
Logical Methods in Computer Science
Volume 22, Issue 1, 2026, pp. 4:1–4:64
https://lmcs.episciences.org/

Submitted Dec. 19, 2024
Published Jan. 09, 2026

LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH

NESTED GRAPH CONDITIONS

MATTHIAS BARKOWSKY AND HOLGER GIESE

Hasso Plattner Institute at the University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam,
Germany
e-mail address: {matthias.barkowsky,holger.giese}@hpi.de

Abstract. The growing size of graph-based modeling artifacts in model-driven engineering
calls for techniques that enable efficient execution of graph queries. Incremental approaches
based on the RETE algorithm provide an adequate solution in many scenarios, but are
generally designed to search for query results over the entire graph. However, in certain
situations, a user may only be interested in query results for a subgraph, for instance when
a developer is working on a large model of which only a part is loaded into their workspace.
In this case, the global execution semantics can result in significant computational overhead.

To mitigate the outlined shortcoming, in this article we propose an extension of the
RETE approach that enables local, yet fully incremental execution of graph queries, while
still guaranteeing completeness of results with respect to the relevant subgraph.

We empirically evaluate the presented approach via experiments inspired by a scenario
from software development and with queries and data from an independent social network
benchmark. The experimental results indicate that the proposed technique can significantly
improve performance regarding memory consumption and execution time in favorable cases,
but may incur a noticeable overhead in unfavorable cases.

1. Introduction

In model-driven engineering, models constitute important development artifacts [Ken02].
With complex development projects involving large, interconnected models, performance of
automated model operations becomes a primary concern.

Incremental graph query execution based on the RETE algorithm [For89] has been
demonstrated to be an adequate solution in scenarios where an evolving model is repeatedly
queried for the same information [SIRV18]. In this context, the RETE algorithm essentially
tackles the problem of querying a usually graph-based model representation via operators
from relational algebra [Cod70]. Thereby, the RETE algorithm supports not only graph
queries in the form of plain graph patterns, but also covers advanced formalisms for query
specification such as nested graph conditions [HP09]. On the flip side, the relational operators
are not designed to exploit the locality typically found in graph-based encodings. Current
incremental querying techniques consequently require processing of the entire model to
guarantee complete results. However, in certain situations, global query execution is not
required and may be undesirable due to performance considerations.

For instance, a developer may be working on only a part of a model loaded into their
workspace, with a large portion of the full model still stored on disk. A concrete example of

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-22(1:4)2026
© LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-1138-2425
https://orcid.org/0000-0002-4723-730X
http://creativecommons.org/about/licenses

4:2 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

this would be a developer using a graphical editor to modify an individual block diagram from
a collection of interconnected block diagrams, which together effectively form one large model.
As the developer modifies the model part in their workspace, they may want to continuously
monitor how their changes impact the satisfaction of some consistency constraints via
incremental model queries. In this scenario, existing techniques for incremental query
execution require loading and querying the entire collection of models, even though the user
is ultimately only interested in the often local effect of their own changes.

The global RETE execution semantics then results in at least three problems: First, the
computation of query results for the full model, of which only a portion is relevant to the
user, may incur a substantial overhead on initial query execution time. Second, incremental
querying techniques are known to create and store a large number of intermediate results
[SIRV18], many of which can in this scenario be superfluous, causing an overhead in memory
consumption. Third, query execution requires loading the entire model into memory,
potentially causing an overhead in loading time and increasing the overhead in memory
consumption.

These problems can be mitigated to some extent by employing local search [CFSV04,
GHS09, ABJ+10], which better exploits the locality of the problem and lazy loading ca-
pabilities of model persistence layers [cdo, DSB+17], instead of a RETE-based technique.
However, resorting to local search can result in expensive redundant search operations that
are only avoided by fully incremental solutions [SIRV18].

In this article, we instead propose to tackle the outlined shortcoming of incremental
querying techniques via an extension of the RETE approach. This is supported by a relaxed
notion of completeness for query results that accounts for situations where the computation
for the full model is unnecessary. Essentially, this enables a distinction between the full
model, for which query results do not necessarily have to be complete, and a relevant model
part, for which complete results are required. The extended RETE approach then anchors
query execution to the relevant model part and lazily fetches additional model elements
required to compute query results that meet the relaxed completeness requirement. Our
approach thereby avoids potentially expensive global query execution and allows an effective
integration of incremental queries with model persistence layers.

The remainder of this article is structured as follows: Section 2 provides a summary of
our notion of graphs, graph queries, and the RETE mechanism for query execution. Section 3
introduces a relaxed notion of completeness for results of model queries consisting of a plain
graph pattern and subsequently presents an adaptation to the RETE querying mechanism
that enables local, yet fully incremental execution of such plain model queries. Our technique
for local query execution via RETE is then extended to the case of more complex model
queries featuring nested graph conditions in Section 4. A prototypical implementation of
our approach is evaluated regarding execution time and memory consumption in Section 5.
Section 6 discusses related work, before Section 7 concludes the article and provides an
outlook on future work.

This article is an extension of our paper at ICGT 2024 [BG24a]. The main increment of
this article compared to the conference paper version is the approach for localizing execution
of graph queries with nested graph conditions presented in Section 4, which is also covered
by an extended evaluation in Section 5. Besides small improvements to text and figures
and the inclusion of further examples, we have also added a theorem for recognizing locally
relevant query results as another minor extension in Section 3.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:3

2. Preliminaries

In the following, we briefly reiterate the definitions of graphs and graph queries and summarize
the RETE approach to incremental graph querying.

2.1. Graphs and Graph Queries. As defined in [EEPT06], a graph is a tuple G =
(V G, EG, sG, tG), with V G the set of vertices, EG the set of edges, and sG : EG → V G and
tG : EG → V G functions mapping edges to their source respectively target vertices.

A mapping from a graph Q into another graph H is defined via a graph morphism
m : Q→ H, which is characterized by two functions mV : V Q → V H and mE : EQ → EH

such that sH ◦ mE = mV ◦ sQ and tH ◦ mE = mV ◦ tQ. A graph morphism is called a
monomorphism if mV and mE are injective and an isomorphism if mV and mE are also
surjective. A partial graph morphism consists of two partial functions mV : V Q → V H and
mE : EQ → EH with sH ◦mE ≤ mV ◦ sQ and tH ◦mE ≤ mV ◦ tQ [Rib99]. In this context,
for two partial functions f and g, f ≤ g denotes inclusion of the domain of f in the domain
of g and equality of mappings in f and g for all domain elements for which f is defined.

A graph modification from a graph G into a modified graph G′ can be described via an
intermediate graph K and a span of graph monomorphisms f : K → G and g : K → G′

[TELW14], which can also be denoted G
f←− K g−→ G′. Intuitively, elements in G \ f(K) are

deleted and elements in G′ \ g(K) are created by the modification.
A graph G can be typed over a type graph TG via a graph morphism typeG : G→ TG,

forming the typed graph GT = (G, typeG). A typed graph morphism from GT = (G, typeG)
into another typed graph HT = (H, typeH) with type graph TG is a graph morphism
mT : G→ H such that typeH ◦mT = typeG.

A model is then simply given by a typed graph. In the remainder of the article, we
therefore use the terms graph and model interchangably and implicitly assume typing when
talking about graphs.

In practice, graphs often contain more edges than nodes, a characteristic that may
influence the performance of certain algorithms. To capture this property for each individual
edge type in a typed graph, we introduce the notion of edge-dominated graphs:

Definition 2.1. (Edge-Dominated Typed Graphs) We say that a typed graph G is edge-
dominated if ∀eTG ∈ ETG : |{e ∈ EG | type(e) = eTG}| ≥ max(|{v ∈ V G | type(v) =
sTG(eTG)}|, |{v ∈ V G | type(v) = tTG(eTG)}|).

The above definition will be relevant in the context of an analytical evaluation of our
localized querying technique, which technically requires graphs to be edge-dominated in
order to guarantee desirable characteristics regarding computational complexity.

A plain graph query as considered in this article is characterized by a query graph Q
and can be executed over a host graph H by finding graph morphisms m : Q→ H. We also

call these morphisms matches and denote the set of all matches from Q into H by MQ
H .

Typically, a set of matches is considered a complete query result if it contains all matches in

MQ
H :

Definition 2.2. (Completeness of Plain Query Results) We say that a set of matches M

from query graph Q into host graph H is complete iffMQ
H ⊆M .

Note that by virtue ofM being defined as a set of matches from Q into H, the statement

MQ
H ⊆M in the above definition implies that M =MQ

H .

4:4 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

In some cases, the formalism of plain graph queries may not be sufficiently expressive to
specify the desired query, for instance if matches for the query should not be extensible by a
specific negative pattern. To increase expressiveness, a plain graph query Q can therefore be
equipped with a nested graph condition ψ [HP09], yielding the extended graph query (Q,ψ).

Nested graph conditions can be defined recursively in the context of a graph morphism
m : Q→ H, with m |= ψ denoting that m satisfies the condition ψ:

• true is a nested graph condition that is always satisfied, that is, m |= true for any graph
morphism m.
• ¬ψ is a nested graph condition that is satisfied iff m does not satisfy the nested graph
condition ψ, that is, m |= ¬ψ ⇔ m ̸|= ψ.
• ψ1 ∧ ψ2 is a nested graph condition that is satisfied iff m satisfies both nested graph
conditions ψ1 and ψ2, that is, m |= ψ1 ∧ ψ2 ⇔ (m |= ψ1 ∧m |= ψ2).
• ∃(a : Q→ Q′, ψ′), where a : Q→ Q′ is a graph monomorphism, is a nested graph condition
that is satisfied iff there exists a graph morphism m′ : Q′ → H such that m = m′ ◦ a
and m′ satisfies the nested graph condition ψ′, that is, m |= ∃(a : Q→ Q′, ψ′)⇔ (∃m′ ∈
MQ′

H : m′ |= ψ′ ∧m = m′ ◦ a).
As in [BG23], we also consider the case where the morphism a of a nested graph condition

∃(a : Q→ Q′, ψ′) can be a partial graph morphism from some subgraph Qp ⊆ Q of Q into
Q′. In this case, satisfaction of the nested graph condition is given by m |= ∃(a : Q →
Q′, ψ′)⇔ (∃m′ ∈MQ′

H : m′ |= ψ′ ∧m|Qp = m′ ◦ a).
Equipping the query graph Q with the nested graph condition ψ restricts the set of

valid matches for the extended graph query (Q,ψ) to those matches for Q that also satisfy
ψ. In contrast to plain graph queries, completeness alone is thus insufficient as a criterion
for describing what constitutes a desirable query result. Specifically, when talking about
extended graph queries, a query result should not only contain all admissible matches,
but also no matches that violate the equipped nested graph condition. In this article, we
will hence talk about completeness with respect to the results of plain graph queries and
correctness in the case of extended graph queries, with the latter defined as follows:

Definition 2.3. (Correctness of Extended Query Results) We say that a set of matches M

for the extended graph query (Q,ψ) into host graph H is correct iffM = {m ∈MQ
H |m |= ψ}.

2.2. Incremental Graph Queries with RETE. The RETE algorithm [For89] forms the
basis of mature incremental graph querying techniques [VBH+16]. Therefore, the query is
recursively decomposed into simpler subqueries, which are arranged in a second graph called
RETE net. In the following, we will refer to the vertices of RETE nets as (RETE) nodes.

For plain graph queries, each RETE node n computes matches for a subgraph query(n) ⊆
Q of the full query graph Q. This computation may depend on matches computed by other
RETE nodes. Such dependencies are represented by edges from the dependent node to the
dependency node. For each RETE net, one of its nodes is designated as the production node,
which computes the net’s overall result. A RETE net is thus given by a tuple (N, p), where
the RETE graph N is a graph of RETE nodes and dependency edges and p ∈ V N is the
production node.

We describe the configuration of a RETE net (N, p) during execution by a function
C : V N → P(MΩ), with P denoting the power set andMΩ the set of all graph morphisms.
C then assigns each node in V N a current result set.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:5

For a starting configuration C and host graph H, executing a RETE node n ∈ V N yields
an updated configuration C′ = execute(n,N,H, C), with

C′(n′) =

{
R(n,N,H, C) if n′ = n

C(n′) otherwise,

where R is a function defining the target result set of a RETE node n in the RETE

graph N for H and C such that R(n,N,H, C) ⊆MQ
H , with Q = query(n).

We say that C is consistent for a RETE node n ∈ V N and host graph H iff C(n) =
R(n,N,H, C). We furthermore define a consistent configuration as a configuration that is
consistent for all nodes of the RETE net:

Definition 2.4 (Consistent RETE Net Configurations). We say that a configuration
C : V N → P(MΩ) for a RETE net (N, p) is consistent for a host graph H iff ∀n ∈ V N :
C(n) = R(n,N,H, C).

If H is clear from the context, we simply say that C is consistent.
Given a host graph H and a starting configuration C0, a RETE net (N, p) is executed

via the execution of a sequence of nodes O = n1, n2, ..., nx with ni ∈ V N . This yields
the trace C0, C1, C2, ..., Cx, with Cy = execute(ny, N,H, Cy−1), and the result configuration
execute(O,N,H, C0) = Cx.

(N, p) can initially be executed over H via a sequence O that yields a consistent
configuration Cx = execute(O,N,H, C0), where C0 is an empty starting configuration with
∀n ∈ V N : C0(n) = ∅. Incremental execution of (N, p) can be achieved by retaining a previous
result configuration and using it as the starting configuration for execution over an updated
host graph. This requires incremental implementations of RETE node execution procedures
that update previously computed result sets for changed inputs instead of computing them
from scratch.

In the most basic form, a RETE net consists of two kinds of nodes, edge input nodes
and join nodes. An edge input node [v → w] has no dependencies, is associated with the
query subgraph query([v → w]) = ({v, w}, {e}, {(e, v)}, {(e, w)}), and directly extracts the
corresponding (trivial) matches from a host graph. A join node [▷◁] has two dependencies nl
and nr with Ql = query(nl) and Qr = query(nr) such that V Ql∩Qr ̸= ∅ and is associated
with query([▷◁]) = Ql∪Qr. [▷◁] then computes matches for this union subgraph by combining
the matches from its dependencies along the overlap graph Q∩ = Ql ∩Qr.

In the following, we assume query graphs to be weakly connected and contain at least
one edge. A RETE net that computes matches for a query graph Q can then be constructed
as a tree of join nodes over edge input nodes. The join nodes thus gradually compose the
trivial matches at the bottom into matches for more complex query subgraphs. We call such
tree-like RETE nets well-formed. An execution sequence that always produces a consistent
configuration is given by a reverse topological sorting of the net. The root node of the tree
then computes the set of all matches for Q and is designated as the net’s production node.

Connected graphs without edges consist of only a single vertex, making query execution
via vertex input nodes, which function analogously to edge input nodes, trivial. Disconnected
query graphs can be handled via separate RETE nets for all query graph components and
the computation of a cartesian product.

Figure 1 shows an example plain graph query from the software domain and an associated
RETE net. The query searches for paths of a package, class, and field. The RETE net

4:6 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

p:Pkg c:Class f:Field
ce fe

▷◁

p→ c c→ f

Figure 1. Example plain graph query (left) and corresponding RETE net
(right)

NQ ⋉

NQ N(Q′,ψ′)

▷

NQ N(Q,ψ′)

⋉

⋉ N(Q,ψ2)

NQ N(Q,ψ1)

Figure 2. RETE net (N(Q,ψ), p(Q,ψ)) for an extended graph query (Q,ψ)
with nested graph condition of the form ψ = true (top left), ψ = ∃(a : Q→
Q′, ψ′) (top right), ψ = ¬ψ′ (bottom left), and ψ = ψ1 ∧ ψ2 (bottom right)

constructs matches for the query by combining edges from a package to a class with edges
from a class to a field via a natural join.

The RETE approach to graph query execution also supports extended graph queries
via two additional RETE node types: semi-join nodes and anti-join nodes. Like join nodes,
semi-join nodes and anti-join nodes have two dependencies nl and nr with Ql = query(nl)
and Qr = query(nr) such that V Ql∩Qr ̸= ∅. However, instead of combining matches from
both dependencies, a semi-join [⋉] simply computes all matches from the left dependency
that have a compatible match in the right dependency. An anti-join [▷] then computes
all matches from the left dependency that do not have a compatible match in the right
dependency. Both semi-join and anti-join nodes are thus always associated with the same
query graph as their left dependency, that is, query([⋉]) = Ql and query([▷]) = Ql.

To support nested graph conditions of the form ∃(a : Q→ Q′, ψ), a semi-join can also
be defined along a non-empty, potentially partial graph morphism [BG23]. The definition
based on an overlap graph is then just a special case of a semi-join along a partial identity
graph morphism.

Using semi-join and anti-join nodes and a RETE net (NQ, pQ) for the plain graph query
Q, a RETE net (N(Q,ψ), p(Q,ψ)) for an extended graph query (Q,ψ) can be constructed
recursively according to our description in [BG23], which is visualized in Figure 2.

Figure 3 shows an example extended graph query on the left. The extended query
searches for the same pattern as the plain query in Figure 1, but also requires the class node
to be connected to an interface node, without this additional node being part of the main

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:7

p:Pkg c:Class f:Field

i:Intf

ce fe

ie

Q′Q

⋉

▷◁ c→ i

p→ c c→ f

Figure 3. Example extended graph query (Q,∃(a : Q → Q′, true)) (left)
and corresponding RETE net (right)

match. Therefore, the query is defined as (Q, ∃(a : Q → Q′, true)) with a partial graph
morphism a that maps only the class node in Q to the class node in Q′.

The corresponding RETE net is visualized on the right of Figure 3. For computing
matches for the base pattern, the RETE net replicates the structure in Figure 1. The nested
graph condition is implemented via a search for the pattern Q′, which consists of a single
edge from the node c to i, and a semi-join node at the top of the net, which checks the
matches for Q against the matches for Q′.

3. Incremental Plain Queries over Subgraphs

As outlined in Section 1, users of model querying mechanisms may only be interested in
query results related to some part of a model that is relevant to them rather than the
complete model. However, simply executing a query only over this relevant subgraph and
ignoring context elements is often insufficient, for instance if the full effect of modifications
to the relevant subgraph should be observed, since such modifications may affect matches
that involve elements outside the relevant subgraph. Instead, completeness in such scenarios
essentially requires the computation of all matches that somehow touch the relevant subgraph.

In order to capture this need for local completeness, but avoid the requirement for global
execution inherent to the characterization in Definition 2.2, we define completeness under a
relevant subgraph of some host graph as follows:1

Definition 3.1 (Completeness of Plain Query Results under Subgraphs). We say that a set
of matches M from query graph Q into host graph H is complete under a subgraph Hp ⊆ H
iff {m ∈MQ

H | m(Q) ∩Hp ̸= ∅} ⊆M .

1Note that by the definition of Hp as a subgraph of H and the definition of matches as graph morphisms,
m(Q) ∩Hp ̸= ∅ ⇔ m(V Q) ∩Hp ≠ ∅. Our slightly adapted definition in this article thus coincides with the
definition in the conference paper version [BG24a].

4:8 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

3.1. Marking-sensitive RETE. Due to its reliance on edge and vertex input nodes and
their global execution semantics, incremental query execution via the standard RETE
approach is unable to exploit the relaxed notion of completeness from Definition 3.1 for query
optimization and does not integrate well with mechanisms relying on operation locality, such
as model persistence layers based on lazy loading [cdo, DSB+17].

While query execution could be localized to a relevant subgraph by executing edge and
vertex inputs nodes only over the subgraph, execution would then only yield matches where
all involved elements are in the relevant subgraph. This approach would hence fail to meet
the completeness criterion of Definition 3.1.

To enable incremental queries with complete results under the relevant subgraph, we
instead propose to anchor RETE net execution to subgraph elements while allowing the
search to retrieve elements outside the subgraph that are required to produce complete
results from the full model.

This approach is based on the observation that, in order for a join node to create a
match that involves elements from the relevant subgraph, at least one of the constituting
matches already has to involve at least one such element. Intuitively, our localized querying
technique then works as follows: At the leaves of a RETE join tree for some plain graph
query, we initially compute only matches that touch the relevant subgraph via local edge
navigation. We then also implement a mechanism that enables a lazy computation of certain
complementary partial matches that do not touch the relevant subgraph at inner nodes of
the join tree. This ensures completeness of results with respect to Definition 3.1.

A näıve implementation of this idea that retrieves complementary matches for all matches
from each dependency of a join [▷◁] until a fixpoint is reached however runs the risk of
triggering the computation of superfluous matches. In this scenario, some match ml for the
dependency nl of [▷◁] that was only required to complement some relevant match mr from
the other dependency nr would again trigger the computation of complementary matches
for nr, causing unnecessary computational effort.

Moreover, such an approach would create cyclic requirement relationships between the
matches ml and mr, where the presence of ml in the result for nl mandates the presence of
mr in the result for nr and vice-versa. This may prevent the unloading of matches when
elements are removed from the relevant subgraph.

To mitigate these issues, we extend the standard RETE mechanism by a marking for
matches in the form of a natural number. Intuitively, we will use this marking to encode
up to which height in a RETE join tree derived matches should trigger the retrieval of
complementary matches. An appropriate assignment of such markings then prevents the com-
putation of the aforementioned superfluos matches as well as cyclic requirement relationships
between matches, while still guaranteeing completeness according to Definition 3.1.

In our extension, an intermediate result in a marking-sensitive RETE net is therefore
characterized by a tuple (m,ϕ) of a match m and a marking ϕ ∈ N, where we define
N := N ∪ {∞}. A configuration for a marking-sensitive RETE net (NΦ, pΦ) is then given by

a function CΦ : V NΦ → P(MΩ × N).
Furthermore, in our extension, result computation distinguishes between the full host

graph H and the relevant subgraph Hp ⊆ H. For marking-sensitive RETE nodes, we
hence extend the function for target result sets by a parameter for Hp. The target re-

sult set of a marking-sensitive RETE node nΦ ∈ V NΦ
with Q = query(nΦ) for H, Hp,

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:9

and a marking-sensitive configuration CΦ is then given by RΦ(nΦ, NΦ, H,Hp, CΦ), with
RΦ(nΦ, NΦ, H,Hp, CΦ) ⊆MQ

H × N.
Consistency of marking-sensitive configurations is then defined analogously to the

standard case:

Definition 3.2 (Consistent Marking-Sensitive RETE Net Configurations). We say that

a configuration CΦ : V NΦ → P(MΩ × N) for a marking-sensitive RETE net (NΦ, pΦ) is

consistent for a host graph H with relevant subgraph Hp ⊆ H iff ∀nΦ ∈ V NΦ
: CΦ(nΦ) =

RΦ(nΦ, NΦ, H,Hp, CΦ).

Note that technically, the definitions of marking-sensitive configurations and target
result sets of marking-sensitive RETE nodes allow the same match to be associated with
multiple markings for the same RETE node. However, as shown in [BG24b], the marking of
a match in the target result set of a marking-sensitive RETE node is always unique in the
constructions presented in this article.

We adapt the join node, union node, and projection node to marking-sensitive variants
that assign result matches the maximum marking of related dependency matches and
otherwise work as expected from relational algebra [Cod70]. We also adapt the vertex input
node to only consider vertices in the relevant subgraph Hp and assign matches the marking
∞. Finally, we introduce marking assignment nodes, which assign matches a fixed marking
value, marking filter nodes, which filter marked matches by a minimum marking value, and
forward and backward navigation nodes, which work similarly to edge input nodes but only
extract edges that are adjacent to host graph vertices included in the current result set of a
designated dependency. Note that an efficient implementation of the backward navigation
node requires reverse navigability of host graph edges.

Formally, we define the target result sets of marking-sensitive RETE nodes as follows:

Definition 3.3 (Target Result Sets of Marking-Sensitive RETE Nodes). Let H be a host
graph with relevant subgraph Hp ⊆ H, (NΦ, pΦ) a containing marking-sensitive RETE net,
and CΦ a configuration for (NΦ, pΦ).

• The target result set of a marking-sensitive join node [▷◁]Φ with marking-sensitive de-
pendencies nΦl and nΦr with Ql = query(nΦl) and Qr = query(nΦr) such that V Q∩ ̸= ∅ for
Q∩ = Ql ∩Qr is given by RΦ([▷◁]Φ, NΦ, H,Hp, CΦ) = {(ml ∪mr,max(ϕl, ϕr)) | (ml, ϕl) ∈
CΦ(nΦl) ∧ (mr, ϕr) ∈ CΦ(nΦr) ∧ml|Q∩ = mr|Q∩}.
• The target result set of a marking-sensitive union node [∪]Φ with a set of marking-sensitive
dependencies NΦ

α such that Q = query(nΦα) for all dependencies nΦα ∈ NΦ
α is given by

RΦ([∪]Φ, NΦ, H,Hp, CΦ) = {(m,ϕmax) | (m,ϕmax) ∈
⋃
nα∈NΦ

α
CΦ(nΦα)∧ϕmax = max({ϕ′ |

(m,ϕ′) ∈
⋃
nα∈NΦ

α
CΦ(nΦα)})}.

• The target result set of a marking-sensitive projection node [πQ]
Φ with a single marking-

sensitive dependency nΦα and Q = query([πQ]
Φ) is given by RΦ([πQ]

Φ, NΦ, H,Hp, CΦ) =
{(m|Q, ϕmax) | (m,ϕmax) ∈ CΦ(nΦα) ∧ ϕmax = max({ϕ′ | (m′, ϕ′) ∈ CΦ(nΦα) ∧ m′|Q =
m|Q})}.
• The target result set of a marking assignment node [ϕ := i]Φ with a single marking-sensitive
dependency nΦα is given by RΦ([ϕ := i]Φ, NΦ, H,Hp, CΦ) = {(m, i) | (m,ϕα) ∈ CΦ(nΦα)}.
• The target result set of amarking filter node [ϕ > imin]

Φ with marking-sensitive dependency
nΦα is given by RΦ([ϕ > imin]

Φ, NΦ, H,Hp, CΦ) = {(m,ϕα) | (m,ϕα) ∈ CΦ(nΦα) ∧ ϕα >
imin}.

4:10 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

• The target result set of a forward navigation node [v →n w]
Φ with Q = query([v →n

w]Φ) = ({v, w}, {e}, {(e, v)}, {(e, w)}) and marking-sensitive dependency nΦv with Qv =
query(nΦv) = ({v}, ∅, ∅, ∅) is given by RΦ([v →n w]

Φ, NΦ, H,Hp, CΦ) = {(m,ϕ) | m ∈
MQ

H ∧ (m|Qv , ϕ) ∈ CΦ(nΦv)}.
• The target result set of a backward navigation node [w ←n v]

Φ with Q = query([w ←n

v]Φ) = ({v, w}, {e}, {(e, v)}, {(e, w)}) and marking-sensitive dependency nΦw with Qw =
query(nΦw) = ({w}, ∅, ∅, ∅) is given by RΦ([w ←n v]

Φ, NΦ, H,Hp, CΦ) = {(m,ϕ) | m ∈
MQ

H ∧ (m|Qw , ϕ) ∈ CΦ(nΦw)}.
• The target result set of a marking-sensitive vertex input node [v]Φ with Q = query([v]Φ) =

({v}, ∅, ∅, ∅) is given by RΦ([v]Φ, NΦ, H,Hp, CΦ) = {(m,∞) | m ∈MQ
Hp
}.

To obtain query results in the format of the standard RETE approach, we define the
stripped result set of a marking-sensitive RETE node nΦ for a marking-sensitive configuration
CΦ as the set of matches that appear in tuples in the node’s current result set in CΦ.

Definition 3.4 (Stripped Result Sets of Marking-Sensitive RETE Nodes). The stripped
result set of a marking-sensitive RETE node nΦ for a marking-sensitive configuration CΦ is
given by RΦ

X(n
Φ, CΦ) = {m | (m,ϕ) ∈ CΦ(nΦ)}.

3.2. Localized Search with Marking-sensitive RETE. Based on these adaptations,
we introduce a recursive localize procedure, which takes a regular, well-formed2 RETE net
(N, p) as input and outputs a marking-sensitive RETE net, which performs a localized search
that does not require searching the full model to produce complete results according to
Definition 3.1.

If p = [v → w] is an edge input node, the result of localization for (N, p) is given by
localize(N, p) = (LNS(p), [∪]Φ). The local navigation structure LNS(p) consists of seven
RETE nodes as shown in Figure 4 (left): (1, 2) Two marking-sensitive vertex input nodes [v]Φ

and [w]Φ, (3, 4) two marking-sensitive union nodes [∪]Φv and [∪]Φw with [v]Φ respectively [w]Φ

as a dependency, (5) a forward navigation node [v →n w]
Φ with [∪]Φv as a dependency, (6) a

backward navigation node [w ←n v]
Φ with [∪]Φw as a dependency, and (7) a marking-sensitive

union node [∪]Φ with dependencies [v →n w]
Φ and [w ←n v]

Φ.
Importantly, the marking-sensitive vertex input nodes of the local navigation structure

are executed over the relevant subgraph, whereas the forward and backward navigation
nodes are executed over the full model. Intuitively, the local navigation structure thus takes
the role of the edge input node, but initially only extracts edges that are adjacent to a vertex
in the relevant subgraph. Connecting additional dependencies to the union nodes [∪]Φv and
[∪]Φw in further constructions then allows the extraction of additional edges that may be
required to compute complete query results.

If p is a join node, it has two dependencies pl and pr with Ql = query(pl) and
Qr = query(pr), which are the roots of two RETE subtrees Nl and Nr. In this case,
(N, p) is localized as localize(N, p) = (NΦ, pΦ) = (NΦ

▷◁ ∪NΦ
l ∪NΦ

r ∪ RPSl ∪ RPSr, [▷◁]Φ),

2The restriction to well-formed RETE nets prevents an optimization where redundant computation of
matches for isomorphic query subgraphs is avoided via a non-tree-like structure. However, for queries as
in [EALP+15], performance is often primarily determined by the computation of matches for a large query
subgraph that cannot be reused.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:11

∪
Φ

v →n w
Φ

w ←n v
Φ

∪
Φ

∪
Φ

v
Φ

w
Φ

ϕ := h
Φ

πQv
Φ

ϕ > h
Φ

▷◁
Φ

LNSu→v
Φ

LNSv→w
Φ

RPSr
Φ

RPSl
Φ

Figure 4. LNS (left), RPS (center), and localized RETE net (right)

where (NΦ
l , p

Φ
l) = localize(Nl, pl), (N

Φ
r , p

Φ
r) = localize(Nr, pr), N

Φ
▷◁ consists of the marking-

sensitive join [▷◁]Φ with dependencies pΦl and pΦr , RPSl = RPS(pΦl , N
Φ
r), and RPSr =

RPS(pΦr , N
Φ
l).

The request projection structure RPSl = RPS(pΦl , N
Φ
r) contains three RETE nodes as

displayed in Figure 4 (center): (1) A marking filter node [ϕ > h]Φ with pΦl as a dependency,

(2) a marking-sensitive projection node [πQv]
Φ with [ϕ > h]Φ as a dependency, and (3)

a marking assignment node [ϕ := h]Φ with [πQv]
Φ as a dependency. The value of h is

given by the height of the join tree of which p is the root and Qv is a graph consisting
of a single vertex v ∈ V Ql∩Qr . The request projection structure is then connected to an
arbitrary local navigation structure in NΦ

r that has a marking-sensitive vertex input [v]Φ

with Qv = query([v]Φ). Therefore, it also adds a dependency from the marking-sensitive
union node [∪]Φv that already depends on [v]Φ to the marking assignment node [ϕ := h]Φ.
The mirrored structure RPSr = RPS(pΦr , N

Φ
l) is constructed analogously.

Via the request projection structures, partial matches from one join dependency can
be propagated to the subnet under the other dependency. Intuitively, the inserted request
projection structures thereby allow the join’s dependencies to request the RETE subnet
under the other dependency to fetch and process the model parts required to complement
the first dependency’s results. The marking of a match then signals up to which height
in the join tree complementarity for that match is required. Notably, matches involving
elements in the relevant subgraph are marked ∞, as complementarity for them is required
at the very top to guarantee completeness of the overall result.

The result of applying localize to a RETE net consisting of a single join is displayed in
Figure 4 (right). It consists of a marking sensitive join and two local navigation structures
connected via request projection structures.

The localized RETE net for the example query in Figure 1 is shown in Figure 5.
Alongside the RETE net, the figure visualizes a consistent configuration for the host graph
in Figure 6. In the example host graph, the relevant subgraph consists of the node p1, which
is indicated by a bold border.

With the relevant subgraph consisting of only a single node, the only intermediate
result in any of the net’s vertex input nodes is the tuple (m1.1.1,∞) for the node [p]Φ. This
intermediate result propagates up through the containing local navigation structure on the
left, where it triggers the extraction of the match m1.1 by the forward navigation node
[p→n c]

Φ. Via the connected request projection structure, the restricted match m1.2.1 that
consists only of the target node c1 of the extracted edge is then propagated into the local

4:12 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

▷◁
Φ

(m1,∞)

∪
Φ

(m1.1,∞)

p→n c
Φ

(m1.1,∞)

c←n p
Φ

∪
Φ

(m1.1.1,∞)

∪
Φ

p
Φ

(m1.1.1,∞)

c
Φ

∪
Φ

(m1.2, 1)

c→n f
Φ

(m1.2, 1)

f ←n c
Φ

∪
Φ

(m1.2.1, 1)

∪
Φ

c
Φ

f
Φ

ϕ := 1
Φ

πQc
Φ

ϕ > 1
Φ

ϕ := 1
Φ

(m1.2.1, 1)

πQc
Φ

(m1.2.1,∞)

ϕ > 1
Φ

(m1.1,∞)

Figure 5. Localized RETE net for the example query in Figure 1 with a
consistent configuration for the host graph in Figure 6

navigation structure on the right. As a result, the match m1.2 is extracted by the forward
navigation node [c→n f]

Φ, which is combined with the match m1.1 by the join node [▷◁]Φ

to form the complete match m1.
Notably, the host graph contains a second match m2 for the query pattern, which

however does not touch the relevant subgraph. In this example, localization allows the
RETE net to completely ignore this second match and skip any related computations.

Moreover, the assignment of the marking 1 to the match m1.2.1 in the request projection
structure on the right prevents a propagation of any of the derived intermediate results back
into the left local navigation structure. Thereby, potentially problematic cyclic requirement
relationships of intermediate results are avoided.

As an example, consider the case where the node p1 is removed from the relevant subgraph
and this change is to be reflected in an updated configuration. Without the additional
control of propagation provided by the marking filter and marking assignment nodes, the
removal would not mandate an unloading of all associated intermediate results. Specifically,

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:13

r1:Proj

p1:Pkg

c1:Class

f1:Field

pe

cece

fe

p2:Pkg

c2:Class

f2:Field

pe

ce

fe

m1

m1.1

m1.1.1

m1.2

m1.2.1

m2

Figure 6. Example host graph with relevant subgraph marked in bold

the result set for the union node below the backward navigation node [c ←n f]
Φ would

still contain the match m1.2.1 and the backward navigation node would hence extract the
match m1.1 again, leading to the pollution of the RETE net’s configuration with superfluous
intermediate results.

Formally, a consistent configuration for a localized RETE net then indeed guarantees
query results that are complete according to Definition 3.1:

Theorem 3.5 (Consistent configurations for RETE nets localized via localize yield complete
query results under the relevant subgraph). Let H be a graph, Hp ⊆ H, (N, p) a well-formed
RETE net, and Q = query(p). Furthermore, let CΦ be a consistent configuration for the
localized RETE net (NΦ, pΦ) = localize(N, p). The set of matches from Q into H given by
the stripped result set RΦ

X(p
Φ, CΦ) is then complete under Hp.

Proof. (Idea)3 It can be shown via induction over the height of N that request projection
structures ensure the construction of all intermediate results required to guarantee complete-
ness of the overall result under Hp. See the proof of Theorem 5 in Appendix D of [BG24b]
for a full proof.

Interestingly, exactly those matches that touch the relevant subgraph are marked ∞ in
a consistent configuration for a localized RETE net, which allows an easy recognition of
these matches in the result set of the net’s production node:

3Detailed proofs for theorems in this article are given in Appendix A or, if indicated, in [BG24b].

4:14 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

Theorem 3.6 (Matches are marked ∞ in query results of RETE nets localized via localize
iff they touch the relevant subgraph). Let H be a graph, Hp ⊆ H, (N, p) a well-formed RETE
net, and Q = query(p). Furthermore, let CΦ be a consistent configuration for the localized
RETE net (NΦ, pΦ) = localize(N, p). It then holds that ∀(m,ϕ) ∈ CΦ(pΦ) : m(Q) ∩Hp ̸=
∅ ⇔ ϕ =∞.

Proof. (Idea) Follows since marking-sensitive joins ultimately combine matches from local
navigation structures in (NΦ, pΦ), where only those matches that touch Hp are marked
∞.

Notably, the insertion of request projection structures creates cycles in the localized
RETE net, which prevents execution via a reverse topological sorting. However, the marking
filter and marking assignment nodes in the request projection structures effectively prevent
cyclic execution at the level of intermediate results: Because matches in the result set of
a dependency of some join at height h that are only computed on request from the other
dependency are marked h, these matches are filtered out in the dependent request projection
structure. An execution order for the localized RETE net (NΦ, pΦ) = localize(N, p) can
thus be constructed recursively via an order procedure as follows:

If p is an edge input node, the RETE graph given by NΦ = LNS(p) is a tree that can
be executed via a reverse topological sorting of the nodes in LNS(p), that is, order(NΦ) =
toposort(LNS(p))−1.

If p is a join, according to the construction, the localized RETE graph is given by
NΦ = NΦ

▷◁ ∪NΦ
l ∪NΦ

r ∪ RPSl ∪ RPSr. In this case, an execution order for (NΦ, pΦ) can

be derived via the concatenation order(NΦ) = order(RPSr) ◦ order(NΦ
l) ◦ order(RPSl) ◦

order(NΦ
r)◦order(RPSr)◦order(NΦ

l)◦order(NΦ
▷◁), where order(RPSl) = toposort(RPSl)

−1

and order(RPSr) = toposort(RPSr)
−1 and order(NΦ

▷◁) = [pΦ], that is, the sequence con-
taining only pΦ.

Executing a localized RETE net (NΦ, pΦ) via order(NΦ) then guarantees a consistent
result configuration for any starting configuration:

Theorem 3.7 (Execution of localized RETE nets via order yields consistent configurations).
Let H be a graph, Hp ⊆ H, (N, p) a well-formed RETE net, and CΦ0 an arbitrary starting
configuration. Executing (NΦ, pΦ) = localize(N, p) via O = order(NΦ) then yields a
consistent configuration CΦ = execute(O,NΦ, H,Hp, CΦ0).
Proof. (Idea) Follows because the inserted marking filter nodes prevent cyclic execution
behavior at the level of intermediate results. See the proof of Theorem 6 in Appendix D of
[BG24b] for a full proof.

Combined with the result from Theorem 3.5, this means that a localized RETE net
can be used to compute complete query results for a relevant subgraph in the sense of
Definition 3.1, as outlined in the following corollary:

Corollary 3.8 (Execution of RETE nets localized via localize yields complete query results
under the relevant subgraph). Let H be a graph, Hp ⊆ H, (N, p) a well-formed RETE net,
and Q = query(p). Furthermore, let CΦ0 be an arbitrary starting configuration for the marking-
sensitive RETE net (NΦ, pΦ) = localize(N, p) and CΦ = execute(order(NΦ), NΦ, H,Hp, CΦ0).
The set of matches from Q into H given by RΦ

X(p
Φ, CΦ) is then complete under Hp.

Proof. Follows directly from Theorem 3.5 and Theorem 3.7.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:15

3.3. Performance of Localized RETE Nets. Performance of a RETE net (N, p) with
respect to both execution time and memory consumption is largely determined by the
effective size of a consistent configuration C for (N, p), which we define as follows:

Definition 3.9 (Effective Size of RETE Net Configurations). The effective size of a
configuration C for a RETE net (N, p) is given by |C|e :=

∑
n∈V N

∑
m∈C(n) |m|, where we

define the size of a match m : Q→ H as |m| := |mV |+ |mE | = |V Q|+ |EQ|.
It can then be shown that localization incurs only a constant factor overhead on the

effective size of C for any edge-dominated host graph:4

Theorem 3.10 (RETE net localization via localize introduces only a constant factor
overhead on effective configuration size). Let H be an edge-dominated graph, Hp ⊆ H,
(N, p) a well-formed RETE net with Q = query(p), C a consistent configuration for (N, p)
for host graph H, and CΦ a consistent configuration for the marking-sensitive RETE net
(NΦ, pΦ) = localize(N, p) for host graph H and relevant subgraph Hp. It then holds that∑

nΦ∈V NΦ

∑
(m,ϕ)∈C(nΦ) |m| ≤ 7 · |C|e.

Proof. (Idea) Follows because for each RETE node in (N, p), (NΦ, pΦ) includes a constant
number of nodes whose result sets contain corresponding matches and marking-sensitive
result sets contain no duplicate matches.

By Theorem 3.10, it then follows that localization of a RETE net incurs only a constant
factor overhead on memory consumption even in the worst case where the relevant subgraph
is equal to the full model:

Corollary 3.11 (RETE net localization via localize introduces only a constant factor
overhead on memory consumption). Let H be an edge-dominated graph, Hp ⊆ H, (N, p) a
well-formed RETE net, C a consistent configuration for (N, p) for host graph H, and CΦ
a consistent configuration for the localized RETE net (NΦ, pΦ) = localize(N, p) for host
graph H and relevant subgraph Hp. Assuming that storing a match m requires an amount of

memory in O(|m|) and storing an element from N requires an amount of memory in O(1),
storing CΦ requires memory in O(|C|e).
Proof. (Idea) Follows from Theorem 3.10.

In the worst case, a localized RETE net would still be required to compute a complete
result. In this scenario, the execution of the localized RETE net may essentially require
superfluous recomputation of match markings, causing computational overhead. When
starting with an empty configuration, the number of such recomputations per match is
however limited by the size of the query graph, only resulting in a small increase in
computational complexity:

Theorem 3.12 (Execution time overhead introduced by RETE net localization via localize
depends on query graph size compared to average match size). Let H be an edge-dominated
graph, Hp ⊆ H, (N, p) a well-formed RETE net for query graph Q, C a consistent configu-
ration for (N, p), and CΦ0 the empty configuration for (NΦ, pΦ) = localize(N, p). Executing

4For non-edge-dominated host graphs, the number of matches for (marking-sensitive) vertex input nodes
may exceed the number of matches for related edge-input nodes. If matches for marking-sensitive vertex
input nodes make up the bulk of intermediate results, localization then introduces an overhead on effective
configuration size that cannot be characterized by a constant factor. However, we expect this situation to be
rare in practice, since it requires very sparse host graphs.

4:16 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

(NΦ, pΦ) via execute(order(NΦ), NΦ, H,Hp, CΦ0) then takes O(T · (|Qa|+ |Q|)) steps, with
|Qa| the average size of matches in C and T =

∑
n∈V N |C(n)|.

Proof. (Idea) Follows since the effort for initial construction of matches by the marking-
sensitive RETE net is linear in the total size of the constructed matches and the marking of
a match changes at most |Q| times. See the proof of Theorem 9 in Appendix D of [BG24b]
for a full proof.

Assuming an empty starting configuration, a regular well-formed RETE net (N, p) can
be executed in O(|C|e) steps, which can also be expressed as O(T · |Qa|). The overhead
of a localized RETE net compared to the original net can thus be characterized by the

factor |Q|
|Qa| . Assuming that matches for the larger query subgraphs constitute the bulk of

intermediate results, which seems reasonable in many scenarios, |Q|
|Qa| may be approximated

by a constant factor.
For non-empty starting configurations and incremental changes, no sensible guarantees

can be made. On the one hand, in a localized RETE net, a host graph modification may
trigger the computation of a large number of intermediate results that were previously
omitted due to localization. On the other hand, in a standard RETE net, a modification
may result in substantial effort for constructing superfluous intermediate results that can
be avoided by localization. Depending on the exact host graph structure and starting
configuration, execution may thus essentially require a full recomputation for either the
localized or standard RETE net but cause almost no effort for the other variant.

4. Incremental Extended Queries over Subgraphs

Standard RETE nets can be employed to incrementally compute results for extended
graph queries via semi-join and anti-join nodes [BG23]. It is thus desirable to extend the
localization technique for simple graph queries presented in Section 3 to also enable the
localized incremental execution of extended graph queries.

However, multiple interpretations of local correctness of query results for extended
graph queries are conceivable depending on the application scenario. More specifically, it is
unclear whether this notion should cover only query results where the main match touches
the relevant subgraph or also those where elements from the relevant subgraph play a role
regarding the satisfaction of the equipped nested graph condition.

Notably, it has been shown that nested graph conditions are equivalent to first order
logic [HP09, Ren04] and satisfiability for first order logic is known to be undecidable. A
precise solution for the second case thus seems infeasible, as discussed in more detail in
Section 4.2. In the following, we will therefore first develop an extension of our localization
technique that covers the first case and then proceed by presenting a further extension that
covers the second case at a practical level via overapproximation.

4.1. Localized RETE for Extended Queries. In the most basic case, a set of matches for
an extended graph query (Q,ψ) may be considered correct under a given relevant subgraph
if it contains no matches that violate ψ and it contains all matches for Q that satisfy the
condition ψ and involve elements from the relevant subgraph:

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:17

Definition 4.1 (Correctness of Extended Query Results under Subgraphs). We say that a
set of matches M for the extended graph query (Q,ψ) into a host graph H is correct under

a subgraph Hp ⊆ H iff M ⊆ {m ∈ MQ
H | m |= ψ} and {m ∈ MQ

H | m |= ψ ∧m(Q) ∩Hp ≠
∅} ⊆M .

To enable a localized execution of extended graph queries that meets this definition via
the RETE approach, we first have to introduce marking-sensitive versions of the semi-join
and anti-join node. These nodes work similarly to the regular versions, but also preserve the
marking of matches from their left dependency:

Definition 4.2 (Target Result Sets of Advanced Marking-Sensitive RETE Nodes). Let H
be a host graph with relevant subgraph Hp ⊆ H, (NΦ, pΦ) a containing marking-sensitive
RETE net, and CΦ a configuration for (NΦ, pΦ).

• The target result set of a marking-sensitive semi-join node [⋉]Φ with marking-sensitive
dependencies nΦl and nΦr with Ql = query(nΦl) and Qr = query(nΦr) such that V Q∩ ̸= ∅
for Q∩ = Ql ∩Qr is given by RΦ([⋉]Φ, NΦ, H,Hp, CΦ) = {(ml, ϕl) | (ml, ϕl) ∈ CΦ(nΦl) ∧
∃(mr, ϕr) ∈ CΦ(nΦr) : ml|Q∩ = mr|Q∩}.
• The target result set of a marking-sensitive semi-join node [⋉]Φ along a non-empty
graph morphism a : Ql → Qr with marking-sensitive dependencies nΦl and nΦr with

Ql = query(nΦl) and Qr = query(nΦr) is given by RΦ([⋉]Φ, NΦ, H,Hp, CΦ) = {(ml, ϕl) |
(ml, ϕl) ∈ CΦ(nΦl) ∧ ∃(mr, ϕr) ∈ CΦ(nΦr) : ml = mr ◦ a}.
• The target result set of a marking-sensitive semi-join node [⋉]Φ along a non-empty partial
graph morphism a : Ql → Qr from some subgraph Qp ⊆ Ql into Qr with marking-
sensitive dependencies nΦl and nΦr with Ql = query(nΦl) and Qr = query(nΦr) is given by

RΦ([⋉]Φ, NΦ, H,Hp, CΦ) = {(ml, ϕl) | (ml, ϕl) ∈ CΦ(nΦl) ∧ ∃(mr, ϕr) ∈ CΦ(nΦr) : ml|Qp =
mr ◦ a}.
• The target result set of a marking-sensitive anti-join node [▷]Φ with marking-sensitive
dependencies nΦl and nΦr with Ql = query(nΦl) and Qr = query(nΦr) such that V Q∩ ̸= ∅
for Q∩ = Ql ∩Qr is given by RΦ([▷]Φ, NΦ, H,Hp, CΦ) = {(ml, ϕl) | (ml, ϕl) ∈ CΦ(nΦl) ∧
∄(mr, ϕr) ∈ CΦ(nΦr) : ml|Q∩ = mr|Q∩}.

Based on the localize procedure for plain graph queries from Section 3.2 and our RETE
net construction technique for extended graph queries from [BG23], we can then construct a
localization procedure localizeΨ that can be applied to an extended graph query (Q,ψ) to
create a localized RETE net (NΦ, pΦ) = localizeΨ(Q,ψ). localizeΨ is a recursive procedure,
which is visualized in Figure 7 and works as follows:

• For a nested graph condition of the form ψ = true, the result of localizeΨ is given by
(NΦ, pΦ) = (NΦ

Q , p
Φ
Q) = localize(Q)5.

• For a nested graph condition of the form ψ = ∃(a : Q → Q′, ψ′), NΦ consists of the
localized RETE net for the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE

net for the query (NΦ
(Q′,ψ′), p

Φ
(Q′,ψ′)) = localizeΨ(Q′, ψ′), a request projection structure

RPS∞
l = RPS∞(pΦQ, N

Φ
(Q′,ψ′)), and a marking-sensitive semi-join node pΦ = [⋉]Φ along a

with left dependency pΦQ and right dependency pΦ(Q′,ψ′).

5Here, we use localize(Q) as a shorthand for localize(N, p) with an arbitrary well-formed RETE net
(N, p) for Q.

4:18 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

• For a nested graph condition of the form ψ = ¬ψ′, NΦ consists of the localized RETE
net for the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net for the

query (NΦ
(Q,ψ′), p

Φ
(Q,ψ′)) = localizeΨ(Q,ψ′), a request projection structure RPS∞

l =

RPS∞(pΦQ, N
Φ
(Q,ψ′)), and a marking-sensitive anti-join node pΦ = [▷]Φ with left dependency

pΦQ and right dependency pΦ(Q,ψ′).

• For a nested graph condition of the form ψ = ψ1 ∧ ψ2, N
Φ consists of the localized RETE

net for the plain pattern Q, (NΦ
Q , p

Φ
Q) = localize(Q), the RETE net (NΦ

(Q,ψ1)
, pΦ(Q,ψ1)

) =

localizeΨ(Q,ψ1), a request projection structure RPS∞
1 = RPS∞(pΦQ, N

Φ
(Q,ψ1)

), a marking-

sensitive semi-join node [⋉]Φ1 with left dependency pΦQ and right dependency pΦ(Q,ψ1)
, the

RETE net (NΦ
(Q,ψ2)

, pΦ(Q,ψ2)
) = localizeΨ(Q,ψ2), a request projection structure RPS∞

2 =

RPS∞([⋉]Φ1 , N
Φ
(Q,ψ2)

), and a marking-sensitive semi-join node pΦ = [⋉]Φ2 with left depen-

dency [⋉]Φ1 and right dependency pΦ(Q,ψ2)
.

Note that we include semi-join and anti-join nodes when computing join tree height for
determining the value of marking filter nodes in request projection structures. Moreover,
by RPS∞, we denote a request projection structure where the marking assignment node
assigns a marking of ∞. While the marking assignment nodes in these request projection
structures are technically redundant when considering the constructions in this article and
could be removed, we include the nodes to mirror the structure of the request projection
structures from Section 3.

Intuitively, by employing localized RETE nets in the computation of nested graph
condition satisfaction, it is no longer necessary to compute related matches over the entire
host graph. The insertion of request projection structures via localizeΨ then ensures that
matches that are required to correctly evaluate a nested graph condition are computed on
demand for every relevant match for the context pattern.

The localized RETE net for the extended graph query in Figure 3 is visualized in
Figure 8 along with a consistent configuration for the host graph in Figure 9. For local
navigation structures and request projection structures, the displayed current result set is
the current result set of the topmost union node respectively the marking assignment node
of the structure.

Analogously to Figure 3, the localized RETE net essentially extends the RETE net
from Figure 5 by a marking sensitive semi-join and a local navigation structure for matching
the pattern Q′. In addition, it contains a request projection structure that controls the
computation of matches for Q′ based on matches for Q that touch the relevant subgraph.

Via this new request projection structure, the match m1 for Q triggers the extraction of
the match m1.3 for Q′ in the local navigation structure LNSc→i. This ensures that m1 is
included in the result set of the semi-join node at the top of the net, which thereby provides
a locally correct query result.

Formally, the following theorem states the correctness of localization via localizeΨ with
respect to Definition 4.1:

Theorem 4.3 (Consistent configurations for RETE nets localized via localizeΨ yield correct
query results under the relevant subgraph). Let H be a graph, Hp ⊆ H, and (Q,ψ) an
extended graph query. Furthermore, let CΦ be a consistent configuration for the localized
RETE net (NΦ, pΦ) = localizeΨ(Q,ψ). The set of matches given by the stripped result set
RΦ
X(p

Φ, CΦ) is then correct under Hp.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:19

NΦ
Q

Φ
⋉

Φ

NΦ
Q

Φ NΦ
(Q′,ψ′)

Φ

RPS∞
l

Φ

▷
Φ

NΦ
Q

Φ NΦ
(Q,ψ′)

Φ

RPS∞
l

Φ

⋉2
Φ

⋉1
Φ NΦ

(Q,ψ2)
Φ

RPS∞
2

Φ
NΦ
Q

Φ NΦ
(Q,ψ1)

Φ

RPS∞
1

Φ

Figure 7. Results of applying localizeΨ to an extended graph query (Q,ψ)
with nested graph conditions of the form ψ = true (top left), ψ = ∃(a : Q→
Q′, ψ′) (top right), ψ = ¬ψ′ (bottom left), and ψ = ψ1 ∧ ψ2 (bottom right)

⋉
Φ

(m1,∞)

▷◁
Φ

(m1,∞)

LNSp→c
Φ

(m1.1,∞)

LNSc→f
Φ

(m1.2, 1)

RPSc
Φ

RPSc
Φ

(m1.2.1, 1)

LNSc→i
Φ

(m1.3,∞)

RPS∞
c

Φ

(m1.2.1,∞)

Figure 8. Localized RETE net for the example query in Figure 3 with a
consistent configuration for the host graph in Figure 9

Proof. (Idea) It can be shown via induction over ψ that the inserted request projection
structures trigger the computation of the required intermediate results for nested queries of
(Q,ψ).

An execution order for a localized RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) can then be
computed via the recursive procedure orderΨ. This procedure works as follows:

4:20 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

r1:Proj

p1:Pkg

c1:Class

f1:Field

i1:Intf

pe

cece

fe

ie

p2:Pkg

c2:Class

f2:Field

pe

ce

fe

m1

m1.1

m1.1.1

m1.2

m1.2.1

m2

m1.3

Figure 9. Example host graph with relevant subgraph marked in bold

• For a nested graph condition of the form ψ = true, the result of orderΨ is simply given
by orderΨ(NΦ) = order(NΦ).
• For a nested graph condition of the form ψ = ∃(a : Q→ Q′, ψ′), the result of orderΨ is
given by orderΨ(NΦ) = order(NΦ

Q) ◦ toposort(RPS∞
l)−1 ◦ orderΨ(NΦ

(Q′,ψ′)) ◦ [⋉]Φ.

• For a nested graph condition of the form ψ = ¬ψ′, the result of orderΨ is given by
orderΨ(NΦ) = order(NΦ

Q) ◦ toposort(RPS∞
l)−1 ◦ orderΨ(NΦ

(Q,ψ′)) ◦ [▷]Φ.

• Finally, for a nested graph condition of the form ψ = ψ1 ∧ ψ2, the result of orderΨ

is given by orderΨ(NΦ) = order(NΦ
Q) ◦ toposort(RPS∞

1)−1 ◦ orderΨ(NΦ
(Q,ψ1)

) ◦ [⋉]Φ1 ◦
toposort(RPS∞

2)−1 ◦ orderΨ(NΦ
(Q,ψ2)

) ◦ [⋉]Φ2 .

This execution order then guarantees a consistent resulting configuration:

Theorem 4.4 (Execution of localized RETE nets via orderΨ yields consistent configurations).
Let H be a graph, Hp ⊆ H, (Q,ψ) a graph query, and CΦ0 an arbitrary starting configuration
for the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ). Executing (NΦ, pΦ) via
O = orderΨ(NΦ) then yields a consistent configuration CΦ = execute(O,NΦ, H,Hp, CΦ0).

Proof. (Idea) Follows because all cyclical structures in NΦ are encapsulated in localized
RETE subnets for plain graph queries, for which order creates an admissible ordering.

It thus follows that a RETE net localized via localizeΨ can be executed to produce a
set of matches that is correct under a given subgraph:

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:21

Corollary 4.5 (Execution of RETE nets localized via localizeΨ yields correct query results
under the relevant subgraph). Let H be a graph, Hp ⊆ H, and (Q,ψ) a graph query.
Furthermore, let CΦ0 be an arbitrary configuration for the marking-sensitive RETE net
(NΦ, pΦ) = localizeΨ(Q,ψ) and CΦ = execute(orderΨ(NΦ), NΦ, H,Hp, CΦ0). The set of
matches from Q into H given by RΦ

X(p
Φ, CΦ) is then correct under Hp.

Proof. Follows directly from Theorems 4.4 and 4.3.

As localizeΨ essentially mirrors the construction procedure for RETE nets for extended
graph queries from [BG23], each RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) for some extended
query (Q,ψ) has a corresponding regular RETE net (N, p) created via the procedure
described in [BG23] that uses the same RETE net structure for Q and all patterns in ψ. As
for localize and well-formed RETE nets for simple queries, we can therefore show that a
consistent configuration for (NΦ, pΦ) only exhibits a constant-factor increase in configuration
size compared to (N, p) in the worst case:

Theorem 4.6 (RETE net localization via localizeΨ introduces only a constant factor
overhead on effective configuration size). Let H be an edge-dominated graph, Hp ⊆ H, (N, p)
a RETE net created via the procedure described in [BG23] for the extended graph query (Q,ψ),
C a consistent configuration for (N, p) for host graph H, and CΦ a consistent configuration for
the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) corresponding to (N, p) for host
graph H and relevant subgraph Hp. It then holds that

∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|e.

Proof. (Idea) Follows because each node in N has only a constant number of associated
nodes with result sets containing corresponding matches in NΦ.

Consequently, localization via localizeΨ then also incurs at most a constant-factor
overhead on memory consumption:

Corollary 4.7 (RETE net localization via localizeΨ introduces only a constant factor
overhead on memory consumption). Let H be an edge-dominated graph, Hp ⊆ H, (N, p) a
RETE net created via the procedure described in [BG23] for the extended graph query (Q,ψ),
C a consistent configuration for (N, p) for host graph H, and CΦ a consistent configuration
for the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) corresponding to (N, p)
for host graph H and relevant subgraph Hp. Assuming that storing a match m requires an

amount of memory in O(|m|) and storing an element from N requires an amount of memory
in O(1), storing CΦ requires memory in O(|C|e).
Proof. Follows directly from Theorem 4.6 and the assumptions.

Finally, by a similar argumentation as for localize, localizeΨ also only leads to an

increase in computational complexity by factor |Q|
|Qa| , with |Qa| the average size of matches

in a consistent configuration for (N, p):

Theorem 4.8 (Execution time overhead introduced by RETE net localization via localizeΨ

depends on query graph size compared to average match size). Let H be an edge-dominated
graph, Hp ⊆ H, (N, p) a RETE net created via the procedure described in [BG23] for the
extended graph query (Q,ψ), C a consistent configuration for (N, p) for host graph H, and
CΦ0 the empty configuration for the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ)
corresponding to (N, p). Executing (NΦ, pΦ) via execute(orderΨ(NΦ), NΦ, H,Hp, CΦ0) then
takes O(T · |Qmax|) steps, with T =

∑
n∈V N |C(n)| and |Qmax| the size of the largest graph

among Q and graphs in ψ.

4:22 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

Proof. (Idea) Follows from Theorem 3.12 and the fact that all semi-joins, anti-joins, and
request projection structures not encapsulated in RETE subnets for plain graph queries in
NΦ are only executed once.

Interestingly, only a subset of the vertex input nodes in a localized RETE net for an
extended graph query are required for the net to produce correct results with respect to
Definition 4.1. Specifically, all vertex input nodes except those in the local navigation
structures of the RETE net for the query pattern created in the topmost recursive call of
localizeΨ are ultimately superfluous. By removing these superfluous vertex input nodes,
localization via localizeΨ may then actually improve performance even in cases where the
relevant subgraph coincides with the full host graph.

Essentially, the resulting RETE net no longer necessarily computes all matches for all
subpatterns of a query’s nested graph condition. Instead, match computation for these
subpatterns is actually guided by requests for complementarity resulting from matches for
the base pattern. Restrictive base patterns with few matches may then create a similar
effect to localized execution, with only a subset of matches for subpatterns in nested graph
conditions being computed in order to complement existing matches for the base pattern.
This is similar to what can be achieved with local-search-based querying techniques but
with the advantage of enabling incremental execution. As with localization, the effectiveness
however depends on the exact query and host graph.

4.2. Localized Detection of NGC Satisfaction Changes. While RETE nets constructed
via localizeΨ can be used to locally and incrementally compute matches for an extended
query that touch a relevant subgraph, the notion of completeness in Definition 4.1 no longer
covers the use case of correctly tracking the full effect of local changes on a global query
result. This is due to the fact that for extended queries, local changes may result in changes
to the satisfaction of a nested graph condition for matches that do not touch the relevant
subgraph, effectively manipulating query results that do not fall under Definition 4.1.

To track the effect of local host graph changes on the global set of results for an extended
graph query, we thus also have to maintain the set of matches for which a modification of
the relevant subgraph may change the nested graph condition’s satisfaction. We ideally
also want to precompute this set of matches before the host graph is modified to enable
incremental maintenance. We thus have no prior knowledge regarding the modifications we
may have to consider except for the fact that they concern the relevant subgraph.

This proves problematic when considering a case where the relevant subgraph constitutes
the entire host graph as an example. In this scenario, checking whether an arbitrary
modification to the relevant subgraph may change the satisfaction of a nested graph condition
for some context match corresponds to checking satisfiability of the nested graph condition.

Notably however, nested graph conditions have been shown to be equivalent to first-
order logic over graphs [HP09, Ren04]. The satisfiability problem for first-order logic being
undecidable thus makes a direct computation of matches for which NGC satisfaction somehow
depends on the relevant subgraph impossible in the general case.

In order to still enable a localized tracking of changes to the results of an extended
graph query, we therefore employ the following overapproximation for the set of matches
where NGC satisfaction may change as a result of local modifications:

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:23

H K H ′

HpHs H ′
p H ′

s

f g

∪ ∪

Hc

∩

H ′
c

∩

(g ◦ f−1)|Hp

(f ◦ g−1)|H′
p

isos = g ◦ f−1|Hs = (f ◦ g−1|H′
s
)−1

Figure 10. Relationship between graphs in Definition 4.10

Definition 4.9 (Subgraph Satisfaction Dependence). We say that a match m : Q → H
for an extended graph query (Q,ψ) into a host graph H with relevant subgraph Hp ⊆ H is
subgraph satisfaction dependent if

• ψ = ∃(a : Q → Q′, ψ′) and there exists a graph morphism m′ : Q′ → H such that
m = m′ ◦ a and m′(Q′) ∩Hp ̸= ∅ or m′ is subgraph satisfaction dependent
• ψ = ¬ψ′ and m is subgraph satisfaction dependent for (Q,ψ′)
• ψ = ψ1 ∧ ψ2 and m is subgraph satisfaction dependent for (Q,ψ1) or (Q,ψ2)

If ψ = true, m is never subgraph satisfaction dependent.

We furthermore define a subgraph-restricted, that is, local graph modification based on
the basic notion of graph modifications introduced in Section 2.1. In a subgraph-restricted
graph modification, changes are limited to relevant subgraphs of source and target graph
and relevant subgraphs are mapped onto each other:

Definition 4.10 (Subgraph-restricted Graph Modification). We say that a graph modi-

fication H
f←− K

g−→ H ′ from a graph H with relevant subgraph Hp into a modified graph
H ′ with relevant subgraph H ′

p is subgraph-restricted if isos = g ◦ f−1|Hs = (f ◦ g−1|H′
s
)−1 is

an isomorphism between Hs = {V H \ (V Hp \ V Hc), EH \ EHp , sH |EH\EHp , t
H |EH\EHp} and

H ′
s = {V H′ \ (V H′

p \ V H′
c), EH

′ \EH′
p , sH

′ |
EH′\EH

′
p
, tH

′ |
EH′\EH

′
p
}, where V Hc = {vc ∈ V Hp |

e ∈ EH \EHp : sH(e) = vc ∨ tH(e) = vc} and with V H′
c defined analogously. Furthermore, it

must hold that (g ◦ f−1)(Hp) ⊆ H ′
p ∧ (f ◦ g−1)(H ′

p) ⊆ Hp.

The relationship between the graphs in the above definition is visualized in the diagram
in Figure 10. H is the source graph of the modification, which is modified into H ′ via
the intermediate graph K. Hp and H ′

p are the relevant subgraphs of H respectively H ′,

which have to be mapped onto each other via f ◦ g−1 and g ◦ f−1. Hs and H
′
s constitute

the remainder of H and H ′ and are required to be isomorphic, which means that the
subgraph-restricted graph modification cannot make changes outside the relevant subgraph.

4:24 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

Note that Hs and H
′
s may share nodes with Hp respectively H ′

p if they are adjacent to edges
in H \Hp respectively H ′ \H ′

p to avoid dangling edges. Hc and H
′
c then are the discrete

graphs consisting of these shared nodes V Hc respectively V H′
c and no edges.

The subgraph satisfaction dependent matches for an extended graph query are then
a superset of all matches for which the satisfaction of the query’s nested graph condition
may change as a result of a subgraph-restricted graph modification. Essentially, a change in
nested graph condition satisfaction requires a match to be subgraph satisfaction dependent
before or after the host graph modification:

Theorem 4.11 (Subgraph-restricted graph modifications can only change NGC satisfaction
for subgraph satisfaction dependent matches). Let (Q,ψ) be an extended graph query and

H
f←− K

g−→ H ′ a subgraph-restricted graph modification from host graph H with relevant
subgraph Hp into the modified host graph H ′ with relevant subgraph H ′

p. It then holds for any
graph morphisms mK : Q→ K that (f◦mK |= ψ∧g◦mK ̸|= ψ)∨(f◦mK ̸|= ψ∧g◦mK |= ψ)⇒
f ◦mK is subgraph satisfaction dependent or g ◦mK is subgraph satisfaction dependent.

Proof. (Idea) Can be shown via induction over ψ, exploiting the fact that host graph
modifications can only directly change the satisfaction of existential subconditions.

A RETE net for locally computing all subgraph satisfaction dependent matches for
an extended graph query (Q,ψ) can then be constructed recursively via the procedure
localizesat, which is visualized in Figure 11 and works as follows:

• For a nested graph condition of the form ψ = true, (N sat, psat) = localizesat(Q,ψ) consists
of a single dummy RETE node psat = [∅]Φ, whose result set is always empty.
• For a nested graph condition of the form ψ = ∃(a : Q → Q′, ψ′), (N sat, psat) =
localizesat(Q,ψ) consists of the localized RETE net for the plain pattern Q, (NΦ

Q , p
Φ
Q) =

localize(Q), the localized RETE net for the plain pattern Q′, (NΦ
Q′ , pΦQ′) = localize(Q′),

the RETE net (N sat
(Q′,ψ′), p

sat
(Q′,ψ′)) = localizesat(Q′, ψ′), a marking-sensitive union node

[∪]Φ with dependencies pΦQ′ and psat(Q′,ψ′), a request projection structure given by RPS∞
r =

RPS∞([∪]Φ, NΦ
Q), and a marking-sensitive semi-join node psat = [⋉]Φ along a with left

dependency pΦQ and right dependency [∪]Φ.
• For a nested graph condition of the form ψ = ¬ψ′, (N sat, psat) = localizesat(Q,ψ) =
localizesat(Q,ψ′).
• For a nested graph condition of the form ψ = ψ1 ∧ ψ2, (N

sat, psat) = localizesat(Q,ψ)
consists of the RETE nets (N sat

(Q,ψ1)
, psat(Q,ψ1)

) = localizesat(Q,ψ1) and (N sat
(Q,ψ2)

, psat(Q,ψ2)
) =

localizesat(Q,ψ2) and a marking-sensitive union node psat = [∪]Φ with dependencies
psat(Q,ψ1)

and psat(Q,ψ2)
.

A localized RETE net for computing subgraph-satisfaction dependent matches for the
example query in Figure 3 is displayed in Figure 12 alongside a consistent configuration
for the host graph in Figure 13. It consists of the localized RETE net in Figure 5 and the
structure created for handling the nested graph condition according to Figure 11.

Notably, there exist no matches for the base pattern Q that touch the relevant subgraph,
which only consists of the interface node i1. Instead, the computation of matches for Q is
controlled via the request projection structure that feeds matches for the right dependency
of the semi-join node into the localized RETE net for Q.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:25

∅
Φ

⋉
Φ

NΦ
Q

Φ
∪

Φ

RPS∞
r

Φ
NΦ
Q′

Φ N sat
(Q′,ψ′)

Φ

N sat
(Q,ψ′)

Φ
∪

Φ

N sat
(Q,ψ1)

Φ N sat
(Q,ψ2)

Φ

Figure 11. Results of applying localizesat to an extended graph query
(Q,ψ) with nested graph conditions of the form ψ = true (top left), ψ =
∃(a : Q → Q′, ψ′) (top right), ψ = ¬ψ′ (bottom left), and ψ = ψ1 ∧ ψ2

(bottom right)

⋉
Φ

(m1,∞)

▷◁
Φ

(m1,∞)

LNSp→c
Φ

(m1.1, 1)

LNSc→f
Φ

(m1.2,∞)

RPSc
Φ

(m1.2.1, 1)

RPSc
Φ

RPS∞
c

Φ

(m1.2.1,∞)

∪
Φ

(m1.3,∞)

LNSc→i
Φ

(m1.3,∞)

∅
Φ

Figure 12. Localized RETE net for computing subgraph-satisfaction depen-
dent matches for the example query in Figure 3 with a consistent configuration
for the host graph in Figure 13

Compared to Figure 8, propagation of matches is essentially reversed: First, the local
navigation structure LNSc→i extracts all matches for the pattern Q′ that touch the relevant
subgraph. The request projection structure connected to the union node then causes the local
navigation structure LNSc→f to extract the match m1.2. The leftmost request projection
structure finally ensures that the required complementary match m1.1 is extracted by the
local navigation structure LNSp→c.

A consistent configuration for the resulting RETE net then indeed guarantees a complete
query result with respect to Definition 4.9:

4:26 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

r1:Proj

p1:Pkg

c1:Class

f1:Field

i1:Intf

pe

cece

fe

ie

p2:Pkg

c2:Class

f2:Field

pe

ce

fe

m1

m1.1

m1.1.1

m1.2

m1.2.1

m2

m1.3

Figure 13. Example host graph with relevant subgraph marked in bold

Theorem 4.12 (Consistent configurations for RETE nets localized via localizesat yield
all subgraph satisfaction dependent matches). Let H be a graph, Hp ⊆ H, (Q,ψ) an
extended graph query, and CΦ a consistent configuration for the RETE net (N sat, psat) =

localizesat(Q,ψ). It then holds that ∀m ∈ MQ
H : m is subgraph satisfaction dependent ⇒

m ∈ RΦ
X(p

sat, CΦ).

Proof. (Idea) Can be shown via induction over ψ, exploiting the close alignment of localizesat

with Definition 4.9.

Given an extended graph query (Q,ψ) and the RETE net (N sat, psat) = localizesat(Q,ψ),
an execution order for (N sat, psat) can be constructed in a straightforward manner via the
procedure ordersat:

• For a nested graph condition of the form ψ = true, the result of ordersat is given by
ordersat(N sat) = [∅]Φ.
• For a nested graph condition of the form ψ = ∃(a : Q → Q′, ψ′), the result of ordersat

is given by ordersat(N sat) = order(NΦ
Q′) ◦ ordersat(N sat

(Q′,ψ′)) ◦ [∪]
Φ ◦ toposort(RPS∞

r)−1 ◦
order(NΦ

Q) ◦ [⋉]Φ.

• For a nested graph condition of the form ψ = ¬ψ′, (N sat, psat) = localizesat(Q,ψ′) and
thus the ordering via ordersat(N sat) is covered by one of the other cases.
• For a nested graph condition of the form ψ = ψ1 ∧ ψ2, the result of ordersat is given by
ordersat(N sat, psat) = ordersat(N sat

(Q,ψ1)
) ◦ ordersat(N sat

(Q,ψ2)
) ◦ [∪]Φ.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:27

This execution order then guarantees consistency of the resulting configuration:

Theorem 4.13 (Execution of localized RETE nets via ordersat yields consistent configu-
rations). Let H be a graph, Hp ⊆ H, (Q,ψ) a graph query, and CΦ0 an arbitrary starting
configuration for the marking-sensitive RETE net (N sat, psat) = localizesat(Q,ψ). Ex-
ecuting (N sat, psat) via O = ordersat(N sat) then yields a consistent configuration CΦ =
execute(O,N sat, H,Hp, CΦ0).

Proof. (Idea) Follows because all cyclical structures in N sat are encapsulated in localized
RETE subnets for plain graph queries, for which order creates an admissible ordering.

We hence again get a corollary stating the correctness of RETE net execution via
localizesat:

Corollary 4.14 (Execution of RETE nets localized via localizesat yields all subgraph
satisfaction dependent matches). Let H be a graph, Hp ⊆ H, and (Q,ψ) a graph query.
Furthermore, let CΦ0 be an arbitrary starting configuration for the marking-sensitive RETE
net (N sat, psat) = localizesat(Q,ψ) and CΦ = execute(ordersat(N sat), N sat, H,Hp, CΦ0). It

then holds that ∀m ∈MQ
H : m is subgraph satisfaction dependent ⇒ m ∈ RΦ

X(p
sat, CΦ).

Proof. Follows directly from Theorems 4.12 and 4.13.

Technically, it can be shown that a RETE net for an extended graph query (Q,ψ)
constructed via (N sat, psat) = localizesat(Q,ψ) has similar performance characteristics as
a RETE net constructed via localizeΨ compared to a regular RETE net (N, p) for (Q,ψ)
constructed via the basic procedure described in [BG23]. Specifically, the size of a consistent
configuration for (N sat, psat) is only increased by a constant factor compared to a consistent
configuration for (N, p), resulting in only a constant-factor increase in memory consumption
and a minor increase in runtime complexity.6

However, it is important to note that (N, p) and (N sat, psat) potentially compute very
different sets of matches. By Definition 4.9, RETE nets constructed via localizesat may
have to compute matches for Q that do not actually satisfy ψ if ψ involves negations or
conjunctions, whereas such matches have to be excluded from the results of (N, p).

Relating the performance of (N sat, psat) to the performance of (N, p) therefore relies
on redundancy in the basic construction in [BG23]. Many optimizations to (N, p), such as
the elimination of redundancy or the downward propagation of nested graph conditions in
the RETE net described in [BG23], are applicable to localized RETE nets constructed via
localizeΨ and likely yield similar benefits. In contrast, due to the different construction
procedure and desired computation results, such optimizations can have a very different
effect on (N sat, psat) or may simply not be applicable at all. Consequently, executing
(N sat, psat) as part of any execution of (Q,ψ) may create substantial overhead on both
memory consumption and execution time in unfavorable cases if further optimizations are
involved.

Still, using the localizesat procedure, we can now construct a RETE net that allows the
localized computation of changes to the results of an extended graph query (Q,ψ) caused

by a subgraph-restricted graph modification H
f←− K

g−→ H ′, which may be beneficial in
practice.

6See Theorem A.1, Corollary A.2, and Theorem A.3 in Appendix A.

4:28 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

⋉
Φ

∪
Φ NΦ

(Q,ψ)
Φ

ϕ > h
Φ

NΦ
Q

Φ N sat
(Q,ψ)

Φ

f◦g−1

−−−−→
Φ

N sat′

(Q,ψ)
Φ

RPS∞
l

Φ

Figure 14. Result of applying localize∆ to an extended graph query (Q,ψ)

The result (N∆, p∆) = localize∆(Q,ψ) of this construction via the procedure localize∆ is
visualized in Figure 14. The resulting RETE net consists of the localized version (NΦ

Q , p
Φ
Q) =

localize(NQ, pQ) of a regular RETE net (NQ, pQ) with height h for the plain graph query
Q, a marking filter node [ϕ > h]Φ with dependency pΦQ, the RETE net (N sat

(Q,ψ), p
sat
(Q,ψ)) =

localizesat(Q,ψ), and a marking-sensitive union node [∪]Φ with dependencies [ϕ > h]Φ

and psat(Q,ψ). In addition, N∆ comprises the RETE net (NΦ
(Q,ψ), p

Φ
(Q,ψ)) = localizeΨ(Q,ψ),

a request projection structure RPS∞
l = RPS∞([∪]Φ, NΦ

(Q,ψ)), and a marking-sensitive

semi-join [⋉]Φ with left dependency [∪]Φ and right dependency pΦ(Q,ψ).

Additionally, another copy of the RETE net for computing subgraph satisfaction
dependent matches, (N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ), is created for computing subgraph

satisfaction dependent matches in H ′. These matches then have to be translated into matches
into H along the graph morphisms f and g via a dedicated marking-sensitive translation node

[
f◦g−1

−−−−→]Φ with dependency psat
′

(Q,ψ), which is also added to N∆. The target result set of this

marking-sensitive translation node is given by RΦ([
f◦g−1

−−−−→]Φ, N∆, H,Hp, CΦ) = {(m,ϕ)|m ∈

MQ
H ∧ ∃(m′, ϕ) ∈ CΦ(psat′) : f ◦ g−1 ◦m′ = m}. The node [

f◦g−1

−−−−→]Φ can then be added as

an additional dependency to [∪]Φ.
The created net thereby computes the matches into H that satisfy ψ and touch the

relevant subgraph or are subgraph satisfaction dependent in H or H ′:

Theorem 4.15 (For a subgraph-restricted graph modification, consistent configurations
for RETE nets localized via localize∆ yield all matches that touch the relevant sub-
graph in the source or are subgraph satisfaction dependent in the source or target of

the modification). Let (Q,ψ) be an extended graph query and H
f←− K

g−→ H ′ a subgraph-
restricted graph modification modifying the graph H with relevant subgraph Hp ⊆ H
into the graph H ′ with relevant subgraph H ′

p ⊆ H ′. Furthermore, let CΦ be a config-

uration that is consistent for (N∆, p∆) = localize∆(Q,ψ) for host graph H and rele-

vant subgraph Hp and consistent for (N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ) for host graph

H ′ and relevant subgraph H ′
p. It must then hold that ∀m ∈ MQ

H : m |= ψ ∧ (m(Q) ∩

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:29

Hp ̸= ∅ or m is subgraph satisfaction dependent or ∃m′ ∈ MQ
H′ : f ◦ g−1 ◦ m′ = m ∧

m′ is subgraph satisfaction dependent)⇒ m ∈ RΦ
X(p

∆, CΦ).

Proof. (Idea) Follows from Theorems 3.5, 4.3 and 4.12.

An execution order for a RETE net (N∆, p∆) = localize∆(Q,ψ) can simply be con-

structed as order∆(N∆) = order(NΦ
Q) ◦ [ϕ > h]Φ ◦ ordersat(N sat

(Q,ψ)) ◦ [
f◦g−1

−−−−→]Φ ◦ [∪]Φ ◦
toposort(RPS∞

l)−1 ◦ orderΨ(NΦ
(Q,ψ)) ◦ [⋉]Φ:

Theorem 4.16 (Execution of localized RETE nets via order∆ yields consistent config-
urations). Let (Q,ψ) be an extended graph query and H a host graph with relevant sub-
graph Hp and CΦ0 an arbitrary starting configuration for the marking-sensitive RETE net
(N∆, p∆) = localize∆(Q,ψ). Executing (N∆, p∆) via O = order∆(N∆) then yields a con-
sistent configuration CΦ = execute(O,N∆, H,Hp, CΦ0).

Proof. (Idea) Follows because all cyclical structures in N∆ are encapsulated in localized
RETE subnets for plain graph queries, for which order creates an admissible ordering.

As usual, we thus get a corollary stating the correctness of RETE net execution via
order∆:

Corollary 4.17 (For a subgraph-restricted graph modification, execution of RETE nets
localized via localize∆ yields all matches that touch the relevant subgraph in the source or
are subgraph satisfaction dependent in the source or target graph of the modification). Let

(Q,ψ) be an extended graph query and H
f←− K g−→ H ′ a subgraph-restricted graph modification

modifying the graph H with relevant subgraph Hp ⊆ H into the graph H ′ with relevant sub-
graph H ′

p ⊆ H ′. Furthermore, let CΦ0 be a configuration for (N∆, p∆) = localize∆(Q,ψ) and

(N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ) that is consistent for (N sat′

(Q,ψ), p
sat′

(Q,ψ)) for host graph H ′

and relevant subgraph H ′
p. It then holds for the configuration CΦ = execute(O,N∆, H,Hp, CΦ0)

that ∀m ∈MQ
H : m |= ψ∧(m(Q)∩Hp ̸= ∅ or m is subgraph satisfaction dependent or ∃m′ ∈

MQ
H′ : f ◦ g−1 ◦m′ = m ∧m′ is subgraph satisfaction dependent)⇒ m ∈ RΦ

X(p
∆, CΦ).

Proof. Follows directly from Theorem 4.15 and Theorem 4.16.

Changes to the results of an extended graph query (Q,ψ) resulting from a subgraph-

restricted graph modificationH
f←− K g−→ H ′ for relevant subgraphsHp ⊆ H andH ′

p ⊆ H ′ can

then be computed by mirroring the construction with localize∆ for H and H ′. This entails
creating RETE nets (N∆, p∆) = localize∆(Q,ψ) and (N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ)

as well as duplicates (N∆′
, p∆

′
) = localize∆(Q,ψ) and (N sat

(Q,ψ), p
sat
(Q,ψ)) = localizesat(Q,ψ).

(N∆, p∆) and (N sat
(Q,ψ), p

sat
(Q,ψ)) are executed over H, whereas (N∆′

, p∆
′
) and (N sat′

(Q,ψ), p
sat′

(Q,ψ))

are executed over H ′. After appropriate translation of matches, the set of matches that are
deleted by the modification or for which the satisfaction of ψ changes from true to false

can be computed as the difference between results for p∆ and p∆
′
:

Theorem 4.18 (Removal of matches from the results of an extended graph query caused
by a subgraph-restricted graph modification can be detected using RETE nets localized

via localize∆). Let (Q,ψ) be an extended graph query and H
f←− K

g−→ H ′ a subgraph-
restricted graph modification modifying the graph H with relevant subgraph Hp ⊆ H into

4:30 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

▷
Φ

N∆
(Q,ψ)

Φ

g◦f−1

−−−−→
Φ

▷′ Φ

N∆′

(Q,ψ)
Φ

f◦g−1

−−−−→
Φ

Figure 15. RETE construction for locally computing changes in results for
an extended graph query (Q,ψ)

the graph H ′ with relevant subgraph H ′
p ⊆ H ′. Furthermore, let CΦ be a configuration that

is consistent for (N∆, p∆) = localize∆(Q,ψ) and (N sat
(Q,ψ), p

sat
(Q,ψ)) = localizesat(Q,ψ) for

host graph H and relevant subgraph Hp and consistent for (N∆′
, p∆

′
) = localize∆(Q,ψ) and

(N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ) for host graph H ′ and relevant subgraph H ′
p. It then holds

that {m ∈MQ
H | m |= ψ ∧ ∄m′ ∈MQ

H′ : m = f ◦ g−1 ◦m′ ∧m′ |= ψ} = RΦ
X(p

∆, CΦ) \ {m ∈
MQ

H | ∃m′ ∈ RΦ
X(p

∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.
Proof. (Idea) Inclusion in both directions can be shown by exploiting the fact that ultimately,

both (N∆, p∆) and (N∆′
, p∆

′
) check the satisfaction of ψ for sets of matches that can only

differ in matches touching the relevant subgraph.

Analogously, matches created by the modification or for which the satisfaction of ψ
changes from false to true can be computed as the difference between p∆

′
and p∆. The

required translation of matches can be realized in a straightforward manner via marking-
sensitive translation nodes and difference computation can be performed via marking-sensitive
anti-joins, as displayed in Figure 15.

5. Evaluation

We aim to investigate whether RETE net localization can improve performance of query
execution in scenarios where the relevant subgraph constitutes only a fraction of the full
model, considering initial query execution time, execution time for incrementally processing
model updates, and memory consumption as performance indicators. We experiment7 with
the following querying techniques:

• STANDARD: Our own implementation of a regular RETE net with global execution
semantics [BG23].
• LOCALIZED: Our own implementation of the RETE net used for STANDARD, localized
according to the description in Section 3.2 and Section 4.1.

7Experiments were executed on a Linux SMP Debian 4.19.67-2 computer with Intel Xeon E5-2630
CPU (2.3GHz clock rate) and 386GB system memory running OpenJDK 11.0.6. Reported measurements
correspond to the arithmetic mean of measurements for 10 runs. Memory measurements were obtained
using the Java Runtime class. To represent graph data, all experiments use EMF [emf] object graphs that
enable reverse navigation of edges. Our implementation is available under [BG25]. More details and query
visualizations can be found in [BG24b] and [BG25] or in Appendix B.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:31

• DELTA: Our own implementation of the RETE net used for STANDARD, localized for
detecting changes to the results of extended graph queries according to the description in
Section 4.2.
• VIATRA: The external RETE-based VIATRA tool [VBH+16].
• SDM*: Our own local-search-based Story Diagram Interpreter tool [GHS09].

Note that STANDARD and LOCALIZED implement the additional optimizations for
elimination of redundancy and downward propagation of nested graph conditions described
in [BG23]. To the extent possible, DELTA employs these optimizations as well.

For SDM*, we only consider searching for new query results. We thus underapproximate
the time and memory required for a full solution with this strategy, which would also require
maintaining previously found results.

5.1. Plain Graph Queries over Synthetic Abstract Syntax Graphs. We first attempt
a systematic evaluation via a synthetic experiment, which emulates a developer loading part
of a large model into their workspace and monitoring some well-formedness constraints as
they modify the loaded part, that is, relevant subgraph, without simultaneous changes to
other model parts.

We therefore generate Java abstract syntax graphs with 1, 10, 100, 1000, and 10000
packages, with each package containing 10 classes with 10 fields referencing other classes in
the same or a different package. As relevant subgraph, we consider a single package and its
contents. We then execute a plain graph query searching for paths consisting of a package
and four classes connected via fields.

After the initial query execution, we modify the relevant subgraph by creating a class in
the considered package along with 10 fields referencing other existing classes in the relevant
subgraph, that is, the same package. We then perform an incremental update of query
results. This step of modifying the relevant subgraph and updating query results is repeated
10 times.

Due to the query being a simple path, the effort for query execution largely depends
on the number of overall query results. This number is in turn directly determined by the
number of classes considered during execution and their number of connections to other
classes. By fixing the former for localized execution via the selection of the relevant subgraph
and fixing the latter for both localized and global execution via the construction of the
host graph, we thus aim to isolate the effect of localization on the performance of query
execution.

Figure 16 (left) displays the execution times for the initial execution of the query. The
execution time of LOCALIZED remains around 120ms for all model sizes. The execution
time for SDM* slowly grows from around 350ms to 1025ms due to indexing effort that is
necessary for observing model changes. In contrast, the execution time for the other RETE-
based strategies clearly scales with model size, with the execution time for STANDARD
growing from around 13ms for the smallest model to more than 184 000ms for the largest
model. On the one hand, localization thus incurs a noticeable overhead in initial execution
time for the smallest model, where even localized query execution is essentially global. On
the other hand, it significantly improves execution time for the larger models and even
achieves better scalability than the local-search-based tool in this scenario.

The average times for processing a model update are displayed in Figure 16 (center).
Here, all strategies achieve execution times mostly independent of model size. While the

4:32 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

1 10 100 10000

INITIAL

tim
e

(m
s)

5e
+

01
1e

+
04

model size

tim
e

(m
s)

1 10 100 10000

UPDATE

0.
5

2.
0

10
.0

model size

tim
e

(m
s)

10ms

1 10 100 10000

MEMORY

m
em

or
y

(M
B

)

50
50

0
20

00
0

model size

m
em

or
y

(M
B

)

LOCALIZED STANDARD VIATRA SDM*

Figure 16. Measurements for the synthetic abstract syntax graph scenario
(log scale)

measurements for STANDARD fluctuate, likely due to the slightly unpredictable behavior of
hash-based indexing structures, average execution times remain low overall and below 10ms
for LOCALIZED. Still, localization incurs a noticeable overhead up to factor 6 compared to
STANDARD and VIATRA. This overhead is expected, since in this scenario, all considered
updates affect the relevant subgraph and thus impact the results of the localized RETE
net similarly to the results of the standard RETE nets. Consequently, localization does not
reduce computational effort, but causes overhead instead.

Finally, Figure 16 (right) shows the memory measurements for all strategies and models
after the final update. Here, LOCALIZED again achieves a substantial improvement in
scalability compared to the other RETE-based strategies, with a slightly higher memory
consumption for the smallest model and an improvement by factor 120 over STANDARD for
the largest model. This is a result of the localized RETE net producing the same number
of intermediate results for all model sizes, with the slight growth in memory consumption
likely a product of the growing size of the model itself. SDM*, not storing any matches,
performs better for all but the largest model, where memory consumption surpasses the
measurement for LOCALIZED. This surprising result can probably be explained by the fact
that SDM* has to index the full model to observe modifications, causing an overhead in
memory consumption.

In addition to these experiments, where the full model is always stored in main memory,
we also experimented with a model initially stored on disk via the persistence layer CDO
[cdo]. Measurements mostly mirror those for the main-memory-based experiment. Notably
though, in conjunction with CDO the LOCALIZED strategy achieves almost ideal scalability
regarding memory consumption for this scenario, with measurements around 70MB for all
model sizes.8

5.2. Plain Graph Queries over Real Abstract Syntax Graphs. To evaluate our
approach in the context of a more realistic application scenario, we perform a similar
experiment using real data and plain graph queries inspired by object-oriented design
patterns [GHJV93]. In contrast to the synthetic scenario, this experiment emulates a
situation where modifications may concern not only the relevant subgraph but the entire

8See [BG24b] for measurement results.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:33

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ● ●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25

0
15

00
OBSERVER

number of changes

tim
e

(m
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●
● ● ● ● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25

0
10

00

STRATEGY

number of changes

tim
e

(m
s) ●

●

LOCALIZED
STANDARD
VIATRA
SDM*

Figure 17. Execution times for the real abstract syntax graph scenario

model, for instance when multiple developers are simulatenously working on different model
parts.

We therefore extract a history of real Java abstract syntax graphs with about 16 000
vertices and 45 000 edges from a software repository using the MoDisco tool [BCJM10,
BCDM14]. After executing the queries over the initial commit, we replay the history and
perform incremental updates of query results after each commit. The employed queries are
visualized in Appendix B. As relevant subgraph, we again consider a single package and its
contents.

Figure 17 displays the aggregate execution time for processing the commits one af-
ter another for the queries where LOCALIZED performed best and worst compared to
STANDARD, with the measurement at x = 0 indicating the initial execution time for the
starting model. Initial execution times are similarly low due to a small starting model and
in fact slightly higher for LOCALIZED. However, on aggregate LOCALIZED outperforms
STANDARD with an improvement between factor 5 and 18 due to significantly lower update
times, which are summarized in Figure 18 (left).

In this case, the improvement mostly stems from the more precise monitoring of the
model for modifications: The RETE nets of both STANDARD and LOCALIZED remain
small due to strong filtering effects in the query graphs. However, while STANDARD spends
significant effort on processing model change notifications due to observing all appropriately
typed model elements, this effort is substantially reduced for LOCALIZED, which only
monitors elements relevant to query results required for completeness under the relevant
subgraph. The execution times of SDM* can be explained by the same effect. Interestingly,
VIATRA seems to implement an improved handling of such notifications, achieving improved
execution times for particularly small updates even compared to LOCALIZED, but requiring
more time if an update triggers changes to the RETE net. Combined with a higher RETE
net initialization time, this results in LOCALIZED also outperforming VIATRA for all
considered queries.

Regarding memory consumption, all strategies perform very similarly, which is mostly a
result of the size of the model itself dominating the measurement and hiding the memory
impact of the rather small RETE nets.

5.3. LDBC Social Network Benchmark. Finally, we also perform experiments inspired
by the independent LDBC Social Network Benchmark [EALP+15, AAA+24], simulating a

4:34 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

● ●● ● ●●●●●●●● ●●●●●● ●●●●● ●●●●●
●

●●
●

●●
●● ●

●●
● ●●

●●●

● ●●●●●●●● ● ●

● ●●● ●●●●●●●● ●●●●●● ●●●●
●
●●●●●

● ●●● ● ●●●●●●● ●●●●●
● ●●●●●●●●● ●

10 20 50 100

0.
01

10
.0

0

JAVA (REAL)

update time STANDARD (ms)

up
da

te
 ti

m
e

(m
s)

●
●

●●

●

●
●●
●

●

●
●●● ●●●

●
●●●

●

●●
●
●●●

●
●

●
●●●
● ●●●

●
●

●●
●●

●●●
●●●

●●
●●
●●●

●
●

● ●

●

●
●

●
●●●

●● ●●
●●
●
●●●

●●●●● ●
●

●●●● ●●
●●

● ●
●

●●
●●

●

●
●●●●● ●●●●●
●●

●●
●●

●●
●●

●
●●●

●●
●

●
●●●

● ●●●●●● ●●●●
●

●
●

●
●●●
●

●
●

● ●●●●●●
●
●●
●

●●● ●●
● ●●

●
●

●●●●
●

● ●●
●

●
●●● ●

●

●
●● ●●●
●

●●●● ●
●

●●●●
●●
●●
●●
●
●●

●●
●●●● ●
●
●

●

●●●●
●
●●

●●●
●●●●●●

●
●
●
●●

●●
●●
●
●

●

●

●
●

●●
●

●
●●

●
●
●●
●
●
●

●●
●●●●●
●●●●
●

● ●●

●
● ●●●●

●
●

● ●●
●

●
●

●●
●

●●●
●
●●●
●

●●
●
●●●●●● ●●
●●

●●●●●●●
●●

● ●●●●
●●

●●

●

●
●●

●
●

●
● ●

●●●●
●

● ●●
●●●●●●●
●●
●
●

●
●

●●
●●
●●

●●●
●

●●

●
●

●● ●●●
●●
●●● ●
●

●●
●●●● ●●
●●●●● ●●

●
●●●

●

● ●
●●

● ●● ●●
●

●●●●●●●●
●●

●

●●
●
●● ●

●

●
●

●●●
●●●● ●●●●●●

●● ●●●
●●

●

●
●

●
●●●●
●

●
●

●●●●● ●●●
●

●●●●●●● ●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●

●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●

●●●●●●●●
●
●●●●●●●●●●●

●

●●●●● ●
●
●●●●●●●●●

● ●●● ●●●●
●●●● ●

●
●● ●●●●●●●●

●●●●●●
●
●●●● ●●●●●●●●●●●● ●● ●● ●●● ●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●● ●●● ●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●

●●●●●●●●●● ●●●●●●●●●●
●

●●●●
●●●
●
●●●●●●

●
●●●●●●●●●●● ●●●●●

●
● ●●●●●●●●●

●
●●●●●●●●●●●●●●
●● ●●●

●
●

●
●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●

●

●●●●●●●●●●●●●●● ●●●
●

● ●●●●●
●●●

●
●
●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●
●●●●●● ●

●
●●●●●
●●●

●●●●●●
●
●●● ●●●●●●●●●●●●●●●●● ●●

●●●●●●● ●
●

●●●●●●●●
●
●●●●●●● ●●●●

●
●● ●●● ●

●●●●●
●●●●●
●

●●●● ●● ●
●●●●
●

●
●● ●●

●
●●● ●●●●●●● ●

●
●
●
●●●●●●●●●●●●●●●●●●
●

●● ●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●
●●

●●●●●●●●●●● ●●●●● ●●● ●●●● ●● ●● ●●
●●●●●●●

●●●●●●●●●● ●●●● ●●●●●● ●●● ●● ●●●● ●●●●

●

●
●
●●●●●●●

●●●
●●●●●●●●●
●●

●●●●●
● ●●● ●●●●●● ●●●● ●

●●
●
●●● ●

●
●●

●●●
●●●●●●●
●

●●●●●●
●●●●● ●●● ●●

●

●●● ●●● ●●● ●
●

●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●
●

●●●●
● ●●● ●●●●● ●●●●●

●

●●●●●●●●●●

●●●●●●●●

●

●
●
●●●●●●●●

●●
●●●●●● ●●●

●
●●●
●●● ●●● ●●●●●●●●●●●●●●

●
●

● ●
●●
●●●● ●
●●

●●● ●●●●
●

●
●●●

●
●

●●
●●
●●●● ●●●●●

●●●●●● ●●●●●●
●●
●●●●
●●●●●● ●●

●●

●
●● ●●
●
●●●●●●● ●

●●●● ●●●●●●
●●● ● ●

●
●
●● ●

●
●●
●●
●

●

●
●
●●●

●
●● ●●●●●●●●●●●●●

●●●●●
●

●●●●●●
●
●●
●
●● ●●●●●●●●●●

●
●●●

●●●●
● ●●●●●●●●●

●
●● ●●●●

●
●

●●●●●● ●● ●●●
●

●

●● ●●●●●●
●

●●●●●●●●●●●● ●●●●●●●●●●●
●●●●● ●● ●●●
●●●●●● ●●●●●
●●●●●● ●● ●●●●● ●●
●●

●
●●●●●●● ●●●●●

●

●●●●●
●
●●●
●

● ●
●●●●●
● ●● ●●●●

●●
●

●
●

●
●●

●

●
●

●●●●●●●●● ●●●
●

●

●
● ●●

●●● ●●● ●
●

● ●
●●●●●●
●●●●●●●● ●●●

●

●

●

●
●●●●●●
●

●
●●●●●●
●

●●●●●
●

●
●●●

●●

●
●●●●●●●

●

●●●●
●● ●●●

●●
●

●●●●●●●
●

● ●

●

●

●
●

●

●●●●

●

●

●●
●●●●

●
●●●

●
●
●

●

●●●●
●

●

●
●
●

●
●●●
●

●

●●
●

●
●●●

●●

●

●●
●

●

●●●

●

●
● ●●

●

●
●

●●●
●●●●

●●

●
●

●●

●●

●●●●
●

●●
●●

●●

●
●

●

●●●
●

●
●

●

●
●

●●●
●
●●●●

●

●●
● ●

●●

●
●●

●
●
●

●
●

●

● ●

●

●
●●

●
● ●

●●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●●
●

●
●●

●

●

●
●●

●
●●

●
●

●●●

●

●
●

●
●

●
●

●
●●●

●
●

●
●

●

●
●●

●●●

●
●●

●

●
●●

●
●●●

●

●
●
●●

● ●

●

●●● ●
●

●
●
●●

●●

●

●●
●

●●●●

●

●●
●

●

●
●

●

●●
●

●●
●

●

●

●

●●
● ●

●

●
●

●

●

●

●●
●

●

●●
●
● ●
●

●
● ●●

●
●
●

●
●●

●
●

●

●●●
●

●
● ●●

●

●
●

● ●●●●
●
●

●

● ●
●

●●

●

●●●

●●

●
●

●
●●

●●
●
●●

●

●

●●
●
●●
●

●
●●

●
●

●

●
●●●●

●

●●
● ●

●●
●
●

●●

●●●●●
●●
●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●
●

●

● ●●●

●

●
●

●● ●

●

●●

●●●●
●
●●●●●

●
●●

● ●●●

●

● ●

●
●

● ●●●
●

●

●
●●
●● ●●●

●

●
●
●
●

●

●

● ●
●

●

●

●●●
●●
●

● ●
●●

●●●

●
● ●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●●●●●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●
●● ●●●●●●●●●●●●
●●●●●
●●●●●● ●●●●●●●●●●●●
●●●
●
●
●●●●

●

●●●●●●●●●● ●
●
●●●●● ●●●●
●
●●●●●
●●

●●●●●●●●●●●●
●

●● ●●●●●
●●●●●●●

●●●
●●●●●●●
●●●●●●●
●●●● ●

●●●●●●●●
●
●●●● ●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●
●●●●●●● ●●●
●
●
●●●● ●●●●
●

●●● ●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●
●
●●
●

●
●●●●●●●
●●●

●
●●●

●
●●●●●●●●●●● ●●●●●

●
●●●●●●●●●●
●
●●●●●●●●
●●●●●●●● ●●●

●
● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●

●
●●●

●

●●●●●●●●●●
●●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●
●
●●●
●●●
●
●●●● ●●●●●●●●●●●●●

●●●●●●●●●●● ●●●
●
●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●●●

●●●●

●

●●●●●●●●●● ●●
●
●●●● ●●●● ●●●●●●●● ●●●●●●
●●

●●●
●●●●●●●●● ●

●
●
●
●
●

●
● ●
●

●
●

●
●●●

●
●
●

●
●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●
●●●●

●
●●●●●●●●●●●

●●●
●●●●●●
●
●●
●
●
●●●●●●●
●
●●●
●

●● ●●●● ●● ●●●●●●
●

● ●●●●●●●●●●●●●
●
●●●●●●

●
●●●●

●
●●
●●
●
●●
●●●●●●●●●●●

●
●
●
●● ●●●●● ●●●●●●● ●●

●●
●●
●

●●
●●
●●

●●
●●●●●●●
●
●●
●
●●

●
●●●
●
●●●●●●
●●●●●
●
●●
●●●●
●
●●
●●
●●●●●●●●●●●

●●
●●●●●
●

●●●
●
●●●●● ●●●●

● ●
●●

● ●●
●
●●●
●

●●●●●
●●
●●●●

●
●
●●●●●●●●
●●
●● ● ●●

●●●●●
●●

●●
●●●●●●●●
●
●●●

●
● ●●

●
●

●●
●

●

●
●●●●
●●●●●●

●
●●
●

●●●
●

●
●

●●●
●

●●
●●

●
●

●
●●●●●

●●●
●●
●●
●●●

●
●●●●●
●

●
●●●

●●●●
●●
●●●●

●●
●●●●●●●●●●●

●●
●

●●
●●

●●
●

●●●●●
●●●●

●

●●●●●●●
●
●

●
●

●
●●
●

●● ●
●

●●●●●●
●●●● ●●●●
●

●
●

●●●●
●

●
●

● ●
●
●●

●●●●●
●

●
●

● ●●
●●●●

●
●●●●
●●●●

●
●

●●●●
●

●
●● ●●●
●

●●●●●
●

●●●●●●
●●
●●
●
●●

●●
●●●● ●●●
●●●●●

●
● ●●●●●●

●
●●

●
●

●
●
●
●●

●
●●
●
●●
●

●●
●●
●

●
●
●

●
●●●
●

●
●

●●●●●
●●●●●

●●
●●●

●
●

●
● ●●
●

●
● ●●

●
●
●●●

●
●●●

●
●●●
●

●●●
●●●●●
●

●

●

●●
●●●●●●●

●
●

●●●●●
●●●●

●

●
●●

●
●

●
●●

●●●●
●●●●
●●

●●●
●●●●

●

●

●
●

●●
●●
●

●●●●
●

●●
●
●

●
●●●●●●
●

●● ●
●

●●
●●●●●●●
●●●●
●●

●
●●●

●

● ●
●
●● ●●●●
●

●●●●●●●●
●●
●●●
●
●

●●
●

●
●
● ●●●●●●●●●

●●●
●● ●●●

●
●

●

●
●

●
●●●●
●

●
●

●●●
●

●
●●●

●
●

●●●●●●●●●●●
●

●●●●●●
●

●●●●●● ●●●●●
●●●●●●●●●●●●●●

●
●
●●●●●
●

●●
●

●●●● ●●●●●
●
●●●●●●●

● ●●
●●●●●● ●●●●●●●●●

●●●●●●●●●●●●●
●

●●●● ●●●●
●
●● ●●●

●●●●●●● ●●●●● ●●●●●●
●●●●●

●
●●●

●●●●●●
●●●●●●●
●

●●●●●
●●●●●●●●●●
●●●●●● ●●●●●●●●●●

● ●
●

●
●●●●●●●●●●●●●●
●●●
●●

●●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●

●
●●●●●●●

● ●●●●●●●●●●
●

●●●●●●●●●●●● ●● ●●●●●●● ●●
●●

● ●●●●●●●●●●●●●●● ● ●
●

●● ●●●●●●●●●●●●
●

●●●●●
●●●●●● ●●

●
●●

●
●●●●●

●●●●●
●

●●●●●
●
●●

●
●●●●●● ●

●●●●
●

●●
●●

●
● ●

●●●●●●● ●
●
●●●
●
●●●●●●●●●●●

●
●●●

●

●
●●●●

●●●●●●
●●●●●●●●●●●●●●● ●

●
●●●●●●●●●●●●
●●●●● ●●●●●

●

●●●●●●●●●●
●

●
●

●

●

●

●
●

●

●

●
●
●●●

●
●

●
●●

●
●

●

●

●

●●
●

●
●

●

●
●
●

●
●
●●●

●
●

●
●●

●

●
●

●●

●

●●
●●

●●●

●

●● ●
●

●

● ●

●●●●●
●●

●●
●
●● ●

●
●
●●

●●
●

●●
●

●
●●

●●
●
●

●
●

●

●
●

●

●
●

●●
●

●
●

●●
●
●

●
●

● ●
●●

●

●●
●

●
●●

●

●
● ●

●
●●

●

●
●●

●●●●
●●

●
●

●

●

●

●
●●●

●

●

●

●
●

●
●●

●●
●

●

●
●
●

●

● ●●

●●
●
●●
●
● ●

●

●●

●●

● ●
●
●●

●

●

●

●● ●●

●
●

●●
●

●

●
●

●

●●●●●
●●

●●

●
●●

●●

●
●●

●
●

●

●
●●●

●●

●

●●

●
●●

●●●
●
●

●●
●
●

●

●●
●

●●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●
● ●●●

●●

●
●●

●

●

●

●●
●
●

●
● ●●

●

●
●

●●
●

●
●
●

●

●

●●
●

●●

●

●●●
●●

●
●

● ●
●● ●

●

●●
●
●

●
●

●
●●●
●

●●

●
●

●

●
●●●●
●

● ●
●●

●
●

●
●

●●

●
●

●●
●●●●●

●

●

●

●

●
●●●

●
●

●
●

●

●

●●

●
●

●
● ●

●
●

●
●

●
●

●
●

●

●●

●●●●
●
●●●●●
●
●●

● ●●●

●

● ●

●
●

●
●●●

●●

●●
●
●●

●●●

●
●●●

●

●

●

● ●

●
●

●
●●●
●●●● ●
●

●●
●●

●
● ●

●
●
●
●

●

●

●

●

●
●
●
●

●
●

●
●●●●● ●
●●
●

● ●●●●●●●●●●●
●●●●

●
●●●●●●●●

●●●●●● ●●●●●●● ●●●●●●● ●

●

●●●●●●●●
●●●●●

●●●●●●●●● ●●●●●●●●●●●●
●●●●●

●● ●●● ●●●●●●●
●●●

●
●●
●●●●

● ●●●●

●
●●●●● ●●●●●●●●●●●● ●●●●●●●●●

●
● ●●

●● ●●●●●
●●●

●
●

●●● ●●●●●●●●●●●●●●●●
●●●●
●

● ●●
● ●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●● ●●●
●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●● ●●●●●●●●

●
●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●

●
●●●●●●●

●●●●●
●
●

●

●●●
●

●●
●●●●●

●●●●●

●
●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●
●●●

●

● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●
●

●●●●

●

●●●●●●●●●●

0.1 10.0 1000.0

0.
1

10
00

.0

LDBC

update time STANDARD (ms)

up
da

te
 ti

m
e

(m
s)

● LOCALIZED
STANDARD

Figure 18. Summary of update processing times for plain graph queries in
different scenarios (log scale)

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

0 100000 300000

0
15

00
0

INTERACTIVE_2

number of changes

tim
e

(m
s)

●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

0 100000 300000

0
5e

+
05

INTERACTIVE_10

number of changes

tim
e

(m
s) ●

●

LOCALIZED
STANDARD
VIATRA
SDM*

Figure 19. Execution times for the LDBC scenario

case where a user of a social network wants to incrementally track query results relating to
them personally.9

We therefore generate a synthetic social network consisting of around 850 000 vertices,
including about 1700 persons, and 5 500 000 edges using the benchmark’s data generator and
the predefined scale factor 0.1. We subsequently transform this dataset into a sequence of
element creations and deletions based on the timestamps included in the data. We then create
a starting graph by replaying the first half of the sequence and perform an initial execution
of adapted versions of twelve benchmark queries consisting of plain graph patterns, with
a person with a close-to-average number of contacts in the final social network designated
as relevant subgraph. After the initial query execution, we replay the remaining changes,
incrementally updating the query results after each change. To evaluate our approach for
localizing execution of extended graph queries via the RETE mechanism, we also perform
analogous experiments with versions of two queries that are equipped with nested graph
conditions according to their original formulation in the benchmark. Visualizations of the
employed queries can be found in Appendix B.

5.3.1. Plain Graph Queries. The resulting execution times for the plain queries where LO-
CALIZED performed best and worst compared to STANDARD are displayed in Figure 19. A
summary of all update time measurements for LOCALIZED in comparison with STANDARD
is also displayed in Figure 18 (right). For all queries, LOCALIZED ultimately outperforms
the other approaches by a substantial margin, as the localized RETE version forgoes the
computation of a large number of irrelevant intermediate results due to the small relevant
subgraph on the one hand and avoids redundant computations on the other hand.

9Our experiments are not to be confused with an official run of the LDBC Social Network Benchmark.
The benchmark specification and data generator only serve as a source of plausible data and queries.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:35

●●● ●

0 100000 300000

0
25

00
INTERACTIVE_2

number of changes

m
em

or
y

(M
B

)

●●● ●

0 100000 300000

0
40

00
0

INTERACTIVE_5

number of changes

m
em

or
y

(M
B

)

●

●

LOCALIZED
STANDARD
VIATRA
SDM*

Figure 20. Memory measurements for the LDBC scenario

The memory measurements in Figure 20 mostly mirror execution times for RETE-
based approaches, with the memory consumption for LOCALIZED always lower than for
STANDARD and VIATRA except for a period at the beginning of the execution of the query
INTERACTIVE 5, where STANDARD outperforms LOCALIZED. The weaker performance
for INTERACTIVE 5 and INTERACTIVE 10 likely stems from the fact that, disregarding
edge direction, the associated query graphs contain cycles that act as strong filters for
subsequent (intermediate) results. These filters then achieve a somewhat similar effect as
localization. The weaker performance of VIATRA for INTERACTIVE 5 is a product of the
usage of a suboptimal RETE net. As expected, memory consumption is lowest for SDM*
for all queries.

5.3.2. Extended Graph Queries. The resulting execution times for the considered extended
graph queries are displayed in Figure 21. A visual comparison between update times for
LOCALIZED and DELTA with STANDARD is shown in Figure 22.

For both queries, LOCALIZED outperforms STANDARD and VIATRA significantly
with respect to both initial execution time and update times, as it benefits from the same
localized computation of matches for the base pattern as in the plain query case. Moreover,
checking effort for the equipped nested graph conditions is also reduced, with checks only
performed locally in the context of relevant base pattern matches rather than globally.

Compared to LOCALIZED, DELTA requires noticeably more initial execution time and
time for processing updates for both queries. The deterioration in performance is likely a
product of several factors. First, the required duplication of the RETE nets for localized
match computation and checking of nested graph condition creates obvious redundancy.
Second, DELTA introduces additional RETE nets for computing subgraph satisfaction
dependent matches for the base pattern. Third, effectively enabling the execution of queries
over two versions of the host graph at the same time comes with additional indexing effort
required for the DELTA strategy.

The deterioration in performance is slightly more pronounced for the query INTER-
ACTIVE 4 NGC. This is likely due to the fact that the typing of vertices in the nested
graph conditions of INTERACTIVE 3 NGC prevents changes to the relevant subgraph
from impacting the conditions’ satisfaction, which leads to empty RETE subnets for the
computation of subgraph satisfaction dependent matches.

Most observations related to execution time again also apply to memory consumption
due to the close link between RETE net execution time and configuration size. The most
notable exception is the lower memory consumption measured for VIATRA and the query
INTERACTIVE 4 NGC compared to DELTA. This is likely a product of a generally more
memory efficient RETE implementation in VIATRA in comparison with our own, which is

4:36 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

0 100000 300000

0
1e

+
05

INTERACTIVE_3_NGC

number of changes

tim
e

(m
s)

0 100000 300000

0
15

00
0

INTERACTIVE_4_NGC

number of changes

tim
e

(m
s) LOCALIZED

DELTA
STANDARD
VIATRA

Figure 21. Execution times for the LDBC scenario

0.5 5.0 50.0 500.0 5000.0

0.
5

50
.0

LDBC

update time STANDARD (ms)

up
da

te
 ti

m
e

(m
s)

0.5 5.0 50.0 500.0 5000.0

0.
5

50
.0

LDBC

update time STANDARD (ms)

up
da

te
 ti

m
e

(m
s)

LOCALIZED
DELTA
STANDARD

Figure 22. Summary of update processing times for extended graph queries
in the LDBC scenario (log scale)

0 100000 300000

0
15

00
0

INTERACTIVE_3_NGC

number of changes

m
em

or
y

(M
B

)

0 100000 300000

0
35

00

INTERACTIVE_4_NGC

number of changes

m
em

or
y

(M
B

)

LOCALIZED
DELTA
STANDARD
VIATRA

Figure 23. Memory measurements for the LDBC scenario

also illustrated by the difference in memory consumption between VIATRA and STANDARD
despite very similar execution times.

Note that SDM* is excluded from our experiments with extended graph queries. This
is due to the fact that it is unclear how to implement change-based search of matches for
extended graph queries purely with local search and without implementing some kind of
auxiliary data structure for storing information about the search process.

5.4. Discussion. On the one hand, our experimental results demonstrate that in situations
where the relevant subgraph constitutes only a fraction of the full model, RETE net
localization can improve the performance of incremental query execution compared to both
the standard RETE approach and a solution based on local search. In such scenarios,
localization can improve scalability with respect to initial query execution time and memory
consumption, as demonstrated in Sections 5.1 and 5.3 and, if changes are not restricted to
the relevant subgraph, also update processing time, as shown in Sections 5.2 and 5.3.

On the other hand, as demonstrated in Section 5.1, localization incurs an overhead on
update processing time if changes are only made to the relevant subgraph and on initial

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:37

execution time and memory consumption if the relevant subgraph contains most of the
elements in the full model. While this overhead will essentially be limited to a constant
factor in many scenarios, as analyzed in Section 3.3 and 4.1, the standard RETE approach
remains preferable for query execution with global semantics or if modifications are restricted
to the relevant subgraph and initial query execution time and memory consumption are
irrelevant.

These observations apply to both plain and extended graph queries when it comes to the
application scenario of tracking all matches for the base query pattern that include elements
from the relevant subgraph. In the case of plain graph queries, the application scenario of
localized tracking of changes to a global query result coincides with the first. However, for
extended graph queries, localization requires noticeably more effort in the second scenario
and can lead to increased theoretical complexity if further optimizations are involved, as
discussed in Section 4.2. However, our evaluation results in in Section 5.3 indicate that it
may still prove beneficial in practice.

5.5. Threats to Validity. To mitigate internal threats to the validity of our results resulting
from unexpected JVM behavior, we have performed 10 runs of all experiments. However,
with reliable memory measurements a known pain point of Java-based experiments, the
reported memory consumption values are still not necessarily accurate and can only serve as
an indicator. To minimize the impact of the implementation on conceptual observations, we
compare the prototypical implementation of our approach to a regular RETE implementation
[BG23], which shares a large portion of the involved code, and to two existing tools [VBH+16,
GHS09].

We have attempted to address external threats to validity via experiments accounting
for different application domains and a combination of synthetic and real-world queries and
data, including a setting from an established, independent benchmark. Still, our results
cannot be generalized and do not support quantitative claims, but serve to demonstrate
conceptual advantages and disadvantages of the presented approach.

6. Related Work

With graph query execution forming the foundation of many applications, there already
exists an extensive body of research regarding its optimization.

Techniques based on local search [CFSV04, GBG+06, GHS09, ABJ+10, HLL13, BCL+16,
JM18] constitute one family of graph querying approaches. While they are designed to
exploit locality in the host graph to improve execution time, repeated query execution leads
to redundant computations that are only avoided by fully incremental techniques.

In [Egy06], Egyed proposes a scoping mechanism for local search to support incremental
query execution, only recomputing query results when a graph element touched during query
execution changes. While this approach offers some degree of incrementality, it is limited to
queries with designated root elements that serve as an anchor in the host graph and may
still result in redundant computations, since query reevaluation is only controlled at the
granularity of root elements.

A second family of solutions is based on discrimination networks [HBC02, VD13,
VBH+16, Bey18], the most prominent example of which are RETE nets.

VIATRA [VBH+16] is a mature tool for incremental graph query execution based on
the RETE algorithm [For89], which supports advanced concepts for query specification and

4:38 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

optimization not considered in this article. Notably, VIATRA allows reuse of matches for
isomorphic query subgraphs within a single RETE net. This is achieved via RETE structures
not covered by the rather restrictive definition of well-formedness used in this article, which
points to a possible direction for future work. However, while VIATRA also has a local
search option for query execution, it does not integrate local search with the incremental
query engine but rather offers it as an alternative.

Beyhl [Bey18] presents an incremental querying technique based on a generalized version
of RETE nets, called Generalized Discrimination Networks (GDNs) [HBC02]. The main
difference compared to the RETE algorithm is the lack of join nodes. Instead, more complex
nodes that directly compute complex matches using local search are employed. The approach
however represents more of a means of controlling the trade-off between local search and
RETE rather than an integration and still requires a global computation of matches for the
entire host graph.

In previous work [BBG21], we have made a first step in the direction of localizing
RETE-based query execution. While this earlier technique already allowed anchoring the
execution of a RETE net to certain host graph vertices, this anchoring was based on typing
information and its results did not meet the definition of completeness introduced in this
article.

Model repositories such as CDO [cdo] and NeoEMF [DSB+17] provide support for query
execution over partial models via lazy loading. As persistence layers, these solutions however
focus on implementing an interface of atomic model access operations in order to be agnostic
regarding the employed query mechanism.

The Mogwäı tool [DSC18] aims to improve query execution over persistence layers like
CDO and NeoEMF by mapping model queries to native queries for the underlying database
system instead of using the atomic model access operations provided by the layer’s API,
avoiding loading the entire model into main memory. The tool however does not consider
incremental query execution.

Jahanbin et al. propose an approach for querying partially loaded models stored via
persistence layers [JKGS22] or as XMI files [JKG23]. In contrast to the solution presented
in this article, their approach still aims to always provide complete query results for the
full model and is thus based on static analysis and typing information rather than dynamic
exploitation of locality.

Query optimization for relational databases is a research topic that has been under
intense study for decades [KBZ86, LSC01, LGM+15]. Generally, many of the techniques from
this field are applicable to RETE nets, which are ultimately based on relational algebra and
related to materialized views in relational databases [GM99]. However, relational databases
lack the notion of locality inherent to graph-based encodings and are hence not tailored to
exploit local navigation.

This shortcoming has given rise to a number of graph databases [Ang12], which employ
a graph-based data representation instead of a relational encoding and form the basis of some
model persistance layers like NeoEMF [DSB+17]. While these database systems are designed
to accommodate local navigation, to the best of our knowledge, support for incremental
query execution is still lacking.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:39

7. Conclusion

In this article, we have presented a relaxed notion of completeness for query results that
lifts the requirement of strict completeness of results for graph queries and thereby the need
for necessarily global query execution. Based on this relaxed notion of completeness, we
have developed an extension of the RETE approach that allows local, yet fully incremental
execution of both plain and extended graph queries. An initial evaluation demonstrates that
the approach can improve scalability in scenarios with small relevant subgraphs, but causes
an overhead in unfavorable cases.

In future work, we want to further evaluate the performance of the presented approach.
In particular, we are interested in exploring whether the RETE net localization technique
for extended graph queries can improve performance in certain scenarios even if host graph
and relevant subgraph coincide. We also plan to investigate whether the proposed solution
can be adapted to support bulk loading of partial models in order to reduce overhead caused
by lazy loading strategies employed by model persistence layers.

Acknowledgments

This work was developed in the course of the project modular and incremental Global Model
Management (project number 336677879) funded by the DFG.

References

[AAA+24] Renzo Angles, János Benjamin Antal, Alex Averbuch, Altan Birler, Peter Boncz, Márton
Búr, Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann, Josep Llúıs Larriba
Pey, Norbert Mart́ınez, József Marton, Marcus Paradies, Minh-Duc Pham, Arnau Prat-Pérez,
David Püroja, Mirko Spasić, Benjamin A. Steer, Dávid Szakállas, Gábor Szárnyas, Jack Waudby,
Mingxi Wu, and Yuchen Zhang. The LDBC Social Network Benchmark, 2024. arXiv:2001.02299,
doi:10.48550/arXiv.2001.02299.

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer.
Henshin: advanced concepts and tools for in-place EMF model transformations. In International
Conference on Model Driven Engineering Languages and Systems, pages 121–135. Springer, 2010.
doi:10.1007/978-3-642-16145-2_9.

[Ang12] Renzo Angles. A comparison of current graph database models. In International Conference on
Data Engineering Workshops, pages 171–177. IEEE, 2012. doi:10.1109/ICDEW.2012.31.

[BBG21] Matthias Barkowsky, Thomas Brand, and Holger Giese. Improving adaptive monitoring with
incremental runtime model queries. In Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pages 71–77. IEEE, 2021. doi:10.1109/SEAMS51251.2021.00019.

[BCDM14] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot. Modisco: A model driven
reverse engineering framework. Information and Software Technology, 56(8):1012–1032, 2014.
doi:10.1016/j.infsof.2014.04.007.

[BCJM10] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. MoDisco: a generic
and extensible framework for model driven reverse engineering. In IEEE/ACM International
Conference on Automated Software Engineering, pages 173–174, 2010. doi:10.1145/1858996.
1859032.

[BCL+16] Fei Bi, Lijun Chang, Xuemin Lin, Lu Qin, and Wenjie Zhang. Efficient subgraph matching
by postponing cartesian products. In International Conference on Management of Data, pages
1199–1214. ACM, 2016. doi:10.1145/2882903.2915236.

[Bey18] Thomas Beyhl. A framework for incremental view graph maintenance. PhD thesis, Hasso Plattner
Institute at the University of Potsdam, 2018.

https://arxiv.org/abs/2001.02299
https://doi.org/10.48550/arXiv.2001.02299
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1109/ICDEW.2012.31
https://doi.org/10.1109/SEAMS51251.2021.00019
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1145/1858996.1859032
https://doi.org/10.1145/1858996.1859032
https://doi.org/10.1145/2882903.2915236

4:40 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

[BG23] Matthias Barkowsky and Holger Giese. Host-graph-sensitive RETE nets for incremental graph
pattern matching with nested graph conditions. Journal of Logical and Algebraic Methods in
Programming, 131, 2023. doi:10.1016/j.jlamp.2022.100841.

[BG24a] Matthias Barkowsky and Holger Giese. Localized RETE for incremental graph queries. In
International Conference on Graph Transformation, pages 118–137. Springer, 2024. doi:10.
1007/978-3-031-64285-2_7.

[BG24b] Matthias Barkowsky and Holger Giese. Localized RETE for incremental graph queries. arXiv
preprint, 2024. doi:10.48550/arXiv.2405.01145.

[BG25] Matthias Barkowsky and Holger Giese. Localized RETE for Incremental Graph Queries with
Nested Graph Conditions Evaluation Artifacts, 2025. Zenodo. doi:10.5281/zenodo.15754399.

[cdo] Eclipse CDOModel Repository. https://projects.eclipse.org/projects/modeling.emf.cdo.
Last accessed 13 December 2024.

[CFSV04] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(10):1367–1372, 2004. doi:10.1109/TPAMI.2004.75.

[Cod70] Edgar F Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970. doi:10.1145/362384.362685.

[DSB+17] Gwendal Daniel, Gerson Sunyé, Amine Benelallam, Massimo Tisi, Yoann Vernageau, Abel Gómez,
and Jordi Cabot. NeoEMF: A multi-database model persistence framework for very large models.
Science of Computer Programming, 149:9–14, 2017. doi:10.1016/j.scico.2017.08.002.

[DSC18] Gwendal Daniel, Gerson Sunyé, and Jordi Cabot. Scalable queries and model transformations
with the Mogwäı tool. In Theory and Practice of Model Transformation, pages 175–183. Springer,
2018. doi:10.1007/978-3-319-93317-7_9.

[EALP+15] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat,
Minh-Duc Pham, and Peter Boncz. The LDBC social network benchmark: Interactive workload.
In ACM SIGMOD International Conference on Management of Data, pages 619–630. ACM,
2015. doi:10.1145/2723372.2742786.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of algebraic
graph transformation. Springer, 2006. doi:10.1007/3-540-31188-2.

[Egy06] Alexander Egyed. Instant consistency checking for the UML. In International Conference on
Software Engineering, pages 381–390, 2006. doi:10.1145/1134285.1134339.

[emf] EMF: Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/. Last accessed
13 December 2024.

[For89] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. In Readings in Artificial Intelligence and Databases, pages 547–559. Elsevier, 1989.
doi:10.1016/0004-3702(82)90020-0.

[GBG+06] Rubino Geiß, Gernot Veit Batz, Daniel Grund, Sebastian Hack, and Adam Szalkowski. GrGen:
A fast SPO-based graph rewriting tool. In International Conference on Graph Transformation,
pages 383–397. Springer, 2006. doi:10.1007/11841883_27.

[GHJV93] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. In European Conference on Object-Oriented Programming,
pages 406–431. Springer, 1993. doi:10.1007/3-540-47910-4_21.

[GHS09] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. Improved flexibility and scalability
by interpreting story diagrams. Electronic Communications of the EASST, 18, 2009. doi:

10.14279/tuj.eceasst.18.268.
[GM99] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: problems, tech-

niques, and applications. In Materialized Views: Techniques, Implementations, and Applications.
The MIT Press, 05 1999. doi:10.7551/mitpress/4472.003.0016.

[HBC02] Eric N Hanson, Sreenath Bodagala, and Ullas Chadaga. Trigger condition testing and view
maintenance using optimized discrimination networks. IEEE Transactions on Knowledge and
Data Engineering, 14(2):261–280, 2002. doi:10.1109/69.991716.

[HLL13] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. Turboiso: towards ultrafast and robust sub-
graph isomorphism search in large graph databases. In ACM SIGMOD International Conference
on Management of Data, pages 337–348. ACM, 2013. doi:10.1145/2463676.2465300.

https://doi.org/10.1016/j.jlamp.2022.100841
https://doi.org/10.1007/978-3-031-64285-2_7
https://doi.org/10.1007/978-3-031-64285-2_7
https://doi.org/10.48550/arXiv.2405.01145
https://doi.org/10.5281/zenodo.15754399
https://projects.eclipse.org/projects/modeling.emf.cdo
https://doi.org/10.1109/TPAMI.2004.75
https://doi.org/10.1145/362384.362685
https://doi.org/10.1016/j.scico.2017.08.002
https://doi.org/10.1007/978-3-319-93317-7_9
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1145/1134285.1134339
https://www.eclipse.org/modeling/emf/
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1007/11841883_27
https://doi.org/10.1007/3-540-47910-4_21
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.14279/tuj.eceasst.18.268
https://doi.org/10.7551/mitpress/4472.003.0016
https://doi.org/10.1109/69.991716
https://doi.org/10.1145/2463676.2465300

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:41

[HP09] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science, 19(2):245–296, 2009.
doi:10.1017/S0960129508007202.

[JKG23] Sorour Jahanbin, Dimitris Kolovos, and Simos Gerasimou. Towards memory-efficient validation
of large XMI models. In ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 241–250. IEEE, 2023. doi:10.1109/
MODELS-C59198.2023.00053.

[JKGS22] Sorour Jahanbin, Dimitris Kolovos, Simos Gerasimou, and Gerson Sunyé. Partial loading of
repository-based models through static analysis. In ACM SIGPLAN International Conference
on Software Language Engineering, pages 266–278, 2022. doi:10.1145/3567512.3567535.

[JM18] Alpár Jüttner and Péter Madarasi. VF2++—An improved subgraph isomorphism algorithm.
Discrete Applied Mathematics, 242:69–81, 2018. doi:10.1016/j.dam.2018.02.018.

[KBZ86] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of nonrecursive queries. In
International Conference on Very Large Data Bases, volume 86, pages 128–137, 1986.

[Ken02] Stuart Kent. Model driven engineering. In International Conference on Integrated Formal Methods,
pages 286–298. Springer, 2002. doi:10.1007/3-540-47884-1_16.

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas
Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment,
9(3):204–215, 2015. doi:10.14778/2850583.2850594.

[LSC01] Chiang Lee, Chi-Sheng Shih, and Yaw-Huei Chen. Optimizing large join queries using a graph-
based approach. IEEE Transactions on Knowledge and Data Engineering, 13(2):298–315, 2001.
doi:10.1109/69.917567.

[Ren04] Arend Rensink. Representing first-order logic using graphs. In International Conference on
Graph Transformation, pages 319–335. Springer, 2004. doi:10.1007/978-3-540-30203-2_23.

[Rib99] Leila Ribeiro. Parallel composition of graph grammars. Applied categorical structures, 7(4):405–
430, 1999. doi:10.1023/A:1008691205954.

[SIRV18] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. The Train Benchmark: cross-
technology performance evaluation of continuous model queries. Software & Systems Modeling,
17:1365–1393, 2018. doi:10.1007/s10270-016-0571-8.

[TELW14] Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer. A fundamental approach
to model versioning based on graph modifications: from theory to implementation. Software &
Systems Modeling, 13(1):239–272, 2014. doi:10.1007/s10270-012-0248-x.

[VBH+16] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and Zoltán
Ujhelyi. Road to a reactive and incremental model transformation platform: three gen-
erations of the VIATRA framework. Software & Systems Modeling, 15(3):609–629, 2016.
doi:10.1007/s10270-016-0530-4.

[VD13] Gergely Varró and Frederik Deckwerth. A Rete network construction algorithm for incremental
pattern matching. In International Conference on Theory and Practice of Model Transformations,
pages 125–140. Springer, 2013. doi:10.1007/978-3-642-38883-5_13.

https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1109/MODELS-C59198.2023.00053
https://doi.org/10.1109/MODELS-C59198.2023.00053
https://doi.org/10.1145/3567512.3567535
https://doi.org/10.1016/j.dam.2018.02.018
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1109/69.917567
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1023/A:1008691205954
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-012-0248-x
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/978-3-642-38883-5_13

4:42 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

Appendix A. Technical Details

We first introduce a few technical definitions required only for proofs in this appendix.
Given a local navigation structure LNS(p) containing the marking-sensitive vertex input

nodes [v]Φ and [w]Φ, we call χ(LNS(p)) = {[∪]Φv , [∪]Φw} the extension points of LNS(p).
Let (N, p) be a well-formed RETE net with p a join node. For the localized RETE net

(NΦ, pΦ) = localize(N, p) with NΦ = NΦ
▷◁ ∪NΦ

l ∪NΦ
r ∪RPSl ∪RPSr, the extension points

of NΦ are given by χ(NΦ) = χ(NΦ
l) ∪ χ(NΦ

r).

Any RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) directly contains a RETE subnet (NΦ
Q , p

Φ
Q) =

localize(Q) regardless of the form of the nested graph condition ψ. The extension points of
(NΦ, pΦ) are then given by χ(NΦ) = χ(NΦ

Q).

We say that a marking-sensitive RETE net (XΦ, pΦX) is a modular extension of (NΦ, pΦ)

if NΦ ⊆ XΦ and ∀e ∈ EXΦ
: sX

Φ
(e) ∈ V NΦ ∧ tXΦ

(e) ∈ V NΦ ⇒ e ∈ ENΦ
.

A.1. Theorems in Section 3.2.

Theorem 3.6 (Matches are marked ∞ in query results of RETE nets localized via localize
iff they touch the relevant subgraph). Let H be a graph, Hp ⊆ H, (N, p) a well-formed RETE
net, and Q = query(p). Furthermore, let CΦ be a consistent configuration for the localized
RETE net (NΦ, pΦ) = localize(N, p). It then holds that ∀(m,ϕ) ∈ CΦ(pΦ) : m(Q) ∩Hp ̸=
∅ ⇔ ϕ =∞.

Proof. Since each extension point x ∈ χ(NΦ) is only preceded by marking assignment nodes
that assign a marking other than ∞ and some marking-sensitive vertex input node [v]Φ that
only extracts matches m with m(v) ∈ Hp, it must hold for the union node [∪]Φ at the top of
each local navigation structure that ∀(m,ϕ) ∈ CΦ([∪]Φ) : m(Q) ∩Hp ̸= ∅ ⇔ ϕ =∞.

All joins in NΦ ultimately only combine matches from the top union nodes of local
navigation structures, assigning the maximum marking in the process. Consequently, for
any marking-sensitive join node [▷◁]Φ ∈ NΦ and a tuple (m,∞) ∈ CΦ([▷◁]Φ), there must be
a tuple (m′,∞) ∈ CΦ([∪]Φ) for some local navigation structure with top union node [∪]Φ
with Q′ = query([∪]Φ) such that m(Q′) = m′(Q′). Thus, it must hold that m(Q) ∩Hp ̸= ∅.

Conversely, by the semantics of the marking-sensitive join node, which always assigns
the maximum marking of related dependent matches to the resulting matches, a marking of
∞ ultimately always propagates to the top of the RETE net. By Theorem 3.5 and because
the construction of a match that touches the relevant subgraph via joins must always involve
at least one join with a match that is marked ∞ in a local navigation structure, it thus

follows that ∀m ∈MQ
H : (m,∞) ∈ CΦ([▷◁]Φ).

Since pΦ is either a marking-sensitive join node or the top union node of a local navigation
structure, it follows that ∀(m,∞) ∈ CΦ(pΦ) : ∃v ∈ V Q : m(v) ∈ V Hp .

A.2. Theorems in Section 3.3.

Theorem 3.10 (RETE net localization via localize introduces only a constant factor
overhead on effective configuration size). Let H be an edge-dominated graph, Hp ⊆ H,
(N, p) a well-formed RETE net with Q = query(p), C a consistent configuration for (N, p)
for host graph H, and CΦ a consistent configuration for the marking-sensitive RETE net

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:43

(NΦ, pΦ) = localize(N, p) for host graph H and relevant subgraph Hp. It then holds that∑
nΦ∈V NΦ

∑
(m,ϕ)∈C(nΦ) |m| ≤ 7 · |C|e.

Proof. Follows directly from Lemma A.4.

A.3. Theorems in Section 4.1.

Theorem 4.3 (Consistent configurations for RETE nets localized via localizeΨ yield correct
query results under the relevant subgraph). Let H be a graph, Hp ⊆ H, and (Q,ψ) an
extended graph query. Furthermore, let CΦ be a consistent configuration for the localized
RETE net (NΦ, pΦ) = localizeΨ(Q,ψ). The set of matches given by the stripped result set
RΦ
X(p

Φ, CΦ) is then correct under Hp.

Proof. Regardless of what ψ looks like, there is a matching marking-sensitive vertex input
node connected to each x ∈ χ(NΦ). Because there is at least one extension point x ∈
χ(NΦ) with query(x) = ({v}, ∅, ∅, ∅) for each v ∈ V Q, it follows from Lemma A.6 that

∀m ∈ RΦ
X(p

Φ, CΦ) : m |= ψ ∧ ∀m ∈ MQ
H : (m′ |= ψ ∧m′(Q) ∩Hp ̸= ∅)⇒ m′ ∈ RΦ

X(p
Φ, CΦ).

Thus, the theorem holds.

Theorem 4.4 (Execution of localized RETE nets via orderΨ yields consistent configurations).
Let H be a graph, Hp ⊆ H, (Q,ψ) a graph query, and CΦ0 an arbitrary starting configuration
for the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ). Executing (NΦ, pΦ) via
O = orderΨ(NΦ) then yields a consistent configuration CΦ = execute(O,NΦ, H,Hp, CΦ0).
Proof. Follows directly from Lemma A.7.

Theorem 4.6 (RETE net localization via localizeΨ introduces only a constant factor
overhead on effective configuration size). Let H be an edge-dominated graph, Hp ⊆ H, (N, p)
a RETE net created via the procedure described in [BG23] for the extended graph query (Q,ψ),
C a consistent configuration for (N, p) for host graph H, and CΦ a consistent configuration for
the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) corresponding to (N, p) for host
graph H and relevant subgraph Hp. It then holds that

∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|e.

Proof. We show the correctness of the theorem via structural induction over the nested
graph condition ψ.

In the base case where ψ = true, it holds that localizeΨ(Q,ψ) = localize(N, p). From
Theorem 3.10, it then immediately follows that

∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|e.

We now proceed to showing that, under the induction hypothesis that the lemma holds
for a nested graph condition of nesting depth d, the lemma holds for any nested graph
condition of nesting depth d+ 1.

For a nested condition of the form ψ = ∃(a : Q → Q′, ψ′), NΦ consists of the lo-
calized RETE net for Q, (NΦ

Q , p
Φ
Q) = localize(Q), the RETE net (NΦ

(Q′,ψ′), p
Φ
(Q′,ψ′)) =

localizeΨ(Q′, ψ′), a request projection structure RPS∞
l = RPS∞(pΦQ, N

Φ
(Q′,ψ′)), and a

marking-sensitive semi-join node pΦ = [⋉]Φ.
By the construction described in [BG23], (N, p) then consists of a RETE net for the

plain graph query Q, (NQ, pQ), the RETE net for the extended graph query (Q′, ψ′), (N ′, p′),
and a semi-join p = [⋉] with dependencies pQ and p′.

Lemma A.4 entails that
∑

nΦ∈V N
Φ
Q

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7

∑
n∈V NQ\{pQ}

∑
m∈C(n) |m|+

5 ·
∑

m∈C|{pQ}
|m|, since localize(Q) = localize(NQ, pQ).

4:44 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

In the worst case, the extension points of (NΦ, pΦ) already contain all possible single-
vertex matches into H even without the additional input via RPS∞

l . Therefore, by the
induction hypothesis, it must hold that

∑
nΦ∈V

NΦ
(Q′,ψ′)

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|V N′ |e.

From Lemma 12 in [BG24b], it follows that
∑

nΦ
Q∈V RPS

∞
l

∑
(m,ϕ)∈CΦ(nΦ

Q) |m| ≤ 2·|C|{pQ}|e.
Finally, from Theorem 4.3 and Lemma 12 in [BG24b], it follows that

∑
(m,ϕ)∈CΦ(pΦ

(Q,ψ)
|m| ≤

|C|{[⋉]}|e.
Consequently, it must hold that

∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|

V
NQ\{pQ}|e + 7 ·

|C|{pQ}|e + 7 · |C|V N′ |e + |C|{[⋉]}|e and thus
∑

nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|e.

For a nested condition of the form ψ = ¬ψ′, NΦ consists of the localized RETE net for
the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q,ψ′), p
Φ
(Q,ψ′)) =

localizeΨ(Q,ψ′), a request projection structure RPS∞
l = RPS∞(pΦQ, N

Φ
(Q,ψ′)), and marking-

sensitive anti-join node pΦ = [▷]Φ.
By the construction described in [BG23], (N, p) then consists of a RETE net for the

plain graph query Q, (NQ, pQ), the RETE net for the extended graph query (Q,ψ′), (N ′, p′),
and an anti-join p = [▷] with dependencies pQ and p′.

By analogous argumentation as for the existential case, it must then also hold that∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|e.

For a nested condition of the form ψ = ψ1 ∧ ψ2, N
Φ consists of the localized RETE net

for the plain pattern Q, (NΦ
Q , p

Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q,ψ1)
, pΦ(Q,ψ1)

) =

localizeΨ(Q,ψ1), a request projection structure RPS∞
1 = RPS∞(pΦQ, N

Φ
(Q,ψ1)

), a marking-

sensitive semi-join node [⋉]Φ1 , the localized RETE net (NΦ
(Q,ψ2)

, pΦ(Q,ψ2)
) = localizeΨ(Q,ψ2),

a request projection structure RPS∞
2 = RPS∞([⋉]Φ1 , N

Φ
(Q,ψ2)

), and a marking-sensitive

semi-join node pΦ = [⋉]Φ2 .
By the construction described in [BG23], (N, p) then consists of a RETE net for the plain

graph query Q, (NQ, pQ), the RETE net for the extended graph query (Q,ψ1), (N1, p1), the
RETE net for the extended graph query (Q,ψ2), (N2, p2), a semi-join [⋉]1 with dependencies
pQ and p1, and a semi-join p = [⋉]2 with dependencies [⋉]1 and p2.

As in the existential case, it then also holds that
∑

nΦ∈V N
Φ
Q

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤

7
∑

n∈V NQ\{pQ}
∑

m∈C(n) |m| + 5 ·
∑

m∈C(pQ) |m|. By the induction hypothesis, it holds

that
∑

nΦ∈V
NΦ
(Q,ψ1)

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|V N1 |e and

∑
nΦ∈V

NΦ
(Q,ψ2)

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤

7 · |C|V N2 |e.
From Lemma 12 in [BG24b], it follows that

∑
nΦ
Q∈V RPS

∞
1

∑
(m,ϕ)∈CΦ(nΦ

Q) |m| ≤ 2·|C|{pQ}|e.

We furthermore know by Theorem 4.3 that CΦ([⋉]Φ1) can only contain matches for
Q that satisfy ϕ1 and C([⋉]1) contains all such matches. From Lemma 12 in [BG24b],
it thus follows that

∑
(m,ϕ)∈CΦ([⋉]Φ1)

|m| ≤ |C|{[⋉]1}|e. Consequently, it must hold that∑
nΦ
Q∈V RPS

∞
2

∑
(m,ϕ)∈CΦ(nΦ

Q) |m| ≤ 2 · |C|{[⋉]1}|e. By Theorem 4.3 and Lemma 12 in [BG24b],

it also follows that
∑

(m,ϕ)∈CΦ([⋉]Φ2)
|m| ≤ |C|{[⋉]2}|e.

We thus know that
∑

nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7 · |C|

V
NQ\{pQ}|e + 7 · |C|{pQ}|e + 7 ·

|C|V N1 |e+7·|C|V N2 |e+3·|C|{[⋉]1}|e+|C|{[⋉]2}|e and thus
∑

nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 7·|C|e.

From the correctness of base case and induction step then follows the correctness of the
theorem.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:45

Theorem 4.8 (Execution time overhead introduced by RETE net localization via localizeΨ

depends on query graph size compared to average match size). Let H be an edge-dominated
graph, Hp ⊆ H, (N, p) a RETE net created via the procedure described in [BG23] for the
extended graph query (Q,ψ), C a consistent configuration for (N, p) for host graph H, and
CΦ0 the empty configuration for the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ)
corresponding to (N, p). Executing (NΦ, pΦ) via execute(orderΨ(NΦ), NΦ, H,Hp, CΦ0) then
takes O(T · |Qmax|) steps, with T =

∑
n∈V N |C(n)| and |Qmax| the size of the largest graph

among Q and graphs in ψ.

Proof. By the construction of orderΨ(NΦ), each node in NΦ is either executed only once
and none of its dependencies are executed after it or is part of some subnet (NΦ

Q′ , pΦQ′) =

localize(NQ′
, pQ

′
) for some subnet (NQ′

, pQ
′
) of (N, p) and only executed as part of a single

execution of order(NΦ
Q′).

By Theorem 3.12, the execution of order(NΦ
Q′) for (NΦ

Q′ , pΦQ′) in isolation is in O(TQ′ ·|Q′|),
with TQ′ =

∑
n∈V NQ

′ |C(n)|. Each subnet (NΦ
Q′ , pΦQ′) has at most one union node in one of

its local navigation structures that has the marking assignment node of a request projection
structure inserted by localizeΨ as an additional dependency. By Lemma 17 in [BG24b],
the time for executing all nodes in NΦ that are part of such a subnet (NΦ

Q′ , pΦQ′) is in

O((TΦ
Q + TΦ

RPS) ·Qmax), with TΦ
Q =

∑
n∈NΦ

Q
|C(n)| and TΦ

RPS =
∑

n∈NΦ
RPS
|C(n)|, where NΦ

Q

denotes the set of all RETE nodes in such subnets (NΦ
Q′ , pΦQ′) and NΦ

RPS denotes the set of

all RETE nodes in request projection structures inserted by localizeΨ.
All remaining nodes in (NΦ, pΦ) are then marking-sensitive semi-joins, anti-joins or

projections, marking assignments, or marking filters that are only executed once. Moreover,
each node in (NΦ, pΦ) can be the dependency of at most one of these semi-joins or anti-joins
and at most one of these marking filters. By Lemmata 16, 18, and 19 in [BG24b] and
Lemmata A.8 and A.9, the execution of these nodes is thus in O((TΦ

Ψ + TΦ
RPS + TΦ

Q) ·Qmax),
with TΦ

Ψ =
∑

n∈NΦ
Ψ
|C(n)|, where NΦ

Ψ denotes the set of all semi-join and anti-join nodes

inserted by localizeΨ.
Since TΦ

Ψ + TΦ
RPS + TΦ

Q ≤ 7 · T by Lemma A.10, it then follows that executing (NΦ, pΦ)

via execute(orderΨ(NΦ), NΦ, H,Hp, CΦ0) takes O(T · |Qmax|) steps.

A.4. Theorems in Section 4.2.

Theorem 4.11 (Subgraph-restricted graph modifications can only change NGC satisfaction
for subgraph satisfaction dependent matches). Let (Q,ψ) be an extended graph query and

H
f←− K

g−→ H ′ a subgraph-restricted graph modification from host graph H with relevant
subgraph Hp into the modified host graph H ′ with relevant subgraph H ′

p. It then holds for any
graph morphisms mK : Q→ K that (f◦mK |= ψ∧g◦mK ̸|= ψ)∨(f◦mK ̸|= ψ∧g◦mK |= ψ)⇒
f ◦mK is subgraph satisfaction dependent or g ◦mK is subgraph satisfaction dependent.

Proof. We show the correctness of the theorem via structural induction over the nested
graph condition ψ.

In the base case of ψ = true, the theorem is trivially satisfied, since any match always
satisfies true.

We now proceed to showing that, under the induction hypothesis that the lemma holds
for a nested graph condition of nesting depth d, the lemma holds for any nested graph

4:46 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

condition of nesting depth d + 1. Let therefore mK : Q → K be a graph morphism such
that (f ◦mK |= ψ ∧ g ◦mK ̸|= ψ) ∨ (f ◦mK ̸|= ψ ∧ g ◦mK |= ψ).

For a nested condition of the form ψ = ¬ψ′, it follows that (f ◦mK ̸|= ψ′ ∧ g ◦mK |=
ψ′) ∨ (f ◦mK |= ψ′ ∧ g ◦mK ̸|= ψ′). From the induction hypothesis and the definition of
subgraph satisfaction dependence then follows the correctness of the theorem.

For a nested condition of the form ψ = ψ1∧ψ2, it follows that (f ◦mK |= ψ1∧ g ◦mK ̸|=
ψ1)∨(f ◦mK ̸|= ψ1∧g◦mK |= ψ1) or (f ◦mK |= ψ2∧g◦mK ̸|= ψ2)∨(f ◦mK ̸|= ψ2∧g◦mK |=
ψ2). From the induction hypothesis and the definition of subgraph satisfaction dependence
then follows the correctness of the theorem.

For a nested condition of the form ψ = ∃(a : Q → Q′, ψ′), it must hold that (1)

∃ma ∈MQ′

H : f ◦mK = ma ◦ a∧ma |= ψ′ ∧ ∄m′
a ∈M

Q′

H′ : g ◦mK = m′
a ◦ a∧m′

a |= ψ′ or (2)

∄ma ∈MQ′

H : f ◦mK = ma ◦ a ∧ma |= ψ′ ∧ ∃m′
a ∈M

Q′

H′ : g ◦mK = m′
a ◦ a ∧m′

a |= ψ′.
Case 1: Let ma : Q

′ → H such that f ◦mK = ma ◦a∧ma |= ψ′. It must then either hold
that m′

a = isos ◦ma is (1.1) not a valid graph morphism from Q′ into H ′ or (1.2) m′
a ̸|= ψ′.

In case 1.1, since isos is an isomorphism, it then follows that ma(Q
′) ∩Hp ̸= ∅ and thus

f ◦mK is subgraph satisfaction dependent. In case 1.2, it follows that there must be some
graph morphism mKa such that ma = f ◦mKa and m′

a = g ◦mKa . Consequently, ma must
be subgraph satisfaction dependent for ψ′ or m′

a must be subgraph satisfaction dependent
for ψ′ by the induction hypothesis. Since in this case, g ◦ mK = m′

a ◦ a, it follows that
f ◦mK is subgraph satisfaction dependent or g ◦mK is subgraph satisfaction dependent.

Case 2: Argumentation works analogously to Case 1.
In the case where a is a partial graph morphism from some subgraph Qp ⊆ Q into Q′,

the argumentation works analogously.
From the correctness of the base case and the induction step follows the correctness of

the theorem.

Theorem 4.12 (Consistent configurations for RETE nets localized via localizesat yield
all subgraph satisfaction dependent matches). Let H be a graph, Hp ⊆ H, (Q,ψ) an
extended graph query, and CΦ a consistent configuration for the RETE net (N sat, psat) =

localizesat(Q,ψ). It then holds that ∀m ∈ MQ
H : m is subgraph satisfaction dependent ⇒

m ∈ RΦ
X(p

sat, CΦ).

Proof. Follows directly from Lemma A.11.

Theorem 4.13 (Execution of localized RETE nets via ordersat yields consistent configu-
rations). Let H be a graph, Hp ⊆ H, (Q,ψ) a graph query, and CΦ0 an arbitrary starting
configuration for the marking-sensitive RETE net (N sat, psat) = localizesat(Q,ψ). Ex-
ecuting (N sat, psat) via O = ordersat(N sat) then yields a consistent configuration CΦ =
execute(O,N sat, H,Hp, CΦ0).

Proof. Follows directly from Lemma A.12.

Theorem 4.15 (For a subgraph-restricted graph modification, consistent configurations
for RETE nets localized via localize∆ yield all matches that touch the relevant sub-
graph in the source or are subgraph satisfaction dependent in the source or target of

the modification). Let (Q,ψ) be an extended graph query and H
f←− K

g−→ H ′ a subgraph-
restricted graph modification modifying the graph H with relevant subgraph Hp ⊆ H

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:47

into the graph H ′ with relevant subgraph H ′
p ⊆ H ′. Furthermore, let CΦ be a config-

uration that is consistent for (N∆, p∆) = localize∆(Q,ψ) for host graph H and rele-

vant subgraph Hp and consistent for (N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ) for host graph

H ′ and relevant subgraph H ′
p. It must then hold that ∀m ∈ MQ

H : m |= ψ ∧ (m(Q) ∩
Hp ̸= ∅ or m is subgraph satisfaction dependent or ∃m′ ∈ MQ

H′ : f ◦ g−1 ◦ m′ = m ∧
m′ is subgraph satisfaction dependent)⇒ m ∈ RΦ

X(p
∆, CΦ).

Proof. By the definition of localize∆, N∆ consists of (NΦ
Q , p

Φ
Q) = localize(NQ, pQ) for a reg-

ular RETE net (NQ, pQ) with height h for the plain graph query Q, [ϕ > h]Φ, (N sat, psat) =
localizesat(Q,ψ), and [∪]Φ. In addition, N∆ comprises (NΦ

(Q,ψ), p
Φ
(Q,ψ)) = localizeΨ(Q,ψ),

RPS∞
l = RPS∞([∪]Φ, NΦ

(Q,ψ)), [⋉]Φ, and [
f◦g−1

−−−−→]Φ.

Letm ∈MQ
H withm |= ψ∧(m(Q)∩Hp ̸= ∅ or m is subgraph satisfaction dependent or

∃m′ ∈ MQ
H′ : f ◦ g−1 ◦ m′ = m ∧ m′ is subgraph satisfaction dependent). We can then

distinguish three cases:
Case 1: If m(Q) ∩Hp ≠ ∅, it follows from Lemma 1 in [BG24b] that there must be a

tuple (m,∞) ∈ CΦ(pΦQ) and thus also (m,∞) ∈ CΦ([ϕ > h]Φ).
Case 2: If m is subgraph satisfaction dependent, it follows from Theorem 4.12 that

there must be a tuple (m,ϕ) ∈ CΦ(psat).
Case 3: If ∃m′ ∈ MQ

H′ : f ◦ g−1 ◦ m′ = m ∧ m′ is subgraph satisfaction dependent,

it follows from Theorem 4.12 that there must be a tuple (m′, ϕ) ∈ CΦ(psat′) such that
f ◦ g−1 ◦m′ = m. From the semantics of the marking-sensitive translation node then follows

that there must be a tuple (m,ϕ) ∈ CΦ([f◦g
−1

−−−−→]Φ).
In all three cases, there must hence be a tuple (m,ϕ) ∈ CΦ([∪]Φ). By Lemma A.6 and

because m |= ψ, it must then hold that there is a tuple (m,ϕ′) ∈ CΦ(pΦ(Q,ψ)) and, by the

semantics of the marking-sensitive semi-join, (m,ϕ) ∈ RΦ
X(p

∆, CΦ).

Theorem 4.16 (Execution of localized RETE nets via order∆ yields consistent config-
urations). Let (Q,ψ) be an extended graph query and H a host graph with relevant sub-
graph Hp and CΦ0 an arbitrary starting configuration for the marking-sensitive RETE net
(N∆, p∆) = localize∆(Q,ψ). Executing (N∆, p∆) via O = order∆(N∆) then yields a con-
sistent configuration CΦ = execute(O,N∆, H,Hp, CΦ0).

Proof. Follows directly from Lemma A.14.

Theorem 4.18 (Removal of matches from the results of an extended graph query caused
by a subgraph-restricted graph modification can be detected using RETE nets localized

via localize∆). Let (Q,ψ) be an extended graph query and H
f←− K

g−→ H ′ a subgraph-
restricted graph modification modifying the graph H with relevant subgraph Hp ⊆ H into
the graph H ′ with relevant subgraph H ′

p ⊆ H ′. Furthermore, let CΦ be a configuration that

is consistent for (N∆, p∆) = localize∆(Q,ψ) and (N sat
(Q,ψ), p

sat
(Q,ψ)) = localizesat(Q,ψ) for

host graph H and relevant subgraph Hp and consistent for (N∆′
, p∆

′
) = localize∆(Q,ψ) and

(N sat′

(Q,ψ), p
sat′

(Q,ψ)) = localizesat(Q,ψ) for host graph H ′ and relevant subgraph H ′
p. It then holds

that {m ∈MQ
H | m |= ψ ∧ ∄m′ ∈MQ

H′ : m = f ◦ g−1 ◦m′ ∧m′ |= ψ} = RΦ
X(p

∆, CΦ) \ {m ∈
MQ

H | ∃m′ ∈ RΦ
X(p

∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.

4:48 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

Proof. By the definition of localize∆, N∆ consists of (NΦ
Q , p

Φ
Q) = localize(NQ, pQ) for a reg-

ular RETE net (NQ, pQ) with height h for the plain graph query Q, [ϕ > h]Φ, (N sat, psat) =

localizesat(Q,ψ), and [∪]Φ, which has a dependency on psat
′

(Q,ψ) from (N sat′

(Q,ψ), p
sat′

(Q,ψ)). In

addition, N∆ comprises (NΦ
(Q,ψ), p

Φ
(Q,ψ)) = localizeΨ(Q,ψ), RPS∞

l = RPS∞([∪]Φ, NΦ
(Q,ψ)),

[⋉]Φ, and [
f◦g−1

−−−−→]Φ.

Analogously, N∆′
consists of (NΦ′

Q , pΦ
′

Q) = localize(NQ, pQ), [ϕ > h]Φ
′
, (N sat′ , psat

′
) =

localizesat(Q,ψ), and [∪]Φ′
which has a dependency on psat(Q,ψ) from (N sat

(Q,ψ), p
sat
(Q,ψ)). In

addition, N∆′
comprises (NΦ′

(Q,ψ), p
Φ′

(Q,ψ)) = localizeΨ(Q,ψ), RPS∞′
l = RPS∞([∪]Φ′

, NΦ′

(Q,ψ)),

[⋉]Φ
′
, and [

g◦f−1

−−−−→]Φ
′
.

We first show that {m ∈ MQ
H | m |= ψ ∧ ∄m′ ∈ MQ

H′ : m = f ◦ g−1 ◦m′ ∧m′ |= ψ} ⊆
RΦ
X(p∆, CΦ) \ {m ∈MQ

H | ∃m′ ∈ RΦ
X(p∆

′
, CΦ′

) : m = f ◦ g−1 ◦m′}. Therefore, let m ∈MQ
H

such that m |= ψ ∧ ∄m′ ∈MQ
H′ : m = f ◦ g−1 ◦m′ ∧m′ |= ψ.

We can the distinguish two cases:

Case 1: If ∄m′ ∈ MQ
H′ : m = f ◦ g−1 ◦ m′, it follows that m(Q) ∩ Hp ̸= ∅, since

otherwise, m′ = isos ◦m would violate the assumption that ∄m′ ∈MQ
H′ : m = f ◦ g−1 ◦m′.

It must then hold by Theorem 3.5 that there is a tuple (m,∞) ∈ CΦ(pΦQ) and thus also

m ∈ RΦ
X(p

∆, CΦ) by Lemma A.6. By the assumption that ∄m′ ∈ MQ
H′ : m = f ◦ g−1 ◦m′,

RΦ
X(p

∆′
, CΦ′

) then cannot contain a match m′ such that m = f ◦ g−1 ◦ m′ and thereby,

m ∈ RΦ
X(p

∆, CΦ) \ {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.
Case 2: If there exists a match m′ ∈MQ

H′ such that m = f ◦ g−1 ◦m′, it must hold that
m′ ̸|= ψ for this match m′. By Theorem 4.11, we then know that either m or m′ must be
subgraph satisfaction dependent. By Theorem 4.15, it must then hold that m ∈ RΦ

X(p∆, CΦ).
By Lemma A.6, it also follows thatm′ /∈ RΦ

X(p∆
′
, CΦ′

). By the injectivity of f and g, m′ must

furthermore be unique. Consequently, m ∈ RΦ
X(p

∆, CΦ) \ {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) :
m = f ◦ g−1 ◦m′}.

Thus, it follows that {m ∈MQ
H | m |= ψ ∧ ∄m′ ∈MQ

H′ : m = f ◦ g−1 ◦m′ ∧m′ |= ψ} ⊆
RΦ
X(p

∆, CΦ) \ {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.
We now show that {m ∈ MQ

H | m |= ψ ∧ ∄m′ ∈ MQ
H′ : m = f ◦ g−1 ◦ m′ ∧ m′ |=

ψ} ⊇ RΦ
X(p

∆, CΦ) \ {m ∈ MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}. Therefore, let

m ∈ RΦ
X(p

∆, CΦ) \ {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.
It then directly follows from Lemma A.6 that m |= ψ. We will now show that there

cannot exist a corresponding match m′ from Q into H ′ with m = f ◦ g−1 ◦m′ and m′ |= ψ.
From the construction of N∆, it follows that there must exist a tuple (m,∞) ∈ CΦ(pΦQ),

a tuple (m,ϕ) ∈ CΦ(psat), or a tuple (m′, ϕ) ∈ CΦ′
(psat

′
).

Case 1: If (m,∞) ∈ CΦ(pΦQ), it must hold by Theorem 3.6 that m(Q) ∩Hp ̸= ∅. Since
there must be some element e inm(Q)∩Hp for any matchm′ withm = f◦g−1◦m′ and because

(g ◦ f−1)(Hp) ⊆ H ′
p, it must hold that m′(Q) ∩H ′

p ̸= ∅. Consequently, (m′,∞) ∈ CΦ′
(pΦ

′
Q)

by Theorem 3.5. Since m /∈ {m ∈ MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′} and thus

m′ /∈ RΦ
X(p

∆′
, CΦ′

), it must follow from Lemma A.6 that m′ ̸|= ψ, since otherwise, it would

hold that {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:49

Case 2: If (m,ϕ) ∈ CΦ(psat), for any match m′ with m = f ◦ g−1 ◦m′, it holds that
m′ = g ◦ f−1 ◦m′ due to the injectivity of f and g. Therefore, it must hold that there is

some tuple (m′, ϕ) ∈ CΦ′
([
g◦f−1

−−−−→]Φ
′
). Hence, it must hold that m′ ̸|= ψ, since otherwise, it

would hold that {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.
Case 3: If (m′, ϕ) ∈ CΦ′

(psat
′
) for some m′ with m = f ◦ g−1 ◦m′, it immediately follows

that m′ ̸|= ψ, since otherwise, it would hold that {m ∈ MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m =
f ◦ g−1 ◦m′}.

Thus, it follows that {m ∈MQ
H | m |= ψ ∧ ∄m′ ∈MQ

H′ : m = f ◦ g−1 ◦m′ ∧m′ |= ψ} ⊇
RΦ
X(p

∆, CΦ) \ {m ∈MQ
H | ∃m′ ∈ RΦ

X(p
∆′
, CΦ′

) : m = f ◦ g−1 ◦m′}.
With inclusions in both directions, it holds that {m ∈MQ

H | m |= ψ∧∄m′ ∈MQ
H′ : m =

f◦g−1◦m′∧m′ |= ψ} = RΦ
X(p∆, CΦ)\{m ∈MQ

H | ∃m′ ∈ RΦ
X(p∆

′
, CΦ′

) : m = f◦g−1◦m′}.

Theorem A.1 (RETE net localization via localizesat introduces only a constant factor
overhead on effective configuration size). Let H be an edge-dominated graph, Hp ⊆ H,
(N, p) a RETE net created via the procedure described in [BG23] for the extended graph
query (Q,ψ), C a consistent configuration for (N, p) for host graph H, and CΦ a con-
sistent configuration for the marking-sensitive RETE net (N sat, psat) = localizesat(Q,ψ)
for host graph H and relevant subgraph Hp corresponding to (N, p). It then holds that∑

nsat∈V Nsat
∑

(m,ϕ)∈CΦ(nsat) |m| ≤ 18 · |C|e.

Proof. For nested queries of (Q,ψ) with the form (Q′, true), localizesat only introduces a
dummy node to N sat. The result set for any dummy node in N sat is always empty. Hence,
the result sets of these nodes do not contribute to configuration size. Moreover, localizesat

does not introduce any additional nodes for nested queries with the form (Q′,¬ψ′).
For each nested query with the form (Q′, ψ1 ∧ ψ2), N

sat contains one marking-sensitive
union node [∪]Φ, whereas N contains a RETE subnet (NQ′ , pQ′) computing matches for Q′

as well as two semi-joins. Since the result set for [∪]Φ can only contain at most one tuple

for each match for Q′ and the result set for pQ
′
contains all such matches, it follows that∑

(m,ϕ)∈CΦ([∪]Φ) |m| ≤
∑

m∈C(pQ′) |m|.
For each nested query with the form (Q′,∃(a : Q′ → Q′′, ψ′)), N sat contains the

subnets (NΦ
Q′ , pΦQ′) = localize(Q′) and (NΦ

Q′′ , pΦQ′′) = localize(Q′′), a marking-sensitive union

node [∪]Φ, a marking-sensitive semi-join [⋉]Φ, as well as the request projection structure
RPS∞

l = RPS∞([∪]Φ, NΦ
Q′). N contains a RETE subnet (NQ′ , pQ′) computing matches for

Q′ and a semi-join [⋉].
By Theorem 3.10 and because the additional dependency on RPS∞

l does not affect the

worst case of a fully populated net (NΦ
Q , p

Φ
Q), it holds that

∑
nΦ
Q′∈V

NΦ
Q′

∑
(m,ϕ)∈CΦ(nΦ

Q′)
|m| ≤

7 · |C|NQ′ |e. Also, by the semantics of the marking-sensitive semi-join and because the result

set for pΦQ′ contains each match for Q′ at most once by Lemma 12 in [BG24b], it must hold

that
∑

(m,ϕ)∈CΦ([⋉]Φ) |m| ≤
∑

m∈C(pQ′) |m| ≤ |C|NQ′ |e.
Any nested query with the form (Q′,∃(a : Q′ → Q′′, ψ′)) must have some nested

query (Q′′, ∃(a : Q′′ → Q′′′, ψ′′)) or (Q′′, true) in order for ψ by the definition of nested
graph conditions. In either case, N has to contain a corresponding subnet (NQ′′ , pQ′′)
computing matches for Q′′. It then holds for this subnet NQ′′ by Theorem 3.10 that

4:50 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

∑
nΦ
Q′′∈V

NΦ
Q′′

∑
(m,ϕ)∈CΦ(nΦ

Q′′)
|m| ≤ 7 · |C|NQ′′ |e. It also must hold that

∑
(m,ϕ)∈CΦ([∪]Φ) |m| ≤∑

m∈C(pQ′′) |m| ≤ |C|NQ′′ |e and
∑

nΦ∈V RPS
∞
l

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤ 2 · |C|NQ′′ |e.

Since ψ is a tree of subconditions, it follows that each subnet (NQ′′ , pQ′′) must be counted
again like this for at most one parent query (Q′, ∃(a : Q′ → Q′′, ψ′)). For any nested query
of the form (Q′, true), CΦ stores matches with a combined size of at most 10 · |C|NQ′ |e. For
any nested query of the form, (Q′,∃(a : Q′ → Q′′, ψ′)), CΦ stores matches with a combined
size of at most (8 + 10) · |C|NQ′ |e = 18 · |C|NQ′ |e.

In the worst case, it must thus hold that
∑

nsat∈V Nsat
∑

(m,ϕ)∈CΦ(nsat) |m| ≤ 18 · |C|e.

Corollary A.2 (RETE net localization via localizesat introduces only a constant factor
overhead on memory consumption). Let H be an edge-dominated graph, Hp ⊆ H, (N, p) a
RETE net created via the procedure described in [BG23] for the extended graph query (Q,ψ),
C a consistent configuration for (N, p) for host graph H, and CΦ a consistent configuration
for the marking-sensitive RETE net (N sat, psat) = localizesat(Q,ψ) for host graph H and
relevant subgraph Hp corresponding to (N, p). Assuming that storing a match m requires an

amount of memory in O(|m|) and storing an element from N requires an amount of memory
in O(1), storing CΦ requires memory in O(|C|e).

Proof. Follows directly from Theorem A.1 and the assumptions.

Theorem A.3 (Execution time overhead introduced by RETE localization via localizesat

depends on query graph size compared to average match size). Let H be an edge-dominated
graph, Hp ⊆ H, (N, p) a RETE net created via the procedure described in [BG23] for the
extended graph query (Q,ψ), C a consistent configuration for (N, p) for host graph H, and CΦ0
the empty configuration for the marking-sensitive RETE net (N sat, psat) = localizesat(Q,ψ)
corresponding to (N, p). Executing (NΦ, pΦ) via execute(orderΨ(NΦ), NΦ, H,Hp, CΦ0) then
takes O(T · |Qmax|) steps, with T =

∑
n∈V N |C(n)| and |Qmax| the size of the largest graph

among Q and graphs in ψ.

Proof. By the construction of ordersat(N sat), each node in N sat is either executed only once
and none of its dependencies are executed after it or is part of some subnet (NΦ

Q′ , pΦQ′) =

localize(NQ′
, pQ

′
) for some subnet (NQ′

, pQ
′
) of (N, p) and only executed as part of a single

execution of order(NΦ
Q′).

By Theorem 3.12, the execution of order(NΦ
Q′) for (NΦ

Q′ , pΦQ′) in isolation is in O(TQ′ ·|Q′|),
with TQ′ =

∑
n∈V NQ

′ |C(n)|. Each subnet (NΦ
Q′ , pΦQ′) has at most one union node in one of

its local navigation structures that has the marking assignment node of a request projection
structure inserted by localizesat as an additional dependency. By Lemma17 in [BG24b],
the time for executing all nodes in N sat that are part of such a subnet (NΦ

Q′ , pΦQ′) is in

O((TΦ
Q + TΦ

RPS) ·Qmax), with TΦ
Q =

∑
n∈NΦ

Q
|C(n)| and TΦ

RPS =
∑

n∈NΦ
RPS
|C(n)|, where NΦ

Q

denotes the set of all RETE nodes in such subnets (NΦ
Q′ , pΦQ′) and NΦ

RPS denotes the set of

all RETE nodes in projection structures inserted by localizeΨ.
All remaining nodes in (N sat, psat) are then marking-sensitive semi-joins, unions or

projections, marking assignments, or marking filters that are only executed once. Moreover,
each node in (N sat, psat) can be the dependency of at most one of these semi-joins or unions
and at most one of these marking filters. By Lemmata 16, 17, 18, and 19 in [BG24b]
and Lemma A.8, the execution of these nodes is thus in O((TΦ

sat + TΦ
RPS + TΦ

Q) · Qmax),

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:51

with TΦ
sat =

∑
n∈NΦ

sat
|C(n)|, where NΦ

sat denotes the set of all semi-join and anti-join nodes

inserted by localizesat.
Since TΦ

sat+T
Φ
RPS+T

Φ
Q ≤ 25·T by Lemma A.13, it then follows that executing (N sat, psat)

via execute(ordersat(N sat), N sat, H,Hp, CΦ0) takes O(T · |Qmax|) steps.

A.5. Supplementary Lemmata.

Lemma A.4 (RETE net localization via localize introduces an overhead of at most factor
5 on effective configuration size for the production node and at most factor 7 for all other
nodes). Let H be an edge-dominated graph, Hp ⊆ H, (N, p) a well-formed RETE net with
Q the associated query graph of p, C a consistent configuration for (N, p) for host graph H,
and CΦ a consistent configuration for the localized RETE net (NΦ, pΦ) = localize(N, p) for
host graph H and relevant subgraph Hp. It then holds that

∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤

7 ·
∑

n∈V N\{p}
∑

m∈C(n) |m|+ 5 ·
∑

m∈C(p) |m|.

Proof. For each edge input node [v → w] in N with associated query subgraph Qe, N
Φ

contains the seven nodes of the corresponding local navigation structure LNS([v → w]):
[v]Φ, [w]Φ, [∪]Φv , [∪]Φw, [v →n w]

Φ, [w ←n v]
Φ, and [∪]Φ. By the semantics of [v → w], it

must hold that C([v → w]) =MQe
H .

By the semantics of the forward and backward local navigation nodes, we know that

RΦ
X([v →n w]

Φ, CΦ) ⊆MQe
H and RΦ

X([w ←n v]
Φ, CΦ) ⊆MQe

H and thus, by the semantics of

the marking sensitive union node, RΦ
X([∪]Φ, CΦ) ⊆M

Qe
H .

Furthermore, by the semantics of the marking sensitive input nodes, it must hold that

RΦ
X([v]Φ, CΦ) ⊆MQv

H and RΦ
X([w]Φ, CΦ) ⊆MQw

H , where Qv and Qw are the query subgraphs
associated with v respectively w. By the semantics of the marking sensitive union nodes and
the assumption regarding the common query subgraph associated with their dependencies,

it must also hold that RΦ
X([∪]Φv , CΦ) ⊆M

Qv
H and RΦ

X([∪]Φw, CΦ) ⊆M
Qw
H .

By the semantics of the involved marking-sensitive RETE nodes, for each node in
LNS([n1 → n2]), each match can only be associated with at most one marking in the node’s

current result set in CΦ. Furthermore, by assumption, it holds that |MQv
H | ≤ |M

Qe
H | and

|MQw
H | ≤ |M

Qe
H |. Lastly, we know that |Qv| = |Qw| ≤ |Qe|

2 .
It thus holds that

∑
nΦ∈V LNS([v→w])

∑
(m,ϕ)∈C(nΦ) |m| ≤ 5 ·

∑
m∈C([v→w]) |m|.

For each join node [▷◁] in N with associated query subgraph Q▷◁ and dependencies nl and
nr, N

Φ contains the corresponding marking-sensitive join node [▷◁]Φ with dependencies nΦl
and nΦr corresponding to nl respectively nr with associated query subgraphs Ql respectively
Qr, as well as the six nodes from the related request projection structures: [ϕ > h]Φl , [πQv]

Φ
l ,

[ϕ := h]Φl , [ϕ > h]Φr , [πQv]
Φ
r , and [ϕ := h]Φr .

By the semantics of join and marking sensitive join, we know that C(nl) ⊆ RΦ
X(nΦl , CΦ)∧

C(nr) ⊆ RΦ
X(n

Φ
r , CΦ)⇒ C([▷◁]) ⊆ RΦ

X([▷◁]
Φ, CΦ). For every edge input node [v → w] in N ,

we know that C([v → w]) ⊆ RΦ
X([∪]Φ, CΦ), where [∪]Φ is the root node of LNS([v → w]).

It is easy to see that thereby, it must hold that C([▷◁]) ⊆ RΦ
X([▷◁]

Φ, CΦ). By Lemma 12 in
[BG24b], it follows that

∑
(m,ϕ)∈C([▷◁]Φ) |m| ≤

∑
m∈C([▷◁]) |m|.

[ϕ > h]Φl is associated with the query subgraph Ql and [ϕ > h]Φr is associated with

query subgraph Qr. [πQv]
Φ
l , [ϕ := h]Φl , [πQv]

Φ
r , and [ϕ := h]Φr are all associated with a

query subgraph Qv that contains only a single vertex, whereas both Ql and Qr contain

4:52 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

at least one edge. Consequently, |Qv| ≤ |Ql|
2 and |Qv| ≤ |Qr|

2 . Hence, it must hold
that

∑
nΦ∈RPSl

∑
(m,ϕ)∈C(nΦ) |m| ≤ 2 ·

∑
m∈C(nl) |m| and

∑
nΦ∈RPSr

∑
(m,ϕ)∈C(nΦ) |m| ≤ 2 ·∑

m∈C(nr) |m|.
Due to the tree-like structure of (N, p), the marking-sensitive union node at the top

of each local navigation structure and each marking-sensitive join can be connected to
at most one request projection structure. Moreover, the union node at the top of the
local navigation structure or the marking-sensitive join corresponding to p is not connected
to any request projection structure. It thus follows that

∑
nΦ∈V NΦ

∑
(m,ϕ)∈CΦ(nΦ) |m| ≤

7 ·
∑

n∈V N\{p}
∑

m∈C(n) |m|+ 5 ·
∑

m∈C(p) |m|.

Lemma A.5 (RETE net localization via localize introduces an overhead of factor 7 on
the number of computed matches for the production node and factor 10 for all other
nodes). Let H be an edge-dominated graph, Hp ⊆ H, (N, p) a well-formed RETE net with
Q the associated query graph of p, C a consistent configuration for (N, p) for host graph
H, and CΦ a consistent configuration for the localized RETE net (NΦ, pΦ) = localize(N, p)
for host graph H and relevant subgraph Hp. It then holds that

∑
nΦ∈V NΦ |CΦ(nΦ)| ≤

10
∑

n∈V N\{p} |C(n)|+ 7× |C(p)|.

Proof. For each edge input node [v → w] in N with associated query subgraph Qe, N
Φ

contains the seven nodes of the corresponding local navigation structure LNS([v → w]):
[v]Φ, [w]Φ, [∪]Φv , [∪]Φw, [v →n w]

Φ, [w ←n v]
Φ, and [∪]Φ. By the semantics of [v → w], it

must hold that C([v → w]) =MQe
H .

By the semantics of the forward and backward local navigation nodes, we know that

RΦ
X([v →n w]

Φ, CΦ) ⊆MQe
H and RΦ

X([w ←n v]
Φ, CΦ) ⊆MQe

H and thus, by the semantics of

the marking sensitive union node, RΦ
X([∪]Φ, CΦ) ⊆M

Qe
H .

Furthermore, by the semantics of the marking sensitive input nodes, it must hold that

RΦ
X([v]Φ, CΦ) ⊆MQv

H and RΦ
X([w]Φ, CΦ) ⊆MQw

H , where Qv and Qw are the query subgraphs
associated with v respectively w. By the semantics of the marking sensitive union nodes and
the assumption regarding the common query subgraph associated with their dependencies,

it must also hold that RΦ
X([∪]Φv , CΦ) ⊆M

Qv
H and RΦ

X([∪]Φw, CΦ) ⊆M
Qw
H .

By the semantics of the involved marking-sensitive RETE nodes, for each node in
LNS([n1 → n2]), each match can only be associated with at most one marking in the node’s

current result set in CΦ. Furthermore, by assumption, it holds that MQv
H ≤ MQe

H and

MQw
H ≤MQe

H .

It thus holds that
∑

nΦ∈V LNS([v→w]) |C(nΦ)| ≤ 7 · |C([v → w])|.
For each join node [▷◁] in N with associated query subgraph Q▷◁ and dependencies nl and

nr, N
Φ contains the corresponding marking-sensitive join node [▷◁]Φ with dependencies nΦl

and nΦr corresponding to nl respectively nr with associated query subgraphs Ql respectively
Qr, as well as the six nodes from the related request projection structures: [ϕ > h]Φl , [πQv]

Φ
l ,

[ϕ > h]Φl , [ϕ > h]Φr , [πQv]
Φ
r , and [ϕ > h]Φr .

By the semantics of join and marking sensitive join, we know that C(nl) ⊆ RΦ
X(nΦl , CΦ)∧

C(nr) ⊆ RΦ
X(n

Φ
r , CΦ)⇒ C([▷◁]) ⊆ RΦ

X([▷◁]
Φ, CΦ). For every edge input node [v → w] in N ,

we know that C([v → w]) ⊆ RΦ
X([∪]Φ, CΦ), where [∪]Φ is the root node of LNS([v → w]).

It is easy to see that thereby, it must hold that C([▷◁]) ⊆ RΦ
X([▷◁]

Φ, CΦ). By Lemma 12 in
[BG24b], it follows that |C([▷◁]Φ)| ≤ |C([▷◁])|.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:53

It must then also hold that
∑

nΦ∈RPSl |C(n
Φ)| ≤ 3 · |C(nl)| and

∑
nΦ∈RPSr |C(n

Φ)| ≤
3 · |C(nr)|.

Due to the tree-like structure of (N, p), the marking-sensitive union node at the top of
each local navigation structure and each marking-sensitive join can be connected to at most
one request projection structure. Moreover, the union node at the top of the local navigation
structure or the marking-sensitive join corresponding to p is not connected to any request
projection structure. It thus follows that

∑
nΦ∈V NΦ |CΦ(nΦ)| ≤ 10

∑
n∈V N\{p} |C(n)|+ 7×

|C(p)|.
Lemma A.6 (Consistent configurations for modular extensions of RETE nets localized
via localizeΨ yield only matches that satisfy the NGC and all admissible matches with a
partial match marked ∞ in an extension point). Let H be a graph, (Q,ψ) a graph query,
(XΦ, pΦX) a modular extension of the localized RETE net (NΦ, pΦ) = localizeΨ(Q,ϕ), and

C a configuration for (XΦ, pΦX) that is consistent for all nodes in V NΦ
. Furthermore, let

x ∈ χ(NΦ), Qv = ({v}, ∅, ∅, ∅) the query subgraph associated with x, and (m′,∞) ∈ C(x)
for some match m′ : Qv → H. It then holds that ∀(m,ϕ) ∈ C(pΦ) : m |= ψ ∧ ∀m ∈ MQ

H :

m(v) = m′(v) ∧m |= ψ ⇒ (m,∞) ∈ C(pΦ).
Proof. We prove the lemma via structural induction over the nested graph condition ψ.

In the base case, that is, for a nested condition of the form ψ = true, satisfaction of
the Lemma follows directly from Lemma 1 in the preprint version of our conference paper
[BG24b].

We now proceed to showing that, under the induction hypothesis that the lemma holds
for a nested graph condition of nesting depth d, the lemma holds for any nested graph
condition of nesting depth d+ 1.

For a nested condition of the form ψ = ∃(a : Q→ Q′, ψ′), NΦ consists of the localized
RETE net for Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q′,ψ′), p
Φ
(Q′,ψ′)) =

localizeΨ(Q′, ψ′), a request projection structure RPS∞
l = RPS∞(pΦQ, N

Φ
(Q′,ψ′)), and a

marking-sensitive semi-join node pΦ = [⋉]Φ with left dependency pΦQ and right depen-

dency pΦ(Q′,ψ′).

In the case where a is a partial graph morphism from some subgraph Qp ⊆ Q into Q′,
the argumentation works analogously.

By Lemma 1 in [BG24b], it immediately follows that ∀m ∈ MQ
H : m(v) = m′(v) ⇒

(m,∞) ∈ C(pΦQ). Assuming that the Lemma holds for localized RETE net (NΦ
(Q′,ψ′), p

Φ
(Q′,ψ′)) =

localizeΨ(Q′, ψ′), by the definition of RPS∞
l it must also hold that ∀(m,∞) ∈ C(pΦQ),m′ ∈

MQ′

H : m = m′ ◦ a ∧m′ |= ψ′ ⇒ (m′,∞) ∈ C(pΦ(Q′,ψ′)) and ∀(m
′, ϕ′) ∈ C(pΦ(Q′,ψ′)) : m

′ |= ψ′.

From the semantics of the marking-sensitive semi-join then follows the satisfaction of the
Lemma.

For a nested condition of the form ψ = ¬ψ′, NΦ consists of the localized RETE net for
the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q,ψ′), p
Φ
(Q,ψ′)) =

localizeΨ(Q,ψ′), a request projection structure RPS∞
l = RPS(pΦQ, N

Φ
(Q,ψ′)), and a marking-

sensitive anti-join node pΦ = [▷]Φ with left dependency pΦQ and right dependency pΦ(Q,ψ′).

By Lemma 1 in [BG24b], it immediately follows that ∀m ∈ MQ
H : m(v) = m′(v) ⇒

(m,∞) ∈ C(pΦQ). Assuming that the Lemma holds for localized RETE net (NΦ
(Q,ψ′), p

Φ
(Q,ψ′)) =

localizeΨ(Q,ψ′), by the definition of RPS∞
l it must also hold that ∀(m,∞) ∈ C(pΦQ) : m |=

4:54 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

ψ′ ⇒ (m,∞) ∈ C(pΦ(Q,ψ′)) and ∀(m,ϕ) ∈ C(pΦ(Q,ψ′)) : m |= ψ′. From the semantics of the

marking-sensitive anti-join then follows the satisfaction of the Lemma.
For a nested condition of the form ψ = ψ1 ∧ ψ2, N

Φ consists of the localized RETE net
for the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q,ψ1)
, pΦ(Q,ψ1)

) =

localizeΨ(Q,ψ1), a request projection structure RPS∞
1 = RPS∞(pΦQ, N

Φ
(Q,ψ1)

), a marking-

sensitive semi-join node [⋉]Φ1 with left dependency pΦQ and right dependency pΦ(Q′,ψ′), the

localized RETE net (NΦ
(Q,ψ2)

, pΦ(Q,ψ2)
) = localizeΨ(Q,ψ2), a request projection structure

RPS∞
2 = RPS∞([⋉]Φ1 , N

Φ
(Q,ψ2)

), and a marking-sensitive semi-join node pΦ = [⋉]Φ2 with left

dependency [⋉]Φ1 and right dependency pΦ(Q,ψ2)
.

By Lemma 1 in [BG24b], it immediately follows that ∀m ∈ MQ
H : m(v) = m′(v) ⇒

(m,∞) ∈ C(pΦQ). Assuming that the lemma holds for localized RETE net (NΦ
(Q,ψ1)

, pΦ(Q,ψ1)
) =

localizeΨ(Q,ψ1), by the definition of RPS∞
1 it must also hold that ∀(m,∞) ∈ C(pΦQ) : m |=

ψ1 ⇒ (m,∞) ∈ C(pΦ(Q,ψ1)
) and ∀(m1, ϕ1) ∈ C(pΦ(Q,ψ1)

) : m1 |= ψ1. Assuming the lemma also

holds for (NΦ
(Q,ψ2)

, pΦ(Q,ψ2)
) = localizeΨ(Q,ψ2), from the semantics of the marking-sensitive

semi-join and the definition of RPS∞
2 it then also follows that ∀(m,∞) ∈ C(pΦQ) : m |=

ψ1 ∧ m |= ψ2 ⇒ (m,∞) ∈ C(pΦ(Q,ψ2)
) and ∀(m2, ϕ2) ∈ C(pΦ(Q,ψ2)

) : m2 |= ψ2. From the

semantics of the marking-sensitive semi-join then follows the satisfaction of the Lemma.

Lemma A.7 (Execution of modular extensions of localized RETE nets via orderΨ yields
consistent configurations for the base RETE net). Let H be a graph, Hp ⊆ H, (Q,ψ) a graph
query, and (XΦ, pΦX) a modular extension of the marking-sensitive RETE net (NΦ, pΦ) =
localizeΨ(Q,ψ). Furthermore, let CΦ0 be an arbitrary configuration for (XΦ, pΦX). Executing
(XΦ, pΦX) via O = orderΨ(NΦ) then yields a configuration CΦ = execute(O,NΦ, H,Hp, CΦ0)
that is consistent for all nodes in NΦ.

Proof. We show the correctness of the Lemma via structural induction over the nested graph
condition ψ.

In the base case, where ψ = true, O is given by O = localize(Q). By Lemma 13 in
[BG24b], it follows directly that the lemma holds.

We now proceed to showing that, under the induction hypothesis that the lemma holds
for a nested graph condition of nesting depth d, the lemma holds for any nested graph
condition of nesting depth d+ 1.

For a nested condition of the form ψ = ∃(a : Q → Q′, ψ′), O is given by O =
order(NΦ

Q)◦toposort−1(RPS∞
l)◦orderΨ(NΦ

(Q′,ψ′))◦[⋉]Φ. By Lemma 13 in [BG24b], it follows

that CΦ1 = execute(order(NΦ
Q), X

Φ, H,Hp, CΦ0) is consistent for all nodes in NΦ
Q . Since no

node in NΦ
Q depends on a node in RPS∞

l , CΦ2 = execute(toposort−1(RPS∞
l), XΦ, H,Hp, CΦ1)

must then be consistent for all nodes inNΦ
Q∪RPS∞

l . By the same argument and the induction

hypothesis, CΦ3 = execute(orderΨ(NΦ
(Q′,ψ′)), X

Φ, H,Hp, CΦ2) is consistent for all nodes in

NΦ
Q ∪RPS∞

l ∪NΦ
(Q′,ψ′) and C

Φ
4 = execute([⋉]Φ, XΦ, H,Hp, CΦ3) = execute(O,NΦ, H,Hp, CΦ0)

is consistent for all nodes in NΦ.
By analogous argumentation, the lemma then also holds for a nested condition of the

form ψ = ¬ψ′.

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:55

For a nested condition of the form ψ = ψ1∧ψ2, O is given by orderΨ(NΦ) = order(NΦ
Q)◦

toposort−1(RPS∞
1) ◦ orderΨ(NΦ

(Q,ψ1)
) ◦ [⋉]Φ1 ◦ toposort−1(RPS∞

2) ◦ orderΨ(NΦ
(Q,ψ2)

) ◦ [⋉]Φ2 .

By the same argumentation as for the case where ψ = ∃(a : Q→ Q′, ψ′), the configuration
CΦ1 = execute(O1, N

Φ, H,Hp, CΦ0) is consistent for all nodes in NΦ
Q ∪RPS∞

1 ∪NΦ
(Q,ψ1)

∪ [⋉]Φ1 ,

where O1 = order(NΦ
Q) ◦ toposort−1(RPS∞

1) ◦ orderΨ(NΦ
(Q,ψ1)

) ◦ [⋉]Φ1 . By the induction hy-

pothesis and the construction of NΦ, it then holds that CΦ2 = execute(O2, N
Φ, H,Hp, CΦ1) =

execute(O,NΦ, H,Hp, CΦ0) is consistent for all nodes inNΦ, whereO2 = toposort−1(RPS∞
2)◦

orderΨ(NΦ
(Q,ψ2)

) ◦ [⋉]Φ2 .

From the correctness of the base case and the induction step follows the correctness of
the lemma.

Lemma A.8 (Execution time of semi-join nodes is linear in the number of matches for the

semi-join’s left dependency). Let H be a graph, Hp ⊆ H, [⋉]Φ ∈ V NΦ
a marking-sensitive

semi-join node with left dependency nΦl and right dependency nΦr , and CΦ0 a configuration

such that CΦ0 ([⋉]Φ) = ∅. Executing [⋉]Φ via CΦ1 = execute([⋉]Φ, NΦ, H,Hp, CΦ0) then takes
O(|CΦ0 (nΦl)|) steps.

Proof. In the case where CΦ0 ([⋉]Φ) = ∅, [⋉]Φ can be executed by enumerating all elements
(ml, ϕl) ∈ CΦ0 (nΦl), checking whether it holds that ∃(mr, ϕr) ∈ CΦ(nΦr) : ml|Q∩ = mr|Q∩ , and

adding them to CΦ0 ([⋉]Φ) if the condition holds. Assuming efficient indexing structures that
allow lookup and insertion times linear in match size, this takes O(|CΦ0 (nΦl)|) steps.

Lemma A.9 (Execution time of anti-join nodes is linear in the number of matches for the

semi-join’s left dependency). Let H be a graph, Hp ⊆ H, [▷]Φ ∈ V NΦ
a marking-sensitive

anti-join node with left dependency nΦl and right dependency nΦr , and CΦ0 a configuration

such that CΦ0 ([▷]Φ) = ∅. Executing [▷]Φ via CΦ1 = execute([▷]Φ, NΦ, H,Hp, CΦ0) then takes
O(|CΦ0 (nΦl)|) steps.

Proof. In the case where CΦ0 ([▷]Φ) = ∅, [▷]Φ can be executed by enumerating all elements
(ml, ϕl) ∈ CΦ0 (nΦl), checking whether it holds that ∄(mr, ϕr) ∈ CΦ(nΦr) : ml|Q∩ = mr|Q∩ , and

adding them to CΦ0 ([▷]Φ) if the condition holds. Assuming efficient indexing structures that
allow lookup and insertion times linear in match size, this takes O(|CΦ0 (nΦl)|) steps.

Lemma A.10 (RETE net localization via localizeΨ introduces an overhead of at most
factor 10 on the number of computed matches). Let H be an edge-dominated graph, Hp ⊆ H,
(N, p) a RETE net created via the procedure described in [BG23] for the extended graph
query (Q,ψ), C a consistent configuration for (N, p) for host graph H, and CΦ a consistent
configuration for the marking-sensitive RETE net (NΦ, pΦ) = localizeΨ(Q,ψ) for host graph
H and relevant subgraph Hp corresponding to (N, p). It then holds that

∑
nΦ∈V NΦ |CΦ(nΦ)| ≤

10 ·
∑

n∈V N C(n)|.

Proof. We show the correctness of the theorem via structural induction over the nested
graph condition ψ.

In the base case where ψ = true, it holds that localizeΨ(Q,ψ) = localize(N, p). From
Lemma A.5, it then immediately follows that

∑
nΦ∈V NΦ |CΦ(nΦ)| ≤ 10 ·

∑
n∈V N |C(n)|.

We now proceed to showing that, under the induction hypothesis that the lemma holds
for a nested graph condition of nesting depth d, the lemma holds for any nested graph
condition of nesting depth d+ 1.

4:56 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

For a nested condition of the form ψ = ∃(a : Q→ Q′, ψ′), NΦ consists of the localized
RETE net for Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q′,ψ′), p
Φ
(Q′,ψ′)) =

localizeΨ(Q′, ψ′), a request projection structure RPS∞
l = RPS∞(pΦQ, N

Φ
(Q′,ψ′)), and a

marking-sensitive semi-join node pΦ = [⋉]Φ.
By the construction described in [BG23], (N, p) then consists of a RETE net for the

plain graph query Q, (NQ, pQ), the RETE net for the extended graph query (Q′, ψ′), (N ′, p′),
and a semi-join p = [⋉] with dependencies pQ and p′.

By Lemma A.5, we know that
∑

nΦ∈V N
Φ
Q
|CΦ(nΦ)| ≤ 10

∑
n∈V NQ\{pQ} |C(n)|+7 · |C(pQ)|,

since localize(Q) = localize(NQ, pQ).

In the worst case, the extension points of (NΦ
(Q′,ψ′), p

Φ
(Q′,ψ′)) already contain all possible

single-vertex matches into H even without the additional input via RPS∞
l . Therefore, by

the induction hypothesis, it must hold that
∑

nΦ∈V
NΦ
(Q′,ψ′)

|CΦ(nΦ)| ≤ 10 ·
∑

n∈V N′ |C(n)|.

From Lemma 12 in [BG24b], it follows that
∑

nΦ
Q∈V RPS

∞
l
|CΦ(nΦQ)| ≤ 3 · |C(pQ)|.

Finally, from Theorem 4.3 and Lemma 12 in [BG24b], it follows that |CΦ(pΦ)| ≤ |C([⋉])|.
Consequently, it must hold that

∑
nΦ∈V NΦ |CΦ(nΦ)| ≤ 10 ·

∑
n∈V N |C(n)|.

For a nested condition of the form ψ = ¬ψ′, NΦ consists of the localized RETE net for
the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q,ψ′), p
Φ
(Q,ψ′)) =

localizeΨ(Q,ψ′), a request projection structure RPS∞
l = RPS(pΦQ, N

Φ
(Q,ψ′)), and a marking-

sensitive anti-join node pΦ = [▷]Φ.
By the construction described in [BG23], (N, p) then consists of a RETE net for the

plain graph query Q, (NQ, pQ), the RETE net for the extended graph query (Q,ψ′), (N ′, p′),
and an anti-join p = [▷] with dependencies pQ and p′.

By analogous argumentation as for the existential case, it must then also hold that∑
nΦ∈V NΦ |CΦ(nΦ)| ≤ 10 ·

∑
n∈V N |C(n)|.

For a nested condition of the form ψ = ψ1 ∧ ψ2, N
Φ consists of the localized RETE net

for the plain pattern Q, (NΦ
Q , p

Φ
Q) = localize(Q), the localized RETE net (NΦ

(Q,ψ1)
, pΦ(Q,ψ1)

) =

localizeΨ(Q,ψ1), a request projection structure RPS∞
1 = RPS∞(pΦQ, N

Φ
(Q,ψ1)

), a marking-

sensitive semi-join node [⋉]Φ1 , the localized RETE net (NΦ
(Q,ψ2)

, pΦ(Q,ψ2)
) = localizeΨ(Q,ψ2),

a request projection structure RPS∞
2 = RPS∞([⋉]Φ1 , N

Φ
(Q,ψ2)

), and a marking-sensitive

semi-join node pΦ = [⋉]Φ2 .
By the construction described in [BG23], (N, p) then consists of a RETE net for the plain

graph query Q, (NQ, pQ), the RETE net for the extended graph query (Q,ψ1), (N1, p1), the
RETE net for the extended graph query (Q,ψ2), (N2, p2), a semi-join [⋉]1 with dependencies
pQ and p1, and a semi-join p = [⋉]2 with dependencies [⋉]1 and p2.

As in the existential case, it holds that
∑

nΦ∈V N
Φ
Q
|CΦ(nΦ)| ≤ 10

∑
n∈V NQ\{pQ} |C(n)|+

7 · |C(pQ)|. Furthermore, it must hold that
∑

nΦ∈V
NΦ
(Q,ψ1)

|CΦ(nΦ)| ≤ 10 ·
∑

n∈V N1 |C(n)| and∑
nΦ∈V

NΦ
(Q,ψ1)

|CΦ(nΦ)| ≤ 10 ·
∑

n∈V N2 |C(n)| by the induction hypothesis.

From Lemma 12 in [BG24b], it follows that
∑

nΦ
Q∈V RPS

∞
1
|CΦ(nΦQ)| ≤ 3 · |C(pQ)|.

We furthermore know by Theorem 4.3 that CΦ([⋉]Φ1) can only contain matches for Q
that satisfy ϕ1 and C([⋉]1) contains all such matches. From Lemma 12 in [BG24b], it thus
follows that |CΦ([⋉]Φ1)| ≤ |C([⋉]1)|. Consequently, it must hold that

∑
nΦ
Q∈V RPS

∞
2
|CΦ(nΦQ)| ≤

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:57

3 · |C([⋉]1)|. By Theorem 4.3 and Lemma 12 in [BG24b], it also follows that |CΦ([⋉]Φ2)| ≤
|C([⋉]2)|.

We thus know that
∑

nΦ∈V NΦ |CΦ(nΦ)| ≤ 10 ·
∑

n∈V N |C(n)|.
From the correctness of base case and induction step then follows the correctness of the

lemma.

Lemma A.11 (Consistent configurations for modular extensions of RETE nets localized
via localizesat yield all subgraph satisfaction dependent matches for an extended graph
query with marking ∞). Let H be a graph, Hp ⊆ H, (Q,ψ) an extended graph query,
and CΦ a consistent configuration for the modular extension (Xsat, psat) of (N sat, psat) =

localizesat(Q,ψ). It then holds that ∀m ∈ MQ
H : m is subgraph satisfaction dependent ⇒

(m,∞) ∈ CΦ(psat).

Proof. We show the correctness of the lemma via structural induction over ψ.
In the base case of ψ = true, the lemma trivially holds, since no match is subgraph

satisfaction dependent in this case.
We now proceed to showing that, under the induction hypothesis that the lemma holds

for a nested graph condition of nesting depth d, the lemma holds for any nested graph
condition of nesting depth d+ 1.

For a nested condition of the form ψ = ¬ψ′, the correctness of the lemma follows directly
from the induction hypothesis.

For a nested condition of the form ψ = ψ1 ∧ ψ2, the correctness of the lemma follows
directly from the induction hypothesis and the semantics of the marking-sensitive union
node.

For a nested condition of the form ψ = ∃(a : Q→ Q′, ψ′), (N sat, psat) = localizesat(Q,ψ)
consists of the localized RETE net for the plain pattern Q, (NΦ

Q , p
Φ
Q) = localize(Q), the

localized RETE net for the plain pattern Q′, (NΦ
Q′ , pΦQ′) = localize(Q′), the RETE net

(N sat
(Q′,ψ′), p

sat
(Q′,ψ′)) = localizesat(Q′, ψ′), a marking-sensitive union node [∪]Φ with depen-

dencies pΦQ′ and psat(Q′,ψ′), a request projection structure RPS∞
r = RPS∞([∪]Φ, NΦ

Q), and a

marking-sensitive semi-join node psat = [⋉]Φ with left dependency pΦQ and right dependency

[∪]Φ.
By Lemma 1 in [BG24b], the induction hypothesis, and the semantics definition of

the marking-sensitive union node, it must then hold that ∀m′ ∈ MQ′

H : m′(Q′) ∩ Hp ̸=
∅ or m′ is subgraph satisfaction dependent ⇒ (m′,∞) ∈ CΦ([∪]Φ).

From the construction of RPS∞
r and Lemma 1 in [BG24b], it follows that ∀m ∈MQ

H :

(∃m′ ∈MQ′

H : m = m′ ◦ a ∧ (m′(Q′) ∩Hp ̸= ∅ or m′ is subgraph satisfaction dependent))⇒
(m,∞) ∈ CΦ(pΦQ).

From the semantics of the marking-sensitive semi-join then follows the correctness of
the lemma.

From the satisfaction of the base case and the induction step follows the correctness of
the lemma.

Lemma A.12 (Execution of modular extensions of localized RETE nets via ordersat

yields consistent configurations for the base RETE net). Let H be a graph, Hp ⊆ H,
(Q,ψ) a graph query, and (Xsat, psatX) a modular extension of the marking-sensitive RETE
net (N sat, psat) = localizesat(Q,ψ). Furthermore, let CΦ0 be an arbitrary configuration

4:58 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

for (Xsat, psatX). Executing (Xsat, psatX) via O = ordersat(N sat) then yields a configuration
CΦ = execute(O,N sat, H,Hp, CΦ0) that is consistent for all nodes in N sat.

Proof. We show the correctness of the lemma via structural induction over ψ.
In the base case of ψ = true, the lemma trivially holds.
We now proceed to showing that, under the induction hypothesis that the lemma holds

for a nested graph condition of nesting depth d, the lemma holds for any nested graph
condition of nesting depth d+ 1.

For a nested condition of the form ψ = ¬ψ′, the correctness of the lemma follows directly
from the induction hypothesis.

For a nested condition of the form ψ = ψ1 ∧ ψ2, the correctness of the lemma follows
directly from the induction hypothesis.

For a nested condition of the form ψ = ∃(a : Q → Q′, ψ′), the marking-sensitive
RETE net (N sat, psat) = localizesat(Q,ψ) consists of (NΦ

Q , p
Φ
Q) = localize(Q), (NΦ

Q′ , pΦQ′) =

localize(Q′), (N sat
(Q′,ψ′), p

sat
(Q′,ψ′)) = localizesat(Q′, ψ′), [∪]Φ, RPS∞

r = RPS([∪]Φ, NΦ
Q), and

psat = [⋉]Φ. The execution order for (N sat, psat) is then given by ordersat(N sat) =
order(NΦ

Q′) ◦ ordersat(N sat
(Q′,ψ′)) ◦ [∪]

Φ ◦ toposort(RPS∞
r)−1 ◦ order(NΦ

Q) ◦ [⋉]Φ.

By Lemma 13 in [BG24b], CΦ1 = execute(order(NΦ
Q′), N sat, H,Hp, CΦ0) is consistent for

all nodes in NΦ
Q′ . CΦ2 = execute(ordersat(N sat

(Q′,ψ′)), N
sat, H,Hp, CΦ1) is then also consistent for

all nodes in N sat
Q′ by the induction hypothesis. By Lemma 13 in [BG24b], CΦ = execute([∪]Φ◦

toposort(RPS∞
r)−1◦order(NΦ

Q)◦[⋉]Φ, N sat, H,Hp, CΦ2) must then be consistent for all nodes

in N sat.
From the satisfaction of the base case and the induction step follows the correctness of

the lemma.

Lemma A.13 (RETE net localization via localizesat introduces an overhead of at most
factor 25 on the number of computed matches). Let H be an edge-dominated graph, Hp ⊆
H, (N, p) a RETE net created via the procedure described in [BG23] for the extended
graph query (Q,ψ), C a consistent configuration for (N, p) for host graph H, and CΦ a
consistent configuration for the marking-sensitive RETE net (N sat, psat) = localizesat(Q,ψ)
for host graph H and relevant subgraph Hp corresponding to (N, p). It then holds that∑

nsat∈V Nsat |C
Φ(nsat)| ≤ 25 ·

∑
n∈V N |C(n)|.

Proof. For nested queries of (Q,ψ) with the form (Q′, true), localizesat only introduces a
dummy node to N sat. The result set for any dummy node in N sat is always empty. Hence,
the result sets of these nodes do not contribute to configuration size. Moreover, localizesat

does not introduce any additional nodes for nested queries with the form (Q′,¬ψ′).
For each nested query with the form (Q′, ψ1 ∧ ψ2), N

sat contains one marking-sensitive
union node [∪]Φ, whereas N contains a RETE subnet (NQ′ , pQ′) computing matches for Q′

as well as two semi-joins. Since the result set for [∪]Φ can only contain at most one tuple

for each match for Q′ and the result set for pQ
′
contains all such matches, it follows that

|CΦ([∪]Φ)| ≤ |C(pQ′)|.
For each nested query with the form (Q′,∃(a : Q′ → Q′′, ψ′)), N sat contains the

subnets (NΦ
Q′ , pΦQ′) = localize(Q′) and (NΦ

Q′′ , pΦQ′′) = localize(Q′′), a marking-sensitive union

node [∪]Φ, a marking-sensitive semi-join [⋉]Φ, as well as the request projection structure
RPS∞

l = RPS∞([∪]Φ, NΦ
Q′). N contains a RETE subnet (NQ′ , pQ′) computing matches for

Q′ and a semi-join [⋉].

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:59

By Lemma A.5 and because the additional dependency on RPS∞
l does not affect the

worst case of a fully populated RETE net (NΦ
Q , p

Φ
Q), it must hold that

∑
nΦ
Q′∈V

NΦ
Q′
|CΦ(nΦQ′)| ≤

10·
∑

nQ′∈V
NQ′ |C(nQ′)|. Also, by the semantics of the marking-sensitive semi-join and because

the result set for pΦQ′ contains each match for Q′ at most once by Lemma 12 in [BG24b], it

must hold that
∑

(m,ϕ)∈CΦ([⋉]Φ) |m| ≤
∑

m∈C(pQ′) |m| ≤
∑

nQ′∈V
NQ′ |C(nQ′)|.

Any nested query with the form (Q′,∃(a : Q′ → Q′′, ψ′)) must have some nested
query (Q′′, ∃(a : Q′′ → Q′′′, ψ′′)) or (Q′′, true) in order for ψ by the definition of nested
graph conditions. In either case, N has to contain a corresponding subnet (NQ′′ , pQ′′)
computing matches for Q′′. It then holds for this subnet NQ′′ by Theorem 3.10 that∑

nΦ
Q′′∈V

NΦ
Q′′
|CΦ(nΦQ′′)| ≤ 10 ·

∑
nQ′′∈V

NQ′′ |C(nQ′′)|. It also must hold that |CΦ([∪]Φ)| ≤

|C(pQ′′)| ≤
∑

nQ′′∈V
NQ′′ |C(nQ′′)| and

∑
nΦ∈V RPS

∞
l
|CΦ(nΦ)| ≤ 3 ·

∑
nQ′′∈V

NQ′′ |C(nQ′′)|.
Since ψ is a tree of subconditions, it follows that each subnet (NQ′′ , pQ′′) must be counted

again like this for at most one parent query (Q′, ∃(a : Q′ → Q′′, ψ′)). For any nested query
of the form (Q′, true), CΦ stores at most 14 ·

∑
nQ′′∈V

NQ′ |C(nQ′)| matches. For any nested

query of the form, (Q′,∃(a : Q′ → Q′′, ψ′)), CΦ stores at most (11+14) ·
∑

nQ′′∈V
NQ′ |C(nQ′)|

matches.
In the worst case, it must thus hold that

∑
nsat∈V Nsat |C

Φ(nsat)| ≤ 25·
∑

n∈V N |C(n)|.

Lemma A.14 (Execution of modular extensions of localized RETE nets via order∆ yields
consistent configurations for the base RETE net). Let H be a graph, Hp ⊆ H, (Q,ψ) a graph
query, and (X∆, p∆X) a modular extension of the marking-sensitive RETE net (N∆, p∆) =
localize∆(Q,ψ). Furthermore, let CΦ0 be an arbitrary configuration for (X∆, p∆X). Executing
(X∆, p∆X) via O = order∆(N∆) then yields a configuration CΦ = execute(O,N∆, H,Hp, CΦ0)
that is consistent for all nodes in N∆.

Proof. Follows directly from Lemma 13 in [BG24b] and Lemmata A.12 and A.7.

Appendix B. Queries

Information regarding the metamodel, that is, the type graph for the synthetic and real
abstract syntax graph scenarios can be found in [BCDM14]. For a visualization of the type
graph for the LDBC scenario, see [AAA+24].

pkg

:Package

c1

:ClassDeclaration

f1

:FieldDeclaration

ta1

:TypeAccess

c2

:ClassDeclaration
f2

:FieldDeclaration

ta2

:TypeAccess

c3

:ClassDeclaration

f3

:FieldDeclaration

ta3

:TypeAccess

c4

:ClassDeclaration

ownedElements bodyDeclarations type
type bodyDeclarations

type

typebodyDeclarationstypetype

Figure 24. Simple path query for the synthetic abstract syntax graph
scenario

4:60 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

component

:ClassDeclaration

composite

:ClassDeclaration

t

:TypeAccess

concreteMethod

:MethodDeclaration

abstractMethod

:MethodDeclaration

field

:FieldDeclaration

t1

:TypeAccess

p

:ParameterizedType

t2

:TypeAccess

type

superClass

bodyDeclarations

bodyDeclarations

redefinedMethodDeclaration

bodyDeclarations

type

type

typeArguments
type

Figure 25. Composite query for the real abstract syntax graph scenario

o

:ClassDeclaration

t1

:TypeAccess

o1

:ClassDeclaration

t2

:TypeAccess

o2

:ClassDeclaration

s

:ClassDeclaration

c

:FieldDeclaration

tl

:TypeAccess

l

:ParameterizedType

to

:TypeAccess

m

:MethodDeclaration

um

:MethodDeclaration

loop

:ForStatement

mb

:Block

expStatement

:ExpressionStatement

lb

:Block

uInvocation

:MethodInvocation

type

superClass

type

superClass

bodyDeclarationstype
type

typeArgumentstype

bodyDeclarations bodyDeclarations

bodystatements

body

statements

expressionmethod

Figure 26. Observer query for the real abstract syntax graph scenario

c

:ClassDeclaration

f

:FieldDeclaration

t

:TypeAccess

constructor

:ConstructorDeclaration

m2

:Modifier

m1

:Modifier
bodyDeclarations

type

type

bodyDeclarationsmodifier modifier

Figure 27. Singleton query for the real abstract syntax graph scenario

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:61

context

:ClassDeclaration

field

:FieldDeclaration

t

:TypeAccess

strategy

:ClassDeclaration

s1

:ClassDeclaration

t1

:TypeAccess

t2

:TypeAccess

s2

:ClassDeclaration

method

:MethodDeclaration

m2

:MethodDeclaration

m1

:MethodDeclaration

bodyDeclarations type type

superClass

type

type

superClass

bodyDeclarations

bodyDeclarations

redefinedMethodDeclaration

bodyDeclarations

redefinedMethodDeclaration

Figure 28. Strategy query for the real abstract syntax graph scenario

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

k3

:KnowsLink

p4

:Person

i1

:City

w

:WorkAtLink

org

:Company

o

:Country

s

:StudyAtLink

u

:University

i2

:City

knows knows knows knows knows knows

studyAt

studyAt

isLocatedIn

isLocatedIn

workAt

workAt

isLocatedIn

Figure 29. Query “Interactive 1” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

m

:Message
knows knows oppHasCreator

Figure 30. Query “Interactive 2” for the LDBC scenario

4:62 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

m1

:Post

o1

:Country

m2

:Post

o2

:Country

knows knows knows knows

oppHasCreator

isLocatedIn

oppHasCreator

isLocatedIn

Figure 31. Query “Interactive 3” for the LDBC scenario

p1

:Person

t

:Tag

k

:KnowsLink

p2

:Person

m

:Post
knows knows oppHasCreator hasTag

Figure 32. Query “Interactive 4” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

h

:HasMemberLink

f

:Forum

m

:Post

knows knows knows knows

oppHasCreator

oppHasMember

oppHasMember

oppContainer

Figure 33. Query “Interactive 5” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

m

:Post

t1

:Tag

t2

:Tag

knows knows knows knows oppHasCreator

hasTaghasTag

Figure 34. Query “Interactive 6” for the LDBC scenario

Vol. 22:1 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS 4:63

p1

:Person

k

:KnowsLink

p2

:Person

m

:Message

l

:LikesLink

knows knows

likes

likes

oppHasCreator

Figure 35. Query “Interactive 7” for the LDBC scenario

p1

:Person

m

:Message

c

:Comment

p2

:Person
oppHasCreatorreplyOfoppHasCreator

Figure 36. Query “Interactive 8” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

m

:Message
knows knows knows knows oppHasCreator

Figure 37. Query “Interactive 9” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

t

:Tag

m

:Post

knows knows knows knows

hasTag

hasInterest oppHasCreator

Figure 38. Query “Interactive 10” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

w

:WorkAtLink

org

:Company

o

:Country
knows knows knows knows workAt workAt isLocatedIn

Figure 39. Query “Interactive 11” for the LDBC scenario

p1

:Person

k1

:KnowsLink

p2

:Person

c

:Comment

t

:Tag

m

:Post
tc1

:TagClass

tc2

:TagClass
knows knows oppHasCreator replyOf hasTag hasType isSubclassOf

Figure 40. Query “Interactive 12” for the LDBC scenario

4:64 LOCALIZED RETE FOR INCREMENTAL GRAPH QUERIES WITH NGCS Vol. 22:1

p1

:Person

k1

:KnowsLink

p2

:Person

k2

:KnowsLink

p3

:Person

m1

:Post

o1

:Country

m2

:Post

o2

:Country

i1

:City

knows knows knows knows

oppHasCreator

isLocatedIn

oppHasCreator

isLocatedIn

isLocatedIn

isPartOf isPartOf

NAC1 NAC2

Figure 41. Query “Interactive 3 NGC” for the LDBC scenario. The query
includes a nested graph condition of the form ¬∃(a1 : Q→ Q′

1, true)∧¬∃(a2 :
Q→ Q′

2, true), with the parts of Q′
1 and Q′

2 that are not in the image of a1
respectively a2 inside the boxes labeled “NAC1” and “NAC2”

p1

:Person

t

:Tag

k

:KnowsLink

p2

:Person

m

:Post

k2

:KnowsLink

p3

:Person

m2

:Post

knows knows oppHasCreator hasTag

knows knows
oppHasCreator

hasTagsuccessorNAC

Figure 42. Query “Interactive 4 NGC” for the LDBC scenario. The query
includes a nested graph condition of the form ¬∃(a : Q → Q′, true), with
the part of Q′ that is not in the image of a inside the box labeled “NAC”

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Graphs and Graph Queries
	2.2. Incremental Graph Queries with RETE

	3. Incremental Plain Queries over Subgraphs
	3.1. Marking-sensitive RETE
	3.2. Localized Search with Marking-sensitive RETE
	3.3. Performance of Localized RETE Nets

	4. Incremental Extended Queries over Subgraphs
	4.1. Localized RETE for Extended Queries
	4.2. Localized Detection of NGC Satisfaction Changes

	5. Evaluation
	5.1. Plain Graph Queries over Synthetic Abstract Syntax Graphs
	5.2. Plain Graph Queries over Real Abstract Syntax Graphs
	5.3. LDBC Social Network Benchmark
	5.4. Discussion
	5.5. Threats to Validity

	6. Related Work
	7. Conclusion
	Acknowledgments
	References
	Appendix A. Technical Details
	A.1. Theorems in Section 3.2
	A.2. Theorems in Section 3.3
	A.3. Theorems in Section 4.1
	A.4. Theorems in Section 4.2
	A.5. Supplementary Lemmata

	Appendix B. Queries

