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Abstract. Jeřábek showed that cuts in classical propositional logic proofs in deep inference
can be eliminated in quasipolynomial time. The proof is indirect and it relies on a result
of Atserias, Galesi and Pudlák about monotone sequent calculus and a correspondence
between that system and cut-free deep-inference proofs. In this paper we give a direct proof
of Jeřábek’s result: we give a quasipolynomial-time cut-elimination procedure for classical
propositional logic in deep inference. The main new ingredient is the use of a computational
trace of deep-inference proofs called atomic flows, which are both very simple (they only
trace structural rules and forget logical rules) and strong enough to faithfully represent the
cut-elimination procedure.

1. Introduction

Deep inference is a proof-theoretic methodology where proofs can be freely composed by the
logical operators, instead of having a rigid formula-directed tree structure, as in Gentzen
proof theory [Gug07, BT01, Brü04, GGP10]. As a result, inference rules apply arbitrarily
deep inside formulae, contrary to traditional proof systems such as natural deduction and the
sequent calculus, where inference rules only deal with the outermost structure of formulae.

2012 ACM CCS: [Theory of computation]: Logic—Proof theory; Computational complexity and
cryptography—Proof complexity.

Key words and phrases: Proof theory, proof complexity, deep inference, threshold functions.
a,b EPSRC grants EP/E042805/1 Complexity and Non-determinism in Deep Inference and EP/K018868/1
Efficient and Natural Proof Systems; Senior Chaire d’Excellence ‘Identity and Geometric Essence of Proofs’
of the Agence Nationale de la Recherche.
c Overseas Research Studentship and Research Studentship, from the University of Bath; Senior Chaire

d’Excellence ‘Identity and Geometric Essence of Proofs’ and Project STRUCTURAL—‘Structural and
Computational Proof Theory’ of the Agence Nationale de la Recherche.
d Project INFER—‘Theory and Application of Deep Inference’ and Project STRUCTURAL—‘Structural

and Computational Proof Theory’ of the Agence Nationale de la Recherche.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-12(1:5)2016
c© P. Bruscoli, A. Guglielmi, T. Gundersen, and M. Parigot
CC© Creative Commons

http://creativecommons.org/about/licenses


2 P. BRUSCOLI, A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

This induces a new symmetry, which can be exploited for achieving locality of inference
rules, and which is not available with Gentzen methods. Locality, in turn, makes it possible
to use new methods, often with a geometric flavour, in the normalisation theory of proof
systems.

The greater freedom in composing proofs of deep inference is both a source of immediate
technical difficulty and of new powerful proof-theoretic methods. A general methodology
allows us to design deep-inference proof systems having more symmetries and finer structural
properties than the sequent calculus does. For instance, cut and identity become really dual
of each other, whereas they only are morally so in the sequent calculus, and all the structural
rules can be reduced to their atomic form, whereas this does not hold in the sequent calculus,
for example in the case of the contraction inference rule. In deep inference, the cut rule is
more general than its counterpart in the sequent calculus, and makes it possible to obtain
a broader range of dynamics in normalisation procedures. However, despite the sequent
calculus systems and their normalisation procedures being special cases of deep inference
systems and procedures, cut elimination in deep inference still guarantees consistency and
the trivial turning of proof systems into algorithms for proof search.

Sixteen years of research have guaranteed that all usual logics have deep-inference
proof systems enjoying cut elimination (see [Gug] for a complete overview). The traditional
methods of cut elimination of the sequent calculus can be adapted to a large extent to deep
inference, despite having to cope with a higher generality, but new methods are also achievable.
The standard proof system for propositional classical logic in deep inference is system SKS,
and its cut elimination has been achieved in several different ways [BT01, Brü04, GG08], all
requiring at worst exponential time in the size of the proof to be normalised.

A few years ago Jeřábek showed that cut elimination in SKS proofs can be done in
quasipolynomial time [Jeř09], more specifically in time nO(logn). The result is surprising
because all known cut-elimination methods for classical-logic proof systems require expo-
nential time, in particular for Gentzen’s sequent calculus. Jeřábek obtained his result by
relying on a construction over threshold functions by Atserias, Galesi and Pudlák, in the
monotone sequent calculus [AGP02].

Jeřábek’s technique is indirect because normalisation is performed over proofs in the
sequent calculus, which are, in turn, related to deep-inference ones by polynomial simulations,
originally studied in [Brü06] and [BG09].

In this paper we give a direct proof of Jeřábek’s result: that is, we give a quasipolyno-
mial-time cut-elimination procedure in propositional-logic deep inference, which, in addition
to being internal, has a strong computational flavour. Our proof uses two ingredients:

(1) an adaptation of Atserias-Galesi-Pudlák technique to deep inference, which simplifies
the technicalities associated with the use of threshold functions; in particular, the
formulae and derivations that we adopt are smaller and structurally simpler than those
in [AGP02];

(2) a recently introduced graphic formalism, tracing atoms in deep-inference proofs, called
‘atomic flows’ [GG08].

Atomic flows, which can be considered specialised Buss flow graphs [Bus91], play a major
role in designing and controlling the cut elimination procedure presented in this paper.
Atomic flows are very simple (they only trace structural rules and forget logical rules) but
they are strong enough to faithfully represent cut elimination [GG08, GGS10] and to relate
several formalisms regarding their proof complexity [Das12, Das14]. Atomic flows contribute
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to the overall clarification of this highly technical matter, by reducing our dependency on
syntax. The techniques developed via atomic flows tolerate variations in the proof system
specification. In fact, their geometric nature makes them largely independent of syntax,
provided that certain linearity conditions are respected (and this is usually achievable in
deep inference).

The paper is self-contained. Sections 2 and 3 are devoted, respectively, to the necessary
background on deep inference and atomic flows. Threshold functions and formulae are
introduced in Section 5.

We normalise proofs in two steps, each of which has a dedicated section in the paper:

(1) We transform any given proof into what we call its ‘simple form’. No use is made of
threshold formulae and no significant proof complexity is introduced. This is presented
in Section 4, mostly an exercise on deep inference and atomic flows.

(2) In Section 6, we show the cut elimination step, starting from proofs in simple form.
Here, threshold formulae play a major role.

Normalisation can be taken one step further, by removing the instances of the only inference
rule left that is not analytic in the deep-inference sense, viz. coweakening. This is performed
by a simple and standard deep-inference procedure in Section 7.

Section 8 concludes the paper with comments on future research directions.
Parts of this paper were presented at LPAR 16 [BGGP10] and some appear in [Gun09].

Recently, threshold functions have been used in [Das14] to build quasipolynomial size cut-free
deep-inference proofs of the propositional pigeonhole principle that, crucially, do not use
cocontraction, which is a form of dagness.

2. Propositional Logic in Deep Inference

Inside the deep-inference methodology we can define several formalisms, i.e. general prescrip-
tions on how to design proof systems, in the same sense as the sequent calculus and natural
deduction are formalisms in Gentzen-style proof theory (where the structure of proofs is
determined by the tree structure of the formulae they prove).

The first, and conceptually simpler, formalism that has been defined in deep inference is
called the calculus of structures, or CoS [Gug07]. Another deep-inference formalism has later
been introduced in [GGP10], called open deduction. Open deduction is more general than
CoS, in the sense that every CoS derivation is also an open-deduction derivation. On the
other hand, every open-deduction derivation can be transformed into a CoS derivation by a
straightforward transformation that essentially amounts to interleaving derivations. The
cost of this transformation is at most quadratic in the size of the original open-deduction
derivation; therefore, from the point of view of complexity, CoS and open deduction are
equivalent.

CoS and open deduction are equivalent also from the point of view of proof theory,
because the two formalisms are just two different notations for derivations of the same nature,
and so every derivation transformation that can be performed in one formalism can also be
performed in the other. In this paper we will adopt the open-deduction notation, especially
because it is more efficient for the reader. However, given that most of the literature in deep
inference adopts the CoS notation, which is more similar to the traditional Gentzen syntax,
we will present both styles in this section.

The standard proof system of propositional logic in deep inference is called SKS. The
basic proof-complexity properties of SKS, and so of propositional logic in deep inference,
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have been studied in [BG09] (which also could be used as an introduction to SKS). Those
properties are:

• SKS is polynomially equivalent to Frege proof systems.
• SKS can be extended with Tseitin’s extension and substitution, and the proof systems so

obtained are polynomially equivalent to Frege proof systems augmented with extension
and substitution.
• Cut-free SKS polynomially simulates cut-free Gentzen proof systems for propositional

logic, but the converse does not hold: in fact, Statman’s tautologies admit polynomial
proofs in cut-free SKS but only exponential ones in cut-free Gentzen [Sta78].

We now quickly introduce all the necessary notions. An excellent and more relaxed intro-
duction to SKS in CoS and its basic properties is [Brü04].

Formulae, denoted by A, B, C and D are freely built from: units, f (false), t (true);
atoms, denoted by a, b, c, d and e; disjunction and conjunction, [A ∨B] and (A ∧B). The
different brackets have the only purpose of improving legibility; we usually omit external
brackets of formulae, and sometimes we omit superfluous brackets under associativity. On
the set of atoms a (non-identical) involution ·̄ is defined and called negation; a and ā
are dual atoms. We denote contexts, i.e., formulae with a hole, by K{ } and H{ }; for
example, if K{a} is b ∧ [a ∨ c], then K{ } is b ∧ [{ } ∨ c], K{b} is b ∧ [b ∨ c] and K{a ∧ d} is
b ∧ [(a ∧ d) ∨ c].

Note that negation is only defined for atoms, and this is not a limitation because, thanks
to De Morgan laws, negation can always be ‘pushed to’ atoms. Also, note that there are
no negative or positive atoms in an absolute sense; we can only say that if we arbitrarily
consider ā positive, then a must be negative, for example.

For both CoS and open deduction an (inference) rule ρ is an expression
A

ρ −−
B

, where the

formulae A and B are called premiss and conclusion, respectively; an instance of that rule

is an expression
C

ρ −−
D

, where C and D are instances of A and B.

System SKS is a proof system, common to CoS and open deduction, defined by the
following structural inference rules:

t
ai↓ −−−−−
a ∨ ā

f
aw↓ −−

a

a ∨ a
ac↓ −−−−−

a

identity weakening contraction

a ∧ ā
ai↑ −−−−−

f

a
aw↑ −−

t

a
ac↑ −−−−−

a ∧ a

cut coweakening cocontraction

,

and by the following two logical inference rules:

A ∧ [B ∨ C]
s −−−−−−−−−−−−−
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−

[A ∨ C] ∧ [B ∨D]

switch medial

.

A cut-free derivation is a derivation where ai↑ is not used, i.e., a derivation in SKS \ {ai↑}.

In addition to these rules, there is a rule
C

= −−
D

, such that C and D are opposite sides in one



QUASIPOLYNOMIAL NORMALISATION IN DEEP INFERENCE 5

of the following equations:

A ∨B = B ∨A A ∨ f = A

A ∧B = B ∧A A ∧ t = A

[A ∨B] ∨ C = A ∨ [B ∨ C] t ∨ t = t

(A ∧B) ∧ C = A ∧ (B ∧ C) f ∧ f = f

. (2.1)

We do not always show the instances of rule =, and when we do show them, we gather
several contiguous instances into one. We consider the = rule as implicitly present in all
systems. The equality relation = on formulae is defined by closing the equations in (2.1) by
reflexivity, symmetry, transitivity and by stipulating that A = B implies K{A} = K{B}; to
indicate literal equality of the formulae A and B we adopt the notation A ≡ B.

We now define both styles of derivations, CoS and open deduction. The difference is in
the way we compose instances of rules: in CoS we only allow inferences to compose vertically,
in chains similar to sequent calculus proofs made only of one-premiss rule instances. In
open deduction instead, derivations can be composed by the same connectives that formulae
are made of. For simplicity, we give here a definition of open-deduction derivation that is
limited to our purposes in this paper, and is not the most general.

In CoS, a rule instance
C

ρ −−
D

generates an (inference) step
K{C}

ρ −−−−−−−
K{D}

, for each context

K{ }. A CoS derivation from (premiss) A to (conclusion) B is a chain of inference steps
with A at the top and B at the bottom. A derivation can be denoted by

A
Φ
∥∥∥S
B

,

where S is the name of the proof system or a set of inference rules (we might omit Φ and S);
a proof, often denoted by Π, is a derivation with premiss t; besides Φ, we denote derivations
with Ψ. Sometimes we group n > 0 inference steps of the same rule ρ together into one step,
and we label the step with n · ρ.

In open deduction, and just for the specific case of propositional logic with ∨, ∧ and
negation on atoms, we define the notions of derivation, premiss and conclusion inductively
as follows:

• if Φ is a unit or an atom then Φ is a derivation with premiss Φ and conclusion Φ;
• if Φ is a derivation with premiss A and conclusion B and if Ψ is a derivation with premiss
C and conclusion D, then
– [Φ ∨Ψ] is a derivation with premiss [A ∨ C] and conclusion [B ∨D],
– (Φ ∧Ψ) is a derivation with premiss (A ∧ C) and conclusion (B ∧D),

– if
B

ρ −−
C

is an instance of an inference rule, then
Φ

ρ −−
Ψ

is a derivation with premiss A and

conclusion D.

We adopt the same conventions as for CoS to denote derivations in open deduction. We
omit structural rule names in open-deduction notation.

The first two rows in Figure 2 illustrate with examples all the concepts introduced above.
The first row shows three example CoS derivations, and below each of them there is an
equivalent derivation in open deduction. An open deduction derivation can be obtained from
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a CoS one by sharing the contexts in inference steps. Vice versa, a CoS derivation can be
obtained from an open deduction one by choosing an order for the chain of inference steps.

Besides SKS, another standard deep-inference system is SKSg, which is the same as
SKS, except that it does not contain medial and its structural rules are not restricted to
atoms. In particular, we use in this paper the rules

f
w↓ −−
A

,
A

w↑ −−
t

,
A ∨A

c↓ −−−−−−
A

and
A

c↑ −−−−−−
A ∧A

.

Clearly, a derivation in SKS is also a derivation in SKSg. It can easily be proved that SKS
and all its fragments containing the logical and = rules polynomially simulate, respectively,
SKSg and its corresponding fragments [BG09]. For example, {s,m,=, ac↓} polynomially
simulates {s,=, c↓}. This allows us to transfer properties from SKS to SKSg; in particular,
the main result in this paper, i.e., that SKS proofs can be transformed into cut-free ones in
quasipolynomial time, holds also for SKSg proofs. One reason to work with SKS instead of
SKSg, as we do in this paper, is that atomicity of rules allows us to use atomic flows more
conveniently.

A notable cut-free system is KS = {s,m,=, ai↓, aw↓, ac↓}, which is complete for propo-
sitional logic [BT01, Brü04]; this, of course, entails completeness for all the systems that
contain KS, such as SKS.

We can replace instances of nonatomic structural rules by derivations with the same
premiss and conclusion, and that only contain atomic structural rules. The price to pay is a
quadratic growth in size. This is stated by the following, routine proposition (keep in mind
that, from now on, we consider the = rule as implicitly present in all systems). An example
is the rightmost upper derivation in Figure 2, which stands for a nonatomic cocontraction.

Proposition 2.1. Rule instances of w↓, w↑, c↓ and c↑ can be derived in quadratic time by
derivations in {aw↓}, {aw↑}, {m, ac↓} and {m, ac↑}, respectively.

Sometimes, we use a nonatomic rule instance to stand for some derivation in SKS that
derives that instance, as per Proposition 2.1.

By A{a1/B1, . . . , ah/Bh}, we denote the operation of simultaneously substituting formu-
lae B1, . . . , Bh into all the occurrences of the atoms a1, . . . , ah in the formula A, respectively;
note that the occurrences of ā1, . . . , āh are not automatically substituted. Often, we only
substitute certain occurrences of atoms, and these are indicated with superscripts that estab-
lish a relation with atomic flows. As a matter of fact, we extend the notion of substitution
to derivations in the natural way, but this requires a certain care. The issue is clarified in
Section 3 (see, in particular, Notations 3.1 and 3.3 and Proposition 3.2).

The size |A| of a formula A, and the size |Φ| of a derivation Φ, is the number of unit
and atom occurrences appearing in it. The size of CoS derivations is, obviously, at most
quadratic in the size of the corresponding open-deduction derivations. We use this fact
implicitly throughout the paper, and we always measure the CoS size of derivations, even if
we show them in open-deduction notation.

3. Atomic Flows

Atomic flows, which have been introduced in [GG08], are, essentially, specialised Buss flow
graphs [Bus91]. They are particular directed graphs associated with SKS derivations: every
derivation yields one atomic flow obtained by tracing the atom occurrences in the derivation.
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Infinitely many derivations correspond to each atomic flow; this suggests that much of
the information in a derivation is lost in its associated atomic flow; in particular, there
is no information about instances of logical rules, only structural rules play a role. As
shown in [GG08, GGS10], it turns out that atomic flows contain sufficient structure to
control normalisation procedures, providing in particular induction measures that can be
used to ensure termination. Such normalisation procedures require exponential time on the
size of the derivation to be normalised. In the present work, we lower the complexity of
proof normalisation to quasipolynomial time, but an essential role is played by the complex
logical relations of threshold formulae, which are external and independent from the given
proof. This means that atomic flows are not sufficient to define the normalisation procedure;
however, they still are a very convenient tool for defining and understanding several of its
aspects.

We can single out three features of atomic flows that, in general, and not just in this
work, help in designing normalisation procedures:

(1) Atomic flows conveniently express the topological structure of atom occurrences in a proof.
This is especially useful for defining a certain ‘simple form’ of proofs (Definition 4.3).

(2) Atomic flows provide for an efficient way to control substitutions for atom occurrences
in derivations. This helps us to define the cut-free form of proofs (Definition 6.2).

(3) We can define graph rewriting systems over atomic flows that control normalisation
procedures on derivations. This can be used to control a further refinement of the
normalisation procedure (Theorem 7.2).

Our aim now is to quickly and informally provide the necessary notions about atomic
flows, especially concerning aspects (1) and (2) above. Although the feature (3) of atomic
flows, namely graph rewriting systems of flows, did help us in obtaining proofs in normal
form, we estimate that formally introducing the necessary machinery is unjustified in this
paper. In fact, given our limited needs here, we can operate directly on derivations, without
the intermediate support of atomic flows. Nonetheless, being aware of the underlying
atomic-flow methods is useful for the reader who wishes to further investigate this matter.
So, we informally provide, in Section 7, enough material to make the connection with the
atomic-flow techniques that are fully developed in [GG08].

We obtain one atomic flow from each derivation by tracing all its atom occurrences
and by keeping track of their creation and destruction (in identity/cut and weakening/co-
weakening instances), their duplication (in contraction/cocontraction) and their duality (in
identity/cut). Technically, atomic flows are directed graphs of a special kind, but it is more
intuitive to consider them as diagrams generated by composing elementary atomic flows
that belong to one of seven kinds.

The first kind of elementary atomic flow is the edge

,

which corresponds to one or more occurrences of the same atom in a given derivation, all of
which are not active in any structural rule instance, i.e., they are not the atom occurrences
that instantiate a structural rule.

The other six kinds of elementary diagrams are associated with the six structural
inference rules, as shown in Figure 1, and they are called vertices; each vertex has some
incident edges. At the left of each arrow, we see an instance of a structural rule, where the
atom occurrences are labelled by small numerals; at the right of the arrow, we see the vertex
corresponding to the rule instance, whose incident edges are labelled in accord with the atom
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t
ai↓ −−−−−−−−
a1 ∨ ā2

→ 1 2

f
aw↓ −−

a1
→ 1

a1 ∨ a2
ac↓ −−−−−−−−

a3
→ 1 2

3

a1 ∧ ā2
ai↑ −−−−−−−−

f
→ 1 2

a1
aw↑ −−

t
→ 1

a3
ac↑ −−−−−−−−

a1 ∧ a2
→

1 2

3

Figure 1: Vertices of atomic flows.

occurrences they correspond to. We qualify each vertex according to the rule it corresponds
to; for example, in a given atomic flow, we might talk about a contraction vertex, or a cut
vertex, and so on. Instead of small numerals, sometimes we use ε or ι or colour to label
edges (as well as atom occurrences), but we do not always use labels.

All edges are directed, but we do not explicitly show the orientation. Instead, we
consider it as implicitly given by the way we draw them, namely, edges are oriented along
the vertical direction. So, the vertices corresponding to dual rules, in Figure 1, are distinct,
for example, an identity vertex and a cut vertex are different because the orientation of their
edges is different. On the other hand, the horizontal direction plays no role in distinguishing
atomic flows; this corresponds to commutativity of logical relations.

We can define (atomic) flows as the smallest set of diagrams containing elementary
atomic flows, and closed under the composition operation consisting in identifying zero or
more edges such that no cycle is created. In addition, for a diagram to be an atomic flow,
it must be possible to assign it a polarity, according to the following definition. A polarity
assignment is a mapping of each edge to an element of {−,+}, such that the two edges of
each identity or cut vertex map to different values and the three edges of each contraction
or cocontraction vertex map to the same value. We denote atomic flows by φ and ψ.

Let us see some examples. The flow

(3.1)

is obtained by juxtaposing (i.e., composing by identifying zero edges):

• three edges,
• a flow obtained by composing a cut vertex with a cocontraction vertex, and
• a flow obtained by composing an identity vertex with a cut vertex.

Note that there are no cycles in the flow, and that we can find 32 different polarity assignments,
i.e., two for each of the five connected components of the flow (this is a general rule).

Let us see another example. These are three different representations of the same flow:

4

21 5

3

,
1 +

3 4

2 − + 5

and 3 4

2 +1 − 5 −

,

where we label edges to show their correspondence. In the two rightmost flows, we indicate
the two different polarity assignments that are possible.
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The following two diagrams are not atomic flows:

and .

The left one is not a flow because it contains a cycle, and the right one because there is no
possible polarity assignment.

Let us see how to extract atomic flows from derivations. Given an SKS derivation Φ, we
obtain, by the following prescriptions, a unique atomic flow φ, such that there is a surjective
map between atom occurrences in Φ and edges of φ:

• Each structural inference step in Φ is associated with one and only one vertex in φ, such
that active atom occurrences in the rule instance map to edges incident with the vertex.
The correspondence is indicated in Figure 1. For example, the flow associated with the
inference step at the left is indicated at the right:

a1 ∧
[
b2 ∨

[
a3 ∨ a4

]]
ac↓ −−−−−−−−−−−−−−−−−−−−−−−

a1 ∧
[
b2 ∨ a5

] and
1 2 3 4

5

.

Note that the nonactive atoms are ‘traced’ by associating each trace with one edge; this

corresponds well to abbreviating, say, the inference step
K{a ∨ a}

ac↓ −−−−−−−−−−
K{a}

by K

{
a ∨ a
−−−−−
a

}
.

• For each other inference step in Φ, all the atom occurrences in the premiss are respectively
mapped to the same edges of φ as the atom occurrences in the conclusion. For example,
the flow associated with the inference step

a1 ∧
[(
b2 ∧ c3

)
∨
(
d4 ∧ e5

)]
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a1 ∧

([
b2 ∨ d4

])
∧
([
c3 ∨ e5

]) is
1 2 3 4 5

.

The flow φ so obtained is called the atomic flow associated with the derivation Φ. We show
three examples in Figure 2: in the top row we see three SKS derivations in the standard
CoS syntax; in the row below, we show the same derivations in the open deduction notation;
in the bottom row, we see the three corresponding atomic flows.

Perhaps surprisingly, it can be proved that every flow is associated with infinitely many
SKS derivations (see [GG08]).

We introduce now some graphical shortcuts. When certain details of a flow are not
important, but only the vertex kinds and its upper and lower edges are, we can use boxes,
labelled with all the vertex kinds that can appear in the flow they represent. For example,
the following left and centre flows could represent the previously seen flow (3.1), whereas
the right flow cannot:

φ
,

ψ ψ′

and .

The flow at the right cannot represent flow (3.1) because it has the wrong number of lower
edges and because a necessary cut vertex is not allowed by the labelling of the boxes. As just
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t
ai↓ −−−−−
a ∨ ā

= −−−−−−−−−−−−−−−−−
(a ∧ t) ∨ (t ∧ ā)

m −−−−−−−−−−−−−−−−−
[a ∨ t] ∧ [t ∨ ā]

= −−−−−−−−−−−−−−−
[a ∨ t] ∧ [ā ∨ t]

s −−−−−−−−−−−−−−−−
([a ∨ t] ∧ ā) ∨ t

= −−−−−−−−−−−−−−−−
(ā ∧ [a ∨ t]) ∨ t

s −−−−−−−−−−−−−−−−
[(ā ∧ a) ∨ t] ∨ t

= −−−−−−−−−−−−−−−−
(a ∧ ā) ∨ t

ai↑ −−−−−−−−−−−
f ∨ t

= −−−−
t

(a ∧ [ā ∨ t]) ∧ ā
ai↓ −−−−−−−−−−−−−−−−−−−−−−

(a ∧ [ā ∨ [ā ∨ a]]) ∧ ā
= −−−−−−−−−−−−−−−−−−−−−−

(a ∧ [[ā ∨ ā] ∨ a]) ∧ ā
s −−−−−−−−−−−−−−−−−−−−−−
[(a ∧ [ā ∨ ā]) ∨ a] ∧ ā

ac↓ −−−−−−−−−−−−−−−−−−−−−−
[(a ∧ ā) ∨ a] ∧ ā

ai↑ −−−−−−−−−−−−−−−−−
[f ∨ a] ∧ ā

= −−−−−−−−−−
a ∧ ā

ac↑ −−−−−−−−−−−
(a ∧ a) ∧ ā

= −−−−−−−−−−−
a ∧ (a ∧ ā)

ai↑ −−−−−−−−−−−
a ∧ f

[a ∨ b] ∧ a
ac↑ −−−−−−−−−−−−−−−−−

[(a ∧ a) ∨ b] ∧ a
ac↑ −−−−−−−−−−−−−−−−−−−−−−−

[(a ∧ a) ∨ (b ∧ b)] ∧ a
ac↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

[(a ∧ a) ∨ (b ∧ b)] ∧ (a ∧ a)
m −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

([a ∨ b] ∧ [a ∨ b]) ∧ (a ∧ a)
= −−−−−−−−−−−−−−−−−−−−−−−−−−−−

([a ∨ b] ∧ a) ∧ ([a ∨ b] ∧ a)

t
−−−−−
a ∨ ā

m −−−−−−−−−−−−−−−
[a ∨ t] ∧ [t ∨ ā]

s −−−−−−−−−−−−−−−−−−−−−−− [a ∨ t] ∧ ā
s −−−−−−−−−−
a ∧ ā
−−−−−

f
∨ t

∨ t




a ∧

[
ā ∨

t
−−−−−
ā ∨ a

]
s −−−−−−−−−−−−−−−−−−−−−−

a ∧
ā ∨ ā
−−−−−
ā

−−−−−−−−−
f

∨
a
−−−−−
a ∧ a

∧ ā


= −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a ∧
a ∧ ā
−−−−−

f

a
−−−−−
a ∧ a

∨
b
−−−−−
b ∧ b

m −−−−−−−−−−−−−−−−
[a ∨ b] ∧ [a ∨ b]

∧
a
−−−−−
a ∧ a

Figure 2: Examples of derivations in CoS and open deduction notation, and associated
atomic flows.

shown, we sometimes label boxes with the name of the flow they represent. For example,
flow φ above could represent flow (3.1), and, if the centre flow stands for (3.1), then flows ψ
and ψ′ are, respectively,

and .

When no vertex labels appear on a box, we assume that the vertices in the corresponding
flow can be any (so, it does not mean that there are no vertices in the flow).

We sometimes use a double line notation for representing multiple edges. For example,
the following diagrams represent the same flow:

ε
1 · · ·

εl

ψ

ι
1 · · ·

ιm

and

ε
l

1

ψ

ι
m

1

,
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where l,m > 0; note that we use εl1 to denote the vector (ε1, . . . , εl). We might label multiple
edges with one of the formulae that the associated atom occurrences form in a derivation.

We extend the double line notation to collections of isomorphic flows. For example, for
m > 0, the following diagrams represent the same flow:

ι
1

ι
m· · · and ι

m

1
.

We observe that the flow of every SKS derivation can always be represented as a collection
of m > 0 connected components as follows:

φ
1

ψ
1

· · ·

φ
m

ψ
m

,

such that each edge in flow φi is associated with some occurrence of some atom ai, and each
edge in flow ψi is associated with some occurrence of atom āi. Note that it might happen
that for i 6= j we have ai ≡ aj . If we do not insist on dealing with connected components,

we can adopt the same representation as above and stipulate that i 6= j implies ai 6≡ aj , āj .
This would mean that the derivation only contains occurrences of atoms a1, . . . , am, such
that these atoms and their dual are all mutually distinct.

Note that no matter how we assign a polarity, all the edges in φi and all those in ψi are
respectively mapped to dual polarity values. Given a polarity assignment, we talk about
negative and positive rule instances of (co)weakening and (co)contraction rules, according to
whether the edges incident with the associated vertices map to − or +, respectively.

In the following, when informally dealing with derivations, we freely transfer to them
notions defined for their flows. For example, we can say that an atom occurrence is negative
for a given polarity assignment (if the edge associated with the atom occurrence maps to
−) or that two atom occurrences are connected (if the associated edges belong to the same
connected component). In fact, one of the advantages of working with flows is that they
provide us with convenient geometrical notions.

As we mention at the beginning of this section, atomic flows help in selectively sub-
stituting for atom occurrences. In fact, given a derivation and its associated flow, we can
use edges and boxes to individuate atom occurrences in the derivation, and then possibly
substitute for them. For example, let us suppose that we are given the following associated
derivation and flow:

Φ =


(a ∧ f) ∨

(
a ∧

f
−−
ā

)
m −−−−−−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
a
∧

f ∨ ā
= −−−−−

ā
−−−−−−−−−−−−−−−

f

∨ ā

 and
1

.
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We can then distinguish between the three occurrences of ā that are mapped to edge 1 and
the one that is not, as in

Φ =


(a ∧ f) ∨

(
a ∧

f
−−
ā1

)
m −−−−−−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
a
∧

f ∨ ā1
= −−−−−−

ā1
−−−−−−−−−−−−−−−−

f

∨ ā

 ;

we can also substitute for these occurrences, for example by {ā1/f}; such a situation occurs
in the proof of Theorem 4.7. Note that simply substituting f for ā1 would invalidate this
derivation because it would break the cut and weakening instances; however, the proof of
Theorem 4.7 specifies how to fix such broken instances.

We generalise this labelling mechanism to boxes. For example, we can use a different
representation of the flow of Φ to individuate two classes aφ and āφ of atom occurrences, as
follows:

Φ =


(a ∧ f) ∨

(
a ∧

f
−−
āφ

)
m −−−−−−−−−−−−−−−−−−−−−

a ∨ a
−−−−−
aφ

∧
f ∨ āφ

= −−−−−−
āφ

−−−−−−−−−−−−−−−−
f

∨ āφ

 and φ .

In order to define the notion of cut-free form (Definition 6.2), we need the following
proposition, which we state here because it constitutes a good exercise about atomic flows.
Note that, in the following, we use several boxes labelled by φ: this means that we are
dealing with several copies of the same flow φ.

Notation 3.1. Given a formula A in a derivation whose associated atomic flow contains a
flow φ, we indicate with aφ every occurrence of the atom a in A whose associated edge is in
φ. So, as in the following Proposition 3.2, A{aφ/B, āφ/B̄} stands for the formula A where
the atom occurrences of a and its dual, whose associated edges are in φ, are substituted
with formula B and its dual, respectively.

Proposition 3.2. Given a derivation

A
Φ
∥∥∥SKS

A′
,

let its associated flow have shape

φ ψ ,

such that φ is a connected component each of whose edges is associated with atom a or ā;
then, for any formula B, there exists a derivation

A{aφ/B, āφ/B̄}
Ψ
∥∥∥SKS

A′{aφ/B, āφ/B̄}
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whose associated flow is

φ φ ψ
· · ·

︸ ︷︷ ︸

m

,

where m is the number of atom occurrences in B; moreover, the size of Ψ depends at most
linearly on the size of Φ and quadratically on the size of B.

Proof. We can proceed by structural induction on B and then on φ. For the two cases of
B ≡ C ∨D and B ≡ C ∧D we have to consider, for each vertex of φ, one of the following
situations:

t
−−−−−−−
C ∨ C̄

∧
t

−−−−−−−
D ∨ D̄

s −−−−−−−−−−−−−−−−−−−−−
C ∨

(
C̄ ∧

[
D ∨ D̄

])
s −−−−−−−−−−−−−−−−−−−−−
C ∨D ∨

(
C̄ ∧ D̄

) ,
f
−−
C
∨

f
−−
D

,
f
−−
C
∧

f
−−
D

,
C ∨ C
−−−−−−−
C

∨
D ∨D
−−−−−−−
D

,

(C ∧D) ∨ (C ∧D)
m −−−−−−−−−−−−−−−−−−−−−

C ∨ C
−−−−−−−
C

∧
D ∨D
−−−−−−−
D

,

and their dual ones.

Notation 3.3. In the hypotheses of Proposition 3.2, we can describe Ψ as Φ{aφ/B, āφ/B̄};
one of aφ/B or āφ/B̄ might be missing, when no identity or cut vertices are present in φ.

4. Normalisation Step 1: Simple Form

The first step in our normalisation procedure, defined here, consists in routine deep-inference
manipulations, which are best understood in conjunction with atomic flows. For this reason,
this section is a useful exercise for a reader who is not familiar with deep inference and
atomic flows.

In this section, we define proofs in ‘simple form’, in Definition 4.3, and we show that
every proof can be transformed into simple form, in Theorem 4.7.

Let us establish the following conventions (they are especially useful to simplify our
dealing with threshold formulae, in the next sections of the paper).

Notation 4.1. We use anm to denote the vector (am, am+1, . . . , an).

Convention 4.2. When we talk about a set of distinct atoms, we mean that no two atoms
are the same or dual.

Definition 4.3. Given a proof Π of A in SKS, if there exist n > 0 distinct atoms a1, . . . ,
an such that the proof and its atomic flow have shape, respectively,

t
−−−−−−−−−
a1 ∨ ā

φ1
1

∧ · · · ∧
t

−−−−−−−−−
an ∨ ā

φn
n

Ψ

∥∥∥∥∥∥
A ∨

a1 ∧ ā
φ1
1−−−−−−−−−

f
∨ · · · ∨

an ∧ ā
φn
n

−−−−−−−−−
f

and

· · ·

φ
1

φ
n

· · ·

· · ·

,

we say that Π is in simple form (over an1 ) and that Ψ is a simple core of Π.
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Proofs in simple form are such that all the cut instances are connected to identity
instances via flows, the φi ones above, that only have one lower edge. The idea is that, in a
proof in simple form, we can substitute formulae for all the occurrences of atoms āi that
map to some edge in φi, without altering the conclusion of the proof. Of course, doing this
would invalidate identity and cut instances, but we actually only need the simple core of the
proof.

Our normalisation procedure essentially relies on gluing together simple cores, where
we substitute the ai atom occurrences that map to edges in φi with certain formulae called
‘pseudocomplements’ (see Section 5 and Definition 6.2).

Remark 4.4. A proof in simple form over a0
1 is cut-free.

In order to prove Theorem 4.7, we need two facts, Proposition 4.5 and Lemma 4.6.
In the following (routine) proposition, we use the switch rule s to ‘push outside’ or ‘pull

inside’ a formula A, relative to a context K{ }.

Proposition 4.5. For any context K{ } and formula A, there exist derivations whose size

is less than |K{A}|2 and have shape

K{A}∥∥∥{s}
A ∨K{f}

and
A ∧K{t}∥∥∥{s}
K{A}

.

Proof. We only build the derivation at the left in the claim, the construction being dual for
the one at the right. We reason by induction on the number n of ∨-∧ alternations in the
formula-tree branch of { } in K{ }. If n = 0, then K{A} = A ∨K{f}. If n > 0, consider

 H{A}∥∥∥{s}
A ∨H{f}

∧ B


s −−−−−−−−−−−−−−−−−−−−−−−−−

A ∨ (H{f} ∧B)

∨ C

 ,

for some context H{ } and formulae B and C, such that K{ } = (H{ } ∧B) ∨ C and the
number of ∨-∧ alternations in the formula-tree branch of { } in H{ } is n− 1. The number
of s instances is n, and we have that n 6 |K{f}|.

Note that the atomic flows of the derivations in the previous proposition only consist of
edges because no structural rules appear.

To prove Theorem 4.7, we could now proceed as follows. Given a proof, we assign it (and
its flow) an arbitrary polarity, under certain assumptions that we can always easily satisfy.
We then focus on the negative paths connecting identity and cut vertices. If cocontraction
vertices lie along these paths, we have a potential problem because some atoms in the
conclusion of the proof might be connected to atoms in some identity instances. This would
prevent us from substituting pseudocomplements, as previously mentioned, because by doing
so we would alter the conclusion of the proof.

However, we can solve the problem by replacing each cocontraction vertex by an
appropriate flow involving identity, cut and contraction vertices, in such a way that the
only contraction vertex so introduced is positive. Actually, the lemma below takes a more
radical approach, which simplifies exposition and also has broader application: we replace
all negative contraction and cocontraction instances. This unnecessarily bloats the proof,
but still stays well inside polynomial bounds.
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Lemma 4.6. Given any derivation
A

Φ
∥∥∥SKS

B
,

we can, in linear time in the size of Φ, construct a derivation

A∥∥∥SKS

B

such that its atomic flow has shape

ε
l

1
,

and such that no two atoms associated with ε1, . . . , εl are dual, for some l > 0.

Proof. Assign a polarity to the flow of Φ such that no two dual atoms are both associated
with negative edges; then replace each negative contraction instance as follows:

A

Ψ

∥∥∥∥∥∥SKS

K

{
ā ∨ ā
−−−−−
ā

}
Ψ′

∥∥∥∥∥∥SKS

B

becomes

A

Ψ

∥∥∥∥∥∥SKS

K



t
−−−−−
a ∨ ā

∧ [ā ∨ ā]

s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a
−−−−−
a ∧ a

∧ [ā ∨ ā]

s −−−−−−−−−−−−−−−−−
a ∧ [(a ∧ ā) ∨ ā]

s −−−−−−−−−−−−−−−−−
a ∧ ā
−−−−−

f
∨
a ∧ ā
−−−−−

f

∨ ā




Ψ′

∥∥∥∥∥∥SKS

B

.

This corresponds, in the flow, to replacing each negative contraction vertex as follows:

1 2

3

becomes

21

3

.

Proceed analogously with negative cocontraction instances.
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We are now ready to prove the main result of this section.

Theorem 4.7. Given any proof Π of A in SKS, we can, in cubic time in the size of Π,
construct a proof of A in simple form.

Proof. We proceed in three steps.

(1) By Lemma 4.6, we can transform Π, in linear time in its size, into a proof
−

Π′
∥∥∥SKS

A , whose
flow has shape

ε
l

1

ι
m

1

,

where l,m > 0 and such that no two atoms associated with ε1, . . . , εl are dual. For
1 6 i 6 m, we successively transform Π′ as follows, for some Π′′, Φ, Φ′, K{ } and H{ }:

−
Π′′

∥∥∥∥∥∥
K

{
f
−−−
āιi

}
Φ

∥∥∥∥∥∥
H

{
a ∧ āιi
−−−−−−−

f

}
Φ′

∥∥∥∥∥∥
A

becomes

−
Π′′

∥∥∥
K{f}

Φ{āιi/f}
∥∥∥∥∥∥

H

{
a
−−
t
∧ f

}
Φ′

∥∥∥∥∥∥
A

.

This way, we obtain, in linear time, a proof
−

Π′′′
∥∥∥SKS

A , whose flow is

ε
l

1
,

and whose size is smaller than |Π′|.
(2) Thanks to Proposition 4.5, for 1 6 i 6 l, we successively transform Π′′′ as follows, for

some Ψ, Ψ′ and K ′{ }:

−
Ψ

∥∥∥∥∥∥
K ′

{
t

−−−−−−−
a ∨ āεi

}
Ψ′

∥∥∥∥∥∥
A

becomes

t
−−−−−−−
a ∨ āεi

[a∨ā]∧Ψ
∥∥∥

[a ∨ āεi ] ∧K ′{t}∥∥∥{s}
K ′{a ∨ āεi}

Ψ′
∥∥∥
A

;
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we also apply the dual transformation for each ai↑ instance. This way, we obtain a proof

t
−−−−−−−−
a1 ∨ ā

ε1
1

∧ · · · ∧
t

−−−−−−−−
al ∨ ā

εl
l

Ψ′′
∥∥∥∥∥∥

A ∨
a1 ∧ ā

ε1
1−−−−−−−−

f
∨ · · · ∨

al ∧ ā
εl
l−−−−−−−−

f

,

whose flow is the same as that of Π′′′ because each transformation conserves the flow.
If |Π′′′| = n, and given that n > 2l, the size of each derivation introduced by virtue of
Proposition 4.5 is at most 4n2. So, each of the 2l transformations increases the size of
the proof by O(n2), which makes for a total complexity of O(n3).

(3) Consider bn1 such that b1, . . . , bn are distinct and {a1, . . . , al} = {b1, . . . , bn}. We can
build, in linear time, the proof

t
−−−−−−−
b1 ∨ b̄1

∧ · · · ∧
t

−−−−−−−
bn ∨ b̄n∥∥∥∥∥∥{c↑}

[a1 ∨ ā
ε1
1 ] ∧ · · · ∧ [al ∨ ā

εl
l ]

Ψ′′
∥∥∥∥∥∥A ∨

(a1 ∧ ā
ε1
1 ) ∨ · · · ∨ (al ∧ ā

εl
l )∥∥∥∥∥∥{c↓}[

b1 ∧ b̄1
−−−−−−−

f
∨ · · · ∨

bn ∧ b̄n
−−−−−−−

f

]


,

which is in simple form over bn1 . We can then obtain a proof in SKS in time O(n2),
because of Proposition 2.1.

The transformation in Step (1) in the previous proof is a case of ‘weakening reduction’ for
atomic flows, studied in [GG08]. In Section 7 we comment more on this.

Remark 4.8. In general, given a proof Π and by the construction in the proof of Theorem 4.7,
we can obtain several different simple forms from Π. In fact, apart from permutations of
rule instances, commutativity and associativity, the simple forms depend on the choice of a
polarity assignment (Lemma 4.6).

5. Threshold Formulae

We present here the main construction of this paper, i.e., a class of derivations Γ that only
depend on a given set of atoms and that allow us to normalise any proof containing those
atoms. The complexity of the Γ derivations dominates the complexity of the normal proof,
and is due to the complexity of certain ‘threshold formulae’, on which the Γ derivations are
based. The Γ derivations are constructed in Definition 5.7; this directly leads to Theorem 5.9,
which states a crucial property of the Γ derivations and which is the main result of this
section.
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Threshold formulae realise boolean threshold functions, which are defined as boolean
functions that are true if and only if at least k of n inputs are true (see [Weg87] for a
thorough reference on threshold functions).

In the following, bxc denotes the maximum integer n such that n 6 x.
There are several ways of encoding threshold functions into formulae, and the problem is

to find, among them, an encoding that allows us to obtain Theorem 5.9. Efficiently obtaining
the property stated in Theorem 5.9 crucially depends also on the proof system we adopt.

The following class of threshold formulae, which we found to work for system SKS, is a
simplification of the one adopted in [AGP02].

Definition 5.1. Consider n > 0, distinct atoms a1, . . . , an, and let p = bn/2c and q = n−p;
for k > 0, we define the threshold formulae θnk a

n
1 as follows:

• for any n > 0 let θn0 a
n
1 ≡ t;

• for any n > 0 and k > n let θnk a
n
1 ≡ f;

• θ1
1(a1) ≡ a1;

• for any n > 1 and 0 < k 6 n let θnk a
n
1 ≡

∨
i+j=k
06i6p
06j6q

(
θ
p
i a

p
1
∧ θqj a

n
p+1

)
.

Compared to the definition in [AGP02], we require i+ j = k instead of i+ j > k. The
semantics of the formulae does not change but their size is smaller and their structure is
much simpler, arguably benefiting further research. See, in Figure 3, some examples of
threshold formulae.

The only reason why we require atoms to be distinct in threshold formulae is to avoid
certain technical problems with substitutions in the definition of cut-free form, later on.
However, there is no substantial difficulty in relaxing this definition to any set of atoms.

The formulae for threshold functions adopted in [AGP02] correspond, for each choice
of k and n, to

∨
i>k θ

n
i a

n
1 . We presume that [AGP02] employs these more complicated

formulae because the formalism adopted there, the sequent calculus, is less flexible than deep
inference, requiring more information in threshold formulae in order to construct suitable
derivations.

Remark 5.2. For n > 0, we have θn1 a
n
1 = a1 ∨ · · · ∨ an and θnn a

n
1 = a1 ∧ · · · ∧ an.

The size of the threshold formulae dominates the cost of the normalisation procedure,
so, we evaluate their size. We leave as an exercise the proof of the following proposition.

Proposition 5.3. For any n > 0 and k > 0, |θnk an1 | 6
∣∣∣θnbn/2c+1 a

n
1

∣∣∣.
Lemma 5.4. The size of θnbn/2c+1 a

n
1 is nO(logn).

Proof. Observe that |θnk an1 | 6
∣∣θn+1
k an+1

1

∣∣. Let p = bn/2c and q = n− p and consider:∣∣θnp+1 a
n
1

∣∣ =
∑

i+j=p+1
06i6p
06j6q

(
|θpi a

p
1|+

∣∣∣θqj anp+1

∣∣∣)
6
∑

i+j=p+1
06i,j6q

(
|θqi a

q
1|+

∣∣∣θqj aq1∣∣∣)
6 2(q + 1)

∣∣∣θqbq/2c+1 a
q
1

∣∣∣ ,

(5.1)
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θ2
0(a, b) ≡ t ,

θ2
1(a, b) ≡ (θ1

1(a) ∧ θ1
0(b)) ∨ (θ1

0(a) ∧ θ1
1(b)) ≡ (a ∧ t) ∨ (t ∧ b)

= a ∨ b ,

θ2
2(a, b) ≡ θ1

1(a) ∧ θ1
1(b)

≡ a ∧ b ,

θ3
0(a, b, c) ≡ t ,

θ3
1(a, b, c) ≡ (θ1

1(a) ∧ θ2
0(b, c)) ∨ (θ1

0(a) ∧ θ2
1(b, c)) ≡ (a ∧ t) ∨ (t ∧ [(b ∧ t) ∨ (t ∧ c)])

= a ∨ b ∨ c ,

θ3
2(a, b, c) ≡ (θ1

1(a) ∧ θ2
1(b, c)) ∨ (θ1

0(a) ∧ θ2
2(b, c))

= (a ∧ [b ∨ c]) ∨ (b ∧ c) ,

θ3
3(a, b, c) ≡ θ1

1(a) ∧ θ2
2(b, c) ≡ (a ∧ (b ∧ c))

= a ∧ b ∧ c ,

θ5
0(a, b, c, d, e) ≡ t ,

θ5
1(a, b, c, d, e) ≡ (θ2

1(a, b) ∧ θ3
0(c, d, e)) ∨ (θ2

0(a, b) ∧ θ3
1(c, d, e))

= a ∨ b ∨ c ∨ d ∨ e ,

θ5
2(a, b, c, d, e) ≡ (θ2

2(a, b) ∧ θ3
0(c, d, e)) ∨ (θ2

1(a, b) ∧ θ3
1(c, d, e)) ∨ (θ2

0(a, b) ∧ θ3
2(c, d, e))

= (a ∧ b) ∨ ([a ∨ b] ∧ [c ∨ d ∨ e]) ∨ (c ∧ [d ∨ e]) ∨ (d ∧ e) ,

θ5
3(a, b, c, d, e) ≡ (θ2

2(a, b) ∧ θ3
1(c, d, e)) ∨ (θ2

1(a, b) ∧ θ3
2(c, d, e)) ∨ (θ2

0(a, b) ∧ θ3
3(c, d, e))

= (a ∧ b ∧ [c ∨ d ∨ e]) ∨ ([a ∨ b] ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨ (c ∧ d ∧ e) ,

θ5
4(a, b, c, d, e) ≡ (θ2

2(a, b) ∧ θ3
2(c, d, e)) ∨ (θ2

1(a, b) ∧ θ3
3(c, d, e))

= (a ∧ b ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨ ([a ∨ b] ∧ c ∧ d ∧ e) ,

θ5
5(a, b, c, d, e) ≡ θ2

2(a, b) ∧ θ3
3(c, d, e)

= a ∧ b ∧ c ∧ d ∧ e ,

θ5
6(a, b, c, d, e) ≡ f .

Figure 3: Examples of threshold formulae.

where we use Proposition 5.3. We show that, for h = 2/(log 3− log 2) and for any n > 0, we

have
∣∣∣θnbn/2c+1 a

n
1

∣∣∣ 6 nh logn. We reason by induction on n; the case n = 1 trivially holds.

By the inequality (5.1), and for n > 1, we have∣∣∣θnbn/2c+1 a
n
1

∣∣∣ 6 2(n− bn/2c+ 1)(n− bn/2c)h log(n−bn/2c)

6 n2nh log(2n/3) = nh logn−h(log 3−log 2)+2 = nh logn .
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Theorem 5.5. For any k > 0 the size of θnk a
n
1 is nO(logn).

Proof. It immediately follows from Proposition 5.3 and Lemma 5.4.

Given a threshold formula θnk a
n
1 , we can consider, for each al such that 1 6 l 6 n, the

formulae (θnk a
n
1 ){al/f} and (θnk+1 a

n
1 ){al/t}: we call both of them, informally, ‘pseudocom-

plements’ of al. The reason for this name is that we can manage to replace, in a given proof,
all occurrences of those āl that appear in cut instances with the pseudocomplements of al.
The cut instances and their corresponding identity instances are then removed, leaving us
with derivations whose premiss and conclusion contain each a threshold formula. Moreover,
the k-level of the threshold formula in the premiss is one less than the k-level of the thresh-
old formula in the conclusion. This way, we obtain several derivations, corresponding to
increasing values of k, that we are able to stitch together until we get a normalised proof.

All this, of course, needs clarification and for many it might be helpful only after having
grasped the full proof in its technical form. However, we think that it is convenient here
to provide a summary of the main constructions allowing for this stitching operation. Let
us read derivations top-down; the following are the steps that we need to perform, for
0 6 k 6 n.

(1) Build
θnk a

n
1∥∥∥

al ∨ (θnk a
n
1 ){al/f}

,

i.e., create, from a k-level threshold formula, a disjunction between al and its pseudo-
complement (θnk a

n
1 ){al/f} (Proposition 6.1); then replace the pseudocomplement into

āl, for each identity instance.
(2) Increase the k-level by using the derivations

(θnk a
n
1 ){al/f}∥∥∥

(θnk+1 a
n
1 ){al/t}

(Theorem 5.9); these are the Γ derivations mentioned in the introduction to this section.
(3) For each cut instance, collect the conjunction between al and its pseudocomplement

(θnk+1 a
n
1 ){al/t}; then build

al ∧ (θnk+1 a
n
1 ){al/t}∥∥∥

θnk+1 a
n
1

,

i.e., create a (k + 1)-level threshold formula (Proposition 6.1).

The derivations mentioned above do not require any use of identity and cut, and allow us
to move, in n+ 1 steps, from θn0 a

n
1 ≡ t to θnn+1 a

n
1 ≡ f, which is the secret to success. The

constructions in 1 and 3 are deep-inference routine and introduce low complexity. We deal
now with the crucial step 2, by designing Definition 5.7, and then checking it carefully, so as
to get the property stated in Theorem 5.9.

Definition 5.7 is technical, but its philosophy is simple; all one has to do to build the
derivations required by Theorem 5.9 is:

• identify the atom occurrences that must occur in the premiss and that must not occur in
the conclusion and remove them using coweakening, and
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• identify the atom occurrences that must occur in the conclusion and that must not occur
in the premiss and add them using weakening.

We have implemented Definition 5.7 as a program [Gug09]. It can be useful to read the
definition together with the examples in Figures 4 and 3, which have been generated by the
program.

Remark 5.6. Given n > 1, let p = bn/2c and q = n− p. For 0 6 k 6 q and 1 6 l 6 p, the
following derivation is well defined:

(θpp a
p
1){al/f} ∧ θqk a

n
p+1

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−
f

=
a1 ∧ · · · ∧ al−1 ∧ al+1 ∧ · · · ∧ ap ∧ θqk a

n
p+1

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t

∧ f .

Analogously, for 0 6 k 6 p and p+ 1 6 l 6 n, we can define the following derivation:

θ
p
k a

p
1
∧ (θqq anp+1){al/f}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−
f

=
θ
p
k a

p
1
∧ ap+1 ∧ · · · ∧ al−1 ∧ al+1 ∧ · · · ∧ an

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
t

∧ f .

Both classes of derivations are used in Definition 5.7.

Definition 5.7. Consider n > 0, distinct atoms a1, . . . , an, and let p = bn/2c and q = n−p.
• For n > 1 and 1 6 l 6 n, we define the derivations Υn

k,l a
n
1 and ∆n

k,l a
n
1 as follows:

Υn
k,l a

n
1 =



(θpp a
p
1){al/f} ∧ θqk−p a

n
p+1

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

if p 6 k 6 n and l 6 p

θ
p
k−q a

p
1
∧ (θqq anp+1){al/f}

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

if q 6 k 6 n and p < l

f otherwise

and

∆n
k,l a

n
1 =



f
w↓ −−−−−−−−

θ
q
k a

n
p+1

if 0 < k 6 q and l 6 p

f
w↓ −−−−−−

θ
p
k a

p
1

if 0 < k 6 p and p < l

f otherwise

.

• For k > 0 and 1 6 l 6 n, we define the derivations Γnk,l a
n
1 , recursively on n, as follows:

– Γ1
0,1(a1) = t;

– for k > 0, Γ1
k,1(a1) = f;

– for k > n, Γnk,l a
n
1 = f;

– for n > 1 and k 6 n, let

Γnk,l a
n
1 =



∨
i+j=k
06i<p
06j6q

(
Γpi,l a

p
1
∧ θqj a

n
p+1

)
∨Υn

k,l a
n
1 ∨∆n

k+1,l a
n
1 if l 6 p

∨
i+j=k
06i6p
06j<q

(
θ
p
i a

p
1
∧ Γqj,l−p a

n
p+1

)
∨Υn

k,l a
n
1 ∨∆n

k+1,l a
n
1 if p < l

.



22 P. BRUSCOLI, A. GUGLIELMI, T. GUNDERSEN, AND M. PARIGOT

Γ5
0,1 a = t ∨

f
−−
b
∨

f
−−−−−−−−−
c ∨ d ∨ e

,

Γ5
1,1 a = b ∨

([
t ∨

f
−−
b

]
∧ [c ∨ d ∨ e]

)
∨

f
−−−−−−−−−−−−−−−−−−−−−−−−
(c ∧ [d ∨ e]) ∨ (d ∧ e)

,

Γ5
2,1 a = (b ∧ [c ∨ d ∨ e]) ∨

([
t ∨

f
−−
b

]
∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]

)
∨

f ∧ b
−−−−−

f
∨

f
−−−−−−−−−
c ∧ d ∧ e

,

Γ5
3,1 a = (b ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]) ∨

([
t ∨

f
−−
b

]
∧ c ∧ d ∧ e

)
∨

f ∧ b ∧ [c ∨ d ∨ e]
−−−−−−−−−−−−−−−−−−−

f
,

Γ5
4,1 a = (b ∧ c ∧ d ∧ e) ∨

f ∧ b ∧ [(c ∧ [d ∨ e]) ∨ (d ∧ e)]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

f
,

Γ5
5,1 a =

f ∧ b ∧ c ∧ d ∧ e
−−−−−−−−−−−−−−−−−

f
,

Γ5
0,3 a = t ∨

f
−−−−−
d ∨ e

∨
f
−−−−−
a ∨ b

,

Γ5
1,3 a =

(
[a ∨ b] ∧

[
t ∨

f
−−−−−
d ∨ e

])
∨ d ∨ e ∨

f
−−−−−
d ∧ e

∨
f
−−−−−
a ∧ b

,

Γ5
2,3 a =

(
a ∧ b ∧

[
t ∨

f
−−−−−
d ∨ e

])
∨

(
[a ∨ b] ∧

[
d ∨ e ∨

f
−−−−−
d ∧ e

])
∨ (d ∧ e) ∨

f ∧ [d ∨ e]
−−−−−−−−−−−

f
,

Γ5
3,3 a =

(
a ∧ b ∧

[
d ∨ e ∨

f
−−−−−
d ∧ e

])
∨

(
[a ∨ b] ∧

[
(d ∧ e) ∨

f ∧ [d ∨ e]
−−−−−−−−−−−

f

])
∨

f ∧ d ∧ e
−−−−−−−−−

f
,

Γ5
4,3 a =

(
a ∧ b ∧

[
(d ∧ e) ∨

f ∧ [d ∨ e]
−−−−−−−−−−−

f

])
∨

[a ∨ b] ∧ f ∧ d ∧ e
−−−−−−−−−−−−−−−−−−−

f
,

Γ5
5,3 a =

a ∧ b ∧ f ∧ d ∧ e
−−−−−−−−−−−−−−−−−−

f
,

Γ5
0,5 a = t ∨

f
−−
d
∨

f
−−
c
∨

f
−−−−−
a ∨ b

,

Γ5
1,5 a =

(
[a ∨ b] ∧

[
t ∨

f
−−
d
∨

f
−−
c

])
∨

(
c ∧

[
t ∨

f
−−
d

])
∨ d ∨

f
−−−−−
a ∧ b

,

Γ5
2,5 a =

(
a ∧ b ∧

[
t ∨

f
−−
d
∨

f
−−
c

])
∨

(
[a ∨ b] ∧

[(
c ∧

[
t ∨

f
−−
d

])
∨ d

])
∨ (c ∧ d) ∨

d ∧ f
−−−−−

f
,

Γ5
3,5 a =

(
a ∧ b ∧

[(
c ∧

[
t ∨

f
−−
d

])
∨ d

])
∨

(
[a ∨ b] ∧

[
(c ∧ d) ∨

d ∧ f
−−−−−

f

])
∨
c ∧ d ∧ f
−−−−−−−−−

f
,

Γ5
4,5 a =

(
a ∧ b ∧

[
(c ∧ d) ∨

d ∧ f
−−−−−

f

])
∨

[a ∨ b] ∧ c ∧ d ∧ f
−−−−−−−−−−−−−−−−−−−

f
,

Γ5
5,5 a =

a ∧ b ∧ c ∧ d ∧ f
−−−−−−−−−−−−−−−−−

f
.

Figure 4: Examples of Γ5
k,l a, where a = (a, b, c, d, e).
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Example 5.8. See, in Figure 4, some example of derivations Γnk,l a
n
1 . Note that, for clarity,

we removed all instances of the trivial derivations Υ2
1,1 a

2
1 = Υ2

1,2 a
2
1 = Υ3

1,1 a
3
1 =

f
w↑ −−

f
. We

can do so because these derivation instances appear as disjuncts.

Theorem 5.9. For any n > 0, k > 0 and 1 6 l 6 n, the derivation Γnk,l a
n
1 has shape

(θnk a
n
1 ){al/f}∥∥∥{aw↓,aw↑}

(θnk+1 a
n
1 ){al/t}

,

and
∣∣∣Γnk,l an1 ∣∣∣ is nO(logn).

Proof. The shape of Γnk,l a
n
1 can be verified by inspecting Definition 5.7. For example, this is

the case when n > 1 and l 6 p 6 k < q, where p = bn/2c and q = n− p:

(θnk a
n
1 ){al/f}

Γnk,l a
n
1

∥∥∥
(θnk+1 a

n
1 ){al/t}

=

∨
i+j=k
06i<p
06j6q

 (θpi a
p
1){al/f}

Γpi,l a
p
1

∥∥∥
(θpi+1 a

p
1){al/t}

∧ θqj a
n
p+1

 ∨ (θpp a
p
1){al/f} ∧ θqk−p a

n
p+1

w↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f

∨
f

w↓ −−−−−−−−−−−
θ
q
k+1 a

n
p+1

.

(Remember that

θnk a
n
1 ≡

∨
i+j=k
06i6p
06j6q

(
θ
p
i a

p
1
∧ θqj a

n
p+1

)

and θ
p
0 a

p
1 ≡ t.) General (co)weakening rule instances can be replaced by atomic ones

because of Proposition 2.1. The size bound on Γnk,l a
n
1 follows from Proposition 2.1 and

Theorem 5.5.

6. Normalisation Step 2: Cut-Free Form

In this section we define the cut-free form of proofs, based on proofs in simple form. Proofs
in cut-free form have no cut instances, but can have coweakening ones, which prevent these
proofs from being analytic (in the sense that atoms appear in premisses only if they do so in
conclusions). Theorem 6.3, the main result of the section, shows how to obtain a cut-free
proof from any proof. Most of the ingenuity of quasipolynomially normalising an SKS proof
into one in analytic SKS resides in going from a simple form to a cut-free one. Removing
coweakening instances from a cut-free form is easy; we dedicate Section 7 to this.

Before defining the cut-free form, we need to establish the following fact.

Proposition 6.1. For any formula A and atom a, there exist derivations whose size is
cubic in |A| and that have shape

A∥∥∥{aw↓,ac↓,s}
a ∨A{a/f}

and
a ∧A{a/t}∥∥∥{aw↑,ac↑,s}

A
.
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Proof. If there are no occurrences of a in A, the desired derivations are

A
= −−−−−

f ∨A
−−−−−−
a ∨A

and

a ∧A
−−−−−−
t ∧A

= −−−−−
A

.

If there are h > 0 occurrences of a in A, obtain, by repeatedly applying Proposition 4.5, the
following derivations:

A∥∥∥∥∥∥{s}[
a ∨ · · · ∨ a

(h−1)·ac↓ −−−−−−−−−−−
a

∨A{a/f}

] and

(
a

(h−1)·ac↑ −−−−−−−−−−−
a ∧ · · · ∧ a

∧A{a/f}

)
∥∥∥∥∥∥{s}
A

.

If |A| = n, the size of the desired derivations is O(n3) because we have to apply Proposition 4.5
at most O(n) times.

Definition 6.2. For n > 0, let Π be a proof in simple form over an1 , such that it and its
atomic flow have shape

t
−−−−−−−−−
a1 ∨ ā

φ1
1

∧ · · · ∧
t

−−−−−−−−−
an ∨ ā

φn
n

Ψ

∥∥∥∥∥∥
A ∨

a1 ∧ ā
φ1
1−−−−−−−−−

f
∨ · · · ∨

an ∧ ā
φn
n

−−−−−−−−−
f

and

· · ·

φ
1

φ
n

· · ·

· · ·

,

for some derivation Ψ. For 0 6 i 6 n + 1, let θi ≡ θni a
n
1 . For 0 6 k 6 n, we define the

derivations
θk

Φk
∥∥∥SKS\{ai↑}

A ∨ θk+1

as

θk
(n−1)·c↑ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− θk∥∥∥{aw↓,ac↓,s}

a1 ∨ θk{a1/f}
∧ · · · ∧

θk∥∥∥{aw↓,ac↓,s}
an ∨ θk{an/f}


Ψk

∥∥∥∥∥∥SKS\{ai↑}
A ∨

a1 ∧
θk{a1/f}

Γnk,1 a
n
1

∥∥∥{aw↓,aw↑}

θk+1{a1/t}


∥∥∥∥∥∥{aw↑,ac↑,s}

θk+1

∨ · · · ∨

an ∧
θk{an/f}

Γnk,n an1
∥∥∥{aw↓,aw↑}

θk+1{an/t}


∥∥∥∥∥∥{aw↑,ac↑,s}

θk+1
(n−1)·c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

θk+1



,
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φ′
0

φ

θ
1

.

.

.

θk

φ′
k

ψkφ

θk+1

φ

φ′
n

θn

.

.

.

· · · · · ·

A

Figure 5: Atomic flow of a proof in cut-free form.

where Ψk = Ψ{āφ11 /θk{a1/f}, . . . , āφnn /θk{an/f}} and where we use Proposition 6.1. We
define the cut-free form of Π as the following proof in SKS \ {ai↑}:

θ0

Φ0

∥∥∥∥∥∥
A ∨

θ1

Φ1

∥∥∥∥∥∥A ∨ · · · ∨

θ2
...A ∨
θn

Φn
∥∥∥

[A ∨ θn+1]






n·c↓ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

A
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(We recall that θ0 ≡ t and θn+1 ≡ f.)

Theorem 6.3. Given any proof Π of A in SKS, we can construct a proof of A in SKS\{ai↑}
in time quasipolynomial in the size of Π.

Proof. By Theorem 4.7 we can construct from Π, in polynomial time, a proof Π′ of A
in simple form. We can then proceed with the construction of Definition 6.2, to which
we refer here. For 0 6 k 6 n, constructing Φk requires quasipolynomial time because of
Propositions 2.1, 3.2 and 6.1 and Theorems 5.5 and 5.9, and because obtaining Ψk from
Ψ requires quasipolynomial time. Constructing the cut-free from of Π′ from Φ0, . . . , Φn is
done in polynomial time.

Remark 6.4. In Figure 5, we show the atomic flow of the cut-free form obtained from a
proof Π in simple form. We refer to Definition 6.2. Let the following be the flow of the
simple core Ψ of Π:

φ ψ

A

,

where ψ is the union of flows φ1, . . . , φn, and where we denote by A the edges corresponding
to the atom occurrences appearing in the conclusion A of Π. We then have that, for
0 < k < n, the flow of Φk is φ′k, as in Figure 5, where ψk is the flow of the derivation Ψk.
The flows of Φ0 and Φn are, respectively, φ′0 and φ′n.

7. Normalisation Step 3: Analytic Form

Of special importance in this paper is the following proof system:

Definition 7.1. Analytic SKS is the system aSKS = SKS \ {ai↑, aw↑}.

For example, the system {s,m,=, ac↓} polynomially simulates the system {s,=, c↓}, and
aSKS = {s,m,=, ai↓, aw↓, ac↓, ac↑} polynomially simulates {s,=, i↓,w↓, c↓, c↑} (where i↓ is
the nonatomic identity). In this section, we show that we can get proofs in analytic SKS,
i.e., system aSKS, in quasipolynomial time from proofs in SKS.

Transforming a proof in cut-free form into an analytic one requires eliminating coweak-
ening rule instances. This can be done by transformations that are the dual of those over
weakening instances, employed in Step (1) of the proof of Theorem 4.7.

Theorem 7.2 (Jeřábek [Jeř09]). Given any proof Π of A in SKS, we can construct a proof
of A in aSKS in time quasipolynomial in the size of Π.

Proof. By Theorem 6.3, we can obtain, from Π, a cut-free proof Π′ of the same formula,
in quasipolynomial time in the size of Π. We associate Π′ with its atomic flow φ, so that
we have a way to identify the atom occurrences in Π′ associated with each edge of φ, and

substitute over them. We repeatedly examine each coweakening instance
aε

aw↑ −−
t

in Π′, for

some edge ε of φ, and we perform one transformation out of the following exhaustive list of
cases, for some Π′′, Φ, Ψ, K{ } and H{ }:
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(1)
−

Π′′
∥∥∥∥∥∥

K

{
t

−−−−−−
aε ∨ ā

}
Φ

∥∥∥∥∥∥
H

{
aε
−−
t

}
Ψ

∥∥∥∥∥∥
A

becomes

−
Π′′

∥∥∥∥∥∥
K

[
t ∨

f
−−
ā

]
Φ{aε/t}

∥∥∥∥∥∥
H{t}
Ψ
∥∥∥
A

;

(2)
−

Π′′
∥∥∥∥∥∥

K

{
f
−−
aε

}
Φ

∥∥∥∥∥∥
H

{
aε
−−
t

}
Ψ

∥∥∥∥∥∥
A

becomes

−
Π′′

∥∥∥∥∥∥
K

{
f ∧ [t ∨ t]

s −−−−−−−−−−
(f ∧ t) ∨ t

}
Φ{aε/t}

∥∥∥∥∥∥
H{t}
Ψ
∥∥∥
A

;

(3)
−

Π′′
∥∥∥∥∥∥

K

{
a ∨ a
−−−−−
aε

}
Φ

∥∥∥∥∥∥
H

{
aε
−−
t

}
Ψ

∥∥∥∥∥∥
A

becomes

−
Π′′

∥∥∥∥∥∥
K

[
a
−−
t
∨
a
−−
t

]
Φ{aε/t}

∥∥∥∥∥∥
H{t}
Ψ
∥∥∥
A

;

(4)
−

Π′′
∥∥∥∥∥∥

K

{
a

−−−−−−
aε ∧ a

}
Φ

∥∥∥∥∥∥
H

{
aε
−−
t

}
Ψ

∥∥∥∥∥∥
A

becomes

−
Π′′

∥∥∥
K{a}

Φ{aε/t}
∥∥∥

H{t}
Ψ
∥∥∥
A

.
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aw↓-ac↓ :
1

2
→ 1,2 ac↑-aw↑ :

2

1

→ 1,2

aw↓-ai↑ : 1 → 1 ai↓-aw↑ : 1 → 1

aw↓-aw↑ : →

aw↓-ac↑ :
1 2

→
1 2

ac↓-aw↑ :
1 2

→

1 2

Figure 6: Weakening and coweakening atomic-flow reductions.

The process terminates in linear time on the size of Π′ because each transformation eliminates
some atom occurrences. The final proof is in aSKS.

The transformations described in the proof of Theorem 7.2 are the minimal ones
necessary to produce a proof in aSKS. However, it is possible to further reduce the proof so
obtained. The transformations in the proof of Theorem 7.2, together with the one mentioned
in Step (1) in the proof of Theorem 4.7, all belong to the class of weakening and coweakening
reductions studied in [GG08]. In the rest of this section, we quickly outline a possible,
further transformation of the analytic form produced by those reductions, and refer the
reader to [GG08] for a more thorough explanation.

It is advantageous to describe the weakening and coweakening transformations directly
as atomic-flow reduction rules. These are special graph rewriting rules for atomic flows,
that are known to correspond to sound derivation transformations, in the following sense. If
Φ is a derivation with flow φ, and φ can be transformed into ψ by one of the atomic-flow
reduction rules, then there exists a derivation Ψ whose flow is ψ and such that it has the
same premiss and conclusion as Φ. Moreover, Ψ can be obtained from Φ by instantiating
some atoms and changing some rule instances, in linear time.

The weakening and coweakening atomic-flow reduction rules are shown in Figure 6. The
reduction rule labelled aw↓-ai↑ is employed in Step (1) in the proof of Theorem 4.7. The
reduction rules labelled ac↑-aw↑, ai↓-aw↑, aw↓-aw↑ and ac↓-aw↑ are employed in the proof of
Theorem 7.2, respectively as Case (4), (1), (2) and (3). If we apply the full set of weakening
and coweakening reductions until possible, starting from a proof in cut-free form, we obtain
a proof of the same formula and whose flow has shape

.

Note that the graph rewriting system consisting of the reductions in Figure 6 is confluent.

8. Final Comments and Future Work

System aSKS is not a minimal complete system for propositional logic, because the atomic
cocontraction rule ac↑ is admissible (via ac↓, s, ai↑ and cut elimination). Removing ac↑ from
aSKS yields system KS. A natural question is whether quasipolynomial-time normalisation
holds for KS as well. We would guess that cocontraction plays an essential role in keeping the
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complexity low. For example, one can note in Figure 5 how cocontraction limits the size of
the n pieces of derivation below each θk. If we had to expand those cocontraction instances
into a tree we would have an exponential blow-up. On the other hand, an encouraging result
in the opposite direction is contained in [Das14], where the author obtains nO(log logn)-size
proofs of the weak pigeonhole principle, using deep-inference techniques to improve the
previous bound for monotone proofs.

There is reason to believe that polynomial normalisation is achievable, because it is
possible to compute threshold functions with polynomial formulae. However, the hardest
problem seems to be obtaining polynomial Γ-like (cut-free) derivations with the property of
Theorem 5.9. We tend to think that polynomiality ought to be possible, and deep inference
might be a helpful language for investigating and achieving it, because of its flexibility in
constructing derivations.

The normalisation procedure presented here is peculiar because it achieves its result
by using an external scheme, constituted by the threshold formulae and the Γ derivations,
which does not depend on the derivation to be normalised. Threshold formulae realise a
clever compositional mechanism built on top of cocontractions. It would be interesting to
interpret this or a similar mechanism computationally. We do not necessarily expect an
interpretation strictly following the Curry-Howard scheme, and there is little evidence that
the threshold construction studied here can be applied in the intuitionistic case. On the
other hand an essential ingredient of our construction, namely sharing by cocontractions,
already allowed us to reach beyond the limitations of Gentzen-style proof theory: in recent
work fully lazy sharing has been achieved in a λ-calculus within intuitionistic deep inference
[GHP13a, GHP13b]. For the authors of this paper and for some of their colleagues this is
an active research area.

It is possible to extend the mechanism investigated here to the more general notion
of normalisation that we called streamlining in [GG08]; this has been done in [Gun09].
Streamlining is a top-down symmetric notion, that does full justice to the additional
symmetry of deep inference, compared to Gentzen formalisms. Streamlined derivations
entail analytic proofs as a special case.

The results of this paper are, as mentioned previously, closely related to results about
the monotone sequent calculus MLK, through the translation between SKS and LK given
in [Brü06]. Atserias, Galesi and Pudlák show in [AGP02] that MLK can quasipolynomially
simulate LK over monotone sequents, and as shown by Jeřábek in [Jeř09], this implies
Theorem 6.3.

Furthermore, in [Jeř12], Jeřábek considers a conservative extension of MLK, called
MCLK, and shows how MCLK can quasipolynomially simulate LK over arbitrary formulae.
MCLK is defined by restricting LK to only allow cuts on monotone formulae. Like MCLK,
streamlined derivations are also a conservative extension of MLK and the two notions are
very similar. Exploring this will be the subject of future work.

Finally, we are interested in the normalisation theory of modal logics in deep inference,
and so we are naturally led to consider the methods presented in this paper to that purpose
as well.
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