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Abstract. In the lambda calculus a term is solvable iff it is operationally relevant.
Solvable terms are a superset of the terms that convert to a final result called normal form.
Unsolvable terms are operationally irrelevant and can be equated without loss of consistency.
There is a definition of solvability for the lambda-value calculus, called v-solvability, but
it is not synonymous with operational relevance, some lambda-value normal forms are
unsolvable, and unsolvables cannot be consistently equated. We provide a definition of
solvability for the lambda-value calculus that does capture operational relevance and such
that a consistent proof-theory can be constructed where unsolvables are equated attending
to the number of arguments they take (their ‘order’ in the jargon). The intuition is that
in lambda-value the different sequentialisations of a computation can be distinguished
operationally. We prove a version of the Genericity Lemma stating that unsolvable terms
are generic and can be replaced by arbitrary terms of equal or greater order.

1. Introduction

Call-by-value is a common evaluation strategy of many functional programming languages,
whether full-fledged or fragments of proof assistants. Such languages and their evaluation
strategies can be formalised operationally in terms of an underlying lambda calculus and
its reduction strategies. As shown in [Plo75], the classic lambda calculus λK [Bar84] is
inadequate to formalise call-by-value evaluation as defined by Landin’s SECD abstract
machine. The adequate calculus is the lambda-value calculus λV. The pure (and untyped)
version [RP04] is the core that remains after stripping away built-in primitives whose main
purpose is to facilitate the encoding of programs as terms of the calculus. Hereafter we write
λV for the pure version.
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Unfortunately, the lambda-value calculus, and by extension its pure version, are con-
sidered defective on several fronts for formalising call-by-value evaluation at large, and many
alternative calculi have been proposed with various aims, e.g. [FF86, HZ09, Mog91, EHR91,
AK10, AK12, AP12].

We do not wish to propose yet another calculus. These proposals vary the calculus to
fit an intended call-by-value model, but this is one of the choices for investigations on full
abstraction. The other is to vary the model to fit the intended calculus [Cur07, p.1]. The
questions are: What does λV model? Is its import larger than call-by-value evaluation under
SECD? To answer these questions and avoid ‘the mismatch between theory [the calculus]
and practice [the model]’ [Abr90, p.2] we have to first address the open problem of whether
λV has a ‘standard theory’. A central piece of a standard theory is the notion of solvability
which is synonymous with operational relevance. Let us elaborate these ideas first and
discuss their utility further below.

Recall that a lambda calculus consists of a set of terms and of proof-theories for
conversion and reduction of terms. Conversion formalises intensional (computational)
equality and reduction formalises directed computation. A term converts/reduces to another
term (both terms are in a conversion/reduction relation) iff this fact can be derived in the
conversion/reduction proof-theory (Section 2 illustrates). The relations must be confluent for
the proof-theory to be consistent. In the calculus the reduction relation is full-reducing and
‘goes under lambda’. It is possible to reason algebraically at any scope where free variables
(which stand for unknown operands in that scope) occur. Operational equivalence can be
established for ‘arbitrary terms, not necessarily closed nor of observable type’ [Cur07, p.3].

Solvability is a basic concept in lambda calculus. It appears 18 pages after the definition
of terms in the standard reference [Bar84] (terms are defined on page 23 and solvability
on page 41). Solvability was first studied in [Bar71, Bar72, Wad76] and stems from the
realisation that not all diverging terms (i.e. terms whose reduction does not terminate) are
operationally irrelevant (i.e. meaningless, useless, of no practical use, etc.) For a start, not
all of them are equal. An inconsistent proof-theory results from extending the conversion
proof-theory with equations between all diverging terms. Indeed, some diverging terms can
be applied to suitable operands such that the application converges to a definite final result
of the calculus (a ‘normal form’ in the jargon). For other diverging terms the application
diverges no matter to how many or to which operands they are applied. Solvable terms are
therefore terms from which a normal form can be obtained when used as functions. The
name ‘solvable’ stems from their characterisation as solutions to a conversion. By definition,
terms that directly convert to a normal form are solvable.

In contrast, unsolvable terms are the terms that are operationally irrelevant. A consistent
proof-theory results from extending the conversion proof-theory with equations between all
unsolvables. This consistent extension is satisfied by well-known models where unsolvables
correspond to the least-defined element of the model. Any further extension that includes
the equations between unsolvables and is consistent is called sensible in the jargon. Finally,
solvable terms can be characterised operationally: there is a reduction strategy named ‘head
reduction’ that converges iff the input term is solvable.

To summarise: λK has a definition of solvability synonymous with operational relevance,
a sensible extended proof-theory, sensible models (i.e. models of the sensible extension), and
an operational characterisation of solvables. All these ingredients are referred to in [Abr90,
p.2] as a ‘standard theory’.
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However, in that work λK’s standard theory is criticised as a basis for functional
programming languages because program results are not normal forms, there are no canonical
initial models, etc. (Strictly speaking, however, λK is as unfit as Turing Machines as a
basis for practical programming languages.) A ‘lazy’ lambda calculus is proposed which is
closer to a non-strict functional programming language, but that divorces solvability from
operational relevance. The latter is modified according to the notion of ‘order of a term’
[Lon83]. Broadly, the order is the supremum (ordinal) number of operands accepted by the
term in the following inductive sense: if the term converts to λx.M then it accepts n+ 1
operands where n is the number of operands accepted by M . Otherwise the term has order
0. Operationally irrelevant terms are only the unsolvables of order 0. Other unsolvables
are operationally relevant and the extended proof-theory that equates unsolvables of order
n > 0 is inconsistent.

Following similar steps, [PR99, EHR91, EHR92, RP04] describe a call-by-value calculus
with a proof-theory induced by operational equivalence of terms under SECD reduction. A
definition of solvability, called v-solvability, is proposed for λV. This definition is unsatis-
factory because it does not adapt λK’s original definition of solvable term, namely, ‘the
application of the term to suitable operands converts to a normal form’. It adapts a derived
definition, namely, ‘the application of the term to suitable operands converts to the identity
term’. This definition is equivalent to the former in λK but not in λV. Consequently,
v-solvability does not capture operational relevance in λV, some normal forms of λV (definite
results) are v-unsolvable, and the extended proof-theory is not sensible. Moreover, the
operational characterisation of v-solvables involves a reduction strategy of λK, not of λV,
and the notion of order used is not defined in terms of λV’s conversion in a way analogous
to [Lon83]. The blame is put on λV’s nature and continues to be put in recent related work
[AP12, Gue13, CG14, GPR15].

We show that λV does indeed have a standard theory. First we revisit the original
definition of solvability in λK and generalise it by connecting it with the notion of effective
use of an arbitrary (closed or open) term. We then revisit v-solvability and show that it
does not capture operational relevance in λV but rather ‘transformability’, i.e. the ability
to send a term to a chosen value. (Values are not definite results of λV but a requirement
for confluence.) We introduce λV-solvability as the ability to use the term effectively. Our
λV-solvability captures transformability and ‘freezability’, i.e. the ability to send a term to
a normal form, albeit not of our choice. The intuition is that terms can also be solved by
sending them to normal forms that differ operationally from divergent terms at a point of
potential divergence. The link between solvability and effective use is a definition of order
that uses λV’s conversion, and a Partial Genericity Lemma which states that λV-unsolvables
of order n are generic (can be replaced by any term) for orders greater or equal than n.
The λV-unsolvables of the same order can be equated without loss of consistency, and so
we construct a consistent extension which we call V. Our proof of the Partial Genericity
Lemma is based on the proof of λK’s Genericity Lemma presented in [BKC00] that uses
origin tracking. An ingredient of the proof is the definition of a complete reduction strategy
of λV which we call ‘value normal order’ because we have defined it by adapting to λV the
results in [BKKS87] relative to the complete ‘normal order’ strategy of λK. Value normal
order relies on what we call ‘chest reduction’ and ‘ribcage reduction’ in the spirit of the
anatomical analogy for terms in [BKKS87]. The last two strategies illustrate that standard
reduction sequences fall short of capturing all complete strategies of λV, and that a result
analogous to ‘quasi-needed reduction is normalising’ [BKKS87, p.208] is missing for λV. An
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operational characterisation of solvables in terms of a reduction strategy of λV is complicated
but we believe possible (Section 7.5).

To summarise, our contributions are: a definition of solvability in λV that is synonymous
with operational relevance, the Partial Genericity Lemma, the reduction strategies value
normal order, chest reduction and ribcage reduction, and finally the sensible proof-theory
where unsolvables of the same order are equated.

The standard theory of λV has practical consequences other than reducing the mismatch
between theory and practice, or the operational formalisation of call-by-value. Terms with
the same functional result that may have different sequentiality under different reduction
strategies can be distinguished operationally. Models for sequentiality exist [BC82]. The full-
reducing and open-terms aspect of the calculus has applications in program optimisation by
partial evaluation and type checking in proof assistants [Cré90], in the PoplMark challenge
[ABF+05], in reasoning within local open scopes [Cha12], etc. The computational overload
incurred by proofs-by-reflection can be mitigated by reducing terms fully [GL02]. Finally,
that some non-terminating terms (unsolvables) can be equated without loss of consistency is
of interest to proof assistants with a non-terminating full-reducing programmatic fragment,
e.g. [ACP+08].

This paper can be read by anyone able to follow the basic conventional lambda calculus
notions and notations that we recall in Section 2. The first part of the paper provides the
necessary exegesis and intuitions on λK, λV, solvability, effective use, v-solvability, and
introduces our λV-solvability. The more technical second part involves the proof of the
Partial Genericity Lemma and the consistent proof-theory. Some background material and
routine proofs are collected in the appendix. References to the latter are labelled ‘App.’
followed by a section number.

2. Overview of λK and λV

This preliminaries section must be of necessity terse. Save for the extensive use of EBNF
grammars to define sets of terms, we follow definitions and notational conventions of
[Bar84, HS08] for λK and of [Plo75] for λV. The book [RP04] collects and generalises both
calculi. The set of lambda terms is Λ ::= x | (λx.Λ) | (Λ Λ) with ‘x’ one element of a
countably infinite set of variables that we overload in grammars as non-terminal for such
set. Uppercase, possibly primed letters M , M ′, N , etc., will stand for terms. In words, a
term is a variable, or an abstraction (λx.M) with bound variable x and body M , or the
application (MN) of an operator M to an operand N . We follow the common precedence
and association convention where applications associate to the left and application binds
stronger than abstraction. Hence, we can drop parenthesis and write (λx.x y) p q (λx.x)
rather than ((((λx.(x y))p)q)(λx.x)), and we can write Λ ::= x | λx.Λ | Λ Λ, and λx.M , and
MN . For brevity we write λx1 . . . xn.M instead of λx1.λx2. . . . λxn.M . We write FV for
the function that delivers the set of free variables of a term. We assume the notions of
bound and free variable and write ≡ for the identity relation on terms modulo renaming of
bound variables.1 For example, λx.xz ≡ λy.yz. We also abuse ≡ to define abbreviations,
e.g. I ≡ λx.x. Like [CF58, HS08], we write [N/x]M for the capture-avoiding substitution of
N for the free occurrences of x in M . We write Λ0 for the set of closed lambda terms, i.e.
terms M such that FV(M) = ∅. We use the same postfix superscript for the operation on a

1We are following here the convention of Appendix C in [Bar84] not to be confused with the ‘Barendregt
convention’ or ‘hygiene rule’ of [Bar90] where bound variables and free variables must differ.
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set of terms that delivers the subset of closed terms. The set of values (non-applications)
is Val ::= x | λx.Λ. The set of closed values is Val0 and consists of closed abstractions. A
context C[ ] is a term with one hole, e.g. C[ ] ≡ λx.[ ]. Plugging a term within the hole
may involve variable capture, e.g. C[λy.x] ≡ λx.λy.x.

The conversion/reduction proof-theories of λK and λV can be presented as instances of
the Hilbert-style proof-theory shown in Fig. 1 that is parametric (cf. [RP04]) on a set P of
permissible operands N in the contraction rule (β) which describes the conversion/reduction
of the term (λx.B)N , that is, the application of an abstraction (a function) to an operand.
Operands are arbitrary terms in λK and restricted to values in λV which means that λV
has fewer conversions/reductions than λK.

(β)
N ∈ P

(λx.B)N = [N/x]B
(µ)

N = N ′

M N = M N ′
(ν)

M = M ′

M N = M ′N
(ξ)

B = B′

λx.B = λx.B′

(ρ)
M = M

(τ)
M = N N = P

M = P
(σ)

M = N

N = M

Theory = P discarded rules

λK conversion =β Λ none
λK multiple-step reduction →∗β Λ σ

λK single-step reduction →β Λ ρ, τ , σ
λV conversion =βV Val none
λV multiple-step reduction →∗βV Val σ

λV single-step reduction →βV Val ρ, τ , σ

Figure 1: λK and λV proof-theories.

Set Description Abbreviation in the text

Λ ::= x | λx.Λ | Λ Λ lambda terms
Val ::= x | λx.Λ values
Neu ::= xΛ {Λ}∗ λK neutrals
NF ::= λx.NF | x {NF}∗ λK normal forms β-nfs (singular β-nf)
HNF ::= λx.HNF | x {Λ}∗ head normal forms hnfs (singular hnf)
NeuV ::= Neu | Block {Λ}∗ λV neutrals
Block ::= (λx.Λ)NeuV blocks
VNF ::= x | λx.VNF | Stuck λV normal forms βV-nfs (singular βV-nf)
Stuck ::= xVNF {VNF}∗ stucks

| BlockNF {VNF}∗
BlockNF ::= (λx.VNF) Stuck blocks in βV-nf

Figure 2: Sets of terms.

In λV the rule (β) restricted to operand values is named (βV). The term (λx.B)N is
called a β-redex iff N ∈ Λ, and a βV-redex iff N ∈ Val. A term is a β-normal-form (hereafter
abbrev. β-nf) iff it has no β-redexes. A term is a βV-nf iff it has no βV-redexes. The
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Abbreviation Term has β-nf has βV-nf

I λx.x yes yes
K λx.λy.x yes yes
∆ λx.xx yes yes
Ω ∆∆ no no
U λx.B no yes
B (λy.∆)(x I)∆ no yes

Figure 3: Glossary of particular terms.

inference rules are: compatibility (µ) (ν) (ξ), reflexivity (ρ), transitivity (τ), and symmetry
(σ). The table underneath names the proof-theory obtained, and the relation symbol, for
given P and rules. The conversion relation includes the reduction relation. A term M has
a β-nf N when M =β N and N is a β-nf. A term M has a βV-nf N when M =βV N and
N is a βV-nf. A term M has a value when M =βV N and N ∈ Val. All proof-theories are
consistent (not all judgements are derivable) due to confluence (a term has at most one β-nf
and at most one βV-nf).

Fig. 2 defines sets of terms and Fig. 3 defines abbreviations of terms used in the following
sections. A full table of sets of terms and abbreviations of terms is provided in App. A.
Observe that every term of Λ has the form λx1 . . . xn. H M1 · · ·Mm where n ≥ 0, m ≥ 0,
and M1 ∈ Λ, . . . , Mm ∈ Λ. The head term H is either a ‘head variable’ x (which may or
may not be one of x1 . . . xn) or an application (λx.B)N (which is a redex iff N ∈ P). The
set Neu of neutrals of λK contains applications xM1 · · ·Mn with n ≥ 1. The expression
{Λ}∗ in the grammar stands for zero or more occurrences of Λ. The applications associate as
(. . . ((xM1)M2) · · ·Mn) according to the standard convention. The set NF of β-nfs consists
of abstractions with bodies in β-nf, free variables, and neutrals in β-nf. According to the
grammar, every β-nf has the form λx1 . . . xn.xN1 · · ·Nm where n ≥ 0, m ≥ 0, N1 ∈ NF, . . . ,
Nm ∈ NF, and x may or may not be one of x1 . . . xn. The set HNF of head normal forms
(abbrev. hnfs) consists of terms that differ from β-nfs in that N1 ∈ Λ, . . . , Nm ∈ Λ. Clearly,
NF ⊂ HNF.

Some examples: λx.I is a β-nf and a hnf, λx.I∆ is not a β-nf (it contains the β-redex
I ∆) nor a hnf (it has no head variable), λx. x I∆ is not a β-nf but it is a hnf, and both
x (λx. I) and xΩ are neutrals, with only the first in β-nf.

The set NeuV of neutrals of λV contains the neutrals Neu of λK and blocks applied to
zero or more terms. The set Block of blocks contains applications (λx.B)N where N ∈ NeuV.
These are applications that do not convert to a βV-redex and are therefore blocked. (Our
blocks differ from the ‘head blocks’ of [RP04, p.8] and the ‘pseudo redexes’ of [HZ09, p.4]
which require N 6∈ Val and so include terms like (λx.B)(I I) that convert to a βV-redex.)
The set VNF of βV-nfs contains variables, abstractions in βV-nf, and stuck terms (‘stucks’
for short) which are neutrals of λV in βV-nf. The set Stuck of stucks contains Neu neutrals
of λK in βV-nf and blocks in βV-nf. According to the grammar, every βV-nf has the form
λx1 . . . xn.H Z1 · · ·Zm with n ≥ 0, m ≥ 0, Z1 ∈ VNF, . . . , Zm ∈ VNF, and H either a
variable or a block in βV-nf.

Some examples: xΩ is a neutral not in βV-nf, x∆ is a neutral in βV-nf (a stuck),
(λx.y)(xΩ) is a block not in βV-nf, and (λx.y)(x∆) is a block in βV-nf (a stuck).

A reduction strategy of λK (resp. of λV) is a partial function that is a subrelation of
→∗β (resp. of →∗βV ). A reduction strategy is complete with respect to a notion of irreducible
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term when the strategy delivers the irreducible term iff the input term has one, diverging
otherwise. A reduction strategy is full-reducing when the notion of irreducible term is
a β-nf (resp. βV-nf). The Quasi-Leftmost Reduction Theorem [HS08, Thm. 3.22] states,
broadly, that any reduction strategy of λK that eventually contracts the leftmost redex
is full-reducing and complete. One such well-known strategy is leftmost reduction [CF58],
also known as leftmost-outermost reduction (when referring to the redex’s position in the
abstract syntax tree of the term) or, more commonly, as normal order. The Standardisation
Theorem [Plo75, Thm. 3] guarantees that there are full-reducing and complete strategies of
λV. One such strategy is described in [RP04] and discussed in Section 7.1.

3. Solvability reloaded

As explained in the introduction, a term is solvable iff a normal form can be obtained from
it when used as a function. Solvability is usually defined first for closed terms and then
extended to open terms.

Definition 3.1 (SolN). A term M ∈ Λ0 is solvable in λK iff there exists N ∈ NF and
there exist operands N1 ∈ Λ, . . . , Nk ∈ Λ with k ≥ 0 such that M N1 · · · Nk =β N .

This definition is the seminal one on page 87 of [Bar71].2 In words, a closed term is
solvable iff it converts to a β-nf when used in operator position at the top level. If the
term is or has a β-nf then it is trivially solvable by choosing k = 0. Let us illustrate with
examples that also explain the focus on closed terms. First, take the diverging closed term
Ω (an abbreviation of ∆∆, i.e. Ω ≡ ∆∆ ≡ (λx.xx)(λx.xx)). A β-nf cannot be obtained
from it no matter to how many or to which operands it is applied, e.g. (∆∆)N1 · · ·Nk =β

((λx.x x)∆)N1 · · ·Nk =β (∆∆)N1 · · ·Nk =β . . . is an infinite loop. Terms like Ω are
operationally irrelevant. Now take the closed terms λx.x I Ω and λx.xK Ω. Both terms
diverge and yet both deliver a β-nf when applied to suitable operands. For example,
(λx.x I Ω)K =β I, and (λx.xK Ω)K =β K. The β-nfs obtained from such diverging function
terms are different, therefore they have different operational behaviour and cannot be
equated. More precisely, a proof-theory with judgements M = N can be obtained by
taking the conversion proof-theory (if M =β N then M = N) and adding the equation
λx.x I Ω = λx.xK Ω. However, this extended proof-theory is inconsistent because the false
equation I = K is then provable.

The focus on closed terms is because some open terms contain neutral terms (Section 2)
that block applications [Wad76]. For example, take the neutral xΩ and apply it to operands:
(xΩ)N1 · · ·Nk. The conversion to β-nf is impossible because the diverging subterm Ω is
eventually converted due to the presence of the free variable x that blocks the application to
the operands. (Similarly, in x yΩ the neutral subterm x y blocks the application.) However,
a free variable stands for some operator, so substituting a closed operator for the variable
may yield a solvable term. For example, substitute K I for x and choose k = 0, then
K I Ω =β I. Traditionally, open terms are defined as solvable iff the closed term resulting
from such substitutions is solvable. We postpone the discussion to Section 3.2 where we

2The provisos M ∈ Λ0 and k ≥ 0 are implicit in the original definition due to the context of the thesis
(closed-term models) and its subscript convention. They are explicit in later definitions [Bar72, Wad76, Bar84].
The order of existential quantifiers is immaterial. The original definition says ‘M N1 · · ·Nk has a β-nf’ which
as explained in Section 2 is the same as ‘converts to a β-nf’. In [Bar84] the requirement on N is immaterially
changed from being a β-nf to having a β-nf.
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show that fully closing is excessive in λK. In Section 5 we show that it is counterproductive
for defining solvability in λV. We conclude this section with the role of solvables in the
development of a standard theory.

Solvable terms are approximations of totally defined terms. They are ‘at least partially
defined’ [Wad76]. In contrast, unsolvable terms are ‘hereditarily’ [Bar71] or ‘totally’ [Wad76]
undefined, and can be equated without loss of consistency. More precisely, given the set of
equations H0 = {M = N | M,N ∈ Λ0 unsolvable}, a consistent extended proof-theory H
results from adding H0’s equations as axioms to λK (i.e. H = H0+λK) [Bar84]. A consistent
extension where unsolvables are equated (i.e. contains H) is called sensible. A consistent
extension that does not equate solvables and unsolvables is called semi-sensible. There are
standard models that satisfy H, with unsolvables corresponding to the least elements of the
model [Bar72, Bar84]. By extension, such models are called sensible models [Bar84, p.505].
Solvable terms can be characterised operationally: there is a reduction strategy of λK called
‘head reduction’ that converges iff the input term is solvable. (Solvability, like having β-nf,
is semi-decidable.) More precisely, solvable terms exactly correspond to terms with hnf, and
head reduction delivers a hnf iff the input term has one, diverging otherwise [Wad76, Bar84].
(In the technical jargon, head reduction is said to be complete with respect to hnf.)

3.1. Other equivalent definitions of solvability. There are two other equivalent defi-
nitions of solvability that use different equations [Bar72, Wad76, Bar84].

Definition 3.2 (SolI). A term M ∈ Λ0 is solvable in λK iff there exist operands N1 ∈ Λ,
. . . , Nk ∈ Λ with k ≥ 0 such that M N1 · · · Nk =β I.

Definition 3.3 (SolX). A term M ∈ Λ0 is solvable in λK iff for all X ∈ Λ there exist
operands N1 ∈ Λ, . . . , Nk ∈ Λ with k ≥ 0 such that M N1 · · · Nk =β X.

In words, a closed term is solvable iff it is convertible by application to the identity term
or to any given term. Definition SolI is de facto in most presentations. These definitions
are equivalent to SolN (capture the same set of solvables) because of two properties that
hold in λK. The first is stated in the following lemma.

Lemma 3.4 (Lemma 4.1 in [Wad76]). If M ∈ Λ0 has a β-nf then for all X ∈ Λ there exist
operands X1 ∈ Λ, . . . , Xk ∈ Λ with k ≥ 0 such that M X1 · · · Xk =β X.

In words, a closed term with β-nf can be converted by application to any given term.
This lemma is the link between SolN’s existential property of having a β-nf and SolX’s
universal property of converting to any term. The shape of a β-nf is the key to this link, as
the proof of the lemma illustrates.

Proof of Lemma 3.4. As explained in Section 2, a β-nf has the form λx1 . . . xn. xN1 · · ·Nm

with n ≥ 0, m ≥ 0, and N1 ∈ NF, . . . , Nm ∈ NF. Since M is closed, its β-nf M ′ has
n > 0 with x is one of xi. Lemma 3.4 holds by choosing k = n, Xj arbitrary for j 6= i, and
Xi ≡ KmX, with Km the term that takes m+ 1 operands and returns the first one. Thus,
M X1 · · · (KmX)i · · ·Xn =β X holds because M =β M

′ and M ′X1 · · · (KmX)i · · ·Xn =β

(KmX)N ′1 · · ·N ′m =β X, with N ′i the result of substitutions on Ni.
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The link between SolI and SolX is provided by the property that for all X ∈ Λ the
conversion IX =β X holds [Bar84, p.171ff]. We provide here an explicit proof.

Lemma 3.5. The solvability definitions SolN, SolI, and SolX are equivalent in λK.

Proof. We use different operand symbols and subscripts to distinguish the equations:

M N1 · · · Nk =β N SolN

M Y1 · · · Yl =β I SolI

M Z1 · · · Zj =β X SolX

We first prove SolX iff SolN: From SolX we prove SolN by choosing k = j, Ni ≡ Zi,
and X the β-nf N . Conversely, given SolN then MN1 · · ·Nk has a β-nf, so by Lemma 3.4
we have that forall X ∈ Λ the conversion M N1 · · ·NkX1 · · ·Xk′ =β X holds. Then SolX
follows by choosing j = k + k′, Z1 ≡ N1, . . . , Zk ≡ Nk, Zk+1 ≡ X1, . . . , Zj ≡ Xk′ .

We now prove SolX iff SolI: From SolX we prove SolI by choosing l = j, Yi ≡ Zi,
and X ≡ I. Conversely:

(a) M Y1 · · · Yl =β I SolI
(b) M Y1 · · ·YlX =β IX by (ν) on (a) with any X
(c) IX =β X by (β)
(d) M Y1 · · ·YlX =β X by (τ) on (b),(c)

Then, SolX holds by choosing j = l + 1, Z1 ≡ Y1, . . . , Zj−1 = Yl, Zj ≡ X.

Bear in mind that although all definitions are equivalent, SolI and SolX are possible
because of properties that hold in λK, and therefore SolI and SolX are secondary. As
we shall see in Section 5, the anaologous in λV of Lemma 3.4 is not the case, nor are the
analogous of SolI, SolX, and Lemma 3.5. Adapting SolI or SolX to that calculus will
leave solvable terms behind.

3.2. Open terms, and open and non-closing contexts. Solvability has been typically
extended to open terms by requiring at least one closed substitution instance or all closures
of the open term3 to be solvable [Wad76, Bar72, Bar84]. As we discussed in Section 3,
neutral terms are the reason for closing. Substituting closed operators for the blocking free
variables of neutrals may yield solvable terms. For example, [K I/x](xΩ) ≡ K I Ω is trivially
solvable according to SolN by choosing k = 0. Similarly, the closure λx.xΩ is solvable by
choosing k = 1 and N1 ≡ K I.

A traditional definition of solvability for open and closed terms uses a ‘head context’ to
close the term before passing the operands [Wad76] (head contexts are defined on page 491
and solvability with head contexts on page 503).

Definition 3.6 (SolH). A term M ∈ Λ is solvable in λK iff there exists N ∈ NF0 and
there exists a head context H[ ] ≡ ((λx1 . . . xn.[ ])C1 · · ·Cn)N1 · · ·Nk with n ≥ 0, k ≥ 0,
FV(M) = {x1, . . . , xn}, C1 ∈ Λ0, . . . , Cn ∈ Λ0, and N1 ∈ Λ0, . . . , Nk ∈ Λ0 such that
H[M ] =β N .

3A closed substitution instance of M is a closed term resulting from substituting closed terms for all the
free variables of M . A closure of M is a term λx1 . . . xn.M such that FV(M) = {x1, . . . , xn}. Since different
closures differ only on the order of prefix lambdas, if one closure is solvable then all other closures are too by
passing the operands to the closure in the appropriate order. Substitutions and closures are connected by the
β-rule.



10 Á. GARCÍA-PÉREZ AND P. NOGUEIRA

In words, the head context forces the closed Ci to be substituted for all the free variables
(if there are any) of the term placed within the hole. The resulting closed substitution
instance is then at the top-level operator position where it is applied to the closed Ni

operands. The top-level operator position is a ‘head’ position (Section 2), hence the name of
the context. Since H[ ] is a closed and closing context, the β-nf N has to be closed too. In
[PR99], SolH and SolI are combined and the conversion is H[M ] =β I.

However, using a closed and closing context is excessive. The nature of solvability and
the previous definitions do not require it. To begin with, an open term that is or has a
β-nf is, by its very nature, solvable. For other open terms not every free variable has to
be substituted, only the blocking ones that prevent solving the term. In all the previous
definitions the Ni operands are arbitrary, and so the requirement that Ni are closed in H[ ]
can be dropped. Since in SolI both M and I are closed then the open Ni or their open
subterms must be eventually discarded in the conversion to I. But in SolN the β-nf N is
arbitrary too, so not every open Ni operand or open subterm therein has to be discarded.

A less restrictive definition is perfectly possible:

Definition 3.7 (SolF). A term M ∈ Λ is solvable in λK iff there exists N ∈ NF and there
exists a function context F[ ] ≡ (λx1 . . . xn.[ ])N1 · · ·Nk with n ≥ 0, k ≥ 0, and N1 ∈ Λ,
. . . , Nk ∈ Λ such that F[M ] =β N

This definition is closer to SolN. The function context can be open and non-closing : N
and Ni may be open, and not every free variable of M need be substituted. For example,
xΩ is solved by the open function context (λx.[ ])(KN) where N is an open β-nf. And
x yΩ is solved by the non-closing function context (λx.[ ])K which does not close y.

Lemma 3.8 (Generalisation of Lemma 3.4). If M ∈ Λ has a β-nf then for all X ∈ Λ there
exists a function context F[ ] such that F[M ] =β X.

Proof. The β-nf of M has the form λx1 . . . xn.xN1 · · ·Nm with n ≥ 0, m ≥ 0 and N1 ∈ NF,
. . . , Nm ∈ NF. If x ∈ FV(M) the lemma holds by choosing F[ ] ≡ (λx.[ ])(KmX)X1 · · ·Xn

with Xi arbitrary and Km the term that takes m + 1 operands and returns the first
one. If x 6∈ FV(M) then x is xi for some i. The lemma holds by choosing F[ ] ≡
[ ]X1 · · ·Xi−1(KmX)Xi+1 · · ·Xn.

Let us note that the lemma also holds with the proviso relaxed to ‘M has a hnf’.

Theorem 3.9. In λK the solvability definitions SolH and SolF are equivalent.

Intuitively, if we have a solving head context then we have a solving function context
because function contexts subsume head contexts. And if we have a solving function context
then we can construct a solving head context by carefully closing the former and the β-nf.
The proof of Thm. 3.9 is not so short and we have put it in App. B with an accompanying
example illustrating the construction of a solving head context from a solving function
context.

As we shall see in Section 6, the analogous in λV of Thm. 3.9 is not the case. Adapting
SolH to that calculus will leave solvable terms behind.

3.3. Solvability and effective use. As noted in [PR99] there is a more general definition
of solvability that connects the notions of ‘operational relevance’ and ‘effective use’ of a
term. A term is effectively used when it is eventually used as an operator. The term is
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operationally relevant iff it then delivers a final result, which in λK is a β-nf. In all previous
solvability definitions, the term to solve is placed at the top-level operator position and thus
it is effectively used. If it were placed at other positions then it may be eventually used as
operator or it may be trivially used (discarded). If placed at an operand position that is
never discarded, never gets to an operator position where it is applied to operands, and is
returned as the final result, then the term is effectively used. It is as if the term were placed
within an empty function context. Thus, a final result is in operator position, is effectively
used, and is operationally relevant.

An unsolvable term cannot be effectively used to deliver a β-nf: ‘unsolvable terms can
never have a nontrivial effect on the outcome of a reduction’ [Wad76, p.506]. More precisely,
if M is unsolvable then for all X, M X is unsolvable [Bar84, Cor. 8.34]. Unsolvable terms
that are not effectively used are generic: they can be substituted by arbitrary terms. This is
formalised by the so-called Genericity Lemma. The following statement of the Lemma is a
combination of the versions in [Bar84, Prop. 14.3.24] and [Wad76, Cor. 5.5] (both collected
in App. C for ease of reference). These versions use arbitrary contexts C[ ] because C[M ] is
more general than M X. The latter is a particular case of the former for C[ ] ≡ [ ]X. With
the context, the term plugged into the hole may eventually appear in operator position.

Lemma 3.10 (Genericity Lemma). Let M ∈ Λ and N ∈ NF. M is unsolvable in λK implies
that for all contexts C[ ], if C[M ] =β N then for all X ∈ Λ it is the case that C[X] =β N .
In formal logic:

M unsolvable⇒ (∀C[ ].C[M ] =β N ⇒ (∀X ∈ Λ.C[X] =β N))

In words, if plugging an unsolvable term in a given arbitrary context converts to a
β-nf then plugging any other term also converts to that β-nf. The unsolvable is not used
effectively in the context. Although the lemma is stated as an implication, it is actually
an equivalence because the negation of the consequent is a necessary condition for ‘M
solvable’ by the SolF definition of solvability. Clearly, if M is solvable then there exists
C[ ] ≡ F[ ] such that F[M ] =β N , and by the shape of F[ ] it is not the case that for all
X ∈ Λ, F[X] =β N . Take for instance F[Ω] which diverges. (Note that if M is solvable and
C[M ] =β N holds then C[X] =β N should not hold for terms X that are not convertible to
M unless M is not effectively used in C[ ].)

The lemma is a definition of solvability when read as the inverse equivalence:

M solvable⇔ (∃C[ ].C[M ] =β N ∧ ¬(∀X ∈ Λ. (C[X] =β N)))

The following definition simply moves N to the formula from the proviso.

Definition 3.11 (SolC). A term M ∈ Λ is solvable in λK iff there exists a context C[ ]
such that C[M ] =β N for some N ∈ NF and not for all X ∈ Λ it is the case that C[X] =β N .

In words, M solvable means there exists a context that uses M effectively to deliver a
β-nf. Function contexts are just one possible type of context applicable in SolC.

4. Call-by-value and pure λV

In call-by-value functional programming languages, the evaluation of application expressions
e1 e2 can be broadly described in ‘big-step’ fashion as follows. The operator expression e1

is first evaluated to a ‘value’ v1 where ‘value’ means here a first-class final result of the
language. Functions are first-class values in such languages and their bodies are compiled,
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not evaluated. (In the SECD machine, the corresponding abstraction is not reduced, SECD
reduction is ‘weak’, meaning it does not ‘go under lambda’.) The operand expression e2 is
next evaluated to a value v2. Finally, the result of passing v2 to v1 is evaluated. Evaluation
diverges at the point where the first sub-evaluation diverges. Evaluation may halt due to a
run-time error. The order of evaluation matters w.r.t. the point of divergence or halting.4

In pure λV, an application M N can be reduced to βV-nf in several ways with the
restriction that if M is an abstraction or reduces to an abstraction, say λx.B, and N is
a value or reduces to a value, say V , then the redex application (λx.B)V can be reduced
in one step to [V/x]B, with reduction continuing on the result of the substitution. Either
the abstraction λx.B, or the value V , or both may be fully reduced in βV-nf depending on
the reduction strategy. If N is not a value or does not reduce to a value then (λx.B)N is
a neutral which may only be reduced to a stuck. Abstractions are values, and so are free
variables because they range over values as discussed in more detail below. Terms can be
open, reduction may ‘go under lambda’ with free variables possibly occurring within that
scope, and final results are not values but βV-nfs.

The rationale behind the restricted reduction/conversion and the definition of values is
not merely to model call-by-value but to uphold confluence which is a sine qua non property
of the calculus because it upholds the consistency of the proof-theories. Intuitively, the
rationale is to preserve confluence by preserving potential divergence. To preserve confluence,
applications cannot be passed as operands unless given the opportunity to diverge first. This
point is fundamental to understanding our approach to solvability for λV and so the rest of
this section elaborates it.

In λV the reduction relation →∗βV is confluent [HS08, App. A2]. Confluence applies even
for terms without βV-nf. The implication is that terms have at most one βV-nf, and so terms
with different βV-nf are not βV-reducible/convertible. Not every βV-reduction/conversion is
provable and the reduction/conversion proof-theory is consistent. The proof of confluence
requires substitutivity which is the property that reduction/conversion is preserved under
substitution, e.g. if M =βV N then [L/x]M =βV [L/x]N . In λV, permissible operands and
subjects of substitutions cannot be applications, whether arbitrary or in βV-nf. Otherwise,
substitutivity and confluence would not hold. (This is explained in [Plo75, p.135-136], see
App. D for a detailed discussion.) Substitutivity requires the proviso L ∈ Val which explains
why free variables are members of Val, namely, because they range over members of Val.

For illustration, the neutral x∆ cannot be passed in applications such as (λx.y)(x∆)
because whether it diverges depends on what value x is. For example, substituting the
value I for x yields (λx.y)(I ∆) which converges to y. But substituting the value ∆ for x
yields (λx.y)(∆∆) which diverges. Applications must be given the opportunity to diverge
before being passed, not only to model call-by-value but because whether a neutral converges
depends on which values are substituted for its free variables. The same goes for stucks: in
the above examples x∆ is actually a stuck.

4.1. Neutrals, stucks, and sequentiality. Before moving on we must recall that the
nesting and order of neutrals confer the sequentiality character to λV. Take the following

4Some languages prefer to evaluate e2 before e1, or instead of binary applications consider applications
with multiple operands, evaluating the latter in left-to-right or right-to-left fashion. Some languages eschew
divergence and run-time errors by means of a strong but yet expressive type discipline.
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neutrals adapted from [Mil90, p.25] and assume V and W are closed values:

L1 ≡ (xV )(yW )
L2 ≡ (λz.z(yW ))(xV )
L3 ≡ (λz.(xV )z)(yW )

Respectively substituting values X and Y for x and y we get:

L′1 ≡ (X V )(Y W )
L′2 ≡ (λz.z(Y W ))(X V )
L′3 ≡ (λz.(X V )z)(Y W )

If all L′i have βV-nf then it is the same and the instances are convertible. But different
reduction sequences differ on the order in which (X V ) and (Y W ) are reduced in L′2 and L′3
and thus on which order is the same as in L′1. Under SECD reduction the (X V ) is reduced
before (Y W ) in L′1 and L′2 whereas in L′3 the order is reversed. However, in a reduction
sequence where abstraction bodies are reduced before operands then (X V ) is reduced before
(Y W ) in L′1 and L′3 whereas in L′2 the order is reversed.5

Suppose operators and operands were reduced in separate processors. If x is instead
substituted by a value X such that X V converts to a stuck, then we can tell on which
processor reduction got stuck first. If we substitute y for a value Y such that Y W diverges
then one processor would diverge whereas the other would get stuck.

As another example consider the following terms where now V and W are closed values
in βV-nf:

L4 ≡ (λz.V W )(xx)
L5 ≡ (λz.(λy.yW ))(xx)V

Observe that L5 is a βV-nf whereas L4 is not. If V W converges to a βV-nf N then (λz.N)(xx)
is a βV-nf different from L5. If V W diverges then L4 diverges but L5 does not (it is a βV-nf).
Let us now play with substitutions for the blocking variable x. Substitute in L4 and L5 a
closed value X for x such that XX converges to a value:

L′4 ≡ (λz.V W )(XX)
L′5 ≡ (λz.(λy.yW ))(XX)V

In the case where V W converges to a βV-nf N then L′4 and L′5 converge to N , but in L′4
whether (V W ) is reduced before (XX) depends on whether the reduction strategy goes
first under lambda, whereas in L′5 the term (XX) is reduced first with that same strategy.
In the case where V W diverges, whether L′4 diverges before reducing (XX) also depends
on whether the reduction strategy goes first under lambda, whereas in L′5 the term (XX) is
reduced first with that same strategy. Thus, L4 and L5 are operationally distinguishable.
For example, the concrete instantiations (λz.II)(xx) and (λz.(λy.y I))(xx)I are operationally
distinguishable (here V ≡ I, W ≡ I, and II converges to a βV-nf).

Neutral terms differ on the point at which a free variable pops up, that is, on the
point of potential divergence. Stucks are only fully reduced neutrals that keep that point of
divergence. Terms with neutrals that may convert to the same βV-nf when placed in the
same closed context are nonetheless operationally distinguishable when placed in an open
context. And the choice of substitutions for the blocking free variables is important. Keep
this in mind when reading the following sections.

5In this example we have in mind a complete reduction sequence. There is a complete reduction strategy
of λV that goes under lambda in such ‘spine’ fashion (Section 7.1).
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5. An overview of v-solvability

Solvability for λV is first studied in [PR99] where a definition of v-solvable term is introduced
which adapts to λV the SolI definition of solvability for λK.

Definition 5.1 (v-solvability). A term M is v-solvable in λV iff there exist closed values
N1 ∈ Val0, . . . , Nk ∈ Val0 with k ≥ 0 such that (λx1 . . . xn.M)N1 · · ·Nk =βV I where
FV(M) = {x1, . . . , xn}.

The definition can be stated alternatively in terms of the head contexts of Section 3.2
by requiring the Ci’s and Ni’s in the head contexts to be closed values instead of closed
terms. The provisos Ni ∈ Val0 could have been omitted because they are required by the
βV-conversion to the closed value I. In line with the discussion in Section 3.2, an open head
context whose free variables are discarded in the conversion can also be used, and so it is in
[AP12, p.9].

Adapting SolI to λV instead of SolN is surprising because, as anticipated in Section 3.1,
the two properties that justify the equivalence between SolI and SolN in λK do not hold
in λV. (And as discussed in Section 3.2, the use of a closed and closing head context is
excessive, but more on this below.)

First, IX =βV X holds iff X has a value. Assuming such proviso, the SolX equivalent
of Def. 5.1 is that a term is v-solvable iff it is convertible by application not to any
term but to any value. Indeed, if M is v-solvable then (λx1 . . . xn.M)N1 · · ·Nk =βV I and,
by compatibility, (λx1 . . . xn.M)N1 · · ·NkX =βV IX for any X ∈ Λ. The conversion
(λx1 . . . xn.M)N1 · · ·NkX =βV X is obtained by transitivity with IX =βV X iff X has a
value.

Second, the adaptation of Lemma 3.4 to λV does not hold.

Statement 5.2 (Adapts Lemma 3.4 to λV). If M ∈ Λ0 has a βV-nf then for all X ∈ Λ
there exist operands X1 ∈ Λ, . . . , Xk ∈ Λ with k ≥ 0 such that M X1 · · ·Xk =βV X.

This statement does not hold even with Xi and X values, whether open or closed.
The controversial term U ≡ λx.(λy.∆)(x I)∆ mentioned in [PR99] is one possible counter-
example. (Notice the close resemblance to the term L5 in Section 4.1.) This term is a closed
value and a βV-nf. It is an abstraction with a stuck body. There is no operand X1, let alone
further operands, that lets us convert U to any given X whether arbitrary, a value, or a
closed value.

Suppose X1 ∈ Val0. Then UX1 converts to (λy.∆)(X1 I)∆. If (X1 I) diverges then
the latter diverges. If (X1 I) converts to a closed value V then (λy.∆)V∆ converts to
∆∆ ≡ Ω which diverges. However, UX1 converts to a βV-nf if (X1 I) converts to a stuck.
But the shape of the βV-nf, namely (λy.∆)(. . .)∆, is determined by the shape of U. Ony
the concrete βV-nf obtained depends on the choice of open value X1 that generates the
stuck. For example: X1 ≡ λx.z I leads to (λy.∆)(z I)∆ whereas X1 ≡ λx.(λx.x)(zK) leads
to (λy.∆)((λx.x)(zK))∆, etc. We cannot send U to any arbitrary βV-nf. The only degree
of freedom is X1.

The term U is controversial because, although a βV-nf, it is considered operationally
equivalent to λx.Ω in [PR99]. Certainly, UX1 and (λx.Ω)X1 diverge for all X1 ∈ Val0. But
as illustrated in the last paragraph, U and λx.Ω are operationally distinguishable in an
open context: there exists X1 ∈ Val such that UX1 converts to a βV-nf, but there is no
X1 ∈ Val such that (λx.Ω)X1 converts to a βV-nf. The difference between U and λx.Ω is
illustrated by the old chestnut ‘toss a coin, heads: you lose, tails: toss again’. We can pass a
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value to U to either diverge immediately or to postpone divergence, but this choice is not
possible for λx.Ω which diverges whatever value passed. And since U is a βV-nf, it should
be by definition solvable in λV.

The restriction of operands to elements of Val0 is natural in the setting of SECD’s weak
reduction of closed terms where final results are closed values. This is the setting considered
in [PR99] where the proof-theory is not λV’s but consists of equations ‘M = N iff M and N
are operationally equivalent under SECD reduction’. However, v-solvability (Def. 5.1) is
defined for λV and its proof-theory, not the alternative pure-SECD-theory. Several problems
arise. First, closed values such as U and λx.Ω which are definite results of SECD are
v-unsolvable, so v-solvability is not synonymous with operational relevance. Second, there is
a v-unsolvable U that is nevertheless a βV-nf of λV. As discussed in the introduction, the
blame is mistakenly put on λV, not on v-solvability.

The operational relevance of final results is partly recovered in [PR99, p.21] by adapting
to v-unsolvables the notion of order of a term [Lon83, Abr90] in the following fashion: a
v-unsolvable M is of order n iff it reduces under the so-called ‘inner machine’ to λx1 . . . xn.B
where n is maximal. That is, M reduces to a value with n lambdas. If M has order 0 then
it does not reduce to a value. If M has order n > 0 then M accepts n − 1 operands and
reduces to a value. For example, Ω has order 0, and λx.Ω and U have order 1. With this
notion of order, definite results include v-solvables and v-unsolvables of order n > 0. This
corresponds with the behaviour of SECD. The v-unsolvables of order 0 denote the least
element of the model H of [EHR92] and can be equated without loss of consistency.

However, the ‘inner machine’ is a call-by-value reduction strategy of λK. It performs
β-reduction, reducing redexes when the operand is not a value. Furthermore, v-unsolvables
of order n > 0, which according to [PR99] are operationally irrelevant because no arbitrary
result can be obtained from them, are definite results. These v-unsolvables cannot be
consistently equated [PR99] and thus the model H is not sensible. Moreover, it is not
semi-sensible since some v-solvables can be equated to v-unsolvables (Thm. 5.12 in [PR99,
p.22]). Finally, the operational characterisation of v-solvability, namely having a v-hnf, is
given by the so-called ‘ahead machine’ which is also a reduction strategy of λK, not of λV.

The reason why v-solvability does not capture operational relevance in λV is because it
is based on SolI which requires the universally (any X) quantified Lemma 5.1 to hold. The
solution lies in adapting to λV the existentially (has some βV-nf) quantified SolN definition
with open and non-closing contexts. As we shall see, there are two ways to solve a term
in λV. One is to apply it to suitable values to obtain any given value (or closed value as
in v-solvability). We call this to transform the application. Another is to pass suitable
values to obtain some βV-nf. We call this to freeze the application. Terms like U cannot be
transformed but frozen.

In [RP04, p.36] it is the open body of U, i.e. B ≡ (λy.∆)(x I)∆, what is considered
operationally equivalent to Ω. Now, B is not a value, but it is a βV-nf, a definite result of
λV. The difference between B and Ω lies in the value substituted for x. The intuition is
best expressed using the following experiment paraphrased from [Abr90, p.4]:

Given [an arbitrary] term, the only experiment of depth 1 we can do is to
evaluate [weakly] and see if it converges to some abstraction [or to some
neutral subsequently closed to some abstraction] λx.M1. If it does so, we can
continue the experiment to depth 2 by supplying [an arbitrary value N1 that
may be open] as input to M1, and so on. Note that what the experimenter
can observe at each stage is only the fact of convergence, not which term lies
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under the abstraction. [Note that the term reports the need to provide a
value for the blocking free variable by closing the neutral to an abstraction.]

6. Introducing λV-solvability

We have seen that terms like the L′i of Section 4.1, or U and λx.Ω in the previous section,
are operationally distinguishable in open contexts. We thus define solvability in λV by
adapting SolF to that calculus.

Definition 6.1 (SolFV). A term M ∈ Λ is solvable in λV iff there exists N ∈ VNF and
there exists a function context F[ ] such that F[M ] =βV N .

Notice that operands in function contexts may be values if so wished. Hereafter we
abbreviate ‘M is solvable in λV’ as ‘M is λV-solvable’.

The set of λV-solvables is a proper superset of the union of the set of terms with
βV-nf and the set of v-solvables. A witness example is T1 ≡ (λy.∆)(x I)∆(x(λx.Ω)).
This term has no βV-nf. This term is not v-solvable: there is no closed and closing head
context sending T1 to I, or to a closed value, or to a closed βV-nf. However, the function
context F[ ] ≡ (λx.[ ])(λx.z I) sends T1 to the βV-nf (λx.∆)(z I)∆(z I). Therefore T1 is
λV-solvable.

Notice that T1 has B as subterm, with the blocking variable x of B the same blocking
variable of the neutral x(λx.Ω). The use of the same blocking variable illustrates that the
function context in SolFV has to be open. There is no closed function context (nor head
context) sending T1 to a βV-nf since substituting a closed value for x would make B diverge.
In contrast, the free variable z in F[ ] above is key to produce a stuck. We anticipated in
Section 3.2 that adapting SolH to λV leaves solvable terms behind. The terms U and T1

are two witness examples.
We now connect λV-solvability and operational relevance with effective use in λV, as

we did for λK in Section 3.3. To this end we adapt to λV the notion of ‘order of a term’
[Lon83].

Definition 6.2 (Order of a term in λV). A term M ∈ Λ is of order 0 iff there is no N such
that M =βV λx.N . A term M ∈ Λ is of order n+ 1 iff M =βV λx.N and N is of order n. In
the limit, i.e. when a maximum natural k does not exist such that M =βV λx1 . . . xk.N , we
say M is of order ω.

This definition differs from the one in [PR99, p.21]. The latter is for v-unsolvables
and uses the ‘inner machine’ which is a reduction strategy of λK (Section 5). Ours is for
arbitrary terms (not just λV-unsolvables) and uses βV-conversion.

The order of a term is an ordinal number that comprises the finite ordinals (i.e. the
naturals) and the first limit ordinal ω. An example of a term of order ω is Y K where Y
is Curry’s fixed-point combinator (see Prop. 2.7.(iv) in [Abr90, p.6] and Ex. 2 in [Wad76,
p.502]). The term Y K βV-converts to λx1 . . . xk.Y K with k arbitrarily large. Notice that
a term of order ω has no βV-nf and is λV-unsolvable.

With this notion of order at hand we can now state our version of SolC for λV.

Definition 6.3 (SolCV). A term M ∈ Λ of order n is solvable in λV iff there exists a
context C[ ] such that C[M ] =βV N for some N ∈ VNF, and not for all X ∈ Λ of order
m ≥ n it is the case that C[X] =βV N .
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Note that X ∈ Val is allowed by the definition.
As was the case in λK (Section 3.3), the piece that lets us obtain SolCV from SolFV

is a genericity lemma which in λV has to take into account the order of λV-unsolvables.

Lemma 6.4 (Partial Genericity Lemma). Let M ∈ Λ be of order n and N ∈ VNF. M is
λV-unsolvable implies that for all contexts C[ ], if C[M ] =βV N then for all X ∈ Λ of order
m ≥ n it is the case that C[X] =βV N .

We postpone the proof to Section 7 and focus here on the intuitions. The lemma tells us
that λV-unsolvables of order n are partially generic, i.e. they are generic for terms of order
m ≥ n. A λV-solvable can be used effectively to produce a βV-nf therefore λV-solvability
is synonymous with operational relevance. However, not all λV-unsolvables are totally
undefined. Only λV-unsolvables of order 0 are totally undefined. A λV-unsolvable of order n
cannot be used effectively to produce a βV-nf, but it can be used trivially (discarded) after
receiving at most n− 1 operands. Hence, it is partially defined.

For example, take M ≡ λx.λy.Ω. This term is λV-unsolvable of order 2. The context
C[ ] ≡ (λx.(λy.I)(x∆))[ ] uses M first ‘administratively’ (i.e. passes ∆ to it) and then
‘trivially’ (i.e. discards the result) such that C[M ] =βV I. Replacing M with a totally
undefined term like Ω would make C[Ω] diverge. But since C[ ] uses M only up to passing
one argument, M could be replaced by any term X of order 2 and still C[X] =βV I.

The Partial Genericity Lemma is stated as an implication but, as was the case with
Lemma 3.10, it is an equivalence. Clearly, if M is λV-solvable then there exists C[ ] ≡ F[ ]
such that F[M ] =βV N , and by the shape of F[ ] it is not the case that for all X ∈ Λ of
order m ≥ n, F[X] =βV N . Take for instance F[λx1 . . . xm.Ω] which diverges. Stated as an
equivalence, the Partial Genericity Lemma coincides with SolCV when read in the inverse.

Pure λV still has ‘functional character’ [CDV81, EHR92] but its notion of operational
relevance takes into account trivial uses of terms that occur inside operands of other terms
up to administratively passing them a number of operands. More precisely, if a term occurs
inside the operand of another term then it has ‘negative polarity’. Otherwise it has ‘positive
polarity’. The import of polarity for operational relevance is inherent to the duality between
call-by-name and call-by-value [CH00]. Subterms with positive polarity are used effectively.
Subterms with negative polarity may or may not occur eventually with positive polarity, in
which case they would respectively be used effectively or trivially (perhaps after receiving
some operands). The partially generic terms may only be used trivially (up to order n) to
produce a βV-nf if they occur with negative polarity.

Partially generic terms can be equated attending to their order without loss of consistency.
More precisely, given the set

V0 = {M = N | M,N ∈ Λ0 are λV-unsolvables of the same order}
a consistent extended proof-theory V results from adding V0’s equations as axioms to λV
(i.e. V = V0 + λV). The consistency of V is proved in Section 8. We say that a consistent
extension where λV-unsolvables of the same order are equated (i.e. contains V) is ω-sensible.

Since the operational experiments that we have in mind (Sections 4.1 and 5) distinguish
sequentiality features, no ω-sensible functional models (e.g., models that are solution to the
domain equation D ∼= [D →⊥ D] for strict functions) seem to exist. However, we conjecture
the existence of ω-sensible models that may resemble the ‘sequential algorithms’ of [BC82].
The notion of operational relevance in λV that we advocate calls for increased ‘separating
capabilities’ (in the spirit of [Cur07]) that ω-sensible models would exhibit. Such capabilities
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are not present in existing models for ‘lazy’ call-by-value (e.g., the model H in [EHR92]
based on the solution to the domain equation D ∼= [D →⊥ D]⊥ for lifted strict functions).
We also conjecture that existing functional models could be constructed from ω-sensible
models via some quotient that blurs the differences in sequentiality.

As for the operational characterisation of λV-solvables, that is, a reduction strategy of λV
that terminates iff the input term is λV-solvable, we postpone the discussion to Section 7.5.

7. Towards the Partial Genericity Lemma

Our proof of the Partial Genericity Lemma is based on the proof of λK’s Genericity Lemma
presented in [BKC00] that uses origin tracking. Given a reduction sequence M →β . . .→β N
with N ∈ NF, origin tracking traces the symbols in N back to a prefix of M (i.e. a ‘useful’
part) which is followed by a lower part (i.e. the ‘garbage’) that does not affect the result N .
The tracking mechanism employs a refinement of Lévy-labels [Lév75].

In our case the reduction sequence is M →βV . . . →βV N with N ∈ VNF. Instead
of tracking the symbols in N back to the the useful part in M , we mark as garbage a
predefined subterm in M , namely, the λV-unsolvable of order n that we want to test for
partial genericity. We track this subterm forwards and check that it is discarded in the
reduction sequence before passing n operands to it. To this end we need two main ingredients:
(i) a reduction strategy that is complete with respect to βV-nf (Section 7.1) and (ii) a tracking
mechanism that keeps count of the number of operands that are passed to a predefined
subterm (Section 7.2). We prove that the predefined term is discarded by the complete
reduction strategy after receiving at most n− 1 operands (Section 7.3). Confluence allows
us to generalise from the reduction strategy to any reduction sequence ending in βV-nf.

7.1. Value normal order. The first ingredient we need is a reduction strategy of reference
that is complete with respect to βV-nf. We define one such strategy and call it value normal
order because we have defined it by adapting to λV the results in [BKKS87] relative to the
complete normal order strategy of λK mentioned in Section 2. Those results are collected
in App. E for ease of reference. In this section we introduce their analogues for λV. The
unacquainted reader may find it useful to read App. E and this section in parallel.

We advance that value normal order is not quite the same strategy as the complete
reduction strategy of λV named →p

Γ that is obtained as an instantiation of the ‘principal
reduction machine’ of [RP04]. The latter reduces the body and operator of a block in
right-to-left fashion whereas value normal order uses the more natural left-to-right order (see
Section 9 for details). This difference does not affect completeness because both strategies
entail standard reduction sequences (a notion defined in [Plo75, p.137] for the applied λV
and adapted to pure λV in Def. 7.8 below). For every λV reduction sequence from M to N ,
there exists a standard reduction sequence that starts at M and ends at N . A reduction
strategy that entails standard reduction sequences and that arrives at a βV-nf is complete.
And standard reduction sequences are not unique (Section 7.4).

Normal order can be defined as follows. The active components of a term [BKKS87,
Def. 2.3] (i.e. the maximal subterms that are not in hnf) are considered in left-to-right
fashion and reduced by head reduction [Bar84, Def. 8.3.10]. At the start, the input term is
the only active component if it is not a hnf. Once a hnf is reached its active components
occur as subterms inside a ‘frozen’ β-nf context. Every time the hnf of an active component
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is reached, the subsequent active components in it (if any) are recursively considered in left-
to-right-fashion. We define value normal order by adapting this pattern to λV. In particular,
we adapt the definition of needed redex, of active component, and of head reduction, whose
analogue we have called ‘chest reduction’ following the convention of [BKKS87, Sec. 4] of
considering the abstract syntax tree of a term and an anatomical analogy for terms.

First we adapt the notion of needed redex [BKKS87, p.212] to λV:

Definition 7.1 (Needed redex in λV). Let M ∈ Λ and R a βV-redex in M . R is needed iff
every reduction sequence of M to βV-nf contracts (some residual of) R.

The chest and ribcage of a term provide progressively better approximations to the set
of needed βV-redexes of a term. The chest of the term contains the head of the term and
the outermost ribs, that is, all the nodes connected by application nodes to the head of the
term save for the rib ends. The rib ends are the nodes descending through lambda nodes
from the ribs. The ribcage of a term consists of the head spine and the ribs connected to
the head spine, that is, all the nodes connected by application nodes to the head spine of
the term save for the rib ends. Fig. 4 illustrates with an example that is further developed
after the following formal definition of chest and ribcage.

In Def. 7.2 below we define the functions bv, ch, and rc. The last two underline
respectively the chest and the ribcage of a term. Both rely on auxiliary bv related to
call-by-value as explained further below.

Definition 7.2 (Chest and ribcage). Functions ch and rc underline the chest and the ribcage
of a term respectively.

bv(x) = x
bv(λx.B) = λx.B
bv(M N) = bv(M)bv(N)

ch(x) = x
ch(λx.B) = λx.ch(B)
ch(M N) = bv(M)bv(N)

rc(x) = x
rc(λx.B) = λx.rc(B)
rc(M N) = rc(M)bv(N)

A βV-redex is chest (resp. ribcage) if the outermost lambda of it is underlined by function
ch (resp. rc).

Function bv underlines the outermost lambda of the βV-redexes that are reduced by
the call-by-value strategy of pure λV (Def. 7.3). This strategy differs from its homonym in
[Plo75, p.136] which is for an applied version of the calculus. See [Fel87, Ses02, RP04] for
details on the difference. The chest and ribcage βV-redexes realise the idea that operands in
applications must be reduced to a value.

As an example, consider the term whose abstract syntax tree is depicted in Fig 4. The
chest (thick edges in the figure) is underlined in λx.(λy.y((λz.M1)x))x((λt.M2)x). The

ribcage (thick edges and dotted edges) is underlined in λx.(λy.y((λz.M1)x))x((λt.M2)x).

The subterms M1 and M2 are the rib ends. The subterms (λy.y((λz.M1)x))x and (λt.M2)x
are both chest and ribcage βV-redexes. (The former is also a head and head-spine β-redex,
and the latter is neither head nor head-spine.) The subterm (λz.M1)x is a ribcage βV-redex
but it is neither a chest βV-redex, nor a head or head spine β-redex.
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Figure 4: Chest (thick edges) and ribcage (thick edges and dotted edges) of the term
λx.(λy.y((λz.M1)x))x((λt.M2)x).

We now define call-by-value and chest reduction using a (context-based) reduction
semantics [Fel87] which is a handy device for defining small-step reduction strategies. It
consists of EBNF-grammars for terms, irreducible forms, and reduction contexts, together
with a contraction rule for redexes within context holes. The reduction strategy is defined
by the iteration of single-step reductions which consist of (i) uniquely decomposing the
term into a reduction context plus a redex within the hole, (ii) contracting the redex within
the hole and, (iii) recomposing the resulting term. The iteration terminates iff the term is
irreducible.

Call-by-value is the strategy that contracts the leftmost βV-redex that is not inside an
abstraction [Fel87, p.42]. Chest reduction is the strategy that contracts the leftmost chest
βV-redex. Observe that the reduction contexts of chest reduction contain the reduction
contexts of call-by-value.

Definition 7.3 (Call-by-value strategy). The call-by-value strategy →V is defined by the
the following reduction semantics:

BV[ ] ::= [ ] | BV[ ] Λ | VWNFBV[ ]
VWNF ::= Val | NeuW
NeuW ::= xVWNF {VWNF}∗ | BlockW {VWNF}∗

BlockW ::= (λx.Λ)NeuW
BV[(λx.B)N ]→V BV[[N/x]B] with N ∈ Val

The set VWNF of βV-weak-normal-forms (vwnfs for short) consists of the terms that do not
have βV-redexes except under abstraction. It contains values and neutrals in vwnf.
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Definition 7.4 (Chest reduction). The chest-reduction strategy →ch is defined by the
following reduction semantics:

CH[ ] ::= [ ] | BV[ ] Λ | VWNFBV[ ] | λx.CH[ ]

CH[(λx.B)N ]→ch CH[[N/x]B] with N ∈ Val

The set CHNF ::= x | λx.CHNF | NeuW of chest normal forms (chnfs for short) consists of
variables, abstractions with body in chnf, and neutrals in vwnf. A chest normal form has
the following shape:

λx1 . . . xn.(λyp.Bp)( · · · ((λy1.B1)(zW 0
1 · · ·W 0

m0
)W 1

1 · · ·W 1
m1

) · · · )W p
1 · · ·W

p
mp

where n ≥ 0, p ≥ 0, m1 ≥ 0, . . . , mp ≥ 0, and W j
i are in vwnf. We say that MW j

1 · · ·W
j
mj

is an accumulator, where M is its leftmost operator which is either a variable or a block. The
operand of the block in an accumulator could be, in turn, an accumulator, and accumulators
are nested in this way, where the innermost one has a variable as its leftmost operator. We
call this variable the blocking variable, which is variable z in the term above.

The term T1 ≡ (λy.∆)(x I)∆(x(λx.Ω)) introduced in Section 6 is an example of a chnf
that has no βV-nf.

Definition 7.5 (Ribcage reduction). The ribcage-reduction strategy →rc is defined by the
following reduction semantics:

RC[ ] ::= [ ] | RC[ ] Λ | VWNFBV[ ] | λx.RC[ ]

RC[(λx.B)N ]→rc RC[[N/x]B] with B ∈ CHNF and N ∈ Val

Ribcage reduction delivers a chnf if the term has some. (A term can convert to several
βV-convertible chnfs that differ in the rib ends.) The only difference with respect to chest
reduction is that ribcage reduction contracts the body of a βV-redex to chnf before contracting
the βV-redex.

Definition 7.6 (Active components in λV). The λV-active components of M ∈ Λ are the
maximal subterms of M that are not in chnf.

Paraphrasing [BKKS87, p.195] to the λV case:

The word “active” refers to the fact that the [λV-active] components are
embedded in a context which is “frozen”, i.e. a [βV-nf] when the holes are
viewed as variables. (This frozen context of M is the trivial empty context if
M is not a [chnf].)

A βV-nf has no λV-active components. The λV-active components of a term are disjoint.
For example, the λV-active components of λx.x(λy.I I)(λz.(λt.z)(x y)(I I)) are the subterms
λy.I I and λz.(λt.z)(x y)(I I).

Value normal order is defined in terms of chest reduction as follows. The λV-active
components of the term are considered in left-to-right fashion and reduced by chest reduction.
(The following lines paraphrase the ones for normal order written at the beginning of the
section.) At the start, the input term is the only λV-active component if it is not a chnf.
Once a chnf is reached, the λV-active components in it (if any) are subterms inside a ‘frozen’
βV-nf context. Every time the chnf of a λV-active component is reached, the subsequent
λV-active components in it (if any) are recursively considered in left-to-right fashion.
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Definition 7.7 (Value normal order). The value normal order strategy →vn is defined by
the following reduction semantics:

A[CH[(λx.B)N ]→vn A[CH[[N/x]B] with N ∈ Val

where CH[ ] is a chest reduction context and CH[(λx.B)N ] is the leftmost λV-active
component of A[CH[(λx.B)N ]], i.e. either A[ ] ≡ [ ] and CH[(λx.B)N ] is not in chnf, or
A[ ] 6≡ [ ] and A[CH[(λx.B)N ] is a chnf such that every subterm at the left of CH[(λx.B)N ]
is in βV-nf.

We now adapt to pure λV the notion of standard reduction sequence in [Plo75, p.137].

Definition 7.8 (Standard reduction sequence in λV). A standard reduction sequence
(abbrev. SRS) is a sequence of terms defined inductively as follows:

(1) Any variable x is a SRS.
(2) If N2, . . . , Nk is a SRS and N1 →V N2, then N1, . . . , Nk is a SRS.
(3) If N1, . . . , Nk is a SRS then λx.N1, . . . , λx.Nk is a SRS.
(4) If M1, . . . ,Mj and N1, . . . , Nk are SRS then M1N1, . . . ,Mj N1, . . . ,Mj Nk is a SRS.

Theorem 7.9. Value normal order entails a SRS.

Proof. The reduction contexts of value normal order (Def. 7.7) are of the shape A[CH[ ]]
where CH[ ] is a chest-reduction context (Def. 7.4) and, if R is the next βV-redex to be
contracted, then CH[R] is the leftmost λV-active component of A[CH[R]]. The reduction
contexts for value normal order can be broken down further into A[λx1 . . . xn.BV[ ]], where
n ≥ 0 and BV[ ] is a call-by-value reduction context (Def. 7.3). Def. 7.8(2) says that any
reduction sequence entailed by the reduction contexts BV[ ] of →V is standard. Def. 7.8(3)
says that these reduction sequences can be lifted to any number of surrounding lambdas,
and so it ensures that chest-reduction contexts λx1 . . . xn.BV[ ] are standard. The step of
locating the leftmost λV-active component of A[ ] is standard by Def. 7.8(3) and Def. 7.8(4).

7.2. Labelling for counting operands. The second ingredient for the proof of the Partial
Genericity Lemma is a tracking mechanism that counts the number of operands that have
been passed to a particular term. Following [Klo80, BKC00] we define this tracking by
introducing a lambda calculus labelling [TeR03, Def. 8.4.26] that specifies a generalised
notion of descendant. Def. 7.10 defines the labelling C for counting. The labels range over
{ε} ∪ N, i.e. either an empty count ε or a count c ≥ 0. When non-empty, the count of the
operator in a redex is increased, assigned to the body of the redex, and then the redex is
contracted (i.e. the operand is substituted by the free occurrences of the formal parameter
in the body of the redex).

Definition 7.10 (Counting labelling). Let the labels L = {ε} ∪ N be the union of the the
empty count and the natural numbers. The counting labelling C and the bisimulation C are
defined by mutual induction as follow:

• The labelled terms C(Λ) are labelled variables x` (with ` ∈ L), labelled abstractions
(λx.B)` (with B a labelled term), and labelled applications (M N)` (with M and N
labelled terms). The following statements about bisimulation C hold:
– xCx`.
– If BCB′ then (λx.B)C(λx.B′)`.
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– If MCM ′ and NCN ′ then (M N)C(M ′N ′)`.
• Suppose BCB′ and NCN ′ with the β-rule of the form (λx.B)N →β [N/x]B. Let B′ ≡ C`1 .

Consider the βc-rule

((λx.C`1)`2N ′)`3 →βc


[N ′/x](Cc) if `1 = c
[N ′/x](Cc+1) if `2 = c
[N ′/x](Cc) if `3 = c
[N ′/x](Cε) if `1, `2, `3 = ε

where the capture avoiding substitution function for labelled terms (defined below) pre-
serves the label of the subject of the substitution:

[T `1/x](x`2) = T `1

[T `1/x]((λx.B`2)`3) = (λx.[T `1/x](B`2))`3

[T `1/x]((M `2 N `3)`4) = (([T `1/x](M `2))([T `1/x](N `3)))`4

If `2 = c, rule βc increments the count of the abstraction and assigns it to the body C
before performing the substitution. (Below we show that if some of the `1, `2, and `3 are
non-empty, the first three alternatives of the βc-rule coincide.) We set βCβc.

The definition of labelled terms is extended to contexts C(C[ ]) in the trivial way, observing
that the hole [ ] in a labelled context does not carry any label. When no confusion arises,
we will omit the epithet ‘labelled’ for terms and contexts.

Initially, all subterms have empty count ε except for a particular subterm.

Definition 7.11. Function c takes a term M and delivers M ′ such that MCM ′ and where
all the subterms of M ′ have empty count ε. For example,

c((λx.λy.x)z(λx.x)) = (((λx.(λy.xε)ε)εzε)ε(λx.xε)ε)ε

The labelling function c is extended to contexts in the trivial way.

Typically, we would assign the non-empty count ‘0’ to the unsolvable subterm that we
wish to trace.

Definition 7.12. Function s selects a subterm M in C[M ], assigning count 0 to M and
empty count everywhere else in C[M ], including the proper subterms of M .

s(C[ ],M) = C′[M ′0] where c(C[ ]) ≡ C′[ ] and c(M) ≡M ′ε

Notice that MC(s(C[ ],M)). When no confusion arises, we write s(C[M ]) instead of
s(C[ ],M).

Labelling C serves two different purposes. It tracks some unsolvable with non-empty
count, and it counts the operands that have been passed to it. Consider the βc-reduction step
((λx.Bε)cN ′)ε →βc [N ′/x](Bc+1) with B 6≡ x and c a non-empty count. We are interested
in counting the number of operands passed to operator λx.B, and thus the second line of βc
assigns the non-empty count c+ 1 to the body B in the substitution instance [N ′/x](Bc+1).

Notice that the tracking implemented by C differs from the conventional notion of
descendant [Klo80, Bar84, KvdV99]. In the example above, the term [N ′/x](Bc+1) would
be a trace of (λx.Bε)c if B 6≡ x. And similarly, if the label to be preserved was that of
the application, as the βc-reduction step ((λx.Bε)εN ′)c →βc [N ′/x](Bc) illustrates, then the
term [N ′/x](Bc) would be a trace of ((λx.Bε)εN ′)c if B 6≡ x. But the traces [N ′/x](Bc+1)
and [N ′/x](Bc) could never be descendants in the conventional sense of (λx.Bε)c and
((λx.Bε)εN ′)c (respectively), because according to the labelled β-reduction of [Klo80, p.19]
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the labels of the operator and of the redex (i.e. the c in each of the examples above) vanish.
We distinguish our more refined tracking from the conventional notion of descendant by
using ‘trace’ and ‘origin’ for the former and ‘descendant’ and ‘ancestor’ for the latter. Notice
that all the descendants of M in s(C[M ]) are traces (i.e. have non-empty count), but not all
the traces of M in s(C[M ]) are descendants.

The counting labelling C can be applied to λV by restricting rule βc above with N ′ ∈
C(Val). We call the restricted rule βcV and set βVCβcV. The definition of λV-solvable, of
order of a term, and of value normal order is extended to labelled terms in the trivial way.

Our counting labelling captures accurately the number of operands that are passed to
the tracked unsolvable. That is, when tracking M (an unsolvable of order n) in s(C[M ]),
all the traces M c

t in the βc-reduction sequence are unsolvables of order n− c. In order to
prove this invariant we first need to show that unsolvability and ‘order of an unsolvable’
are preserved by substitution. This result holds respectively for λK and λV, by taking the
definitions of solvability and of ‘order of a term’ in the corresponding calculus: for λK, the
usual definition of solvability and the ‘order of a term’ in [Lon83]; for λV, Def. 6.3 and order
of a term in Section 6. We present the result for λV first, since this one is the novel result.
The result for λK follows straightforwardly by adapting the proof of the former.

Lemma 7.13 (Order of a λV-unsolvable is preserved by substitution). Let M ∈ Λ be
a λV-unsolvable of order n. For every N ∈ Val, the substitution instance [N/x]M is a
λV-unsolvable of order n.

Proof. We distinguish two cases:

(1) M is of order ω. Then M =βV λy1 . . . yk.B with k arbitrarily large. If x = yi for
some i ≤ k, then by substitutivity and by definition of the substitution function
[N/x]M =βV λy1 . . . yk.B. If x 6= yi with i ≤ k, then by substitutivity of =βV and by
definition of the substitution function, then [N/x]M =βV λy1 . . . yk.[N/x]B and we are
done.

(2) M is of order n < ω. Then M =βV λy1 . . . yn.B and by substitutivity of =βV. If x = yi for
some i ≤ n then [N/x]M ≡ λy1 . . . yn.B and the lemma holds. If x 6= yi for every i ≤ n,
since B is λV-unsolvable of order 0 and by the definitions of λV-solvability and of the
substitution function, it suffices to show that [N/x]B is of order 0. We proceed by reductio
ad absurdum. Assume that [N/x]B is of order m > 0. Then [N/x]B =βV λz1 . . . zm.C.
If x = zj for some j ≤ m, then by substitutivity and by definition of the substitution
function M =βV λx1 . . . xnz1 . . . zm.C, which contradicts the assumptions. If x 6= zj for
every j ≤ m, then C ≡ [N/x]B′ for some B′, and by substitutivity and by definition of
the substitution function then M =βV λx1 . . . xnz1 . . . zm.B

′, which also contradicts the
assumptions and we are done.

Lemma 7.14 (Order of a λK-unsolvable is preserved by substitution). Let M ∈ Λ be
a λK-unsolvable of order n. For every N ∈ Λ, the substitution instance [N/x]M is a
λK-unsolvable of order n.

Proof. By adapting the proof of Lemma 7.13 to λK in a straightforward way.

The invariant stated in Lemma 7.15 and 7.16 below ensure that, even if several of the
`1, `2, and `3 in the βc-rule above are non-empty, all the alternatives coincide and thus
βc-reduction is confluent.
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Lemma 7.15. Let M0 ∈ Λ λV-unsolvable of order n0. Every trace of M0 with non-empty
count c in any βcV-reduction sequence starting at s(C[M0]) is λV-unsolvable of order n such
that n0 = c+ n.6

Proof. By definition, only the traces of M0 (we refer to them as Mt) have non-empty count
c. We prove that the contractum of a βcV-redex preserves the invariant n0 = c+ n (recall
that we mind the left-cancellative addition for ordinals) for each labelled trace Mt with
non-empty count c and order n. We consider any βcV-reduction sequence and proceed by
induction on the sequence order of the term in which the βcV-redex occurs. (The general
case coincides with the base case, except for the small differences pinpointed in Cases 2, 3,
and 4 below.) Consider the βcV-redex R ≡ (λx.B)N with N ∈ C(Val) occurring at step s
that is contracted in order to produce the reduct at step s+ 1. We focus on each occurrence
(if any) of Mt with non-empty count c in R and distinguish the following cases:

(1) R ≡ (λx.C[Mt])N . The contractum is C ≡ C′[[N/x]Mt] where C′[ ] ≡ [N/x](C[ ]).
By Lemma 7.13, if C[ ] ≡ [ ] then the occurrence of [N/x]Mt in the contractum is
λV-unsolvable of order n and the lemma holds. (Notice that the first line of rule βc
of Def. 7.10 takes care of preserving the count c of the redex’s body Mt if C[ ] ≡ [ ].)
Otherwise the order and count of the occurrences of Mt in [N/x](C[Mt]) are trivially
preserved and the lemma follows.

(2) R ≡MtN . Then Mt ≡ (λx.B)c with B λV-unsolvable of order n− 1. By Lemma 7.13
[N/x]Bc+1 is λV-unsolvable of order n′ = n − 1 and the lemma holds. Notice that
left-subtraction allows for the limit case when both n and n′ are infinite ordinals (i.e.
ω = n = 1 + n′ = 1 + ω = ω). This is enough for the base case (i.e. s = 1), but for
the general case there can be an overlap with Case 1 if some trace M ′t of M0 occurs
in Bc. The lemma follows as in Case 1 except if C[ ] ≡ [ ], because the first and the
second lines of rule βc of Def. 7.10 produce a critical pair. But we show that both
alternatives coincide. Let M ′t with non-empty count c′ be λV-unsolvable of order n′. By
the induction hypothesis, the invariant holds for M ′t (i.e. n0 = c′ + n′). In the limit case
(i.e. n0 = ω) both Mt ≡ λx.M ′t and M ′t have infinite order (i.e. n = n′ = ω) and then
n0 = c′ + n′ = c + n and the lemma follows. In the finite case, n − n′ = 1 and then
n0 = c′+n′ = c+n′+ 1 and c′ = c+ 1. Therefore both alternatives for rule βcV coincide
and the lemma follows.

(3) R ≡Mt. Then Mt ≡ ((λx.B)N)c with N ∈ C(Val). For the base case the lemma follows
because the third line of βc of Def. 7.10 preserves the count of the βcV-redex. For the
general case there can be overlap with Cases 1 and 2, and the lemma follows because
the different alternatives for βc coincide by the induction hypothesis, as was illustrated
in Case 2 above.

(4) R ≡ (λx.B)(C[Mt]). For each occurrence of x in B, the order and count of M ′t is trivially
preserved by the definition of the substitution function (Def. 7.10) and the lemma holds.
This is enough for the base case. For the general case there can be an overlap with
Cases 1, 2, and 3, and the lemma follows because the different alternatives for βc coincide
by the induction hypothesis, as was illustrated in Case 2 above.

6We assume the standard conventions on ordinal number arithmetic [Sie65]. The successor of an ordinal
α is α + 1. Addition is non-commutative and left-cancellative, that is, let n be a finite ordinal, then
n+ ω = 0 + ω = ω. Only left subtraction is definable, i.e. α− β = γ iff β ≤ α and γ is the unique ordinal
such that α = β + γ.
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Lemma 7.16. Let M0 ∈ Λ λK-unsolvable of order n0. Every trace of M0 with non-empty
count c in any βc-reduction sequence starting at s(C[M0]) is λK-unsolvable of order n such
that n0 = c+ n.

Proof. By adapting the proof of Lemma 7.15 to λK in a straightforward way.

7.3. Generalised statement and illustration of the proof. We generalise the statement
of the Partial Genericity Lemma we gave in Lemma 6.4 to provide a proof by induction on
the length of the reduction sequence of value normal order.

First, we take Lemma 6.4 and pull out the universal quantifier ‘for all contexts C[ ]’ from
the consequent of the implication. We take value normal order (Def. 7.7) and the counting
labelling C(λV) (Def. 7.10). We take M , N , and C[ ] in Lemma 6.4 and subscript them with
a 0 to indicate that M0 ∈ C(Λ) is the initial labelled λV-unsolvable, N0 ∈ C(VNF) is the
labelled normal form, and C0[ ] is the initial labelled context such that s(C[M ]) = C0[M0],
C0[M0] =βcV N0 and NCN0. (We also rename n to n0 for uniformity.) The generalised
theorem reads as follows.

Theorem 7.17. Let M ′ ∈ C(Λ) of order n′ ≤ n0 and C′[ ] a labelled context. That C′[M ′]
is a labelled reduct in the value-normal-order reduction sequence of C0[M0] and M ′ has
non-empty count implies that if C′[M ′] =βcV N0 then for all terms X of order m ≥ n0 it is
the case that C0[c(X)] =βcV N0.

This theorem coincides modulo C bisimilarity with Lemma 6.4 by taking C′[ ] ≡ C0[ ],
M ′ ≡ M0, and n′ = n0. In that case C′[M ′] ≡ C0[M0] is the first term in the reduction
sequence and M ′ has non-empty count 0 in C′[M ′].

Proof of Thm. 7.17. For brevity, we drop the C and c from the sets of terms and from the
reduction rule respectively. Recall from Def. 7.7 that the terms in a value-normal-order
reduction sequence have the shape A[CH[R]], where R is the next βV-redex to be contracted,
CH[ ] is a chest-reduction context, and A[ ] is the context in which the leftmost λV-active
component A ≡ CH[R] occurs. We focus on the traces of M0 that pop up in the value-
normal-order reduction sequence of C′[M ′]. We proceed by induction on the length of the
value-normal-order reduction sequence of C′[M ′].

The base case is when all the traces of M0 (i.e. all the subterms with non-empty count)
that occur in C′[M ′] (the M ′ itself is one of these traces since it has non-empty count) are
discarded in the next value-normal-order reduction step. That is, the hole in C′[ ], and every
other trace of M0, lie inside the operand of the next βV-redex R, i.e. C′[M ′] ≡ A[CH[R]],
and R ≡ (λx.B)(C1[M ′]) such that x does not occur free in B and C1[M ′] is a value that
contains all the traces of M0. The next reduct is A[CH[B]]. There is no C′′[ ] such that
C′′[M ′]→∗βV A[CH[B]] and such that the value-normal-order reduction sequence of C′′[M ′]

is of length less than the value-normal-order reduction sequence of C′[M ′], which explains
why this is the base case.

Since M ′ is a trace of M0 and M0 has count 0 in C0[M0], if the count of M ′ is greater than
0 then by Def. 7.10 this can only be the result of a reduction step A[CH[(λx.Bc)N ]]→vn

A[CH[[N/x](Bc+1)] with Bc a trace of M0 with non-empty count c. Had the count of the
contractum [N/x](Bc+1) reached n0, then by Lemmata 7.13 and 7.15 the contractum would
be λV-unsolvable of order 0 and the A[CH[[N/x](Bc+1)] would have diverged under value
normal order. But this contradicts the assumption C′[M ′] =βV N0. Therefore M ′ has count
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at most n0 − 1 and order greater than 0, i.e. M ′ ∈ Val. If the M0 was replaced by a term X,
the trace of X would have reached at most count n0 − 1. Therefore, for any X ∈ Λ of order
greater or equal than n0 it is the case that C0[X] =βV N0, and the theorem follows.

Now we proceed with the general case. We analyse the cases:

(1) No trace of M0 pops up, i.e. C′[M ′] is not of the form A[CH[Mt]] where Mt is a βV-redex
with non-empty count c. Let R be the next βV-redex to be contracted, i.e. A[CH[R]].
Either R ≡ (λx.B)(C1[M ′]) with x not free in B and this case matches the conditions
of the base case and we are done, or contracting R does not discard all the traces of M0

that occur in C′[M ′]. Let R′ be the contractum of R and Mt be one of the traces of
M0 that occurs in A[CH[R′]], i.e. A[CH[R′]] ≡ C2[Mt] and Mt has non-empty count c
(it is immaterial for the proof which of the the existing traces of M0 you pick). By an
argument similar to the one in the base case, the count of Mt is at most n0 − 1. The
theorem holds for C2[ ] and Mt by the induction hypothesis.

(2) A trace of M0 pops up, i.e. C′[M ′] is of the form A[CH[Mt]] where Mt is a βV-redex
with non-empty count c. Mt is the next redex to be contracted, and thus it is of the
shape ((λx.B)N)c with N ∈ Val. By Def. 7.10 the contractum of Mt is [N/x](Bc), which
has count c by Lemma 7.15. The theorem holds for A[CH[ ]] and [N/x](Bc) by the
induction hypothesis.

The following example illustrates the proof. (Remember we are dropping the C and c
from the sets of terms and from the reduction rule respectively.) Consider the context
C0[ ] ≡ (λx.(λy.I)(xx))[ ] and the λV-unsolvable M0 ≡ (I(λx.λy.xΩ))0 of order 2 and
with non-empty count 0. The conversion C0[M0] =βV I holds, where I ∈ VNF. The proof
proceeds by induction on the length of the value-normal-order reduction sequence of C0[M0].
We analyse this reduction sequence and check that the I is reached when replacing M0 by
a generic term X of order m ≥ 2. The first βV-redex to be contracted is C0[M0]. Not all
traces of M0 are discarded in the next reduct and we are at the sub-case of the general case
where no trace of M0 pops up in the reduction sequence.

(λx.(λy.I)(xx))(I(λx.λy.xΩ))0

→vn

{
A[CH[ ]] ≡ [[ ]]0

R ≡ (λx.(λy.I)(xx))(I(λx.λy.xΩ))0

}
(λy.I)((I(λx.λy.xΩ))0(I(λx.λy.xΩ))0)

The remaining reduction sequence has length less than the reduction sequence of C0[M0] and
the property holds for M1 ≡ M0 and C1[ ] ≡ (λy.I)([ ](I(λx.λy.xΩ))0) by the induction
hypothesis. (Alternatively, we could have picked the rightmost trace of M0 and the property
would also hold for M1 ≡M0 and C1[ ] ≡ (λy.I)((I(λx.λy.xΩ))0[ ]).) The next βV-redex
to be contracted is the leftmost occurrence of M0 in C1[M1]. Not all the traces of M0 are
discarded in the next reduct and we are at the sub-case of the general case where a trace of
M0 pops up in the reduction sequence.

(λy.I)((I(λx.λy.xΩ))0(I(λx.λy.xΩ))0)

→vn

{
A[CH[ ]] ≡ [(λy.I)([ ](I(λx.λy.xΩ))0)]0

R ≡ (I(λx.λy.xΩ))0

}
(λy.I)((λx.λy.xΩ)0(I(λx.λy.xΩ))0)

The trace converts to (λx.λy.xΩ)0, which is λV-unsolvable of order 2. The remaining
reduction sequence has length less than the reduction sequence of C1[M1] and the property
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holds for M2 ≡ (λy.λz.xΩ)0 and C2[ ] ≡ (λy.I)([ ](I(λx.λy.xΩ))0) by the induction
hypothesis. The next βV-redex to be contracted is the rightmost occurrence of M0 in C2[M2].
Again, we are at the sub-case of the general case where a trace of M0 pops up in the reduction
sequence.

(λy.I)((λx.λy.xΩ)0(I(λx.λy.xΩ))0)

→vn

{
A[CH[ ]] ≡ [(λy.I)((λx.λy.xΩ)0[ ])]0

R ≡ (I(λx.λy.xΩ))0

}
(λy.I)((λx.λy.xΩ)0(λx.λy.xΩ)0)

The trace converts to (λx.λy.xΩ)0, which is λV-unsolvable of order 2. The remaining
reduction sequence has length less than the reduction sequence of C2[M2]. The property
holds forM3 ≡ (λy.λz.xΩ)0 and C3[ ] ≡ (λy.I)((λy.λz.xΩ)0[ ]) by the induction hypothesis.
(Alternatively, we could have picked the leftmost occurrence of (λy.λz.xΩ)0 as the trace of
M0 and the property would also hold for M3 as before and C3[ ] ≡ (λy.I)([ ](λy.λz.xΩ)0).)
The next βV-redex to be contracted is (λx.λy.xΩ)0(λx.λy.xΩ)0 (i.e. it is not a trace of M0

itself, but it has the traces of M0 both as the operator and as the operand). Not all the
traces of M0 are discarded in the next reduct and we are at the sub-case of the general case
where no trace of M0 pops up in the reduction sequence.

(λy.I)((λx.λy.xΩ)0(λx.λy.xΩ)0)

→vn

{
A[CH[ ]] ≡ [(λy.I)[ ]]0

R ≡ (λx.λy.xΩ)0(λx.λy.xΩ)0

}
(λy.I)(λy.(λx.λy.xΩ)0Ω)1

This step increases the count of the operator to 1, which is now λV-unsolvable of order 1.
The next redex discards all the traces of M0, neither of which has reached count 2. We are
at the base case.

(λy.I)(λy.(λx.λy.xΩ)0Ω)1

→vn

{
A[CH[ ]] ≡ [[ ]]0

R ≡ (λy.I)(λy.(λx.λy.xΩ)0Ω)1

}
I

Indeed, the property holds by replacing M0 for any X of order m ≥ 2. Consider X ≡
(λx.λy.M) with M ∈ Λ. The reduction sequence becomes:

(λx.(λy.I)(xx))(λx.λy.M)→vn (λy.I)((λx.λy.M)(λx.λy.M))
→vn (λy.I)(λy.[(λx.λy.M)/x]M))→vn I

7.4. Complete strategies of λV that are not standard. Standard reduction sequences
are not unique [HZ09, Sec.1.5]. To this we add that not every complete reduction sequence
that only contracts needed redexes is standard! There are reduction strategies of λV which
only contract needed redexes but do not entail standard reduction sequences. This fact is
the analogous in λV to the result in [BKKS87] about spine strategies of λK. We shall see
an example in Def. 7.5 below.

To illustrate the non-uniqueness of standard reduction sequences, consider the term
M ≡ (λx.(λy.z y)I)((λy.z y)K) that converts to the stuck (λx.z I)(zK). The reduction
sequence is standard and ends in M ’s βV-nf:

(λx.(λy.z y)I)((λy.z y)K)→V (λx.(λy.z y)I)(zK)→βV (λx.z I)(zK)
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The first →V step is a call-by-value step, which is standard by Def. 7.8(2). The second →βV
step is standard by Def. 7.8(4), Def. 7.8(3), and Def. 7.8(2).

However, the following alternative reduction sequence is also standard and also ends in
M ’s βV-nf:

(λx.(λy.z y)I)((λy.z y)K)→βV (λx.z I)((λy.z y)K)→βV (λx.z I)(zK)

The first →βV step is standard by Def. 7.8(4), Def. 7.8(3), and Def. 7.8(2). The second →βV
step is standard by Def. 7.8(4) and Def. 7.8(2).

Ribcage reduction (Def.7.5) is complete with respect to chnf and only contracts needed
redexes. The definition of value normal order (Def. 7.7) can be modified to use ribcage
reduction instead of chest reduction for λV-active components. The resulting strategy is
full-reducing and complete with respect to βV-nf, but it does not entail a standard reduction
sequence. For example, consider the term N ≡ (λx.(λy.x)z)I which converts to the βV-nf I.
Ribcage reduction entails the reduction sequence

(λx.(λy.x)z)I→rc (λx.x)I→rc I

This reduction sequence is not standard, although the steps, in isolation, are standard. The
first is standard by Def. 7.8(4), Def. 7.8(3), and Def. 7.8(2). The second is standard by
Def. 7.8(2). However, none of the rules of Def. 7.8 allow us to prepend the first step to the
standard reduction sequence consisting of the second step.

Standard reduction sequences to βV-nf fall short of capturing all complete strategies
of λV. In [BKKS87, p.208] they generalise the Quasi-Leftmost Reduction Theorem [HS08,
Thm. 3.22] and show that ‘quasi-needed reduction is normalising’. An analogous result is
missing for λV (Section 10).

7.5. An operational characterisation of λV-solvability? Although analogous to head
reduction and similar in spirit, chest reduction does not provide an operational character-
isation of λV-solvability. The term T1 ≡ (λy.∆)(x I)∆(x(λx.Ω)) introduced in Section 6
and the term T2 ≡ (λy.∆)(x I)∆(λx.Ω) are chnfs that are not λV-solvable. The diverging
subterm λx.Ω cannot be discarded because (λy.∆)(x I)∆ is not transformable. Although
(λy.∆)(x I)∆ is trivially freezable into a βV-nf, there is no context C[ ] that transforms
that term to some term that could discard the trailing λx.Ω and obtain a βV-nf.

The λV-solvables are ‘more reduced’ than chnfs. This brings us to the question of the
existence of an operational characterisation of λV-solvables, that is, a reduction strategy of
λV that terminates iff the input term is λV-solvable. We believe such strategy exists but
cannot be compositional because it requires non-local information about the shape of the
term to decide which is the next βV-redex (Section 10).

8. The consistent λV-theory V

We adapt [Bar84, Def. 4.1.1] and say that a λV-theory is a consistent extension of a conversion
proof-theory of λV. In this section we prove the consistency of the λV-theory V introduced in
Section 6. The proof proceeds in similar fashion to the proof of consistency of the λK-theory
H introduced in Section 3. The latter proof is detailed in [Bar84, Sec. 16.1] and employs
some technical machinery introduced in [Bar84, Sec. 15.2]. We prove the consistency of V
in similar fashion, save for the use of a shorter proof technique in a particular lemma. We
ask the reader to read this section in parallel with [Bar84, Sec. 16.1] and [Bar84, Sec. 15.2].
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The reader also needs to recall the definition of ‘notion of reduction’ [Bar84, p.50ff] and
‘substitutive’ binary relation [Bar84, p.55ff]. Rule βV is a notion of reduction from which
relations →βV, →∗βV, and =βV are generated (Section 2).

The structure of this section is as follows: We first define ΩV-reduction that sends
λV-unsolvables of order n to a special symbol Ωn. We then consider the notion of reduction
βV ∪ΩV which, paraphrasing [Bar84, p.388], is interesting because it analyses provability
in λV. We define βVΩV-reduction as the compatible, reflexive, and transitive closure of
βV ∪ΩV, and prove that it is a V-substitutive relation. At this point the storyline differs
from [Bar84] in that we introduce the notion of complete ΩV-development of a term, and use
the Z property [vO08] to prove that βV∪ΩV is Church-Rosser (βVΩV-reduction is confluent).
Finally, we define V and the notion of ω-sensibility, and prove that V is generated by βV∪ΩV.
The consistency of V (Thm. 8.23) follows from the confluence of βVΩV-reduction.

Definition 8.1. The ΩV-reduction,→∗ΩV
, is the compatible, reflexive, and transitive closure

of the notion of reduction

ΩV = {(M,Ωn) | M λV-unsolvable of order n and M 6≡ Ωn}
where Ωn stands for the term λx1 . . . xn.Ω (if n 6= ω), or the term Y K (if n = ω). Notice
that Y K does not have a βV-nf and that it reduces to λx1 . . . xk.Y K with k arbitrarily
large.

The ΩV-conversion, =ΩV
, is the symmetric closure of →∗ΩV

.

Definition 8.2. The βVΩV-reduction, →∗βVΩV
, is the compatible, reflexive, and transitive

closure of the notion of reduction βV ∪ΩV.
The βVΩV-conversion, =βVΩV

, is the symmetric closure of →∗βVΩV
.

Definition 8.3. Let M,N ∈ Λ and V ∈ Val. A binary relation R is V-substitutive iff
R(M,N) implies R([V/x]M, [V/x]N).

Lemma 8.4. If R is V-substitutive, then →R, →∗R, and =R are V-substitutive.

Proof. Straightforward by structural induction on the derivations of →R, →∗R, and =R, re-
spectively (i.e. by considering the sets {µ, ν, ξ}, {µ, ν, ξ, ρ, σ}, or {µ, ν, ξ, ρ, σ, τ}, respectively,
from the rules in Section 2).

Lemma 8.5. The notion of reduction βV is V-substitutive.

Proof. Thm. 1 in [Plo75, p.135] states that =βV is V-substitutive in the applied λV. By an
argument similar to the proof of that theorem it is straightforward to prove that the βV-rule
is V-substitutive.

Lemma 8.6. The relations →βV, →∗βV, and =βV are V-substitutive.

Proof. Trivial by Lemma 8.4 above.

Lemma 8.7. Let R1 and R2 be two notions of reduction that are V-substitutive. The union
R1 ∪R2 is V-substitutive.

Proof. Trivial, by considering R1 or R2 individually.



NO SOLVABLE LAMBDA-VALUE TERM LEFT BEHIND 31

Lemma 8.8 (βVΩV is V-substitutive). Let M,N ∈ Λ and V ∈ Val. M →βVΩV
N implies

[V/x]M →βVΩV
[V/x]N).

Proof. By Lemma 8.7, it is enough to prove that ΩV is V-substitutive. Let M →ΩV
Ωn. By

Lemma 7.13, the substitution instance [V/x]M is λV-unsolvable of order n for any V ∈ Val.
By Def. 8.1 above, [V/x]M →ΩV

Ωn and Ωn ≡ [V/x]Ωn because all the Ωn (including Ωω)
are closed terms.

Lemma 8.9. The relations →∗βVΩV
, and =βVΩV

are V-substitutive.

Proof. Trivial by Lemma 8.4 above.

Definition 8.10. Let M,N ∈ Λ. M and N are λV-solvably equivalent, M ∼sV N , iff for
every arbitrary context C[ ], C[M ] is λV-unsolvable of order n iff C[N ] is λV-unsolvable of
order n.

Relation ∼sV is reflexive, symmetric, and transitive, and hence it is an equivalence
relation.

Lemma 8.11. Let M,N ∈ Λ.

(1) M =βV N implies M ∼sV N .
(2) M =ΩV

N implies M ∼sV N .

Proof. First consider (1). Since =βV is compatible, for any context C[ ] then C[M ] =βV C[N ],
and (1) trivially follows.

Now consider (2). Since ∼sV is an equivalence relation, it is enough to show that
M ∼sV Ωn for M λV-unsolvable of order n. Suppose C[M ] is λV-solvable. Then there
exists a function context F[ ] such that F[C[M ]] =βV N for some N ∈ VNF. By the Partial
Genericity Lemma (Lemma 6.4) then F[C[Ωn]] =βV N . Similarly, C[Ωn] being λV-solvable
implies C[M ] is λV-solvable, and (2) follows.

Remark 8.12. We write ΩV(M) for the ΩV-normal-form (abbrev. ΩV-nf) of the term M .

Lemma 8.13. Every term has a unique ΩV-nf.

Proof. The maximal ΩV-redexes are mutually disjoint. By replacing them by the appropriate
Ωns, no new ΩV-redexes are created, since Un ∼sV Ωn for Un λV-unsolvable of order n. The
ΩV-nf is unique since ΩV-reduction is Church-Rosser.

The complete ΩV-development of a term defined below adapts the notion of complete
development of a term [TeR03, Sec.4.5,p.106] to βVΩV-reduction.

Definition 8.14. The complete ΩV-development M◦Ω of a term M consists of the complete
development of the ΩV-nf of M , i.e. M◦Ω = (ΩV(M))◦

Lemma 8.15 (Confluence of →∗ΩV
). The relation →∗ΩV

is Church-Rosser.

Proof. It is enough to prove that (→ΩV
∪ ≡) has the diamond property. ConsiderM →ΩV

M1

by contracting the ΩV-redex U1, and M →ΩV
M2 by contracting the ΩV-redex U2. We

analyse the cases:

(1) U1 and U2 are disjoint. The lemma trivially holds.
(2) U1 and U2 overlap. Let U1, a λV-unsolvable of order m, be a superterm of U2, a

λV-unsolvable of order n. The diagram
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M ≡ C1[U1] ≡ C1[C2[U2]] M2 ≡ C1[Ωm]

M1 ≡ C1[C2[Ωn]] C1[Ωm]

U1

U2

C2[Ωn]

commutes because C2[Ωn] ∼sV U1 holds by Lemma 8.11 above.

Lemma 8.16 (Confluence of βVΩV). βVΩV-reduction is Church-Rosser.

Proof. It is enough to prove that →βVΩV
has the Z property [vO08]:

M N

M◦Ω N◦Ω

βVΩV

∗ βV
ΩV

∗
βVΩV

There are two cases, M →ΩV
N and M →βV N :

(1) Case M →ΩV
N . It follows that ΩV(M) ≡ ΩV(N) and M◦Ω ≡ N◦Ω . Therefore

N →∗βVΩV
M◦Ω and M◦Ω →∗βVΩV

N◦Ω and so the lemma follows.

(2) Case M →βV N . Let R be the βV-redex contracted in M →βV N . Let S be the set of
maximal ΩV-redexes in M . If R is disjoint with S then M◦Ω ≡ N◦Ω and the lemma
follows as in the previous case. If R is not disjoint with some U ∈ S then we consider
the sub-cases:
(a) Sub-case U ≡ C[R] is λV-unsolvable of order n. Let R′ be the contractum of R.

By Lemma 8.11 above we have ΩV(C[R]) ≡ ΩV(C[R′]) and ΩV(M) ≡ ΩV(N).
Therefore M◦Ω ≡ N◦Ω .

(b) Sub-case R ≡ (λx.B)C[U ] is λV-solvable with B disjoint with S. Let n be the order
of U . The following diagram

M N

C′[(λx.B)C[U ]] C′[[C[U ]/x]B ]

C′[(λx.B)C[Ωn]]

C′[[C[Ωn]/x]B]

M◦Ω N◦Ω

βV

ΩV

βV ΩV

∗
βVΩV ∗

βVΩV

commutes because C′[[C[Ωn]/x]B]→∗βVΩV
M◦Ω ≡ N◦Ω , since B and S are disjoint.

(c) Sub-case R ≡ (λx.C[U ])V is λV-solvable with V ∈ Val not necessarily disjoint
with S. Let n be the order of U . The following diagram
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M N

C′[(λx.C[U ])V ] C′[[V/x](C[U ])]

C′[(λx.C[Ωn])V ] C′[[V/x](C[Ωn])]

C′[(λx.C[Ωn])ΩV(V )]

C′[[ΩV(V )/x](C[Ωn])]

M◦Ω N◦Ω

βV

ΩV ΩV

∗
ΩV

∗ ΩV
βV

∗
βVΩV ∗

βVΩV

commutes because

C′[[V/x](C[Ωn])]→∗ΩV
C′[[ΩV(V )/x](C[Ωn])]

follows because of (i) Prop. 2.1.17(ii) in [Bar84], (ii) C[Ωn] and S \ {U} are disjoint,
and (iii) ΩV is V-substitutive.

Definition 8.17. We say that any theory containing V is ω-sensible (and by extension, any
model satisfying V is ω-sensible).

Definition 8.18 (Consistent theory). Let T be a set of equations between terms. T is
consistent, Con(T ), iff T does not prove every closed equation, i.e.

T 6`M = N with M,N ∈ Λ0

Definition 8.19 (λV-theory). Let T be a set of closed equations between terms. T is a
λV-theory iff Con(T ) and

T = {M = N | M,N ∈ Λ0 and λV + T `M = N}

Proposition 8.20. The theory of βV-convertible closed terms, λV, is a λV-theory. Observe
that λV is consistent by confluence of βV-reduction.

Definition 8.21 (Theory V). Let V0 be the following set of equations:

V0 = {M = N | M,N ∈ Λ0 λV-unsolvable of the same order n}

The theory V is the set of equations:

V = {M = N | M,N ∈ Λ0 and λV + V0 `M = N}

Lemma 8.22. βVΩV-reduction generates V, i.e.

V `M = N iff M =βVΩV
N with M,N ∈ Λ0

Proof. We first consider the direction (=⇒). If V0 `M = N then M →ΩV
Ωn and M →ΩV

Ωn because both M and N are λV-unsolvable of order n. Consequently, for all axioms
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M0 = N0 in the set V0 that generates V , M0 =βVΩV
N0 holds, and then M =βVΩV

N follows
by compatibility, reflexivity, symmetry and transitivity.

Now for the direction (⇐=). The theory V is generated by λV + V0, and then each βV-
or ΩV-reduction step is provable in V.

Theorem 8.23. V is a λV-theory.

Proof. By Def. 8.21 and because Con(V) by Lemmata 8.22 and 8.16.

9. Related work

We have commented at length from the introduction onwards on the relevant related work
on solvability in λK and λV. We only comment here briefly on several outstanding points
and on other work of related interest.

As mentioned in Section 7.1, value normal order is not the same strategy as the complete
reduction strategy of λV named →p

Γ that is obtained as an instantiation of the ‘principal
reduction machine’ of [RP04, p.70]. The principal reduction machine is actually a template
of small-step reduction strategies that is parametric on a set of permissible operands and a
set of irreducible terms. The complete reduction strategy →p

Γ is obtained by instantiating
the template with the set of permissible operands fixed to Val and the set of irreducible
terms fixed to VNF (in [RP04] Val is called Γ and VNF is called Γ-NF). Value normal order
differs from →p

Γ when reducing a term (λx.B)N where N converts to a neutral. In →p
Γ the

operand N is reduced to the neutral N ′ using call-by-value so that (λx.B)N ′ is a block. At
this point →p

Γ keeps reducing N ′ fully to βV-nf before reducing B fully to βV-nf. In contrast,
value normal order proceeds in left-to-right fashion with the block (λx.B)N ′, first reducing
B fully to βV-nf and then reducing N ′ fully to βV-nf. The left-to-right order is the regular
one, at least so in all the strategies cited in this paper. And we have defined value normal
order as the λV analogue of λK’s normal order following the results in [BKKS87]. At any
rate, reducing blocks left-to-right or right-to-left does not affect completeness. Both →p

Γ
and value normal order entail standard reduction sequences (Def. 7.8) and are therefore
complete (this is shown for →p

Γ in [RP04, p.11]).
The λ∗βV calculus of [EHR91, EHR92, Def. 11] is a calculus with partial terms. There is

a unique constant Ω that represents ‘bottom’. The calculus has reduction rules M Ω→ Ω
and ΩM → Ω which capture preservation of unsolvability by application (Section 3.3). In
[Wad76, p.508] we find conversion rules ΩM = Ω and λx.Ω = Ω now in the context of λK.
In both approaches Ω is uniquely used as ‘bottom’. However, we have considered infinite
bottoms with different orders, and have followed in Section 8 the syntactic approach of
[Bar84] where Ω is a term (not a constant representing ‘bottom’) and M → Ω when M
unsolvable. The Ωn of Section 8 are terms.

The computational lambda calculus of [Mog91] adds the equations IX = X and
(λx.y x)X = y X, for all X ∈ Λ, as axioms to the proof-theory. These equations affect
sequentiality (Section 4.1).

The occurrence of a free variable can be seen as the result of implicitly applying the
‘opening’ operation to a locally-nameless representation of a program (a closed term) [Cha12].
In the local scope operational equivalence is refined by considering open and non-closing
contexts (Section 3.2) that disclose the differences in sequentiality. After that, the program
can be recovered by the ‘closing’ operation.
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The Genericity Lemma (Section 3.3) conforms with the axiomatic framework for mean-
ingless terms of [KvdV99]. The axioms for λK state that meaningless terms are closed
under reduction and substitution (Axioms 1 and 3) and that if M is meaningless then M N
is meaningless, i.e. M cannot be used as a function (Axiom 2). For λK, Axioms 1, 2, and 3
are enough to prove the Genericity Lemma and the consistency of the proof-theory extended
with equations between all meaningless terms.

However, in λV there is partiality in meaninglessness, i.e. not all meaningless terms are
bottom. The analogues of the axioms have to be order-aware. In particular, Lemma 7.13 is
the order-aware analogue of Axiom 3. The analogue of Axiom 1 is trivial, just consider =βV.
As for Axiom 2, if M λV-unsolvable of order n, then M N (with N ∈ Val) is λV-unsolvable
of order n− 1. However, if N 6∈ Val, then M N is λV-unsolvable of order 0. We leave the
proof of the analogy as future work.

10. Conclusions and future work

The presupposition of v-solvability (Section 5) is that terms with βV-nf that are not trans-
formable to a value of choice (such as B and U) are observationally equivalent to terms
without βV-nf that are also not transformable to a value of choice (such as Ω and λx.Ω),
and that all of them are operationally irrelevant and meaningless. This gives rise to an
inconsistent λV-theory. We have shown that these terms can be separated operationally
and that this conforms to λV’s nature. Neutral terms differ at the point of potential diver-
gence, i.e. at the blocking variable which has to be given the opportunity to be substituted
by an arbitrary value according to λV’s principle of ‘preserving confluence by preserving
potential divergence’ (Section 4). The actual choice of values for blocking variables lets us
separate terms with the same functional result that nonetheless have different sequentiality,
or may have different sequentiality when using a different complete reduction strategy. The
functional models of λV do not have such separating capabilities, but functional models are
not the only possible models. We have to follow the other line of investigation, namely, to
‘vary the model to fit the intended calculus’. Models that capture sequentiality exist, and
we believe there are ω-sensible models that resemble the sequential algorithms of [BC82]
(Section 6).

As discussed in Section 7.4, standard reduction sequences fall short of capturing all
complete strategies of λV. A result analogous to λK’s ‘quasi-needed reduction is normalising’
[BKKS87, p.208] is missing for λV. We are currently developing the analogue for λV of
quasi-needed reduction, and the proof that it is normalising.

As discussed in Section 7.5, we believe it is possible to give an operational characterisation
of λV-solvability, i.e. a reduction strategy of λV that terminates iff the input term is
λV-solvable. But we believe it cannot be compositional because it requires non-local
information about the shape of the term to decide which is the next βV-redex. We have
a preliminary implementation that uses a mark-test-and-contract algorithm. Terms with
positive polarity are tested for transformability and terms with negative polarity are tested
for valuability. In order to test we keep a sort of stratified environment that references
the operands in the nested accumulators of a chnf. The environment grows as reduction
proceeds inside the body of nested blocks, where a table of lexical offsets defines what is
visible at each layer. The βV-redexes are marked for contraction, but are only contracted
after testing the λV-solvability of the subterm in which they occur.
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Our implementation can be refined using the ‘linear blocking structure’ of the sequent
term calculus [Her95, CH00, San07]. The blocking structure of chnfs (i.e. the structure
of nested blocks around the blocking variable) becomes a linear structure when injecting
the chnfs into their sequent-term representation. The sequent-term representation seems
promising to develop the analogue of Böhm trees in λV. Let us illustrate this by adopting
the untyped lambda-Gentzen calculus of [San07] (λGtz for short). Assume the injection̂ : CHNF→ ΛGtz and consider the shape of a chnf from Section 7.1:

λx1 . . . xn.(λyp.Bp)( . . . ((λy1.B1)((zW 0
0 )W 0

1 · · ·W 0
m0

)W 1
1 · · ·W 1

m1
) . . . )W p

1 · · ·W
p
mp

This shape is injected into the sequent term:

λx1 . . . xn.(z[Ŵ 0
0 ])[Ŵ 0

1 , . . . , Ŵ
0
m0

]@(y1)(B̂1[Ŵ 1
1 , . . . , Ŵ

1
m1

]

@(y2)(. . . (yp)(B̂p[Ŵ
p
1 , . . . , Ŵ

p
mp ]) . . .))

The λGtz representation reflects the blocking structure of the nested blocks and accumulators
in linear fashion, where the blocking variable z appears in the leftmost position, and each
accumulator in the trailing context ‘unblocks’ the subsequent accumulator.
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[Cha12] Arthur Charguéraud. The locally nameless representation. Journal of Automated Reasoning,
49(3):363–408, 2012.
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[Lév75] Jean-Jacques Lévy. An algebraic interpretation of the λβK-calculus and a labeled λ-calculus. In
Lambda-Calculus and Computer Science Theory, Proceedings of the Symposium Held in Rome,
March 25-27, 1975, volume 37 of Lecture Notes in Computer Science, pages 147–165, 1975.

[Lon83] Giuseppe Longo. Set-theoretical models of lambda calculus: Theories, expansions and isomophisms.
Annals of Pure and Applied Logic, 24:153–188, 1983.

[Mil90] Robin Milner. Functions as processes. Research Report RR-1154, INRIA, 1990.
[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,

1991.
[Plo75] Gordon Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Computer

Science, 1(2):125–159, 1975.
[PR99] Luca Paolini and Simona Ronchi Della Rocca. Call-by-value solvability. Theoretical Informatics

and Applications, 33(6):507–534, 1999.
[RP04] Simona Ronchi Della Rocca and Luca Paolini. The Parametric Lambda Calculus. Springer, 2004.
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Appendix A. Full glossary of terms and sets of terms

Set Description

Λ ::= x | λx.Λ | Λ Λ lambda terms
Val ::= x | λx.Λ values
Neu ::= xΛ {Λ}∗ λK neutrals
NF ::= λx.NF | x {NF}∗ β-nfs
HNF ::= λx.HNF | x {Λ}∗ hnfs
NeuV ::= Neu | Block {Λ}∗ λV neutrals
Block ::= (λx.Λ)NeuV blocks
VNF ::= x | λx.VNF | Stuck βV-nfs
Stuck ::= xVNF {VNF}∗ stucks

| BlockNF {VNF}∗
BlockNF ::= (λx.VNF) Stuck blocks in βV-nf
CHNF ::= x | λx.CHNF | NeuW chnfs
VWNF ::= Val | NeuW vwnfs
NeuW ::= xVWNF {VWNF}∗ neutral vwnfs

| (λx.Λ)NeuW {VWNF}∗
Abbreviation Term has β-nf has βV-nf

I λx.x yes yes
K λx.λy.x yes yes
Km λx.K1(· · · (Km x) · · · ) yes yes
∆ λx.xx yes yes
Ω ∆∆ no no
U λx.B no yes
B (λy.∆)(x I)∆ no yes
T1 (λy.∆)(x I)∆(x(λx.Ω) no no
T2 (λy.∆)(x I)∆(λx.Ω) no no
Ωn λx1 . . . xn.∆∆ no no
Y λf.(λx.f(xx))(λx.f(xx))) no no
Ωω Y K no no

Appendix B. Proof of Thm. 3.9 on page 10 and example

Proof. From SolH we prove SolF immediately because function contexts subsume head
contexts and therefore SolF subsumes SolH.

From SolF with the function context F[ ] we prove SolH by closing the function
context to produce a head context H[ ].

F[ ] is of the form (λx1 . . . xn.[ ])N1 · · ·Nk, with n ≥ 0, k ≥ 0, and Ni ∈ Λ. Let
{y1, . . . , ym} (with m ≥ 0) be the free variables in N , and {y1, . . . , ym, ym+1, . . . , ym+p}
(with p ≥ 0) be the free variables in F[M ]. Since the {ym+1, . . . , ym+p} do not occur in N ,
they are eventually discarded in the conversion to N and can therefore be substituted by
arbitrary closed terms without violating SolF.

We focus on the {y1, . . . , ym}. The β-nf N is of the form λz1 . . . zq.hM1 · · ·Mr with
q ≥ 0, r ≥ 0, h the head variable, and M1 ∈ NF, . . . , Mr ∈ NF. Since the M1, . . . , Mr are
β-nfs, all the variables in N are head variables of some β-nf subterm, and so are the free
variables {y1, . . . , ym}. Let {Pi1, . . . , Pisi} (with i ∈ {1, . . . ,m} and si ≥ 0) be the maximal
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subterms that are in β-nf and that have a particular occurrence of the free variable yi as
the head variable.7 The {P11, . . . , P1s1 , . . . , Pm1, . . . , Pmsm} need not be disjoint. For each
i ∈ {1, . . . ,m} let oi be the maximum number of operands of yi in any β-nf subterm Pij
having yi as the head variable:

oi = max{`j | Pij ≡ λu1 . . . ut.yiQ1 · · ·Q`j with j ≤ si}
We let Ti ≡ λv1 . . . voi w.w v1 · · · voi . The y1, . . . , ym can be replaced by the respective T1,
. . . , Tm without violating SolH, since for any i ≤ m and j ≤ si we have

[Ti/yi]Pij ≡ λu1 . . . ut.(λv1 . . . voi w.w v1 · · · voi)Q′1 · · ·Q′`j
=β λu1 . . . ut v`j+1 . . . voi w.wQ

′
1 · · ·Q′`j v`j+1 · · · voi

where Q′c ≡ [Ti/yi]Qc (with c ≤ `j). The term obtained is a hnf in which the free variable yi
no longer occurs, the closed w is now the head variable, and there are additional binding
occurrences λv`j . . . voi w and trailing closed operands v`j · · · voi . The term obtained can
be proved to be a β-nf by a straightforward induction, since Q′c ≡ [Ti/yi]Qc (with c ≤ `j),
and the Qc are subterms of Pij . Consequently, the term [T1/y1] . . . [Tm/ym]N is a closed
β-nf. (Notice that although the Pij may not be disjoint, the substitutions [T1/y1] . . . [Tm/ym]
commute by the Substitution Lemma [Bar84, Lemma 2.1.16] because the {T1, . . . , Tm} are
closed terms, i.e. the {y1, . . . , ym} do not occur free in them.)

The head context H[ ] we are looking for is

H[ ] ≡ (λy1 . . . ym ym+1 . . . ym+p x1 . . . xn.[ ])
T1 · · ·Tm I1 · · · Ip
[T1/y1] . . . [Tm/ym][I/ym+1] . . . [I/ym+p]N1

. . .
[T1/y1] . . . [Tm/ym][I/ym+1] . . . [I/ym+p]Nk

where the y1, . . . , ym are substituted respectively by Ti, . . . , Tm and the operationally
irrelevant {ym+1, . . . , ym+p} are substituted by a closed term (we pick I but any other
closed term would do). By the Substitution Lemma [Bar84, Lemma 2.1.16] the equation
H[M ] =β [T1/y1] . . . [Tm/ym]N holds.

The next example illustrates the proof of Thm. 3.9 by constructing a solving head context
from the solving function context (λx.[ ])K that solves the term M ≡ x(y z(y I))(tΩ).

Example B.1. The term x(y z (y I))(Ω t) is solved by the function context (λx.[ ])K, i.e.
(λx.[x(y z (y I))(Ω t)])K =β y z(y I) where y z(y I) is an open term in β-nf. The free variables
of the RHS of the equation are {y, z}, and the free variables of the LHS are {y, z, t}.

The maximal subterms in β-nf having y as the head variable are y z(y I) and y I. The
maximum number of operands to which the y is applied is oy = 2 (i.e. the z and the y I in
y z(y I)). The maximal subterm in β-nf having z as the head variable is z, with oz = 0. Let
Ty ≡ λv1v2w.w v1 v2 and Tz ≡ λw.w. The solving head context is

(λyztx.[ ])(λv1v2w.w v1 v2)(λw.w)I([λv1v2w.w v1 v2/y][λw.w/z][I/t]K)
≡ (λyztx.[ ])(λv1v2w.w v1 v2)(λw.w)I K

7Here ‘maximal’ is used as in Def. 2.3 of [BKKS87], i.e. it refers to the subterm ordering. However, notice
that different subterms with different particular occurrences of the same variable yi as the head variable may
not be disjoint. Consider the term λx1.λx2.y1(y1 I I)I I. Both P11 ≡ λx1.λx2.y1(y1 I I)I I and P12 ≡ y1 I I
are maximal subterms with each of the two particular occurrences of y1 as head variable.
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Let us show that it solves the term:

(λyztx.[x(y z(y I))(Ω t)])(λv1v2w.w v1 v2)(λw.w)I K
=β {substitute y}

(λztx.[x((λv1v2w.w v1 v2)z((λv1v2w.w v1 v2)I))(Ω t)])(λw.w)I K
=β {substitute rightmost v1}

(λztx.[x((λv1v2w.w v1 v2)z(λv2w.w I v2))(Ω t)])(λw.w)I K
=β {substitute z}

(λtx.[x((λv1v2w.w v1 v2)(λw.w)(λv2w.w I v2))(Ω t)])I K
=β {substitute v1 and leftmost v2}

(λtx.[x(λw.w(λw.w)(λv2w.w I v2))(Ω t)])IK
=β {substitute t}

(λx.[x(λw.w(λw.w)(λv2w.w I v2))(Ω I)])K
=β {substitute x and convert constant operator}

λw.w(λw.w)(λv2w.w I v2) ∈ NF0

Appendix C. Genericity Lemma in [Wad76] and [Bar84]

Our statement of the Genericity Lemma (Lemma 3.10 on page 11) is a combination of the
following versions. We state them using the term identifiers M and X of Lemma 3.10 for
uniformity.

Corollary 5.5 on page 510 of [Wad76]: Suppose M is unsolvable and C[ ] is any context.
Then C[M ] has a normal form (a head normal form) iff C[X] has the same normal form (a
similar head normal form) for all terms X.

Proposition 14.3.24 on page 374 of [Bar84]: Let M,N ∈ Λ with M unsolvable and N
having a nf. Then for all C[ ] ∈ Λ, C[M ] =β N ⇒ ∀X ∈ Λ C[X] =β N .

Appendix D. Values are required for substitutivity and confluence

Permitting applications in βV-nf as members of Val breaks confluence. Such applications
would be permissible operands in the conversion rule (βV). The counter-example used in
[Plo75, p.135-136] is (λx.(λy.z)(x∆))∆. If the application in βV-nf (x∆) is in Val then
the conversion (λx.(λy.z)(x∆))∆ =βV (λx.z)∆ would be allowed (the innermost redex is
converted). From that conversion (λx.z)∆ =βV z follows. However, (λx.(λy.z)(x∆))∆ =βV
(λy.z)(∆∆) is a valid conversion (the outermost redex is converted), but (λy.z)(∆∆) =βV z
does not follow because Ω ≡∆∆ is not an application in βV-nf and it cannot be converted
to one.

Permitting arbitrary applications as subjects of substitutions breaks substitutivity. The
counter-example used in [Plo75, p.135-136] is to consider (λx.I)x =βV I and to show that
[Ω/x]((λx.I)x) =βV [Ω/x]I, that is, (λx.I)Ω =βV I, does not hold. The LHS has no βV-nf
because the diverging term Ω is converted before substitution whereas the RHS is a βV-nf.

An subtle point unstated in [Plo75, p.135-136] is that permitting applications in βV-nf as
subjects of substitutions also breaks substitutivity even if permissible operands were values.
The counter-example is to consider (λx.I)x =βV I and to show that [(x∆)/x]((λx.I)x) =βV
[(x∆)/x]I, that is, (λx.I)(x∆) =βV I, does not hold. The LHS cannot convert to the RHS
because the operand (x∆) is not permissible.



42 Á. GARCÍA-PÉREZ AND P. NOGUEIRA

As a consequence of the last two paragraphs, the substitutivity property in λV has the
proviso L ∈ Val in its statement [Plo75, p.135].

Appendix E. Head and head spine of a term

For ease of reference we collect here the results of [BKKS87] relative to the complete normal
order strategy of λK on which we base the analogue results for λV in Section 7.1.

A redex of M ∈ Λ is needed [BKKS87, p.212] if the redex or its residual is contracted in
every reduction sequence starting in M and arriving at a β-nf. The contraction of a needed
redex always decrements the length of a normalising reduction sequence. Neededness is an
undecidable property, but there exist decidable approximations of the set of needed redexes
that can be computed efficiently. The so-called spine strategies reduce redexes in several of
these decidable approximations of the needed set.

The head and head spine of a term [BKKS87, Def. 4.2] provide progressively better
approximations to the set of needed redexes in the term [BKKS87, p.212]. The head is the
segment of the abstract syntax tree of the term that starts at the root node and descends
through lambda nodes and to the left through operators in applications. The head spine is
the segment of the abstract syntax tree that starts at the root node and descends either
through lambda nodes or to the left through operators in applications. The head spine of a
term includes the head of the term and, recursively, the head of the innermost node reached
so far. Fig. 5 illustrates with an example that is further developed after the following formal
definition of head and head spine.

In Def. E.1 below we define the functions bn, he, and hs. The head spine of a term is
underlined by function hs whose definition we have taken from [BKKS87, Def. 4.2]. The
head of a term is underlined by function he that relies on the auxiliary function bn which is
related to call-by-name as explained below. The definition of he is based on the definition of
the head reduction strategy in [Bar84] that reduces up to hnf. We define head reduction
and call-by-name using a reduction semantics in Def. E.3 and Def. E.2.

Definition E.1 (Head and head spine). Functions he and hs underline the head and the
head spine of a term respectively.

bn(x) = x
bn(λx.B) = λx.B
bn(M N) = bn(M)N

he(x) = x
he(λx.B) = λx.he(B)
he(M N) = bn(M)N

hs(x) = x
hs(λx.B) = λx.hs(B)
hs(M N) = hs(M)N

A β-redex is head (resp. head spine) if its outermost lambda is underlined by function he
(resp. hs).

Function bn underlines the outermost lambda of the β-redexes that are reduced by
the call-by-name strategy of pure λK (Def. E.2). This strategy differs from its homonym
in [Plo75] which is for an applied version of the calculus. See [Ses02] for details on the
difference.
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Figure 5: Head (thick edges) and head spine (thick edges and dotted edges) of the term
λx.(λy.(λz.x)M1)x((λt.M2)x).

As an example, consider the term whose abstract syntax tree is depicted in Fig 5. The
head (thick edges in the figure) is underlined in λx.(λy.(λz.x)M1)x((λt.M2)x). The head

spine (thick edges and dotted edges) is underlined in λx.(λy.(λz.x)M1)x((λt.M2)x). The

subterm (λy.(λz.x)M1)x is both a head and a head spine β-redex. The subterm (λz.x)M1

is a head spine β-redex. The subterm (λt.M2)x is neither a head nor a head spine β-redex.
We now define call-by-name and head reduction using a reduction semantics. Call-by-

name is the leftmost strategy that never contracts under lambda abstraction. Head reduction
is the leftmost strategy that stops at a hnf. Observe that the reduction contexts of head
reduction contain the reduction contexts of call-by-name.

Definition E.2 (Call-by-name strategy). The call-by-name strategy →bn is defined by the
following reduction semantics:

BN[ ] ::= [ ] | BN[ ] Λ

BN[(λx.B)N ]→bn BN[[N/x]B]

Definition E.3 (Head reduction strategy). The head reduction strategy →he is defined by
the following reduction semantics:

HR[ ] ::= [ ] | BN[ ] Λ | λx.HR[ ]

HR[(λx.B)N ]→he HR[[N/x]B]
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