
Logical Methods in Computer Science
Vol. 12(1:9)2016, pp. 1–17
www.lmcs-online.org

Submitted Aug. 8, 2015
Published Mar. 31, 2016

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS

PABLO BARCELÓ a AND LEONID LIBKIN b

a Center for Semantic Web Research & Department of Computer Science, University of Chile
e-mail address: pbarcelo@dcc.uchile.cl

b Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh
e-mail address: libkin@inf.ed.ac.uk

Abstract. Our goal is to show that the standard model-theoretic concept of types can be
applied in the study of order-invariant properties, i.e., properties definable in a logic in the
presence of an auxiliary order relation, but not actually dependent on that order relation.
This is somewhat surprising since order-invariant properties are more of a combinatorial
rather than a logical object. We provide two applications of this notion. One is a proof,
from the basic principles, of a theorem by Courcelle stating that over trees, order-invariant
MSO properties are expressible in MSO with counting quantifiers. The other is an analog
of the Feferman-Vaught theorem for order-invariant properties.

1. Introduction

Invariant queries are an intriguing object that appear in the study of the expressive power
of logics over finite models. The interest in them stems from the fact that to describe
complexity classes by logical means, one often needs an underlying linear order. For instance,
the Immerman-Vardi theorem characterizes polynomial time properties of graphs as those
expressible in least-fixpoint logic in the presence of an order relation, cf. [10, 14]. However,
the ordering can be chosen arbitrarily: its only goal is to enable the logic to simulate a
Turing machine, which of course has the input on its tape in some order. That is, one needs
an ordering to express a property, but it does not matter which order to use; any order
would do. Properties expressed in this fashion are called order-invariant.

Since many results on capturing complexity classes require an ordering that is used in
an invariant fashion, the notion is of interest. Before studying it for expressive logics like
least-fixpoint, one would want to understand its behavior in simpler settings, like first-order
logic (FO). Several attempts to do so, however, show that the notion is much harder to deal
with than it initially appears.

2012 ACM CCS: [Theory of computation]: Logic—Finite Model Theory; Formal languages and au-
tomata theory—Tree languages.

Key words and phrases: finite model theory; invariance; types.
a Barceló is funded by the Millennium Nucleus Center for Semantic Web Research under Grant NC120004.
b Libkin is supported by EPSRC grants J015377 and M025268.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(1:9)2016

c© P. Barceló and L. Libkin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. BARCELÓ AND L. LIBKIN

To start with, it only makes sense for finite structures: over infinite structures, a simple
application of the interpolation theorem shows that any order-invariant property can be
expressed without the order itself. But for finite structures, order-invariance does add
power. This was noticed (although not published) by Yuri Gurevich a while ago, but by
now this is a textbook result [14]. The most commonly used separating property is checking
whether the number of atoms of a Boolean algebra is even: it cannot be done in FO, but
can be if an arbitrary order on elements of the Boolean algebra is added. More complex
examples show that the separation continues to hold if order is replaced by weaker devices
such as the ability to choose an element from a set [19] or the successor relation [20].

These observations led to the study of the power of order-invariant properties in logics
such as FO and monadic second-order logic (MSO). Despite much effort, we still know
relatively little about order-invariant properties, and results that we know typically require
a very significant effort (see [21, 22] for overviews). We do know nonetheless that order-
invariant properties are local, much like FO-definable properties themselves [11], that over
some tame structures such as words and trees, order-invariance does not add power [3,
18], and there are results that extend invariance beyond order, for instance to arithmetic
predicates [23, 1], or prove strong separation results for auxiliary relations that are slightly
weaker than order [15]. For the more powerful logic MSO we know that order-invariance
on tame structures such as trees boils down to adding counting to the logic [7].

One of the reasons that the progress in understanding order-invariance is rather slow
is the lack of logical tools – indeed, the set of order-invariant properties is not really a logic,
i.e., it is not recursively enumerable. However, perhaps somewhat surprisingly in view of
this observation, some logical tools can be adapted to deal with order-invariance. Showing
this is our goal. We take the standard model-theoretic concept of types (i.e., sets of formulae
of a logic or a fragment of a logic that hold in a given structure), which play a prominent
role in both classical and finite model theory [4, 14], and demonstrate their usefulness in
the study of order-invariance.

Specifically, we do the following.

(1) We define a notion of order-invariant types that extends the notion of types to the
order-invariant setting and study its basic properties.

(2) We show that, despite order-invariant properties not forming a logic, a logic-based
notion of order-invariant types can actually be useful. We provide two applications:
(a) First, we provide a proof, from the basic principles, of a result by Courcelle [7]

saying that over trees, order-invariant MSO properties are the ones expressible in
MSO with counting quantifiers. This was reported in our conference paper [2] but
the proof was never published.

(b) Second, we prove an analog of the Feferman-Vaught theorem [8, 16] for order-
invariant properties, and use it to extend the list of known classes where order-
invariance does not increase the expressive power.

While not claiming a breakthrough, the goal of this note is to show that standard model-
theoretic techniques are applicable in this notoriously difficult area, and perhaps offer a new
avenue of attack on a host of unsolved problems related to order-invariance.

Organization. Basic concepts are defined in Section 2. In Section 3 we define order-
invariant types and study their basic properties. The proof of Courcelle’s theorem based on
order-invariant types is given in Section 4, and the order-invariant version of the Feferman-
Vaught theorem is given in Section 5.

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 3

2. Preliminaries

We now present basic background concepts, following [14]. We assume familiarity with first-
order logic (FO) and with its extension with monadic second-order quantification known
as monadic second-order logic (MSO). First-order variables are denoted x, y, z, . . . , while
second-order variables are denoted X,Y,Z, . . . We assume that vocabularies are relational,
i.e., they contain only relation and constant symbols. All structures are assumed to be
finite, and will be denoted by letters A,B, . . .; the domain of a structure A will be denoted
by dom(A).

The quantifier rank qr(ϕ) of a formula (FO or MSO) is the depth of quantifier nesting
in ϕ. Up to logical equivalence, there are only finitely many different formulae of quantifier
rank k (FO or MSO) for each given vocabulary.

With each structure A of vocabulary σ we associate its rank-k FO type

tpkFO(A) = {ϕ | A |= ϕ and qr(ϕ) ≤ k},

where ϕ ranges over FO sentences over σ. Similarly we define tpkMSO(A). From the previous

paragraph, both tpkFO(A) and tpkMSO(A) can be assume to be finite. There are finitely many
rank-k types, and for each rank-k (FO or MSO) type τ there is a sentence ϕτ of quantifier
rank k in the logic that defines it, i.e., A |= ϕτ if and only if tpkFO(A) = τ (or tpkMSO(A) = τ).
In particular, ϕτ =

∧

ϕ∈tpk
FO(A) ϕ. We thus associate types with formulas that define them,

and simply write τ instead of ϕτ . Every FO sentence of quantifier rank k is equivalent to
a disjunction of rank-k FO types (and likewise for MSO).

EF games. For FO and MSO logical equivalence up to quantifier rank k can be captured
using Ehrenfeucht-Fräıssé (EF) games. The game is played in two structures A and B, over
the same vocabulary σ, by two players, the spoiler and the duplicator, for k ≥ 0 of rounds.
In round i the spoiler selects a structure, say A, and an element ai ∈ dom(A); the duplicator
responds by selecting an element bi in the other structure, in this case bi ∈ dom(B). The
duplicator wins if the mapping ai 7→ bi, for i ≤ k defines a partial isomorphism between A
and B. That is, for purely relational vocabulary this map is an isomorphism of substructures
induced by {a1, . . . , ak} and {b1, . . . , bk}. If constant symbols are involved, these sets are
expanded by the interpretation of constants in A and B, and the interpretation of each
constant symbol c in A must be mapped into the interpretation of that symbol in B.

The duplicator has a winning strategy in the k-round game if he wins in k rounds no
matter how the spoiler plays. It is well known that this happens if and only if A and B
agree on all FO sentences of quantifier rank up to k, and we write A ≡FO

k B to denote this.

In particular, A ≡FO
k B iff tpkFO(A) = tpkFO(B).

An extension of the Ehrenfeucht-Fräıssé game also permits us to determine whether
two structures have the same MSO type. This extension permits, in addition to the usual
moves, also set moves, i.e., the spoiler can play a subset of a structure, say Ui ⊆ dom(A),
and the duplicator must then respond with a set in the other structure, i.e., Vi ⊆ dom(B).
The winning condition is that the usual element moves form a partial isomorphism of
substructures expanded with predicates for the set moves. In particular, if ai, Uj are an
element and a set moves in A, and bi, Vj are the responses in B, then ai ∈ Uj iff bi ∈ Vj .

As for FO, the spoiler has a winning strategy in this k-round MSO game iff A and B
agree on all MSO sentences of quantifier rank up to k, i.e., iff tpkMSO(A) = tpkMSO(B). In
this case we write A ≡MSO

k B.

4 P. BARCELÓ AND L. LIBKIN

C-invariant sentences. Let L be either FO or MSO and assume that σ and σ′ are disjoint
vocabularies. Consider structures A and B over σ and σ′, respectively, such that A and B
share the same domain (i.e., dom(A) = dom(B)). We denote by (A,B) the structure over
σ ∪ σ′ whose domain coincides with that of A and B, and the interpretation of σ (resp. σ′)
is inherited from A (resp. B).

Assume that C andD are classes of structures over σ′ and σ, respectively. An L sentence
ϕ over σ ∪ σ′ is C-invariant over D, if for each structure A ∈ D and any two structures
B1,B2 ∈ C with the same domain than A, the following holds:

(A,B1) |= ϕ ⇐⇒ (A,B2) |= ϕ.

We denote by (L∪{C})Dinv the set of C-invariant L sentences over D. We omit the superscript
when D is the class of all structures over σ.

A C-invariant L sentence ϕ over D defines a query Qϕ which is a set of structures in D

as follows:

A ∈ Qϕ ⇔ (A,B) |= ϕ for some B ∈ C with dom(A) = dom(B)
⇔ (A,B) |= ϕ for all B ∈ C with dom(A) = dom(B) .

The most important case for us is when C is the class of linear orders. We then write <
instead of C, and denote by (L + {<})Dinv the set of <-invariant L sentences over D. In

other words, (L + {<})Dinv consists of all L sentences ϕ over vocabulary σ ∪ {<} such that
for every structure A ∈ D, and any two linear orders <1, <2 interpreting < over dom(A),
we have:

(A, <1) |= ϕ ⇐⇒ (A, <2) |= ϕ.

We say that <-invariant L collapses to L over D if for every sentence ϕ in (L+{<})Dinv,
the query Qϕ is definable in L over D. It is known, for instance, that over words and trees,
<-invariant FO collapses to FO, see [3, 18]. But sometimes invariance adds power, as the
example below demonstrates.

Example 1 A linear order can be used to define an MSO sentence ϕeven that checks if
the domain has even cardinality. Indeed, all one needs to do is to check the existence of a
subset S of the ordering that corresponds to even positions (i.e., S consists of every other
element starting from the second element of the ordering <) such that S also contains its
last element. These are easily expressible in MSO, and hence this is an (MSO + {<})inv
sentence, since it does not matter which linear order to use.

Using exactly the same idea, we can define a sentence Q2x ψ(x) checking if the number
of elements a satisfying a given formula ψ(x) is divisible by 2, and in fact a sentence Qpx ψ(x)
checking if the number of elements satisfying ψ(x) is divisible by p. These are known as
counting quantifiers, and they will be important for us in the next sections.

Finally, assume that the vocabulary σ is empty. Then the (MSO + {<})inv sentence
ϕeven is not definable in MSO alone, which shows that even over empty vocabularies, <-
invariant MSO does not collapse to MSO. The same property shows that over the class of
Boolean algebras, <-invariant FO does not collapse to FO (since in Boolean algebras one
can mimic MSO quantification, c.f., [14]). ✷

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 5

3. C-Invariant Types

Let L be either FO or MSO. As before, σ and σ′ are disjoint vocabularies, C is a class of
structures over σ′ and D a class of structures over σ. With each structure A ∈ D over σ we
define its rank-k C-invariant L type over D, which we denote by tpk

(L+{C})Dinv
(A), to be the

set of all (L ∪ {C})Dinv sentences ϕ of quantifier rank at most k such that A ∈ Qϕ.
As in the case of rank-k L types, each rank-k C-invariant L type over D is definable

by an (L ∪ {C})Dinv sentence of quantifier rank at most k. This is because the conjunction

of all (finitely many, up to equivalence) C-invariant L sentences in tpk
(L+{C})Dinv

(A) is an

(L ∪ {C})Dinv sentence of quantifier rank k (because invariant sentences are closed under
Boolean connectives). It follows that for any vocabularies σ and σ′, and every k, there are
only finitely many rank-k C invariant L types of D, and every rank-k C invariant L sentence
over D is equivalent to a disjunction of such rank-k types.

In this section, we provide a combinatorial characterization of rank-k invariant types
which is crucial for our results. It can be described in terms of finite sequences of transfor-
mations that either replace a pair of structures (A,B) with another one of the same rank-k
type (the usual, not invariant), or simply replacing the second component of the structure.

More precisely, let (A,B) and (A′,B′) be two pairs of structures sharing the domain
(i.e., dom(A) = dom(B) and dom(A′) = dom(B′)) and let L,C,D be as above. We write

(A,B) ∼L,D,C
k (A′,B′)

if either A = A′, or tpkL(A,B) = tpkL(A
′,B′). When (A′,B′) is reachable from (A,B) by

a finite sequence of ∼L,D,C
k steps, we say that (A′,B′) is a k-flip of (A,B) under (L,D,C).

The following simple observation establishes that k-flips preserve the k-invariant type of A:

Lemma 3.1. If (A′,B′) is a k-flip of (A,B) under (L,D,C), then we have tpk
(L+{C})Dinv

(A) =

tpk
(L+{C})Dinv

(A′).

Proof. We show that if (A,B) ∼L,D,C
k (A′,B′) then tpk

(L+{C})Dinv
(A) = tpk

(L+{C})Dinv
(A′). The

lemma follows then by a straightforward induction on the length of the finite sequence of

∼L,D,C
k steps that constitutes a k-flip. The case when A = A′ is trivial. Assume then that

A 6= A′ but tpkL(A,B) = tpkL(A
′,B′). Consider an arbitrary sentence ϕ ∈ tpk

(L+{C})Dinv
(A).

Then A ∈ Qϕ, and therefore (A,B) |= ϕ. But since tpkL(A,B) = tpkL(A
′,B′), we con-

clude that (A′,B′) |= ϕ, which implies that A′ ∈ Qϕ. Therefore, tpk
(L+{C})Dinv

(A) ⊆

tpk
(L+{C})Dinv

(A′). The proof that tpk
(L+{C})Dinv

(A′) ⊆ tpk
(L+{C})Dinv

(A) is symmetric.

The notion of k-flip describes the equivalence of invariant types. More formally, for
A ∈ D and B ∈ C such that dom(A) = dom(B) let us define:

ψk(A,B) =
∨

{tpkL(A
′,B′) | A′ ∈ D, B′ ∈ C, dom(A) = dom(B),

and (A′,B′) is a k-flip of (A,B) under (L,D,C)}.

We write ψ(A,B) instead of ψk(A,B) when k is clear from the context. Then we can establish

the following:

6 P. BARCELÓ AND L. LIBKIN

Proposition 3.1. Let k ≥ 0 and assume that A ∈ D and B ∈ C are structures such that
dom(A) = dom(B). Then for every A′ ∈ D and B′ ∈ C such that dom(A′) = dom(B′) the
following are equivalent:

(1) (A′,B′) |= ψ(A,B).

(2) (A′,B′) is a k-flip of (A,B) under (L,D,C).

Furthermore, ψ(A,B) is an (L∪{C})Dinv sentence of quantifier rank at most k and Qψ(A,B)

defines tpk
(L+{C})Dinv

(A). That is, for another structure A′ ∈ D, we have tpk
(L+{C})Dinv

(A) =

tpk
(L+{C})Dinv

(A′) iff A′ ∈ Qψ(A,B)
.

Proof. Assume first that (A′,B′) |= ψ(A,B). Then tpkL(A
′,B′) = tpkL(A

′′,B′′), for some
A′′ ∈ D and B′′ ∈ C such that (A′′,B′′) is a k-flip of (A,B) under (L,D,C). But then
(A′,B′) is also a k-flip of (A,B) under (L,D,C). Assume, on the other hand, that (A′,B′)
is a k-flip of (A,B) under (L,D,C). Then (A′,B′) |= ψ(A,B) since (A′,B′) |= tpkL(A

′,B′).

Clearly, ψ(A,B) is of quantifier rank at most k. We prove next that it is an (L∪ {C})Dinv
sentence. Let A′ ∈ D and B1,B2 ∈ C such that dom(A) = dom(B1) = dom(B2), and assume
that (A′,B1) |= ψ(A,B). Then, from the previous characterization we have that (A′,B1) is a

k-flip of (A,B) under (L,D,C). Therefore, (A′,B2) is also a k-flip of (A,B) under (L,D,C),
from which we conclude that (A′,B2) |= ψ(A,B).

Finally, we prove that Qψ(A,B)
defines tpk

(L+{C})Dinv
(A). Let A′ be a structure in D.

Assume first that tpk
(L+{C})Dinv

(A) = tpk
(L+{C})Dinv

(A′). Since ψ(A,B) is an (L∪{C})Dinv sentence

of quantifier rank k and (A,B) |= ψ(A,B) for any B such that dom(A) = dom(B), we conclude
that (A′,B′) |= ψ(A,B) for any B′ such that dom(A′) = dom(B′). Therefore, A′ ∈ Qψ(A,B)

.

Assume, on the other hand, that A′ ∈ Qψ(A,B)
. Therefore, for any B′ ∈ C such that

dom(A′) = dom(B′) we have that (A′,B′) |= ψ(A,B). But then (A′,B′) is a k-flip of (A,B)

under (L,D, C). We conclude that tpk
(L+{C})Dinv

(A) = tpk
(L+{C})Dinv

(A′) from Lemma 3.1.

4. Courcelle’s Theorem from Invariant Types

We have seen in Example 1 that counting quantifiers Qp can be defined in order-invariant
MSO. Such quantifiers extend MSO by the following formation rule: if ψ(x, ȳ) is a formula,
then ϕ(ȳ) = Qpx ψ(x, ȳ) is a formula. We have A |= ϕ(ā) if |{a′ ∈ dom(A) | A |= ψ(a′, ā)}|
is divisible by p. MSO extended with such quantifiers for all p is referred to as counting
MSO, or CMSO. What Example 1 tells us is that CMSO is definable in order-invariant
MSO. Courcelle’s result from [7] says that over trees, the two coincide.

Courcelle’s proof was quite involved; it used graph grammars and an algebraic approach
to recognizability. We now provide a much simpler proof that uses tree automata techniques
based on the invariant types machinery. The simplest way to prove that over trees, MSO
captures tree automata, is to define, for each k, a deterministic tree automaton that assigns
each node the rank-k MSO type of the subtree rooted at it, cf. [14]. Our proof extends
this to the order-invariant setting: we show how to define an automaton that computes
order-invariant rank-k types, and then prove that such an automaton can be encoded in
CMSO over trees.

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 7

Trees and tree automata. We consider rooted trees with oriented edges. To be able to
take advantage of automata machinery, we define them as unranked trees (cf. [6]) without
a sibling ordering. More precisely, an unranked tree domain D is a prefix-closed finite set
of words of positive natural numbers such that s · i ∈ D implies s · j ∈ D for each 1 ≤ j < i.
An unranked tree over a finite alphabet Σ is a structure T = (D,≺desc, (Pa)a∈Σ), where
D = dom(T) is an unranked tree domain, ≺desc is interpreted as the descendant relation
(i.e., s ≺desc s · s

′ for each s · s′ ∈ D such that s′ is nonempty), and Pa as the set of nodes
labeled a, for each a ∈ Σ. As usual, we require the Pa’s to form a partition of D, i.e., each
element of the domain is assigned a unique label in Σ. The empty word will be denoted by
ε; hence ε ∈ D is the root of T . In order to avoid notation clutter, throughout this section
we simply write (MSO+{<})inv for (MSO+{<})Treesinv , where Trees is the set of all unranked
trees.

Courcelle’s theorem [7] says the following.

Theorem 4.1. [7] A set of unranked trees is definable in (MSO+ {<})inv iff it is definable
in CMSO.

As the first observation towards the proof, we note that order-invariance can be replaced
by sibling-order invariance. A sibling order on a tree is a binary relation ≺sb such that
s′ ≺sb s

′′ implies that s′ = s · i and s′′ = s · j for some node s and distinct numbers i and j,
and that on the set of all the children of every node s (i.e., {s · i | s · i ∈ D}), the relation
≺sb is a linear order. We denote the extension of the unranked tree T with sibling order ≺sb

by (T,≺sb), and call (T,≺sb) a ≺sb-ordered unranked tree. We slightly abuse notation and
denote simply by ≺sb the class C of structures that represent sibling-orders on unranked
trees. We can restrict our attention to sibling-order invariance due to the following. Indeed,
it is well known that a linear order can be defined from ≺sb, and of course vice versa, a
linear order defines a sibling order. Since the two are inter-definable, we have the following
(as before, we write (MSO + {≺sb})inv for (MSO + {≺sb})

Trees

inv):

Lemma 4.2. A set of unranked trees is definable in (MSO + {<})inv iff it is definable in
(MSO + {≺sb})inv.

Sibling order allows us to bring in tree automata over ≺sb-ordered unranked trees. A
tree automaton (TA) [6] is a tuple N = (Σ, Q, F, δ), where Σ is a finite alphabet, Q is a set
of states, F ⊆ Q is the set of final states, and δ : Q × Σ → 2Q

∗
is the transition function

such that δ(q, a) is a regular language over Q for every q ∈ Q and a ∈ Σ. A run of a TA N
on a ≺sb-ordered unranked tree (T,≺sb) with domain D is a function ρ : D → Q such that,
for every element s ∈ D labeled a with children s1 ≺sb . . . ≺sb sn, the word ρ(s1) . . . ρ(sn)
is in δ(ρ(s), a) (if s is a leaf labeled a, then the condition enforces that the empty word
belongs to δ(ρ(s), a)). The ≺sb-ordered tree is accepted by N if there is a run ρ of N on
(T,≺sb) such that ρ(ε) ∈ F (i.e., the root is in a state in F). A TA N is deterministic if for
each q, q′ ∈ Q such that q 6= q′ and a ∈ Σ, there is no word that belongs to both δ(q, a) and
δ(q′, a). A set of ≺sb-ordered unranked trees is regular if and only if it is precisely the set
of trees accepted by a TA. It is well-known that TAs can be determinized, that is, a set of
≺sb-ordered unranked trees is regular iff it is accepted by a deterministic TA.

We prove here that the sets of unranked trees that are (MSO + {≺sb})inv-definable
can be recognized by a particular class of TAs, which we call invariant. This is done by
extending traditional techniques used to establish connections between MSO definability
and automata recognizability over words and trees.

8 P. BARCELÓ AND L. LIBKIN

Definition 4.3. A TA N = (Σ, Q, F, δ) is ≺sb-invariant if for each state q ∈ Q and symbol
a ∈ Σ, every permutation of a word in δ(q, a) is also in δ(q, a). (Thus, a run of N on a
≺sb-ordered unranked tree does not depend on the actual interpretation of ≺sb).

The next lemma establishes the desired connection between (MSO+{≺sb})inv-definability
and ≺sb-invariant TA recognizability:

Lemma 4.4. Let S be an (MSO + {≺sb})inv-definable set of unranked trees. There is
a deterministic ≺sb-invariant TA N for which S is precisely the set of unranked trees T
such that some ≺sb-ordered extension (T,≺sb) of T is accepted by N (or, equivalently, each
≺sb-ordered extension (T,≺sb) of T is accepted by N).

The automaton, as we already explained, will be computing invariant types of subtrees
in its run. Before proving the lemma, we show how Courcelle’s theorem easily follows
from it. One direction is immediate from the observation made in Example 1: we saw
that counting quantifiers can be expressed in MSO using an order relation. For the other
direction, we make use of a description of regular languages closed under permutations. Let
Sk,p, for k, p ≥ 0, be the semilinear set {k+ np | n ∈ N}. For an alphabet Σ = {a1, . . . , ar},
consider the Parikh map Π : Σ∗ → N

r where the i-th component of Π(w) is the number of
occurrences of ai in w. Then:

Lemma 4.5. A regular language L ⊆ Σ∗ is closed under permutation iff there exists a finite
family S of r-tuples of sets of the form Sk,p, such that for each word w over Σ it is the case
that w ∈ L iff for some (S1, . . . , Sr) ∈ S, we have Π(w) ∈ S1 × . . .× Sr.

This can be obtained from results in [9] and is also an immediate consequence of Pillig’s
normal form [12] which describes permutations of words in regular languages. We also
provide a simple direct model-theoretic proof of this result in the appendix.

Assume now that we have a set S of trees that is (MSO+{<})inv-definable. By Lemma
4.2, it is (MSO+ {≺sb})inv-definable, and by Lemma 4.4, there is a ≺sb-invariant TA N for
which S is precisely the set of unranked trees T for which there is a sibling-order ≺sb over
dom(T) such that (T,≺sb) is accepted by N (or, equivalently, for each sibling-order ≺sb

over dom(T) it is the case that (T,≺sb) is accepted by N). We construct a CMSO sentence
ϕS that precisely defines those unranked trees T . This can be done by using standard
techniques for translating from tree automata into MSO (see, e.g., [17]). In particular, ϕS
expresses the existence of an accepting run of N over some ≺sb-ordered extension of T .
That is, ϕS expresses that there is an assignment of states of N to the nodes of T that
respects the transition function and assigns a final state to the root of T . The only problem
here is that the sentence ϕS is defined over the unranked tree T , and hence there is no
≺sb-order available to check whether the transitions performed by the run of N are valid.
However, we know that N is ≺sb-invariant, and, therefore, that each transition of the form
δ(q, a) in N is described by a regular language L that is closed under permutation. From
Lemma 4.5, in order to check whether a word w belongs to L we can simply check whether
Π(w) belongs to some r-tuple of sets of the form Sk,p in S. This can clearly be defined
with a CMSO formula since sets of the form Sk,p are semilinear. Hence, Courcelle’s theorem
follows.

Thus, it remains to prove Lemma 4.4:

Proof. Assume that S is definable by sentence ϕ in (MSO + {≺sb})inv over finite alphabet
Σ. Let k ≥ 1 be the quantifier rank of ϕ. We construct a deterministic ≺sb-invariant TA

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 9

N over alphabet Σ such that the unique run of N on an arbitrary ≺sb-ordered extension
(T,≺sb) of an unranked tree T labels the root of T with tpk(MSO+{≺sb})inv

(T).

Let T be the set of all tpk(MSO+{≺sb})inv
(T), for T an unranked tree over Σ. Assume

that T1, . . . , Tp are unranked trees over Σ. We denote by A(T1, . . . , Tp) the structure over
vocabulary (Pτ)τ∈T whose domain is {1, . . . , p} and element i (1 ≤ i ≤ p) belongs to
Pτ (τ ∈ T) iff tpk(MSO+{≺sb})inv

(Ti) = τ . Notice then that the interpretation of the Pτ ’s

defines a partition over the domain of A(T1, . . . , Tp). Let us also denote by a(T1, . . . , Tp)
the unranked tree over Σ that has a root labeled a and trees T1, . . . , Tp hanging from this
root. The following claim is crucial for our construction of TA N :

Claim 4.6. For every a ∈ Σ and trees T1, . . . , Tp over Σ, the type

tpk(MSO+{≺sb})inv
(a(T1, . . . , Tp))

is uniquely determined by tpk(MSO+{<})inv
(A(T1, . . . , Tp)).

Proof. We slightly abuse notation and say that a sibling-ordered tree (resp., a word) is a
k-flip of another sibling-ordered tree (resp., word), but formally mean that it is a k-flip
under (MSO,Trees,≺sb) (resp., under (MSO,All, <), where All is the set of all structures
over the given vocabulary).

Let T1, . . . , Tp, Tp+1, . . . , Tr be unranked trees over alphabet Σ. We show that for each
a ∈ Σ it is the case that:

tpk(MSO+{<})inv
(A(T1, . . . , Tp)) = tpk(MSO+{<})inv

(A(Tp+1, . . . , Tr)) =⇒

tpk(MSO+{≺sb})inv
(a(T1, . . . , Tp)) = tpk(MSO+{≺sb})inv

(a(Tp+1, . . . , Tr)).

For each τ ∈ T , let Tτ be an arbitrary unranked tree such that tpk(MSO+{≺sb})inv
(Tτ) = τ .

Assume that for each 1 ≤ j ≤ r, tpk(MSO+{≺sb})inv
(Tj) = τj . Then, from Proposition 3.1,

for each 1 ≤ j ≤ r there exist sibling-orders ≺j,1
sb and ≺j,2

sb on dom(Tτj) and dom(Tj),
respectively, such that:

(Tτj ,≺
j,1
sb) is a k-flip of (Tj ,≺

j,2
sb). (4.1)

It is then possible to conclude from (4.1) that there exist sibling-orders ≺1
sb and ≺2

sb such
that:

(a(Tτ1 · · ·Tτp),≺
1
sb) is a k-flip of (a(T1 · · ·Tp),≺

2
sb).

In fact, ≺1
sb can be defined as ≺j,1

sb on the elements of a(Tτ1 · · ·Tτp) that appear inside Tτj
(1 ≤ j ≤ p) and as (s1 ≺1

sb . . . ≺
1
sb sp) on the roots s1, . . . , sp of T1, . . . , Tp, respectively.

Analogously, we can define ≺2
sb over a(T1 · · ·Tp), this time using sibling-orders ≺j,2

sb , for

1 ≤ j ≤ p. Now the result follows by using the fact that (Tτj ,≺
j,1
sb) is a k-flip of (Tj ,≺

j,2
sb),

for each 1 ≤ j ≤ p, and the fact that replacing in a sibling-ordered unranked tree (T,≺sb)
a subtree rooted at a children of the root of T with a sibling-ordered unranked tree of its
same rank-k MSO type preserves the rank-k MSO type of (T,≺sb). This fact can be proved
using standard composition arguments for the EF MSO game over sibling-ordered unranked
trees (for a proof, see, e.g., [17]).

Analogously, we can prove that there exist sibling-orders ≺3
sb and ≺4

sb such that:

(a(Tτp+1 · · · Tτr),≺
3
sb) is a k-flip of (a(Tp+1 · · ·Tr),≺

4
sb).

Therefore, from Proposition 3.1 we have:

10 P. BARCELÓ AND L. LIBKIN

(1) tpk(MSO+{≺sb})inv
(a(Tτ1 , . . . , Tτp)) = tpk(MSO+{≺sb})inv

(a(T1, . . . , Tp)).

(2) tpk(MSO+{≺sb})inv
(a(Tτp+1 , . . . , Tτr)) = tpk(MSO+{≺sb})inv

(a(Tp+1, . . . , Tr)).

Hence, in order to finish the proof of the claim it is sufficient to prove that:

tpk(MSO+{<})inv
(A(T1, . . . , Tp)) = tpk(MSO+{<})inv

(A(Tp+1, . . . , Tr)) =⇒

tpk(MSO+{≺sb})inv
(a(Tτ1 , . . . , Tτp)) = tpk(MSO+{≺sb})inv

(a(Tτp+1 , . . . , Tτr)).

This is what we do next. In order to simplify notation, we sometimes write a(κ1, . . . , κm)
and A(κ1, . . . , κm), for κ1, . . . , κm (not necessarily distinct) elements in T , instead of
a(Tκ1 , . . . , Tκm) and A(Tκ1 , . . . , Tκm), respectively.

With each unranked tree of the form Tτ , for τ ∈ T , we associate an arbitrary sibling-
order ≺τ

sb over dom(T). Given a linear order < over {1, . . . ,m}, we associate with the
unranked tree a(κ1, . . . , κm), where each κi is an element in T (1 ≤ i ≤ m), a sibling-order
≺<

sb over dom(a(κ1, . . . , κm)) defined in the following way:

(1) The interpretation of ≺<
sb over Tκj , for 1 ≤ j ≤ m, corresponds to ≺

κj
sb .

(2) Over the roots s1, . . . , sm of Tκ1 , . . . , Tκm , respectively, it is the case that si ≺
<
sb sj iff

i < j, for each 1 ≤ i, j ≤ m.

Because of tpk(MSO+{<})inv
(A(T1, . . . , Tp)) = tpk(MSO+{<})inv

(A(Tp+1, . . . , Tr)), Proposition

3.1 implies that there exist linear orders <1 and <2 over dom(A(T1, . . . , Tp)), respectively,
dom(A(Tp+1, . . . , Tr)) such that:

(A(T1, . . . , Tp), <1) is a k-flip of (A(Tp+1, . . . , Tr), <2).

I.e., in the undirected graph defined by the relation ∼MSO,All,<
k , both (A(T1, . . . , Tp), <1)

and (A(Tp+1, . . . , Tr), <2) belong to the same connected component as. We prove next
that this implies that (a(τ1, . . . , τp),≺

<1
sb) belongs to the same connected component as

(a(τp+1, . . . , τr),≺
<2
sb) in the undirected graph defined by relation ∼MSO,Trees,≺sb

k , i.e., that

(a(τ1, . . . , τp),≺
<1
sb) is a k-flip of (a(τp+1, . . . , τr),≺

<2
sb). From Proposition 3.1, this implies

that tpk(MSO+{≺sb})inv
(a(τ1, . . . , τp)) = tpk(MSO+{≺sb})inv

(a(τp+1, . . . , τr)). We abuse notation

and write ∼k instead of ∼MSO,All,<
k and ∼MSO,Trees,≺sb

k , as the superscript will always be
clear from the context.

Notice that it suffices to prove the following. If κ1, . . . , κm, κm+1, . . . , κn are (not neces-
sarily distinct) elements in T , and <1 and <2 are linear orders over dom(A(κ1, . . . , κm)) =
{1, . . . ,m} and dom(A(κm+1, . . . , κn)) = {1, . . . , n−m}, respectively, then

(A(κ1, . . . , κm), <1) ∼k (A(κm+1, . . . , κn), <2) =⇒

(a(κ1, . . . , κm),≺
<1
sb) ∼k (a(κm+1, . . . , κn),≺

<2
sb).

Assume then that (A(κ1, . . . , κm), <1) ∼k (A(κm+1, . . . , κn), <2). From the definition of
relation ∼k, there are two possibilities:

(1) A(κ1, . . . , κm) = A(κm+1, . . . , κn). and <2 is a permutation of <1 over {1, . . . ,m}.
Clearly then a(κ1, . . . , κm) = a(κm+1, . . . , κn), and hence:

(a(κ1, . . . , κm),≺
<1
sb) ∼k (a(κm+1, . . . , κn),≺

<2
sb).

(2) A(κ1, . . . , κm) 6= A(κm+1, . . . , κn) but (A(κ1, . . . , κm), <1) ≡
MSO
k (A(κm+1, . . . , κn), <2).

A standard composition argument for the EF MSO game over unranked trees shows in

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 11

this case that (a(κ1, . . . , κm),≺
<1
sb) ≡MSO

k (a(κm+1, . . . , κn),≺
<2
sb) (for a proof, see, e.g.,

[17]). Therefore:

(a(Tκ1 , . . . , Tκm),≺
<1
sb) ∼k (a(Tκm+1 , . . . , Tκn),≺

<2
sb).

This finishes the proof of the claim.

Assume that T ′ ⊆ T is the set of ≺sb-invariant rank-k MSO types of unranked trees T
such that T ∈ Qϕ. Let us define a TA N := (Σ,T ,T ′, δ), such that the word τ1 · · · τm ∈ T ∗

belongs to δ(τ, a) (for τ ∈ T and a ∈ Σ) iff tpk(MSO+{≺sb})inv
(a(Tτ1 , . . . , Tτp)) = τ . Next

claim shows that N is indeed a TA:

Claim 4.7. For each a ∈ Σ and τ ∈ T , the set δ(τ, a) is a regular language over T .

Proof. From Claim 4.6, we know that the type tpk(MSO+{≺sb})inv
(a(τ1, . . . , τp)) is determined

by tpk(MSO+{<})inv
(A(τ1, . . . , τp)). Therefore, it is sufficient to construct a deterministic NFA

N ′ over alphabet T that, given a word τ1 · · · τp in T ∗, the unique run of N ′ over τ1 · · · τp
labels position p with tpk(MSO+{<})inv

(A(τ1, . . . , τp)). The states of N
′ are all the types of the

form tpk(MSO+{<})inv
(A(κ1, . . . , κq)), for κ1, . . . , κq (not necessarily distinct) elements in T ;

the initial state of N ′ is tpk(MSO+{<})inv
(A()), the rank-k (MSO+ {<})inv type of the empty

structure over vocabulary (Pτ)τ∈T ; and he transition relation δ′ of N ′ satisfies that δ(χ, τ),
for χ = tpk(MSO+{<})inv

(A(κ1, . . . , κq)) and τ ∈ T , is tpk(MSO+{<})inv
(A(κ1, . . . , κq, τ)). We

prove next that the transition function δ′ is well-defined.
We prove, using invariant types, that for each τ ∈ T , tpk(MSO+{<})inv

(A(κ1, . . . , κq, τ))

is uniquely determined by tpk(MSO+{<})inv
(A(κ1, . . . , κq)). This shows that δ

′ is well-defined

and also thatN ′ is deterministic. Consider then (not necessarily distinct) elements κ1, . . . , κq,
κq+1, . . . , κt in T , and assume that:

tpk(MSO+{<})inv
(A(κ1, . . . , κq)) = tpk(MSO+{<})inv

(A(κq+1, . . . , κt)).

Hence by Proposition 3.1 there exist linear orders <1 and <2 over dom(A(κ1, . . . , κq)) =
{1, . . . , q} and dom(A(κq+1, . . . , κt)) = {1, . . . , t− q}, respectively, such that:

(A(κ1, . . . , κq), <1) is a k-flip of (A(κq+1, . . . , κt), <2).

But then clearly

(A(κ1, . . . , κq, τ), <
′
1) is a k-flip of (A(κq+1, . . . , κt, τ), <

′
2),

where <′
1 is the linear order over {1, . . . , q+1} such that the restriction of <′

1 over {1, . . . , q}
is <1 and i <′

1 q + 1, for each 1 ≤ i ≤ q, and equivalently for <′
2, this time over {1, . . . , t+

1− q}. We conclude from Proposition 3.1 that

tpk(MSO+{<})inv
(A(κ1, . . . , κq, τ)) = tpk(MSO+{<})inv

(A(κq+1, . . . , κt, τ)).

This concludes the proof of the claim.

By definition, N is deterministic. Furthermore, Claim 4.6 implies that N is invariant.
In fact, if τ1 · · · τm is a word in T ∗ and π is a permutation over {1, . . . ,m}, then it is
the case that tpk(MSO+{<})inv

(A(Tτ1 , . . . , Tτm)) = tpk(MSO+{<})inv
(A(Tτπ1 , . . . , Tτπm)) (since

A(Tτ1 , . . . , Tτm) ∼k A(Tτπ1 , . . . , Tτπm), and, therefore, Claim 4.6 tells us that

tpk(MSO+{≺sb})inv
(a(Tτ1 , . . . , Tτm)) = tpk(MSO+{<})inv

(a(Tτπ1 , . . . , Tτπm))

for each a ∈ Σ.

12 P. BARCELÓ AND L. LIBKIN

Finally, it is possible to prove by induction that the unique run of N on a ≺sb-ordered
unranked tree (T,≺sb) labels each node s of T with tpk(MSO+{≺sb})inv

(Ts), where Ts is the

subtreee of T rooted on s. In fact, consider an arbitrary a-labeled node s of T with children
s1 ≺sb . . . ≺sb sm, and assume that the unique run of N on (T,≺sb) assigns states τ1, . . . , τm
to s1, . . . , sm, respectively. Then by induction hypothesis tpk(MSO+{≺sb})inv

(Tsi) = τi, for

each 1 ≤ i ≤ m. The run of N on (T,≺sb) labels s with tpk(MSO+{≺sb})inv
(a(Tτ1 , . . . , Tτp))

by definition. But notice that A(Tτ1 , . . . , Tτm) = A(Ts1 , . . . , Tsm), which implies that
tpk(MSO+{≺sb})inv

(a(Tτ1 , . . . , Tτm)) = tpk(MSO+{<})inv
(a(Ts1 , . . . , Tsm)) from Claim 4.6. The

result now follows since Ts = a(Ts1 , . . . , Tsm).
The latter means that for an arbitrary sibling-order ≺sb over dom(T) we have that N

accepts (T,≺sb) if and only if tpk(MSO+{≺sb})inv
(T) ∈ c′ if and only if T ∈ Qϕ. This concludes

our proof.

5. An order-invariant Feferman-Vaught theorem

The classical Feferman-Vaught theorem shows how theories of complex structures can be
recovered using theories of simpler structures they are built from [8, 16]. In a simple version,
it says that FO theories of productA×B and disjoint unionA⊔B are determined by theories
of A and B. In the case of disjoint unions,we assume that the vocabulary is augmented
with unary predicates for the universes of structures A and B. We now use order-invariant
types to show that the same is true for order-invariant FO theories of structures. As a
consequence, we obtain new classes of structures where <-invariant FO collapses to FO.

Let Th(FO+<)inv(A) be the <-invariant FO theory of A, i.e., the set of all <-invariant

FO sentences true in A, and Thk(FO+<)inv
(A) be its restriction to sentences of quantifier rank

up to k (note that without such a restriction, the theory will have a sentence describing A
up to isomorphism). We then prove the following.

Theorem 5.1. Let A,B be structures over the same vocabulary. Then both Thk(FO+<)inv
(A⊔

B) and Thk(FO+<)inv
(A×B) are uniquely determined by Thk(FO+<)inv

(A) and Thk(FO+<)inv
(B).

Proof: Given structures A and B, and linear orders <A, <B on A and B, respectively,
we define a linear order (<A∝<B) on A × B such that (a, b) precedes (a′, b′) in this order
whenever b <B b′, or b = b′ and a <A a′ (i.e., lexicographically, starting with the second
component). It follows immediately by a straightforward EF game argument that if we
have structures Ai,Bi, for i = 1, 2, over the same vocabulary, and linear orders <Ai and
<Bi on them such that (A1, <

A1) ≡k (A2, <
A2) and (B1, <

B1) ≡k (B2, <
B2), then (A1 ×

B1, (<
A1∝<B1)) ≡k (A2 × B2, (<

A2∝<B2)).
We use this observation, and the notion of a k-flip, to show the following.

Lemma 5.2. Let Ai,Bi be structures over the same vocabulary, i = 1, 2. Then:

(1) tpk(L+{<})inv
(A1⊔B1) = tpk(L+{<})inv

(A2⊔B2) whenever tp
k
(L+{<})inv

(A1) = tpk(L+{<})inv
(A2)

and tpk(L+{<})inv
(B1) = tpk(L+{<})inv

(B2).

(2) tpk(L+{<})inv
(A1×B1) = tpk(L+{<})inv

(A2×B2) whenever tp
k
(L+{<})inv

(A1) = tpk(L+{<})inv
(A2)

and tpk(L+{<})inv
(B1) = tpk(L+{<})inv

(B2).

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 13

We only prove the case of the product in Lemma 5.2 since the case of the disjoint sum is
completely analogous. From Proposition 3.1 we have to show that there exist linear orders
<A1×B1 , <A2×B2 on (A1 × B1) and (A2 × B2), respectively, such that (A2 × B2, <

A2×B2) is
a k-flip of (A1 × B1, <

A1×B1).

Since tpk(L+{<})inv
(A1) = tpk(L+{<})inv

(A2) and tpk(L+{<})inv
(B1) = tpk(L+{<})inv

(B2), we

know from Proposition 3.1 that there exist linear orders <Ai , <Bi , i ∈ [1, 2], on Ai and
Bi, respectively, such that (A2, <

A2) is a k-flip of (A1, <
A1), and (B2, <

B2) is a k-flip of
(B1, <

B1). We now prove that (A2 × B2, (<
A2∝<B2)) is a k-flip of (A1 × B1, (<

A1∝<B1)),
which, by Proposition 3.1, implies the result.

Assume that
(A1, <1

A) ∼k (A
2, <2

A) ∼k · · · ∼k (A
m, <mA)

is a sequence witnessing the fact that (A2, <
A2) is a k-flip of (A1, <

A1). Then (A1, <1
A) =

(A1, <
A1), and (Am, <mA) = (A2, <

A2). Also, assume that

(B1, <1
B) ∼k (B

2, <2
B) ∼k · · · ∼k (B

n, <nB)

is a sequence witnessing the fact that (B2, <
B2) is a k-flip of (B1, <

B1). Then (B1, <1
B) =

(B1, <
B1), and (Bn, <nB) = (B2, <

B2). Then in order to show (A2 × B2, (<
A2∝<B2)) is a

k-flip of (A1 × B1, (<
A1∝<B1)), it is enough to show that

(A1 × B1, (<1
A∝<

1
B)) ∼k (A

2 × B1, (<2
A∝<

1
B)) ∼k · · · ∼k (A

m × B1, (<mA∝<1
B)) ∼k

(Am × B2, (<mA∝<2
B)) ∼k (A

m × B3, (<mA∝<3
B)) ∼k · · · ∼k (A

m × Bn, (<mA∝<nB)) .

Assume first that transition is from (Ai × B1, (<iA∝<
1
B)) to (Ai+1 × B1, (<i+1

A ∝<1
B)) for

some i < m. We analyze two cases:

• (Ai, <iA) ≡k (A
i+1, <i+1

A): We conclude (Ai×B1, (<iA∝<
1
B)) ≡k (A

i+1 ×B1, (<i+1
A ∝<1

B))
from the observation at the beginning of the proof and the fact that (B1, <

1
B) ≡k (B1, <

1
B).

• (Ai+1, <i+1
A) is a permutation of (Ai, <iA) (i.e., one reinterprets the order on the same

structure): Clearly, (Ai+1 × B1, (<i+1
A ∝<1

B)) is a permutation of (Ai × B1, (<iA∝<
1
B)).

The case when the transition is from (Am×Bj, (<mA∝<jB)) to (Am×Bj+1, (<mA∝<j+1
B)) for

some j < n is completely analogous. This proves the lemma.

We now conclude the proof of the theorem. Again, we only prove it for the product.
Let ϕ be a (FO+ <)inv sentence, and assume that

(

tpk(FO+<)inv
(A1), tp

k
(FO+<)inv

(B1)
)

, . . . ,
(

tpk(FO+<)inv
(Am), tp

k
(FO+<)inv

(Bm)
)

is an enumeration of all different pairs of rank-k (FO+ <)inv types of structures Ai,Bi such
that (Ai × Bi) |= ϕ, i ≤ m. Associate with each sentence tpk(FO+<)inv

(Ai) a propositional

variable αi, and with each sentence tpk(FO+<)inv
(Bi) a propositional variable βi. Then it is

possible to show that the boolean function Φ defined over propositional variables αi, βi in
the following way

Φ(α1, . . . , αm, β1, . . . , βm) = 1 ⇐⇒
∨

i

(αi ∧ βi) = 1 ,

where αi = 1 if and only ifA |= tpk(FO+<)inv
(Ai) and βi = 1 if and only if B |= tpk(FO+<)inv

(Bi),

i ≤ m, satisfies that

Φ(α1, . . . , αm, β1, . . . , βm) = 1 ⇐⇒ (A× B) |= ϕ .

14 P. BARCELÓ AND L. LIBKIN

In fact, assume first that (A × B) |= ϕ. Then A = Ai and B = Bi for some i ≤ m, and,
therefore, αi ∧ βi = 1, and Φ = 1. Assume on the other hand that Φ = 1. Then for some
i ≤ m, αi ∧ βi = 1, implying that A |= tpk(FO+<)inv

(Ai) and B |= tpk(FO+<)inv
(Bi). Hence,

A ≡inv
k Ai and B ≡inv

k Bi, and from Lemma 5.2, (A×B) ≡inv
k (Ai×Bi). But (Ai×Bi) |= ϕ,

and thus (A× B) |= ϕ. This completes the proof. ✷

We now use Theorem 5.1 to describe classes of structures on which <-invariant FO
collapses to FO. Let C, C′ be classes of structures. By

∏

(C, C′) (respectively,
∐

(C, C′)) we
denote classes of structures of the form A×B (respectively, A⊔B) where A ∈ C and B ∈ C′.

Corollary 5.3. Let C, C′ be classes of structures on which <-invariant FO collapses to FO.
Then <-invariant FO collapses to FO over both

∏

(C, C′) and
∐

(C, C′).

Indeed, every <-invariant sentence over A×B (or A⊔B) is given by a finite set of order-
invariant types, which in turn, by Theorem 5.1, are given by sets of pairs of <-invariant
types over A and B. Since these are expressible in FO by the assumption, we get that every
<-invariant sentence over products or disjoint unions is expressible in FO too.

For example, combining this with the results of [3, 18] we get that <-invariant FO
collapses to FO over grids (products of successor relations) or even products of words, i.e.,
grids colored in a way that is uniquely determined by coloring of its components.

One may wonder whether we can get the collapse result for arbitrarily colored grids.
While we do not know the answer, we provide an example that indicates not only that it is
hard to obtain such a result from the Feferman-Vaught theorem, but also that the collapse
of <-invariant FO is a very fragile notion.

Let C be a class of structures. By Un(C) we denote the class of structures of the form
(A, C), where A ∈ C and C is a subset of A (i.e., structures of C extended with a single
unary predicate). Already such a tiny extension can destroy the collapse.

Proposition 5.1. There is a class of structures C such that <-invariant FO collapses to
FO over C, but it does not collapse to FO over Un(C).

Proof: The class C of structures we consider will have two unary relations V and E

partitioning the domain, and two binary relations L and R. The interpretation is that
elements of E provide names for edges in the complete directed graph V × V , and if e
is the name of an edge (x, y), then L(e, x) and R(e, y) hold (i.e., these stand for left and
right vertices of a directed edge). In any FO sentence over such structures (even with extra
predicates), we can first make quantification relativized to V and E (i.e., ∃x ∈ V , ∃e ∈ E)
and then replace each ∃e ∈ E with ∃el, er ∈ V , and then change each L(e, x) to x = el
and each R(e, y) to y = er. If we have an order-invariant sentence, we can assume that
the order is given on V and extended to E lexicographically, while each element of V is
below each element of E (since we have a complete freedom in choosing the order). That
is, each v < e is replaced by true if v ∈ V and e ∈ E, and each e < e′ is replaced by
el < e′l ∨ (el = e′l ∧ er < e′r). Thus, every order-invariant sentence over C is equivalent to
an order-invariant sentence in the language of only one unary predicate V and the order <,
and a simple counting argument shows that such sentences collapse to FO over V (see, e.g.,
[14]). Hence, we have the collapse over C.

To show the lack of collapse over Un(C), we construct an order-invariant sentence that

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 15

(1) checks that the new relation C is a subset of E, and that V is of the form 2X for some
set X, and C contains precisely the edges of the subset relation;

(2) and on structures of such form, uses the order to check whether |X| is even.

The second item is done exactly as in the proof of the fact that on Boolean algebras,
with an order one can check whether the number of atoms is even (see Example 1), and the
proof that such a sentence is not expressible in FO alone is done in exactly the same way
as the original proof separating <-invariant FO from FO on Boolean algebras, see [14].

To ensure that C is of the right form, we must check the following, in addition to
C ⊆ E.

• The relation C is reflexive, transitive, and anti-symmetric.
• There is a single element v0 ∈ V such that v0 is connected by an edge in C to every other
element of V (it plays the role of the empty set).

• We then define a set A of elements v 6= v0 such that there is no C-edge between v0 and
some v′, and also a C-edge between v′ and v. These play the role of atoms of the Boolean
algebra. We also define A(v) as the set of elements of A so that there is a C-edge from
them to v (i.e., atoms under v).

• For all v 6= v′ which are different from v0, we must have A(v) 6= A(v′).
• For all v 6= v′ which are different from v0, we must have an element v′′ so that A(v′′) =
A(v) ∪A(v′).

It is routine to verify that all of these are expressible in FO over V,E,L,R, and ensure that
C ⊆ E gives V and E the structure of a Boolean algebra. This concludes the proof. ✷

Final remarks. The order-invariant Feferman-Vaught theorem presented in this section
also holds for MSO in the case of disjoint unions, but fails for products (see, e.g., [16]).
There are several other relevant operations (e.g., transductions or interpretations) that
preserve the types of structures [16]. It is an interesting open problem to establish if such
operations continue to preserve <-invariant types as well. It also appears possible to use
the technique of invariant types to look at containment of <-invariant FO in MSO (as was
done in [3]), for instance, for unbounded disjoint unions without the extra predicates for
structures. Another possibility is to give a direct proof of a generalization of Courcelle’s
theorem on linear-time data complexity of MSO over structures of bounded treewidth to
<-invariant MSO [5], using the observation that the MSO version can be proved using
Feferman-Vaught techniques [16].

Acknoledgement

We are grateful to the reviewers for suggesting helpful pointers to the literature and modi-
fications to improve the readability of the paper.

References

[1] M. Anderson, D. van Melkebeek, N. Schweikardt, and L. Segoufin. Locality of queries definable in
invariant first-order logic with arbitrary built-in predicates. In International Colloquium on Automata,
Languages and Programming (ICALP), pages 368–379, 2011.

[2] P. Barceló and L. Libkin. Temporal logics over unranked trees. In Symposium on Logic in Computer
Science (LICS), pages 31–40, 2005.

16 P. BARCELÓ AND L. LIBKIN

[3] M. Benedikt and L. Segoufin. Towards a characterization of order-invariant queries over tame graphs.
Journal of Symbolic Logic, 74(1):168–186, 2009.

[4] C. Chang and H. Keisler. Model Theory. North Holland, 1990.
[5] Y. Chen and J. Flum. On the ordered conjecture. In Proceedings of the 27th Annual IEEE Symposium

on Logic in Computer Science, pages 225–234, 2012.
[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata,
2007. Release October, 12th 2007.

[7] B. Courcelle. The monadic second-order logic of graphs V: on closing the gap between definability and
recognizability. Theoretical Computer Science, 80(2):153–202, 1991.

[8] S. Feferman and R. Vaught. The first order properties of algebraic systems. Fund. Math., 47:57–103,
1959.

[9] S. Ginsburg and E. H. Spanier. Bounded regular sets. Proceedings of the AMS, 17(5):1043–1049, 1966.
[10] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema, and S. Weinstein. Finite

Model Theory and Its Applications. Springer, 2007.
[11] M. Grohe and T. Schwentick. Locality of order-invariant first-order formulas. ACM Transactions on

Computational Logic, 1(1):112–130, 2000.
[12] D. Kozen. On two letters versus three. In Fixed Points in Computer Science (FICS), pages 44–50, 2002.
[13] R. E. Ladner. Application of model theoretic games to discrete linear orders and finite automata. In-

formation and Control, 33(4):281–303, 1977.
[14] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[15] L. Libkin and L. Wong. Lower bounds for invariant queries in logics with counting. Theoretical Computer

Science, 288(1):153–180, 2002.
[16] J. A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic,

126(1-3):159–213, 2004.
[17] F. Neven and T. Schwentick. Query automata over finite trees. Theoretical Computer Science, 275(1-

2):633–674, 2002.
[18] H. Niemistö. On locality and uniform reduction. In Symposium on Logic in Computer Science (LICS),

pages 41–50, 2005.
[19] M. Otto. Epsilon-logic is more expressive than first-order logic over finite structures. Journal of Symbolic

Logic, 65(4):1749–1757, 2000.
[20] B. Rossman. Successor-invariant first-order logic on finite structures. Journal of Symbolic Logic,

72(2):601–618, 2007.
[21] N. Schweikardt. On the expressive power of logics with invariant uses of arithmetic predicates. In

Workshop on Logic, Language, Information and Computation (WoLLIC), pages 85–87, 2012.
[22] N. Schweikardt. A short tutorial on order-invariant first-order logic. In International Computer Science

Symposium in Russia (CSR), pages 112–126, 2013.
[23] N. Schweikardt and L. Segoufin. Addition-invariant FO and regularity. In Symposium on Logic in Com-

puter Science (LICS), pages 273–282, 2010.

Appendix A. A direct proof of Lemma 4.5.

We prove the only if direction, as the other one is immediate. A word w over alpha-
bet Σ = {a1, a2, . . . , ar} is said to be partitioned, if it belongs to the regular language
(a1)

∗(a2)
∗ · · · (ar)

∗. Notice that for every word w there is a unique permutation wp of w (up
to isomorphism) that is partitioned.

We start by proving that rank-k MSO types of partitioned words can be defined by
means of finite collections of r-tuples of sets of the form Sk,p. Formally, we prove:

(*) Let τ be the rank-k MSO type of a partitioned word over Σ. There exists a finite family
Sτ of r-tuples of sets of the form Sk,p, such that for every word w over Σ we have that

tpkMSO(wp) = τ iff for some (S1, . . . , Sr) ∈ Sτ it is the case that Π(w) ∈ S1 × · · · × Sr.

ORDER-INVARIANT TYPES AND THEIR APPLICATIONS 17

We prove (*) next. For a ∈ Σ and w a partitioned word over Σ, we denote by wa the
maximal subword of w that is of the form a∗. By using a standard composition argument
for the MSO EF game, one can show that for any two partitioned words w and w′ over Σ,

tpkMSO(w) = tpkMSO(w
′) ⇐⇒ tpkMSO(wai) = tpkMSO(w

′
ai
), for each 1 ≤ i ≤ r.

Hence, for each rank-k MSO type τ of a partitioned word there is a finite family Fτ of
tuples of the form (τa1 , . . . , τar), where each τai is the rank-k MSO type of some word that
only uses symbol ai (1 ≤ i ≤ r), such that for each partitioned word w the rank-k MSO
type of w is τ iff for some (τa1 , . . . , τar) ∈ Fτ the rank-k MSO type of wai is τai , for each
1 ≤ i ≤ r. Therefore, in order to prove (*) it is enough to show that for each rank-k MSO
type of the form τa (a ∈ Σ) there exists a set of the form Sk,p (k, p ≥ 0) such that for a
word w of the form a⋆,

the rank-k MSO type of w is τa ⇐⇒ |w| ∈ Sk,p.

This is what we do next.
It is known (see [13] and [14] for the textbook treatment) that for a word w of the

form a∗, the rank-k MSO type of w is τa if and only if it is accepted by the NFA N =
({a},Γ, τ0, {τa}, δ), where the set of states Γ is the set of all rank-k MSO types of words in
a∗; the initial state of N is the rank-k MSO type of the empty word, denoted by τ0; the
final state of N is τa; and for τ ′ ∈ Γ we have that δ(τ ′, a) contains all the rank-k MSO
types of words of the form w′ · a, for w′ a word in a∗ with rank-k MSO type τ ′. Clearly, N
is a deterministic NFA since a simple composition argument for the MSO EF game shows
that the rank-k MSO type of w′ ·a is completely determined by the rank-k MSO type of w′.
Furthermore, since the alphabet of N is unary, a simple inspection of the transition graph
of N reveals that there must exist integers k, p ≥ 0 such that for a word w of the form a∗

it is the case that N accepts w iff |w| = k + np for some n ≥ 0. This finishes the proof of
(*). We now continue with the proof of the lemma.

Let L be a regular language that is closed under permutation. From Büchi’s theorem,
there is an MSO sentence ϕL over vocabulary (<, (Pa)a∈Σ) that defines L, i.e., for each
word w over Σ it is the case that w ∈ L iff w |= ϕL. Assume that the quantifier rank of ϕ
is k, and let Γ be the set of all rank-k MSO types of the partitioned words w that satisfy
ϕ (i.e., the ones that belong to L). If Γ is empty (which implies that L is also empty), we
define S to be the empty set, which clearly satisfies the statement of the lemma. Let us
assume then that Γ is not empty. We claim that a word w belongs to L if and only there is
a rank-k MSO type τ ∈ Γ and an r-tuple (S1, . . . , Sr) ∈ Sτ such that Π(w) ∈ S1 × · · · × Sr.
Indeed:

w ∈ L ⇐⇒ wp ∈ L (L is closed under permutation)

⇐⇒ the rank-k MSO type τ of wp is in (tpkMSO(w
p) ∈ ⇒ wp |= ϕ)

⇐⇒ Π(w) ∈ S1 × · · · × Sr, for some (S1, . . . , Sr) ∈ Sτ . (from (*))

This finishes the proof of the lemma since Γ is finite. ✷

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. C-Invariant Types
	4. Courcelle's Theorem from Invariant Types
	5. An order-invariant Feferman-Vaught theorem
	Acknoledgement
	References
	Appendix A. A direct proof of Lemma ??.

