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Abstract. We give a characterization, with respect to a large class of models of untyped λ-calculus,
of those models that are fully abstract for head-normalization, i.e., whose equational theory is H∗

(observations for head normalization). An extensional K-model D is fully abstract if and only if it
is hyperimmune, i.e., not well founded chains of elements of D cannot be captured by any recursive
function.

This article, together with its companion paper [8] form the long version of [10]. It is a standalone
paper that presents a purely semantical proof of the result as opposed to its companion paper that
presents an independent and purely syntactical proof of the same result.

Introduction

The histories of full abstraction and denotational semantics of λ-calculi are both rooted in four
fundamental articles published in the course of one year.

In 1976, Hyland [22] and Wadsworth [35] independently1 proved the first full abstraction result
of Scott’s D∞ (reflexive Scott’s domain) forH∗ (observations for head normalization). The following
year, Milner [27] and Plotkin [32] showed respectively that PCF (a Turing-complete extension of the
simply typed λ-calculus) has a unique fully abstract model up to isomorphism and that this model is
not in the category of Scott domains and continuous functions.

Later, various articles focused on circumventing Plotkin counter-example [1, 21] or investigating
full abstraction results for other calculi [2, 25, 30]. However, hardly anyone pointed out the fact that
Milner’s uniqueness theorem is specific to PCF, whileH∗ has various models that are fully abstract
but not isomorphic.

The quest for a general characterization of the fully abstract models of head normalization
started by successive refinements of a sufficient, but not necessary condition [14, 19, 26], improving
the proof techniques from 1976 [22, 35]. While these results shed some light on various fully abstract
semantics forH∗, none of them could reach a full characterization.

In this article, we give the first full characterization of the full abstraction of an observational
semantics for a specific (but large) class of models. The class we choose is that of Krivine-models,

2012 ACM CCS: [Theory of computation]: Models of computation—Computability—Lambda calculus; Semantics
and reasoning—Program semantics—Denotational semantics.
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Partially founded by French ANR project COQUAS (number 12 JS02 006 01).

1The idea already appears in Wadsworth thesis 3 years earlier.
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or K-models [24, 6]. This class, described in Section 1.2, is essentially the subclass of Scott
complete lattices (or filter models [12]) which are prime algebraic. We add two further conditions:
extensionality and approximability of Definition 2.27. Extensionality is a standard and perfectly
understood notion that requires the model to respect the η-equivalence. Notice that it is a necessary
condition for the full abstraction ifH∗. Approximability is another standard notion saying that the
model reflects the fact that a term is approximated by its finite Böhm trees. This notion has been
extensively studied [3, Section III.17.3].

The extensional and approximable K-models are the objects of our characterization and can be
seen as a natural class of models obtained from models of linear logic [18]. Indeed, the extensional
K-models correspond to the extensional reflexive objects of the co-Kleisli category associated with
the exponential comonad of Ehrhard’s ScottL category [15] (Prop. 1.10).

We achieve the characterization of full abstraction for H∗ in Theorem 1.23: a model D is
fully abstract for H∗ iff D is hyperimmune (Def. 1.19). Hyperimmunity is the key property our
study introduces in denotational semantics. This property is reminiscent of the Post’s notion of
hyperimmune sets in recursion theory. Hyperimmunity in recursion theory is not only undecidable,
but also surprisingly high in the hierarchy of undecidable properties (it cannot be decided by a
machine with an oracle deciding the halting problem) [29].

Roughly speaking, a model D is hyperimmune whenever the λ-terms can have access to
only well-founded2 chains of elements of D. In other words, D might have non-well-founded
chains d0 ≥ d1 ≥ · · · , but these chains “grow” so fast (for a suitable notion of growth), that they
cannot be contained in the interpretation of any λ-term.

The intuition that full abstraction ofH∗ is related to a kind of well-foundedness can be found in
the literature (e.g., Hyland’s [22], Gouy’s [19] or Manzonetto’s [26]). Our contribution is to give,
with hyperimmunity, a precise definition of this intuition, at least in the setting of K-models.

A finer intuition can be described in terms of game semantics. Informally, a game semantics for
the untyped λ-calculus takes place in the arena interpreting the recursive type o = o→ o. This arena is
infinitely wide (by developing the left o) and infinitely deep (by developing the right o). Moves therein
can thus be characterized by their nature (question or answer) and by a word over natural numbers.
For example, q(2.3.1) represents a question in the underlined “o” in o = o→(o→o→(o→o)→o)→o.
Plays in this game are potentially infinite sequences of moves, where a question of the form q(w) is
followed by any number of deeper questions/answers, before an answer a(w) is eventually provided,
if any.

A play like q(ε), q(1)...a(1), q(2)...a(2), q(3)... is admissible: one player keeps asking questions
and is infinitely delaying the answer to the initial question, but some answers are given so that the
stream is productive. However, the full abstraction forH∗ forbids non-productive infinite questioning
like in q(ε), q(1), q(1.1), q(1.1.1)..., in general. Nevertheless, disallowing all such strategies is
sufficient, but not necessary to get full abstraction. The hyperimmunity condition is finer: non
productive infinite questioning is allowed as long as the function that chooses the next question
grows faster than any recursive function (notice that in the example above that choice is performed
by the constant (n 7→ 1) function). For example, if (ui)i≥0 grows faster than any recursive function,
the play q(ε), q(u1), q(u1.u2), q(u1.u2.u3)... is perfectly allowed.

Incidentally, we obtain a significant corollary (also expressed in Theorem 1.23) stating that full
abstraction coincides with inequational full abstraction forH∗ (equivalence between observational
and denotational orders). This is in contrast to what happens to other calculi [34, 16].

2well-foundedness is considered with regard to a new order independent from the poset order of D.
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In the literature, most of the proofs of full abstraction for H∗ are based on Nakajima trees
[28] or some other notion of quotient of the space of Böhm trees, using the characterization of
the observational equivalence (see Proposition 2.13). The usual approach is too coarse because it
considers arbitrary Böhm trees which are not necessarily images of actual λ-terms. To overcome this
we propose two different techniques leading to two different proofs of the main result: one purely
semantical and the other purely syntactical. In this article we only present the former, the latter being
the object of a companion paper [8].

This proof follows the line of historical ones while overcoming weaknesses of Nakajima trees
with a notion of quasi-approximation property (Def. 2.32), that involves recursivity in a refined way.
Quasi-approximability is a key tool in the proof, which is otherwise quite standard. However, since
Böhm trees are specific to the λ-calculus and head reduction, there is not much hope to extend the
proof to many other calculi/strategies (such as differential λ-calculus [17], or call-by-value strategies).

1. Preliminaries and result

1.1. Preliminaries.

1.1.1. Preorders.
Given two partially ordered sets D = (|D|,≤D) and E = (|E|,≤E), we denote:
• Dop = (|D|,≥D) the reverse-ordered set.
• D × E = (|D| × |E|,≤D×E) the Cartesian product endowed with the pointwise order:

(δ, ε) ≤D×E (δ′, ε′) if δ ≤D δ′ and ε ≤E ε
′.

• A f (D) = (|A f (D)|,≤A f (D)) the set of finite antichains of D (i.e., finite subsets whose elements are
pairwise incomparable) endowed with the order :

a ≤A f (D) b ⇔ ∀α ∈ a,∃β ∈ b, α ≤D β

In the following will we use D for |D| when there is no ambiguity. Initial Greek letters α, β, γ...
will vary on elements of ordered sets. Capital initial Latin letters A, B,C... will vary over subsets of
ordered sets. And finally, initial Latin letters a, b, c... will denote finite antichains.

An order isomorphism between D and E is a bijection φ : |D| → |E| such that φ and φ−1 are
monotone.

Given a subset A ⊆ |D|, we denote ↓A = {α | ∃β ∈ A, α≤β}. We denote by I(D) the set of initial
segments of D, that is I(D) = {↓A | A ⊆ |D|}. The set I(D) is a prime algebraic complete lattice with
respect to the set-theoretical inclusion. The sups are given by the unions and the prime elements are
the downward closure of the singletons. The compact elements are the downward closure of finite
antichains.

The domain of a partial function f is denoted by Dom( f ). The graph of a Scott-continuous
function f : I(D)→ I(E) is

graph( f ) = {(a, α) ∈ A f (D)op×E | α ∈ f (↓a)} (1.1)

Notice that elements of I(A f (D)op×E) are in one-to-one correspondence with the graphs of Scott-
continuous functions from I(D) to I(E).
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1.1.2. λ-calculus.
The λ-terms are defined up to α-equivalence by the following grammar using notation “à la Baren-
dregt” [4] (where variables are denoted by final Latin letters x, y, z...):

Λ (λ-terms) M,N ::= x | λx.M | M N
We denote by FV(M) the set of free variables of a λ-term M. Moreover, we abbreviate a nested
abstraction λx1...xk.M to λ~x kM, or, when k is irrelevant, to λ~xM. We denote by M[N/x] the capture-
free substitution of x by N.
The λ-terms are subject to the β-reduction:

(β) (λx.M) N
β
→ M[N/x]

A context C is a λ-term with possibly some occurrences of a hole, i.e.:
Λ(|.|) (contexts) C ::= (|.|) | x | λx.C | C1 C2

The writing C(|M|) denotes the term obtained by filling the holes of C by M. The small step
reduction→ is the closure of (β) by any context, and→h is the closure of (β) by the rules:

M →h M′

λx.M →h λx.M′
M →h M′ M is an application

M N →h M′ N
The transitive reduction→∗ (resp→∗h) is the reflexive transitive closure of→ (resp→h).
The big step head reduction, denoted M⇓hN, is M →∗h N for N in a head-normal form,
i.e., N = λx1...xm.y M1 · · ·Mn, for M1, ...,Mm any terms. We write M⇓h for the (head) conver-
gence, i.e., whenever there is N such that M⇓hN.

Example 1.1. • The identity term I := λx.x takes a term and returns it as it is:

I M → M.

• The nth Church numeral, denoted by n, and the successor function, denoted by S, are defined by

n := λ f x. f ( f · · · f ( f︸         ︷︷         ︸
n times

x) · · · ), S := λu f x.u f ( f x).

Together they provide a suitable encoding for natural numbers, with n representing the nth iteration.
• The looping termΩ := (λx.xx) (λx.xx) infinitely reduces into itself, notice thatΩ is an example of

a diverging term:

Ω → (x x)[λy.y y/x] = Ω → Ω → · · · .

• The Turing fixpoint combinator Θ := (λuv.v (u u v)) (λuv.v (u u v)) is a term that computes the
least fixpoint of its argument (if it exists):

Θ M → (λv.v ((λuv.v (u u v)) (λuv.v (u u v))v)) M
= (λv.v (Θ v)) M
→ M (Θ M).

Other notions of convergence exist (strong, lazy, call by value...), but our study focuses on head
convergence, inducing the equational theory denoted byH∗.

Definition 1.2. The observational preorder and equivalence denoted vH∗ and ≡H∗ are given by:

M vH∗ N if ∀C, C(|M|)⇓h ⇒ C(|N|)⇓h,

M ≡H∗ N if M vH∗ N and N vH∗ M.

The resulting (in)equational theory is calledH∗.



ON THE CHARACTERIZATION OF MODELS OF H∗ 5

Definition 1.3. A model of the untyped λ-calculus with an interpretation ~−� is:
• fully abstract (forH∗) if for all M,N ∈ Λ:

M ≡H∗ N if ~M� = ~N�,

• inequationally fully abstract (forH∗) if for all M,N ∈ Λ:3

M vH∗ N if ~M� ⊆ ~N�.

Henceforth, convergence of a λ-term means head convergence, and full abstraction for λ-calculus
means full abstraction forH∗.

Concerning recursive properties of λ-calculus, we will use the following one:

Proposition 1.4 ([4, Proposition 8.2.2] 4).
Let (Mn)n∈N be a sequence of terms such that:
• ∀n ∈ N,Mn ∈ Λ0,
• the encoding of (n 7→ Mn) is recursive,
then there exists F such that:

∀n, F n →∗ Mn.

1.2. K-models.
We introduce here the main semantical object of this article: extensional K-models [24][6]. This class
of models of the untyped λ-calculus is a subclass of filter models [12] containing many extensional
models from the continuous semantics, like Scott’s D∞ [33].

1.2.1. The category ScottL!.
Extensional K-models correspond to the extensional reflexive Scott domains that are prime algebraic
complete lattices and whose application embeds prime elements into prime elements [20, 36].
However we prefer to exhibit K-models as the extensional reflexive objects of the category ScottL!
which is itself the Kleisli category over the linear category ScottL [15].

Definition 1.5. We define the Cartesian closed category ScottL! [20, 36, 15]:
• objects are partially ordered sets.
• morphisms from D to E are Scott-continuous functions between the complete lattices I(D) and
I(E).

The Cartesian product is the disjoint sum of posets. The terminal object > is the empty poset.
The exponential object D⇒E is A f (D)op×E. Notice that an element of I(D⇒E) is the graph of
a morphism from D to E (see Equation (1.1)). This construction provides a natural isomorphism
between I(D⇒E) and the corresponding homset. Notice that if ' denotes isomorphisms in ScottL!,
then:

D⇒ D⇒ · · · ⇒ D ' (A f (D)op)n × D. (1.2)
For example D⇒ (D⇒ D) ' A f (D)op × (A f (D)op × D) = (A f (D)op)2 × D.

3This can be generalised by replacing ⊆ by any order on the model.
4This is not the original statement. We remove the dependence on ~x that is empty in our case and we replace the

β-equivalence by a reduction since the proof of Barendregt [4] works as well with this refinement.
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Remark 1.6. In the literature (e.g. [20, 36, 15]), objects are preodered sets and the exponential
object D⇒ D is defined by using finite subsets (or multisets) instead of the finite antichains. Our
presentation is the quotient of the usual one by the equivalence relation induced by the preorder. The
two presentations are equivalent (in terms of equivalence of category) but our choice simplifies the
definition of hyperimmunity (Definition 1.19).

Proposition 1.7. The category ScottL! is isomorphic to the category of prime algebraic complete
lattices and Scott-continuous maps.

Proof. Given a poset D, the initial segments I(D) form a prime algebraic complete lattice which
prime elements are the downward closures ↓α of any α ∈ D since I =

⋃
α∈I ↓α. Conversely, the

prime elements of a prime algebraic complete lattice form a poset. The two operations are inverse
one to the other modulo ScottL!-isomorphisms and Scott-continuous isomorphisms.

1.2.2. An algebraic presentation of K-models.

Definition 1.8 ([24]). An extensional K-model is a pair (D, iD) where:
• D is a poset.
• iD is an order isomorphism between D⇒D and D.

By abuse of notation we may denote the pair (D, iD) simply by D when it is clear from the
context we are referring to an extensional K-model.

Definition 1.9. Given a Cartesian closed category C, an extensional reflexive objects of C is an
objects D endowed with an isomorphism absD : (D ⇒ D) → D (and appD := abs−1

D ). This
corresponds to the categorical axiomatisation of extensional models of the untyped λ-calculus.

Proposition 1.10. Extensional K-models correspond exactly to extensional reflexive objects of
ScottL!.

Proof. Given a K-model (D, iD), the isomorphism between D⇒D and D is given by:

∀A ∈ I(D⇒D), appD(A) = {iD(a, α) | (a, α) ∈ A},

∀B ∈ I(D), absD(B) = {(a, α) | iD(a, α) ∈ B}.

Conversely, consider an extensional reflexive object (D, appD, absD) of ScottL!. Since absD is an
isomorphism, it is linear (that is, it preserves all sups). For all (a, α) ∈ D⇒D, we have

↓(a, α) = abs(app(↓(a, α))) =
⋃

β∈app(↓(a,α))

abs(↓β).

Thus there is β ∈ app(↓(a, α) such that (a, α) ∈ abs(↓β), and since abs(↓β) ⊆ ↓(a, α), this is an
equality. Thus there is a unique β such that appD(a, α) = ↓β, this is iD(a, α).

In the following we will not distinguish between a K-model and its associated reflexive object,
this is a model of the pure λ-calculus.

Definition 1.11. An extensional partial K-model is a pair (E, jE) where E is an object of ScottL!
and jE is a partial function from E⇒E to E that is an order isomorphism between Dom( jE) and E.

E
jE
←→ Dom( jE) ⊆ (E ⇒ E)
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Definition 1.12. The completion of a partial K-model (E, jE) is the union

(Ē, jĒ) = (
⋃
n∈N

En,
⋃
n∈N

jEn)

of partial completions (En, jEn) that are extensional partial K-models defined by induction on n.
We define (E0, jE0) := (E, jE) and:
• |En+1| := |En| ∪ (|En ⇒ En| − Dom( jEn))
• jEn+1 is defined only over |En ⇒ En| ⊆ |En+1 ⇒ En+1| by jEn+1 := jEn ∪ id|En⇒En |−Dom( jEn )
• ≤En+1 is given by jEn+1(a, α) ≤En+1 (b, β) if a ≥A f (En) b and α ≤En β.

Remark that En+1 corresponds to En ⇒ En up to isomorphism, what leads to the equivalent
definition:

Proposition 1.13. The completion (Ē, jĒ) of an extensional partial K-model (E, jE) can be described
as the categorical ω-colimit (in ScottL) of (E′n)n along the injections ( j−1

n )n. The posets (E′n)n and
the partial functions ( jn)n are defined by induction by (E′0, j0) := (E, jE), and for n ≥ 0, by
E′n+1 := E′n ⇒ E′n and for all a ⊆ dom( jn) and α ∈ jn, jn+1(a, α) := ( jn(a), jn(α)).

E

E E1 E2 · · · En · · ·
j−1
E j−1

1 j−1
2 j−1

n−1 j−1
n

Remark 1.14. The completion of an extensional partial K-model (E, jE) is the smallest extensional K-
model Ē containing E. In particular, any extensional K-model D is the extensional completion of
itself: D = D̄.

Example 1.15.
(1) Scott’s D∞ [33] is the extensional completion of

|D| := {∗}, ≤D := id, jD := {(∅, ∗) 7→ ∗}.

The completion the a triple (|D∞|,≤D∞ , jD∞) where |D∞| is generated by:
|D∞| α, β ::= ∗ | a→α
|!D∞| a, b ∈ A f (|D∞|)

except that ∅→∗ < |D∞|; jD∞ is defined by jD∞(∅, ∗) = ∗ and jD∞(a, α) = a→α
for (a, α) , (∅, ∗).

(2) Park’s P∞ [31] is the extensional completion of

|P| := {∗}, ≤P := id, jP := {({∗}, ∗) 7→ ∗};

i.e., |P∞| is defined by the previous grammar except that ({∗}→∗) < |P∞| while ∅→∗ ∈ |P∞|.
(3) Norm or D∗∞ [13] is the extensional completion of

|E| := {p, q}, ≤E := id∪{p < q},
jE := {({p}, q) 7→q, ({q}, p)7→p}.

(4) Well-stratified K-models [26] are the extensional completions of some E respecting

∀(a, α)∈Dom( jE), a=∅.

(5) The inductive ω is the extensional completion of

|E| := N, ≤E := id, jE := {({k | k < n}, n) 7→n | n ∈ N}.
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~xi�
~x
D = {(~a, α) | α ≤ β ∈ ai} ~λy.M�~xD = {(~a, b→α) | (~ab, α) ∈ ~M�~xy

D }

~M N�~xD = {(~a, α) | ∃b, (~a, b→α) ∈ ~M�~xD ∧ ∀β∈b, (~a, β) ∈ ~N�~xD}

Figure 1. Direct interpretation of Λ in D

(6) The co-inductive Z is the extensional completion of

|E| := Z, ≤E := id, jE := {({n}, n+1)7→n+1 | n ∈ Z}.

(7) Functionals H f (given f : N→ N) are the extensional completions of:

|E| := {∗} ∪ {αn
j | n ≥ 0, 1 ≤ j ≤ f (n)}, ≤E := id,

jE :=
{
(∅, ∗) 7→ ∗

}
∪

{
(∅, αn

j+1) 7→ αn
j | 1 ≤ j < f (n)

}
∪

{
({αn+1

1 }, ∗) 7→ αn
f (n) | n ∈ N∗

}
,

where (αn
j)n, j is a family of atoms different from ∗.

For the sake of simplicity, from now on we will work with a fixed extensional K-model D. Moreover,
we will use the notation a→α := iD(a, α) . Notice that, due to the injectivity of iD, any α ∈ D can be
uniquely rewritten into a→α′, and more generally into a1→· · ·→an→αn for any n.

Remark 1.16. Using these notations, the model H f can be summarized by writing, for each n:

αn
1 = ∅→ · · ·→∅︸       ︷︷       ︸

f (n)

→{αn+1
1 }→∗

1.2.3. Interpretation of the λ-calculus.
The Cartesian closed structure of ScottL! endowed with the isomorphisms appD and absD of the
reflexive object induced by D (see Proposition 1.10) defines, in a standard manner, a model of the
λ-calculus.

A term M with at most n free variables x1, . . . , xn is interpreted as the graph of a mor-
phism ~M�x1...xn

D from Dn to D (when n is obvious, we can use ~.�x̄). By Equations (1.1) and
(1.2) we have:

~M�x1...xn
D ⊆ (D⇒· · · ⇒ D⇒ D) ' (A f (D)op)n × D.

In Figure 1, we explicit the interpretation ~M�x1...xn
D by structural induction on M.

Example 1.17.
~λx.y�yD = {((a), b→α) | α ≤D β ∈ a},

~λx.x�yD = {((a), b→α) | α ≤D β ∈ b},
~I�D = {a→α | α ≤D β ∈ a},
~1�D = {a→b→α | ∃c, c→α ≤D β ∈ a, c ≤A f (D) b}.

In the last two cases, terms are interpreted in an empty environment. We omit the empty sequence
associated with the empty environment, e.g., a→b→α stands for ((), a→b→α).
We can verify that extensionality holds, indeed ~1�D = ~I�D, since c→α ≤D β ∈ a and c ≤A f (D) b
exactly say that b→α≤D β∈a, and since any element of γ∈D is equal to d→δ for a suitable d and δ.
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α ∈ a (I-id)x : a ` x : α
Γ ` M : α (I-weak)

Γ, x : a ` M : α
Γ ` M : β α ≤ β

(I- ≤)
Γ ` M : α

Γ, x : a ` M : α
(I-λ)

Γ ` λx.M : a→α
Γ ` M : a→α ∀β ∈ a, Γ ` N : β

(I-@)
Γ ` M N : α

Figure 2. Intersection type system computing the interpretation in D

1.2.4. Intersection types.
It is folklore that the interpretation of the λ-calculus into a given K-model D is characterized by a
specific intersection type system. In fact any element α ∈ D can be seen as an intersection type

α1 ∧ · · · ∧ αn → β given by α = {α1, . . . , αn}→β.

In Figure 2, we give the intersection-type assignment corresponding to the K-model induced by D.

Proposition 1.18. Let M be a term of Λ, the following statements are equivalent:
• (~a, α) ∈ ~M�~xD,
• the type judgment ~x : ~a ` M : α is derivable by the rules of Figure 2.

Proof. By structural induction on the grammar of Λ.

1.3. The result.
We state our main result, claiming an equivalence between hyperimmunity (Def. 1.19) and full
abstraction forH∗.

Definition 1.19 (Hyperimmunity). A (possibly partial) extensional K-model D is said to be hyperim-
mune if for every sequence (αn)n≥0 ∈ DN, there is no recursive function g : N→N satisfying:

∀n ≥ 0, αn = an,1→· · ·→an,g(n)→α
′
n and αn+1 ∈

⋃
k≤g(n)

an,k. (1.3)

Notice, in the above definition, that each antichain an,i always exists and it is uniquely determined by
the isomorphism between D and D⇒ D that allows us to unfold any element αi as an arrow (of any
length).

The idea is the following. The sequence (αn)n≥0 is morally describing a non well-founded chain
of elements of D, through the isomorphism D ' D ⇒ D, allowing us to see any element αi as an
arrow (of any length):

α0 = a0,1→· · · a0,i0 · · ·→a0,g(0)→α
′
0

∈

α1 = a1,1→· · · a1,i1 · · ·→a1,g(1)→α
′
1

∈

α2 = a2,1→· · · a2,i2 · · ·→ a2,g(2)→α
′
2

. . .

The growth rate (in)n of the chain (αn)n depends on how many arrows must be displayed in αi in
order to see αi+1 as an element of the antecedent of one of them. Now, hyperimmunity means that if
any such non-well founded chain (αn)n exists, then its growth rate (in)n cannot be bounded by any
recursive function g.
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Remark 1.20. It would not be sufficient to simply consider the function n 7→ in such that αn+1∈an,in
rather than the bounding function g. Indeed, n 7→ in may not be recursive even while g is.

Proposition 1.21. For any extensional partial K-model E (Def. 1.11), the completion E (Def. 1.12)
is hyperimmune iff E is hyperimmune.

Proof. The left-to-right implication is trivial.
The right-to-left one is obtained by contradiction:
Assume to have a (αn)n≥0 ∈ ĒN and a recursive function g : N→ N such that for all n ≥ 0:

αn = an,1→· · ·→an,g(n)→α
′
n and αn+1 ∈

⋃
i≤g(n)

an,i

Recall that the sequence (Ek)k≥0 of Definition 1.12 approximates the completion Ē.
Then we have the following:
• There exists k such that α0 ∈ Ek, because α0 ∈ Ē =

⋃
k Ek.

• If αn ∈ E j+1, then αn+1 ∈ E j, because there is i ≤ g(n) such that αn+1 ∈ an,i ⊆ E j.
• If αn ∈ E0 = E, then αn+1 ∈ E by surjectivity of jE .
Thus there is k such that (αn)n≥k ∈ EN, which would break hyperimmunity of E.

Example 1.22. • The well-stratified K-models of Example 1.15(4) (and in particular D∞ of Item (1))
are trivially hyperimmune: already in the partial K-model, there are not even α1, α2 and n such
that α1 = a1→· · ·→an→α

′
1 and α2 ∈ an (since an = ∅). The non-hyperimmunity of the partial

K-model can be extended to the completion using Proposition 1.21.
• The model ω (Ex. 1.15(5)) is hyperimmune. Indeed, any such (αn)n in the partial K-model would

respect αn+1<Nαn, hence (αn)n must be finite by well-foundedness of N.
• The models P∞, D∗∞ and Z (Examples 1.15(2), (3) and (6)) are not hyperimmune. Indeed for all of

them g = (n 7→ 1) satisfies the condition of Equation (1.3), the respective non-well founded chains
(αi)i being (∗, ∗, . . . ), (p, q, p, q, . . . ), and (0,−1,−2, . . . ):

∗ = {∗} → ∗ p = {q} → p 0 = {1} → 0

∈ ∈ ∈

∗ = {∗} → ∗ q = {p} → q 1 = {2} → 1

∈ ∈ ∈

∗ = {∗} → ∗ p = {q} → p 2 = {3} → 2

. . .
. . .

. . .

• More interestingly, the model H f (Ex. 1.15(7)) is hyperimmune iff f is a hyperimmune function
[29], i.e., iff there is no recursive g : N → N such that f ≤ g (pointwise order); otherwise the
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corresponding sequence is (αi
1)i.

α0
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (0) times

→{α1
1} → ∅ → · · · → ∅ → ∗

∈

α1
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (1) times

→{α2
1} → ∅ → · · · → ∅ → ∗

∈

α2
1 = ∅ → · · · → ∅︸         ︷︷         ︸

f (2) times

→{α3
1} → ∅ → · · · → ∅ → ∗

∈

. . .

The following theorem constitutes the main result of the paper. It shows the equivalence between
hyperimmunity and (inequational) full abstraction forH∗ under a certain condition. This condition,
namely the approximation property, is a standard property that will be defined in more details in
Definition 2.27.

Theorem 1.23. For any extensional and approximable K-model D (Def. 2.27), the following are
equivalent:
(1) D is hyperimmune,
(2) D is inequationally fully abstract forH∗,
(3) D is fully abstract forH∗.

Example 1.24. The model D∞ (Ex.1.15(1)), the model ω (Ex.1.15(5)) and the well-stratified K-
models (Ex.1.15(4)) will be shown inequationally fully abstract, as well as the models H f when f is
hyperimmune. The models D∗∞, Z (Ex.1.15(3) and Ex.1.15(6)) will not be, as well as the model H f

for f not hyperimmune.

2. Proof

The main idea of this proof is not new, it consists in using Böhm trees to decompose the interpretation
of the λ-calculus. In order to do so, we need to interpret them into our K-model D so that the
following diagram commutes:

Λ D

BT

~.�
BT(.) ~.�∗

The approximation and quasi-approximation properties of Definitions 2.27 and 2.32 exactly state
this decomposition for two specific choices of interpretation. Indeed, we will see in Definition 2.22
that there are many different possible interpretations of the Böhm trees, we will mainly focus on the
inductive interpretation (Def. 2.25) and the quasi-finite interpretation (Def. 2.31).

The approximation and quasi-approximation properties will have different roles. The approx-
imation property, i.e., the decomposition via the inductive interpretation, mainly says that the
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interpretation of terms is approximable by finite Böhm trees. Approximation property is a hypothesis
of Theorem 1.23 and it holds in all known candidates to full abstraction, i.e., extensional and sensible
models (Ex. 2.29). We even conjecture, in fact, that all K-models that are fully abstract for H∗

respect the approximation property.
The quasi-approximation property is a fairly finer property5 that is based on deep references

to recursivity theory. The quasi-approximation property will be proved equivalent to both full
abstraction forH∗ and hyperimmunity in the presence of the approximation property.

Theorem 2.1. For any extensional and approximable K-model D, the following are equivalent:
(1) D is hyperimmune,
(2) D respects the quasi-approximation property,
(3) D is inequationally fully abstract for Λ,
(4) D is fully abstract for Λ.

Proof.
• (1)⇒ (2): Theorem 2.48,
• (2)⇒ (3): inequational adequacy is the object of Theorem 2.49 and inequational completeness

the one of Theorem 2.50,
• (3)⇒ (4): trivial,
• (4)⇒ (1): Theorem 2.51.

2.1. Böhm trees.

2.1.1. Basic definitions.
The Böhm trees provide one of the simplest semantics for the λ-calculus:

Definition 2.2. The set of Böhm trees is the co-inductive structure generated by the grammar:
(Böhm trees) BT U,V ::= Ω | λx1...xn.y U1 · · ·Uk ,∀n,∀k ≥ 0

The Böhm tree of a λ-term M (i.e., its interpretation), is defined by co-induction:
• If M head diverges, then BT(M) = Ω,
• if M →∗h λx1...xn.y N1 · · ·Nk, then

BT(M) = λx1...xn.y BT(N1) · · · BT(Nk).

Notice that a Böhm tree can be described as a finitely branching tree (of possibly infinite height)
where nodes are labeled either by a constant Ω, or by a list of abstractions and by a head variable.

Capital final Latin letters U,V,W... will range over Böhm trees.

Example 2.3. The Böhm trees BT(λx.x (λy.x y)), BT(x (I I) (y (Θ I))),Θ and BT(Θ (λuxy.y(u x)) z)
are described in Figure 3.

There exist Böhm trees that do not come from terms:

Example 2.4. A Böhm tree with infinitely many free variables (such as the first one below) cannot
be obtained from λ-terms that have finitely many free variables. Worse, if g : N→ N is non recursive,

5Even if technically independent.
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BT(λx.x (λy.x y)):

λx.x .

λy.x .

y

BT(x (I I) (y (Θ I))):

x . .

y .

Ω

λx.x

Θ:

λ f . f .

f .

f .

...

BT(Θ (λuxy.y (u x)) z):

λy1.y1 .

λy2.y2 .

λy3.y3 .

. . .

Figure 3. Some examples of Böhm trees.

then the second Böhm tree below does not come from any term (otherwise it would be possible to
compute g from this term).

x0 . λx1.x0 x0 · · ·
g(0)

x0 .

| |

x1 . λx2.x1 x1 · · ·
g(1)

x1 .

| |

x2 . λx3.x2 x2 · · ·
g(2)

x2 .

| |

...
. . .

2.1.2. Properties.
The Böhm tree model model carries several interesting properties for the study of the untyped
λ-calculus. By construction, it is sensible for the head reduction, and, moreover, it is adequate forH∗

which is coarser. Moreover, those properties extend to inequations using the following natural notion
of inclusion on Böhm trees:

Definition 2.5. The inclusion of Böhm trees U ⊆ V is co-inductively defined by:
• Ω ⊆ V for all V
• If for all i ≤ k, Ui ⊆ Vi, then

(λx1...xn.y U1 · · ·Uk) ⊆ (λx1...xn.y V1 · · ·Vk).

For readability, we will write M ⊆BT N whenever BT(M) ⊆ BT(N).

The lower bounds of a Böhm tree U are obtained by replacing (possibly infinitely many) subtrees
of U by Ω.

Example 2.6. For any M, we have the inclusion

Θ (λuxy.x (u y) Ω) ⊆BT Θ (λuxy.x (u y) (M x))
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λx0x1.x0 . . λx0x1.x0 . .

λx2.x1 . . Ω ⊆ λx2.x1 . . BT(M x1)

λx3.x2 . . Ω λx3.x2 . . BT(M x2)
... Ω

...
. . . BT(M x3)

Proposition 2.7 ([4, Proposition 16.4.7]). Böhm trees are inequationally adequate forH∗, i.e.

if M ⊆BT N then M vH∗ N

The converse does not hold (because ⊆BT is not extensional), so that we do not have full abstraction,
but rather a new (inequational) λ-theory called BT .

Forcefully adding the extensionality in BT , we obtain the theory BTη which is different
fromH∗:

Example 2.8. The term J = Θ (λuxy.x (u y)) defines the following Böhm tree:

λx0x1.x0 .

|

λx2.x1 .

|

λx3.x2 .

. . .

The behavior of this term is the same as the identity, so that we have J ≡H∗ I, but their Böhm trees
are distinct and they are not η-convertible, so that J .BTη I.

2.1.3. Böhm trees and full abstraction.
We have seen that BT is not fully abstract for H∗ since it is not extensional; however, there are
refinements using the notion of infinite η expansion that permit to say something about the full
abstraction (Proposition 2.13).

Definition 2.9. We write by �η the η-reduction on Böhm trees, that is U �η V if U = V = Ω or if

U = λx1...xn+m.y V1 · · ·Vk xn+1 · · · xn+m

and V = λx1...xn. y V1 · · ·Vk

where xn+1, ...., xn+m < FV(V1, ....,Vk).

Definition 2.10. We write by �η∞ the co-inductive version of �η, that is the coinductive relation
generated by:

(η∞ω)
Ω �η Ω

∀i ≤ k, Ui �η∞ Vi ∀i ≤ m, Uk+i �η∞ xn+i
(η∞@)

λx1...xn+m.y U1 · · ·Uk+m �η∞ λx1...xn.y V1 · · ·Vk

By abuse of notations, given two λ-terms M and N, we say that M infinitely η-expands N, writ-
ten M �η∞ N, if BT(M) �η∞ BT(N).
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Example 2.11. We have the inequations:

BT(I) �η∞ BT(J) �η∞ BT(Θ (λuxyz.x (u y) (u z)))

λx0.x0 λx0x1.x0 . λx0x1y1.x0 . .

�η∞ λx2.x1 . �η∞ λx2y2.x1 . . λy2z2.y1 . .

λx3.x2 . λx3y3.x2 . . λy3z3.y2 . .
...
. . .

...
...
. . .

...
. . .

...
. . .

Remark 2.12. The η-reduction on Böhm trees is not directly related to the η-reduction on λ-terms.
For example

Θ (λuzx.x (y z)) 6�η λx.Θ (λuzx.x (yz)) x.
Since x is not free, however, this reduction holds at the level of Böhm trees.

Conversely, we have
Θ (λuz.z (u z)) �η Θ (λuzx.z (u z) x)

even while the Böhm trees are fairly different.
However, the η-reduction on λ-terms is directly implied by the infinite η reduction.

Using �η∞, we can characterize the notion of observational equivalence (i.e.,H∗)

Proposition 2.13 ([4, Theorem 19.2.9]). For any terms M,N ∈ Λ, M vH∗ N iff there exist two Böhm
trees U,V such that:

BT(M) �η∞ U ⊆ V �η∞ BT(N).

Example 2.14. InH∗, we have the equivalence:

J ≡H∗ Θ (λuxyz.x y (u z))

λx0x1.x0 . λx0x1y1.x0 . . λx0x1y1.x0 x1 .

λx2.x1 . �η∞ λx2.x1 . λx2y2.y1 x2 . �η∞ λx2y2.y1 x2 .

λx3.x2 . λx3.x2 . λx3y3.y2 x3 λx3y3.y2 x3 .

...
...

...
...

The following trivial corollary will be rather useful for proving observational equivalences:

Corollary 2.15. For all M,N ∈ Λ,

M �η∞ N ⇒ M ≡H∗ N.

Proof. By Proposition 2.13 and since BT(M) �η∞ BT(M) ⊆ BT(M) �η∞ BT(N).
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2.1.4. Subclasses of Böhm trees.
Before saying anything on interpretation of Böhm trees in a K-model, we define some subclasses of
Böhm trees that will work as potential bases. Such bases can be used to interpret a Böhm tree in our
models as the sup of the interpretations of its approximants.6

The only base that appears in the literature is the class BTf of finite Böhm trees. However, we will
oppose it the larger classes BTΩ f and BTq f of Ω-finite and quasi-finite Böhm trees. The Ω-finiteness
when applied to an approximant of an actual term (via its translation into a Böhm tree) is a property
that insure the recursivity of the tree (Lemma. 2.18). The quasi-finite Böhm trees are the Ω-finite
Böhm trees that are somehow “stable” with respect to �η∞ and �η∞ (Lemma. 2.21).

Definition 2.16. We define the following classes over Böhm trees:
• The set of finite Böhm trees, denoted BTf , is the set of Böhm trees inductively generated by the

grammar of Definition 2.2 (or equivalently Böhm trees of finite height). Given a term M, we
denote BTf (M) the set of finite Böhm trees U such that U ⊆ BT(M).
• The set of Ω-finite Böhm trees, denoted BTΩ f , is the set of Böhm trees that contain a finite number

of occurrences of Ω.
• The set of quasi-finite Böhm tree, denoted BTq f , is the set of those Ω-finite Böhm trees having their

number of occurences of each (free and bounded) variables recursively bounded. Formally, there
is a recursive function g such that variables abstracted at depth7n cannot occur at depth greater
than g(n).

Capital final Latin letters X,Y,Z... will range over any of those classes of Böhm trees. We will use
the notation ⊆ f (resp. ⊆Ω f and ⊆q f ) for the inclusion restricted to BTf × BT (resp. BTΩ f × BT
and BTq f × BT).

In particular, to any finite Böhm tree U corresponds a term M obtained by replacing every
symbol Ω by the diverging term Ω. By abuse of notation, we may use one instead of the other.

Example 2.17. The identity I corresponds to a finite Böhm tree and thus is in all three classes. The
term λz.Θ (λux.z u) has a Böhm tree that is Ω-finite but not quasi-finite. The term Θ (λux.x u Ω) has
a Böhm tree that is neither of these classes.

BT(λz.Θ (λux.z u)) = λzx1.z . BT(Θ (λux.x u Ω)) = λx1.x1 . Ω

| |

λx2.z . λx2.x2 . Ω

| |

λx3.z . λx3.x3 . Ω

...
...

Lemma 2.18. For all terms M, if X ∈ BTΩ f and X ⊆ BT(M), then X is a recursive Böhm tree.

Proof. First remark that only X has to be recursive, not the proof of X ⊆ BT(M). Moreover, we
only have to show that there exists a recursive construction of X, we do not have to generate it
constructively.

There is a finite number of Ω’s in X whose positions p ∈ P can be guessed beforehand by an
oracle that is finite thus recursive. After that, it suffices to compute the Böhm tree of M except in

6We will see that as a coinductive structure, a Böhm trees may have several possible interpretations into a given model.
7We consider that free variables are “abstracted” at depth 0.
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these positions where we directly put an Ω. This way the program is always productive as any Ω

of M (i.e., any non terminating part of the process of computation of BT(M)) will be shaded by a
guessed Ω of X (potentially far above).

Lemma 2.19. Let U,V ∈ BT. If U �η∞ V (def. 2.10), there is a bijection between the Ω’s in U and
those in V .

Proof. Recall that U �η∞ V is the relation whose proofs range over the coinductive sequents
generated by

(η∞ω)
Ω �η Ω

∀i ≤ k, Ui �η∞ Vi ∀i ≤ m, Uk+i �η∞ xn+i
(η∞@)

λx1...xn+m.y U1 · · ·Uk+m �η∞ λx1...xn.y V1 · · ·Vk

Remark that this system is deterministic so that a sequent U �η∞ V has at most one proof. In
particular the occurrences of rule (η∞ω) describe the pursued bijection.

Lemma 2.20. For all U,V ∈ BT such that U �η∞ V , U ∈ BTq f iff V ∈ BTq f .

Proof. By Lemma 2.19, we know that U ∈ BTΩ f iff V ∈ BTΩ f .
It is easy to see that if variable occurrences are bounded by g in U, then they will be bounded

by (n 7→ max(g(n), 1)) in V and conversly. Indeed an η∞-expansion/reduction will not change the
depth of any variable, and will only delete/introduce abstraction whose variable will be used exactly
once at depth 1.

Lemma 2.21. Both ordering �η∞ and �η∞ distribute over ⊆q f , and the ordering �η∞ distributes
over ⊆ f :
• For all U,V ∈ BT and X ∈ BTq f such that X ⊆q f U �η∞ V , there is Y ∈ BTq f such that8

U �η∞ V

⊆q f
 

⊆q f

X �η∞ Y.

• For all U,V ∈ BT and X ∈ BTq f such that X ⊆q f U �η∞ V , there is Y ∈ BTq f such that

U �η∞ V

⊆q f
 

⊆q f

X �η∞ Y.

• For all U,V ∈ BT and X ∈ BTf such that X ⊆ f U �η∞ V , there is Y ∈ BTf such that

U �η∞ V

⊆ f
 

⊆ f

X �η∞ Y.

Proof.
• Distribution of �η∞ over ⊆q f :

We create Y ∈ BT such that X �η∞ Y ⊆ V by co-induction (remark that, by Lemma 2.20, we
obtain V ∈ BTq f ):
– X = Ω: put Y = Ω.

8This is a commuting diagram, the arrow only recalls that Y is obtained from X, U and V .
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– Otherwise: we have

X = λx1...xn.y X1 · · · Xm, U = λx1...xn.y U1 · · ·Um, V = λx1...xn+k.y V1 · · ·Vm+k,

such that Xi ⊆q f Ui �η∞ Vi for i ≤ m and xn+i �η∞ Vm+i (thus Vm+i ∈ BTq f ) for i ≤ k. By
co-induction hypothesis we have (Yi)i≤m such that Xi �η∞ Yi ⊆ Vi for i ≤ m, we thus set

Y = λx1...xn+k.y Y1 · · · Ym Vm+1 · · ·Vm+k.

• Distribution of �η∞ over ⊆q f :
We create Y ∈ BT such that X �η∞ Y ⊆ V by co-induction, then, by Lemma 2.20, we obtain
that V ∈ BTq f :
– X = Ω: put Y = Ω.
– Otherwise: we have

X = λx1...xn+k.y X1 · · · Xm+k, U = λx1...xn+k.y U1 · · ·Um+k, V = λx1...xn.y V1 · · ·Vm,

such that Xi ⊆q f Ui �η∞ Vi for i ≤ m and Xm+i ⊆q f Um+i �η∞ xn+i for i ≤ k. By co-induction
hypothesis we have (Yi)i≤m+k such that Xi �η∞ Yi ⊆ Vi for i ≤ m, and Xm+i �η∞ Ym+i ⊆ xn+i for
i ≤ k; we thus set

Y = λx1...xn+k.y Y1 · · · Ym.

• Distribution of �η∞ over ⊆ f :
We create Y ∈ BTf similarly to the previous case except that we proceed by induction on X:
– X = Ω: put Y = Ω.
– Otherwise: we have

X = λx1...xn+k.y X1 · · · Xm+k, U = λx1...xn+k.y U1 · · ·Um+k, V = λx1...xn.y V1 · · ·Vm,

such that Xi ⊆ f Ui �η∞ Vi for i ≤ m and Xm+i ⊆ f Um+i �η∞ xn+i for i ≤ k. By co-induction
hypothesis we have (Yi)i≤m+k such that Xi �η∞ Yi ⊆ f Vi for i ≤ m, and Xm+i �η∞ Ym+i ⊆ f xn+i
for i ≤ k; we thus set

Y = λx1...xn+k.y Y1 · · · Ym.

2.1.5. Interpretations of Böhm trees.
Böhm trees can be seen as normal forms of infinite depth. As such, one can define an interpretation
of Böhm trees in a model via fixponts. However, there is no a priori reason to choose one specific
fixpoint. We will formalize the notion of interpretation of Böhm trees in Definition 2.22. Then, using
the description of such fixpoints, we will see in Propsition 2.24 that the set of interpretations forms a
complete lattice.

The minimal interpretation, called the inductive interpretation (Def. 2.25), is the canonical
choice and has been used often in the literature to describe the approximation property (Def. 2.27).
Roughly speaking, the approximation property states the coherence of the interpretation of terms and
the inductive interpretation of Böhm trees.

The complete lattice of interpretations is richer than the sole inductive interpretation. An-
other canonical interpretation is the maximal one, called co-inductive interpretation (Def. 2.25).
Unfortunately, no equivalent version of approximation property can be given for the co-inductive
interpretation (more exactly, no K-model can satisfy it).

However, we can look for an interpretation that is both, as large as possible and with a useful
notion of coherence with the λ-calculus. We found the quasi-finite interpretation (Def. 2.31) that
is basically the minimal interpretation whose restriction to quasi-finite Böhm trees corresponds to
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the co-inductive interpretation. The property stating the coherence of interpretations is the quasi-
approximation property (Def. 2.32). We will see later on that, in the presence of the approximation
property and extensionality, the quasi-approximation property is equivalent to hyperimmunity and to
full abstraction forH∗.

Definition 2.22. Let D be a K-model. We call proto-interpretation of Böhm trees any total func-
tion ~−�∗ that maps elements U ∈ BT to initial segments of DFV(U) ⇒ D (where FV(U) denotes the
free variables of U).

An interpretation of Böhm trees is a proto-interpretation ~.�∗ respecting the following:
• The interpretation of Ω is always empty:

~Ω�~x∗ = ∅.

• The interpretation of an abstraction λy.U satisfies:

~λy.U�~x∗ = {(~a, b→α) | (~ab, α) ∈ ~U�~xy
∗ }.

• The interpretation of a list of applications xi U1 · · ·Un (for n ≥ 0), satisfies:

~xi U1 · · ·Un�
~x
∗ = {(~a, α) | ∃b1→· · ·→bn→α ≤ α

′ ∈ ai,∀ j ≤ n,∀β ∈ b j, (~a, β) ∈ ~U j�
~x
∗}

Remark 2.23. The different interpretations coincide on finite Böhm trees, thus we can write ~X�x̄

for any X ∈ BTf without ambiguity, independently of the interpretation. Moreover, if the model is
sensible, ~X�~x is the same as the interpretation of X considered as a λ-term (by replacing occurrences
of Ω by the diverging term Ω).

The interpretations differ on the infinite Böhm trees. Fortunately, the set of interpretations forms
a complete lattice.

Proposition 2.24. The poset of interpretations (with pointwise inclusion) is a complete lattice.

Proof. We show that the set of the interpretation is the set of the fixpoints of a Scott-continuous
function ζ on the complete lattice of proto-interpretations (with pointwise order).

The function ζ maps a proto-interpretation ~.�∗ to the proto-interpretation ~.�ζ(∗) defined as
follows:
• The interpretation of Ω is always empty:

~Ω�ζ(∗) = ∅.

• The interpretation of λy.U is the same as for λ-terms:

~λy.U�~xζ(∗) = {(~a, b→α) | (~ab, α) ∈ ~U�~xy
∗ }.

• The interpretation of xi U1 · · ·Un satisfies:

~xi U1 · · ·Un�
~x
ζ(∗) = {(~a, α) | ∃b1→· · ·→bn→α ≤ α

′ ∈ ai,∀ j ≤ n,∀β ∈ b j, (~a, β) ∈ ~U j�
~x
∗},

The two first equations trivialy preserve any sup. And the third equation preserves the directed sup
since all b j are finite. These three equations preserve the directed sups, so that ζ is continuous. It is
folklore that the set of fixpoints of a Scott-continuous function form a complete lattice.
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Γ, x : a ` U : α
(BT -λ)

Γ ` λx.U : a→α
b1→· · ·→bn→β ∈ a α ≤ β ∀i ≤ n,∀γ ∈ bi, Γ, x : a ` Ui : γ

(BT -@)
Γ, x : a ` x U1 · · ·Un : α

Figure 4. Intersection type system for Böhm trees. Notice that the intersection is
hiddent in the membership condition in the first premise of (BT -@).

Definition 2.25. The minimal interpretation is the inductive interpretation

~U�~xind =
⋃
X⊆U

X∈BTf

~X�~x.

The maximal interpretation is called the co-inductive interpretation and denoted ~.�~xcoind.

The idea of intersection types can be generalized to Böhm trees. We introduce in Figure 4
the corresponding intersection type system. There is no rule for Ω since it has an empty interpre-
tation. Remark, moreover, that the rule (BT -@) seems complicated, but is just the aggregation of
rules (I-id), (I-weak), (I- ≤) and (I-@) of Figure 2. The difference between the inductive and the
co-inductive interpretations lies on the finiteness of the allowed derivations in this system.

Proposition 2.26. Let U be a Böhm tree, then:
• (~a, α) ∈ ~U�~xind iff the type judgment ~x : ~a ` U : α has a finite derivation using the rules of

Figure 4.
• (~a, α) ∈ ~U�~xcoind iff the type judgment ~x : ~a ` U : α has a possibly infinite derivation using the

rules of Figure 4.

Definition 2.27. We say that D respects the approximation property, or that D is approximable, if
the interpretation of any term corresponds to the inductive interpretation of its Böhm tree, i.e. if the
following diagram commutes:

Λ D

BT

~.�
BT(.) ~.�ind

Lemma 2.28. If D is extensional and approximable, and if M and N are two terms such
that M �η∞ N (def. 2.10), then ~M�~x ⊆ ~N�~x.

Proof. Let (~a, α) ∈ ~M�~x, by the approximation property there is a finite U ⊆ f BT(M) such
that (~a, α)∈~U�~x. Since U ⊆ f BT(M)�η∞ BT(N), we can apply Lemma 2.21 to find V ∈BTf such
that U�η∞V⊆ f BT(N). However, between finite Böhm trees, an∞η-expansion is a usual η-expan-
sion, so that U �η V ⊆ f BT(N). We thus have (using extensionality), (~a, α) ∈ ~U�~x = ~V�~x ⊆ ~M�~x

because the model is extensional.

The approximation property is a common condition enjoyed by all known K-models.9

Example 2.29. All the K-models of Example 1.15 except P∞ (that is not even sensible) are approx-
imable, regardless of them being fully abstract or not.

9Provided that they equalize terms with the same Böhm trees (which is a necessary condition for full abstraction).
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Our goal is to modify our set of approximants so that we could characterize the full abstraction.

Remark 2.30. A vain attempt would consist on replacing the inductive interpretation (in the definition
of the approximation property) by the co-inductive one. The diagram of Definition 2.27 would never
commute:

For any sensible K-model and any α∈D, if M = Θ (λu.z u), then

({{α}→α}, α) ∈ ~BT(M)�zcoind ({{α}→α}, α) < ~M�z.

Indeed, if ({{α}→α}, α) ∈ ~M�z it would give α ∈ ~M[I/z]� = ~Θ I� = ∅. Moreover,
since BT(M) = z BT(M), we co-inductively get that ({{α}→α}, α) ∈ ~BT(M)�zcoind.

In this example, the co-inductive interpretation of BT(Θ (λux.z u)) is incoherent with the term
interpretation because it uses the z infinitely often.10 In order to get rid of this incoherence we can
use a guarded fixpoint.

In order to recover a meaningful property, we will use the quasi-finite interpretation. This is the
least interpretation whose restriction to quasi-finite Böhm trees is the co-inductive interpretation.

Definition 2.31. The quasi-finite interpretation of Böhm trees is defined by

~U�~xq f =
⋃
X⊆U

X∈BTq f

~X�~xcoind.

Definition 2.32. We say that D respects the quasi-approximation property, or is quasi-approximable,
if the interpretation of any term corresponds to the quasi-finite interpretation of its Böhm tree, i.e. if
the following diagram commutes:

Λ D

BT

~.�
BT(.) ~.�q f

Example 2.33. We will prove that the quasi-approximation property is equivalent to hyperimmunity
and full abstraction forH∗ (in presence of approximation property and extensionality). So models
that are hyperimmune, like D∞, respect it and those that are not, like D∗∞, do not. In the case of D∗∞,
for example, the quasi-approximation property is refuted by J, indeed p ∈ ~BT(J)�q f − ~J�.

Remark 2.34. Notice that in general, approximability and quasi-approximability are independent
(in the sense that none implies the other).

2.1.6. Technical lemma.
This section shows that the relation �η∞ in BT is pushed along the co-inductive interpretation
into equality at the level of the model. This property will be useful as it generalizes easily to the
quasi-finite interpretation.

Lemma 2.35. Let D be an extensional K-model and let U,V be two Böhm trees such that U �η∞ V .
Then ~U�~xcoind = ~V�~xcoind.

Proof. We will prove separately the two inclusions.

10Notice that in a relational model [17] this issue would not hold (even if other problems would come later) since in any
elements of the interpretation (a, α) ∈ ~λx.M� the a is a finite multiset which can only “see” a finite number occurences of
z.
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• We will show that the proto-interpretation ~V�~x∗ =
⋃

U�η∞V~U�~xcoind over Böhm trees is an inter-
pretation. This is sufficient since, ~ �coind being the greatest interpretation, we will have

~V�coind ⊆
⋃

U�η∞V

~U�~xcoind = ~V�∗ ⊆ ~V�coind.

– Interpretation over Ω:

~Ω�~x∗ =
⋃

U�η∞Ω

~U�~xcoind = ~Ω�~xcoind = ∅.

– Otherwise:

~λxn+1 . . . xs.x j V1 · · ·Vk�
~x
∗

=
⋃

U�η∞λxn+1...xs.x j V1···Vk

~U�~xcoind

=
⋃
m

⋃
(Ui�η∞Vi)i≤k

⋃
Uk+i�η∞xs+i

~λxn+1...xs+m.x j U1 · · ·Uk+m�
~x
coind

=
⋃
m

⋃
Ui�η∞Vi

⋃
Uk+i�η∞xs+i

{((ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k+m,∀β ∈ ct, (~a, β) ∈ ~Ut�
~xs+m

coind}

=
⋃
m

{(ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k,∀β ∈ ct, (~a, β) ∈
⋃

Ut�η∞Vt

~Ut�
~xs+m

coind

∀t ≤ m,∀β ∈ ck+t, (~a, β) ∈
⋃

Uk+t�η∞xs+t

~Ut�
~xs+m

coind}

=
⋃
m

{(ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xs+m

∗

∀t ≤ m,∀β ∈ ck+t, (~a, β) ∈ ~xs+t�
~xs+m

∗ }

=
⋃
m

{(ai)i≤n, an+1→· · · as+m→α) | ∃c1→· · ·→ck+m→α ≤ α
′ ∈ a j,

∀t ≤ k,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xs+m

∗ }

This proves that if U �η∞ V , then ~U�~xcoind ⊆ ~V�
~x
∗ ⊆ ~V�

~x
coind.

• To prove the converse, it is sufficient to show that the proto-interpretation ~V�∗ =
⋃

U�η∞V~V�coind
is an interpretation:
– Interpretation over Ω:

~Ω�~x∗ =
⋃

U�η∞Ω

~U�~xcoind = ~Ω�~xcoind = ∅.
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– If Vs 6�η∞ xk and Vs+i �η∞ xk+i (for 1 ≤ i ≤ m) and j ≤ k:

~λxn+1...xk+m.x j V1 · · ·Vs+m�
~xn

∗

=
⋃

U�η∞λxn+1...xk+m.x j V1···Vs+m

~U�~x
n

coind

=
⋃

m′≤m

⋃
Ut�η∞Vt

~λxn+1...xk+m′ .x j U1 · · ·Us+m′�
~xn

coind

=
⋃

m′≤m

⋃
Ut�η∞Vt

{(ai)i≤n, an+1→· · · ak+m′→α) | ∃c1→· · ·→cs+m′→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Ut�
~xk+m′

coind}

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m′→α) | ∃c1→· · ·→cs+m′→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈
⋃

Ut�η∞Vt

~Ut�
~xk+m′

coind}

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m′→α) | ∃c1→· · ·→cs+m′→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗ }

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m→α) | ∃c1→· · ·→cs+m′→ak+m′+1→· · · an+m→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗ }

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m→α) | ∃c1→· · ·→cs+m′→ak+m′+1→· · · ak+m→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗

∀m′ ≤ t ≤ m,∀β ∈ ak+t, (~a, β) ∈ ~xk+t�
~xk+m′

∗ }

=
⋃

m′≤m

{(ai)i≤n, an+1→· · · ak+m→α) | ∃c1→· · ·→cs+m′→ak+m′+1→· · · ak+m→α ≤ α
′ ∈ a j,

∀t ≤ s+m′,∀β ∈ ct, (~a, β) ∈ ~Vt�
~xk+m′

∗

∀m′ ≤ t ≤ m,∀β ∈ ak+t, (~a, β) ∈ ~Vs+t�
~xk+m′

∗ }

This proves that if U �η∞ V , then ~U�~xcoind ⊆ ~V�
~x
∗ ⊆ ~V�

~x
coind.

2.2. Hyperimmunity implies full abstraction.
In this section we will prove the step (1)⇒ (2) of the main theorem (Th. 1.23). This will be done
using the quasi-approximation property to decompose the proof into two steps. Indeed, we will see
that in the presence of the approximation property, hyperimmunity implies the quasi-approximation
property that itself implies the full abstraction for H∗. Those two implications will be proved
separately in Theorems 2.48 and 2.50.
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2.2.1. Hyperimmunity and approximation imply quasi-approximation.
Firstly, we are introducing tree-hyperimmunity that is equivalent to hyperimmunity (Lemma 2.37).

The reason to introduce this new formalism is quite simple. For the proof of Theorem 2.48, we
will have to contradict hyperimmunity starting from a term M that contradicts quasi-approximability.

Recall that refuting hyperimmunity amounts to exhibiting a non-hyperimmune function (i.e.,
bounded by a recursive function g) and a sequence (αi)i ∈ DN with a non well founded chain bounded
by g (see Definition 1.19).

The refutation of quasi-approximability by M gives a recursive procedure that bounds the non-
hyperimmune function g. However, the procedure does generally not directly construct the values
of this function, but also performs a lot of useless computation; this is due to the refuting term M
not being optimal. Thus, we will simply construct an infinite tree and use König lemma11 to find an
infinite branch that contradicts hyperimmunity.

Generalizing hyperimmunity from sequences to trees allows us to apply a well-known theorem
of recursion theory. This theorem states the equivalence between hyperimmune functions and infinite
paths in recursive N-labeled trees.12 That is why we can generalise hyperimmune functions to infinite
recursive N-labeled trees. The sequence (αi)i ∈ DN, similarly, becomes a partial (but infinite) labeling
of the recursive tree. The sequence has to be partial in order to select a specific hyperimmune path.

Definition 2.36. Let D be a K-model.
A N-labeled tree T is a finitely branching tree where nodes are labeled by N, we denote by T (µ)
the N-label of the node µ in T .
A D-decoration of a N-labeled T is a partial function of infinite domain ∂D : T → D such that for
every couple of nodes ν and µ that are father and son in T , if µ ∈ dom(∂D), then ν ∈ dom(∂D) and:

∂D(ν) = a1→· · ·→aT (µ)→α ⇒ ∂D(µ) ∈ aT (µ).

A K-model D is tree-hyperimmune if none of the N-labeled and D-decorated tree is recursive.

Lemma 2.37. A K-model D is tree-hyperimmune iff it is hyperimmune.

Proof.
• We assume that there is a recursive g and a sequence (αn)n refuting hyperimmunity. We define the

tree T given by the set of nodes {ω ∈ N∗ | ∀n ≤ |ω|, ωn ≤ g(n)} of finite sequences bounded by g
and ordered by prefix; the N-labeling is given by T (ε) = 0 and T (ω.n) = g(n). Then T is recursive
and we have ∂D partially defined by induction:
– ∂D(ε) = α0 is always defined,
– ∂D(ω.n) = α|ω.n| is defined if ∂D(ω) = α|ω| = a1→· · ·→an→α and α|ω.n| = α|ω|+1 ∈ an.
The decoration is infinite since, for all depth d, αd+1 ∈

⋃
n≤g(d) an for αd = a1→· · · ag(d)→α

′
d. This

contradicts tree-hyperimmunity.
• If D is not tree-hyperimmune, then there is a finitely branching, N-labeled, and recursive tree T

and an infinite decoration ∂D. By König lemma, the sub-tree that constitutes the domain of ∂D
(which is infinite and finitely branching) accepts an infinite branch (µn)n. We denote αn := ∂D(µn),
so that αn+1 ∈ aT (µn+1) for αn = a1→· · ·→aT (µn+1)→α

′. Since the sequence (T (µn+1))n is majored
by the maximal N-label on depth n+1 in T , that is recursive, we are contradicting hyperimmunity.

11König lemma states that any infinite tree that is finitely branching accepts an infinite branch/path.
12Trees with nodes labeled by natural numbers.
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Remark 2.38. In the following, internal nodes of a quasi-finite Böhm tree are denoted by X,Y... as
they are idzntified with the quasi-finite Böhm tree whose root is the node at issue.

We now introduce the notion of the play of a quasi-finite Böhm tree X. The play of X can be
seen as the game semantics’ play over the infinite arena ∗= ∗ →∗ performed by the execution of X.
Formally, it is a (possibly infinite) tree which father-son relationship corresponds to justification
pointers. Moreover, players and opponents are playing alternatively, so that nodes at even depth
are player nodes and play over applications, and nodes at odd depth are opponent nodes and play
over abstractions. We will see that plays over quasi-finite Böhm trees remains finitely branching and
recursive trees. Later on, we will try to decorate those plays to contradict tree-hyperimmunity.

Definition 2.39. Let X be a closed13and recursive quasi-finite Böhm tree.
The play of X is the recursive and N-labeled tree T whose nodes are of two kinds:
• The nodes at even depth are called player nodes. They are denoted P(Y) for some Y over X.
• The nodes at odd depth are called opponent nodes. They are denoted O(Y) for some Y over X.
The tree is given by:
• the root is P(X),
• the opponent node O(λx1...xm.z Y1 · · · Yk) has k sons which are the P(Yi) for i ≤ k,
• the player node P(λx1...xm.z Y1 · · · Yk) has for sons every O(Z) for Z a node over Y1, ..., or Yn

whose head variable is one of the x1, . . . , xm.

Example 2.40. The tree below is the play over λx.x (λyz.x (y z) (z y))

P
(
λx.x (λyz.x (y z) (z y))

)

O
(
λx.x (λyz.x (y z) (z y))

)
O
(
λyz.x (y z) (z y)

)

P
(
λyz.x (y z) (z y)

)
P
(
y z

)
P
(
z y

)

O
(
y z

)
O
(
z
)

O
(
z y

)
O
(
y
)

P
(
z
)

P
(
y
)

Proposition 2.41. Let X be a closed and recursive quasi-finite Böhm tree and T the play over X. For
every node Y of X, P(Y) is a node of T . For every node Y of X that is not an Ω, O(Y) is a node of T .

13Can be generalised to non-closed trees by considering plays to be forests of trees.
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Proof. By structural induction over the nodes Y of X:
• If Y is a node of X, then either Y = X and P(X) is the root of T , or Y has a father Y ′ in X. In the

last case, O(Y ′) is a node of T by induction hypothesis and P(Y) is a son of O(Y ′).
• If Y ′ = λx1...xm.z Y1 · · · Yk is a node of X, then by closeness of X, there is an ancestor of Y in X

where z is abstracted (potentially Y = Y ′), i.e, Y = λy1...ym′ .z′ Y ′1 · · · Y
′
k with z = yi. By induction

hypothesis, P(Y) is a node of T and O(Y) is its son.

Definition 2.42. Let X be a quasi-finite Böhm tree that is recursive and closed.
The labeled play over X is the play over X together with the N-labeling ` defined as follows:
• the labeling of the root is `(P(X)) = 0,
• any Y at even depth, P(Y), has for father O(λx1...xm.z Y1 · · · Yk) with Y one of the Yi, the N-label
`(P(Y)) is the corresponding index of application i,
• any Y = λx1...xm.z Y1 · · · Yk at odd depth, O(Y), has for father P(Y ′) for Y ′ that is the ancestor of

Y in X where z is abstracted (potentially Y ′ = Y), i.e, Y ′ = λy1...ym′ .z′ Y ′1 · · · Y
′
k with z = yi. The

N-label `(O(Y)) is the corresponding index of abstraction i.

Example 2.43. The tree below is the labeled play over X = λx.x (λyz.x (y z) (z y)). For readability,
the label is written in the parent-to-child arrow (we omit `(X) = 0):

P
(
λx.x (λyz.x (y z) (z y))

)

O
(
λx.x (λyz.x (y z) (z y))

)
O
(
λyz.x (y z) (z y)

)

P
(
λyz.x (y z) (z y)

)
P
(
y z

)
P
(
z y

)

O
(
y z

)
O
(
z
)

O
(
z y

)
O
(
y
)

P
(
z
)

P
(
y
)

1 1

1 1 2

1 2 2 1

1 1

Proposition 2.44. For any quasi-finite X ∈ BTq f , the labeled play T over X is recursive, finitely
branching and N-labeled.

Proof. The tree T is finitely branching: An opponent node O(λx1 . . . xn.z Yn · · · Yk) has exactly k sons
which are the P(Yi) for i ≤ k. A player node P(λx1 . . . xn.z Yn · · · Yk) has one son for each occurrence
of its abstracted variables, which results in a finite number by quasi-finiteness of X.

The tree T is recursive: by recursivity and quasi-finiteness of X.
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Our objective is to D-decorate the labeled play of any quasi-finite Böhm tree X such that ~X�coind ,
~X�ind. The D-decoration in question will follow a specific patern: we will furnish a path-D-
decoration, which is a decoration of the nodes {P(Yn),O(Yn) | n ≥ 0} for (Yn)n≥0 a path in the Böhm
tree of X.

Definition 2.45. Let D be a K-model and X be a quasi-finite Böhm tree where all variables have
been named differently.
A path-D-decoration of the labeled play of X is an infinite sequence (Yn)n≥0 of nodes of X forming
a path (i.e., Y0 = X and Yn father of Yn+1) and three infinite sequences (αn)n≥0, (βn)n≥0 ∈ DN

and (ax)x∈FV(Y1,Y2..) such that for each n (Where ` is the labeling of Definition 2.42):

βn = bn
1→· · ·→bn

`(P(Yn+1))→β
′ ⇒ αn+1 ∈ bn

`(P(Yn+1)).

Yn = λx1, ..., xn.y X1 · · · Xk ⇒ αn = ax1→· · · axn→α
′

Yn = λx1, ..., xn.y X1 · · · Xk ⇒ βn ∈ ay

Proposition 2.46. Let D be a K-model and X be a quasi-finite Böhm tree.
A path-D-decoration of the labeled play of X induces a D-decoration of the labeled play of X.

Proof. Let (Yn)n≥0, (αn)n≥0 and (βn)n≥0 forming a path-D-decoration of the play of X. Then the
partial function ∂D defined by ∂D(P(Yn)) := αn and ∂D(O(Yn)) := βn for all n is a D-decoration:
• the domain of ∂D is infinite since all Yn are different (they form a path),
• for any n, the father of P(Yn+1) (decorated by αn) is O(Yn) which is decorated by βn and we have

by hypothesis

βn = bn
1→· · ·→bn

`(P(Yn+1))→β
′ ⇒ αn+1 ∈ bn

`(P(Yn+1)),

• for any n, the father of O(Yn) is P(Ym) for some m ≤ n such that the head variable y of Yn is
abstracted in the `(O(Yn))th position in Ym and

αm = am
1→· · ·→am

`(O(Yn))→α
′ ⇒ am

`(O(Yn)) = ay

⇒ βn ∈ am
`(O(Yn)).

What follows is a variant of König lemma where we are looking for an infinite path in BT(X) that
we can decorate.

Lemma 2.47. Let D be a K-model and X ∈ BTq f be a quasi-finite Böhm tree. If

~X�coind , ~X�ind,

then D is not tree-hyperimmune.

Proof. We can assume that X is closed (otherwise we could have taken λx1...xm.X)
Let α ∈ ~X�coind − ~X�ind.
We define a path-D-decoration of the labeled play of X, breaking the conditions of tree-hyperimmunity
by Lemma 2.46. For that we give, inductively, an infinite path (Yn)n in X, and three infinite sequences
(αn)n≥0, (βn)n≥0 ∈ DN and (ax)x∈FV(Y1,Y2..) forming the path-D-decoration. Moreover, those are
defined such that for all n, (~a, αn) ∈ ~Yn�

~x
coind − ~Yn�

~x
ind:

• Y0 = X and α0 = α.
• Assume that we got Yn. By non emptiness of ~Yn�

~x
coind, we have Yn = λx1...xm.y X1 · · · Xk with

x1...xm as free variables:
If we unfold ax1→· · · a

n
xm
→α′ := αn, then there exists βn = bn

1→· · · b
n
k→α

′′
0 ∈ ay (with α′′ ≥ α′)

such that for all j and all γ ∈ bn
j , we have (~a, γ) ∈ ~X j�

~x
coind.
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In particular there is j ≤ k and αn+1 ∈ bn
j such that (~a, αn+1) ∈ ~X j�

~x
q f − ~X j�

~x
ind.

We set Yn+1 := X j so that
– βn = bn

1→· · · b
n
k→α

′′
0 ∈ ay and αn+1 = γ ∈ bn

j = bn
`(P(X j))

,
– Yn = λx1...xm.xi X1 · · · Xk and αn = ax1→· · · a

n
xm
→α′,

– Yn = λx1...xm.xi X1 · · · Xk and βn ∈ ay.

Theorem 2.48. Any hyperimmune approximable K-model D is also quasi-approximable.

Proof. We will prove the contrapositive: We assume that D is approximable but not quasi-approximable,
then we show that D is not hyperimmune.
Since D is not quasi-approximable, there is a λ-term M ∈ Λ such that ~M�~x , ~BT(M)�~xq f .

The approximation property gives that ~M�~x = ~BT(M)�ind ⊂ ~BT(M)�q f . Thus there is a quasi
finite X ⊆q f BT(M) such that ~X�coind , ~X�ind.
By Lemma 2.47, the K-model D is not tree-hyperimmune and thus not hyperimmune by Lemma 2.37.

2.2.2. Quasi-approximation and extensionality imply full abstraction.

Theorem 2.49. Let D be a K-model respecting the quasi-approximation property. Then it is inequa-
tionally adequate, i.e., for all M and N such that ~M�~x ⊆ ~N�~xthere is M vH∗ N.

Proof. D is sensible (diverging terms have empty interpretations). Indeed, for any head-diverging
term M, BT(M) = Ω and thus

~M�~x = ~BT(M)�~xq f = ~Ω�~xq f = ∅.

We conclude since sensibility implies inequational adequacy.

Theorem 2.50. Let D be a quasi-approximable extensional K-model. D is inequationally complete,
i.e., for all M and N; M vH∗ N implies ~M�~x ⊆ ~N�~x.

Proof. Let (~a, α) ∈ ~M�~x.
By the quasi-approximation property, there is W ⊆q f BT(M) such that (~a, α) ∈ ~W�~xcoind.
By Proposition 2.13, there are U and V such that BT(M) �η∞ U ⊆ V �η∞ BT(N). By applying
Lemma 2.21 on W ⊆q f BT(M) �η∞ U, we get X ∈ BTq f and by applying it a second time
on X ⊆q f V �η∞ BT(N) we get Y such that:

BT(M) �η∞ U ⊆ V �η∞ BT(N)

⊆q f ⊆q f ⊆q f ⊆q f

W �η∞X = X �η∞ Y

Thus:

(~a, α) ∈ ~W�~xcoind = ~X�~xcoind Lemma 2.35

= ~Y�~xcoind by Lemma 2.35

⊆ ~N�~x by quasi-approximation
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2.3. Full abstraction implies hyperimmunity.

2.3.1. The counterexample.
Suppose that D is approximable but is not hyperimmune. By Definition 1.19 of hyperimmunity, there
exists a recursive g : N→ N and a sequence (αn)n≥0 ∈ DN such that

αn = an,1→· · ·→an,g(n)→α
′
n with αn+1 ∈

⋃
k≤g(n)

an,k.

We will use the function g to define a term Jg (Eq. 2.3) such that (Jg 0) is observationally equal to
the identity in Λ (Lemma 2.53) but can be denotationally distinguished in D (Lemma 2.56). This
allows to refute full abstraction:

Theorem 2.51. If D is approximable but not hyperimmune, then it is not fully abstract for the λ-
calculus.

Basically, (Jg 0) is a generalization of the term J used in [13] to prove that the model D∗∞
(Ex. 1.15) is not fully abstract. The idea is that J is the infinite η-expansion of the identity I where
each level of the Böhm tree is η-expanded by one variable. Our term (Jg 0) is also an infinite
η-expansion of I, but now, each level of the Böhm tree is η-expanded by g(n) variables.14

Let (Gn)n∈N be the sequence of closed λ-terms defined by:

Gn := λuex1...xg(n).e (u x1) · · · (u xg(n)) (2.1)

The recursivity of g implies the recursivity of the sequence Gn. Thus, we can use Proposition 1.4:
there exists a λ-term G such that:

G n→∗ Gn. (2.2)
Recall that S denotes the Church successor function and Θ the Turing fixpoint combinator.
We define:

Jg := Θ (λuv.G v (u (S v))). (2.3)
Then:

Jg n→∗ Gn (Jg n+1), (2.4)
and its Böhm tree can be sketched as

λex1...xg(0).e

λy1...yg(1).x1 · · · λy1...yg(1).xg(0)

λz1...zg(2).y1 · · · · · · · · · λz1...zg(2).yg(1)

· · · · · · · · · · · · · · ·

Lemma 2.53 below proves that Jg 0 is operationally equivalent to the identity I. In fact it is an
infinite η-expansion of I. But first, we need the following auxiliary lemma.

Lemma 2.52. For any terms M,N∈Λ and any fresh z:

(M z �η∞ N z) ⇒ (M �η∞ N).

14In the article [9] of the same author, the reader may also find another counterexample based on the same kind of
intuitions.
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Proof. If M diverges, then so does (M z), thus (N z)⇑h and N⇑h, so that BT(M) = BT(N) = Ω.
Otherwise we have M →∗h λx1 . . . xn.y M1 · · ·Mk:
• If n = 0, then M z→∗h y M1 · · ·Mk z and N z→∗h y N1 · · ·Nk z with Mi �η∞ Ni, thus M �η∞ N.
• Otherwise, M z→∗h λx2 . . . xn.y[z/x1] M1[z/x1] · · ·Mk[z/x1]

and N z →∗h N′ �η λx2 . . . xn.y[z/x1] N1 · · ·Nk with Mi[z/x1] �η∞ Ni for all i. Thus, since z
is fresh, N →∗h λx1.N′[x1/z] �η λx1 . . . xn.y N1[x1/z] · · ·Nk[x1/z] and Mi �η∞ Ni[x1/z], so
M �η∞ N.

Lemma 2.53. We have Jg 0 ≡H∗ I.

Proof. We prove that (Jg n z) �η∞ z (where z is fresh) for every n, by co-induction and unfolding of
BT(Jg n z):

BT(Jg n z)
= BT(Gn (Jg n+1) z) by (2.4)

= λ~xg(n).z BT(Jg n+1 x1) · · · BT(Jg n+1 xg(n)) by (2.1)

�η∞ λ~xg(n).z x1 · · · xg(n) by co-Ind
�η z

By applying Lemma 2.52, we know that (Jg n) �η∞ I and by Corollary 2.15 that Jg 0 ≡H∗ I.

2.3.2. Denotational separation.
In this section we show that Jg 0 and I are denotationally separated (Lemma 2.56), despite being
operationally equivalent.

Let Jn,k
g (z) ∈ BTf (Jg n z) be the truncation of BT(Jg n z) at depth k (in particular Jn,0

g = Ω).

Example 2.54. For example, J5,3
g (z) is the Böhm tree:

λx1...xg(5).z

λy1...yg(6).x1 · · · λy1...yg(6).xg(5)

λz1...zg(7).y1 Ω · · ·Ω · · · · · · · · · λz1...zg(7).yg(6) Ω · · ·Ω

We recall that the sequence (αn)n≥0, obtained from the refutation of the hyperimmunity, verifies αn =

an,1→· · ·→an,g(n)→α
′
n with αn+1 ∈

⋃
k≤g(n) an,k.

Lemma 2.55. For all n and k, and for all a ∈ A f (D) such that αn ∈ a, we have

(a, αn) < ~Jn,k
g (z)�zD.

Proof. By induction on k:
• (k=0): since Jn,0

n = Ω then by the approximation property we derive (a, αn)<~Jn,k
g (z)�zD =∅.

• (k + 1): Remark that Jn,k+1
g (z) = λx1...xg(n).z (Jn+1,k

g (x1)) · · · (Jn+1,k
g (xg(n))) and that for all i, xi is

the only free variable of Jn+1,k
g (xi).

We unfold αn = an
1→· · ·→an

g(n)→α
′
n. Then (a, αn) belongs to ~Jn,k+1

g (z)�zD iff there
is β = b1→· · ·→bg(n)→α

′′
n ∈ a (with α′′n ≥ α′n) such that for all i ≤ g(n) and for all γ ∈ bi,

there is (an
i , γ) ∈ ~Jn+1,k

g (xi)�
xi
D. The refutation has two cases:
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– For β = αn: there is i ≤ g(n) such that αn+1 ∈ bi = an
i , so that the induction hypothesis gives

(an
i , αn+1) < ~Jn+1,k

g (xi)�
xi
D.

– For β , αn, since a is an anti-chain and αn ∈ a, β 6≥ αn. We have seen that α′′n ≥ α′n, thus,
there is i ≤ g(n) such that bi 6≤ an

i . In particular, there is γ ∈ bi such that γ 6≤ δ for any δ ∈ an
i ,

thus (an
i , γ) < ~I xi�

xi
D. Since (I xi) �η∞ (Jg n+1 xi), by applying Lemma 2.28 we obtain

~I xi�
xi
D ⊇ ~Jg n+1 xi�

xi
D ⊇ ~J

n+1,k
n+1 (xi)�

xi
D.

Lemma 2.56. The term Jg n (for any n) and the identity are denotationally separated in D:

~Jg n�D , ~I�D

Proof. Using the approximation property and extensionality, it is sufficient to prove that

{α0}→α0 <
⋃

k

~λz.Jn,k
g (z)�D =

⋃
U∈BTf (Jg n)

~U�D = ~Jg n�D,

which can be obtained by the application of Lemma 2.55.

This concludes the proof of the main theorem (Theorem 1.23):
For any extensional approximable K-model D, the following are equivalent:

(1) D is hyperimmune,
(2) D is inequationally fully abstract for Λ,
(3) D is fully abstract for Λ.

Conclusion

In this paper, we have introduced two very new notions (hyperimmunity and quasi-approximability)
on top of two known notions (full abstraction for H∗ and approximability) and a lot of different
sub-notions (sensibility, extensionality, theory BT). The relations between these notions may not be
clear for the reader, even for classic notions (e.g., few people realize that full abstraction forH∗ does
not implies approximability in general).

For such readers, we present, in Figure 5, a graphic summarizing the different properties we
have seen in the article. In this figure :
• β stands for being a model (the name refers to the smallest λ-theory β).
• H stands for the sensible models, i.e, those models that equate all diverging terms:

M,N⇑h ⇒ ~M� = ~N�.

• βη stands for extensional models, i.e, those models preserving η-equivalence:

~λx.x� = ~λxy.x y�.

• BT stands for models that respect Böhm trees:

∀M,N, BT(M) = BT(N) ⇒ ~M� = ~N�.

• H∗ stands for models that are fully abstract forH∗:

∀M,N, M ≡H∗ N ⇔ ~M� = ~N�.

• app stands for models that are approximable:

∀M, ~M� = ~BT(M)�ind.
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β
•

H• βη
•

BT• •

•

app • q-app• H∗ • Hyp•

• • • •

•

•

•

Figure 5. Lattice of the properties considered in this paper.

• q-app stands for models that are quasi-approximable:

∀M, ~M� = ~BT(M)�q f .

• Hyp stands for models that are hyperimmune.
• The other nodes are simply defined as sups and do not have names.

This graphic is a lattice of properties that a K-model can satisfy, with binary sups corresponding
to the conjunction of the properties (modulo logical equivalence).15 In particular, one can see that
quasi-approximation together with extensionality implies the full abstraction forH∗. Moreover, for
any among our four main properties (i.e., app,H∗, q-app and Hyp), having any two non-adjacent
properties (app/H∗, app/Hyp or q-app/Hyp) is sufficient to get the two others.

Notice that in the article we are claiming that app and q-app implies Hyperimmunity, but this
was in presence of extensionality. One can then check that the sup of app, q-app and βη is indeed
the top of our lattice.

Notice also that we placed hyperimmunity above extensionality. This is because we use exten-
sionality in order to define hyperimmunity. A careful reader may probably be able to extend naturally
hyperimmunity to a non-extensional setting, but several of the relations of Figure 5 may break with
this generalization.

Finally, we conjecture that all these relations are strict in the fully general case (extended to
models that are not K-models). This is proved for most already existing relations but not for the
relations between BT, app andH∗.

15Notice that two points in the graphic may well be logically equivalent.
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Approximability is not a propri implied by BT or even byH∗ but no counter-examples have
been presented yet. This is a difficult question related to the characterization of sensibility. In fact
it is actually difficult to get an idea of what non-approximable models lies above H . Indeed, the
most efficient methods we know for proving sensibility are realisability methods that are intrinsically
linked with approximability [7]. Notice that the only result on this direction was from Kerth that
created a continuum of sensible models of (disjoint) theories below BT [23]. In this paper we simply
avoid the difficulty by only considering approximable K-models.

This was the first attempt at studying a λ-theory by characterising its fully abstracting models
(among a relatively large class). This opens a lot of new research directions such as generalisations
for larger classes of models, for other languages or for other λ-theories. The latter has actually been
explored by the author in a collaborative work on Morris’s extensional equivalence (the observational
equivalence for weak reduction) [11]. This work is bounded to relational models which are morally
extensional extensions16 of approximable K-models [5]. There, we show that the full abstraction for
Morris’s equivalence corresponds to satisfy the λ-Konig property. The λ-Konig property is a sort of
dual of hyperimmunity: rather than forbidding all infinite non-hyperimmune chains, it requires the
presence of a dense set of such non-hyperimmune chains.
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