
Logical Methods in Computer Science
Volume 21, Issue 4, 2025, pp. 31:1–31:35
https://lmcs.episciences.org/

Submitted Mar. 27, 2025
Published Dec. 30, 2025

QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA

SHAULL ALMAGOR , NETA DAFNI , AND ISHAI SALGADO

Technion, Israel
e-mail address: shaull@technion.ac.il, netad@campus.technion.ac.il, ishaisalgado@campus.technion.ac.il

Abstract. Jumping automata are finite automata that read their input in a non-sequential
manner, by allowing a reading head to “jump” between positions on the input, consuming
a permutation of the input word. We argue that allowing the head to jump should incur
some cost. To this end, we propose four quantitative semantics for jumping automata,
whereby the jumps of the head in an accepting run define the cost of the run. The four
semantics correspond to different interpretations of jumps: the absolute distance semantics
counts the distance the head jumps, the reversal semantics counts the number of times
the head changes direction, the Hamming distance measures the number of letter-swaps
the run makes, and the maximum jump semantics counts the maximal distance the head
jumps in a single step,

We study these measures, with the main focus being the boundedness problem: given a
jumping automaton, decide whether its (quantitative) language is bounded by some given
number k. We establish the decidability and complexity for this problem under several
variants.

1. Introduction

Traditional automata read their input sequentially. Indeed, this is the case for most state-
based computational models. In some settings, however, we wish to abstract away the order
of the input letters. For example, when the input represents available resources, and we
only wish to reason about their quantity. From a more language-theoretic perspective, this
amounts to looking at the commutative closure of languages, a.k.a. their Parikh image. To
capture this notion in a computation model, Jumping Automata (JFAs) were introduced
in [MZ12]. A jumping automaton may read its input in a non-sequential manner, jumping
from letter to letter, as long as every letter is read exactly once. Several works have studied
the algorithmic properties and expressive power of these automata [FPS15, FPSV17, Vor18,
FHY21, LPS14, AY23].

While JFAs are an attractive and simple model, they present a shortcoming when
thought of as model for systems, namely that the abstraction of the order may be too coarse.
More precisely, the movement of the head can be thought of as a physical process of accessing
the input storage of the JFA. Then, sequential access is the most basic form of access and

This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 989/22). We also
thank Michaël Cadilhac for fruitful discussions about this submission.
This paper is an extended version of [AS24].

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-21(4:31)2025
© S. Almagor, N. Dafni, and I. Salgado
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-9021-1175
https://orcid.org/0000-0002-2515-2014
http://creativecommons.org/about/licenses

31:2 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

can be considered “cheap”, but allowing the head to jump around is physically more difficult
and therefore should incur a cost.

To address this, we present four quantitative semantics for JFAs, whereby a JFA
represents a function from words to costs, which captures how expensive it is to accept a
given word with respect to the head jumps. The different semantics capture different aspects
of the cost of jumps, as follows.

Consider a JFA A and a word w, and let ρ be an accepting run of A on w. The run ρ
specifies the sequence of states and indices visited in w. We first define the cost of individual
runs.

• In the Absolute Distance semantics (abs), the cost of ρ is the sum of the lengths of jumps
it makes.
• In the Reversal semantics (rev), the cost of ρ is the number of times the reading head
changes its direction (i.e., moving from right to left or from left to right).
• In the Hamming semantics (ham), we consider the word w′ induced by ρ, i.e., the order of
letters that ρ reads. Then, the cost of ρ is the number of letters where w′ differs from w.
• In the Maximum Jump semantics (max), the cost of ρ is the maximal length of a jump
that it makes.

We then define the cost of the word w in A according to each semantics, by taking the run
that minimizes the cost.

Thus, we lift JFAs from a Boolean automata model to the rich setting of quantitative
models [Bok21, AK11, CDH10, DKV09]. Unlike other quantitative automata, however,
the semantics in this setting arise naturally from the model, without an external domain.
Moreover, the definitions are naturally motivated by different types of memory access, as
we now demonstrate. First, consider a system whose memory is laid out in an array (i.e.,
a tape), with a reading head that can move along the tape. Moving the head requires
some energy, and therefore the total energy spent reading the input corresponds to the abs
semantics. It may be the case, however, that moving the head over several cells requires
some mechanical change in the way the memory works, but that once a jump over k cells
has been implemented, its cost is no more than any other jump. The, the cost measures the
largest jump that needs to be taken. This is captured by the max semantics.

Next, consider a system whose memory is a spinning disk (or a sliding tape), so that
the head stays in place and the movement is of the memory medium. Then, it is cheap to
continue spinning in the same direction1, and the main cost is in reversing the direction,
which requires stopping and reversing a motor. Then, the rev semantics best captures the
cost.

Finally, consider a system that reads its input sequentially, but is allowed to edit its
input by replacing one letter with another, such that at the end the obtained word is a
permutation of the original word. This is akin to edit-distance automata [Moh02, FGW23]
under a restriction of maintaining the amount of resources. Then, the minimal edits required
correspond to the ham semantics.

Example 1.1. Consider a (standard) NFA A for the language given by the regular expression
(ab)∗ (the concrete automaton chosen is irrelevant, see Remark 3.5). As a JFA, A accepts
a word w if and only if w has an equal number of a’s and b’s. To illustrate the different
semantics, consider the words w1 = ababbaab and w2 = ababbaba, obtained from (ab)4 by

1We assume that the head does not return back to the start by continuing the spin, but rather reaches
some end.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:3

flipping the third ab pair (w1) and the third and fourth pairs (w2). As we define in Section 3,
we think of runs of the JFA A as if the input is given between end markers at indices 0 and
n+ 1, and the jumping run must start at 0 and end in n+ 1, respectively.

• In the abs semantics, the cost of w1, denoted Aabs(w1), is 2: the indices read by the head
are 0, 1, 2, 3, 4, 6, 5, 7, 8, 9, so there are two jumps of cost 1: from 4 to 6 and from 5 to 7.
Similarly, we have Aabs(w2) = 4, e.g., by the sequence 0, 1, 2, 3, 4, 6, 5, 8, 7, 9, which has
two jumps of cost 1 (4 to 6 and 7 to 9), and one jump of cost 2 (5 to 8). (formally, we
need to prove that there is no better run, but this is not hard to see).
• In the rev semantics, we have Arev(w1) = 2 by the same sequence of indices as above, as
the head performs two “turns”, one at index 6 (from → to ←) and one at 5 (from ← to
→). Here, however, we also have Arev(w2) = 2, using the sequence 0, 1, 2, 3, 4, 6, 8, 7, 5, 9,
whose turning points are 8 and 5.
• In the ham semantics we have Aham(w1) = 2 and Aham(w2) = 4, since we must change
the letters in all the flipped pairs for the words to be accepted.
• In the max semantics, we have Amax(w1) = 1, by the same sequence of indices as in the
abs semantics, as there are two jumps of cost 1 and so the maximum is 1. For w2 we have
Amax(w1) = 2, also by the same sequence as the abs semantics. (again, we need to show
that the sequence is optimal).

Example 1.2. Consider now an NFA B for the language given by the regular expression
a∗b∗. Note that as a JFA, B accepts {a, b}∗, since every word in {a, b}∗ can be reordered to
the form a∗b∗.

Observe that in the rev semantics, for every word w we have Brev(w) ≤ 2, since at the
worst case B makes one left-to-right pass to read all the a’s, then a right-to-left pass to read
all the b’s, and then jump to the right end marker, and thus it has two turning points. In
particular, Brev is bounded.

However, in the abs, ham and max semantics, the costs can become unbounded. Indeed,
in order to accept words of the form bnan, in the abs and max semantics the head must
first jump over all the bn, incurring a high cost, and for the ham semantics, all the letters
must be changed, again incurring a high cost.

Related work. Jumping automata were introduced in [MZ12]. We remark that [MZ12]
contains some erroneous proofs (e.g., closure under intersection and complement, also pointed
out in [FPSV17]). The works in [FPS15, FPSV17] establish several expressiveness results on
jumping automata, as well as some complexity results. In [Vor18] many additional closure
properties are established. An extension of jumping automata with a two-way tape was
studied in [FHY21], and jumping automata over infinite words were studied by the first
author in [AY23].

When viewed as the commutative image of a language, jumping automata are closely
related to Parikh Automata [KR03, CFM12b, CFM12a, GJLZ22], which read their input and
accept if a certain Parikh image relating to the run belongs to a given semilinear set (indeed,
we utilize the latter in our proofs). Another related model is that of symmetric transducers
– automata equipped with outputs, such that permutations in the input correspond to
permutations in the output. These were studied in [Alm20] in a jumping-flavour, and
in [ANA22] in a quantitative k-window flavour.

31:4 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

More broadly, quantitative semantics have received much attention in the past two
decades, with many motivations and different flavors of technicalities. We refer the reader
to [Bok21, DKV09] and the references therein.

Contribution and paper organization. Our contribution consists of the introduction of
the four jumping semantics, and the study of decision problems pertaining to them (defined
in Section 3). Our main focus is the boundedness problem: given a JFA A, decide whether
the function described by it under each of the semantics is bounded by some constant k. We
establish the decidability of this problem for all the semantics, and consider the complexity
of some fragments. More precisely, we consider several variants of boundedness, depending
on whether the bound is a fixed constant, or an input to the problem, and on whether the
jumping language of A is universal. Our complexity results are summarized in Table 1.

Our paper is organized as follows: the preliminaries and definitions are given in Sec-
tions 2 and 3. Then, each of Sections 4 to 7 studies one of the semantics, and follows
the same structure: we initially establish that the membership problem for the semantics
is NP-complete. Then we characterize the set of words whose cost is at most k using a
construction of an NFA. For the abs,rev, and ham semantics, these constructions differ
according to the semantics, and involve some nice tricks with automata, but are technically
not hard to understand. In contrast, the construction for max is significantly more involved
(see Section 7). We note that these constructions are preceded by crucial observations
regarding the semantics, which allow us to establish their correctness. Next, in Section 8
we give a complete picture of the interplay between the different semantics (using some of
the results established beforehand). In particular, we show the difficulty in working with
the max semantics (see Example 8.6). Finally, in Section 9 we discuss some exciting open
problems.

k-Bnd Param-Bnd Univ-k-Bnd
Univ-Param-Bnd

unary binary

abs
Decidable
PSPACE-h

Decidable
PSPACE-h

PSPACE-c
EXPSPACE
PSPACE-h

2-EXPSPACE
PSPACE-h

rev
Decidable
PSPACE-h

Decidable
PSPACE-h

PSPACE-c
EXPSPACE
PSPACE-h

2-EXPSPACE
PSPACE-h

ham
Decidable
PSPACE-h

Decidable
PSPACE-h

PSPACE-c PSPACE-c
EXPSPACE
PSPACE-h

max† Decidable
PSPACE-h

Decidable
PSPACE-h

PSPACE-c
EXPSPACE
PSPACE-h

2-EXPSPACE
PSPACE-h

Table 1: Complexity results of the various boundedness problems for the four semantics. The
complexity of membership is NP-complete for all the semantics. The “Decidable”
entries depend on the complexity of the containment problem for Parikh Automata.
(†) – for the max semantics, PSPACE-hardness is only for k = 0.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:5

2. Preliminaries and Definitions

For a finite alphabet Σ we denote by Σ∗ the set of finite words over Σ. For w ∈ Σ∗ we denote
its letters by w = w1 · · ·wn, and its length by |w| = n. In the following, when discussing
sets of numbers, we define min ∅ =∞.

Automata. A nondeterministic finite automaton (NFA) is a 5-tuple A = ⟨Σ, Q, δ,Q0, α⟩
where Σ is a finite alphabet, Q is a finite set of states, δ : Q×Σ→ 2Q is a nondeterministic
transition function, Q0 ⊆ Q is a set of initial states, and α ⊆ Q is a set of accepting states.
A run of A on a word w = w1w2 . . . wn is a sequence ρ = q0, q1, . . . , qn such that q0 ∈ Q0

and for every 0 ≤ i < n it holds that qi+1 ∈ δ(qi, wi+1). The run ρ is accepting if qn ∈ α.
A word w is accepted by A if there exists an accepting run of A on w. The language of A,
denoted L(A), is the set of words accepted by A.

Permutations. Let n ∈ N. The permutation group Sn is the set of bijections (i.e. permuta-
tions) from {1, ..., n} to itself. Sn forms a group with the function-composition operation
and the identity permutation as a neutral element. Given a word w = w1 · · ·wn and a
permutation π ∈ Sn, we define π(w) = wπ(1) · · ·wπ(n). For example, if w = abcd and

π =

(
1 2 3 4
3 4 2 1

)
then π(w) = cdba. We usually denote permutations in one-line form,

e.g., π is represented as (3, 4, 2, 1). We say that a word y is a permutation of x, and we write
x ∼ y if there exists a permutation π ∈ S|x| such that π(x) = y.

Jumping Automata. A jumping automaton is syntactically identical to an NFA, with
the semantic difference that it has a reading head that can “jump” between indices of the
input word. An equivalent view is that a jumping automaton reads a (nondeterministically
chosen) permutation of the input word.

Formally, consider an NFA A. We view A as a jumping finite automaton (JFA) by
defining its jumping language J(A) = {w ∈ Σ∗ | ∃u ∈ Σ∗. w ∼ u ∧ u ∈ L(A)}.

Since our aim is to reason about the manner with which the head of a JFA jumps, we
introduce a notion to track the head along a run. Consider a word w of length n and a JFA
A. A jump sequence is a vector a = (a0, a1, a2, . . . , an, an+1) where a0 = 0, an+1 = n + 1
and (a1, a2, . . . , an) ∈ Sn. We denote by Jn the set of all jump sequences of size n+ 2.

Intuitively, a jump sequence a represents the order in which a JFA visits a given word
of length n. First it visits the letter at index a1, then the letter at index a2 and so on. To
capture this, we define wa = wa1wa2 · · ·wan . Observe that jump sequences enforce that the
head starts at position 0 and ends at position n+ 1, which can be thought of as left and
right markers, as is common in e.g., two-way automata.

An alternative view of jumping automata is via Parikh Automata (PA) [KR03, CFM12a].
The standard definition of PA is an automaton whose acceptance condition includes a
semilinear set over the transitions. To simplify things, and to avoid defining unnecessary
concepts (e.g., semilinear sets), for our purposes, a PA is a pair (A, C) where A is an
NFA over alphabet Σ, and C is a JFA over Σ. Then, the PA (A, C) accepts a word w if
w ∈ L(A) ∩ J(C). Note that when L(A) = Σ∗, then the PA coincides with J(C). Our usage
of PA is to obtain the decidability of certain problems. Specifically, from [KR03] we have
that emptiness of PA is decidable.

31:6 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

3. Quantitative Semantics for JFAs

In this section we present and demonstrate the three quantitative semantics for JFAs.
We then define the relevant decision problems, and lay down some general outlines to
solving them, which are used in later sections. For the remainder of the section fix a JFA
A = ⟨Σ, Q, δ,Q0, α⟩.

3.1. The Semantics.
The Absolute-Distance Semantics. In the absolute-distance semantics, the cost of a run
(given as a jump sequence) is the sum of the sizes of the jumps made by the head. Since we
want to think of a sequential run as a run with 0 jumps, we measure a jump over k letters
as distance k − 1 (either to the left or to the right). This is captured as follows.

For k ∈ Z, define JkK = |k| − 1. Consider a word w ∈ Σ∗ with |w| = n, and let
a = (a0, a1, a2, . . . , an, an+1) be a jump sequence, then we lift the notation above and write

JaK =
∑n+1

i=1 Jai − ai−1K.
Definition 3.1 (Absolute-Distance Semantics). For a word w ∈ Σ∗ with |w| = n we define

Aabs(w) = min{JaK | a is a jump sequence, and wa ∈ L(A)}
(recall that min ∅ =∞ by definition).

The Reversal Semantics. In the reversal semantics, the cost of a run is the number of
times the head changes direction in the corresponding jump sequence. Consider a word
w ∈ Σ∗ with |w| = n, and let a = (a0, a1, a2, . . . , an, an+1) be a jump sequence, we define

#rev(a) = |{i ∈ {1, . . . , n} | (ai > ai−1 ∧ ai > ai+1) ∨ (ai < ai−1 ∧ ai < ai+1)}|
Definition 3.2 (Reversal Semantics). For a word w ∈ Σ∗ with |w| = n we define

Arev(w) = min{#rev(a) | a is a jump sequence, and wa ∈ L(A)}

The Hamming Semantics. In the Hamming measure, the cost of a word is the minimal
number of coordinates of w that need to be changed in order for the obtained word to be
accepted by A (sequentially, as an NFA), so that the changed word is a permutation of w.

Consider two words x, y ∈ Σ∗ with |x| = |y| = n such that x ∼ y, we define the Hamming
Distance between x and y as dH(x, y) = |{i | xi ̸= yi}|.
Definition 3.3 (Hamming Semantics). For a word w ∈ Σ∗ we define

Aham(w) = min{dH(w′, w) | w′ ∈ L(A), w′ ∼ w}

The Maximum Jump Semantics. In the maximum jump semantics, the cost of a run
is the size of the maximum jump made by the head. Let a = (a0, a1, a2, . . . , an, an+1) be a
jump sequence. We define JaKmax = maxn+1

i=1 Jai − ai−1K.
Definition 3.4 (Maximum Jump Semantics). For a word w ∈ Σ∗ with |w| = n we define

Amax(w) = min{JaKmax | a is a jump sequence, and wa ∈ L(A)}
Remark 3.5. Note that the definitions of all the semantics are independent of the NFA,
and only refer to its language. We can therefore refer to the cost of a word in a language
according to each semantics, rather than the cost of a word in a concrete automaton.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:7

3.2. Quantitative Decision Problems. In the remainder of the paper we focus on
quantitative variants of the standard Boolean decision problems pertaining to the jumping
semantics. Specifically, we consider the following problems for each semantics sem ∈
{abs,ham,rev,max}.
• Membership: Given a JFA A, k ∈ N and a word w, decide whether Asem(w) ≤ k.
• k-Bnd (for a fixed k): Given a JFA A, decide whether ∀w ∈ J(A) Asem(w) ≤ k.
• Param-Bnd: Given a JFA A and k ∈ N, decide whether ∀w ∈ J(A) Asem(w) ≤ k.
We also pay special attention to the setting where J(A) = Σ∗, in which case we refer to
these problems as Univ-k-Bnd and Univ-Param-Bnd. For example, in Univ-Param-Bnd
we are given a JFA A and k ∈ N and the problem is to decide whether Asem(w) ≤ k for all
words w ∈ Σ∗.

The boundedness problems can be thought of as quantitative variants of Boolean
universality (i.e., is the language equal to Σ∗). Observe that the problems above are not
fully specified, as the encoding of k (binary or unary) when it is part of the input may effect
the complexity. We remark on this when it is relevant. Note that the emptiness problem
is absent from the list above. Indeed, a natural quantitative variant would be: is there a
word w such that Asem(w) ≤ k. This, however, is identical to Boolean emptiness, since
L(A) ̸= ∅ if and only if there exists w such that Asem(w) = 0. We therefore do not consider
this problem. Another problem to consider is boundedness when k is existentially quantified.
We elaborate on this problem in Section 9.

4. The Absolute-Distance Semantics

The first semantics we investigate is abs, and we start by showing that (the decision version
of) computing its value for a given word is NP-complete. This is based on bounding the
distance with which a word can be accepted.

Lemma 4.1. Consider a JFA A and w ∈ J(A) with |w| = n, then Aabs(w) ≤ n2.
Proof. For n = 0, i.e., w = ϵ, the lemma clearly holds with Aabs(ϵ) = 0. Assume n > 0,
we actually show a strict inequality. Since w ∈ J(A), there exists a jump sequence a =
(a0, a1, a2, . . . , an, an+1) such that wa ∈ L(A). Therefore, Aabs(w) ≤ JaK. Observe that
|ai− ai−1| ≤ n for all i ∈ {1, . . . , n+1}, since there is no jump from 0 to n+1 (since a0 = 0
and an = n+ 1). The following concludes the proof:

JaK =
n+1∑
i=1

Jai − ai−1K =
n+1∑
i=1

|ai − ai−1| − 1 ≤
n+1∑
i=1

n− 1 = (n+ 1)(n− 1) < n2

We can now prove the complexity bound for computing the absolute distance, as follows.

Theorem 4.2 (Absolute-Distance Membership is NP-complete). The problem of deciding,
given A, w and k ∈ N, whether Aabs(w) ≤ k, is NP-complete.

Proof. In order to establish membership in NP, note that by Lemma 4.1, we can assume
k ≤ n2, as otherwise we can set k = n2. Then, it is sufficient to nondeterministically guess a
jump sequence a and to check that wa1 · · ·wan ∈ L(A) and that JaK ≤ k. Both conditions
are easily checked in polynomial time, since k is polynomially bounded.

Hardness in NP follows by reduction from (Boolean) membership in JFA: it is shown
in [FPSV17] that deciding whether w ∈ J(A) is NP-hard. We reduce this problem by

31:8 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

outputting, given A and w, the same A and w with the bound k = n2. The reduction is
correct by Lemma 4.1 and the fact that if w /∈ J(A) then Aabs(w) =∞.

4.1. Decidability of Boundedness Problems for ABS. We now turn our attention to
the boundedness problems. Consider a JFA A and k ∈ N. Intuitively, our approach is to
construct an NFA B that simulates, while reading a word w ∈ Σ∗, every jump sequence of
A on w whose absolute distance is at most k. The crux of the proof is to show that we
can indeed bound the size of B as a function of k. At a glance, the main idea here is to
claim that since the absolute distance is bounded by k, then A cannot make large jumps,
nor many small jumps. Then, if we track a sequential head going from left to right, then
the jumping head must always be within a bounded distance from it. We now turn to the
formal arguments. Fix a JFA A = ⟨Σ, Q, δ,Q0, α⟩.

To understand the next lemma, imagine A’s jumping head while taking the jth step in
a run on w according to a jump sequence a = (a0, a1, a2, . . . , an, an+1). Thus, the jumping
head points to the letter at index aj . Concurrently, imagine a “sequential” head (reading

from left to right), which points to the jth letter in w. Note that these two heads start and
finish reading the word at the same indices a0 = 0 and an+1 = n+ 1. It stands to reason
that if at any step while reading w the distance between these two heads is large, the cost of
reading w according to a would also be large, as there would need to be jumps that bridge
the gaps between the heads. The following lemma formalizes this idea.

Lemma 4.3. Consider a jump sequence a = (a0, a1, a2, . . . , an, an+1). For every 1 ≤ j ≤ n
it holds that JaK ≥ |aj − j|.

Proof. Let 1 ≤ j ≤ n. First, assume that aj ≥ j and consider the sum
∑j

i=1Jai−ai−1K ≤ JaK.
From the definition of J·K we have

∑j
i=1Jai−ai−1K =

(∑j
i=1 |ai − ai−1|

)
−j, and we conclude

that in this case JaK ≥ |aj − j| by the following:(
j∑

i=1

|ai − ai−1|

)
− j ≥y

triangle inequality

∣∣∣∣∣
j∑

i=1

ai − ai−1

∣∣∣∣∣− j =y
telescopic sum

|aj − a0| − j =y
a0=0

aj − j =y
aj≥j

|aj − j|

The direction aj < j is proved by looking at the sum of the last j elements: assume aj < j,

and consider the sum
∑n+1

i=j+1Jai − ai−1K ≤ JaK. From the definition of J·K we have

n+1∑
i=j+1

Jai−ai−1K =

 n+1∑
i=j+1

|ai − ai−1|

−(n+1−(j+1)+1) =

 n+1∑
i=j+1

|ai − ai−1|

−(n+1−j)

Similarly to the previous case, from the triangle inequality we have n+1∑
i=j+1

|ai − ai−1|

− (n+ 1− j) ≥ |an+1 − aj | − (n+ 1− j) =

n+ 1− aj − (n+ 1− j) = j − aj = |aj − j|

where we use the fact that an+1 = n+ 1 > aj , and our assumption that aj < j. This again
concludes that JaK ≥ |aj − j|.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:9

From Lemma 4.3 we get that in order for a word w to attain a small cost, it must be
accepted with a jumping sequence that stays close to the sequential head. More precisely:

Corollary 4.4. Let k ∈ N and consider a word w such that Aabs(w) ≤ k, then there exists
a jumping sequence a = (a0, a1, a2, . . . , an, an+1) such that wa ∈ L(A) and for all 1 ≤ j ≤ n
we have |aj − j| ≤ k.

We now turn to the construction of an NFA that recognizes the words whose cost is at
most k.

Lemma 4.5. Let k ∈ N. We can effectively construct an NFA B such that L(B)= {w ∈
Σ∗|Aabs(w) ≤ k}.

Proof. Let k ∈ N. Intuitively, B works as follows: it remembers in its states a window of size
2k+1 centered around the current letter (recall that as an NFA, it reads its input sequentially).
The window is constructed by nondeterministically guessing (and then verifying) the next k
letters, and remembering the last k letters.
B then nondeterministically simulates a jumping sequence of A on the given word, with

the property that the jumping head stays within distance k from the sequential head. This
is done by marking for each letter in the window whether it has already been read in the
jumping sequence, and nondeterministically guessing the next letter to read, while keeping
track of the current jumping head location, as well as the total cost incurred so far. After
reading a letter, the window is shifted by one to the right. If at any point the window is
shifted so that a letter that has not been read by the jumping head shifts out of the 2k + 1
scope, the run rejects. Similarly, if the word ends but the guessed run tried to read a letter
beyond the length of the word, the run rejects. The correctness of the construction follows
from Corollary 4.4. We now turn to the formal details. Recall that A = ⟨Σ, Q, δ,Q0, α⟩. We
define B = ⟨Σ, Q′, δ′, Q′

0, β⟩ as follows.
The state space of B is

Q′ = Q× (Σ× {?,✓})−k,...,k × {−k, . . . , k} × {0, . . . , k}

We denote a state of B as (q, f, j, c) where q ∈ Q is a state of A, f : {−k, . . . , k} → Σ×{?,✓}
represents a window of size 2k + 1 around the sequential head, where ✓ marks letters that
have already been read by A (and ? marks the others), j represents the index of the head of
A relative to the sequential head, and c represents the cost incurred thus far in the run. We
refer to the components of f as f(j) = (f(j)1, f(j)2) with f(j)1 ∈ Σ and f(j)2 ∈ {?,✓}.

The initial states of B are

Q′
0 = {(q, f, j, j − 1) | q ∈ Q0 ∧ j > 0 ∧ (f(i)2 = ✓ ⇐⇒ i ≤ 0)}

That is, all states where the state of A is initial, the location of the jumping head is some
j > 0 incurring a cost of j − 1 (i.e., the initial jump A makes), and the window is guessed so
that everything left of the first letter is marked as already-read (to simulate the fact that A
cannot jump to the left of the first letter).

The transitions of B are defined as follows. Consider a state (q, f, j, c) and a letter
σ ∈ Σ, then (q′, f ′, j′, c′) ∈ δ′((q, f, j, c), σ) if and only if the following hold (see Fig. 1 for an
illustration):

• f(1)1 = σ. That is, we verify that the next letter in the guessed window is indeed correct.
• f(−k)2 = ✓. That is, the leftmost letter has been read. Otherwise by Corollary 4.4 the
cost of continuing the run must be greater than k.

31:10 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

• f(j)2 ̸= ✓ and f ′(j − 1) = ✓ (if j > −k). That is, the current letter has not been
previously read, and will be read from now on (note that index j before the transition
corresponds to index j − 1 after).
• q′ = δ(q, f(j)1), i.e. the state of A is updated according to the current letter.
• c′ = c + |j′ + 1 − j| − 1, since j′ represents the index in the shifted window, so in the
“pre-shifted” tape this is actually index j + 1. We demonstrate this in Fig. 1. Also, c′ ≤ k
by the definition of Q.
• f ′(i) = f(i + 1) for i < k. That is, the window is shifted and the index f ′(k) is
nondeterministically guessed2.

α✓ β? γ✓ ϵ? µ✓ η? ξ? ζ✓ θ?
−4 −3 −2 −1 0 1 2 3 4

=⇒ β✓γ✓ ϵ? µ✓ η? ξ? ζ✓ θ? ψ?
−4 −3 −2 −1 0 1 2 3 4

Figure 1: A single transition in the construction of Lemma 4.5. The dashed arrow signifies
the sequential head, the full arrow is the “imaginary” jumping head. Here, the
head jumps from −3 to 2, incurring a cost of 4, but in the indexing after the
transition ξ is at index 1, thus the expression given for c′ in the construction. Note
that the letter being read must be µ, and that α must be checked, otherwise the
run has failed.

Finally, the accepting states of B are β = {(q, f, 1, c) | q ∈ α ∧ f(j)2 =? for all j > 0}. That
is, the state of A is accepting, the overall cost is at most k, the location of the jumping head
matches the sequential head (intuitively, location n+ 1), and no letter beyond the end of
the tape has been used.

It is easy to verify that B indeed guesses a jump sequence and a corresponding run of A
on the given word, provided that the jumping head stays within distance k of the sequential
head. By Corollary 4.4, this restriction is complete, in the sense that if Aabs(w) ≤ k then
there is a suitable jump sequence under this restriction with which w is accepted.

We can now readily conclude the decidability of the boundedness problems for the abs
semantics. The proof makes use of the decidability of emptiness for Parikh Automata [KR03].

Theorem 4.6. The following problems are decidable for the abs semantics: k-Bnd, Param-
Bnd, Univ-k-Bnd and Univ-Param-Bnd.

Proof. Consider a JFA A and k ∈ N (k is either fixed or given as input, which does not
affect decidability), and let B be the NFA constructed as per Lemma 4.5. In order to decide
Univ-k-Bnd and Univ-Param-Bnd, observe that Aabs(w) ≤ k for every word w ∈ Σ∗ if
and only if L(B) = Σ∗. Since the latter is decidable for NFA, we have decidability.

Similarly, in order to decide k-Bnd and Univ-Param-Bnd, observe that Aabs(w) ≤ k
for every word w ∈ J(A) if and only if J(A) ⊆ L(B). We can decide whether the latter holds
by constructing the PA (B,A) where B is an NFA for the complement of L(B), and checking
emptiness. Since emptiness for PA is decidable [KR03], we conclude decidability.

2The guess could potentially be ✓, but this is clearly useless.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:11

With further scrutiny, we see that the size of B constructed as per Lemma 4.5 is
polynomial in the size of A and single-exponential in k. Thus, Univ-k-Bnd is in fact
decidable in PSPACE, whereas Univ-Param-Bnd is in EXPSPACE and 2-EXPSPACE for k
given in unary and binary, respectively. For the non-universal problems we do not supply
upper complexity bounds, as these depend on the decidability for PA containment, for which
we only derive decidability from [KR03].

4.2. PSPACE-Hardness of Boundedness for ABS. In the following, we complement the
decidability result of Theorem 4.6 by showing that already Univ-k-Bnd is PSPACE-hard,
for every k ∈ N.

We first observe that the absolute distance of every word is even. In fact, this is true
for every jumping sequence.

Lemma 4.7. Consider a jumping sequence a = (a0, a1, . . . , an, an+1), then JaK is even.

Proof. Observe that the parity of |ai − ai−1| is the same as that of ai − ai−1. It follows that

the parity of JaK =
∑n+1

i=1 Jai − ai−1K =
∑n+1

i=1 |ai − ai−1| − 1 is the same as that of

n+1∑
i=1

(ai − ai−1 − 1) =

(
n+1∑
i=1

ai − ai−1

)
− (n+ 1) = n+ 1− (n+ 1) = 0

and is therefore even (the penultimate equality is due to the telescopic sum).

We say that Aabs is k-bounded if Aabs(w) ≤ k for all w ∈ Σ∗. We are now ready to prove
the hardness of Univ-k-Bnd. Observe that for a word w ∈ Σ∗ we have that Aabs(w) = 0 if
and only if w ∈ L(A) (indeed, a cost of 0 implies that an accepting jump sequence is the
sequential run 0, 1, . . . , |w|+ 1). In particular, we have that Aabs is 0-bounded if and only
if L(A) = Σ∗. Since the universality problem for NFAs is PSPACE-complete, this readily
proves that Univ-0-Bnd is PSPACE-hard. Note, however, that this does not imply that
Univ-k-Bnd is also PSPACE-hard for other values of k, and that the same argument fails
for k > 0. We therefore need a slightly more elaborate reduction.

Lemma 4.8. For abs the Univ-k-Bnd and k-Bnd problems are PSPACE-hard for every
k ∈ N.

Proof. We begin with an intuitive sketch the proof for Univ-k-Bnd. The case of k-Bnd
requires slightly more effort. By Lemma 4.7, we can assume without loss of generality that
k is even. Indeed, if there exists m ∈ N such that Aabs(w) ≤ 2m+ 1 for every w ∈ Σ∗, then
by Lemma 4.7 we also have Aabs(w) ≤ 2m. Therefore, we assume k = 2m for some m ∈ N.

We reduce the universality problem for NFAs to the Univ-2m-Bnd problem. Consider
an NFA A = ⟨Q,Σ, δ, Q0, α⟩, and let ♡ /∈ Σ be a fresh symbol. Intuitively, we obtain from A
an NFA B over the alphabet Σ ∪ {♡} such that w ∈ L(B) if and only if the following hold:

(1) Either w does not contain exactly m occurrences of ♡, or
(2) w contains exactly m occurrences of ♡, but does not start with ♡, and w|Σ ∈ L(A)

(where w|Σ is obtained from w by removing all occurrences of ♡).
We then have the following: if L(A) = Σ∗, then for every w ∈ (Σ ∪ {♡})∗ if w ∈ L(B) then
Babs(w) = 0 ≤ 2m, and if w /∈ L(B) then w starts with ♡ but has exactly m occurrences
of ♡. Thus, jumping to the first occurrence of a letter in Σ incurs a cost of at most m,
and reading the skipped ♡ symbols raises the cost to at most 2m. From there, w can be

31:12 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

read consecutively and be accepted since w|Σ ∈ L(A). So again Babs(w) ≤ 2m, and B is
2m-bounded.

Conversely, if L(A) ̸= Σ∗, take x /∈ L(A) such that x ̸= ϵ (we show in the details below
why this can be assumed), and consider the word w = ♡mx. We then have w /∈ L(B), and
moreover – in order to accept w (if at all possible), B first needs to jump over the initial
♡m, guaranteeing a cost of at least 2m (m for the jump and another m to later read the ♡m

prefix), and needs at least one more jump to accept x, since x /∈ L(A). Thus, Babs(w) > 2m,
so B is not 2m-bounded. We now turn to the precise details of the reduction, differing from
the intuition above mainly by the pesky presence of ϵ. Given A, we first check whether
ϵ ∈ L(A) (i.e., we check whether Q0 ∩ α ̸= ∅). If ϵ /∈ L(A), then L(A) ̸= Σ∗ and we output
some fixed unbounded automaton B (e.g., as in Examples 1.1 and 8.12). Otherwise, we
proceed to construct B such that w ∈ L(B) if and only if either Conditions 1 or 2 above
hold, or:

(3) w = ♡m (think of this as an exception to Condition 2 where w|Σ = ϵ).

Constructing B from A is straightforward by taking roughly m copies of A to track the
number of ♡ in the word. In particular, the reduction is in polynomial time.

We claim that L(A) = Σ∗ if and only if B is 2m-bounded. For the first direction,
assume L(A) = Σ∗. As mentioned above, for every w ∈ (Σ ∪ {♡})∗ if w ∈ L(B) then
Babs(w) = 0 ≤ 2m. If w /∈ L(B) then w starts with ♡ but has exactly m occurrences of ♡,
and in addition, w ̸= ♡m so there is some m′ ≤ m+ 1 such that the m′-th letter of w is in
Σ. Then, the following jump sequence a causes B to accept wa:

a = (0,m′, 1, 2, . . . ,m′ − 1,m′ + 1,m′ + 2, . . . , |w|, |w|+ 1)

Indeed, wa does not start with ♡, has exactly m occurrences of ♡, and w|Σ ∈ L(A) = Σ∗,
so Condition 2 holds. Finally, note that JaK = m′ − 1 +m′ − 2 + 1 = 2(m′ − 1) ≤ 2m (since
the only non-zero jumps are 0 to m′, m′ to 1, and m′ − 1 to m′ + 1).

For the converse, assume L(A) ̸= Σ∗. If ϵ /∈ L(A), then correctness follows by the
treatment of this case above. Otherwise, let x /∈ L(A) with x ̸= ϵ, and consider w = ♡mx.
We claim that Babs(w) > 2m. Indeed, w /∈ L(B), and therefore Babs(w) > 0. If Babs(w) =∞
then we are done. Otherwise, let a be a jump sequence such that wa ∈ L(B). Then a1 ≥ m+1,
contributing a cost of at least m to a. It can be easily seen by induction over m that in
order for a to cover the entries 1, . . . ,m starting at position m+ 1 and ending at position
m+ 2, it requires cost of at least another m. Then, however, in order for wa to be accepted
by B, it must hold that wa|Σ ≠ x, so a is not the identity starting from m+ 1. It therefore
has an additional cost of at least 1. Thus, JaK > 2m. In particular, Babs(w) > 2m, so B is
not 2m-bounded, and we are done.

Lemma 4.8 shows hardness for fixed k, and in particular when k is part of the input.
Thus, Univ-Param-Bnd and Param-Bnd are also PSPACE-hard, and Univ-k-Bnd is
PSPACE-complete. Also, Univ-Param-Bnd is in EXPSPACE and 2-EXPSPACE for k given
in unary and binary, respectively.

5. The Reversal Semantics

We now study the reversal semantics. Recall from Definition 3.2 that for a JFA A and
a word w, the cost Arev(w) is the minimal number of times the jumping head changes
“direction” in a jump sequence for which w is accepted.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:13

Consider a word w with |w| = n and a jump sequence a = (a0, a1, a2, . . . , an, an+1). We
say that an index 1 ≤ i ≤ n is a turning index if ai > ai−1 and ai > ai+1 (i.e., a right-to-left
turn) or if ai < ai−1 and ai < ai+1 (i.e., a left-to-right turn). We denote by Turn(a) the set
of turning indices of a.

For example, consider the jump sequence (
a0
0 ,

a1
2 ,

a2
3 ,

a3
5 ,

a4
7 ,

a5
4 ,

a6
1 ,

a7
6 ,

a8
8), then Turn(a) =

{4, 6}. Note that the cost of w is then Arev(w) = min{|Turn(a)| | wa ∈ L(A)}. Viewed in
this manner, we have that Arev(w) ≤ |w|, and computing Turn(a) can be done in polynomial
time. Thus, analogously to Theorem 4.2 we have the following.

Theorem 5.1 (Reversal Membership is NP-complete). The problem of deciding, given A
and k, whether Arev(w) ≤ k is NP-complete.

Remark 5.2. For every jump sequence a we have that |Turn(a)| is even, since the head
starts at position 0 and ends at n + 1, where after an odd number of turning points the
direction is right-to-left, and hence cannot reach n+ 1.

5.1. Decidability of Boundedness Problems for REV. We begin by characterizing the
words accepted using at most k reversals as a shuffle of subwords and reversed-subwords, as
follows. Let x, y ∈ Σ∗ be words, we define their shuffle to be the set of words obtained by
interleaving parts of x and parts of y. Formally:

x� y = {s1 · t1 · s2 · t2 · · · sk · tk | ∀i si, ti ∈ Σ∗ ∧ x = s1 · · · sk ∧ y = t1 · · · tk}
For example, if x = aab and y = cd then x� y contains the words aabcd, acabd, caadb,
among others (the colors reflect which word each subword originated from). Note that the
subwords may be empty, e.g., caadb can be seen as starting with ϵ as a subword of x. It is
easy to see that � is an associative operation, so it can be extended to any finite number of
words.

The following lemma states that, intuitively, if Arev(w) ≤ k, then w can be decomposed
to a shuffle of at most k + 1 subwords of itself, where all the even ones are reversed
(representing the left-reading subwords).

Lemma 5.3. Let k ∈ N. Consider an NFA A and a word w ∈ Σ∗. Then Arev(w) ≤ k if
and only if there exist words s1, s2, . . . , sk+1 ∈ Σ∗ such that the following hold.

(1) s1s2 . . . sk+1 ∈ L(A).
(2) w ∈ s1 � s2

R
� s3 � s4

R
� . . .� sk+1 (where sRi is the reverse of si).

Proof. For the first direction, assume Arev(w) ≤ k, so there exists a jump vector a such
that |Turn(a)| ≤ k and wa ∈ L(A). Write Turn(a) = {i1, i2, . . . , iℓ} where i1 < i2 < . . . < iℓ,
and set i0 = 0 and iℓ+1 = n+ 1. Then, for every 1 ≤ j ≤ ℓ+ 1, the j-th turning subword is
sj = waij−1

waij−1+1 · · ·waij
(for j = ℓ+ 1 we end with waiℓ+1−1). If ℓ+ 1 < k + 1 we define

the remaining subwords sℓ+2, . . . , sk+1 to be ϵ. To avoid cumbersome indexing, we assume
ℓ+ 1 = k + 1 in the following.

It is now easy to see that Conditions 1 and 2 hold for s1, . . . , sk+1. Indeed, by definition
we have s1 · · · sk+1 ∈ L(A), so Condition 1 holds. For Condition 2, observe that for every
1 ≤ i ≤ k+ 1, if i is odd, then si consists of an ascending sequence of letters, and if i is even
then si is a descending sequence. Since the si form a partition of the letters of w, we can
conclude that w ∈ s1 � s2

R
� s3 � s4

R
� . . .� sk+1 (by shuffling the letters of these words

to form exactly the sequence of indices 1, . . . , |w|).

31:14 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

For the converse, consider words s1, . . . , sk+1 such that Conditions 1 and 2 hold. By
Condition 2, we see that the word s1s2 . . . sk+1 is a permutation of w, and moreover –
from the way w is obtained in s1 � s2

R
� s3 � s4

R
� . . .� sk+1 we can extract a jump

sequence a such that wa = s1, . . . , sk+1 and such that the turning subwords of a are exactly
s1, s

R
2 , . . . , sk+1. Indeed, this follows from the same observation as above – for odd i we have

that si is an increasing sequence of indices, and for even i it is decreasing. In particular,
|Turn(a)| ≤ k, so Arev(w) ≤ k.

Using the characterization in Lemma 5.3, we can now construct a corresponding NFA,
by intuitively guessing the shuffle decomposition and running copies of A and its reverse in
parallel.

Lemma 5.4. Let k ∈ N and consider a JFA A. We can effectively construct an NFA B
such that L(B) = {w ∈ Σ∗ | Arev(w) ≤ k}.

Proof. The overall plan is to construct B so that it captures the conditions in Lemma 5.3.
Intuitively, B keeps track of k + 1 coordinates, each corresponding to a turning subword
(that are nondeterministically constructed). The odd coordinates simulate the behavior of
A, whereas the even ones simulate the reverse of A. In addition B checks (using its initial
and accepting states) that the runs on the subwords can be correctly concatenated. We
proceed with the precise details.

Denote A = ⟨Σ, Q, δ,Q0, F ⟩. We construct B = ⟨Σ, Q′, δ′, Q′
0, F

′⟩ as follows. Q′ = Qk+1,
and the initial and final states are:

Q′
0 = {(q1, q2, . . . qk+1) | q1 ∈ Q0 ∧ qi = qi+1 for all even i}

F ′ = {(q1, q2, . . . qk+1) | qk+1 ∈ F ∧ qi = qi+1 for all odd i}

For the transition function, we have that (q′0, q
′
1, . . . q

′
k) ∈ δ′((q0, q1, . . . qk), σ) if and only if

there exists a single 1 ≤ j ≤ k + 1 such that q′j ∈ δ(qj , σ) if j is odd, and qj ∈ δ(q′j , σ) if j is

even. In addition, for every i ̸= j, it holds that q′i = qi.
We turn to show the correctness of B. Consider an accepting run ρ of B on some word.

Then ρ starts at state (q1, q2, . . . , qk+1) ∈ Q′
0 and ends at state (s1, s2, . . . , sk+1) ∈ F ′. By

the definition of δ′, we can split ρ according to which component “progresses” in each
transition, so that ρ can be written as a shuffle of run ρ1, . . . , ρk+1 where ρi leads from qi to
si in A if i is odd, and ρi leads from qi to si in the reverse of A if i is even. The latter is
equivalent to (ρi)R (i.e., the reverse run of ρi) leading from si to qi in A if i is even.

We now observe that these runs can be concatenated as follows: Recall that q1 ∈ Q0

(by the definition of Q′
0). Then, ρ

1 leads from q1 to s1 in A. By the definition of F we have
s1 = s2, and (ρ2)R leads from s2 to q2 in A. Therefore, ρ1(ρ2)R leads from q1 to q2 in A.
Continuing in the same fashion, we have q2 = q3, and ρ

3 leading from q3 to s3, and so on up
to sk+1.

Thus, we have that ρ1(ρ2)Rρ3 · · · (ρk)Rρk+1 is an accepting run of A.
By identifying each accepting run ρi with the subword it induces, we have that w ∈ L(B)

if and only if there are words s1, . . . , sk+1 such that the two conditions in Lemma 5.3 are
satisfied.

The proof of Lemma 5.4 shows that the size of B is polynomial in the size of A and
single-exponential in k, giving us PSPACE membership for Univ-k-Bnd, and EXPSPACE/
2-EXPSPACE for Univ-Param-Bnd with unary/binary encoding, respectively.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:15

5.2. PSPACE-Hardness of Boundedness for REV. Following a similar scheme to the
Absolute Distance Semantics of Section 4, observe that for a word w ∈ Σ∗ we have that
Arev(w) = 0 if and only if w ∈ L(A), which implies that Univ-0-Bnd is PSPACE-hard. Yet
again, the challenge is to prove hardness of Univ-k-Bnd for all values of k.

Theorem 5.5. For rev, Univ-k-Bnd is PSPACE-complete for every k ∈ N.
Proof. Membership in PSPACE follows from Lemma 5.4 and the discussion thereafter. For
hardness, we follow the same flow as the proof of Lemma 4.8, but naturally the reduction
itself is different. Specifically, we construct an NFA that must read an expression of the
form (♡♠)m before its input. This allows us to shuffle the input to the form ♠m♡m, which
causes many reversals.

By Remark 5.2 we can assume without loss of generality that k is even, and we denote
k = 2m. We reduce the universality problem for NFAs to the Univ-2m-Bnd problem.
Consider an NFA A = ⟨Q,Σ, δ, Q0, α⟩, and let ♡,♠ /∈ Σ be fresh symbols. We first check
whether ϵ ∈ L(A). If ϵ /∈ L(A), then L(A) ̸= Σ∗ and we output some fixed unbounded
automaton B (e.g., as in Examples 1.1 and 8.12).

Otherwise, we obtain from A an NFA B over the alphabet Σ∪{♡,♠} such that w ∈ L(B)
if and only if the following hold:

(1) Either w does not contain exactly m occurrences of ♡ and of ♠, or
(2) w = (♡♠)mx where x ∈ L(A) (in particular x ∈ Σ∗).

Constructing B from A is straightforward as the union of two components: one that accepts
words that satisfy Condition 1 (using 2m+1 states) and one for Condition 2, which prepends
to A a component with 2m states accepting (♡♠)m. In particular, the reduction is in
polynomial time.

We then have the following: if L(A) = Σ∗, then for every w ∈ (Σ ∪ {♡,♠})∗, if w
satisfies Condition 1, then Brev(w) = 0. Otherwise, w has exactly m occurrences of ♡ and
of ♠. Denote the indices of ♡ by i1 < i2 < . . . < im and of ♠ by j1 < j2 < . . . < jm. Also
denote by t0 < t1 < . . . < tr the remaining indices of w. Then, consider the jump sequence

a = (0, i1, j1, i2, j2, . . . , im, jm, t0, t1, . . . , tr, n+ 1)

We claim that wa ∈ L(B) by Condition 2. Indeed, w starts with (♡♠)m, followed by letters
in Σ composing a word x. Since x ∈ L(A) = Σ∗, we have that Condition 2 holds. In addition,
observe that since t0 < t1 < . . . < tr < n+ 1, then Turn(a) ⊆ {i1, j1, . . . , im, jm, t0}, and in
particular |Turn(a)| ≤ 2m+ 1. Moreover, by Remark 5.2 we know that |Turn(a)| is even, so
in fact |Turn(a)| ≤ 2m = k. We conclude that Brev(w) ≤ k, so B is k-bounded.

Conversely, if L(A) ̸= Σ∗, take x /∈ L(A) such that x ≠ ϵ (which exists since we checked
above that ϵ ∈ L(A)). Consider the word w = ♠m♡mx, then have w /∈ L(B). We claim that
Brev(w) > 2m. Indeed, if there exists a such that wa ∈ L(B), then since w has exactly m
occurrences of ♠ and of ♡, it must be accepted by Condition 2. By the structure of w, the
jump sequence a needs to permute ♠m♡m into (♡♠)m. Intuitively, this means that the
head must jump “back and forth” for 2m steps. More precisely, for every i ∈ {1, . . . , |w|} it
holds that

ai ∈


{m+ 1, . . . , 2m} i ≤ 2m is odd

{1, . . . ,m} i ≤ 2m is even

{2m+ 1, . . . , |w|} i > 2m

In particular, {1, . . . , 2m} ⊆ Turn(a). Observe that the remaining suffix of wa starting at
2m + 1 cannot be x, since x /∈ L(A), so a is not the identity starting from 2m + 1. It

31:16 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

therefore has an additional reversal cost of at least 1. Thus, |Turn(a)| > 2m. In particular,
Brev(w) > 2m, so B is not 2m-bounded, and we are done.

As in Section 4.2, it follows that Univ-Param-Bnd, k-Bnd and Param-Bnd are also
PSPACE-hard.

6. The Hamming Semantics

Recall from Definition 3.3 that for a JFA A and word w, the cost Aham(w) is the minimal
Hamming distance between w and w′ where w′ ∼ w and w′ ∈ L(A).

Remark 6.1 (An alternative interpretation of the Hamming Semantics). We can think
of a jumping automaton as accepting a permutation w′ of the input word w. As such, a
natural candidate for a quantitative measure is the “distance” of the permutation used to
obtain w′ from the identity (i.e. from w). The standard definition for such a distance is the
number of transpositions of two indices required to move from one permutation to the other
(this is commonly known as the distance in the Cayley graph [MKS04] for the transpositions
generators of Sn). It is easy to show that in fact, the Hamming distance coincides with this
definition.

Again we start by establishing the complexity of computing the Hamming measure of a
given word.

Theorem 6.2 (Hamming Membership is NP-complete). The problem of deciding, given A
and k ∈ N, whether Aham(w) ≤ k is NP-complete.

Proof. By definition we have that Aham(w) ≤ |w| for every word w. Thus, in order to decide
whether Aham(w) ≤ k we can nondeterministically guess a permutation w′ ∼ w and verify
that w′ ∈ L(A) and that dH(w,w′) ≤ k. Both conditions are computable in polynomial
time. Therefore, the problem is in NP.

Hardness follows (similarly to the proof of Theorem 4.2) by reduction from membership
in JFA, noting that w ∈ J(A) if and only if Aham(w) ≤ |w|.

Similarly to Sections 4.1 and 5.1, in order to establish the decidability of Univ-Param-
Bnd, we start by constructing an NFA that accepts exactly the words for which Aham(w) ≤ k.

Lemma 6.3. Let k ∈ N. We can effectively construct an NFA B with L(B) = {w ∈ Σ∗ |
Aham(w) ≤ k}.

Proof. Let k ∈ N. Intuitively, B works as follows: while reading a word w sequentially,
it simulates the run of A, but allows A to intuitively “swap” the current letter with a
(nondeterministically chosen) different one (e.g., the current letter may be a but the run of
A can be simulated on either a or b). Then, B keeps track of the swaps made by counting
for each letter a how many times it was swapped by another letter, and how many times
another letter was swapped to it. This is done by keeping a counter ranging from −k to k,
counting the difference between the number of occurrences of each letter in the simulated
word versus the actual word. We refer to this value as the balance of the letter. B also keeps
track of the total number of swaps. Then, a run is accepting if at the end of the simulation,
the total amount of swaps does not exceed k, and if all the letters end up with 0 balance.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:17

We now turn to the formal details. Recall that A = ⟨Σ, Q, δ,Q0, α⟩. We define
B = ⟨Σ, Q′, δ′, Q′

0, β⟩.
The state space of B is Q′ = Q× {−k, . . . , k}Σ × {0, . . . , k}. We denote a state of B by

(q, f, c) where q ∈ Q is the current state of A, f : Σ→ {−k, . . . , k} describes for each letter
its balance and c ∈ {0, . . . , k} is the total number of swaps thus far.

The initial states of B are Q′
0 = {(q, f, 0) | q ∈ Q0 ∧ f(σ) = 0 for all σ ∈ Σ}. That is,

we start in an initial state of A with balance and total cost of 0. The transition function is
defined as follows. Consider a state (q, f, c) and a letter σ ∈ Σ, then (q′, f ′, c′) ∈ δ′((q, f, c), σ)
if and only if either q′ = δ(q, σ) and f ′ = f and c′ = c, or there exists τ ∈ Σ, τ ̸= σ such that
q′ ∈ δ(q, τ), c′ = c+1, f ′(σ) = f(σ)− 1, and f ′(τ) = f(τ)+1. That is, in each transition we
either read the current letter σ, or swap for a letter τ and update the balances accordingly.

Finally, the accepting states of B are β = {(q, f, c) | q ∈ α ∧ f(σ) = 0 for all σ ∈ Σ}.
In order to establish correctness, we observe that every run of B on a word w induces

a word w′ (with the nondeterministically guessed letters) such that along the run the
components f and c of the states track the swaps made between w and w′. In particular, c
keeps track of the number of total swaps, and

∑
σ∈Σ f(σ) = 0. Moreover, for every word σ,

the value f(σ) is exactly the number of times σ was read in w′ minus the number of times σ
was read in w.

Since B accepts a word only if f ≡ 0 at the last state, it follows that B accepts if and
only if w′ ∼ w, and the run of A on w′ is accepting. Finally, since c is bounded by k and is
increased upon every swap, then w is accepted if and only if its cost is at most k. Note that
since c is increased upon each swap, then limiting the image of f to values in {−k, . . . , k}
does not pose a restriction, as they cannot go beyond these bounds without c going beyond
the bound k as well.

An analogous proof to Theorem 4.6 gives us the following.

Theorem 6.4. The following problems are decidable for the ham semantics: k-Bnd,
Param-Bnd, Univ-k-Bnd, and Univ-Param-Bnd.

We note that the size of B constructed in Lemma 6.3 is polynomial in k and single-
exponential in |Σ|, and therefore when Σ is fixed and k is either fixed or given in unary,
both Univ-Param-Bnd and Univ-k-Bnd are in PSPACE.

For a lower bound, we remark that similarly to Section 4.2, it is not hard to prove that
Univ-k-Bnd is also PSPACE-hard for every k, using relatively similar tricks. However, since
Univ-Param-Bnd is already PSPACE-complete, then Univ-k-Bnd is somewhat redundant.
We therefore make do with the trivial lower bound whereby we reduce universality of NFA
to Univ-0-Bnd.

Theorem 6.5. For ham, the Univ-Param-Bnd problem is PSPACE-complete for k encoded
in unary and fixed alphabet Σ.

7. The Maximum Jump Semantics

Of all the semantics we propose, the max semantics turns out to be the most technically-
challenging to analyze. We start with a fundamental observation regarding the structure of
jump sequences that have a bounded max semantics. Consider a jump sequence a such that
JaKmax ≤ k for some k. It is not hard to see that if a is very long, the head may perform
arbitrarily many reversals during a (i.e., the number of reversals can be arbitrarily larger

31:18 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

than k), e.g., by repeating sequences of indices of the form (i, i+ 2, i+ 1, i+ 3). However, if
we fix a concrete index j on the tape, then a cannot cross j too many times. Indeed, after
enough crosses, all cells within distance k of j have been read, and therefore in order to
cross j again a jump of size > k needs to be made.

This observation provides some structures to max-bounded sequences. We now start by
formalizing it. We reuse some notions form the Reversal semantics in Section 5. Our first
definition is a variant of turning subwords, but we consider indices instead of words, and we
divide them to left and right.

Definition 7.1 (Sweeps). Let a = (a0, . . . , an+1) be a jump sequence. A right sweep of a is
an infix b = (ai, . . . , ai+j) such that all of the following hold:

• ak < ak+1 for all i ≤ k < i+ j.
• Either i = 0, or i > 1 and ai−2 > ai−1.
• Either i+ j = n+ 1 or ai+j+1 < ai+j .

Similarly, a left sweep, is an infix b = (ai, . . . , ai+j) such that:

• ak > ak+1 for all i ≤ k < i+ j.
• i > 1 and ai−2 < ai−1.
• i+ j < n+ 1 and ai+j+1 > ai+j .

We use sweep to refer to either a right or a left sweep.
Equivalently, b is a sweep if:

• Either i = 0 or i− 1 ∈ Turn(a).
• i+ j ∈ Turn(a).
• k /∈ Turn(a) for all i ≤ k < i+ j.

Note that every jump sequence can be written uniquely as a concatenation of sweeps.
Next, we consider the partition of the tape to two parts at some index, and the number

of times the border of the partition is crossed.

Definition 7.2. Let n ∈ N and 0 ≤ m ≤ n. The m-cut of {0, . . . , n+ 1} is the partition
({0, . . . ,m}, {m+ 1, . . . , n+ 1}).

Let a = (a0, . . . , an+1) be a jump sequence. We say that a k-crosses the m-cut if there
exist distinct indices i1, . . . , ik ∈ {0, . . . , n} such that for all 1 ≤ j ≤ k, aij , aij+1 belong to
two different sides of the m-cut.

We denote the maximal k such that a k-crosses the m-cut by #×(a,m).

Our fundamental observation is that if JaKmax is bounded, then so is the maximal crossing.

Lemma 7.3. Let a be a jump sequence of length n. If JaKmax ≤ k, then #×(a,m) ≤ 2k + 1
for all 1 ≤ m ≤ n.

Proof. Intuitively, since the maximal jump is bounded by k, and since no index can be
visited twice, then after 2k + 1 iterations all the cells within distance k of m have been
visited, and there is no way to jump over m again while maintaining a maximal jump of at
most k. The following argument formalizes this intuition.

Let 0 ≤ i1, . . . , i#×(a,m) ≤ n be the indices provided by Definition 7.2. For all 1 ≤
j ≤ #×(a,m) we have that either aij ≤ m < aij+1 or aij ≤ m < aij+1. Additionally,
Jaij+1 − aij K ≤ k. It follows that aij ∈ {m− k,m− k + 1, . . . ,m+ k + 1}. Since aij are all
distinct, we have #×(a,m) ≤ |{m− k, . . . ,m+ k + 1}| = 2k + 2. Observe that #×(a,m) is
odd (since a begins at index 0 and ends at n+ 1), and so #×(a,m) ≤ 2k + 1.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:19

Lemma 7.4. Let k ∈ N. We can effectively construct an NFA B with L(B) = {w ∈ Σ∗ |
Amax(w) ≤ k}.

We prove the lemma in the remainder of this section. We first provide some intuition
behind the construction of B. Similarly to the construction in Lemma 5.4, B keeps track of
a fixed number (depending on k) of coordinates, each can be “active” or “inactive” at any
given time, and when active, corresponds to a sweep. Unlike the rev semantics, however, it
is now not the case that the number of sweeps is bounded, so we cannot a-priori assign a
coordinate to each sweep.

In order to overcome this obstacle, we observe that by Lemma 7.3, we have a bound of
the number of active sweeps that need to be tracked at any given time. B then assigns every
letter it reads to one of the active sweeps, and simulates the behavior of A or the reverse of
A on each right or left sweep respectively. At each step, B might “activate” a pair of inactive
coordinates, thus assigning one to a left sweep ending in some state q, and a subsequent right
sweep starting in q. Similarly, B might “deactivate” a pair of active coordinates to mark the
end of a right sweep (at a state q) and the beginning of the subsequent left sweep (at the
same state q). The set of different “operations” that can be performed by B is captured by
the following definitions.

This intuition gets us close to the solution, but not quite there due to the fact that
the operations sequences we allow cannot always be translated to runs. Below we formally
define the operations, and demonstrate this issue. We then proceed to resolve it and give
the complete construction.

Definition 7.5. Let k ∈ N. The k-operations are the members of the set

{(activate, jL, jR) | 1 ≤ jL, jR ≤ 2k + 2}∪
{(deactivate, jL, jR) | 1 ≤ jL, jR ≤ 2k + 2}∪
{none(j) | 1 ≤ j ≤ 2k + 2}

We sometimes omit k when it is clear from context.

Intuitively, none(j) corresponds to not activating or deactivating, and reading a letter
into coordinate j. While performing activate(jL, jR) we must read a letter into jL, and
while performing deactivate(jL, jR) we must read a letter into jR.

Definition 7.6. Let u = (u1, . . . ,un) be a sequence of k-operations. For 1 ≤ j ≤ 2k + 2, 1 ≤
i ≤ n we say that j is right-active at step i if there exists i′ ≤ i such that ui′ is of the form
(activate, j′, j), and for all i′ < i′′ < i, ui′′ is not a deactivation involving j. Note that i
itself is allowed to be the deactivation of j. We similarly define j being left-active at step i
if there exists i′ ≤ i such that ui′ is of the form (activate, j, j′), and for all i′ < i′′ < i, ui′′

is not a deactivation involving j.
If j is right-active or left-active at step i, then it is active at step i, and otherwise

inactive. Additionally we say that 1 is right-active at step 0.
Naturally, not all sequences of k-operations are “legal”. Thus, u is a k-operation sequence

if for all 1 ≤ i ≤ n:
• If ui = (activate, jL, jR) then jL, jR are both inactive at step i− 1.
• If ui = (deactivate, jL, jR) then jL, jR are respectively left-active and right-active at
step i− 1.
• If ui = (none, j) then j is active at step i.
• At step n, there exists a single j that is right-active, and all other coordinates are inactive.

31:20 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

If j is being deactivated at step i, we call it weakly active at step i. Otherwise, if it is active
at step i, it is strongly active at step i.

In the following, we keep track of each sweep in some coordinate. In order to allow a
fixed number of coordinates, we present the following definitions and lemmas.

Definition 7.7. Let a be a jump sequence and let b = (ai, . . . , ai+j) be a right sweep. The
range of b is:

• If i = 0, then Range(b) = {ai, ai + 1 . . . , ai+j}.
• If i ̸= 0, then Range(b) = {ai−1, ai−1 + 1, . . . , ai+j}.
Similarly, if b is a left sweep, we define Range(b) = {ai+j , ai+j + 1, . . . , ai−1}.

The distinction in the right-sweep case is due to the fact that in the case that b comes
after a left sweep b′, we want the range to include all indices starting at the turning index,
while b only starts further to the right. For left sweeps, cases are not needed since a left
sweep is never the first sweep.

The bounded crossing property can be cast in terms of ranges of sweeps, as follows.

Lemma 7.8. Consider a jump sequence a = (a0, . . . , an+1) with JaKmax = k. For every
i ∈ {1, . . . , n} define Ri = {b | b is a sweep of a and i ∈ Range(b)}, then |Ri| ≤ 2k + 2.

Proof. Let 0 ≤ i ≤ n. There exists at most one sweep in Ri containing i (as there exists
exactly one such sweep overall). Let b ∈ Ri be a sweep not containing i. We claim that
there exists an index jb such that ajb ∈ b and ajb , ajb+1 belong to two different sides of the
i-cut. Indeed, write b = (ai′ , . . . , ai′+j′), and observe that j′ > 0 (as otherwise b = (i) and
in particular it contains i). From i ∈ Range(b) it follows that ai′ , ai′+j′ belong to different
sides of the i-cut. Let jb < i′ + j′ be the maximal such that ajb belongs to the same side as
ai′ . Then jb satisfies the condition.

Since the sweeps are disjoint, the indices jb are distinct, and so by Definition 7.2, a
(|Ri| − 1)-crosses the i-cut. It follows by Lemma 7.3 that |Ri| ≤ (2k + 1) + 1 = 2k + 2.

We now consider the following setting: we allocate 2k+1 coordinates, and upon reading
a word (sequentially), we wish to track each “active” sweep in a coordinate. We present
some definitions to establish these notions.

Definition 7.9. Let k, n ∈ N and let P be a partition of {1, . . . , n}. A k-embedding of P is
a function f : P → {1, . . . , 2k + 2}.

Definition 7.10. Let a = (a0, . . . ,an+1) be a jump sequence and let b1, . . . ,bm be the
sweeps of a. The partition of {1, . . . , n} induced by a is Pa = {B1, . . . Bm} such that Bi is
the set of indices appearing in bi for all i ∈ {1, . . . ,m}.

For k ∈ N, a k-embedding f of Pa is called valid for a if for every two sweeps b,b′ with
respective B,B′ ∈ Pa, if f(B) = f(B′) then Range(b) ∩ Range(b′) = ∅.

Intuitively, this definition says that if two sweeps are assigned to the same coordinate,
then they need to have disjoint ranges, i.e., one of them completes before the other starts.

Lemma 7.11. Let a such that JaKmax ≤ k. Then a has a valid k-embedding.

Proof. For each sweep b of a, let ib be the minimal index in Range(b) (ties broken arbitrarily).
Let b1 ≤ . . . ≤ bm be the sweeps, ordered by ib. We assign the values of f to the sweeps in
increasing order, using a greedy algorithm: When assigning f(B) for b, applying Lemma 7.8
to ib, there is at least one free value, and we choose one arbitrarily.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:21

A valid k-embedding essentially “dictates” which sweeps should be assigned to which
coordinates. Specifically, we have the following.

Definition 7.12. Let k ∈ N, Let a = (a0, . . . , an+1) be a jump sequence and let f be a valid
k-embedding of a. Let b1, . . . ,bm be the sweeps of a and Pa = {B1, . . . , Bm} the induced
partition of {1, . . . , n}. The operation sequence of (a, f) is the unique operation sequence
ua,f defined as follows. For all i ∈ {1, . . . , n}:
• If i is the minimal index of a left sweep bl, then either i = 0, or

ua,f
i = (activate, f(Bl), f(Bl+1))

• If i is the maximal index of a right sweep bl, then either i = n+ 1, or

ua,f
i = (deactivate, f(Bl), f(Bl+1))

• Otherwise, ua,f
i = (none, f(B)) such that i ∈ B.

Dually, any operation sequence induces a partition and a k-embedding, as follows.

Definition 7.13. Let k ∈ N and u an operation sequence of length n. The partition and
embedding of u are the partition Pu of {1, . . . , n} and k-embedding fu are defined as follows.
Let f ′ : {1, . . . , n} → {1, . . . , 2k + 2} be

f ′(i) =


jL ui = (activate, jL, jR)

jR ui = (deactivate, jL, jR)

j ui = (none, j)

Pu is defined by the equivalence relation where for i < i′, i ∼ i′ if f ′(i) = f ′(i′) and there
does not exist i < i′′ < i′ such that ui′′ is activation or deactivation involving f ′(i). fu is
defined to be fu(B) = f ′(i) for any i ∈ B.

It is tempting to think that k-embeddings and operation sequences are just two repre-
sentations of the same objects. However, things are somewhat more intricate. Note that if
a is a jump sequence and f is a valid embedding for it then Pua,f , fua,f are exactly Pa, f .
However, not every operation sequence u is obtained as ua,f for some a, f . Intuitively, this
happens when the operation sequence does not “connect” the sweeps to a single run, as we
now demonstrate.

Example 7.14. Consider k = 2, n = 4, and the sequence

u = ((none, 1), (activate, 2, 3), (deactivate, 2, 3), (none, 1)

Coordinate 1 is active and holds a single “sweep” through the run, into which we read w1, w4.
Additionally, coordinates 2, 3 are activated at step 2 and we read w2 into 2, then we read w3

into 3 and deactivate 2, 3. The rest of the coordinates are never active. However, there is no
fitting jump sequence, and intuitively the reason is the “sweeps” do not form a single path
with their activations and deactivations.

Moreover, the issue raised in this example is not something that can be fixed “locally”
in the definition. Indeed, upon reading the prefix (none, 1), (activate, 2, 3) of u, there is
no way of telling whether the suffix that is to be read induces a legal jump sequence or not.

We lift Definition 7.7 to operation sequences that do not necessarily stem from jump
sequences. Intuitively, this involves defining the range of the partitions, which we do by
taking the minimal interval between activation and de-activation, as follows.

31:22 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

Definition 7.15. Let u be a k-operation sequence and P, f the partition and embedding
of u. For B ∈ P , the range of B induced by u, is Rangeu(B) = {i1, . . . , i2}, where i1, i2 are
defined as follows. Choose i ∈ B arbitrarily.

• If f(B) is activated at some step i′ ≤ i, then i1 is the maximal such i′, and otherwise
i1 = 0.
• If f(B) is deactivated at some step i′ ≥ i, then i2 is the minimal such i′, and otherwise
i2 = n+ 1.

Note that the ranges above are well-defined (i.e., independent of the choice of i) due to the
equivalence relation defined in Definition 7.13. We additionally define an “inverse” of the
embedding, which tells us to which part in the partition each coordinate/index pair belongs
to, as follows.

Definition 7.16. Let u be a k-operation sequence and P, f the partition and embedding
of u. The inverse embedding is the function f−1 : {1, . . . , 2k + 2} × {0, . . . , n + 1} → P
(by abuse of notation) such that f−1(j, i) is the unique B ∈ P such that f(B) = j and
i ∈ Range(B), or ⊥ if no such B exists.

As mentioned above, the problematic operations sequences are those whose embeddings
do not correspond to a single run. As demonstrated in Example 7.14, this happens when
there are disconnected components. We now formalize this property by considering an
appropriate graph.

Definition 7.17. Let u be a k-operation sequence and P, f the partition and embedding of
u. The sweep graph of u is Gu = (V,E) defined as follows. The vertices are V = P , and
two sets in P are connected by an edge if they are activated or deactivated as a pair. That
is, (B,B′) ∈ E if there exists i ∈ Range(B) ∩ Range(B′) such that ui is an activation or
deactivation of f(B), f(B′).

Observe that the degree of the vertices in G is at most 2, since every sweep is activated
and deactivated at most once. Thus, G is a disjoint union of simple paths and simple cycles.
Intuitively, G is of interest to us because its connectivity is equivalent to u stemming from
a jump sequence, and avoiding cases like Example 7.14. Therefore, the NFA we construct
keeps track of the connected components of G during the run. The equivalence is captured
in the following lemma.

Lemma 7.18. Let u be a k-operation sequence and P, f the partition and embedding of u.
There exists a jump sequence a such that u = ua,f if and only if Gu is a simple path.

Proof. Assume Gu is a path Bi1 , . . . , Bim . For all 1 ≤ l ≤ m let bil consist of the elements
of Bil in increasing order if l is odd, and in decreasing order if l is even. Then a =
(0,bi1 , . . . ,bim , n+ 1) satisfies the requirement.

For the other direction, assume there exists such a. Then the edges of Gu correspond to
exactly the pairs of subsequent sweeps of a, with every edge connecting a sweep to the next
one, and so it is a path.

In order to reason about the components of the graph above in a “sequential” manner,
we define a function that indicates for every coordinate/index pair, which are the sweeps
that are connected to this coordinate. The precise definition is the following.

Definition 7.19. Let u be a k-operation sequence. The component function of u is the
function S : ({1, . . . , 2k + 2}×{0, . . . , n})→ 2{1,...,2k+2} ∪{⊥} defined inductively as follows.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:23

• S(1, 0) = {1} and S(j, 0) = ⊥ for all j ̸= 1.
• If i > 0 and ui = (activate, jL, jR) then:
– S(jL, i) = S(jR, i) = {jL, jR}.
– S(j, i) = S(j, i− 1) for all j /∈ {jL, jR}.
• If i > 0 and ui = (deactivate, jL, jR) then:
– S(jL, i) = S(jR, i) = ⊥.
– S(j, i) = S(jL, i− 1) ∪ S(jR, i− 1) for all j ∈ (S(jL, i− 1) ∪ S(jR, i− 1)) \ {jL, jR}.
– S(j, i) = S(j, i− 1) for all j /∈ S(jL, i− 1) ∪ S(jR, i− 1).
• If i > 0 and ui = (none, j) then S(j′, i) = S(j′, i− 1) for all j′.

Note that for j ̸= 1, if j is active at step i then f−1(j, i) ̸= ⊥. For j = 1, however, since it
starts as active, if it is never “used” by u then it remains active through u but there is no B
with f(B) = 1. Hence, we add the restriction that 1 must be used.

Definition 7.20. Let u be a k-operation sequence. We say that u is 1-valid if u contains
an operation involving the coordinate 1.

Observe that if u is 1-valid then f−1(1, 0) is the set B containing the minimal index i
such that ui involves 1.

We can now characterize the existence of a cycle (i.e., an isolated connected component)
in Gu in a sequential manner. Intuitively, the characterization is that at some point we
deactivate two coordinates that are connected only to each other. Since the structure of a
cycle may involve several sweeps, the proof is somewhat involved.

Lemma 7.21. Let u be a 1-valid k-operation sequence. Then Gu has a cycle if and only if
there exist i > 0, jL, jR such that ui = (deactivate, jL, jR) and S(jL, i−1) = S(jR, i−1) =
{jL, jR}.
Proof. Let P, f be the partition and embedding of u. For all i ∈ {0, . . . , n}, Let Gi = (Vi, Ei)
be the sub-graph of Gu defined as follows. Vi = {B ∈ P | ∃i′ ≤ i, i′ ∈ Rangeu(B)}.
Intuitively, Vi is the set of all sets that are activated up until (and including) step i. Ei

contains all the pairs (B,B′) such that there exists i′ ≤ i, i′ ∈ Range(B) ∩ Range(B′) such
that ui′ is activation or deactivation involving f(B), f(B′). Intuitively, B,B′ are activated or
deactivated together up until (including) step i. We claim that for all j ∈ {1, . . . , 2k + 2}, i ∈
{0, . . . , n}:
• If j is inactive at step i, then S(j, i) = ⊥.
• If j is weakly active at step i, then S(j, i) = ⊥.
• Otherwise (j is strongly active at step i), S(j, i) is the set of coordinates in f(C) that are
strongly active at step i, where C is the connected component of f−1(j, i) in Gi.

The proof is by induction on i. For i = 0, only j = 1 is (strongly) active, G0 consists of the
single vertex f−1(1, 0), and indeed we have S(1, 0) = {1} and S(j, 0) = ⊥ for all j ̸= 1 by
definition. Let i > 0 and assume the claim holds for i− 1. We consider three cases according
to the i’th operation:

• ui is of the form (none, j). Then the claim follows from the fact that Gi+1 = Gi,
S(j′, i) = S(j′, i− 1) for all j′, and the induction hypothesis.
• ui is of the form (activate, jL, jR). Then

Vi = Vi−1 ∪ {f−1(jL, i), f
−1(jR, i)} and Ei = Ei−1 ∪ {(f−1(jL, i), f

−1(jR, i))}
Hence, The connected components of Gi are the same as those of Gi−1 with the addition
of {f−1(jL, i), f

−1(jR, i)}. By the definition of S we have S(jL, i) = S(jR, i) = {jL, jR}

31:24 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

and S(j, i) = S(j, i − 1) for all other j. If j is inactive in step i then j /∈ {jL, jR} and
it is also inactive in step i− 1, and the claim follows from the induction hypothesis. If
j ∈ {jL, jR} then C = {jL, jR}, and the claim follows. Otherwise, j is strongly active at
step i and also at step i− 1, and the claim follows from the induction hypothesis.
• ui is of the form (deactivate, jL, jR). Then

Vi = Vi−1 and Ei = Ei−1 ∪ {(f−1(jL, i), f
−1(jR, i))}

By the induction hypothesis, S(jL, i−1) = F (CL) and S(jR, i−1) = f(CR) where CL, CR

are the connected components of f−1(jL, i− 1), f−1(jR, i− 1), respectively, in Gi−1. We
now consider the following cases:
– j ∈ (S(jL, i− 1) ∪ S(jL, i− 1)) \ {jL, jR}, w.l.o.g. j ∈ S(jL, i− 1). Since two vertices

being connected by a path is an equivalence relation, we have S(jL, i− 1) = S(j, i− 1).
In particular, by the induction hypothesis, j is strongly active in step i − 1 and the
connected component of f−1(j, i − 1) in Gi is CL. Therefore it is strongly active at
step i and the connected component of f−1(j, i) in Gi is CL ∪ CR. Additionally, by the
definition of S, we have S(j, i) = S(jL, i−1)∪S(jR, i−1) = f(CL)∪f(CR) = f(CL∪CR),
as needed.

– j ∈ {jL, jR}. Then S(j, i) = ⊥ by definition and the claim follows.
– Otherwise, j is either strongly active or inactive in both steps i− 1, i, and there is no

change in the connected component. Additionally, S(j, i) = S(j, i− 1), and the claim
follows from the induction hypothesis.

Assume Gu has a cycle C. Every “sweep” is of degree at most 2 in Gu, as every sweep
is activated at most once and deactivated at most once. In particular, all “sweeps” in C
have degree exactly 2, and so C is a connected component. Additionally, every such “sweep”
is necessarily deactivated, or else it would have degree lower than 2. Let BL, BR ∈ P be
the last vertices in C that are deactivated, let i be the index in which it happens and
jL, jR be the corresponding coordinates. Then ui = (deactivate, jL, jR), and BL, BR are
the only vertices B ∈ C such that f(B) are active at step i. Hence, they are also the
only vertices B ∈ C such that f(B) is strongly active at step i − 1, and by the claim we
have S(jL, i − 1) = S(jR, i − 1) = {jL, jR}, as needed. For the other direction, assume
ui = (deactivate, jL, jR) and S(jL, i − 1) = S(jR, i − 1) = {jL, jR}. Then by the claim,
f−1(jL, i− 1), f−1(jR, i− 1) are connected in Gi−1. Additionally, Gi is obtained from Gi−1

by adding an edge between them, forming a cycle.

Lemma 7.21 essentially shows that an NFA can sequentially track an operation sequence
and determine whether it corresponds to a run. It remains to deal with the requirement
that JaKmax ≤ k.

Definition 7.22. Let u be a k-operation sequence. The distance function of u, is the
function t : {0, . . . , n} × {1, . . . , 2k + 2} → 2{1,...,2k+2} ∪ {⊥} defined as follows. For 1 ≤ j ≤
2k + 2, 1 ≤ i ≤ n:
• If j is inactive at step i then t(j, i) = ⊥.
• Otherwise, t(j, i) = i− i′, where i′ is the maximal index such that i′ ≤ i and ui′ (either
an activate or a none operation) involves j, or t(j, i) = i if there does not exist such i′.

Intuitively, this captures the size of the jumps made by A. t(j, i) is the number of steps that
passed since we last read a letter into the relevant sweep. Thus, we have that JaKmax ≤ k if
and only if the jumps prescribed by t are bounded. More precisely, we have the following.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:25

Observation 7.23. Let k ∈ N and a a jump sequence. Then JaKmax ≤ k if and only if there
exist a valid k-embedding f such that for the operation sequence ua,f it holds that for every
1 ≤ i ≤ n and 1 ≤ j ≤ 2k + 2 that is active at step i, we have t(j, i) ≤ k − 1.

We are now ready to describe the construction of our NFA.

Proof of Lemma 7.4. Denote A = ⟨Σ, Q, δ,Q0, F ⟩. We construct B = ⟨Σ, Q′, δ′, Q′
0, F

′⟩ as
follows:

Q′ = ({R,L} × Q × {0, . . . , k − 1} × 2{1,...,2k+2}) ∪ {⊥})2k+2. Intuitively, B guesses
an operation sequence, which also dictates which coordinate every letter is read into, and
simulates A or its reverse on the chosen coordinate. After reading the i’th letter, each
coordinate j that is strongly active at step i is marked by a tuple including the following
information:

• A flag specifying whether the sweep f−1(j, i) is a right or a left sweep.
• The current state in the simulated run of A on wf−1(j,i), where wf−1(j,i) is the turning

subword wb for the sweep b given by f−1(j, i).
• t(j, i) (where t is the distance function).
• S(j, i) (where S is the component function).

If j is inactive or weekly active at step i, it is marked by ⊥.
Q′

0 = {(R, q0, 0, {1}) | q0 ∈ Q0} × {⊥}2k+2−1.
F ′ = {(v1, . . .v2k+2) | there exists j such that vj = (R, qf , t, {j}), where qf ∈ F , and
vj′ = ⊥ for all j′ ̸= j}.

We proceed to define δ′ as a case split of three cases, corresponding to the different
possible operations. A vector (v′

1, . . . ,v
′
2k+2) is in δ

′((v1, . . . ,v2k+2), σ) if it satisfies one of
the following conditions:

• Transition corresponding to none operations: There exists 1 ≤ j ≤ 2k + 2 such that:
– Either vj = (R, qj , tj , Sj),v

′
j = (R, q′j , 0, Sj) where q

′
j ∈ δ(qj , σ), or vj = (L, qj , tj , Sj),

v′
j = (L, q′j , 0, Sj) where qj ∈ δ(q′j , σ).

– For all j′ ̸= j, either vj′ = v′
j′ = ⊥, or vj′ = Dj′ , qj′ , tj′ , Sj′ and v′

j′ = Dj′ , qj′ , tj′ +1, Sj′

Note that tj′ + 1 must not exceed k, reflecting the fact that we cannot go beyond
jumping budget k.

• Transition corresponding to activate operations: There exist 1 ≤ lL, jR ≤ 2k + 2 such
that:
– vjL = vjR = ⊥.
– v′

jR
= (R, q, 0, {jL, j′R}).

– v′
jL

= (L, p, 0, {jL, jR}) such that q ∈ δ(p, σ). Intuitively, q is the “turning state”
between the two sweeps, and since a letter is read into coordinate jL, its state is set to
p.

– For all j /∈ {jL, jR}, either vlj = v′j = ⊥, or vj = (j, qj , tj , Sj) and v′
jl = (Dlj, qlj, tj +

1, Sj).
• Transition corresponding to deactivate operations: There exist 1 ≤ jL, jR ≤ 2k + 2 such
that:
– vjL = (L, q′, tjL , SjL).
– vjR = (R, q, tjR , SjR), where q

′ ∈ δ(q, σ).
– v′

jL = v′
jR = ⊥.

– For all j /∈ {jL, jR}, either vj = v′
j = ⊥, or vj = (Dj , qj , tj , Sj) and v′

j = (Dj , qj , tj +

1, S′
j), such that if j /∈ SjL ∪SjR then S′

j = Sj , and if j ∈ SjL ∪SjR then S′
j = SjL ∪SjR .

31:26 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

– It does not hold that SjL = SjR = {jL, jR}.
It remains to prove the correctness of the construction. Assume Amax(w) ≤ k, with a
corresponding jump sequence a. By Lemma 7.8, a has a valid k-embedding f . Let u = ua,f .
By Lemma 7.18, Gu is a path, whose first vertex B must have f(B) = 1 and therefore
u is 1-valid. Consider the run ρ of B that “guesses the operations” of u and correctly
simulates accepting runs of A or its reverse on each of the sweeps. Such a run exists with
the constraint on the distance function satisfied by Observation 7.23, and the condition
SjL = SjR = {jL, jR} never occurs upon an operation (deactivate, jL, jR) by Lemmas 7.18
and 7.21. Hence B accepts w.

Conversely, assume w ∈ L(B) with an accepting run ρ. Let u be the operation sequence
guessed by ρ, and P, f be the partition of {1, . . . , n} and embedding corresponding to u.
Every vertex in Gu has degree at most 2. Gu is the disjoint union of either a simple path (if
u is 1-valid) or an isolated vertex (otherwise), and any number of cycles. By Lemma 7.21, Gu

has no cycles, and is therefore a simple path, and in particular, u is 1-valid. By Lemma 7.18,
There exists a jump sequence a such that u = ua,f . Since ρ is accepting, we have that
wa ∈ L(A). Additionally, by Observation 7.23 we have JaKmax ≤ k, and so Amax(w) ≤ k.

We can now conclude the decidability of boundedness in the usual manner.

Theorem 7.24. The following problems are decidable for the max semantics: k-Bnd,
Param-Bnd, Univ-k-Bnd, and Univ-Param-Bnd.

The proof of Lemma 7.4 shows that the size of B is polynomial in the size of A and
single-exponential in k, giving us PSPACE membership for Univ-k-Bnd, and EXPSPACE/
2-EXPSPACE for Univ-Param-Bnd with unary/binary encoding, respectively.

Note that as with the other semantics, we trivially get PSPACE-hardness for Univ-
0-Bnd (and therefore hardness for Univ-Param-Bnd and Param-Bnd). For the case of
Univ-k-Bnd for k ̸= 0, however, we leave the lower bound open. We note that the hardness
techniques used for the other semantics fail for the max semantics. Specifically, this is due
to the fact that unlike the other semantics, max is not cumulative: that is, once a prefix
of a jump sequence attains cost k, even if the rest of the permutation has additional cost,
the overall cost might still be k. This means that we cannot use the ♡-prefixes as in other
hardness proofs to “max out” the jumping budget.

8. Interplay Between the Semantics

Having established some decidability results, we now turn our attention to the interplay
between the different semantics, in the context of boundedness. We show that for a given
JFA A, if Aabs is bounded, then so are Amax and Aham, if Aham is bounded, then so is Arev,
and if Amax is bounded, then so is Arev. We complete the picture by showing that these
are the only relationships – we give examples for the remaining cases (see Table 2).

Lemma 8.1. Consider a JFA A. If Aabs is bounded, then Amax is bounded.

Proof. For every jump sequence a we have JaKmax ≤ JaK. It follows that for all k ∈ N, w ∈ Σ∗,
if there exists a jump sequence a such that wa ∈ L(A) and JaK ≤ k, then we also have
JaKmax ≤ k, and the claim follows.

Lemma 8.2. Consider a JFA A. If Aabs is bounded, then Aham is bounded.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:27

Proof. Consider a word w ∈ Σ∗, we show that if Aabs(w) ≤ k for some k ∈ N then
Aham(w) ≤ (2k + 1)(k + 1). Assume Aabs(w) ≤ k, then there exists a jump sequence
a = (a0, . . . , an+1) such that JaK ≤ k and wa ∈ L(A). In the following we show that ai = i
for all but (2k + 1)(k + 1) indices, i.e., |{i | ai ̸= i}| ≤ (2k + 1)(k + 1).

It is convenient to think of the jumping head moving according to a in tandem with
a sequential head moving from left to right. Recall that by Lemma 4.3, for every index i
we have that i − k ≤ ai ≤ i + k, i.e. the jumping head stays within distance k from the
sequential head.

Consider an index i such that ai ≠ i (if there is no such index, we are done). We claim
that within at most 2k steps, A performs a jump of cost at least 1 according to a. More
precisely, there exists i+ 1 ≤ j ≤ i+ 2k such that |aj − aj−1| > 1. To show this we split to
two cases:

• If ai > i, then there exists some m ≤ i such that m has not yet been visited according
to a (i.e., by step i). Index m must be visited by ai within at most k steps (otherwise it
becomes outside the i− k, i+ k window around the sequential head), and since ai > i, it
must perform a “ left jump” of size at least 2 (otherwise it always remains to the right of
the sequential reading head).
• If ai < i, then there exists some m ≥ i such that m has already been visited by step i
according to a. Therefore, within at most 2k steps, the jumping head must skip at least
over this position (think of m as a hurdle coming toward the jumping head, which must
stay within distance k of the sequential head and therefor has to skip over it). Such a
jump incurs a cost of at least 1.

Now, let B = {i | ai ≠ i} and assume by way of contradiction that |B| > (2k + 1)(k + 1).
By the above, for every i ∈ B, within 2k steps the run incurs a cost of at least 1. While
some of these intervals of 2k steps may overlap, we can still find at least k + 1 such disjoint
segments (indeed, every i ∈ B can cause an overlap with at most 2k other indices). More
precisely, there are i1 < i2 < . . . < ik+1 in B such that ij > ij−1 +2k for all j, and therefore
each of the costs incurred within 2k steps of visiting ij is independent of the others. This,
however, implies that JaK ≥ k + 1, which is a contradiction, so |B| ≤ (2k + 1)(k + 1).

It now follows that Aham(w) = |{i | wai ̸= wi}| ≤ |{i | ai ̸= i}| ≤ (2k + 1)(k + 1)

Lemma 8.3. Consider a JFA A. If Aham is bounded, then Arev is bounded.

Proof. Consider a word w ∈ Σ∗, we show that if Aham(w) ≤ k for some k ∈ N then
Arev(w) ≤ 3k. Assume Aham(w) ≤ k, then there exists a jump sequence a = (a0, . . . , an+1)
such that wa ∈ L(A) and wa differs from w in at most k indices. We claim that we can
assume without loss of generality that for every index i such that wai = wi we have ai = i
(i.e., i is a fixed point). Intuitively – there is no point swapping identical letters. Indeed,
assume that this is not the case, and further assume that a has the minimal number of
fixed-points among such jump sequences. Thus, there exists some j for which aj ̸= j but
waj = wj . Let m be such that am = j, and consider the jump sequence a′ = (a′0, . . . , a

′
n+1)

obtained from a by composing it with the swap (aj am). Then, for every i /∈ {j,m} we have
that a′i = ai. In addition, a′j = am = j as well as a′m = aj . In particular, a′ has more fixed

points than a (exactly those of a and j). However, we claim that wa = wa′ . Indeed, the only
potentially-problematic coordinates are aj and am. For j we have waj = wj = wa′j

. and for

m we have wa′m = waj = wj = wam . This is a contradiction to a having a minimal number
of fixed points, so we conclude that no such coordinate aj ̸= j exists.

31:28 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

Next, observe that Turn(a) ⊆ {i | ai ̸= i ∨ ai+1 ̸= i + 1 ∨ ai−1 ̸= i − 1}. Indeed,
if ai−1 = i − 1, ai = i and ai+1 = i + 1 then clearly i is not a turning index. By the
property established above, we have that wai = wi, if and only if ai = i. It follows that
Turn(a) ⊆ {i | wai ̸= wi ∨wai+1 ̸= wi+1 ∨wai−1 ̸= wi−1}, so |Turn(a)| ≤ 3k (since each index

where wa ̸= w is counted at most 3 times3 in the latter set).

Combining Lemmas 8.2 and 8.3, we have the following.

Corollary 8.4. Consider a JFA A. If Aabs is bounded, then Arev is bounded.

The max semantics poses a greater challenge than other semantics. Nonetheless, we are
able to relate it to the other semantics.

Lemma 8.5. Consider a JFA A. If Amax is bounded, then Arev is bounded.

Before proving the lemma, we first demonstrate the difficulty in proving it. Observe
that for each of the previous implications between the semantics regarding boundedness, in
order to show that a word w with low cost in one semantics also has low cost in another, we
actually show that a jumping sequence a that “witnesses” this low cost in the one semantics,
also witnesses it in the other. For example, in the proof of Lemma 8.2, given w and a such
that JaK ≤ k, we showed that dH(w,wa) ≤ (2k + 1)(k + 1), and similar results hold in the
contexts of Lemmas 8.1 and 8.3.

Unfortunately, an analogous claim does not hold for the relationship between max and
rev. Indeed, for w,a such that JaKmax ≤ k the value min{#rev(b) | wb = wa} can be
unboundedly large. Stated precisely, the following example demonstrates the existence of a
(non-regular) language L and a language L′ such that every w ∈ L′ has a permutation in L,
with {min{JaKmax | wa ∈ L} | w ∈ L′} being bounded, but {min{#rev(a) | wa ∈ L} | w ∈
L′} is unbounded.

Example 8.6. For n ∈ N, let w(n) = abcaabca4bc · · · a2nbc = (a2
i
bc)ni=0, and w′(n) =

acbaacba4cb · · · a2ncb = (a2
i
cb)ni=0. Consider L = {w(n) | n ∈ N}, L′ = {w′(n) | n ∈ N}.

Observe that, while L is unbounded in the max semantics, we do get bounded max when
restricting the input to L′. That is, every w′(n) ∈ L′ has a permutation w(n) ∈ L induced
by the jump sequence a which “swaps every cb into bc”, which yields JaKmax = 1 and

w
′(n)
a = w(n). However, we show that min{#rev(b) | w′(n)

b = w(n)} is unboundedly large as

n increases. Since w(n) is the only permutation of w′(n) belonging to L, the claim follows.
Before proving this formally, we give an intuitive approach. Consider the words

w(n) = abcaabcaaaabca8bca16bca32bca64bc

w′(n) = acbaacbaaaacba8cba16cba32cba64cb

and try to construct a jumping run on w′(n) that reads w(n), with very few reversals. In
order to minimize reversals, it seems reasonable to skip the first c, and then obtain the bc
pairs by taking b from one pair with the c from the next cb. However, in order to read
enough a’s in between pairs, one must skip some b’s as well. Then, after one sweep, we
somehow need to go back and pick the remaining b’s and c’s, together with enough a’s in
between. There, problems start to arise – if we leave too many “holes” in the word, we find
ourselves needing to go back and forth to pick up a’s. This is far from any formal argument,

3A slightly finer analysis shows that this is in fact at most 2k, but we are only concerned with boundedness.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:29

but playing around with this approach gives a strong feeling that the reversals should be
unbounded. We now turn to give a formal argument for this.

Assume by way of contradiction that there exists k such that min{#rev(b) | w′(n)
b =

w(n)} ≤ k for all n. Consider n = 100k2 and w′ = w′(n), and let b be a jump sequence

such that #rev(b) ≤ k and w′
b = w(n). We partition {1, . . . , |w′|} into k segments, each

corresponding to a sub-word of w′ consisting of 100k consecutive sequences of the form a∗cb.

That is, for every i ∈ {1, . . . , k}, let ni =
∑100ki

j=100k(i−1)+1(2
j + 2) (note that each 2j + 2

is the length of the j-th a∗cb sequence), and the i’th segment is then Si = {
∑(i−1)

j=1 nj +

1, . . . ,
∑i

j=1 nj}. In addition, let

Bw′
i = {j ∈ Si | w′

j = b} Bb
i = {l ∈ {1, . . . , |w′|} | w′

l = b ∧ ∃j ∈ Si : bj = l}

That is, we consider the set Bw′
i of occurrences of the letter b that belong to the i’th segment

of w′, versus the set of occurrences of b that are read by the i’th segment of b. As a
sanity check, if b is the jump sequence that always flips the pairs cb to bc (which is not
bounded-reversal), namely

b = (0, 1, 3, 2, 4, 5, 7, 6, 8, 9, 10, 11, 13, 12, . . .)

then we would have Bw′
i = Bb

i , since all b’s are read in their original segment. Specifically,

we would have (depending on k) e.g., Bw′
1 = Bb

1 = {3, 7, 13, . . .}, where the “reason” for

3 ∈ Bw′
1 is because b2 = 3. Another way to view Bb

i is as the set of occurrences of b that
are read at times that correspond the i-th segment.

Fix i ∈ {1, . . . , k} and let A = (
⋃i

j=1B
w′
j) \ (

⋃i
j=1B

b
j) be the set of occurrences of b

that have not yet been read by w′
b after reading segments 1, . . . , i. We claim that |A| ≤ 2k

(actually, |A| ≤ k + 1 ≤ 2k, but 2k is more convenient to work with). That is, after reading
i segments, at most 2k of the b’s belonging to the first i segments of w′ remain unread.
Intuitively, if there are many b’s appearing at the beginning of w′ that are read at a late
stage of the jump sequence, then between every two such b’s we must read a huge number of
a’s – more a’s than those available around the first i segments, and thus we must make a
jump to the right and back to the left in order to read sufficiently many a’s, resulting in too
many reversals.

Formally, consider the set C = {m | bm ∈ A}, i.e., the inverse image under b of the set
A. Intuitively, m ∈ C means that at timestep m we have w′

bm
= b, but bm is before the end

of Si, whereas m is after. We order the elements of C as m1 < . . . < M|A|.
Intuitively, we claim that once b is read at time ml for some 1 ≤ l < |A|, then before

reading b again at ml+1, so many a’s need to be read, that a segment above i must be visited,
which is only possible with a reversal.

More precisely, for every l < |A| let Dl = {t | ml < t < ml+1 ∧ wt = a}. Since
ml ∈

⋃
j>i Sj we have that |Dl| ≥ 2100ki+1 (since we need to read at least this many a’s

between consecutive b at such late times). For all t ∈ Dl we have that w′
bt

= a, but

|{t ∈
⋃i

j=1 Sj | w′
t = a}| =

∑100ki
r=1 2r < 2100ki+1, and so there exists t ∈ Dl \

⋃i
j=1 Sj .

Since bml
,bml+1

∈ A ⊆
⋃i

j=1 Sj we conclude that b performs at least one reversal

between the indices ml,ml+1. Thus, b performs at least |A| − 1 reversals overall, and so
|A| ≤ #rev(b) + 1 ≤ k + 1 ≤ 2k.

We now claim that, intuitively, the b’s of w′ are read “mostly sequentially” in the
following sense: Denote by Bi = Bw′

i ∩Bb
i the set of “well-behaved” b’s – those that are in

31:30 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

segment i and are read at a time corresponding to segment i. We claim that |Bi| ≥ 96k for

all i. Indeed, |Bw′
i | = 100k by definition, and observe that any occurrence of b ∈ Bw′

i that is
read “too early” (i.e., read in segment j < i) is by definition not itself in segment j < i (this
is a trivial observation), i.e.,

Bw′
i ∩

i−1⋃
j=1

Bb
j

 ⊆
i−1⋃

j=1

Bb
j

 \
i−1⋃

j=1

Bw′
j


Additionally, we observe that there are equal numbers of b’s that are read in times before
segment i, but are not in locations before segment i, as there are b’s that are in locations
before segment i, but are not read in times before segment i. That is,∣∣∣∣∣∣

i−1⋃
j=1

Bb
j

 \
i−1⋃

j=1

Bw′
j

∣∣∣∣∣∣ =
∣∣∣∣∣∣
i−1⋃

j=1

Bw′
j

 \
i−1⋃

j=1

Bb
j

∣∣∣∣∣∣
Indeed, this follows since |

⋃i−1
j=1B

w′
j | = |

⋃i−1
j=1B

b
j |, and in both sides we remove the same

set of “well-behaved” b’s.
Thus, by the bound on |A| and since Bw′

i ∩(
⋃i−1

j=1B
b
j) ⊆ A, we have |Bw′

i ∩(
⋃i−1

j=1B
b
j)| ≤

2k. Since any b that is after segment i and read later than segment i, was in particular not
read up to segment i, we have

Bw′
i ∩

⋃
j>i

Bb
j

 ⊆
 i⋃

j=1

Bw′
j

 \
 i⋃

j=1

Bb
j

 ⊆ A
So again by the bound on |A| we now have

|Bi| ≥ |Bw′
i ∩Bb

i | =

∣∣∣∣∣∣Bw′
i \

i−1⋃
j=1

Bb
j ∪

⋃
j>i

Bb
j

∣∣∣∣∣∣ ≥
|Bw′

i | −

∣∣∣∣∣∣Bw′
i ∩

i−1⋃
j=1

Bb
j

∣∣∣∣∣∣−
∣∣∣∣∣∣Bw′

i ∩
⋃
j>i

Bb
j

∣∣∣∣∣∣ = 100k − 2k − 2k = 96k

We next claim that for all i, Bi is not read monotonically, that is, there exist ji1 < ji2 ∈ Si
such that bji2

< bji1
∈ Bi. Intuitively, it is impossible to read the majority of b’s of a segment

from left to right without making a reversal between many pairs of subsequent b’s, resulting
in too many reversals. Indeed, assume by way of contradiction that is not the case, and
so there exist m1 < . . . < m|Bi| ∈ Si such that bm1 < . . . < bm|Bi|

∈ Bi. We have

|Bw′
i \Bi| ≤ 4k, and so denoting Bw′

i = {l1 < . . . < l100k}, there exist at most 8k indices of

the form lt ∈ Bw′
i such that at least one of lt, lt+1 is not in Bi. Hence, there exist at least 92k

indices lt ∈ Bw′
i such that lt, lt+1 ∈ Bi. For each such index lt, consider the infix of w′ given

by w′
blt
, w′

blt
+1, . . . , w

′
blt+1−1, w

′
blt+1

. Note that this is a contiguous infix of w′ from index

blt of length lt+1 − lt. By our assumption (that the b’s are read consecutively), it follows
that this infix is of the form ba∗cb, as a consecutive infix of w′ between two occurrences of b.

We now compare this infix to what is actually read following b. While reading b’s happens
consecutively within Bw′

i , outside it the behavior can be arbitrary, with the exception that
the resulting word is w′. We therefore have that, w′

blt
w′
blt+1

· · ·w′
blt+1−1

w′
blt+1

∈ (bca∗)∗b.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:31

In particular, between reading the two b’s we must at some point read ca. However, ca is
not available in the consecutive infix above. Therefore, there must be at least one reversal in
b during this infix. Since this is true in every one of the 92k indices we consider, it follows
that #rev(b) ≥ 92k > k, thus leading to a contradiction.

To finalize the proof, this contradiction means that most b’s of each segment are read by
the corresponding segment of the jump sequence, thus incurring an overall “nearly sequential”
run on the b’s, but each of the k segments also incurs a reversal within the segment. Since we
have k segments, this sums up to at least 2k reversals (i.e., two turning points per reversal).
More precisely, for all i we have Si < Si+1 and Bi < Bi+1, and so 0 < j11 < j12 < j21 <
j22 < . . . < jk1 < jk2 < n+ 1, while b0 < bj12

< bj11
< bj22

< bj21
< . . . < bjk2

< bjk1
< bn+1,

resulting in #rev(b) ≥ 2k > k, leading to a contradiction.

The example shows that in proving Lemma 8.5, there is no hope to take a jump sequence
a with bounded JaKmax and show that it induces bounded reversals, nor that we can modify
it and obtain the same word using another jump sequence with bounded reversals. We must
actually find an entirely different word that is accepted with a different jump sequence with
bounded reversals, but is still in the target language.

We proceed with the proof of Lemma 8.5. Intuitively, we show that the jump sequences
witnessing the bounded max induce words consisting of boundedly many sequences of the
same letter (e.g., a∗b∗c∗). These words are in L(A) by definition, and in turn, they witness
a bounded rev cost for every w ∈ J(A).

Proof of Lemma 8.5. Let A be a JFA such that Amax(w) ≤ k for all w ∈ J(A). Let w ∈ J(A).
Write Σ = {σ1, . . . , σ|Σ|}, and for all i ∈ {1, . . . , |Σ|}, let mi be the number of σi occurrences

in w. Then w′ = σm1
1 · · ·σ

m|Σ|
|Σ| ∈ J(A), and therefore has a jump sequence a such that

JaKmax ≤ k and w′
a ∈ L(A). By Lemma 7.3 we have that #×(a,

∑i
j=1mj) ≤ 2k + 1 for

all 1 ≤ i ≤ |Σ| − 1. It follows that w′
a ∈ {σ∗1 + . . .+ σ∗|Σ|}

k′ for k′ = (|Σ| − 1)(2k + 1) + 1,

since every transition between sequences of two different letters crosses at least one of the
|Σ| − 1 corresponding cuts. Observe that w′

a is also a permutation of w, and we claim that
there exists a jump sequence b such that wb = w′

a and #rev(b) ≤ k′. Indeed, writing
w′
a = σr1l1 · · ·σ

rk′
lk′

, the above can be achieved by reading any r1 indices of w containing σl1
from left to right, then r2 occurrences of σl2 from right to left, and so on. We therefore have
that Arev(w) ≤ k′ for all w ∈ J(A).

We proceed to show that no other implication holds with regard to boundedness,
by demonstrating languages for each possible choice of bounded/unbounded semantics
(c.f. Remark 3.5). The examples are summarized in Table 2, and are proved below.

Example 8.7. The language (a+ b)∗ is bounded in all semantics. This is trivial, since every
word is accepted, and in particular has cost 0 in all semantics.

Example 8.8. The language c∗ac∗bc∗ is unbounded in the abs semantics, but bounded in
ham, rev and max. Indeed, let A be an NFA such that L(A) = c∗ac∗bc∗ and consider a
word w ∈ J(A). If w ∈ L(A), then trivially Aham(w) = 0. Otherwise, w ∈ c∗bc∗ac∗, and
Aham(w) = 2. Overall, ham is bounded, and by Lemma 8.3, so is rev.

For max, we again only need to consider words w ∈ c∗bc∗ac∗. Intuitively, in order to
read a before b, we must jump over b, but leave enough c’s unread so that we can go back
from a to b, and then forward again until the end of the word. Consider the case that
w ∈ c∗b(ccc)∗ac∗, that is, there exist i, j such that wi = b, wi+3j+1 = a, and wk = c for all

31:32 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

abs ham rev max Language

Bounded Bounded Bounded Bounded (a+ b)∗

Unbounded Bounded Bounded Bounded c∗ac∗bc∗

Unbounded Bounded Bounded Unbounded (a+ b)∗a

Unbounded Unbounded Bounded Bounded
((a(aa)∗b(bb)∗)∗+

(b(bb)∗a(aa)∗)∗)(a∗ + b∗)
Unbounded Unbounded Bounded Unbounded a∗b∗

Unbounded Unbounded Unbounded Unbounded (ab)∗

Table 2: Examples for every possible combination of bounded/unbounded semantics. The
languages are given by regular expressions (e.g., (a+ b)∗a is the language of words
that end with a.)

other k. Consider the jump sequence a = (0, 1, . . . , i− 1, i+ 1, i+ 4, i+ 7, . . . i+ 3j + 1, i+
3j, i+ 3j − 3, . . . i, i+ 2, i+ 5, . . . i+ 3j − 1, i+ 3j + 2, i+ 3j + 3, . . . n+ 1). That is, we first
read the first sequence of c. We then jump over the b and read every third c until reaching
a. After reading the a, we turn and read every third c while moving left until reaching b
and reading it, then turn again and read the remaining c’s in increasing order. We have
JaKmax = 2. The analysis for w ∈ c∗b(ccc)∗cac∗ and w ∈ c∗b(ccc)∗ccac∗ is similar, and we
have that max is bounded.

For abs, however, consider the word w = bcna for every n ∈ N. Any accepting jump
sequence a has aj = n+ 2,ak = 1 for j < k. Let A ⊆ {2, . . . , n+ 1} = {ai | i < j}. That
is, A corresponds to all those c’s that are read before the a. Denote A = {i1, . . . , i|A|} and
A = {i|A|+1, . . . , in}. Now,

JaK =
n+1∑
i=1

Jai − ai−1K ≥

=

j∑
i=1

Jai − ai−1K +
k∑

i=j+1

Jai − ai−1K

(∗)
≥(|A|+ 1) + (n− |A|)
=n+ 1

Where (∗) is due to the fact that every ”skipped” letter adds 1 to the size of at least one
jump. By increasing n, we have that abs is unbounded.

Example 8.9. The language (a + b)∗a is bounded in the ham and rev semantics, but
unbounded in abs and max. Indeed, let A be an NFA such that L(A) = (a + b)∗a and
consider a word w ∈ J(A), then w has at least one occurrence of a at some index i. Then,
for the jumping sequence a = (0, 1, 2, . . . , i − 1, n, i + 1, . . . n − 1, i, n + 1) we have that
wa ∈ L(A). Observe that dH(wa, w) ≤ 2 (since wa differs from w only in indices i and n),
and Turn(a) ⊆ {i, n}, so Aham(w) ≤ 2 and Arev(w) ≤ 2.

For abs and max, however, consider the word abn for every n ∈ N. Since the letter a
must be read last, any jumping sequence a accepting the word has an = 1 and an+1 = n+ 1,
meaning a jump of length n− 1 occurs. We therefore have that Aabs,Amax are unbounded.

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:33

Example 8.10. Let L = ((a(aa)∗b(bb)∗)∗ + (b(bb)∗a(aa)∗)∗)(a∗ + b∗). That is, L consists
of all the words where every maximal sequence of all a or all b is of odd length, except
maybe the last. L is bounded in the rev and max semantics, but unbounded in abs and
ham. Indeed, let A be an NFA such that L(A) = L. We have that J(A) = {a+ b}∗: Let
w ∈ {a+ b}∗. If w ∈ (a∗ + b∗) then clearly w ∈ L. Otherwise, let m,n be the number of
occurrences of a, b in w respectively. If either of m,n is odd then ambn or bnam, respectively,
is a permutation of w and is in L(A). Otherwise, am−1babn−1 is. To see that max is bounded,
intuitively, we read the word mostly sequentially, except when reaching the end of a sequence
of w.l.o.g a’s, we swap the last a of the sequence with the subsequent b if needed to maintain
the parity condition. Formally, consider the jump sequence a = (0, 1, a2, . . . an, n+ 1) where
ai for 2 ≤ i ≤ n is defined inductively as follows, maintaining the invariant that for all
j, aj ∈ {j − 1, j, j + 1} and aj = j − 1 ⇐⇒ aj−1 = j (that is, a consists of disjoint
transpositions of subsequent indices). We say that i is post-change if wi−1 ̸= wi, and is
pre-change if i < n and wi ̸= wi+1. We consider the following cases:

• If i is neither post-change nor pre-change, then ai = i.

• If i is post-change and not pre-change, then ai =


i ai−1 = i− 1

i− 1 ai−1 = i

i ai−1 = i− 2 (so ai−2 = i− 1)
• If i is pre-change, then let j be the maximal index such that j < i and waj ̸= wi, or j = 0

if such j does not exist. Then ai =

{
i i− j is odd

i+ 1 i− j is even

It holds that wa ∈ J(A). Since a consists of disjoint transpositions of subsequent indices
we have that JaKmax ≤ 2 (with a jump of size 2 possibly occurring if two swaps are made
consecutively). In conclusion, Amax is bounded. By Lemma 8.5 we have that Arev is also
bounded.

For ham, however, consider the word w = (aabb)n. For any k and any permutation w′

of w with dH(w,w′) ≤ k, w′ has at least n − 2k sequences of length 2, and in particular
w′ /∈ J(A) for a large enough n. It follows that Aham is unbounded, and by Lemma 8.2, so
is Aabs.

Example 8.11. The language a∗b∗ is bounded in the rev semantics, but unbounded in
ham, abs and max. Indeed, let A be an NFA such that L(A) = a∗b∗ and consider a word
w ∈ J(A), and denote by i1 < i2 . . . < ik the indices of a’s in w in increasing order, and by
j1 > j2 > . . . > jn−k the indices of b’s in decreasing order. Then, for the jumping sequence
a = (i1, . . . , ik, j1, . . . jn−k, n + 1) we have that wa ∈ L(A), and Arev(w) ≤ 2 (since the
jumping head goes right reading all the a’s, then left reading all the b’s, then jumps to
n+ 1).

For ham and max, consider the word w = bnan for every n ∈ N. The only permutation
of w that is accepted in L(A) is w′ = anbn, and dH(w,w′) = n, so Aham is unbounded.
By Lemma 8.2 it follows that Aabs is also unbounded. Additionally, any jumping sequence
a accepting the word has a0 = 0 and a1 ≥ n+ 1, thus incurring a jump of length at least n,
and so Amax is also unbounded.

Example 8.12. The language (ab)∗ is unbounded in all the semantics. Indeed, let A be an
NFA such that L(A) = (ab)∗.

Consider the word w = bnan for every n ∈ N, and let a = (a0, a1, . . . , a2n, a2n+1) such
that wa ∈ (ab)∗, then for every odd i ≤ 2n we have ai ∈ {n+ 1, . . . , 2n} and for every even

31:34 S. Almagor, N. Dafni, and I. Salgado Vol. 21:4

i ≤ 2n we have ai ∈ {1, . . . , n}. In particular, every index 1 ≤ i ≤ 2n is a turning point,
so Arev(w) = 2n, and Arev is unbounded. By Lemmas 8.3 and 8.5 and Corollary 8.4, it
follows that Aabs,Aham,Amax are also unbounded.

9. Discussion and Future Work

Quantitative semantics are often defined by externally adding some quantities (e.g., weights)
to a finite-state model, usually with the intention of explicitly reasoning about some
unbounded domain. It is rare and pleasing when quantitative semantics arise naturally
from a Boolean model. In this work, we study four such semantics. Curiously, despite the
semantics being intuitively unrelated, it turns out that they give rise to interesting interplay
(see Section 8).

We argue that Boundedness is a fundamental decision problem for the semantics we
introduce, as it measures whether one can make do with a certain budget for jumping. An
open question left in this research is existentially-quantified boundedness : whether there exists
some bound k for which Asem is k-bounded. This problem seems technically challenging, as
in order to establish its decidability, we would need to upper-bound the minimal k for which
the automaton is k-bounded, if it exists. The difficulty arises from two fronts: first, standard
methods for showing such bounds involve some pumping argument. However, the presence
of permutations makes existing techniques inapplicable. We expect that a new toolbox is
needed to give such arguments. Second, the constructions we present for Univ-Param-Bnd
in the various semantics seem like the natural approach to take. Therefore, a sensible
direction for the existential case is to analyze these constructions with a parametric k.
The systems obtained this way, however, do not fall into (generally) decidable classes. For
example, in the ham semantics, using a parametric k we can construct a labelled VASS. But
the latter do not admit decidable properties for the corresponding boundedness problem.

We remark on one fragment that can be shown to be decidable: consider a setting
where the jumps are restricted to swapping disjoint pairs of adjacent letters, each incurring
a cost of 1. Then, the JFA can be translated to a weighted automaton, whose boundedness
problem is decidable by [Has82, LP04]. We remark that the latter decidability is a very
involved result. This suggests (but by no means proves) that boundedness may be a difficult
problem.

References

[AK11] Shaull Almagor and Orna Kupferman. Max and sum semantics for alternating weighted automata.
In International Symposium on Automated Technology for Verification and Analysis, pages 13–27.
Springer, 2011. doi:/10.1007/978-3-642-24372-1_2.

[Alm20] Shaull Almagor. Process symmetry in probabilistic transducers. In 40th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, 2020. doi:10.4230/
LIPIcs.FSTTCS.2020.35.

[ANA22] Antonio Abu Nassar and Shaull Almagor. Simulation by rounds of letter-to-letter transducers.
In 30th EACSL Annual Conference on Computer Science Logic, 2022. doi:10.4230/LIPIcs.CSL.
2022.3.

[AS24] Shaull Almagor and Ishai Salgado. Jumping automata must pay. 409:19–34, 2024. doi:10.4204/
EPTCS.409.6.

[AY23] Shaull Almagor and Omer Yizhaq. Jumping automata over infinite words. In International
Conference on Developments in Language Theory, pages 9–22. Springer, 2023. doi:10.1007/
978-3-031-33264-7_2.

https://doi.org//10.1007/978-3-642-24372-1_2
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.35
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.35
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://doi.org/10.4230/LIPIcs.CSL.2022.3
https://doi.org/10.4204/EPTCS.409.6
https://doi.org/10.4204/EPTCS.409.6
https://doi.org/10.1007/978-3-031-33264-7_2
https://doi.org/10.1007/978-3-031-33264-7_2

Vol. 21:4 QUANTITATIVE SEMANTICS FOR JUMPING AUTOMATA 31:35

[Bok21] Udi Boker. Quantitative vs. weighted automata. In Reachability Problems: 15th International
Conference, RP 2021, Liverpool, UK, October 25–27, 2021, Proceedings 15, pages 3–18. Springer,
2021. doi:10.1007/978-3-030-89716-1_1.

[CDH10] Krishnendu Chatterjee, Laurent Doyen, and Thomas A Henzinger. Quantitative lan-
guages. ACM Transactions on Computational Logic (TOCL), 11(4):1–38, 2010. doi:10.1007/
978-3-540-87531-4_28.

[CFM12a] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Affine parikh automata. RAIRO-Theoretical
Informatics and Applications, 46(4):511–545, 2012. doi:10.1051/ita/2012013.

[CFM12b] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded parikh automata. Interna-
tional Journal of Foundations of Computer Science, 23(08):1691–1709, 2012. doi:10.1142/

S0129054112400709.
[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer

Science & Business Media, 2009. doi:10.1007/978-3-642-01492-5.
[FGW23] Dana Fisman, Joshua Grogin, and Gera Weiss. A normalized edit distance on infinite words. In

31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Schloss-Dagstuhl-Leibniz
Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CSL.2023.20.

[FHY21] Szilárd Zsolt Fazekas, Kaito Hoshi, and Akihiro Yamamura. Two-way deterministic automata
with jumping mode. Theoretical Computer Science, 864:92–102, 2021. doi:10.1016/j.tcs.2021.
02.030.

[FPS15] Henning Fernau, Meenakshi Paramasivan, and Markus L Schmid. Jumping finite automata:
characterizations and complexity. In International Conference on Implementation and Application
of Automata, pages 89–101. Springer, 2015. doi:10.1007/978-3-319-22360-5_8.

[FPSV17] Henning Fernau, Meenakshi Paramasivan, Markus L Schmid, and Vojtěch Vorel. Characterization
and complexity results on jumping finite automata. Theoretical Computer Science, 679:31–52,
2017. doi:10.1016/j.tcs.2016.07.006.

[GJLZ22] Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen, and Martin Zimmermann. Parikh automata
over infinite words. In 42nd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, 2022. doi:10.4230/LIPIcs.FSTTCS.2022.40.

[Has82] Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. Journal
of computer and system sciences, 24(2):233–244, 1982. doi:10.1016/0022-0000(82)90051-4.

[KR03] Felix Klaedtke and Harald Rueß. Monadic second-order logics with cardinalities. In Automata,
Languages and Programming: 30th International Colloquium, ICALP 2003 Eindhoven, The
Netherlands, June 30–July 4, 2003 Proceedings 30, pages 681–696. Springer, 2003. doi:10.1007/
3-540-45061-0_54.

[LP04] Hing Leung and Viktor Podolskiy. The limitedness problem on distance automata: Hashiguchi’s
method revisited. Theoretical Computer Science, 310(1-3):147–158, 2004. doi:10.1016/

S0304-3975(03)00377-3.
[LPS14] Giovanna J Lavado, Giovanni Pighizzini, and Shinnosuke Seki. Operational state complexity under

parikh equivalence. In Descriptional Complexity of Formal Systems: 16th International Workshop,
DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings 16, pages 294–305. Springer, 2014.
doi:10.1007/978-3-319-09704-6_26.

[MKS04] Wilhelm Magnus, Abraham Karrass, and Donald Solitar. Combinatorial group theory: Presenta-
tions of groups in terms of generators and relations. Courier Corporation, 2004.

[Moh02] Mehryar Mohri. Edit-distance of weighted automata. In International Conference on Implementa-
tion and Application of Automata, pages 1–23. Springer, 2002. doi:10.1007/3-540-44977-9_1.

[MZ12] Alexander Meduna and Petr Zemek. Jumping finite automata. International Journal of Foundations
of Computer Science, 23(07):1555–1578, 2012. doi:10.1142/S0129054112500244.

[Vor18] Vojtěch Vorel. On basic properties of jumping finite automata. International Journal of Foundations
of Computer Science, 29(01):1–15, 2018. doi:10.1142/S0129054118500016.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-030-89716-1_1
https://doi.org/10.1007/978-3-540-87531-4_28
https://doi.org/10.1007/978-3-540-87531-4_28
https://doi.org/10.1051/ita/2012013
https://doi.org/10.1142/S0129054112400709
https://doi.org/10.1142/S0129054112400709
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.4230/LIPIcs.CSL.2023.20
https://doi.org/10.1016/j.tcs.2021.02.030
https://doi.org/10.1016/j.tcs.2021.02.030
https://doi.org/10.1007/978-3-319-22360-5_8
https://doi.org/10.1016/j.tcs.2016.07.006
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.40
https://doi.org/10.1016/0022-0000(82)90051-4
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1016/S0304-3975(03)00377-3
https://doi.org/10.1016/S0304-3975(03)00377-3
https://doi.org/10.1007/978-3-319-09704-6_26
https://doi.org/10.1007/3-540-44977-9_1
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1142/S0129054118500016

	1. Introduction
	2. Preliminaries and Definitions
	3. Quantitative Semantics for JFAs
	3.1. The Semantics
	3.2. Quantitative Decision Problems

	4. The Absolute-Distance Semantics
	4.1. Decidability of Boundedness Problems for ABS
	4.2. PSPACE-Hardness of Boundedness for ABS

	5. The Reversal Semantics
	5.1. Decidability of Boundedness Problems for REV
	5.2. PSPACE-Hardness of Boundedness for REV

	6. The Hamming Semantics
	7. The Maximum Jump Semantics
	8. Interplay Between the Semantics
	9. Discussion and Future Work
	References

