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ABSTRACT. Extensions of Stone-type dualities have a long history in algebraic logic
and have also been instrumental in proving results in algebraic language theory. We
show how to extend abstract categorical dualities via monoidal adjunctions, subsuming
various incarnations of classical extended Stone and Priestley duality as special cases, and
providing the foundation for two new concrete dualities: First, we investigate residuation
algebras, which are lattices with additional residual operators modeling language derivatives
algebraically. We show that the subcategory of derivation algebras is dually equivalent
to the category of profinite ordered monoids, restricting to a duality between Boolean
residuation algebras and profinite monoids. We further refine this duality to capture
relational morphisms of profinite ordered monoids, which dualize to natural morphisms
of residuation algebras. Second, we apply the categorical extended duality to the discrete
setting of sets and complete atomic Boolean algebras to obtain a concrete description for
the dual of the category of all small categories.

1. INTRODUCTION

Marshall H. Stone’s representation theorem for Boolean algebras [Sto36], the foundation for
the so called Stone duality between Boolean algebras and Stone spaces, manifests a tight
connection between logic and topology. It has thus become an ubiquitous tool in various
areas of theoretical computer science, not only in logic, but also, for example, in domain
theory [Abr91] and automata theory |Pip97, GGP0S§|.

From algebraic logic arose the need for extending Stone duality to capture Boolean
algebras equipped with additional operators (modelling quantifiers or modalities). Origi-
nating from Jonsson and Tarski’s representation theorem for Boolean algebras with oper-
ators [JT51, JT52|, a representation in the spirit of Stone was proven by Halmos [Hal58];
the general categorical picture of the duality of Kripke frames and modal algebras is based
on an adjunction between operators and continuous relations developed by Sambin and
Vaccaro [SV88|.

In the context of automata theory, the need for extensions of Stone duality was only
unveiled in this millennium: Using ordinary Stone duality, Pippenger [Pip97| (see also
Almeida [Alm94|) has already shown that the Boolean algebra of regular languages on an
alphabet ¥ corresponds to the Stone space S* of profinite words. This result and the
theory surrounding it was placed in the bigger picture by categorical frameworks that
have identified Stone-type dualities to be one of the cornerstones of algebraic language
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theory [UACM17, Sall7, Blu2l]. On the other hand, Gehrke et al. [GGPO0S8| discovered
that, under Goldblatt’s form of extended Priestley duality [Gol89|, the residuals of language
concatenation dualize to multiplication of profinite words, but so far this result could not yet
be placed in the categorical big picture. One reason might be that, despite some progress in
recent years [BKR07, HN15|, extended (Stone) dualities for (co-)algebras are themselves not
fully understood as instances of a crisp categorical idea.

Contributions. In the present paper, we introduce in Section 3 a simple categorical frame-
work for extending any categorical duality C ~°P C via monoidal adjunctions: for a given
adjunction on C with a strong monoidal right adjoint U, we establish a dual equivalence
between U-operators on C and operators in a Kleisli category on C. This framework is
compositional both in its parameter — the strong monoidal right adjoint — and the object
level of U-operators, which yields a simple categorical version of correspondence theory.

We demonstrate the power of this framework by working out several examples. On one
hand, we show how to recover existing dualities and applications thereof, but we also indicate
how to extend existing dualities including completely new instances of dualities.

To this end, we show in Section 4 how to use our framework to recover, and mildly extend,
extended Priestley duality for distributive lattices with operators [Gol89| and relational
morphisms. We also show how to use the compositionality of the abstract extended duality
to recover results from modal correspondence theory for free.

Guided by our categorical foundations for extended Stone duality, we subsequently
investigate in Section 5 the correspondence between language derivatives and multiplication
of profinite words in the setting of residuation algebras. The key observation is that, on
complete and completely distributive lattices, the residuals are equivalent to a coalgebraic
operator on the lattice. This equivalence can then be composed with an extended duality
based on the discrete duality between complete atomic Boolean algebras (CABAs) and sets
to obtain a duality between certain complete residuation algebras and ordered monoids.
We then proceed to lift this correspondence to locally finite structures, i.e. structures built
up from finite substructures. By identifying suitable non-full subcategories — derivation
algebras and (lattice) comonoids, respectively — and an appropriate definition of morphism
for residuation algebras, we augment Gehrke’s characterization of Stone-topological algebras
in terms of residuation algebras to a duality between the categories of derivation algebras
and that of profinite ordered monoids:

Der = Comon ~°° ProfOrdMon. (1.1)

The abstract theory of extended duality now suggests that the dual equivalence between
profinite ordered monoids on the one side and comonoids as well as derivation algebras on
the other side extends to a more general duality capturing morphisms of relational type of
profinite ordered monoids. To this end, we identify a natural notion of relational morphism
for residuation algebras and comonoids, and we use our abstract extended duality theorem
to obtain the dual equivalence

RelDer = RelComon ~°°? RelProfOrdMon

which extends (1.1) to relational morphisms.
Finally, we combine the ideas underlying these results to derive a novel duality between
the category of all small categories and the category of categorical residuation algebras:

Cat ~°° CatResCABA. (1.2)
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To achieve this, we use the duality between monoids and residuation CABAs and combine it
with two observations: first, small categories are equivalent to certain relational monoids;
second, the discrete version of the duality (1.1) admits an extension to a duality between
relational monoids and residuation CABAs. We prove that the composite of these equivalences
restricts to (1.2).

RELATED WORK.

This paper is a completely revised and extended version of our conference paper [BMU24|
presented at FoSSaCS 2024. Besides providing detailed proofs of all results, we have included
additional material: Proposition 3.12 simplifies dualization of composite operators, and it is
used in Section 4.3 to show how to derive results from modal correspondence theory in a
categorical way, by encoding modal formulas as morphisms. Section 5.3 has been extended
to complete lattices, instead of just finite ones, to set the base duality for the material
in Section 6. We have added Proposition 5.40 to complete the picture relating profinite
ordered monoids and Priestley monoids similarly to the unordered case. Finally, the dual
characterization of the category Cat of small categories (Section 6) is a new application of
our abstract methods.

Extended Stone Duality. Duality for (complete) Boolean algebras with operators goes back
to Jonsson and Tarski [JT51, JT52]. This duality was refined by the topological approach
via Stone spaces taken by Halmos [Hal58|, which allowed to characterize the relations arising
as the duals of operators, namely Boolean relations. Halmos’ duality was extended to
distributive lattices with (n-ary) operators by Goldblatt [Gol89] and Cignoli [CLP91|. Kupke
et al. [KKV04] recognized that Boolean relations elegantly describe descriptive frames as
coalgebras for the (underlying functor of) the Vietoris monad on the category of Stone spaces;
notions of bisimulation for these coalgebras were investigated by Bezhanishvili et al. [BFV10].
Bonsangue et al. [BKR07| introduced a framework for dualities over distributive lattices
equipped with a theory of operators for a signature, which are dual to certain coalgebras.
Hofmann and Nora [HN15] have taken a categorical approach to extend natural dualities to
algebras for a signature equipped with unary operators preserving only some of the operations
prescribed by the signature; they relate these to coalgebras for (the underlying functor of) a
suitable monad T'. Recent work by Bezhanishvili et al. [BHM23| clarifies the relation between
free constructions on distributive lattices and different versions of the Vietoris monad to
derive several dualities for distributive lattices with different types of operators and their
corresponding Priestley relations.

Similarly to Hofmann and Nora’s work [HN15] we have tried to fit most of these
developments in a single, categorical framework. Our approach differs in two ways: first,
incorporating monoidal structures into our setting immediately allows us to dualize operators
with multiple in- and outputs. Second, besides a “nice” base duality, our framework depends
only on some monoidal right adjoint. In contrast, op. cit. requires, in addition to the right
adjoint (represented by a subsignature), a candidate monad 7" and gives a criterion whether
an extended duality between operators for the subsignature and T-coalgebras exists.
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Residuation Algebras. The original work by Jonsson and Tarski [JT51| already used
duality for residual operators (also called conjugates) on Boolean algebras. Residuated
Boolean algebras, i.e. Boolean algebras with a residuated binary operator, were explicitly
studied by Jonsson and Tsinakis [JT93] to highlight the role of the residuals in relation algebra.
Gehrke et al. [GGPO08] exposed the connection between the residuals of the concatenation of
regular languages and the multiplication on profinite words and investigated applications to
automata theory, most notably a duality-theoretic proof of Eilenberg’s variety theorem [Eil76].
The duality theory behind the correspondence of general residuation algebras and Priestley-
topological algebras developed by Gehrke [Geh16b| is based on Goldblatt’s extension of
Stone duality [Gol89]| for distributive lattices. This duality was further investigated via the
theory of canonical extensions [GJ94, Geh09, GP07] to show that certain crucial parts are
not entirely “algebraic”. While Gehrke [Geh16b] provides a condition under which the dual
relation of the residuals is functional, Fussner and Palmigiano [FP19] showed that it cannot
be equationally defined in the language of residuation algebras.

Our duality for Priestley monoids is a non-trivial restriction of Gehrke’s duality [Geh16b],
and, to our knowledge, the first duality result for relational morphisms of profinite monoids,
which are a ubiquitous tool in algebraic language theory [Pin88| and semigroup theory [RS09].
We also note that, while our results are closely related to Gehrke’s [Geh16b], our methods
are fundamentally different: while most of the proofs in op. cit. are of topological nature,
we only work on the side of ordered structures, and outsource any topology to already
existing dualities. In our opinion, this not only simplifies the theory, but it also clarifies the
relation between Gehrke’s results and the duality by Rhodes and Steinberg [RS09] between
profinite monoids and counital Boolean bialgebras: on the algebraic side, derivation algebras
correspond to Boolean comonoids, which are precisely counital Boolean bialgebras.

2. PRELIMINARIES

Readers are assumed to be familiar with basic category theory, such as functors, natu-
ral transformations, adjunctions and monoidal categories, see Mac Lane [ML9§| for an
introduction.

We briefly recall the foundations of Stone duality [Sto36] and Priestley duality [Pri70].
By the latter we mean the dual equivalence DL ~°P Priest between the category DL
of bounded distributive lattices and lattice homomorphisms, and the category Priest of
Priestley spaces (ordered compact topological spaces in which for every x £ y there exists a
clopen upset containing x but not y) and continuous monotone maps. The duality maps
a distributive lattice D to the pointwise-ordered space DL(D,2) of homomorphisms into
the two-element lattice (equivalently, prime filters, ordered by inclusion), and topologized
via pointwise convergence. In the reverse direction, it maps a Priestley space X to the
distributive lattice Priest(X,2) of continuous maps into the two-element poset 2 = {0 < 1}
with discrete topology (equivalently, clopen upsets), with the pointwise lattice structure.
Priestley duality restricts to Stone duality BA ~°P Stone between the full subcategories BA
of Boolean algebras and Stone of Stone spaces (discretely ordered Priestley spaces).

This duality also has a “topologically discrete” version: First recall that an element k in
a lattice D is compact if for every subset A C D with k <\/ A there exists a finite subset
F C A with k < F. A lattice is algebraic if every element is the join of the compact elements
below it. There exists a duality Pos ~°® ACDL between the category Pos of posets with
order-preserving maps and the category ACDL of algebraic completely distributive lattices
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(ACDLs) with maps preserving all joins and meets. Under this duality a poset P is mapped
to the set Pos(P,2) = DP, which corresponds to the set of downsets of P. In the reverse
direction, an ACDL D is mapped to the pointwise-ordered poset ACDL(D,2) = J P, which
corresponds to the poset of completely join-prime elements of D, i.e. those elements of D
satisfying p < \/ A = p < a for some a € A. This duality restricts to the well-known duality
Set ~°P CABA between the category Set and the category CABA of complete atomic
boolean algebras.

Both the topological and the discrete duality restrict to Birkhoff duality [Bir37] DL ~°P
Pos; between finite distributive lattices and finite posets. For a comprehensive introduction
to ordered structures and their dualities, see the first two chapters of the classic textbook by
Johnstone [Joh82].

3. EXTENDING DUALITIES

Our first contribution is a general categorical framework for extending Stone-type dualities
via monoidal adjunctions. It is motivated by the extension of Priestley duality to operators
due to Goldblatt [Gol89] (which is recovered in Section 4) and serves as the basis for several
concrete duality results derived subsequently.

We start this chapter by setting up some notation for the two ingredients involved:
adjunctions and monoidal categories.

Notation 3.1.
(1) Given functors U: C — D and F': D — C, we write

F:D4C:U
(or simply F 4 U) if F is left adjoint to U. We denote the unit and counit by
n: Id > UF and e: FU — 1d; (3.1)

the transposing isomorphisms are denoted by
(—)*: D(C,UD) = C(FC,D) : ()~
Hence, for every f: C — UD and g: FC — D we have
ff=ep-Ff, —and g~ =Ug-nc.

(2) For a category C with dual C we denote both contravariant functors witnessing the dual
equivalence by

(%):c—=cC and (%):C =cC.
Moreover, if F': C — D is a functor and D is dual to D, then we denote the dual of F' by

F=(3).F-(%):C—D.

(3) The Kleisli category of a monad (T',n, 1) on the category C is denoted by Cr. It has
the same objects as C and Cp(X,Y) = C(X,TY); the composition of Kleisli morphisms
f:C —=TD and g: D — TF is defined by

g-f=(c-LsTD % TTE 12, TR).
A Kleisli morphism f: C — T'D is pure if f =np - f’ for some f': C — D in C. We write
Jr: C — Crp for the usual identity-on-objects functor mapping f: A — Btong-f: A — TB.
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Convention 3.2. To lighten notation, we omit subscripts indicating components of natural
transformations when they are clear from the context, e.g. we write n: A — T A for n4.

Definition 3.3.

(1) A monoidal category is a category C with a bifunctor ®: C x C — C called tensor, an
object I € C called unit together with natural isomorphisms

v:I®lde =Ide and a: (Idc®Idc) ®Ide = Ide ®(Ide ® Ide),

which are subject to natural coherence axioms (see e.g. [ML98, Section VII|). A monoidal
category is strict if v and « are identities.

(2) A functor U: C — D between monoidal categories that is equipped with a morphism
€: Ip — Ulc and a transformation

MU @U(-) = U(-® )

which is natural in both components is lax monoidal if it satisfies appropriate associativity
and unitarity axioms with respect to v and «. If both € and A are isomorphisms (identities)
then we say U is strong (strict) monoidal.

Notation 3.4. Given an object X of a monoidal category, the nth tensor power is denoted

n
@
i=1
and for a functor G the expression GX®" is parsed as G(X®"), as usual.

We now introduce the setting in which our framework for extending dualities applies. In
the simplest sense, the only ingredient is a strong monoidal functor:

Assumptlon 3.5. We fix strict monoidal categories C, D with dually equivalent categories
C, D; we regard C D as monoidal categories with tensor products ® dual to the tensor
products ® of C, D. Moreover, we fix an adjunction F': D 4 C :U with unit 1 and counit &
(3.1), and we assume that U is a strong monoidal functor with associated natural isomorphisms

AMUXeUY =2UX®Y) and e: Ip =Ulc.
We denote the monad dual to the comonad FU by T = FU , with unit and multiplication
e=¢:1d—T and m=FiU:TT —T.

Overall, we have the following situation:

D ~opr ﬁ

FHU i l—}ﬁ (3.2

C ~op C DT

Remark 3.6.

(1) By Mac Lane’s Coherence Theorem [ML98, Section VII.2|, every monoidal category is
equivalent to a strict monoidal category, hence the strictness requirement on C in Assump-
tion 3.5 is without loss of generality.
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(2) The isomorphism A can be extended to an isomorphism
NMUXi®---0UX,2UX10---® X))
for all finite families of objects X7 ..., X, in C.

(3) The functor U:C—DdualtoUisa strong monoidal left adjoint of ﬁ, and the unit

and counit of the adjunction U+ F are given by € and 7, respectively. Since U is strong
monoidal with respect to the isomorphisms

¢ Ip=Ulc and AUXRUY2XUX®Y):A!,
its right adjoint F is lax monoidal (see e.g. [SS02, p. 17]) for the natural transformations
(NN :Ic—FIp and ((A®7)-AH) :FX®FY > F(X®Y).
ThlS makes U 4 F' a monoidal adjunctlon and T = FU a monoidal or commutative monad

on C with monoidal structure 6: TX ® TY — T(X ®Y) given as the appropriate composite

of the monoidal structures of F and U. Note that § also extends to any arity, that is, for
every n-tuple of objects X1,...X,, we obtain a natural transformation

6:TX1®- - BTX, 5 T(X1®--- B X,).
(4) The tensor product & of C lifts to the Kleisli category GT; the lifting maps a pair
(f: X =>TY,g: X' > TY") of Cp-morphisms to the Cp-morphism

0 (fBg): XBX' - TYRTY' — T(YRY').
This makes Cy itself a monoidal category (see e.g. [Seab3, Prop. 1.2.2]) with tensor &, and
the canonical left adjoint Jr: C — Cyp a strict monoidal functor.

We now show how to extend the duality C ~°P C along the adjunction F' 4 U to yield a
duality between operators.

Definition 3.7.

(1) Let G: A — B be a functor between monoidal categories, and let k,n € N. An (k,n)-ary
G-operator consists of an object A € A and a morphism a: (GA)®* — (GA)®" of B. A
(k,n)-ary G-operator morphism from (A, a) to (B,b) is a morphism h: GA — GB of B such
that the following square commutes:

(GA)®F 25 (GA)®"

h®ki lh@’”

(GB)®F s (GB)®"

The category of (k,n)-ary G-operators and their morphisms is denoted by Opg’" (A).

(2) A G-operator is a (k,n)-ary G-operator for some k and n.

(3) A G-algebra is a (k,1)-ary G-operator, and a G-coalgebra is a (1,n)-ary one.

(4) If G is strong monoidal, then a (k,n)-ary G-operator (A,a) is pure if there exists a
morphism a’: A®* — A®™ such that

= ((GA)@]C _i_> G(A®k‘) G_a/> G(A®") _ (GA)®n)

where A is given analogously to Assumption 3.5. An operator morphism h: (A,a) — (B,b)
is pure if there exists a morphism h': A — B such that h = Gh/: GA — GB.
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Two cases will be important for intuition: (1) if G is a forgetful functor between varieties
of algebraic structures, then a G-operator on an object A is a map preserving only part
of the structure on A; (2) if T is a powerset- like monad on a category of spaces, then an

operator for the embedding Jp: C — Cr on a space A is a (continuous) relation A — TA.

Theorem 3.8 (Abstract Extended Duality). The category of (k,n)-ary U-operators is dually
equivalent to the category of (n,k)-ary Jr-operators:

Opy"(C) =" Op}(C).
Proof. The desired equivalence of categories is given by the functor
®: Op7*(C) — Opy"(C) (3.3)
which maps a (n, k)-ary Jp-operator
a: A®" 5 TA®k — FU A%k
to the (k,n)-ary U-operator
(UA)PF 25 Ak 2 a®n 20, (7 4)9m, (3.4)

and an operator morphism f: (A,a) — (B,b) to f~: UB — UA.

Let us first verify that the definition of ® makes sense on morphisms, i.e. that f~ is an
operator morphism from (B,A™!-b7 - A) to (A,A"!-a~ - )\). Unfolding the definitions of
composition and monoidal structure in the Kleisli category, we see that f is a morphism
A — TB = FUB such that the following diagram in C commutes:

~ ~ ~ &k ~
Aen @, paek T peppyek 10, pppok
L?@n J/m (3.5)
(TB)®n _ 9 yppén _Tb ppp®k __m . DOk
The multiplication m of the monad is the dual of F'nU, so the dual diagram of (3.5) is

precisely the outside of the following diagram in C, in which all parts except (#) commute
by naturality of n,e and A, and the triangle equations.

— FUFUB®F « 7 pyp®k 1Y , pypyp®F EUL, pypen 8 (FUB)®™ —
lFUFA_l lFA_l Fb~ Fa—1 Ta
FUF(UB)®* « ™ pp)®* (=) @k FBY®" 1% puFUB)ET _EAS pU(FUB)E"
F(f
rue lFUF(nU)@’" lF(TIU)@)\ £l @X) lF(Uf)@’“ FUf®"l
FUFWUFUB)®* <" puru By " UDE py 4y FUA)®™ —FX_ ppya®n | ion
FUF(Uf)®k
lFUN / lF)\ (#)
FUFU(FUB)®* FUF(UA y®k FUA®k <
l wvr@k / H
FUe FUFX\
\s FU(FUB)® FUFUA®* _EUs |, pyA®k @ A®
>
FUf®k

To see that (#) also commutes, note that the counit € = id™ is the adjoint transpose of the
identity, and transposition is natural. So transposing the two paths from FUB®F to A®"
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that form part (#) yields the inner square of the following commutative diagram in D:

_ _ —\®n
(UB)®+ — A, ypek Y, ypen A (UB)®”(Q> (UA)®"

N b SN

®
B L (ayek A pask e, g 27N prgen)

By pre- and postcomposition of this square with A and A~!, respectively, and replacing a~
and b~ by their respective conjugates &« = A"'-a~ - X and = A7! - b~ - X this diagram
simply becomes the square

UB)®F —2 (UB)En

(o] Juen

(UA)RF 2 (UA)2"

in D, which is a homomorphism diagram of (k,n)-ary U-operators.
We have shown that ® is indeed a functor. Now we verify that it is an equivalence.
The (natural) isomorphisms

D(UA,UB) =~ C(FUA, B) = C(B, FUA) = C(B,TA)
given by the duality and the adjunction F' 4 U ensure that this functor is fully faithful.
To see that it is essentially surjective, pick any U-operator c¢: (UC)®* — (UC)®". We
have to show that it is isomorphic to an operator of the form (3.4). Since the original duahty

C ~° C is ebbentlally surjective there exists an isomorphism h: C = X for some X € C.
Let a: FUX®F — X®" be the adjoint transpose of the D-morphism

-1 \®k ®n ~ ~
uxek 2, wxyek T weyek < weyer U e A pxen,
Then Uh: (UC,c) — (UX, A~t.a™ - )\) is a pure operator isomorphism. L]

Remark 3.9. The definition of ® (3.3) can be slightly generalized to yield a dual correspon-
dence between morphisms a: (UA)®k — (UB)®" of D and morphisms p: B¥" — T A®* of
D: the dual of a is given by p = ht, where h = A -a-\~1: UA®F — U B,

Our approach to extending dualities is compositional on two levels: first, compositionality
of adjunctions allows us to dualize certain operators more precisely; second, on the object
level, U-operators themselves admit a compositional structure under morphism composition
and tensor product, leading to simpler calculations of dual operators. We will use the first
and second version of compositionality in Sections 4.2 and 4.3, respectively.

We elaborate on the first point: Let E be a monoidal category with monoidal adjunctions

FEAC:U; and F:DAHE U

which split F U (i.e. F = F1Fy, U = UsUy), and suppose that the monoidal structure of
U is given by A = Us A1 - AoU;. The compositionality of adjunctions leads to the following
lifting property, applying to both operators and operator morphisms by setting A = B and
k = n = 1, respectively, in the following proposition. Here we say that, for a monoidal
functor G, a morphism f: (GX)® — (GY)®7 lifts along G, if there exists a morphism
g: X® - Y9 with f = A™' - Gg - A\. The morphism g is called a lifting of f.
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Proposition 3.10. Let a: (UA)®* — (UB)®" be a morphism in D dual to p: B®" — T A®*
in C as in Remark 3.9. Then the following are equivalent:
(1) a lifts along Us, that is,

a= )\51 -Usb - Ao for some b: (UlA)®k — (UB)®™
(2) p factorizes through the monad morphism ﬁlégﬁlz Ty — T (where Ty = ﬁlﬁl), that 1s,
p= F\légﬁl o for some o: Bon Tlg@’k.

Proof. The dual of the morphism a: (UsU3 A)®F — (UsU; B)®™ under the abstract extended
duality is given by

p=nht: B® 5 TAPk = B\ F,U,0, A%,

where h is the unique morphism making the outside of the following diagram commute:

— UpUi A% s 0,0, B®" —

U2>\1T lekl_l

A UQ(UlA)®k Ug(UlB)®n A1

. b

— (UUA)®F 2y (UUB)®™ </

We denote the transposition isomorphisms of the adjunctions F; 4 U; by
(=) C(FiX,Y) = D(X,U;Y) :(—)%.

Now assume that gﬁl Ben - T, Ak — [ U, A®F is a morphism in C such that we have a
factorization h+ = F152U1 gjjl Under duality this is equivalent to

Wt =g FleglUy <= B2 = (W) =g U1 <= h=(h*2)2 = Usg- (e2U1)" = Usyg

using naturality of the isomorphisms bi,bs. The dual of the Jp-operator ;ﬁ under the
abstract extended duality along the adjunction F7 4 U is the Uj-operator b = /\1_1 “g AL
Therefore the following diagram commutes:

s UpUy A® 9= g gen

U2/\1T lUgA_

A Un(th )R 2 gy By#n |y

. b

— (UU1 A®F) —2 (U U) B®™ ¢

This is equivalent to a admitting the lifting b, that is, a = )\2_1 -Usb - Ag. L]
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Remark 3.11.

(1) A special case of Proposition 3.10 proves that extended dualities preserve purity: splitting
F AU into F; =1d 41d = Uy and F, = F 4 U = Us, we see that a U-operator (or operator
morphism) a is pure iff its dual f is pure as a Kleisli morphism, that is, it factorizes through
the unit € of the monad T

(2) The right adjoint Us often is faithful and in this case ﬁlégﬁl is monic, that is, T} is a
submonad of T": indeed, faithfulness of Us is equivalent to having an epic counit €5, hence
égﬁl is monic, and the right adjoint Fy preserves monos. In particular, if T is ‘powerset-like’,
then éT is a category of relations, and we think of U-operators (or operator morphisms) of
the form a = A5 L. Usb - Ao as dualizing to ‘more functional’ relations. This idea is illustrated
by the examples in Section 4.2.

The compositionality on the level of U-operators manifests itself as follows:
Proposition 3.12. Let h,g: UA — UA be U-operators with respective duals p,o: A — TA.

On objects the abstract extended duality of Theorem 8.8 preserves

(1) Tensor products of operators:
hg:UAQUA - UAQUA isdualto 0-(pR0): AQA—TARTA - T(AD A).
(2) Composition of operators:
g-h:UA—-UA—-UA is dual to m-Tp-U:E%Tg—)TTE%TE.
(3) Identity operators:

idya: UA—UA is dual to ez: A TA.
Proof.

(1) Under the extended duality the operator h ® g is mapped to &J\F, the dual of the adjoint
transpose at of the conjugate o of h ® g:

AL h®g A
o= (U(A®A) — UVAQUA —— UARUA — U(A®A)).
We now prove that the following diagram commutes, where ¢§ is the comonoidal structure of
FU dual to the monoidal structure § of 7' from Remark 3.6.
F(h®g)

[ o 1
FUA® A) P24 ruaeuA) 2 purvA e urua) "2 pua s ua)

Lﬁ \ JF,\ lpx
hteg* e FU(h* ®g™")
ARA 2 FUA® FUA +<— FU(FUA® FUA) FU(A® A)
T : J

Its outside commutes using the definition of the adjoint transpose o, and the upper part also
commutes by adjoint transposition. The right-hand and lower parts commute by naturality
of A and ¢, respectively. The middle part commutes trivially by the definition of . Thus,
the left-hand triangle commutes. This shows that, under the duality C ~°P 6, the dual of
o is equal to the dual of (T ® g*) - 8, which in turn is given by § - (p ® o).

(2) Similarly, the adjoint transpose of g - h is equal to g™ - FUR™ - FnU whose dual is given
bym-Tp-o.
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(3) The adjoint transpose of idy 4 is €4, whose dual is the unit € ; = e ; of T'. ]

4. EXAMPLE: EXTENDED PRIESTLEY DUALITY

As a first application of our adjoint framework, we investigate the classical Priestley duality
(Section 2) and derive a generalized version of Goldblatt’s duality |[Gol89] between distributive
lattices with operators and relational Priestley spaces. We instantiate (3.2) to the following
categories and functors, which we will subsequently explain in detail:

D ~® D JSL  ~°» StoneJSL
F<—|’>U ﬁ(l—}ﬁ = F<—|/>U ﬁ(l—}m (4.1)
C -~ C T DL ~O°P Priest :)W

Categories. The upper duality is Hofman-Mislove-Stralka duality [HMS74] between the
category of join-semilattices with a bottom element and the category of Stone semilattices
(i.e. topological join-semilattices with a bottom element whose underlying topological space
is a Stone space) and continuous semilattice homomorphisms. The duality maps a join-
semilattice J to the Stone semilattice JSL(J,2) of semilattice homomorphisms into the
two-element semilattice, topologized by pointwise convergence. Equivalently, JSL(J,2) is the
space Idl(J) of ideals (downward closed and upward directed subsets) of .J, ordered by reverse
inclusion, with topology generated by the subbasic open sets o(j) = {I € Idl(J) | j € I} and
their complements for j € J. In the other direction, a Stone semilattice X is mapped to its
semilattice StoneJSL(X,2) of clopen ideals, ordered by inclusion.

Functors. The functor U: DL — JSL is the obvious forgetful functor. Its left adjoint
F: JSL — DL maps a join-semilattice J to the set Z/{fag(J ) of finitely generated upsets of .J,

ordered by reverse inclusion. The dual right adjoint F of F is the forgetful functor mapping
a Stone semilattice to its underlying Priestley space. Indeed, since F' 4 U, we compute for
the carrier set |X| of a Stone semilattice X that

|FX|=|FX| = |DL(FX,2)| = [JSL(X,U2)| = [JSL(X, 2)| = |X],

and this bijection is a homeomorphism.
The left adjoint U: Priest — StoneJSL maps a Priestley space X to the Stone join-
semilattice

UX = JSL(U(Priest(X, 2)),2) = 1dl(Cl; X)
of ideals of clopen upsets of X. This space is isomorphic to the (downset) Vietoris hyperspace
V| X of X carried by the set of closed downsets of X. The isomorphism is given by
Idl(Cl4 X) = VX

I - () X\U
Uel
{UeChX|CCX\U} — C.
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The topology of pointwise convergence on JSL(U (Priest(X,2)),2) translates to the hit-or-
miss topology on V| X generated by the subbasic open sets

{AC X closed |ANU #0} for UeChX

and their complements. Note that for a Stone space X, the Stone join-semilattice V| X is
the free Stone join-semilattice on X, as observed by Johnstone [Joh82, Sec. 4.8]. The monad
induced by the adjunction is the (downset) Vietoris monad; its unit e: X — V| X is given by
x — Jo and multiplication is given by union [HN15]. The monad V| restricts to the Vietoris
monad V on the category Stone of Stone spaces.

The duality of modal algebras and coalgebras for the Vietoris construction, going back
to Esakia [Esa74|, has often been rediscovered and extended since, see e.g. [KKV04, VV14];
for recent accounts with detailed computations regarding the dualities of FU and V| see
Bezhanishvili et al. [BHM23| or the textbook by Gehrke and van Gool [GvG24, Section 6.4].

Remark 4.1 (Continuous Relations). Continuous maps in Priest of the form
p: X — V¢Y

are known in the literature under a variety of names; we call them as Priestley relations as in
[CLPI1, Gol89|, or Stone relations if X,Y are Stone spaces. We write z py for y € p(z), and
sometimes identify p with a subset of X X Y. Let us note that some authors (e.g. [RS09)])
call a relation R C X x Y between topological spaces continuous if it is closed as a subspace
of X x Y. Every Priestley relation is continuous. The converse generally fails: for instance,
consider any non-discrete Stone space X and let C' C X be a subset that is closed but not
open. The relation C'x 1 C X x 1 is closed, but the corresponding map p: X — V1 (given by
p(z) = 1if x € C and p(x) = ) otherwise) is not continuous because p~1[1] = C' is not open.

Monoidal Structure. The category JSL of join-semilattices has a tensor product ® that
represents join-bilinear maps, that is, maps J x J' — K between join-semilattices preserving
finite joins in each argument:

Bilin(J x J',K) = JSL(J® J', K).

Join-bilinear maps J x J' — K and their corresponding JSL-morphisms J ® J' — K are
often tacitly identified. The tensor product ® makes JSL a monoidal category with unit
2, 1.e. 2® J = J. The standard presentation of J ® J' as a join-semilattice is given by the
generators {j ® j' | j € J,j' € J'} with equations

ne0=007 =0 (hVj)®)=h@jVipe) ad jo(Vi)=7®jVJicij
ranging over ji, jo € J and ji, j5 € J'. We call (the equivalence class of) a generating element
Jj®j" a pure tensor. If D, D’ are bounded distributive lattices then so is UD @ UD' [Fra76],
with meet given on pure tensors by (d®@d') A (e®¢€’) = (dAe)® (d Ae'). Moreover, the
lattice UD ® UD’ is the coproduct of D, D’ in DL: the coproduct injections are given by

d)y=d®1 and J(d)y=1&d
for d € D,d € D', and the copairing of lattice homomorphisms f: D — E, f': D' — E is
given by the extension of the join-bilinear map
A (fxf)DxD —E, (d,d") — f(d) A f(d).
Taking coproducts yields a monoidal structure on DL, and since U(D + D) =UD @ UD’,
the functor U is strict monoidal.
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Lemma 4.2. The dual monoidal structure 6 of V| is given by product:
VX xVY 5 V(XxY), (C,D)—CxD.

Proof. Let C € V X, D € V| Y be closed downsets. We first represent them by their respective
ideals I, Ip of Cly X and Cl4 Y, which are equivalently JSL-morphisms

¢c: UCL X - U2, d: UCLY — U2.

The map § is the given as the dual
DL(FU CL X + FU CL Y,2) — DL(FU(CL X + CL; V), 2)

of the comonoidal structure FU(A+ B) — FUA+ FU B mapping [¢t, d"] to the prime filter
that is the transpose of

Uleh,dt]-(n®n): U(CL X + CLY)
CLX)®UCLY) - UFUCLX®UFUCLY
(FUCL X+ FUCLY) — U2.
The latter map sends a pure tensor A ® B € U(Cly X 4+ ClL4 Y) to its ‘product’ c¢(A) A d(B).

Therefore the closed set 6(C, D) corresponding to Ulct, dt] - (n ® 1) contains a pair (z,y) iff
reCandyeD. ]

I

S g

>~

Expanding Definition 3.7, the category Op?vk(Priest) is given as follows:
0

Definition 4.3. A ((n,k)-ary) relational Priestley space consists of a carrier Priestley
space X and a Priestley relation p: X™ — ViXk. A relational morphism from a relational
Priestley space (X, p) to a relational Priestley space (X', p') is given by a Priestley relation
B: X — VY such that, for all x € X", y € X* and y' € X'*,

xpyAVi:y; By)) = I Vit ) AxX Py,
and, for all x € X", x' € X' and y’ € X'¥,

Vi:a; Ba)AX' py = Ty:xpyAVi:y; By.).
We denote by Op%j (Priest) the category of (n,k)-ary relational Priestley spaces and
relational morphisms.

Then Theorem 3.8 instantiates to the following result:

Theorem 4.4 (Extended Priestley duality). The category of (k,n)-ary U-operators of
distributive lattices is dually equivalent to the category of (n, k)-ary relational Priestley spaces
and relational morphisms:

Op;;"(DL) ~°P Op%j(Priest).

By setting n = 1 and restricting the operator morphisms on both sides to be pure
(Remark 3.11(1)), we recover Goldblatt’s duality [Gol89]. In the latter work, pure relational
morphisms are called bounded morphisms and n-ary U-algebras (UD)®" — UD in JSL are
called n-ary join-hemimorphisms.

Corollary 4.5 (Goldblatt duality). The category of distributive lattices with n-ary join-
hemimorphisms, and pure morphisms between them, is dually equivalent to the category of
(1,n)-relational Priestley spaces and bounded morphisms.
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4.1. Deriving Concrete Formulas. We proceed to show how an order-enriched extension
of our adjoint framework can be used to methodically derive concrete (i.e. element-based)
formulas for the dual join operator of a continuous relation and vice versa. Let us first
observe that all involved categories are order-enriched if we equip the homsets with the
usual pointwise order on functions. Moreover, from the definitions it is clear that the
transposing isomorphisms of the adjunction F' 4 U and the duality DL ~°P Priest are
order-isomorphisms.

Second, we can represent an element & of a Priestley space X as a continuous function
Z € Priest(1, X ); on the lattice side, elements j of a join-semilattice J correspond bijectively
to JSL-morphisms j € JSL(2, J), using that 2 is the free semilattice on a single generator.

For the rest of this subsection let us fix a U-algebra h and its dual Priestley relation p:

h: (UX)®" - UX  and  p: X — V X"
We first show how to express p in terms of h. Viewing p as a relation from X to X»

(Remark 4.1), two elements & € X,% € X" are related by p (i.e. & p %) iff the inequality
e(X) = }x < p(2) holds, equlvalently, iff the left diagram below commutes laxly as indicated:

X L5y Xxn UX +'— (Ux)®n
4\ \A T@ Uml \A l@l Uz;
%, gn AL U2 «+Y— (U2)®n

L A >

The duals of &,#; are DL morphisms x,x;: X — 2. Under duality and transposition
the left diagram corresponds to the right diagram where V is the codiagonal given by
n-fold conjunction, i.e. it maps @7, z; to Ai_;z;. Writing F, = 27%(1) for the prime
filter corresponding to a morphism z € DL(X,2) the right diagram yields Goldblatt’s
formula [Gol89, p. 186] for the dual Priestley relation of an algebra h: we have

gpx it R[J]Fw) C F

Conversely, to express h in terms of p, it suffices to describe h(x) for a pure tensor x € (U X )®"
by the universal property of the tensor product. We factorize

x=Q)xzi- V' U2 (U2)" — (UX)®"
i
to see that the element h(x) corresponds to the following morphism representing an element

of the join-semilattice U X:
he@ai- VU222 (U2)%" = (UX)®" > UX.

Its dual is the characteristic function

~ ~ V(I Cs \X) VAL
R Ly n MLy gy B gy e

where C; = x is the clopen upset of X dual to

Vi1=2,

z; € JISL(U2,UX) = DL(FU2,X) = Priest(X,V,1) = Priest(X,?2).



4:16 F. LENkE, H. UrBaT, AND S. MILIUS Vol. 21:4

This shows that h(x) € X = CIT)A( corresponds to the clopen upset

h(x)={a e X |3(by,...,bn) € pla): ¥i: b € C; =z} € CL(X),

so we derived Goldblatt’s formula [Gol89, p. 184| for the dual algebra of a relation p.

4.2. Functional Properties of Priestley Relations. As a further application of the
adjoint framework to extended Stone duality, we show how to recover the characterization of
those operators on distributive lattices whose dual Priestley relation is a partial function or
a total relation, respectively. As outlined in Remark 3.11, we achieve this by considering
suitable splittings of the adjunction F': JSL 4 DL :U to obtain submonads of V| on which
we instantiate Proposition 3.10.

Partial Functions. We split the adjunction F' - U into
Fi: DLy 41DL :U; and F5: JSL 4 DLy :Us,

where DL is the category of distributive lattices that are only bounded from below, and
Uy, Uy are forgetful functors. The tensor product of objects of DLy is given by the tensor
product of their underlying join-semilattices. The left adjoint F} adds a top element to a
lattice in DLy.

Lemma 4.6. The submonad 11 on Priest dual to the adjunction Fy - Uy is given by the
partial function monad

X =X +{0}.
Proof. The submonad 17 = ﬁlﬁl < V| on Priest is given by
RU,D =~ FU\D =~ DL(F\U,D,2) = DL(U,D,U;2).

Every morphism f € DLy(U; D, U;2) either satisfies f(T) = T, in which case f € Dis prime;
or f(T) = L, but then f is the constant zero map L!: Uy D — U;2. The map 1! is the
bottom element in the pointwise ordering of DLy(U; D, U;2), so the monad ﬁl (71 just freely
adjoins a bottom element to a Priestley space. []

In particular, the dual category of DLg is readily seen to be equivalent to Priest,
the category of Priestley spaces with a bottom element, and bottom-preserving continuous
monotone maps. A Kleisli morphism p: X — 11X — V| X is a partial continuous function,
and a U-operator lifts along Us iff it preserves non-empty meets. Proposition 3.10 thus
recovers the following result (for the unary version see [Hal58, HN15]).

Corollary 4.7. The dual Priestley relation of a U-operator is a partial function iff the
operator preserves non-empty meets.
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Total Relations. We split the adjunction F' 4 U into
F{:JSL; DL :U; and F: JSL 4 JSL; :US,

where JSL; is the category of join-semilattices with both a bottom and top element with
morphisms preserving joins, bottom, and top. The right adjoints Uj, U} are forgetful functors,
and the tensor product of objects of JSLj is given by the tensor product of their underlying
join-semilattices. The left adjoint F] maps J € JSL; to the distributive lattice L{fag 4J of
non-empty finitely generated upsets of J, ordered by reverse inclusion.

Lemma 4.8. The submonad T] on Priest dual to the adjunction F| 4 U] is given by the
non-empty Vietoris monad

T X =VX.

Proof. We have

F{U]D = DL(F{U{D,2) = JSL,(U{D,U;2).
The only ideal f € JSL(UD,U2) that is not an element of JSL; (U] D, U{2) is the trivial
ideal L!: d+—— L:if f(T)# T then f(T) = L, so f maps all elements to L. by monotonicity..
The trivial ideal corresponds to the empty set () € VilA?. Thus 71X =V, X \ {0}. []

Kleisli morphisms X — T7Y therefore are simply total Priestley relations. Moreover, a
U-operator lifts along UJ iff it preserves the top element. Proposition 3.10 then yields the
following result (for the unary version see [Hal58, HN15]).

Corollary 4.9. The dual Priestley relation of a U-operator is a total relation iff the operator
preserves the top element.

4.3. Equational Properties of Operators. In Section 4.2 we have shown how to use
factorizations of the adjunction F' 4 U to obtain more precise dualities for operators with
additional properties. However, spelling out and computing the factorizing adjunctions and
their dual monads for the desired operator property individually is tedious, and there often
is a simpler method: If an operator property can be described equationally, we can use the
fact that inequations of operators translate to inequations of their dual relations to obtain
additional information under dualization.

The results we recover in this section are usually associated with modal correspondence
theory [vB77, GT75, BARVO01]. Note that our proofs neither use first-order logic nor canonical
frames: after having found a suitable encoding of order-theoretic properties as operator
(in-)equations they are mere instantiations of the abstract results from Section 3.

Proposition 4.10. Let h: UA — UA be an operator on a bounded distributive lattice A
with dual Priestley relation p: A — V| A. The following correspondences hold:

1) p is reflexive iff Va € A: a < h(a).

2) p is symmetric iff Ya,b € A: a A h(b) < h(h(a) A D).
3) p is euclidean iff Ya,b € A: h(a) A h(b) < h(a A h(b)).
h(b) > h(a A h(b)).

5) pis total iff h(T) =T.

(

(2)

(3) )
(4) p is transitive iff Va,b € A: h(a) A h(b)
(5)

(6) pis empty iff L(T) = L.
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The proof follows a simple pattern: (a) translate the inequation into an inequation between
operators, (b) dualize the inequation between operators to an inequation between Priestley
relations and (c) convert the relational inequality into the corresponding first-order property.

Proof. First we dualize some canonical operators whose combinations we can then du-
alize using Proposition 3.12. Recall from Proposition 3.12(3) that the identity oper-
ator idya: UA — UA dualizes to the unit e: A — V| A. The conjunction operator
N:UARUA — UA is equal to the conjugate
ANUV AL UAQUAZUA+A) - UA=UA
and thus dualizes to the diagonal function A: A— AxA.
Now let h: UA — UA be a unary operator with dual Priestley relation p: A — V| A.
(1) The condition Va € A: a < h(a) is equivalent to the operator inequality idy4 < h. The
dual inequality is given by e < p: A — V| A, that is, Vo € A: {} C p(z), which states
precisely that p is reflexive.
(2) The condition Va,b € A: aAh(b) < h(h(a)Ab) is equivalent to A-(Id®h) < h-A-(h®id).
The left side dualizes to
5-(e><p)'A:ﬁeﬁxﬁ%%ﬁx%ﬁ%%(ﬁxﬁ)
which is given by x — {(z,v) | y € p(x)}, while the right side dualizes to
m-8-V (pxe)-ViA-p: A = VA = V| (Ax A) = V| (Vi AXV A) = V|V (Ax A) = V| (Ax A)
which is given by = — {(z,9) | y € p(x), 2z € p(y)}. On elements this inequality of relations
reads
Vo,y,z € Ay € p(z) = x € p(y),
which states precisely that p is symmetric.
(3), (4) The proof is analogous to part (2) and left as an exercise to the reader.

(5) Here we have to use two auxiliary operators that exist on every Boolean algebra: the
‘bottom’ operator

z2:UA—UA, z+— L whose dual is the empty relation ¢: A— Vyzl\, x> 0.

and the ‘top’ operator

1L oife=_1 ~ ~ —~
t:UA—-UA, x+— ne ] whose dual is T: A= VA - A
T otherwise,

The equation h(T) = T holds iff the equation h-t =t: UA — UA of operators holds. The
left side dualizes to

m-ViT-p:;l\—)VlA\—)WQVlA\—)ViA\, x> U T(y) =

{A\ if p(z) is non-empty,
yep(x)

0 else.

The right side is simply 7: A V\Lﬁ, T A and these relations are equal iff p is total, that
is, p(x) is non-empty for every x.

(3) One has h(T) = L iff the operator equation h = z holds. Its dual equation p = ¢ simply
states that p(z) is empty for every z. (]



Vol. 21:4 EXTENDED STONE DUALITY VIA MONOIDAL ADJUNCTIONS 4:19

Remark 4.11. The axioms (1)—(4) considered in Proposition 4.10 correspond to the classical
modal axioms (T), (B), (D) and (5). Usually, axioms (2)—(4) are phrased differently by using
Boolean modal logic: (2) is equivalent to Va: a < =h(-h(a)), (3) to Ya: h(a) < —h(=h(a))
and (4) to h(h(a)) < h(a). We show that axiom (2) is equivalent to (B) and leave the rest as
an easy exercise for the reader.

Suppose that (2) holds in a Boolean algebra B, that is, it satisfies Va,b € B: a A h(b) <
h(h(a) A b). We prove that it satisfies Va € B: a < —h(—h(a)). Note that in a Boolean
algebra p < ¢ is equivalent to p A =g < L. Hence, we have

a A ——=h(=h(a)) = a A h(=h(a)) < h(h(a) A ~h(a)) < h(L) = L,

where we use (2) instantiated with b = —h(a) in the middle inequality. So B satisfies (B).
For the converse, suppose that B satisfies Va: a < —h(—h(a)). We show that it satisfies
Va,b: a A h(b) < h(h(a) Ab):

(a A (b)) A =h(h(a) Ab) < —h(=h(a)) A h(b) A =h(h(a) A b)
= h(b) A =(h(=h(a)) V h(h(a) A b)) = h(b) A =h(=h(a) V (h(a) A b))
= h(b) A =h(=h(a) V b) = h(b) A =h(=h(a)) A =h(b) = L,

where we used (B) in the first step. Thus, B satisfies (2).

Our phrasings of (B) and (D) as (2) and (3) have the clear benefit of not using negation,
and therefore being applicable to all (and not just Boolean) bounded distributive lattices,
which are models of positive modal logic. As for the phrasing of transitivity as (4), we simply
found the symmetry to the euclidean property appealing.

Proposition 4.10 allows us, for example, to generalize a classic result of algebraic (Boolean)
modal logic due to Halmos [Hal58] to the positive setting: an operator h: UA — UA is a
quantifier if it satisfies the inequations from (1), (3) and (5):

Corollary 4.12 (Halmos). An operator on a bounded distributive lattice algebra is a quantifier
if and only if its dual relation is an equivalence relation.

5. MoNoIDS, COMONOIDS AND RESIDUATION ALGEBRAS

In this section we investigate residuation algebras, as introduced by Gehrke [Geh16b], which
are ordered structures with residual operators similar to language derivatives. After recalling
some foundations, we divide our study into two steps: First, we start with the simpler
case of complete ordered structures, for which we prove a duality between certain complete
residuation algebras and ordered monoids. This result will then serve as the foundation
for both major applications in Sections 5.5 and 6: the duality for complete structures in
particular restricts to finite structures, since finite lattices are complete, which can then
be extended to a duality for more general structures by forming appropriate completions.
On the other hand, the discrete duality for monoids is also the basis for the duality of the
category of all categories.
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5.1. Foundations: Discrete Duality. We recall some facts and notation for distributive
lattices and their complete counterparts. In particular, we describe the instantiation of the
following discrete version of the extended duality setting from Diagram (4.1):

D ~op D CSL/\ ~OP CSL\/
FC%}U ﬁCFBﬁ - D<4>VA |<F>D (5-1)
C ~» CoOr ACDL ~® Pos_ DD

(Complete) Semilattices. We denote the category of meet-semilattices with a top ele-
ment, which is isomorphic to JSL, by MSL. It has a monoidal structure given by tensor
product X of meet-semilattices. The category MISL is dual to the category of Stone meet-
semilattices [HMS74|. Henceforth, we denote the forgetful functors from DL to JSL and
MSL by Uy and Uy, respectively, to avoid ambiguity. The monad on Priest induced by the
dual of Fn 4 U, maps a Priestley space X to its hyperspace V4 X of closed upsets [BHM23|.
The respective comonads on DL for the adjunctions Fa 4 Ux and F\, 4 Uy are not isomor-
phic but conjugate: FAUx = (FyUy(—)?)?, where X? denotes the order-dual of X. Their
restrictions to the category of Boolean algebras are isomorphic since their dual monads on
Stone satisfy V| =V = V.

Similarly, the category CSLy, (CSL ) consists of complete join- (meet-) semilattices with
morphisms preserving all joins (meets). Note that every complete join- or meet-semilattice X
also has all meets and joins, respectively, given by

/\Az\/{x\VaGA:xﬁa}, \/A:/\{:C|VCLEA::L’ZCL}.

The categories CSLy, and CSLj are easily seen to be dual to each other by swapping
joins for meets and taking right, respectively left adjoints of morphisms. This duality is
often stated equivalently as CSLy, ~°® CSL/, if the duality also reverses the order on
objects. Analogously to its finitary counterpart, CSLy, has a monoidal structure given
by the complete tensor product ®c representing \/-bilinear maps, making the left adjoints
D: (Pos, x) — (CSLy/, ®c) and P: (Set, x) — (CSLy/, ®c) strong monoidal (the anlogous
structure for CSL is denoted Xc). Analogously to the finitary setting, the tensor product
of complete join-semilattices J, J' is a quotient of D(|J| x |J'|), that is, it is presented by
generators (j,j') € [J]| x |J/, which we also write as j ® j', modulo the equations

\V)e(\V)= V jof foalAcsACJ.
JEA jleA JEAj €A

The monad on Pos induced by this adjunction is the downset monad D. It maps a set
X to the set of all downward closed subsets of X. Its unit and multiplication are given by
1(=): X — DX and union, respectively, and its xX-monoidal structure simply takes products
of downsets:

5: DX xDY - D(X xY), (A B)— AxB.
The Kleisli category of D is the category OrdRel of posets with order relations as morphisms,

that is, those relations R C X x Y between posets satisfying ' > xRy > vy = 2'Ry/’.
We denote the lifting of the cartesian structure of Pos to OrdRel by X: on objects of
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OrdRel we have X XY = X x Y, and the tensor rxr’ of order relations r: X — DY and
r': X! — DY is defined as

6-(rxr'): X x X' = DY xDY' = DY xY'), (2,2') = {(.y) |y € r(x).y € r(y)}.

The order-discrete restriction P: Set 4 CSLy, :| — | induces the classical product
monoidal structure on the powerset monad, and its Kleisli category Setp is well-known to
be the category of sets and relations.

Completely Distributive Lattices. We denote the completely join-prime elements of an
ACDL D by JD = ACDL(D, 2) and the atoms of a CABA B by AB = CABA(B,2). The
left adjoint to the forgetful functor V5: ACDL — CSL) takes downsets, i.e. D 4V, and
its unit M — DV, is given by

M — DM, z—{yly<az}

Note that the left adjoint of the forgetful functor CABA — CSL) is given by P, with
the same unit 7y. If we respectively equip ACDL and CSL, with coproduct + and
tensor product K¢ of complete meet-semilattices as monoidal structures, then the forgetful
functor (ACDL, +) — (CSL),Xc) is strong monoidal, analogously to the forgetful functor
(DL, +) — (CSLj, X); the same holds for the forgetful functor (CABA, +) — (MSL,Xc).
A straightforward verification shows that the adjunctions D 4V, and D - | — | are dual with
respect to the dualities ACDL ~°P Pos and CSLj ~°° CSLy,. For detailed verifications
on the order-discrete setting we refer the reader to Bezhanishvili et al. [BCM22).

Remark 5.1. Restricting to finite carriers, the diagrams (4.1) and (5.1) coincide, since
ACDLf = DLf, JSLf = CSL\/J, PI‘ieStf = POSf,

and so the results we establish in the following for complete structures will in particular hold
for finite ones.

Notation 5.2. We tacitly omit the forgetful functors U, and U, for notational brevity,
whenever they are clear from the context, and just write the join- and meet-semilattice tensor
products of the underlying semilattices of distributive lattices lattices D, D’ as D ® D' and
D X D', respectively. The same holds for the complete versions: we omit the functors Vi, V4,
and write D Mg D’ and D ®c D’ for the complete tensor products of ACDLs D and D’.

Remark 5.3 (Adjunctions on Lattices). It is well known that a monotone map f: D — D’
between complete lattices preserves all joins if and only if it has a right adjoint f,: D’ — D,
which is then given by f.(d') =\/ Fd)<d’ d; dually, it preserves all meets iff it has a left
adjoint f*: D' — D, given by f*(d') = /\d’gf(d) d. The join-primes JD of a bounded
distributive lattice D are precisely those elements p € D whose characteristic function
Xp: D — 2 (mapping z € D to 1 iff p < z) is a homomorphism. The left adjoint of x,,
denoted p: 2 — D, is the join-semilattice morphism defined by 1+ p.

Lemma 5.4.

(1) The join- and meet-semilattice tensor products of bounded distributive lattices D, E yield
1somorphic lattices, i.e. there exists an isomorphism

w: UyD ® UyE — U\DRULE
satisfying w(d® 1) =dX0 and w(l®e) =0 Ke.
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(2) Adjunctions on bounded distributive lattices ‘compose horizontally’: Given adjunctions
f:DAE :gand f': D' 4 E' :¢ between distributive lattices we get adjunctions:

gXxg’ ’ /
ERE ™ DRD ERFE ‘™ DRD ERE "% prDp ERE ™ DRD

| b N b o e ] o

EQF ¢+ DeD EQF < DeD EQF<_DeD EQE T DaD
ref fef ref jef

If the right adjoints g and g' preserve finite joins, then this simplifies to
fofdged=w(gRq)w.

Dually, w(f @ fYw™t = fR f, if f and f' preserve finite meets.

Proof.

(1) We have already seen that for bounded distributive lattices D, E their JSL tensor product
Uy,D ® Uy FE is their coproduct in DL. But by order-duality, the meet-semilattice tensor
product UnD XU E also gives a representation of the coproduct D + F in DL: its inclusions
i1,i2 map d € D,e € F to i1(d) = dX 0 and i2(e) = 0 X e, respectively. By the universal
property of the coproduct we obtain a unique isomorphism

w: Uy DRQUYE - U\DXU\E such that w-t; =10; fori=1,2.

We now show that w is given by the following concrete formula:

\/i di ®e; - /\AEPI \/ieA di) X (\/igA ci).

By definition, the canonical isomorphism w is the coparing w = [i1, i2] of the inclusions of
the meet-semilattice tensor product. Therefore on pure tensors w maps d®e — dXO0A 0K e,
which extends to general elements of D ® E via distributivity as

w(\/iel di ®ei) = \/iel w(di @ e:)

el

- /\AEPI \/'eA d:; X0V \/iQA OXe;
- /\Aem \/ZGA ) ROVOKR (\/M ei)
- /\AePl \/zeA d;) & (\/iQA ¢i),

where we use in the last two steps that joins in D X E satisfy the equation

(a®b)V (c®d)=(aVc)®(bVd).

1

Note that by order-duality the inverse w™" is given by

/\i diWe;— \/AEPI /\ieA di) ® (/\igA ci).

(2) We only need to prove that one of the squares is an adjunction, since we obtain all others
by suitable composition with w and its inverse. We show this for the third diagram, that is,
we show that there is an adjunction

(fef) w 4(gHg) w
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by verifying the unit and counit inequalities

d<(gR¢) - w-(fof)w! ad (fof) o' (R w<id

We only prove the counit inequality; the proof of the unit inequality is dual. Recall that
the right adjoint g preserves meets. Given a finite index set A we write x4 = \/,c 4 z; and
compute for every element \/;z; ® y; € DQ E

(f @ e (9B gNw(\ 2 @ y)
= (few gRg) N, 248 ya) def. w
= (fe ™ (N, p, 9(22) B (yae)) def. g3 ¢/
= (F 2N o N\ g 9@ @ (N, 9 (wae)  defw™
=(fof >(\/Be7>7>1 (/\AEB zA) ®g/(/\AEBC Yae)) g preserves meets
(\/Befp'pl fg(/\AGB zA) ®,)”9'(/\A€Bc Yyac)) def. f® f'
< (\/Bepm AN,z @, vae) counits f g, f' ¢

= wlw \/le®yl):\/zml®yl

As for the last statement, if g and ¢’ preserve finite joins, then g ® ¢’ is defined (otherwise
it would not be!), and it is clear that f ® f' 4 ¢ ® ¢’. By uniqueness of adjoints this implies
g®g =w (gHg)w. O

Remark 5.5. Lemma 5.4 holds analogously for complete tensor products of ACDLs: there
exists a unique isomorphism w: Vi, D ®c V\, E ~ VA D K VA E commuting with the coproduct
injections.

Proposition 5.6. Let D be an ACDL.
(1) For every x € D the CSLy/-morphism
x®(—): D— D®cD, Yy xuy,
has a right adjoint
r—o(=):D®cD — D

T — vz@yST 4

called tensor implication. It can be extended to a binary function
(=) — (=): D? K¢ (D @c D) = D.
Analogously, (=) @ xz: D — D ®c D has a right adjoint (—)o—xz: D ®c D — D.
(2) If p € ID is completely join-prime then p —o (=) is a lattice homomorphism given by
A (xp+id): D+ D =2+ D=D, \/ielp¢®qir—>\/p§piqi.
(3) Ewvery adjunction l: E 4 D :r between ACDLs satisfies
z—ow M rXrwT) =r((z) —T)
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as well as
l(x—T)<l(z)— (Ix1)(T) and r(z —T) < r(z) — w (rXrw(T),
where the latter inequality holds with equality if r is order-reflecting.

Proof.
(1) The function z ® (—) preserves joins by definition, so its right adjoint x —o (—) exists
and is given by T'+— \/ o, o1 y. We can write z ® (—) as

@ (—)=X'-(z®id): D=22® D - D®D.

By Lemma 5.4(2), this has the right adjoint A-w™! - (x; Xid) -w. The extension to a binary

function (=) —o (—): D? X (D ® D) — D is an instance of an adjunction with a parameter
(cf. [ML98, Ch. IV.7]).

(2) If x = p € JD is join-prime, then x, preserves joins. Hence, p —o (—) simplifies to
—1 . . ~ . . .
AT (xp®id): D®D - 2® D =2, \/ipz®q1»—>\/pépiqz,

which is an ACDL morphism since A, x,, and id are.
(3) Let T € D® D and x € E. Then for all y € F we have

y<z—ow lrRrwl) < 20y <w (rXr)w()
= l(z)ly) <T
= l(y) <l(z) =T
— y<r(l(z) —T).
So the first statement follows. Using this we compute
zt—oT<z—ow rRrwle)(T)=r(l(z)— (11)(T)),
which by adjoint transposition is equivalent to
llx —T) <l(z) o (Ix)(T).
Similarly,
r(z—oT) <r(l(r(z)) — T) =r(z) — w (rXrw),

and the first step is an equality if [ - = id, which is equivalent to r being order-reflecting. []

5.2. Residuation Algebras. We proceed with recalling the definition of residuation alge-
bras [Geh16b], which are distributive lattices equipped with two additional operations to
be thought of as abstractions of language derivatives (Example 5.9.(4)). We furthermore
introduce an obvious extension of residuation algebras for the complete setting.

Definition 5.7.

(1) A (Boolean) residuation algebra consists of a (Boolean) lattice R € DL equipped with
MSL-morphisms \: RP® R — R and /: RK R? — R, the left and right residual, satisfying
the residuation property: b <a\c <= a<c/b.

(2) A residuation ACDL (CABA) R is an ACDL (CABA) whose residuals are complete
morphisms R? K¢ R — R + RN RP.
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(3) A residuation algebra R is associative if it satisfies

z\(z/y)=(z\2)/y for all z,y, 2z € R,
and it is (prime-)unital if there exists a (join-prime) element e € R which is a unit:
e\z=z=2z/e.
Remark 5.8. Units are unique: If e, e’ are units, then e = ¢’ \ e since €’ is a unit, so by the

residuation property ¢’ < e / e = e. Analogously we have e < €', so e =¢'.

As indicated above, residuals serve as algebraic generalizations of language derivatives,
but as the following examples indicate they are not limited to this interpretation.
Examples 5.9.

(1) Every Heyting algebra is an associative residuation algebra with residuals a \ ¢ =a — ¢
andc/b=0b— c.

(2) Every Boolean algebra B is a non-associative residuation algebra with x \ 1 = 1 and
x\ z = —x for z # 1. If B is non-trivial, then it is not prime-unital by the first equality.

(3) Every continuous binary function f: X x X — X on a Stone space X induces a residuation
algebra on its dual Boolean algebra X of clopens: given A, B,C € X, put

A\C={z e X |Va€ A: f(a,x) € C},
C/B={zxeX|Vbe B: f(z,b) € C}.
(4) The set RegX of all regular languages over a finite alphabet ¥ forms an associative
Boolean residuation algebra with residuals given by left and right extended derivatives:
K\L={veX | KvCL}, L/K={veX¥X|vK CL}.
The unit is the singleton {e}, where ¢ is the empty word. This example is a special case
of (3): take as (X, f) the free profinite monoid on 3, which is the Stone dual of Reg .

We now introduce the notion of a residuation morphism between residuation algebras
and also its relational generalization.

Definition 5.10.

(1) A lattice morphism f: R — S between prime-unital residuation algebras is a (pure)
residuation morphism if it satisfies the conditions

Vo, z € R: f(z\2) < f(2)\ f(2) and f(z [ x) < f(2) / f(2) (Forth)
V(y,2) € S x R: Jxy, € R:y < f(zy.) and y \ f(2) = f(zy. \ 2) (Back)
V(y,2) € S x R: Jxy, € R:y < f(zy.) and f(2) [y = f(z [ xyz) (Back’)
VieR:e<zee < f(n) (Unit)

where e and €’ are the units of R and S. The morphism f is open if, additionally, it has a left
adjoint. Prime-unital residuation algebras and residuation morphisms form a category Res.

(2) A corelational residuation morphism from a prime-unital residuation algebra R to a
prime-unital residuation algebra S is a morphism p € JSL; (R, S) satisfying
plz\z) < p(x) \p(z) and € < ple).

Prime-unital residuation algebras with relational morphisms form a category RelRes.



4:26 F. LENkE, H. UrBaT, AND S. MILIUS Vol. 21:4

Notation 5.11.

(1) We use the convention that for a subcategory C of Res or RelRes we denote the full
subcategory of C with Boolean carriers by BC.

(2) All categories above have obvious counterparts for residuation ACDLs and residuation
CABAs with complete morphisms, which we denote by ResACDL, RelResACDL, etc.

Remark 5.12. Let us provide some intuition behind Definition 5.10.

(1) The notion of residuation morphism is derived from a result by Gehrke [Gehl16b,
Thm. 3.19|, where it is shown to capture precisely the conditions satisfied by the duals
of morphisms of binary Stone algebras.

(2) We speak about corelational morphisms of residuation algebras since for these will dualize
precisely to relational morphisms of monoids. Recall that a relational morphism a monoid
M to a monoid N is a total relation p: M — PTN satisfying

p(x)p(y) € p(zy)  and  1x € p(lar). (5-2)

Relational morphisms represent inverses of surjective monoid homomorphisms [RS09, p. 38|.
More precisely, the inverse relation h™! of a surjective monoid homomorphism h: N — M is
a relational morphism; conversely, if a relational morphism A~': M — P+ N is the inverse of
a function h: N — M, then h is a surjective monoid homomorphism.

Categorically, we can consider an inverse relation e ': M — PN of a surjective map
e: N — M as is its right adjoint in the order-enriched category Rel ~ Setp of sets and
relations: as relations they satisfy idy < e™!-e and e-e™! < idyy. Unde/r\ duality the
composition is reversed, so an inverse relation e~! dualizes to a left adjoint e=1 4 €. Since
left adjoints between lattices are precisely the join-preserving functions, this justifies our
choice that corelational morphisms of residuation algebras preserve (finite) joins (and not
necessarily meets). Note also that totality of e~! is equivalent to surjectivity of e, which by

Corollary 4.9 dualizes to the property that e~ preserves the top element.

(3) This is also the rationale behind the naming for open residuation morphisms: ife: M — N
is a continuous surjection between Stone monoids then e~*: N — VM is continuous precisely
iff e is an open map.

For open residuation morphisms the three conditions (Back), (Forth), (Unit) can be
replaced by two equivalent, yet much simpler conditions. Over complete residuation algebras
this is particularly convenient, since every residuation morphism is open.

Lemma 5.13. Let R, S be prime-unital residuation algebras. A lattice morphism f: R — S
with a left adjoint f*: S — R is an open residuation morphism iff it satisfies the equations

fre)=e, Vye S, zeR:y\ f(z) = f(f"(y)\ 2), (Open)
and the same equation for the right residual /.

In the proof below we omit mentioning the right residual because the arguments for it are
completely analogous. This will be the case in most of the subsequent proofs involving
properties of residuals.

Proof. We first show that if f satisfies (Open), then it is an open residuation morphism. The
(Forth) condition follows from f* - f <id and contravariance of \ in the first argument:

fle\2) < F(F (@) \ 2) = f(2) \ f(2).
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For the (Back) condition, given y € S and z € R we choose the element z, , = f*(y) € R
(independently of z). The unit of the adjunction yields y < f(f*(y)) = f(xy,), and using
(Open) we obtain

y\f(2) = F(F7 () \ 2) = flay: \ 2).

For the other direction, we prove that every open residuation morphism satisfies the
condition (Open). Let (y,2) € S x R. By the (Back) condition, there exists z, , € R such
that y < f(xy,.) and y\ f(2) = f(zy,. \ 2). This implies f*(y) < z, ., and using (Back) and
contravariance of \ in the first argument, we obtain

y\f(2) = [y \2) < (£ () \ 2)-

f
On the other hand, the adjunction unit y < f(f*(y)), (Forth) and contravariance of \ yield
FU W\ 2) < fF(FW) N\ fz) <y f(2).

This proves that f indeed satisfies (Open).
For the respective unitality conditions we have by f* - f that

Ve:e<z e < flx) e f*() <u,
which is equivalent to e = f*(¢’). ]

Example 5.14. Let X and A be finite alphabets. Every substitution fp: > — A* can be
extended to a monoid homomorphism f: ¥* — A* and for regular languages L € RegX
and K € RegA, both f[L] and f~![K] are also regular. Then f~!: Reg A — Reg¥ is
an open residuation morphism. Indeed, its left adjoint is given by the direct image map

f[-]: RegX — RegA, satisfying f[{c}] = {f(e)} = {e} and
KN\ fHL = A{w | Kw C YL} = {w | fIK]f(w) € L} = f7(f[K]\ L).

5.3. Residuation ACDLs. We start by investigating complete residuation algebras, whose
characterization (Theorem 5.23) in terms of coalgebras forms not only the backbone of the
classification and duality theory of locally finite residuation algebras in Sections 5.4 and 5.5,
but also of the duality for the category of small categories in Section 6. Concretely, we use
the tensor implication operator introduced in the last section to associate a comultiplication
to the residuals and investigate its properties.

Construction 5.15.

(1) Every Vy-algebra Vi, D @c Vi, D — V,,D on an ACDL D has a right adjoint v: VoD —
VA(D ®c D) that can be extended, by using the isomorphism w from Lemma 5.4, to a
Vi-coalgebra

5 =Vyw-7: VAD = Va(D ®c D) = VA(D K¢ D) = VoD K VaD

We refer to both versions v and 74 as comultiplication or coalgebra structure. Conversely,
we obtain a Vi-~algebra from a comultiplication v: VAD — Vx(D ®¢ D) by taking its left
adjoint.

(2) In a residuation ACDL R the partially applied residuals have respective left adjoints
w(x, =) 4 (x\ —) and u(—,y) 4 (= / y) that can be combined into a V4,-algebra structure
w: VyuR®c Vi R — Vi, R that we call multiplication. By part (1), the multiplication p induces
the comultiplication v: VAR — VA(R®c R), or 7: VAR — VAR X VAR.
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Each of the operators /, \, i, 7 determines the others uniquely due to the equivalences
r<z/y <= y<z\z <= pulzy) <z <= zy<y(z).
The following lemma provides the concrete formulas.

Lemma 5.16. Let R be a residuation ACDL.

(1) The residuals can be calculated from the comultiplication:

z\z=z—7(2) and =z/y=n(z)—y,

where — and o— are the tensor implications given by Proposition 5.6.

(2) The comultiplication can be calculated from the residuals:

1=V, gre@\)=\ __ pa®\2).

Proof.
(1) For all z,y,z € R we have

y<z\z &= pzey) <z <= 20y <y(z) &= y <z —o9(2),

and analogously x < z / y = v(2) o—y.
(2) We compute

v(z) = \/{\/ T QY | i,y € R,,u(\/‘ ;i Qyi) < z} formula for right adjoint

= \/{x Ry |z,y€ R ulrey) <z} [ preserves joins
_\/{z oy eyeRy<z\z) we®—)H (2 )
= \/$ER r®x\ 2 simplification.

It is clear that \/pe 7rP®P\ 2 <V, cpr®a\ 2, for the reverse inclusion we compute

roe\z=(\/ _poziz=\

where p ranges over J R and we use contravariance of (— \ z) in the last step. L]

p®$\2§\/p<xp®p\z,

p<z p<x

We now investigate when the comultiplication is pure, that is, lifts to a complete lattice
morphism R — R + R and thus corresponds to a pure multiplication.

Lemma 5.17. For a residuation ACDL R, the following are equivalent:
(1) The comultiplication is pure: for all A C R we have Y(\ x4 7) = Vea v(T).
(2) Forallp e JR and A C R we have

p\N(Vo)=\/p\z and (\/)/p=V=/p

T€EA TEA T€A T€EA

(3) Forallz,ye R: pz®@y)=0 <= z=0Vy=0, and u[J(R+ R)] C JR.



Vol. 21:4 EXTENDED STONE DUALITY VIA MONOIDAL ADJUNCTIONS 4:29

Proof. (1) <= (3). First, we have
7(0) =0 <= ~(0) <0
= VT <~0)=T<0
= VT:\/i:ci®yi:M(T):\/iu(:ni@)yi)30:>Vi:xi®yi§0
= Vrypuzy) =0=2y=0
= Vr,y: ulzy)=0x=0Vvy=0,

where we use in the penultimate equivalence that 1(0) = 0, and in the last equivalence that
r®y=0iff x =0 or y = 0. To show that ~ preserves joins, note that the join-primes of
R ® R are given by pure tensors of p ® ¢ of join-primes p,q € J R and that in a distributive
lattice an element j is join-prime iff it is is join-prime: for A C R if j <\/ A then j < z for
some ¢ € R. Given A C R, we compute:

v\ 2) =\ 7(2)
€A €A
Vo, be JR:a®b< \/7(:1:):>a®b§ \/7(3})
€A €A
<:>Va,bEjR:a®b§’y(\/ )= [dr € A:a®b < y(x)]
€A

=Va,be JR:pla®b) < \/ 2= [Fz € A: pla®b) < 2]
z€EA
—Va®be JIR®R]: nla®b) € JR.

For the equivalence (1) <= (2), we combine Lemma 5.16 with the preservation properties
of # — (—) from Proposition 5.6(1): If 7 is pure, then it preserves joins and so does
(p\ =) =p — (=) for p € JR; and if every (p \ —) preserves joins, then so does
Y= VpesrP @p\ (—). O

Next we show how structural identities like (co-)associativity or unitality translate
between «, u and the residuals. Note that while the statements are to be expected, the proof
is non-trivial due to the complication introduced by the seemingly innocent isomorphism
w: R®c R = RXc R. Recall that a coalgebra ¢: R — RK¢ R is coassociative if (¢Xid)-c =
(idXc) - c and (prime-)counital if it is equipped with a (prime) counit ¢ € CSL (R, 2)
(¢ € ACDL(R,?2)) satisfying (¢Xid)-c =id = (idXe) - ¢. Diagrammatically, these equations
are dual to the well-known monoid equations:

C—<¢ L CR:.C CReC & C 5 CRe C
lc lid@cc lid&cf l&‘gcid
CRe ¢ -2 oRy CRG C CRe2 =~ C =~ 280 C

Lemma 5.18. The following are equivalent for a residuation ACDL R:
(1) The comultiplication on R is coassociative and has a (prime) counit .
(2) The residuals are associative and R has a (prime) unit e € R.

(3) The multiplication p is associative and has a (prime) unit, that is, there exists e € R
satisfying p(e ® —) =id = p(— ®e).
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Proof. For the proof we only use ‘adjunctional calculus’. The equivalence (3) <= (2) follows
from uniqueness of adjoints; to see this, we write associativity of u as

Vo, y: p(—@y) - plz @ —)=puze —) pu(-ey)

and associativity of the residuals as
Vo, y: (@\ =) - (=/y)=(=/y) (x\-).

Since the respective left and right sides of the above equalities are adjoint, and adjoints are
unique, it is clear that one of the equations holds iff the other one does. The unit of the
residuals is the left adjoint of the comultiplication -, which implies the equivalence of the
(co-)unit properties.

The equivalence (1) <= (3) is shown similarly, but we have to be careful, since p and
4 are adjoint only up to composition with the isomorphism w: R ®c R — RXc R. By
Lemma 5.4(2), we have the following diagram of adjunctions:

The left and right diamonds come from the horizontal composition of adjunctions under
the respective tensor products. The bottom diamond is easily seen to commute. If p is
associative the top inner diamond commutes, and so by uniqueness the outer big diamond
commutes by uniqueness of adjoints, proving 7 coassociative. Dually, if 4 is coassociative,
then p is associative. The unit of y is the left adjoint of the counit of 7, so one is prime iff
the other one is. []

These lemmas suggest the following definitions:

Definition 5.19.

(1) Aresiduation ACDL R is pure if it satisfies one of the equivalent conditions of Lemma 5.17.
(2) A derivation ACDL is a pure residuation ACDL that satisfies the equivalent conditions
of Lemma 5.18. We denote the respective full subcategories by

DerACDL «— ResACDL and RelDer ACDL — RelResACDL.
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(3) A Vx-coalgebra 7: VAC — VAC K VAC is a Vi-comonoid if it is coassociative and
prime-counital, and a comonoid if 7 is pure. We analogously define Ux-comonoids and (pure)
comonoids in DL.

In order to extend the correspondence of residuation ACDLs and coalgebras to a
categorical equivalence we introduce appropriate morphisms for coalgebras, which we also
define for the general case of Ux-coalgebras.

Definition 5.20.

(1) A pure morphism from a prime-counital Vx-coalgebra (C, 7, €) to (C',5/, €') is a morphism
f € ACDL(C, D) satistying (f K¢ f)-7=%-fand e=¢"- f.

VA S

V,.C VoC' vie 25y o

b b’ m lwa
Va2

VO R ViC 2N v g v o

The category of prime-counital V-coalgebras with pure morphisms is denoted by Coalg(V)
and its full subcategory of Vi-comonoids by Comon(V,), again with the full subcategory
Comon of comonoids.

(2) Let C and C’ be comonoids in ACDL. A corelational morphism from C to C’ is a
morphism p € CSLy,(C, ") satisfying p(1) =1, (p®c p) - v <7 - pand e < € - p, that is,
the following diagrams in CSLy, commute laxly as indicated:

V\/C % V\/Cl V\/C L> V\/Cl

lvv y b/ \LVV 04 ‘K JVV €
V2

V\/C ®C V\/C m V\/C, ®C V\/Cl

Comonoids with corelational morphisms form a category RelComon.

(3) Analogously, we define the category Coalg(Ux) with its subcategories Comon(U,) and
Comon of (pure) Ux-comonoids. We also denote by RelComon the category of comonoids
with corelational morphisms. So we overload notation; whether we mean comonoids in MSL
or CSL, will be clear from context.

Recall from Lemma 5.13 that every morphism of residuation ACDLs is open.

Proposition 5.21. Let R and R’ be prime-unital residuation ACDLs.

(1) A morphism f € ACDL(R,R’) is a pure coalgebra morphism iff it is a residuation
morphism.

(2) If R and R’ are comonoids, then a morphism p € CSLV(R7 R') preserving the top element
s a corelational comonoid morphism iff it is a corelational residuation morphism.
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Proof.
(1) First, let f be a pure coalgebra morphism. Then

z\ f(z) =2 —f(2) Lemma 5.16(1)
=z —w ¥ f(2) ¥ =w-v
=z —w N(fRo fuy(z) f is a coalgebra morphism
= f(f"(z) — v(2)) Proposition 5.6(3)
= f(f*(z)\ 2) Lemma 5.16,

which by Lemma 5.13 shows that f is a residuation morphism.
Conversely, if f is a residuation morphism, then for every z € R we compute

7' f(z) = \/I/ER, o @\ f(z) Lemma 5.16(2)
=V, @@ @)\ 2) f residuation morphism
<V FF@) @ F(F @)\ 2) d<fof
=(foc NV, @) @)\ 2) f ® f preserves joins
<(fecHV,_zo0r\2) fIR)CR
= (f®c H(2) Lemma 5.16(2).

Now (order-isomorphic) postcomposition with w gives

Yf=wf<w(foc f)y=(fWc flwy = (fBc f)7.

Conversely,
(Fec o =V, ) o fa\2) Lemma 5.16(2
< \/a:eR f@) f(f* f(z)\ 2) f*f <id and contravariance
= \/zeRf(x) ® f(z)\ f(2) f is open and Lemma 5.13
< \/ac’eR’ Y er\ f(z) fIRIC R
=v'(f(2)) Lemma 5.16(2).

Postcomposition with w again yields 7' f > (f K¢ f)7. Hence, we obtain 7' f = (f K¢ f)7,
so f is a pure coalgebra morphism. Moreover, it is clear that the counit condition from
Definition 5.20(1) is equivalent to the unit conditions from (Open), since (1) e 4 € and
f*(e) 4€ - f, and (2) adjoints are unique, so either equations holds iff the other one does.



Vol. 21:4 EXTENDED STONE DUALITY VIA MONOIDAL ADJUNCTIONS 4:33

(2) If p: R — R’ is a corelational morphism of pure coalgebras, then

p(x\ 2) = p(x — v(z)) Lemma 5.16(1)
< () — (96 P)(1(2)) Proposition 5.6(3)
< p(x) — v (p(2)) p corelational morphism
= p(z) \ p(2) Lemma 5.16(1).

Conversely, if p: R — R’ is a corelational morphism of residuation algebras, then using
Lemma 5.16(2) twice, and that p|R] C R, we obtain

(pecphi(z) =\ _ p@)@p\2) <\ _ o) @ p(a)\ p(z) < 7' (p(2))-

For the respective counits we identify the neutral element e € R with the JSL-morphism
e: 2 — R to compute

TER

e<e-p

= Va: e(z) < (p(x))

= Vo,y:y < e(r) =y < €(p(x))

= Vz,y: e(y) <z =€ (y) < p(x) edee 4

= Vr:e<x=¢e <p(z) y €{0,1} and e(0) = €'(0) =0

= e’ < p(e),
where in the last step we set = e for the downward implication, and the upward direction
is simply monotonicity of p. []

Theorem 5.22. The following categories are isomorphic
Coalg(Vh) 2 ResACDL, Comon = DerACDL, RelComon = RelDerACDL.

Proof. The three isomorphisms are given on objects by swapping between residuals and
comultiplication (note that the residual unit is a left adjoint of the counit of the comultipli-
cation), and act as identity on morphisms. Lemma 5.17 and 5.18 and Proposition 5.21 show
that they are well-defined. []

From Theorem 5.22 we obtain a dual characterization of ordered monoids; it restricts
to a duality between ordinary monoids and derivation CABAs. Recall that a relational
morphism of ordered monoids M and N is a total order-relation p: M — DTN (where D is
the downset monad) making the following diagrams commute laxly:

M x M el M 12 M
lep L lp llN L lp (5.3)
DN x DN —— D(N x N) 2% py N " DN

Theorem 5.23.

(1) The category of ordered monoids is dually equivalent to the category of derivation ACDLs
(or ACDL-comonoids):

OrdMon ~°® Comon = DerACDL.
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(2) The category of ordered monoids and relational morphisms is dually equivalent to the
category of derivation ACDLs (or comonoids) and corelational morphisms:

RelOrdMon ~°? RelComon = RelDerACDL.

Proof. Both statements follow by extending the equivalences from Theorem 5.22 with the
extended duality applied to the setting Equation 5.1 established in Section 5.1: For item (1)
we get that ordered monoids M x M — M are dual to comonoids C — C' + C in ACDL,
and for item (2), this means that relational monoid morphisms M — Dt N as in 5.3 dualize
precisely to corelational morphisms Vi, N — V,, M of comonoids. []

Remark 5.24. Both Theorem 5.22 and Theorem 5.23 restrict to finite carriers. All finite
lattices are complete and Res; = ResACDLg, so, writing Der¢ for Der ACDL¢, we get
the equivalences

OrdMon; ~°® Comon; = Der; and RelOrdMon; ~°® RelComon; =2 RelDery.

5.4. Locally Finite Residuation Algebras. We now extend the correspondence between
residuation algebras and coalgebras from Section 5.3 from complete to non-complete car-
riers. The main challenge arises from the reliance on adjoints for the constructions in
Section 5.3, whose existence is of course not ensured for arbitrary distributive lattices as
carriers. We tackle this problem by considering locally finite structures, allowing us to extend
the comultiplication Construction 5.15 from finite subalgebras to the whole lattice.

We start with the motivating example from automata theory: the residuals of regular
languages from Example 5.9.(4).

Example 5.25. It is well known that the Boolean algebra Reg ¥ of regular languages dualizes
under Stone duality to the Stone space ¥* of profinite words® (see e.g. Pippenger [Pip97]).
The space ©* can be constructed as the limit in the category of Stone spaces of the diagram
of all finite quotient monoids of ¥*, regarded as discrete spaces. It is equipped with a
continuous monoid structure u: L* x * — ¥* extending the concatenation of words. We
calculate below that its dual comultiplication on regular languages under Stone duality is
given as follows:
v: RegX — RegX+ Regk

L \/[U}EsynL[v]@?[v]\L,

where Syn; is the syntactic monoid of L; its elements are the equivalence classes of the
syntactic congruence relation relation on X* defined by

(5.4)

[v] = [w] if VK, KCYX¥:veK\L/K < weK\L/K"

The Stone monoid ¥* is profinite, that is, it is the (cofiltered) limit of the diagram of its
finite continuous monoid quotients. Therefore, by duality, Reg 3. is the filtered colimit of

its finite sub-coalgebras PM = M $F Reg ¥ dual to finite monoid quotients * —» M.

IThis space is commonly denoted $* in the literature; we use the notation X* to avoid a clash with
notation (—) for the dual equivalence.
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This means that, given a regular language L, we can compute the value of v(L) using Syn(L)
as in the following diagram:

Y

[ L 1
Regy —— CI(T¥) —— CIT* x %) ——— CI(T*)+C1(Z¥) —— RegX+Reg

h*ljJ\ B (hxh)*q h*%h*ﬁ

PSyn; —“—— P(Syn; x Syn;) —— PSyn; +PSyn;

We denote by [w] the syntactic congruence class of w with respect to L to compute

p Y L) = (A 1(R[L)) L recognized by M
= (h x h)" (= Y(n[L)])) h~!is a coalgebra homomorphism
= (hx h) " ({(m,n) | mn € h[ 1Y)
=(hxn)'C U {m

mne&h|L]
— (Rt + h—l)(\/ wen
= \/mneh[L "{m}] @ h~'[{n}]

{m}®{n}) PMxM)=PM+PM

B \/h Yh(w)eh(L 71h[”] ® h™ ' hw] h surjective

- \/vweLM ® [w] syntactic equivalence classes
- \/Ueg* \/w@,1 @ [w] definition of v 'L

- \/UEE* bl (\/wev_lL[w]) (%)

=V, l@v'L (©)

= Vs, 1S FINE: (#)

Step (x) uses that L is regular and so the join \/, ., -1 [w] is finite; at step (¢) we insert the
equality v 'L = Uwev—11[w], which holds by the definition of syntactic congruence; and at
step (#) we use the definition of residuals in Reg ¥ as derivatives, and that L is regular.

The key to extending the duality of Remark 5.24 is the notion of residuation ideal of
a residuation algebra. It was introduced by Gehrke [Geh16b] to characterize quotients of
Priestley topological algebras. In particular, she has shown [Gehl6a, Thm. 15| that the
Stone monoid quotient Syn; of ¥* dualizes to the residuation ideal generated by L € Reg X

Definition 5.26. A residuation ideal of a residuation algebra R is a sublattice I < R closed
under derivatives w.r.t. arbitrary elements of R:

VzeRaxel:z\ze€land z/xz el

In particular, every residuation ideal is a residuation subalgebra of R. We denote the
residuation ideal generated by a subset X C R by \ X/.
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Example 5.25 suggests a path to extending our constructions of Section 5.3 from complete
to more general residuation algebras: extend them locally, that is, by considering suitable
finite substructures. Note that in the formula (5.4) for the comultiplication on regular
languages it is crucial that the residuation ideal \{L}/ generated by a single regular language
L is finite, so that the join (#) is defined.

Definition 5.27.

(1) A residuation algebra R is locally finite if every finite subset of R is contained in a finite
residuation ideal of R.

(2) A Up-coalgebra C' is locally finite if every finite subset of C is contained in a finite
subcoalgebra of C'. The category of locally finite comonoids is denoted Comony;.

Note that not every residuation algebra is locally finite, consider for example an infinite
Boolean algebra in Example 5.9.(2).

Proposition 5.28.

(1) Every locally finite residuation algebra R induces a locally finite Un-coalgebra n : UnR —
Ur(R ® R) where

N(2) = (4 @ 1a)(va() = \/

for every finite residuation ideal to: A — R containing z (here 4 is the comultiplication
on A as in Construction 5.15).

aA@ @\ 2 =\ ) @l 2),

(2) Every locally finite Un-coalgebra (C, ) induces a locally finite residuation algebra where

2\yz = wa(® —(2)),  z/yr = a(y(z)o—2),

for every finite subcoalgebra t4: A — C' containing x,z (here \ 4 is the residual on A as
given by Construction 5.15). The residuals have a canonical presentation as

t\yz = i@\ and 2/ = (z /) 0@)

where 1, (z) — C is the smallest (finite) subcoalgebra containing z.

(3) These constructions are mutually inverse:

N, =7 and  \y =\
Proof.

(1a) We first show that the comultiplication 1\ = (14 ® 14)(7(2)) is well-defined, that is,
it does not depend on the residuation ideal A containing z. We first prove an auxiliary
statement:

Lemma 5.29. If iy =1 -v: I — K — R are finite residuation ideals containing z, then
(1 @ er)(v1(2)) = (er @ 1) (7 (1(2)))- (5.5)
Proof. Since I C K, it is clear that
(1 ®@er)(v1(2)) = (1 ® LI)(\/eriL‘ ®x\ 2)

< (g ® LK)(\/zeK r@x\2)
= (tk @ vi)(vE (1(2)))-
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For the reverse inequality, note that for every join-prime q € JK we find p € JI such that

q < 1(p), since
g=T=udn=u\ 0=\ _ i)

and ¢ is join-prime. We use this to calculate

(e © ) (v ((2)) = \/ seri K@) O (g 1(2))

= \/peﬂ \/qQ q) @tk (q\ t(2)) idempotence of join
Vo Ve @2 ul@\2) )
VoV @2 u@\2) ()

<V u@ ©um\2) (x6)

= (1 ®er)(v1(2))-
For step (x), we use that for p € JI,q € JK such that ¢ < ¢(p), the following holds:

K(g\1(2)) =t (@) \ exc (1(2))

= LK( )\ u(z)

er(e(e (@) \ 2) ¢r finite (open) residuation morphism
=0 (" (ke (er(9))) \ 2) L= LK
=u("(q)\ 2) tic embedding.

Simlarly, for step (x*) we use have
i =t 1d <ug e =0l

Lastly, for step (s**) note that for every ¢ € JK we have t*(q) € J(I): indeed, t*(q) < xVy
in I implies ¢ < ¢(z) V ¢(y) in K, hence ¢ < () or ¢ < i(y), so t*(q) <z or t*(¢) <y. In
particular for all ¢ € JK we find some p € JI with

e’ (q) @ er((g) \ 2) = ur(p) © (e1(p) \ 2),
which implies (sxx). []
Now, for well-definedness of , if I, I " are finite residuation ideals containing z they

are both contained in a finite residuation ideal K, since that R is locally finite; we write
t: I — K <= I' :// for the inclusion maps. Now we have

(er @ er)(v1(2)) = (bk @ vie) (0 @ 1) (7(2)) (5.5)
= (tx @ i) (Yr (1(2))) ¢ coalgebra morphism
= (tk ® 1) (v (Y (2))) 1,1 subcoalgebras of K
= (tp @) (v (2)) backwards.

This shows that the mapping
N: R— RQR, z0> (b @) (v(2))

does not depend on the choice of the residuation ideal I.
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(1b) We show that the mapping 7\ indeed yields a Ux-coalgebra structure, that is, it preserves
finite meets. Let F' C R be a finite subset. By local finiteness we find a residuation ideal
containing F'. Now we simply use that both the comultiplication on I and ¢; ® ¢ preserve
finite meets:

7\(/\$€F T) = (u@u)(v(/\xg z)) = /\mep(”(@”m(f’f)) _ /\ng (@)

(1c) The coalgebra is easily seen to be locally finite, since for every finite subset X C R we
find a finite residuation ideal I containing X, and the corresponding coalgebra structure
on [ is by definition a subcoalgebra of (R, ).

(2a) We first show that for finite subcoalgebras A, A’ of R containing both z, z we have
ta(z\ z) =tar(x\ 2).

First, let tp - t: A — B < R be finite subcoalgebras. Then

(t®)(v(2))) embeddings preserve —o

v(¢(2))) ¢ coalgebra morphism

From this it follows that

p(e\ 1(2)) = tp(z — (L@ 1)(7(2))) = tB(L(t"(2) —7(2))) = ra(t"(2) \ 2). (5.6)

Now let A < C' be a finite subcoalgebra containing  and z. Then A certainly contains the
(finite) subcoalgebra (z) generated by z; we write ¢: (z) < A for its inclusion into A. We
now obtain the canonical expression, where the last step uses (5.6)

z\yz=1a(@\ 2) = ra(@\ 1(2)) = 15y (" (2) \ 2)

For general finite subcoalgebras A, A" < R containing x, z we find an upper bound ¢: A <
B < A’ :// and compute

va(a\ 2) = ep(u(2) \ 1(2)) = e ((2) \ (2)) = rar(2\ 2).

(2b) The proof that the residuals preserve finite meets in the covariant component is analogous
to the proof for the comultiplication.

(2¢) The residuation algebra structure induced by - is locally finite: Since the coalgebra
(C,~) is locally finite, every finite subset F' C C'is contained in a finite subcoalgebra A < C.
The finite residuation algebra structure on A given by Lemma 5.16(2) makes A a residuation
subalgebra of (C,\,) containing F'.
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(2d) It remains to verify the residuation property:

y<z\yz = y<1(i(x)\:2) definition \,
— y < (Lir —o y2) definition \,
= Ly <iux —oyz vy,
= Ly <yz r®(—) 4 vx—(—)
= xS yzo—1y (m)®uzy A (=) o—1zy
= < (yzo—1LYy) e,
= < 1,(z /2 LLy) definition /,
= r<z/y definition /,

(3) The translations are inverse since they are liftings of the translations between the
operators on the finite substructures: We first show that v = ~. For every z € R, the
subcoalgebra ¢, : (z) < R generated by z is a residuation ideal of \,: For all # € R, we have

z\y 2 = 12(1;(z) — 7(2)) € (2).
We can therefore choose it as a residuation ideal containing z in the definition of y_ to get

N, (2) = (L2 @ L2) (N, (2)) = (12 @ 12) (v(2)) = 7(2).
An analogous argument proves \, = \. []
Proposition 5.28 shows that every locally finite residuation algebra carries a unique
Un-coalgebra structure and vice versa. We may thus translate at will between the residuals

and comultiplication as in the complete case and omit the subscripts. We extend Lemmas
5.17 and 5.18 to locally finite structures:

Lemma 5.30. Let R be a locally finite residuation algebra.

(1) Finite residuation ideals correspond to finite subcoalgebras.

(2) The residuals are associative iff the comultiplication is coassociative.

(3) It is prime-unital iff the comultiplication is prime-counital.

(4) The comultiplication is pure iff every finite residuation ideal is pure (see Definition 5.19).

Proof.

(1) If ¢y: I < R is a finite residuation ideal, then by definition its comultiplication makes I
a subcoalgebra of (R, 7).

In the reserve direction, let A < R be a finite subcoalgebra. The residuation algebra
structure on A due to Lemma 5.16(1) together with the definition = \ z = va(z \ 2) of the
residuation algebra structure on R show that A is a residuation subalgebra of R. To show
that A is a residuation ideal, let x € R and z € A. There exists a finite subcoalgebra B
containing z, z; we denote the inclusion map by ¢: A < B. By (5.6) we then have

z\z=1p(x\2)=al’(z)\ 2),
which states that = \ z lies in A.

(2) First, let v be the coassociative comultiplication, and let z,y, z € R. By local finiteness
these elements are contained in a finite coassociative subcoalgebra t4: A < R. Then by
Lemma 5.30(1), ¢4, is an associative finite residuation ideal of R, whence

z\ (z/y) =ralz\(z /y) =eal(z\2) /y) = (z\2) [ v.
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The other direction works analogously: if the residuals are associative and z € R, then it
is contained in a finite associative residuation ideal ¢7: I < R. So [ is a finite associative
subcoalgebra of R and we have

(7 ®id)(7(er(2))) = (er Wer Wep)((7 Rid)(5(2)))
= (er Wer Wep)((id ®7)(5(2)))
= ([d&®75)(5(er(2))),

proving that 7 is associative.
(3) Let e: R — 2 be a counit for the comultiplication

Y=w-7: U\R = Ur(R®R) = U\RXUAR

with left adjoint element e € JSL(2, R) = R. Note that €-14 is a counit for every subcoalgebra
ta: A<= R: Let z € A, then, since € is a unit for 7, we have

va(((e-va) ®ida)(7(2))) = (e ®id)(ea W ea)(7(2)) = (eWid)(7(ca(2))) = ta(2).

But by the implication (1) = (2) of Lemma 5.18 this means that the left adjoint e4 :=
i(e) € Aof €14 is a unit for the finite residuation ideal A of R. So for all z € R we have

e\z=1:((e) \ 2) = tzez \ 2) = L2(2) = 2,
so e is a unit for the residuals. The case for the right residual / is dual.
For the other direction let e € R be a unit for the residuals with right adjoint e: R — 2.
For every residuation ideal ¢7: I < R the element ¢j(e) € I is the unit of I: The embedding
trivially is an open residuation morphism, and we have
tr(tie)\ z) = e\ tr(z) = 11(2) for every z € I.

So the subcoalgebra structure I has the counit €-¢;. Now given z € R, we pick a residuation
ideal I containing z using that R is locally finite. Then we have

(eXid)(3(2)) = (e ®id)(F(e1(2)))
= (e®id)((t; ®er)(3(2)))
:LI((EL[XIld)( ( )))

tr(2) = 2.

This shows that € is a counit for 7.

(4) If the comultiplication is pure, associative and has a counit, then this holds for every
finite subcoalgebra. Every finite residuation ideal I of R is a finite pure subcoalgebra, which
therefore is a derivation algebra.

Conversely, if every finite residuation ideal is a derivation algebra, then we only have
to show that the comultiplication preserves finite joins, since it already is coassociative and
has a counit. The join of finitely many elements is taken in some finite subcoalgebra A.
But A is a finite residuation ideal and therefore by assumption a derivation algebra, and the
comultiplication preserves finite joins. ]

Remark 5.31. Lemma 5.30(4) characterizes locally finite residuation algebras with a pure co-
multiplication. By extended duality, its dual Priestley relation is functional. Gehrke [Geh16b,
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Prop. 3.15] has presented a necessary and sufficient condition for a general residuation
algebra R to have a functional dual relation, namely join-preservation at primes:

VF € DL(R,2):Va € F:Vb,c€ R: 3’ € F:a\ (bVec) < (a'\b)V(d\c).

One can indeed show that every locally finite residuation algebra with a pure comultiplication
(Lemma 5.30(4)) is join-preserving at primes: If F is a prime filter on C' and a € F, then we
obtain by local finiteness for all b, c € C' a finite pure residuation ideal +: I — C' containing
a, b, c. In this residuation ideal we have a = \/ K for join-primes K C JI C C. Since F'is
prime, some a’ € K lies in F, and it satisfies

a\(bVve)=1a\(bVec)
(

=u(\VE)\ (bV )

<u(a"\ (bVe)) (=) \  antimonotone
=ua' \bVvd\ec) I is pure

=(a’\ b) Vi(a"\ ¢)

=(a'\b)V(d\¢c) a,bcel.

This shows that the residuals are join-preserving at primes.

Definition 5.32. A residuation algebra R is a derivation algebra if it is locally finite, asso-
ciative, prime-unital and every finite residuation ideal I is pure. This yields full subcategories

Der — Res and RelRes — RelDer.

Note that a derivation algebra with a finite carrier is precisely a finite derivation ACDL
as defined in Definition 5.19(2). Recall from Definition 5.20 the definition morphism for
Un-coalgebras and comonoids.

Proposition 5.33. Let R, R’ be locally finite residuation algebras with units.

(1) A lattice morphism f € DL(R, R') is a residuation morphism iff it is a prime-counital
morphism of Ux-coalgebras.

(2) If R, R’ are comonoids, a finite join-preserving function p € JSL(R, R') is a corelational
residuation morphism iff it is a corelational comonoid morphism.

Proof.

(1) First, let f: R — R’ be a residuation morphism. For z € R we choose a finite residuation
ideal I' — R’ containing f(z). Since f is a residuation morphism we have by the (Back)
condition that for every y € I’ there exists some z,, , with y < f(z, ) and y\ f(2) = f(zy.\2).
We now choose a finite ideal I < R containing z and all z,, , for y € I’. We therefore have

NI =V L vey\f)
f(@y2) @ f(my: \ 2)

Ty @ Ty \ 2)

<
- \/yél’,yﬁf(rvy,z)

=(FO NN, ierion

<Ny, o\
= (F ® NN ().
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For the reverse inequality let z € R be contained in the finite residuation ideal I. We choose
a finite residuation ideal J < R’ containing f(z) and all f ( ),z € I, and use (Forth):

(FoHm@) =V, _ f@)efl\z)
<\/€If (2)\ £(2)
S\/yejy®y\f(2)
= (f(2)),

This proves that f is a morphism of Ux-coalgebras.

Conversely, let f: R — R’ be a morphism of Uj-coalgebras. For every z € R the
morphism f restricts to the finite subcoalgebras generated by z, f(z) as f.: (z) — (f(2)).
If we denote the respective inclusions by ¢.: (2) < R and ty(;): (f(2)) < R/, then this is
equivalent to saying that f - ¢, =ty - f,. From the unit of ¢, we thus get

fo'[’Z'Lz:Lf(z)'fz'Lza

which under transposition is equivalent to

Gy f < il (5.7)
This entails the (Forth) condition:
fla\y 2’) = f(e(Z(@) = 7(2))) def. \,
z)(fz( 2(x) —v(2))) f» restriction
< Lf(z)(fz(L (x)) — (f: ® f2)7(2))) —o Proposition 5.6(3)
() (f2 (2 (7)) — v(f2(2))) f. coalgbra morphism
< Lf ) (Cry ([ (2 f:(2))) (5.7) + contravariance

) (L) (F (@) —(
< i) (o) (f (@) — 7 (f(2))) f:(2) = f(2)
f(@)\y f(2).

To verify the (Back) condition, let y € R', 2 € R and put
Ty,z = L(f2 (G W)))-

Then
Y < tpe)tin) (W) < v (P2 Wy D)) = fez(f2 (50 () = Flay.2)
and
Y \y F(2) = 150 (5 () — 7(f2(2))) def. \,
=) (G (Y) — (f2 ® f2)(7(2))) f. coalgebra morphism
= Lf(z)(fz(f;(L}(z)( ) — v(2))) Proposition 5.6(3)
= fe=(fZ(¢}z)) = 7(2))) by fo=f s
= flea(Z(ea(f7 () () — 7(2))) e, = id
= fa(2y,z \y 2) def. zy ..

For the prime-(co-)unitality conditions we split the pointwise equality Va: €(
into € (f(z)) < e(z) and e(z) < €(f(x)). These are equivalent to ¢’ < f( ) =
e <x = ¢ < f(x), respectively, combining to the desired condition Vz: ¢’ < f(x

-
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&
I
[
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vfb
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(2) Now let R, R’ be comonoids and let f € JSL(R, R’) be a corelational comonoid morphism.
For =,z € R we choose a finite subcomonoid ¢: I — R that contains x,z and a finite
subcomonoid ¢': I' — R’ (with comultiplication 7) containing p[I]. Then p restricts to a
corelational morphism p: I — I’ of finite comonoids. By Theorem 5.22 p is a corelational
morphism of finite residuation algebras, so it satisfies p(a \, b) < p(a) \, p(b) for all a,b € I.
We therefore get

p(x\y 2) = p(e(w \y 2)) = V(p(x \y 2)) <V (p(x) \y p(2)) = p(x) \y ().

which proves that f is a corelational residuation morphism. To verify €/ < p(e) we again
choose finite subcoalgebras A, A’ with e € A and p[A] U {e'} C A’. Since p is prime-counital
it satisfies € < € - p and therefore also € - 14 <€ -p-1a =€ 14 -p. Ase-14 and € -1y are
the counits for A and A’, respectively, its restriction p: A — A’ is thus also prime-counital
and whence satisfies t¥ (e) < p(¢%,(e’)) for the corresponding units of the residuals on A, A’.
But e € A and €' € A’, so this equation simplifies to the desired e < p(¢’).

Conversely, if f is a corelational residuation morphism choose for z € R a finite residuation
ideal ¢: I < R containing z and a finite residuation ideal /': I’ < R containing p[I]. Then
we have

so p is a corelational residuation morphism. To show that € < ¢ - p, take 2 € R with ideals
I, I’ chosen as before. Recall that t*(e) is a unit of the residuation ideal I and €- ¢ is a counit
for the corresponding subcoalgebra. Since p is prime-unital it satisfies

which is equivalent to J*(¢/) < p(v*(e)). Since p: I — I’ is a corelational residuation
morphism it is a corelational morphism of the coalgebra structures on I, I’ and we thus get

e(z) = e(u(2)) < €((p(2))) = € (p(1(2))) = € (p(2)). [

Remark 5.34. The proof of Proposition 5.33 gives an alternative formulation of the (Back)
condition for locally finite residuation algebras as

y\f(2) = (2 17 032 W)\ 2)-
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Here we choose the existentially quantified z, , in (Back) via f} locally:

Ty, ! flay.) =y
6\ ; M 2
R—— S
gl e |H|ve

*

\z/ S5 \f(z)/
2 - S

12050 W) ()

Compare this with Equation (Open) satisfied by open residuation morphisms, where the
existence of a global left adjoint f* allows one to choose z,. = f*(y) globally, that is,
independently of z.

We then have the following extension of Theorem 5.22 to locally finite structures:

Theorem 5.35.

(1) The category of locally finite residuation algebras and residuation morphisms is isomorphic
to the category of locally finite prime-unital Ux-coalgebras and pure coalgebra morphisms.

(2) This isomorphism restricts to an isomorphism between the full subcategories of derivation
algebras and locally finite comonoids.

(3) The category of derivation algebras and corelational residuation morphisms is isomorphic
to the category of locally finite comonoids with relational morphisms.

Proof. Immediate from Lemma 5.30 and Proposition 5.33. L]

5.5. Duality Theory for Locally Finite Residuation Algebras. We now gathered the
ingredients to present the first application of our abstract extended duality (Theorem 3.8):
a categorical duality between profinite ordered monoids and derivation algebras. Recall
that a profinite ordered monoid is a codirected limit of finite ordered monoids; like in the
order-discrete setting, they are equivalent to Priestley monoids, viz. monoids in the cartesian
category Priest (Proposition 5.40). This result is a non-trivial restriction of Gehrke’s
duality [Gehl6a, Geh16b| between Priestley-topological algebras and residuation algebras.
Conceptually, this general duality is an extension of the finite duality OrdMon; ~°P
Comons = Der; by forming suitable completions. We start by investigating the Ind- and
Pro-completions of the categories involved in the finite duality Remark 5.24.

Remark 5.36. The Ind-completion (or free completion under filtered colimits) of a small
category C is given by a category Ind(C) with filtered (equivalently directed) colimits and a
full embedding I: C < Ind(C) such that every functor F': C — D into a category D with
filtered colimits extends to a functor F': Ind(C) — D, unique up to natural isomorphism,
such that F = F - I. To show that a category D is the Ind-completion of a full subcategory
C, it suffices to prove the following (see e.g. [ACMU21, Thm. A.4]):

(1) D has filtered colimits,

(2) every object of D is a filtered colimit of objects of C, and
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(3) every object C of C is finitely presentable in D, that is, the functor D(C, —): D — Set
preserves filtered colimits.

The Pro-completion (or free completion under cofiltered limits) of C is defined dually.

Profinite ordered monoids form the Pro-completion of the category of finite ordered
monoids. Dually, lattice comonoids (and therefore also derivation algebras by Theo-
rem 5.35(2)) form Ind-completions of their respective subcategories of finite objects:

Proposition 5.37. The category of locally finite comonoids forms the Ind-completion of the
category of finite comonoids:

Comony; ~ Ind(Comony).

Proof. (a) We first show that filtered colimits of lattice comonoids are formed in Set. First,
since DL is a category of algebras over a finitary signature, filtered colimits in DL are
formed in Set. Second, since +: DL x DL — DL is a finitary functor (colimits commute
with colimits) filtered colimits in the category of +-coalgebras are also formed in Set. As
comonoids are a full subcategory of +-coalgebras it suffices to show that the filtered colimit in
+-coalgebras of lattice comonoids is again a comonoid, which is a straightforward verification:
Let d;: D; — D; + D;,i € I be a cofiltered diagram of comonoids, and let d: D — D + D
be their colimit in the category of +-coalgebras with colimit injections x;: D; — D. Since
the colimit D is formed in Set, there exists for every x € D some ¢ € I and x; € D; with
ki(z;) = x. But then

(d+id)(d(x)) = (d +id)d(xi )
= (d+1id)(k; + ki) (di(z;)) k; comonoid morphism
= ((d- ki) + ki) (di(i)
= (((Ki + Ki) - di) + Ki)(di(z5)) k; comonoid morphism
= (ki + ki + ki) (d; +1d) (d;(z3))
= (ki + ki + k) (Ad + d;) (d;(x;)) d; comonoid

- ... backwards
= (id + d)(d(z)),

so D is coassociative. Counitality works similarly for e: D — 2 with e(z) = e(ki(z;)) = €i(zi).
This proves that filtered colimits of comonoids are formed in Set.

(b) To prove that the category Comony is the Ind-completion of its full subcategory
Comong, we verify the conditions of Remark 5.36:

(1) Comony has filtered colimits: filtered colimits of comonoids are formed in Set by (a).
Moreover, a filtered colimit ¢;: C; — C (i € I) of locally finite comonoids is locally finite:
Given z € C one has © = ¢;(x;) for some ¢ € I and x; € C;. Thus z; € C/! for some finite
subcomonoid C of C;, and so z; lies in the finite subcomonoid ¢[C!] C C.

(2) Every locally finite comonoid is the directed union of the diagram of all its finite
subcomonoids. This follows again from (a), since this is clearly a directed union in Set.

(3) Every finite comonoid is finitely presentable: A finite comonoid can be regarded as a
coalgebra C' — 2 x (C' + C) for the functor X =2 x (X 4+ X) on DL by pairing its counit
and comultiplication. Every finite F-coalgebra is finitely presentable in the category of
all F-coalgebras [AP04, Lemma 3.2]. This implies the corresponding statement for finite
comonoids since they form a full subcategory of the category of F-coalgebras. []
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On the dual side, we require a property of Priestley monoids (Proposition 5.40 below),
namely that every Priestley monoid is profinite, that is, it is a cofiltered limit of finite ordered
monoids with the discrete topology. The corresponding result for (unordered) Stone monoids
is well known [Joh82, Thm. VI.2.9]; its ordered version is analogous, and we give a full proof
for the convenience of the reader.

We need some auxiliary results: First, we recall a well-known characterization for
quotients of ordered algebras, see e.g. [MU19, Sec. B.2]. Recall that a preorder C on an
ordered monoid A is stable if C refines the order on A (i.e. < is included in C) and the
multiplication is monotone: a C b,a’ C b implies aa’ C bb'.

Lemma 5.38. Let X be an ordered monoid. Then ordered monoid quotients of X are in
bijective correspondence with stable preorders on X.

Proof. A quotient e: A — B induces a stable preorder by putting a C o’ iff e(a) < e(a’) for
a,a’ € A. Conversely, from a stable preorder C on A x A we obtain an equivalence relation
on A by identifying a ~ o’ iff a C o’ and @’ C a. Monotonicity of the multiplication then
ensures that multiplication on equivalence classes is well-defined. The refinement property
ensures that the canonical projection, which maps an element to its equivalence class, is
order-preserving. It is a routine verification to check that these constructions are inverses. [ ]

Lemma 5.39. Let X be a Priestley monoid. If x £ y, then there exists a finite Priestley
monoid quotient f: X — M such that fx £ fy.

We modify the proof of a corresponding statement for Stone algebras given by John-
stone [Joh82, Ch. VI, Sec. 2.7].

Proof. Let x £ y be elements of a Priestley monoid X, we show that there exists a quotient of
f+ X — M into some finite discretely-topologized ordered monoid M satisfying f(z) £ f(y).
Since the underlying Priestley space of X is profinite, there exists a continuous surjection
e € Priest(X, A) such that A is a finite discretely topologized poset, satisfying e(z) £ e(y).
We denote the preorder on X induced by e by C (i.e. x C y iff e(x) < e(y)). We define < by

x Xy iff Vu,ve X:urvC uyv,

and denote its corresponding equivalence relation by ~.

(1) We prove that < is a stable preorder. First we show that < refines <: if z < y, then
Vu,v € X : urv < uyv since the multiplication is monotone. Moreover, we have uzv C uyv
for all u,v € X, since < is contained in C. It follows that multiplication is <-monotone: if
z <y and 2’ <4/, then for all u,v € X we have

u(az’)v = ux(z'v) Cuy(z'v) = (uy)z'v E (uy)y'v = ulyy)v,

whence z2’ < yy/.

(2a) We prove that the equivalence relation ~ C X x X is open. The equivalence relation
induced by C is denoted by =, that is, x = y iff  C y C z iff e(z) = e(y). Note that =
is open since it is the preimage of the (open) diagonal of A under e x e. Now let m ~ n.
By openness of = and continuity of the multiplication we obtain for all u,v € X open
neighbourhoods Uy, Uy, Vi, and Wy, ,, of u, v, m, n, respectively, such that

Vu' € Uy, v' € Uy, m € Viy,n' € Wyt /'m’v' = u'n'v’. (5.8)

By compactness of X we have X x X = Uum U, xU, = U?Zl Uy, x U,, for some n and u;, v;.
Now set V' = ("} Vi, and W = (L) Wy, ;. Then V x W is an open neighbourhood of
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(m,n) satisfying V- x W C ~: for (m/,n') € V. x W we have for all v/,v" € X some i with
(u',v") € Uy, x U,,. Using (5.8) we have v'm’v’ = u'n'v', proving m’ =~ n’.

(2b) We prove that every equivalence class [z]~ is open. For every y € [x]~, there exists,
since = is open by (2a), a basic open U x V C = with (z,y) € U x V. For every ¢y € V we
have (z,y’) € U x V C &, so V is an open neighbourhood of y that is contained in [z]~,
proving that = is open.

(3) It follows that the quotient f induced by < has the desired properties: (3a) It is a
homomorphism of ordered monoids by Lemma 5.38, since < is a stable preorder. (3c) The
codomain X/~ is finite and discrete, since equivalence relations with open equivalence classes
are discrete, so X/~ is finite by compactness. (3d) Finally we show that f order-separates
x and y: For the sake of contradiction suppose f(x) < f(y). By definition we have = < y,

implying = 1z1 C 1yl = y, a contradiction. []
Proposition 5.40. Every Priestley monoid is profinite:
PriestMon = ProfOrdMon.

Proof. For every X € PriestMon we prove that X = lim Dy, where Dy is the canonical
codirected diagram for X over all finite discretely-topologized ordered monoid quotients of X;
in particular, this shows that X is profinite.

First note that the limit of a diagram D in PriestMon is formed by taking the limit
L = lim |D| of the underlying diagram | — | - D in StoneMon and equipping it with the
product order. Then all projections are monotone, and this order makes L totally order-
disconnected: if (x¢)e, (Ye)e € L with (zc)e € (Ye)e then there exists by definition of the order
some quotient e: X — X, with z. £ y.. Hence p,![tz.] is a clopen upset of L containing
(ze)e but not (ye)e. This shows that L is a Priestley monoid, and it is easy to verify that it
satisfies the universal property in PriestMon.

We have to prove that the canonical homomorphism ¢: X — lim Dx is an isomorphism
of Priestley monoids, or equivalently, that it is a continuous surjective order-embedding.
Continuity and order-preservation are given since ¢ is a morphism in Priest.

That ¢ is an order-embedding follows from it being order-reflecting: ¢(z) < ¢(y) = = < y.
By contraposition it suffices to show z € y = ¢(z) £ ¢(y), but the right side of the implication
is equivalent to finding an ordered monoid quotient f: X — A into a finite Priestley monoid
with f(z) £ f(y). This is precisely the content of Lemma 5.39.

To show that ¢ is surjective, we use a general property of codirected limits of compact
Hausdorff spaces [RZ10, Lemma 1.1.5]: if f;: X — X, is a compatible family of surjections
into a codirected diagram X;, then the induced mapping f: X — lim X; is surjective.  []

By duality we immediately obtain the following result:

~

Corollary 5.41. Every comonoid is locally finite: Comon = Comony;.

Definition 5.42. Let X and Y be Priestley monoids. A Priestley relational morphism
X — Y is a total Priestley relation p: X — VY such that

p(z)p(z') C plaz’)  and 1y € p(ly).

Theorem 5.43.

(1) The category of derivation algebras is dually equivalent to the category of Priestley
monotids
Der = Comon ~°° PriestMon.
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(2) The duality from item (1) extends to Priestley relational morphisms:
RelDer = RelComon ~°° RelPriestMon.

Proof.

(1) We assemble all the steps of the (dual) equivalences: The category of profinite ordered
monoids is the Pro-completion of the category of finite ordered monoids [ACMU21, Prop. 2.10].
Since the category of finite ordered monoids is dual to the category of finite comonoids
(Theorem 5.23 restricted to finite structures), the Pro-completion of the former is dual to the
Ind-completion of the latter. By Proposition 5.37, the latter is equivalent to the category
of locally finite comonoids — but this category is, by Theorem 5.35(2), equivalent to the
category of derivation algebras:

PriestMon ~ Pro(OrdMons) ~°? Ind(Comon¢) ~ Comony ~ Der.

(2) A Priestley relational morphism from M to N is precisely a total Priestley relation
p: M — V| N such that the following diagrams commute laxly as indicated.

M x M M M 1 M g
lpxp L lﬂ llzv L, p

5 Vi (n) n
ViN X V¢N —_— Vi(N X N) —_— ViN N — VJ,N

Recall that V| = ﬁv(fv for Uy : DL — JSL, so under extended duality p dualizes precisely
to a corelational morphism of comonoids:

UM @ U, N &80 1, 2 ) gy
R A L i
Tp T TP Uy (iN)r\/ Tp
" ~ Uv(r) . .
U\/N X U\/N — U\/N U\/N
Together with Theorem 5.35(3) this extends the duality established in item (1). []

Remark 5.44. Theorem 5.43 restricts to a duality between the category of profinite
monoids and Stone relational morphisms and the category of Boolean derivation algebras
and corelational residuation morphisms.

6. DUALITY FOR THE CATEGORY OF SMALL CATEGORIES

As a final application of the abstract extended duality framework, we derive a concrete
description of Cat®?, the dual of the category of small categories and functors. We instantiate
the parameters of Assumption 3.5 to the Diagram (5.1).

It is well known that small categories can be described in an object-free way as partial
monoids [MLI8, FJSZ23, SS67| with an additional locality condition. For our purposes it
will be convenient to describe partial monoids more generally as monoids in the monoidal
category Rel.

Notation 6.1. Given a ternary relation r: X x Y — PZ, we obtain the relation

U-P(r)-0: PXxPY 5 P(X xY) > PPZ—-PZ,  (AB)w~ |J ry). 61)
reAyeEB
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Abusing notation, we denote the map (6.1) also by r: PX x PY — PZ. We write ra(z,y)
if r(z,y) # 0, and similarly x rq y if r is used as an infix operator. Furthermore, we identify
singleton sets {z} C X with their unique inhabitants z € X.

Definition 6.2.

(1) A relational monoid consists of a carrier set M, a subset E — M of identities and a
multiplication relation o: M x M — PM such that the following diagrams commute in Rel:

MXMXM -~ vrm XM =~ M =~ Mx1
\Lo xid J/O lE xid iid lid xE
MM —° s M MXM —2 M «°— MxM

Using Notation 6.1, the diagrams above read
Vao,y,2 € M: (zoy)oz=mxo0(yo2), FEox=xz=xz0FE.
(2) A relational monoid is partial if o is single-valued, and it is local [FJSZ23]| if it satisfies
rogyand v Eyoz = xoq .

(3) A functorial morphism h: (M,o, E) — (M’, 0, E') of partial monoids is a pure morphism
of binary Jp-operators (that is, P(h)(zoy) = h(z)oh(y)) satisfying h(E) C E’. The category
of relational monoids and functorial morphisms is denoted by RelMon.

Every monoid is obviously also a relational monoid. An example of a partial monoid
that is not local is given by (P(X),0,0), |X| > 1, with Ao B= A+ B if A, B are disjoint
and A o B = () otherwise.

Remark 6.3.
(1) The full subcategory of RelMon consisting of local partial monoids is equivalent to the
category of small categories [ML98, FJSZ23, SS67|:

RelMongy, 1o ~ Cat.

From right to left, a small category C is mapped to the relational monoid Mor C with
identities {id¢ | C' € C}. It is easy to see that Mor C is a local partial monoid.

For left to right, one first has to show that in a partial monoid M every element f € M
has unique left and right units elf, e;} € E. The equivalence then sends a monoid M to the
category whose objects are given by the units £ and with morphisms

hom(e,e') = {f € M | e = elf, e’ = e}

(2) The multiplication of the relational monoid corresponding to a small category is single-
valued, that is, it factorizes as

Mor(C) x Mor(C) — Mor(C) + {L} — P(Mor(C)),

its set of units can be any element of P(Mor(C)). This is the reason why we work with the
full powerset in our assumptions (5.1) in lieu of the maybe submonad.

From Section 5.1 we already know relational monoids correspond to certain associative
residuation CABAsS, so it remains to single out the images of local partial monoids.
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Definition 6.4.
(1) A residuation CABA is functional if for all atoms a € A(R) the CSL -morphisms
a\ (—): R — R also preserve non-empty joins. It is local if it satisfies 27 \ 27 = T, where

(—)" € CSLy/(R,R), x> ~(z\ L).

A residuation CABA is categorical if it has a (not necessarily atomic!) unit e € R and is
associative, functional and local.

(2) A (non-unital) morphism from a residuation CABA R to R’ is a complete residuation
algebra morphism h: R — R/, that is, h preserves all joins and meets and satisfies 2’ \ f(z) =
F(f*(@")\ 2). If R, R" are unital residuation CABAs, then a morphism is laz unital if it
satisfies €/ < f(e).

We denote the category of residuation CABAs by ResCABA and its subcategory of
categorical residuation CABAs and lax unital morphisms by CatResCABA.

Theorem 6.5. The category of small categories is dually equivalent to the category of
categorical residuation CABAs:

Cat ~°? CatResCABA.
Proof. Restricting the results from Section 5.1 to the order-discrete setting, we get a duality
ResCABA = Coalg(V,) = Op;’(CABA) ~ Op’. (Set). (6.2)

From right to left, the dual of a Jp-algebra o: M x M — PM is given by the residuation
CABA with carrier M = P(M), whose left residual is given by

\: P(M)P R P(M) = P(M), ARCw—{b|AocbCC}.

It remains to show that this duality restricts to a duality between the category of local partial
monoids and functorial homomorphisms, and the category of categorical residuation CABAs
and lax unital morphisms.

(1) We start by showing that the duality restricts on objects: a binary Jp-algebra o: M xM —
P M is alocal, partial monoid iff its dual residuation CABA Mis unital, associative, functional
and local.

(1a) Partiality of multiplication corresponds to functionality of M: By Lemma 5.17 restricted
to non-empty joins, the residuation CABA M is functional iff its Vi-coalgebra structure
preserves non-empty joins. An argument analogous to Corollary 4.7 then gives that a Va-
coalgebra preserves non-empty joins iff its dual order-relation is a partial map. Combining
these two equivalences we get that the residuation CABA M is functional if its dual relation
o: M x M — P(M) is a partial map.

(1b) By Lemma 5.18 the residuation CABA M has a unit e € M iff its comultiplication has
a counit € F e iff its dual algebra M has a unit £ = e. By the same lemma, M is associative
iff its comultiplication is coassociative iff M is associative.

(1c) We show that the residuation CABA M satisfies VA € M: A’ \ A" = T iff its dual
algebra M is local: We prepare by maklng some observations about the locahty of the
residuation CABA M. Note that in M we have L = ( and T = M. For A € M we have

A'=-(A\L) ={n|~(AonCh)}={n|Aoan} ={n|3Ime A: moan}. (6.3)
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In particular, on atoms m € M membership in m’ simplifies to the condition
nem’ <= mogn. (6.4)
We rewrite the locality condition using the adjunction Bo (=) 4 B\ (—):
ANA"=M <= MCA'\A" «— A"oM C A", (6.5)

where o: M Rc M — M is the V,~algebra structure on M corresponding to the extension
PM x PM — PM of the partial monoid multiplication.

We start with the direction that if M satisfies (6.5), then M is local: For this, let
x,y € M such that 2 0oqy and v € yoz. We have to show that z oq v. We first apply (6.4) to
x 0@ y to obtain y € z°. Monotonicity of o in both arguments then yields the first inclusion
below and (6.5) the second one:

UEyozgaj?OMQ:n?.

But by (6.4) this means that x oq v, as required.

For the other direction, we prove that if M is local, then M is local. By (6.5) it suffices
to prove VA € M:AToM C A”. Let v € A7 o M. Then there exist y € A”, z € M such that
v € yoz Since y € A”, there exists, by (6.3), some x € A with z oq y. Locality of M now
implies that z oq v, so v € A’ as required using (6.3) again.

(2) Finally, we show that the duality in (6.2) restricts on morphisms as claimed. Let
f: M — M’ be a pure morphism of Jp-algebras with dual morphism h = f~: M' — M of
residuation CABAs. We have to show that f is functorial iff £ is lax unital: By (1b) the

unit £ of a partial monoid M dualizes to the residual unit £ € M. Now f is a functorial
morphism of partial monoids iff f[E] C E' iff E C f~1[E'] = h(E') iff h is lax unital.  []

7. CONCLUSION AND FUTURE WORK

We have presented an abstract approach to extending Stone-type dualities based on adjunc-
tions between monoidal categories and instantiated it to recover classical extended Stone
and Priestley duality, along with a generalization of it to relational morphisms. Guided by
these foundations, we have investigated residuation and derivation algebras, leading to a new
duality for Priestley monoids, and we extended this duality to include relational morphisms.
In addition, we have derived a new dual characterization of the category of small categories.

Relational morphisms are an important tool in algebraic language theory, notably for
characterizing language operations algebraically. For instance, Straubing [Str81] first showed
that relational morphisms are tightly connected to the concatenation product and the star
operation on regular languages; see also the surveys by Pin [Pin88, Pinl1]. In future work,
we intend to apply our duality-theoretic insights on relational morphisms to illuminate,
and possibly recover, these results from a categorical perspective, much in the spirit of the
duality-theoretic view of Eilenberg’s Variety Theorem by Gehrke et al. [GGP08| and the
categorical works it has inspired (see e.g. [Sall7, UACM17, Boj15, Blu21|).

Another goal is to apply our duality framework beyond classical Stone and Priestley
dualities. Specifically, we aim to develop an extended duality theory for the recently developed
nominal Stone duality [BMU23], which would enable a generalization of our present results
on residuation algebras to the nominal setting with applications to data languages.
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A conceptually rather different dual characterization of the category of profinite monoids
and continuous monoid morphisms in terms of semi-Galois categories has been provided by
Uramoto [Ural6]. Extending this result to relational morphisms, similar to our Theorem 5.43,
is another interesting point for future work.

Potential applications of our abstract approach to extended Stone duality are not limited
to algebraic language theory. In Section 4.3 we have used the compositionality of extended
(Stone) duality to recover results from modal correspondence theory by purely categorical
methods. We hope that the monoidal approach might bring a new impulse into the historic
endeavor of correspondence theory. In future work we will investigate the expressiveness of
this idea, that is, study which relational properties can be captured by suitable inequations of
operators. Applying this approach to more complex modal axioms that, for example, involve
negation or implication or combine multiple modalities, can be expected to be non-trivial.

Our applications so far were based on Stone and Priestley duality, but the general
framework of abstract extended duality applies far beyond this setting. For instance, Furber
and Jacobs [FJ15] showed how to extend the duality between C*-algebras and compact
Hausdorff spaces (‘Gelfand duality’) to a ‘probabilistic Gelfand duality’, which emerges by
employing a weaker notion of morphism between C*-algebras and by replacing the category
of compact Hausdorff spaces by the Kleisli category of the Radon monad. This result seems
to fit perfectly into our approach of extending dualities. A thorough instantiation of the
results from [FJ15] to our framework could not only place these results in a larger categorical
context but also uncover new results in probabilistic duality theory.
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