ∏nH
n(E,K). Taking the

dual of these spaces, we get !Ew ≃ (∏nH
n(E,K))′.
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As in spaces of linear functions, see Proposition 2.6, we have always that Hn(E,Fw) ≃
Hn(Ew, Fw). Thus !(Ew) ≃⊕n∈NHn(Ew,K)′ ≃⊕n∈NHn(E,K)′ ≃ !E.

Notation 4.10. We will write without any ambiguity !E for !(Ew) and !Ew for (!E)w.
Definition 4.11. For f ∈ L(Ew, Fw) we define

!f ∶
⎧⎪⎪⎨⎪⎪⎩
!Ew → !Fw

φ ↦ ((gn) ∈∏
n

Hn(F,K)↦ φ((gn ○ f)n)
This makes ! a functor on Weak. We then endow ! with its co-monadic structure. The
structure of the co-monad is based on the correspondence between f ∈ ∏mH

m(E,F ) and
g ∈∏nH

n(E,G), that is f ○ g ∈∏pH
p(E,G) with
(f ○ g)p =∑

k∣p

gk ○ f p

k
.

Remark 4.12. At this point we must pay attention to the arithmetic employed here. So
as to avoid infinite sums and a diverging term for (f ○ g)03, we allow for only 0 to divide 0.
Thus (f ○ g)0 = f0 ○ g0.
Proposition 4.13. The functor ! ∶ Lin→ Lin is a co-monad. Its co-unit ǫ ∶ ! → 1 is defined
by

ǫE { !Ew → Ew

φ ↦ φ1 ∈ E′′ ≃ E
The co-unit is the operator extracting from φ ∈ !E its part operating on linear maps. The
co-multiplication δ ∶ ! → !! is defined as :

δE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

!Ew ≃ (∏
p

Hp(E,K))′ → !!Ew ≃ (∏
n

Hn([∏
m

Hm(E,K)]′,K))′

φ ∈ (∏
p

Hp(E,K))′ ↦
⎡⎢⎢⎢⎢⎢⎣
(gn)n ↦ φ(⎛⎝x ∈ E ↦∑k∣p gk[(fm)m ↦ fp∣k(x)]⎞⎠

p

)
⎤⎥⎥⎥⎥⎥⎦

As explained before, we want to have on our co-Kleisli category a composition such that(f ○ g)p = ∑k∣p gk ○ f p

k
. The co-multiplication δ ∶ ! → !! can be seen as a continuation-passing

style transformation of this operation. Indeed, consider φ ∈ !E. We construct δ(φ) as a
function in (∏nH

n(!E,K))′ mapping a sequence (gn)n to φ applied to the sequences of
p-monomials on E defined as

x ∈ E ↦∑
k∣p

gk[(fm)m ↦ fp∣k(x)].
So as to show that ! is in fact a co-monad, we need to understand better the elements
of !E. The space !E is defined as ⊕nHn(E,K)′, so φ ∈ !E can be described as a finite

sum φ = ∑N
n=1 φn with φn ∈ Hn(E,K)′. The proofs presented below are based more on

the idea of non-linear continuations than on a combinatoric point of view. The space
!Ew = (∏pH

p(E,K))′ can be thought of as a space of quantitative-linear continuations,

3The problem of the possible divergence of the nonzero term can be found also in the theory of formal
power series [Hen88, IV.4], where composition is only allowed for series with no constant component.
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K being the space of the result of a computation. Indeed, if x is a program of type E,
its continuation k is of type ∏pH

p(E,K), and the type of the continuation passing-style
transformation λk.kx of x is (∏pH

p(E,K))′, as λk.kx is linear in k.

Proof. We have to check the two equations of a co-monad, that is:

● δ!δ = !δδ● ǫ!δ = !ǫδ = Id!
Let us detail the computation of the equation. Remember that we write evH

n(F,K) for
ev ∶ F ↦Hn(F,K)′. For every φ = ∑φp ∈ !E, we have:

ǫ!EδE(φ) = ǫ!E ⎛⎝(gn)n ∈∏Hn(!E,K) ↦ φ
⎛
⎝[x ∈ E ↦∑k∣p gk((fm)m ∈ !E ↦ f p

k
(x))]p⎞⎠

⎞
⎠

= ǫ!E ⎛⎝(gn)n ↦ φ
⎛
⎝[x ∈ E ↦∑k∣p gk(ev

Hp/k(E,K)
x )]p⎞⎠

⎞
⎠

= ǫ!E ⎛⎝(gn)n ↦∑p φp(x↦∑k∣p gk(ev
Hp/k(E,K)
x ))⎞⎠

As ǫ!E maps a function in !Ew ≃ (∏nH
n(E,K))′ to its restriction to L(E,K), and then to

the corresponding element in !E, we have without using the isomorphism !E′′ ≃ !E:

ǫ!EδE(φ) = g1 ∈ !E′ ↦∑
p

φp(x ↦∑
k∣p

gk(evHp/k(E,K)
x ))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≠0 if and only if k=1

= g1 ∈ !E′ ↦∑
p

φp(x ↦ g1(evHp(E,K)
x ))

As g1 lives in !E′ ≃∏mH
m(E,K), we can write g1 as a sequence (g1,m)m of m-monomials:

ǫ!EδE(φ) = g1 ∈ !E′ ↦∑
p

φp(x ↦ evH
p/k(E,K)

x (g1,p))
= g1 ∈ !E′ ↦∑

p

φp(x ↦ g1,p(x))
= g1 ∈ !E′ ↦∑

p

φp(g1,p)
= g1 ∈ !E′ ↦ φ(g1)

With the isomorphism !E′′ ≃ !E we obtain ǫ!δ = Id!.
The equation !ǫδ = Id is proved likewise: consider φ = ∑φp ∈ !E. Then
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!ǫδ(φ) = !ǫ⎛⎝(gn)n ∈∏Hn(!E,K) ↦∑
p

φp(x ↦∑
k∣p

gk(evHp/k(E,K)
x ))⎞⎠

= (hm)m ∈∏Hm(E,K) ↦∑
p

φp(x ↦∑
k∣p

hk ○ ǫ(evHp/k(E,K)
x )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≠0 if an only if
p

k
=1

)

= (hm)m ∈∏Hm(E,K) ↦∑
p

φp(x ↦ hp(x))
= (hm)m ↦ φ((hm)m)
= φ

So !ǫδ = Id.
Proposition 4.14. This co-monad is also symmetric monoidal. We have a natural trans-
formation :

µE,F ∶!E ⊗ !F → !(E ⊗F )
φ⊗ψ ↦ ((fn)n ↦ φ ((x↦ (ψ(y ↦ fn(x⊗ y)))n))

and a morphism

µ ∶ C→ !C

t ↦ evt

which statisfies the required commutation diagrams.

Definition 4.15. The ? connective of linear logic is interpreted as the dual of !, that is

?E ≃ (!E)′ ≃∏
n

Hn(E′,K).
We will writeWeak! for the co-Kleisli category ofWeak with !. We first show that morphisms
of this category are easy to understand, as they are just sequences of n-monomials.

4.3. The co-Kleisli category. The exponential above was chosen because of its co-Kleisli
category. Indeed, we want to decompose non-linear proofs as disjunctions of n-linear proofs,
and the simplest way to do that is to interpret non-linear maps from E to F , that is linear
maps from !E to F , as sequences of n-monomials from E to F .

Theorem 4.16. For all lctvs E and F , L(!Ew, Fw) ∼∏n∈NH
n(Ew, Fw).

Proof. Consider f ∈ L(!Ew, Fw). Define, for each n ∈ N, fn ∶ x ∈ Ew ↦ f(evHn(Ew,K)
x ). Then

fn is clearly n-linear. Let us show that it is continuous from Ew to Fw. Consider l ∈ F ′.
Then x↦ ev

Hn(Ew,K)
x is continuous from Ew to Hn(Ew,K)′, as the latter space is endowed

with the topology of simple convergence on Hn(Ew,K). The injection Hn(Ew,K)′ ↪ !Ew is
continuous, as !Ew ≃ (⊕kHk(Ew,K)′)w according to Proposition 3.6, and as Hn(Ew,K)′ ↪
⊕kHk(Ew,K)′ and ⊕kHk(Ew,K)′ ↪ (⊕kHk(Ew,K)′)w are continuous. The following
n-monomial is continuous:

fn ∶ Ew
ev
Ð→Hn(Ew,K)′ ↪⊕

k

Hk(Ew,K)′ ↪ (⊕
k

Hk(Ew,K)′)w f
Ð→ Fw
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Thus fn ∈ Hn(Ew, Fw). To every f ∈ L(!Ew, Fw) we associate in this way (fn) ∈
∏nH

n(Ew, Fw). Consider now (fn) ∈ ∏nH
n(Ew, Fw) and define f ∶ φ ∈ !Ew ↦ (l ∈ F ′ ↦

φ((l ○ fn)n)). The function f is well-defined as l ○ fn ∈Hn(Ew,K) for every n ∈ N and every
l ∈ F ′. When φ is fixed, let us denote φf the function l ∈ F ′ ↦ φ((l ○ fn)n)). Then:● l ∈ E′ ↦ l ○ fn ∈ Hn(E,K) is continuous as F ′ (resp. Hn(E,K)) is endowed with the
topology of simple convergence on points of F (resp. on points of E);● l ↦ (l ○ fn)n ∈∏nH

n(Ew,K) is then continuous by definition of the product topology;● φf is then continuous.

Thus φf ∈ F ′′ ≃ F . For each φ, there is y ∈ F such that φf = evy. We can now consider
f ∶ φ ∈ !E ↦ y ∈ F . f is clearly linear in φ. It is continuous as !Ew is endowed with the
topology of simple convergence on ∏n∈NH

n(Ew,K).
Finally, one can check that the mappings θ ∶ f ∈ L(!Ew, Fw) ↦ (fn) ∈ ∏nH

n(Ew, Fw)
and ∆ ∶ (fn) ∈∏nH

n(Ew, Fw)↦ f ∈ L(!Ew, Fw) just described are inverse one of the other.

Let us show now that the isomorphism described above is a homeomorphism.

Theorem 4.17. For all lctvs E and F ,

L(!Ew, Fw) ≃∏
n∈N

Hn(Ew, Fw),
and therefore

L(!Ew, Fw)w ≃ (∏
n∈N

Hn(Ew, Fw))w ≃∏
n∈N

Hn(Ew, Fw)w.
Proof. Let us show first that the function θ ∶ f ∈ L(!Ew, Fw) ↦ (fn) ∈ ∏nH

n(Ew, Fw)
is continuous. It is enough to show that f ↦ fn is continuous. Consider (fγ)γ∈Γ a net
converging towards f in L(!Ew, Fw). Thus for every φ ∈ !Ew fγ(φ) converges towards f(φ)
in Fw. For every x ∈ E the net fγ(evx ∈ Hn(Ew,K)′) converges towards f(evx) in Fw

thus the net (fγ,n) converges towards fn and θ in continuous. The proof that ∆ ∶ (fn) ∈
∏nH

n(Ew, Fw)↦ f ∈ L(!Ew, Fw) is continuous is done likewise.

The composition in Weak! is thus given by the definition of a co-Kleisli category. If
f ∈ L(!E,F ) and g ∈ L(!F,G) we define:

g ○ f ∶ !E δEÐ→ !!E
!f
Ð→ !F

g
Ð→ G.

Notation 4.18. For f ∈ L(!E,F ), we will write (f̃m)m the corresponding sequences of
monomials in ∏mH

m(E,F ).
Proposition 4.19. For every f ∈ L(!E,F ) and g ∈ L(!F,G), we have

(̃g ○ f)p =∑
k∣p

g̃k ○ f̃ p

k
.

Proof. By definition, for φ ∈ !E,

g ○ f(φ) = g(!f(δ(φ))
= g((gn) ∈∏

n

Hn(F,K) ↦ δ(φ)((gn ○ f)n)
For every p ∈ N∗, and x ∈ E, we have:
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(g̃ ○ f)p(x) = g ○ f(evHp(E,K)
x )

= g((gn) ∈∏
n

Hn(F,K) ↦ δ(evHp(E,K)
x )((gn ○ f)n))

Now δ(evHp(E,K)
x ) = (hj)j ∈Hj(!E,K) ↦ ∑k∣p hk(evHp/k(E,K)

x ). Thus
(g̃ ○ f)p(x) = g((gn) ∈∏

n

Hn(F,K) ↦ δ(evHp(E,K)
x )((gn ○ f)n)

=∑
k∣p

g̃k(f(evHp/k(E,K)
x ))

=∑
k∣p

g̃k ○ f̃p/k

4.4. Cartesian closedness. Let us show that Weak! endowed with the cartesian product
described in Section 3 is cartesian closed.

Theorem 4.20. For every lctvs E, F and G, we have:

∏
p∈N

Hp(Ew × Fw,Gw) ≃∏
n∈N

Hn(Ew, ∏
m∈N

Hm(Fw,Gw)).
The equality above means also that

(∏
p

Hp(Ew × Fw,Gw))w ≃ [∏
n

Hn(Ew, [∏
m

Hm(Fw,Gw)]w)]w,
as (∏mH

m(Fw,Gw))w) ≃ ∏mH
m(Fw,Gw)w by Proposition 3.5, and since Hp(Ew, Fw) is

already endowed with its weak topology by Proposition 4.7.

Proof. For every n ∈ N, for every lctvs E and F we have Hn(E,F ) ≃ Lns (E,F ). We are
therefore going to prove that for every lctvs E, F and G:

∏
p

Lps(Ew × Fw,Gw) ≃∏
n

Lns (Ew,∏
m

Lms (Fw,Gw)w).
In the following, we will write x⃗ for some tuple (x1, ...xn) in E × ...×E. Let us fix E, F and
G, and define:

φ ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∏
p

Lps(Ew × Fw,Gw)→∏
n

Lns (Ew,∏
m

Lms (Fw,Gw)w))
(fp)↦[x⃗ ↦ (y⃗ ↦ fn+m((x1,0), ..., (xn ,0), (0, y1), ..., (0, ym)))m]n

Let us show that φ is well-defined.

● Consider (fp)p ∈∏pL
p
s(Ew ×Fw,Gw), n ∈ N, x ∈ E, and m ∈ N. Then

y ∈ F ↦ fn+m((x1,0), ..., (xn ,0), (0, y1), ..., (0, ym))
is m-linear and symmetric, and continuous from Fw to Gw as fn+m ∶ Ew × Fw → Gw is
continuous.
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● Consider (fp)p ∈∏pL
p
s(Ew ×Fw,Gw) and n ∈ N. Then

x1, ..., xn ∈ Ew ↦ (y1, ..., ym ∈ F ↦ fn+m((x1,0), ..., (xn ,0), (0, y1), ..., (0, ym)))
is clearly n-linear and symmetric. It is continuous from Ew to Lms (Fw,Gw) as the latter
bears the topology of simple convergence, and as fn+m is continuous from Ew × fw to Gw.
Since the weak topology on Lms (Fw,Gw) is coarser than the strong topology, the function
considered is also continuous from Ew to Lms (Fw,Gw)w.

We want to define the inverse function ψ of φ. Thus, in particular, φ is a function from

∏nL
n
s (Ew,∏mL

m
s (Fw,Gw)) to ∏pL

p
s(Ew ×Fw,Gw). Consider

fn ∈ Lns (Ew,∏
m

Lms (Fw,Gw))
and let us write fn,x⃗,m for (fn(x⃗))m ∈ Lm(Fw,Gw). If p ≥ maxn,m, then the following
function is n +m-linear:

((x1, y1), ..., (xp, yp))↦ fn,(x1,...,xn),m(y1, ..., ym).
When p is fixed, ψ(f)p collects all possible ways to produce a p-linear function as above,
with p = n +m. As all possible permutations are considered, ψ(f)p is symmetric.

ψ ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏
n

Lns (Ew,∏
m

Lms (Fw,Gw))→∏
p

Lps(Ew ×Fw,Gw)
[fn ∶ x⃗ ↦ (fn,x⃗,m)m]n ↦ [ÐÐÐ→(x, y) ↦ ∑

I,J⊂[∣1,p∣]
card(I)=n
card(J)=m
n+m=p

1

(p
n
)fn,{xi}i∈I ,m({yj}j∈J)]p

where in the index of the sum I and J are ordered subsets (that is sequences) of [∣1, nl].
If I = {i1, . . . , in} and J = {j1, ..., jm}, we use fn,{xi}i∈I ,m({yj}j∈J) as a shorthand nota-

tion for fn,(xi1
,...,xin),m

(yj1 , . . . , yjm).
Let us show that ψ is well defined. Consider

[fn ∶ x1, ..xn ↦ (fn,{xi},m)m]n ∈∏
n

Lns (Ew,∏
m

Lms (Fw,Gw)w).
The function mapping ((x1, y1), ..., (xp, yp)) ∈ (Ew × Fw)p to fn,{xi}i∈I ,m({yj}j∈J) is n +m-
linear and symmetric. It is continuous, as the restrictions to fixed terms in Ew or Fw are
continuous. So ψ is well defined. Note that both φ and ψ are continuous as the spaces
Lns (E,F )w are endowed with the topology induced by their dual E⊗

n

sym ⊗ F ′. Finally, one

checks that φ and ψ are each other’s inverse. Consider f ∈ ∏pL
p
s(Ew × Fw,Gw). Then

ψ(φ(f)) corresponds to the function mapping p to the function in Lps(Ew×Fw,Gw)mapping((x1, y1), . . . , (xp, yp)) to:
∑

I,J⊂[∣1,p∣]
card(I)=n
card(J)=m
n+m=p

1

(p
n
)f((xi1 ,0), . . . , (xin ,0), (0, yj1), . . . , (0, yjm)).

By n-linearity of fp this sum equals

fp((x1, y1), . . . , (xp, yp)).
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Thus ψ ○ φ = Id. Consider now
g = [gn ∶ x1, ..xn ↦ (gn,{x1,...,xn},m)m]n ∈∏

n

Lns (Ew,∏
m

Lms (Fw,Gw)).
Let us show that φ(ψ(g)) = g. The function ψ(g) maps p, ((z1,w1), . . . , (zp,wp)) to

∑
I,J⊂[∣1,p∣]
card(I)=a
card(J)=b
a+b=p

1

(p
a
)gn,{zi}i∈I ,m({wj}j∈J).

The function φ(ψ(g)) maps n ∈ N, x1, ..., xn ∈ E, m ∈ N and y1, ..., ym ∈ F to this function ap-
plied to n+m and ((x1,0), ..., (xn ,0), (0, y1), ..., (0, ym)). But notice that gn,{zi}i∈I ,m({wj}j∈J)
is null as soon as one of the zi or one of the wi is null. So φ(ψ(g)) applied to n ∈ N,
x1, ..., xn ∈ E, m ∈ N and y1, ..., ym ∈ F results in

1

(n+m
n
) ∑
I,J⊂[∣1,n+m∣]

I=1,n
J={1,m}

gn,{zi}i∈I ,m({wj}j∈J)

which is exactly gn,{x1,...,xn},m(y1, . . . , ym).
Theorem 4.21. For all lctvs E and F we have:

!(Ew × Fw) ≃ !Ew ⊗ !Fw

Proof. This follows from the cartesian closedness ofWeak!, the monoidal closedness ofWeak,
and the description of Weak! obtained in Theorem 4.16. Indeed

!(Ew × Fw) ≃∏
p

Hp(Ew × Fw,K)′
≃∏

n

Hn(Ew,∏
m

Hm(Fw,K)w))′
≃ L(!Ew,∏

m

Hm(Fw,K)w))′
≃ L(!Ew,L(!Fw ,K)w)
≃ (!Ew ⊗ !Fw)′′
≃ !Ew ⊗ !Fw.

4.5. Derivation and integration. As a quantitative model of linear logic, this model
interprets differential linear logic [Ehr11]. However, the interpretation of derivation remains
combinatorial, and not as close to the usual differentiation operation as one would wish for.

Definition 4.22. The co-dereliction rule of differential linear logic is interpreted by:

coderE ∶
⎧⎪⎪⎨⎪⎪⎩
Ew → !Ew

x↦ ((fn) ∈∏
n

Hn(E,K) ↦ f1(x))
Proposition 4.23. For every space E, coderE is a linear continuous function from Ew to
!Ew.
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Proof. Let us fix φ = (φn)n ∈ (!Ew)′ ≃∏nH
n(E,K). Then φ ○ coderE maps x ∈ E to φ1(x).

As φ1 ∈ E′, coderE is continuous from Ew to !Ew.

For every lctvs E, !E bears a structure of bialgebra. This reflects the symmetric struc-
tures of the exponential rules in differential linear logic. We detail this structure.

● ∆ ∶ !E → !E ⊗ !E interprets the contraction rules of linear logic. It is corresponds to
!E → !(E ×E) ≃ !E ⊗ !E, where the first computation is the functor ! composed with the
diagonalisation morphism, and the second corresponds to the Seely isomorphism. In fact,
for φ ∈!E and if we write evx,i ∶ (fn)n ∈∏nH

n(E,K) ↦ fi(x) we have :

∆ ∶ φ ∈!E ↦ ⎛⎝g ∈ (!E⊗!E)′ ↦ φ([x ↦ ∑
i+j=n

g(evx,i ⊗ evx,j)]n)⎞⎠ .
● e ∶ !E → C is e(φ) = φ(1) ∈ S(E,C). It interprets the weakening rule of linear logic.● ` ∶ !E ⊗ !E → !E is defined by

`(h ↦ φ(x ↦ ψ(y ↦ h(x + y)))). It interprets the
co-contraction rule of differential linear logic.● The co-weakening rule of differential linear logic is interpreted by ν ∶ C→ !E is ν(1) = ev0.
Recall that ! is also a symmetric lax monoidal functor (see Propositions 4.13 and 4.14).

All these morphisms are necessary to build a differential structure.

Proposition 4.24. Weak endowed with coder is a differential category [BCS06].

Proof. As shown by Fiore [M.F07], it is enough to prove that the following diagrams hold :

● Strenght :

E ⊗ !F !E ⊗ !F !(E ⊗F )

E ⊗ F

coderE ⊗ Id µE,F

Id⊗ ǫF coderE⊗F

● Comonad :

E !E

E

coderE

ǫEId

E !E !!E

E ⊗ 1 !E ⊗ !E !!E ⊗ !!E

coderE δE

`

coderE ⊗ ν coder!E ⊗ δE
In our category, both branches of the strenght diagrams computes the following function :

(x⊗ φ)↦ ((fn)n ↦ φ(y ↦ f1(x⊗ y))) .
The first comonad diagram is immediate by the definition of ǫ. The second diagram com-
putes the function

x ∈ E ↦ (gp)p ∈∏
p

Hp(!E,K) ↦ g1((fn)n ↦ f1(x)) .

We do not have an interpretation of a syntactic integration in this category. Indeed, the
existence of Ehrhard’s anti-derivative operator [Ehr11, 2.3] would imply some sort of inte-
gration. We do not have a way to integrate in our spaces, as no completeness condition is



WEAK TOPOLOGIES FOR LINEAR LOGIC 23

verified. It is noticeable that if our spaces were reflexive, that is isomorphic to their bidual
when the dual is endowed with the topology of uniform convergence over bounded sets, a
weak integration would be available.

4.6. An exponential with non-unit sequences. Inspired by the substitution problem
in the theory of formal power series [Hen88, Chapter 1], we could have used another com-
position between sequences of monomials. Indeed, such sequences can be considered as
generalized formal power series. That is, to a sequence (fn)n corresponds a formal sum

∑fn, where no notion of convergence is employed. A formal power series is a denumer-
able sum A(X) = ∑m amX

n where the ai are coefficients in some commutative ring R. If
B = ∑pBnX

p is another formal power series, one has :

B(A(x)) =∑
p

bp(A(x))p
For every n ∈ N, A(x)p can be computed as if the sum in A were convergent. That is,
A(x)p = ∑k c

p
k
Xk with

c
p
k
= ∑

n≥0
∑

k1+...+kn=p

ak1 × ak2 × ... × akn .
This sum is infinite, which causes a problem since no notion of convergence is employed
here. However, if A is non-unit, that is if a0 = 0 this sum becomes finite :

c
p
k
= ∑

p≥n≥1
∑

m≥ki≥1
k1+...+kn=p

ak1 × ak2 × ... × akn .
With the same ideas, one can construct a comonad with the a non-unit version of functor
! ∶Weak →Weak such that, in the co-Kleisli category Weak! corresponds with substitution
if its morphisms are seen as formal power series f = ∑n≥1 fn .

(g ○ f)p ∶ x↦ ∑
p≥n≥1

∑
m≥ki≥1

k1+...+kn=p

gn(fk1(x), ..., fkn(x))
Let us state briefly these definitions.

Definition 4.25. Let us define !1E as the lctvs ⊕n≥1Hn(E,K)′.
Definition 4.26. For f ∈ L(Ew, Fw) we define

!1f ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩
!1Ew → !1Fw

φ↦ ((gn) ∈∏
n≥1

Hn(F,K) ↦ φ((gn ○ f)n)
This makes !1 a functor on Weak. Such an exponential leads to a co-Kleisli category of
non-unit sequences of monomials.

L(!1Ew, Fw) ≃∏
n≥1

Hn(Ew, Fw)w.
It is endowed with the usual co-unit, and co-multiplication allowing for a composition which
corresponds intuitively to a substitution.
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Proposition 4.27. The functor !1 ∶ Lin → Lin is a co-monad. Its co-unit ǫ ∶ !1 → 1 is
defined by

ǫE { !1Ew → Ew

φ ↦ φ1 ∈ E′′ ≃ E
The co-unit is the operator extracting from φ ∈ !1E its part operating on linear maps. The
co-multiplication δ ∶ !1 → !1!1 is defined by

δE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

!1Ew ≃ (∏
p≥1

Hp(E,K))′ → !1!1Ew ≃ (∏
n≥1

Hn([∏
m≥1

Hm(E,K)]′,K))′

φ ∈ (∏
p

Hp(E,K))′ ↦ (gn)n ↦

φ(
⎛⎜⎜⎝
x ∈ E ↦ ∑

p≥n≥1
∑

m≥ki≥1
k1+...+kn=p

gn[(fm)m ↦ gn(fk1(x), ..., fkn(x))]
⎞⎟⎟⎠
p

)

The co-Kleisli category remains cartesian closed, and thus we obtain likewise a Seely
isomorphism

!1(Ew ×Fw) ≃ !1Ew ⊗ !1Fw.

As Weak is ∗-autonomous, we obtain this way another model of linear logic.

5. Weak topologies and polarities

An interpretation for the shift connective. We chose to use weak topologies here in order to
obtain a model of classical linear logic. Indeed, if E is not endowed with its weak topologies,
we have E ∼ E′′ but this bijection is not bicontinuous.

As a consequence, we observe that negative and positive connectives of linear logic
behave differently with respect to weak topologies. The interpretation of positive connec-
tives must be endowed with their weak topology, whereas the interpretations of negative
connectives are already endowed with their weak topology. Let us explain this idea.

For negative connectives, we have: E′w ≃ E
′ (Proposition 1.8), (Ew × Fw)w ≃ Ew × Fw

(Proposition 3.5), (Ew ` Fw)w ≃ Ew ` Fw (Proposition 2.16) and (?E)w ≃ ?E (Proposition
1.8).

On the contrary, we do not have (Ew ⊗Fw)w ≃ (Ew ⊗Fw), nor (!E)w ≃ !E. The case of
the coproduct is more delicate, as when it is indexed by a finite set it corresponds with the
product. We have ⊕i∈I(Ei)w ≃ (⊕i∈I(Ei)w)w if and only if I is finite (see Proposition 3.5).

What we can conclude here is that we in fact constructed a model of the negative
connectives of linear logic. Positive connectives are translated into negative connectives
through a shift, and the shift is interpreted as the enforcement of the weak topology on
some lctvs.

Definition 5.1. Formally, let us write [∣A∣] the interpretation of a formula A of LLpol as
a lctvs, and [A] = [∣A∣]w the interpretation of A as an object of our model, that is a lctvs
endowed with its weak topology.

Let us recall the definition of LLpol [Lau02].

Negative formulas N ∶=X� ∣ N `N ∣ N &N ∣ ?N ∣ ↓P
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Positive formulas P ∶=X ∣ P ⊗ P ∣ P ⊕P ∣ !P ∣ ↑N .

The first interpretation [∣ ⋅ ∣] of a formula as an lctvs is easy, as notations of linear logic are
inspired by mathematics: [∣A×B∣] ≃ [∣A∣]× [∣B∣], [∣A⊗B∣] ≃ [∣A∣]⊗ [∣B∣], etc. Things differ
when we interpret them as object of our model.

From the previous explanations it follows that:

Proposition 5.2. For negative formulas, the interpretation in our model is straightforward:
when N is a negative formula [∣N ∣] = [N].
Proposition 5.3. When P is a positive formula, then [P ] ≃ [↓P ] ≃ [∣P ∣]w. In general, we
do not have [∣P ∣] ≃ [P ], except for finite coproduct.

We have no mathematical interpretation of ↑, as the interpretations of negative formulas
bear no other strong topology than their weak topology. All lctvs can be seen as positive,
but not all of them can be seen as negative, that is not all of them are endowed with their
weak topology. Our model consists of negative lctvs.

Double orthogonalities and polarities. The interpretation of A� in our setting is [A]′, which
is in no way an orthogonal of A. From this, it follows that E ⊗ F is not defined as as(E ⊸ F ′)′, as its usual in denotational semantics (E ⊸ F ′)′ [Ehr02, Ehr05, Bar00], nor
completed [Gir99, BET12], but as an algebraic tensor product endowed with some polarity.
The fact that E⊗F is not constructed as the double-dual of some other lctvs is responsible
for the fact that we can see it as positive, that is (Ew ⊗Fw) ≄ (Ew ⊗ Fw)w.

The same phenomenon happens for the exponential: we could have defined !E as(∏nH
n(E,K))′ instead of ⊕nHn(E,K)′, and this would have made it a negative connective,

that is a connective which is already endowed with its weak topology.

Conclusion and further work

We obtain a very general model of linear logic, using spaces which are commonly used
in mathematics. We hope this work helps to initiate studies on computational interpreta-
tions of various theories used within the theory of topological vector spaces. The algebraic
structure allows us to interpret the connectives of linear logic, whereas the topology on our
spaces interprets the duality of classical logic and the polarities of the connectives. This
paper appeals to further work on the relationships between weak spaces, polarised linear
logic and focalized proofs [And92]. The understanding of the shift as an operation of weak
topology can also help to understand the decomposition of the exponential under polarities
[Lau04, Section 4].

As suggested by Barr’s work [Bar00], we could try to construct a similar model of
linear logic with Mackey spaces, that is spaces endowed with their Mackey topology. It
would not interpret polarities, but could have other interesting properties. The key point in
this construction would be to have an adaptation of Proposition 2.4. Of course, one could
try and do this construction with any polar topology. Similarly, one can try to adapt the
use of weak topologies to coherent Banach Spaces or convenient spaces to produce a model
of linear logic.

Another direction of research would be to construct a model with reflexive spaces as
used in the literature, that is lctvs which are isomorphic to their bidual when the dual
is endowed with the topology of uniform convergence on bounded sets. These spaces are
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indeed endowed with a weak integral, and would allow for a step towards the understanding
of the computational meaning of differential equations. One can note that a nuclear space
which is also Fréchet or (DF) is reflexive, and the duality between Fréchet spaces and (DF)-
spaces nicely interprets the notion of polarity in linear logic. Constructing a model for the
exponential of differential linear logic in the category of nuclear spaces is currently work in
progress.
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his suggestions on the exponentials. I am grateful to the referees for their many corrections
and useful suggestions, particularly about the introduction of this paper.
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