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Abstract. The work described in this paper builds on the polyhedral semantics of the
Spatial Logic for Closure Spaces (SLCS) and the geometric spatial model checker PolyLogicA.
Polyhedral models are central in domains that exploit mesh processing, such as 3D computer
graphics. A discrete representation of polyhedral models is given by cell poset models,
which are amenable to geometric spatial model checking using SLCSη, a weaker version of
SLCS. In this work we show that the mapping from polyhedral models to cell poset models
preserves and reflects SLCSη. We also propose weak simplicial bisimilarity on polyhedral
models and weak ±-bisimilarity on cell poset models, where by “weak” we mean that the
relevant equivalence is coarser than the corresponding one for SLCS, leading to a greater
reduction of the size of models and thus to more efficient model checking.

We show that the proposed bisimilarities enjoy the Hennessy-Milner property, i.e. two
points are weakly simplicial bisimilar iff they are logically equivalent for SLCSη. Similarly,
two cells are weakly ±-bisimilar iff they are logically equivalent in the poset-model interpre-
tation of SLCSη. Furthermore we present a model minimisation procedure and prove that it
correctly computes the minimal model with respect to weak ±-bisimilarity, i.e. with respect
to logical equivalence of SLCSη. The procedure works via an encoding into LTSs and then
exploits branching bisimilarity on those LTSs, exploiting the minimisation capabilities as
included in the mCRL2 toolset. Various examples show the effectiveness of the approach.
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Figure 1. 3D maze (1a), black and white rooms (1b) and red rooms (1c)
in the 3D maze (source [BCG+22]).

1. Introduction and Related Work

Spatial and spatio-temporal model checking have recently been successfully employed in
a variety of application areas, including Collective Adaptive Systems [CLM+16, CGG+18,
AAV24, ADT24], signal analysis [NBC+18], image analysis [CLLM16, HJK+15, BBC+20],
and polyhedral modelling [BCG+22, CGL+23a, BCG+24a, BCG+24b]. Interest in these
methods for spatial analysis is increasing in Computer Science and in other domains, including
initially unanticipated ones, such as medical imaging [BCLM19b, BBC+21].

Spatial model checking is a global technique: it comprises the automatic verification of
properties, expressed in a suitable spatial logic, such as the Spatial Logic for Closure Spaces
(SLCS) [CLLM14, CLLM16], for each point of a spatial model. The logic SLCS has been
defined originally for closure models, i.e. models based on Čech closure spaces [Čech66], a
generalisation of topological spaces, and model checking algorithms have been developed for
finite closure models also in combination with discrete time, leading to spatio-temporal model
checking [CGG+18]. The spatial model checker VoxLogicA, proposed in [BCLM19b], is very
efficient in checking properties of large images – represented as symmetric finite closure
models – expressed in SLCS [BCLM19b, BCLM19a, BBC+21]. For example, the automatic
segmentation via a suitable SLCS formula characterising the white matter of the brain in a
3D MRI image consisting of circa 12M voxels (i.e. 256× 256× 181), requires approximately
10 seconds, using VoxLogicA on a desktop computer [BCLM19a].1

In [CLMV22, CLMV25] several bisimulations for finite closure spaces have been studied,
with the aim to improve the efficiency of model checking via model minimisation. These
notions cover a spectrum from CM-bisimilarity, an equivalence based on proximity — similar
to and inspired by topo-bisimilarity for topological models [BB07] — to CMC-bisimilarity,
CM-bisimilarity specialisation for quasi-discrete closure models, and CoPa-bisimilarity, an
equivalence based on conditional reachability. Each of these bisimilarities has been equipped
with its logical characterisation.

1Intel Core i9-9900K processor (with 8 cores and 16 threads) and 32GB of RAM. Note that VoxLogicA
checks such logical specifications for every point in the model exploiting parallel execution, memoization, and
state-of-the-art imaging libraries [BCLM19b].
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The spatial model checking techniques mentioned above, targeting grid-based structures,
have been extended to polyhedral models [BCG+22, LQ23]. Polyhedra are subsets in Rn

generated by simplicial complexes, i.e. finite collections of simplexes satisfying certain
conditions. A simplex is the convex hull of a set of affinely independent points. Given a
set PL of proposition letters, a polyhedral model is obtained from a polyhedron by assigning
a polyhedral subset to each proposition letter p ∈ PL, namely those points that “satisfy”
proposition p. Polyhedral models in R3 can be used for (approximately) representing objects
in continuous 3D space. This is typical of many 3D visual computing techniques, where an
object is split into suitable geometric parts of different size. Such ways of splitting of an object
are known as mesh techniques and include triangular surface meshes or tetrahedral volume
meshes (see [LPZ12]). Interestingly, polyhedral models can conveniently be represented by
discrete structures, the so-called cell poset models: each point of the polyhedron is mapped
to a (unique) “cell”, i.e. an element of the associated cell poset model. Cell poset models,
being a particular case of Kripke models, are amenable to discrete model checking.

In [BCG+22], a variant of SLCS for polyhedral models, called SLCSγ in the sequel, as
well as a geometric model checking algorithm have been proposed. The latter has been
implemented in the PolyLogicA model checker, together with PolyVisualizer, a tool for
visualising and inspecting polyhedral models (see [BCG+22] for details). Example 1.1 below
gives an idea of the framework of spatial model checking using PolyLogicA.

Example 1.1. Figure 1a shows a “3D maze” example originating from [BCG+22]. The maze
consists of “rooms” that are connected by “corridors”. The rooms come in four colours: white,
black, green, and red for only one room. The cells of white, black, green, red rooms satisfy
(only) predicate letter white, black, green, red, respectively. Predicate letter corridor
is satisfied by (all and only the cells of) corridors. The green rooms are all situated at the
outer boundary of the maze and represent the surroundings of the maze that can be reached
via an exit. The white, black, and red rooms and related corridors are situated inside the
maze and form the maze itself. Figure 1b shows all the white and black rooms. Figure 1c
shows the red room. The corridors between rooms are dark grey. Valid paths through the
maze should only pass by white/red rooms and related corridors to reach a green room
without passing by black rooms or corridors that connect to black rooms. All the images
shown in Figure 1 are generated by PolyLogicA and can be visualised (and inspected by)
PolyVisualizer: the result of a model checking session is presented by showing an image
where the cells that satisfy the formula of interest are shown opaque, while the rest of the
image is shown transparent in the background. For instance, in Figure 1b the result of model
checking the simple SLCSγ formula black ∨ white by PolyLogicA is shown, and similarly
for Figure 1c and formula red. ♣

SLCSγ can express spatial properties of points lying in polyhedral models, and, in
particular, conditional reachability properties. Besides negation and conjunction, SLCSγ
provides the γ reachability operator. Informally, a point x in a polyhedral model satisfies
the conditional reachability formula γ(Φ1,Φ2) if there is a topological path starting from x,
ending in a point y satisfying Φ2, and such that all the intermediate points of the path between
x and y satisfy Φ1. Note that neither x nor y is required to satisfy Φ1. Many interesting
properties, such as proximity (in the topological sense, i.e. “being in the topological closure
of”) or “being surrounded by” can be expressed using reachability (see [BCG+22]).

Moreover, in [BCG+22] simplicial bisimilarity (denoted by ∼△ in the sequel) has been
proposed for polyhedral models, and it has been shown that it enjoys the Hennessy-Milner
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Property (HMP) with respect to SLCSγ . In [CGL+23a] ±-bisimilarity (denoted by ∼± in the
sequel) has been proposed for cell poset models, that also enjoys the HMP for SLCSγ .

In this paper we introduce a weaker version of conditional reachability, denoted by η.
A point x in a polyhedral model satisfies the conditional reachability formula η(Φ1,Φ2) if
there is a topological path starting from x, ending in a point y satisfying Φ2, and x and all
the intermediate points of the path between x and y satisfy Φ1. Thus now x is required
to satisfy Φ1. The operator η can be expressed using γ and we will show that the logic
where γ has been replaced by η — SLCSη, in the sequel — is strictly weaker than SLCSγ in
the sense that it distinguishes fewer points than SLCSγ . Furthermore, as mentioned above,
SLCSγ can express proximity — that boils down to the standard possibility modality 3 in
the poset model interpretation — whereas SLCSη cannot. We show that the mapping from
a polyhedral model to its cell poset model preserves and reflects SLCSη: a point satisfies a
formula of SLCSη if and only if the cell which it is mapped to satisfies the formula2. This
result paves the way to the definition and implementation of model checking techniques for
SLCSη on polyhedral models, by working on their discrete representations.

Model reduction for cell poset models, as a means for improving model checking efficiency
is our main concern in the present work. In particular, we are interested in techniques
based on spatial bisimilarity. For that purpose we introduce weak simplicial bisimilarity
on polyhedral models (≈△) showing that it enjoys the HMP with respect to SLCSη — ≈△
coincides with the logical equivalence ≡η as induced by SLCSη — and a notion of bisimulation
equivalence for cell poset models, namely weak ±-bisimilarity (≈±, to be read as ‘weak
plus-minus’ bisimilarity) such that two points in the polyhedral model are weakly simplicial
bisimilar if and only if their cells are weakly ±-bisimilar. We show that also on cell poset
models the HMP holds: ≈± coincides with ≡η.

The reason why we are interested in SLCSη is that it characterises bisimilarities — in
the polyhedral model and the associated poset model — that are coarser than simplicial
bisimilarity and ±-bisimilarity, respectively (thence the adjective “weak” in the names of the
two bisimilarities). This allows for greater model reduction, as we will see, for instance, in
Example 4.14 and Figure 7. At the same time, interesting reachability properties can be
expressed in SLCSη, as shown, for instance, by the following example.

Example 1.2. Let us consider again the polyhedral model of Figure 1a. Suppose we are
interested in all those white rooms from which an exit (i.e. green room) can be reached
without passing by black rooms or corridors connected to black rooms. Moreover, we want
to know which route — in the sense of rooms and corridors — one can follow from each
such white room for reaching an exit. We start by defining some auxiliary formulas: a cell
satisfies formula η(corridor,white)∧¬η(corridor,green∨ black∨ red) if it belongs to a
corridor and from such a cell only (cells of) white rooms — i.e. neither green, nor black, nor
red — can be reached via the corridor. For the sake of readability, we name such a formula
CorWW. Formula CorWG, defined as η(corridor,white) ∧ η(corridor,green), is satisfied by
those cells of corridors between white and green rooms. Next, we define formula WtG that
characterises the cells of white rooms, corridors between white rooms, and corridors between
white and green rooms, by which one can reach a green room, i.e. without passing by black
rooms or corridors connected to black rooms: WtG = η((white ∨ CorWW ∨ CorWG),green).
Keeping in mind that in the answer to our model checking query we want to see the green exits

2A similar feature was shown to hold for SLCSγ in [BCG+22].
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(a) (b) (c)

Figure 2. Spatial model checking results of the properties Q1 (2a), Q2 (2b)
and Q3 (2c) for the 3D maze of Figure 1. (source: [BCG+22]).

as well, we define the complete query Q1 by WtG ∨ η(green, WtG). The result of PolyLogicA
applied on Q1 and the “maze” is shown in Figure 2a.

Suppose now we are interested in showing the white rooms, and connecting corridors,
from which both a green room and the red room can be reached, without having to pass by
black rooms (and related corridors), i.e. we want to show if and how one can reach an exit
from the red room. The relevant query Q2 is given by the formula η((Q1 ∨ CorWR), red) ∨
η((red ∨ CorWR), Q1) where CorWR stands for η(corridor,white) ∧ η(corridor, red). The
result of the model checking session is shown in Figure 2b.

Finally, Figure 2c shows the white rooms, and related corridors, from which it is not
possible to reach a green room without having to pass by a black room and is the result of
model checking the formula Q3 defined as (white ∨ CorWW) ∧ ¬WtG. ♣

Building upon the theoretical results for SLCSη, weak simplicial bisimilarity and weak
±-bisimilarity, we introduce a minimisation procedure based on weak ±-bisimilarity, namely
weak ±-minimisation. The procedure uses an encoding of cell poset models into labelled
transition systems (LTSs) following an approach that is similar to that presented in [CGL+23b]
for finite closure models. More precisely, in the case of cell poset models, there is a one-to-one
correspondence between the states of the LTS and the cells of the poset model. It is shown
that two cells are weakly ±-bisimilar in the poset model if and only if they — as states of
the encoded LTS — are branching bisimulation equivalent. This provides an effective way
for computing the equivalence classes for the set of cells, from which the minimal model
is built, on which SLCSη model checking can be safely performed. In fact, efficient LTS
minimisation tools are available for branching bisimulation, such as the one provided by the
mCRL2 toolset [GJKW17]. As we will see in Section 7, this can lead to a drastic reduction of
the size of the spatial model, thus increasing the practical efficiency of spatial model checking.
Figure 3a shows an example of a maze, composed of 6,145 cells of three colours: white, green,
and grey — for corridors. This model is reduced to an LTS consisting of only 38 states, which
is a reduction of two orders of magnitude. The different white, green and grey states of the
minimised LTS represent the various equivalence classes of cells in the original polyhedral
model. Even if this is a synthetic example, chosen on purpose for its symmetry properties, it
illustrates the potential of the approach. Figure 3b only gives a first visual impression of
spatial minimisation for polyhedra. We postpone the discussion of the details to Section 7.
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(b) Minimal LTS

Figure 3. A maze (3a) and its respective minimal LTS (3b).

In conclusion, in the present paper, we focus on model reduction — as a way of improving
model checking efficiency — and spatial reachability — rather than proximity. In particular,
we are interested in a framework for model reduction with the following features:

(1) It should be sound and complete, i.e. be based on a notion of bisimilarity that enjoys the
Hennessy-Milner Property (HMP) so that completeness and soundness of the optimised
model checking procedure — via model reduction — are guaranteed.

(2) It should be optimal with respect to the logic of interest, in the sense of yielding the
minimal model with respect to the equivalence induced by the logic of interest, but also
a useful one. In this respect we have been inspired by the use of branching bisimilarity
in the context of LTSs: branching bisimilarity — that is weaker than strong bisimilarity
— enjoys the HMP with respect to CTL∗ without X (next) — that is weaker than full
CTL∗ — and both the equivalence and its logical characterisation are widely used in
concurrency theory and its applications. In essence, weak simplicial bisimilarity in the
context of spatial logic is a re-interpretation in space of branching bisimilarity in the
context of temporal logic. Similarly, SLCSη can be seen as the spatial counterpart of
CTL∗ \X.

(3) It should exploit existing tools for minimisation via bisimulation, since at present pow-
erful and efficient model minimisation techniques and tools are available for branching
bisimilarity minimisation.

As we mentioned above, the fact that logical equivalence ≡η is coarser than ≡γ implies
that poset model minimisation modulo ≡η results in models that can be smaller than those
obtained modulo ≡γ , and this is one reason why we focus on SLCSη in the present paper. As
is to be expected, we do not have a general measure of the “gain”, in terms of percentage of
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reduction in the number of cells of the input models, when using ≡η instead of ≡γ , because
this depends on the specific model.

Furthermore, we show that SLCSη is of interest for reasoning about reachability, which
is an essential feature in topological structures, as illustrated by the examples presented
in this paper. There are also additional notions that can easily be expressed using the η
modality such as “double reachability” and “being surrounded”. The former are properties
like “there is a path (from the point of interest) reaching — while passing only through points
satisfying Φ1 — a point satisfying Φ2 that can (also) be reached from a point satisfying Φ3

via a path passing through points satisfying Φ2”. By exploiting the non-directionality of
topological paths, this can be expressed by the following SLCSη formula:

η(Φ1, η(Φ2,Φ3)).

A formula like the above can be used for modelling an emergency egress situation — e.g. in
a building modelled as a polyhedral model — in which, for instance, Φ1 characterises points
in a building (such as the one schematised by the polyhedral model shown in Figure 1) that
are accessible to somebody to be rescued in that building (including the place where the
person is located), but are not accessible to a rescue team; Φ3 characterises the place where
the rescue team is located while Φ2 characterises points that are accessible to the rescue
team (here we assume that Φ3 implies Φ2 — if not, just replace Φ3 with Φ3 ∧Φ2). The team
and those to be rescued can thus meet in a point satisfying the nested η-formula η(Φ2,Φ3).

The notion of “being surrounded” can be expressed using the η modality as described below.
We say that starting from a point x that satisfies Φ1 one cannot “escape” from Φ1 without
“passing through” Φ2 — i.e. is “surrounded” by Φ2 — if any path starting from x and reaching
a point that does not satisfy Φ1 must first pass through Φ2. More precisely, x must satisfy
Φ1 and there is no path from x leading to a point satisfying neither Φ1 nor Φ2 without first
passing through a point satisfying Φ2. In SLCSη this is captured by the following formula:

Φ1 ∧ ¬η(¬Φ2,¬(Φ1 ∨ Φ2)).

Note that if x itself satisfies Φ2, then starting from x one cannot escape from Φ1 without
passing through Φ2.3

Below, we summarise the main contributions of this paper:

• presentation of SLCSη, a spatial logic for polyhedral models which is weaker than SLCSγ ;
• introduction of weak simplicial bisimilarity on polyhedral models (≈△) and showing that it

enjoys the HMP with respect to SLCSη;
• introduction of weak ±-bisimilarity on cell poset models (≈±) with the corresponding

HMP result;
• introduction of a novel cell poset model minimisation procedure based on weak ±-

bisimilarity — and exploiting an encoding to LTSs and branching bisimilarity — including
the formal proof of its correctness;
• proof-of-concept of the practical potential and effectiveness of this approach through a

prototype toolchain and spatial model checking examples. It is shown that the cell poset
models can be drastically reduced by several orders of magnitude.

3As we will see in Section 3, the spatial properties discussed above can be expressed also in SLCSγ (see
Lemma 3.5).
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The first three items above have been presented originally in [BCG+24a] where only
some of the proofs of the relevant results where shown: in the present paper, all proofs are
presented in detail. The last two items above are original contributions.

The paper is structured as follows. We provide a summary of necessary background
information in Section 2. Section 3 introduces SLCSη and addresses its relationship with SLCSγ .
It is also shown that SLCSη is preserved and reflected by the mapping F from polyhedral
models to finite cell poset models. Weak simplicial bisimilarity and weak ±-bisimilarity
are defined in Section 4 where it is also shown that they enjoy the HMP with respect to
the interpretation of SLCSη on polyhedral models and on finite poset models, respectively.
The minimisation procedure, based on weak ±-bisimilarity and exploiting its relationship
with branching bisimulation equivalence, is defined in Section 5 where its correctness is also
addressed. The procedure is currently implemented by means of an experimental toolchain
using mCRL2 and is introduced in Section 6. Examples of use of the toolchain are presented
in Section 7. Conclusions and a discussion on future work are reported in Section 8.

Finally, in Appendix A detailed proofs are provided and, in Appendix B, an additional
minimisation example is shown.

2. Background and Notation

In this section we introduce notation and recall necessary background information, the
relevant details of the language SLCSγ , its polyhedral and poset models, the truth-preserving
map F between these models, simplicial bisimilarity and ±-bisimilarity.

For sets X and Y , a function f : X → Y , and subsets A ⊆ X and B ⊆ Y we define f(A)
and f−1(B) as {f(a) | a ∈ A} and {a | f(a) ∈ B}, respectively. The restriction of f on A is
denoted by f |A. The powerset of X is denoted by 2X . For a binary relation R ⊆ X ×X
we let R− = {(y, x) | (x, y) ∈ R} denote its converse and let R± denote R ∪R−. For partial
orders ⪯ we will use the standard notation ⪰ for ⪯− and x ≺ y whenever x ⪯ y and x ≠ y
(and similarly for x ≻ y). If R is an equivalence relation on A, we let A/R denote the
quotient of A via R. In the remainder of the paper we assume that a set PL of proposition
letters is fixed. The sets of natural numbers and of real numbers are denoted by N and R,
respectively. We use the standard interval notation: for x, y ∈ R we let [x, y] be the set
{r ∈ R |x ≤ r ≤ y}, [x, y) = {r ∈ R |x ≤ r < y}, and so on. Intervals of R are equipped
with the Euclidean topology inherited from R. We use a similar notation for intervals over N:
for n,m ∈ N, [m;n] denotes the set {i ∈ N |m ≤ i ≤ n}, [m;n) = {i ∈ N |m ≤ i < n}, and
so on. Finally, for topological space (X, τ) and A ⊆ X we let CT (A) denote the topological
closure of A.

Below we recall some basic notions, assuming that the reader is familiar with topological
spaces, Kripke models, and posets.

2.1. Polyhedral Models and Cell Poset Models. A simplex σ of dimension d is the
convex hull of a set {v0, . . . ,vd} of d+ 1 affinely independent points in Rm, with d ≤ m, i.e.
σ = {λ0v0 + . . .+ λdvd |λ0, . . . , λd ∈ [0, 1] and

∑d
i=0 λi = 1}. For instance, a segment AB

together with its end-points A and B is a simplex in Rm, for m ≥ 1. Any subset of the set
{v0, . . . ,vd} of points characterising a simplex σ induces a simplex σ′ in turn, and we write
σ′ ⊑ σ, noting that ⊑ is a partial order, e.g. A ⊑ A ⊑ AB, B ⊑ B ⊑ AB and AB ⊑ AB.
The barycentre bσ of σ is defined as follows: bσ =

∑d
i=0

1
d+1vi.
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The relative interior σ̃ of a simplex σ is the same as σ “without its borders”, i.e. the
set {λ0v0 + . . . + λdvd |λ0, . . . , λd ∈ (0, 1] and

∑d
i=0 λi = 1}. For instance, the open

segment ÃB, without the end-points A and B is the relative interior of segment AB. The
relative interior of a simplex is often called a cell and is equal to the topological interior
taken inside the affine hull of the simplex.4 A partial order is defined on cells: we say that
σ̃1 ≼ σ̃2 if and only if σ̃1 ⊆ CT (σ̃2) where, we recall, CT denotes the topological closure
operator. It is easy to see that ≼ is indeed a partial order. Note furthermore that ⊑ and ≼
are compatible, in the sense that σ̃1 ≼ σ̃2 if and only if σ1 ⊑ σ2. In the above example, we
have Ã ≼ Ã ≼ ÃB, B̃ ≼ B̃ ≼ ÃB, and ÃB ≼ ÃB.

A simplicial complex K is a finite collection of simplexes of Rm such that: (i) if σ ∈ K
and σ′ ⊑ σ then also σ′ ∈ K; (ii) if σ, σ′ ∈ K and σ∩σ′ ̸= ∅, then σ∩σ′ ⊑ σ and σ∩σ′ ⊑ σ′.
The cell poset of simplicial complex K is (K̃,≼) where K̃ is the set { σ̃ |σ ∈ K}, and ≼ is
the union of the partial orders on the cells of the simplexes of K.

The polyhedron |K| of K is the set-theoretic union of the simplexes in K. Note that
|K| inherits the topology of Rm and that K̃ forms a partition of polyhedron |K|. Note
furthermore that different simplicial complexes can give rise to the same polyhedron.

A polyhedral model is a pair P = (P,VP) where P = |K| for some simplicial complex K
and VP : PL→ 2P maps every proposition letter p ∈ PL to the set of points of P satisfying p.
It is required that, for all p ∈ PL, VP(p) is always a union of cells in K̃. A poset model is a
triple F = (W,≼,VF) where (W,≼) is a poset that is equipped with a valuation function
VF : PL → 2W. Given a polyhedral model P = (P,VP) with P = |K|, for some simplicial
complex K, we say that F = (W,≼,VF) is the cell poset model of P relative to K if and
only if W = K̃, (K̃,≼) is the cell poset of K, and, for all σ̃ ∈ K̃, we have: σ̃ ∈ VF(p) if
and only if σ̃ ⊆ VP(p). We will omit to specify “relative to K” if this is clear from the
context. For all x ∈ P , we let F(x) denote the unique cell σ̃ ∈ K̃ such that x ∈ σ̃. Note
that F(x) is well defined, since K̃ is a partition of |K|, and that F : P → K̃ is a continuous
function [BMMP18, Corollary 3.4]. With slight overloading, we let F(P) denote the cell
poset model of P. In the following, when we say that F is a cell poset model, we mean
that there exist a simplicial complex K and a polyhedral model P = (|K|,VP) such that
F = F(P). Finally, note that poset models are a subclass of Kripke models.

Figure 4 shows a polyhedral model. There are three proposition letters, red, green, and
grey, shown by different colours (4a). The model is “unpacked” into its cells in Figure 4b.
The latter are collected in the cell poset model, whose Hasse diagram is shown in Figure 4c.

B

A

D

C

F

E

(a)

B

A

D

C

F

E

(b)

B̃Ã D̃C̃ F̃Ẽ

ÃB B̃DB̃CÃC C̃D D̃FD̃EC̃E ẼF

B̃CDÃBC D̃EFC̃DE

(c)

Figure 4. A polyhedral model P4 (4a) with its cells (4b) and the Hasse
diagram of the related cell poset (4c).

4But note that the relative interior of a simplex composed of just a single point is the point itself and not
the empty set.
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B

A

D

C

F

E

x

(a)

B̃Ã D̃C̃ F̃Ẽ

ÃB B̃DB̃CÃC C̃D D̃FD̃EC̃E ẼF

B̃CDÃBC D̃EFC̃DE

(b)

Figure 5. (5a) A topological path π from a point x to vertex D in
the polyhedral model P4 of Figure 4a. (5b) The corresponding ±-path
(Ã, ÃBC, B̃C, B̃CD, D̃), in blue, in the Hasse diagram of the cell poset
model F(P). Note that the ±-path does not pass through C̃D but it goes
directly from B̃CD to D̃. This reflects the fact that, for small ϵ > 0 we have
π(1− ϵ) ∈ B̃CD while π(1) = D and π([0, 1]) ∩ C̃D = ∅.

2.2. Paths. In a topological space (X, τ), a topological path from x ∈ X is a total, continuous
function π : [0, 1] → X such that π(0) = x. We call π(0) and π(1) the starting point and
ending point of π, respectively, while π(r) is an intermediate point of π, for all r ∈ (0, 1).
Figure 5a shows a path from a point x in the open segment ÃB to point D in the polyhedral
model of Figure 4a.

Topological paths relevant for our work are represented in cell posets by so-called ±-paths,
a subclass of undirected paths [BCG+22]. For technical reasons5 in this paper we extend the
definition given in [BCG+22] to general Kripke frames.

Given a Kripke frame (W,R), an undirected path of length ℓ ∈ N from w is a total
function π : [0; ℓ] → W such that π(0) = w and, for all i ∈ [0; ℓ), R±(π(i), π(i + 1)). The
starting point and ending point are π(0) and π(ℓ), respectively, while π(i) is an intermediate
point, for all i ∈ (0; ℓ). For an undirected path π of length ℓ we often use the sequence
notation (wi)

ℓ
i=0 where wi = π(i) for i ∈ [0; ℓ].

Given paths π′ = (w′
i)
ℓ′
i=0 and π′′ = (w′′

i )
ℓ′′
i=0, with w′

ℓ′ = w′′
0 , the sequentialisation

π′ · π′′ : [0; ℓ′ + ℓ′′]→W of π′ with π′′ is the path from w′
0 defined as follows:

(π′ · π′′)(i) =
{
π′(i), if i ∈ [0; ℓ′],
π′′(i− ℓ′), if i ∈ [ℓ′; ℓ′ + ℓ′′].

For a path π = (wi)
ℓ
i=0 and k ∈ [0; ℓ] we define the k-shift of π, denoted by π↑k, as

follows: π↑k = (wj+k)
ℓ−k
j=0 and, for 0 < m ≤ ℓ, we let π←m denote the path obtained

from π by inserting a copy of π(m) immediately before π(m) itself. In other words, we have:
π←m = (π|[0;m]) · ((π(m), π(m)) · (π↑m)). Finally, any path π|[0; k], for some k ∈ [0; ℓ], is
a (non-empty) prefix of π.

An undirected path π : [0; ℓ] → W is a ±-path if and only if ℓ ≥ 2, R(π(0), π(1)) and
R−(π(ℓ− 1), π(ℓ)).

Example 2.1. The ±-path (ÃB, ÃBC, B̃C, B̃CD, D̃), drawn in blue in Figure 5b, passes
through the same cells, and in the same order, as the topological path from x in the polyhedral
model P4 of Figure 4 shown in Figure 5a (source [CGL+23a]). ♣

5We are interested in model checking structures resulting from the minimisation, via bisimilarity, of cell
poset models, and such structures are often just (reflexive) Kripke models rather than poset models.
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Note that a topological path could, in principle, pass through some cells infinitely often.
Such paths are not relevant for our theory since they play no role in the semantics of the
logic and have no impact on weak simplicial bisimilarity, neither on the proofs of related
results and, consequently, we are not interested in representing them. We will come back to
this issue in Section 4.

In the context of this paper it is often convenient to use a generalisation of ±-paths,
so-called “down paths”, ↓-paths for short: a ↓-path from w, of length ℓ ≥ 1, is an undirected
path π from w of length ℓ such that R−(π(ℓ − 1), π(ℓ)). Finally, it is also convenient
to use a subclass of ±-paths, namely ↑↓-paths (to be read “up-down paths”): an ↑↓-path
from w, of length 2ℓ, for ℓ ≥ 1, is a ±-path π of length 2ℓ such that R(π(2i), π(2i+ 1)) and
R−(π(2i+ 1), π(2i+ 2)), for all i ∈ [0; ℓ).

Clearly, every ↑↓-path is also a ±-path and every ±-path is also a ↓-path. The following
lemmas ensure that in reflexive Kripke frames ↑↓-, ±-, and ↓-paths can be safely used
interchangeably since for every ±-path there is an ↑↓-path with the same starting and ending
points and with the same set of intermediate points, occurring in the same order (Lemma 2.2
below, proven in Appendix A.1). Furthermore, for every ↓-path there is a ↑↓-path with the
same starting and ending points and with the same set of intermediate points, occurring in
the same order (Lemma 2.3 below, proven in Appendix A.2). Finally, for every ↓-path there
is a ±-path with the same starting and ending points and with the same set of intermediate
points, occurring in the same order (Lemma 2.4 below, proven in Appendix A.3).

Lemma 2.2. Given a reflexive Kripke frame (W,R) and a ±-path π : [0; ℓ]→W , there is
a ↑↓-path π′ : [0; ℓ′] → W , for some ℓ′, and a total, surjective, monotonic non-decreasing
function f : [0; ℓ′]→ [0; ℓ] such that π′(j) = π(f(j)) for all j ∈ [0; ℓ′].

Lemma 2.3. Given a reflexive Kripke frame (W,R) and a ↓-path π : [0; ℓ]→ W , there is
a ↑↓-path π′ : [0; ℓ′′] → W , for some ℓ′, and a total, surjective, monotonic non-decreasing
function f : [0; ℓ′]→ [0; ℓ] such that π′(j) = π(f(j)) for all j ∈ [0; ℓ′].

Lemma 2.4. Given a reflexive Kripke frame (W,R) and a ↓-path π : [0; ℓ]→ W , there is
a ±-path π′ : [0; ℓ′′] → W , for some ℓ′, and a total, surjective, monotonic, non-decreasing
function f : [0; ℓ′]→ [0; ℓ] with π′(j) = π(f(j)) for all j ∈ [0; ℓ′].

2.3. The Logic SLCSγ and Related Bisimilarities. In [BCG+22], SLCSγ , a version of
SLCS for polyhedral models, has been presented that consists of predicate letters, negation,
conjunction, and the single modal operator γ, expressing conditional reachability. The
satisfaction relation for γ(Φ1,Φ2), for a polyhedral model P = (P,VP), with P = |K| for
some simplicial complex K, and x ∈ P , as defined in [BCG+22], is recalled below:

P, x |= γ(Φ1,Φ2) ⇔ a topological path π : [0, 1]→ |K| exists such that π(0) = x,
P, π(1) |= Φ2, and P, π(r) |= Φ1 for all r ∈(0,1).

We also recall the interpretation of SLCSγ on poset models. The satisfaction relation for
γ(Φ1,Φ2), for a poset model F = (W,≼,VF ) and w ∈W , is as follows:

F , w |= γ(Φ1,Φ2) ⇔ a ±-path π : [0; ℓ]→W exists such that π(0) = w,
F , π(ℓ) |= Φ2, and F , π(i) |= Φ1 for all i ∈(0;ℓ).

In [BCG+22] it has also been shown that, for all x ∈ P and SLCSγ formulas Φ, we have:
P, x |= Φ if and only if F(P),F(x) |= Φ. In addition, simplicial bisimilarity, a novel
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notion of bisimilarity for polyhedral models, has been defined. It is based on the notion of
simplicial path: given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, a topological path π in P is simplicial if and only if there is a finite sequence
r0 = 0 < . . . < rk = 1 of values in [0,1] and cells σ̃1, . . . , σ̃k ∈ K̃ such that, for all i ∈ [1; k]
we have that π((ri−1, ri)) ⊆ σ̃i.6

Definition 2.5. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, a symmetric binary relation Z ⊆ P × P is a simplicial bisimulation if, for all
x1, x2 ∈ P , whenever Z(x1, x2) holds, we have that:

(1) V−1
P (x1) = V−1

P (x2) and
(2) for each simplicial path π1 from x1 there is a simplicial path π2 from x2, such that

Z(π1(r), π2(r)) for all r ∈ [0, 1].

Two points x1, x2 ∈ P are simplicial bisimilar, written x1 ∼P
△ x2, if there exists a simplicial

bisimulation Z such that Z(x1, x2). •

It has been shown that simplicial bisimilarity enjoys the classical Hennessy-Milner
property: two points x1, x2 ∈ P are simplicial bisimilar if and only if they satisfy the same
SLCSγ formulas, i.e. they are equivalent with respect to the logic SLCSγ , written x1 ≡P

γ x2.
The result has been extended to ±-bisimilarity on finite poset models, a notion of

bisimilarity based on ±-paths: given finite poset model F = (W,≼,VF), w1, w2 ∈ W are
±-bisimilar, written x1 ∼F

± x2, if and only if they satisfy the same SLCSγ formulas, i.e.
x1 ≡F

γ x2 (see [CGL+23a] for details). In summary, we have:

x1 ∼P
△ x2 iff x1 ≡P

γ x2 iff F(x1) ≡F(P)
γ F(x2) iff F(x1) ∼F(P)

± F(x2).

In Section 4 we show a similar result for a weaker logic introduced in the next section, and
originally presented in [BCG+24a]. Finally, in [BCG+22] it has been shown that the classical
modality 3 can be expressed using γ. We recall that for polyhedral model P = (P,VP) and
for poset model F = (W,≼,VF ), the semantics of 3Φ is defined as follows:

P, x |= 3Φ ⇔ x ∈ CT ({x′ ∈ P | P, x′ |= Φ })

F , w |= 3Φ ⇔ w′ ∈W exists such that w ≼ w′ and F , w′ |= Φ.

It turns out that 3Φ is equivalent to γ(Φ, true), for all SLCSγ formulas Φ.
We close this section with a small example.

Example 2.6. With reference to Figure 4a, we have that no red point, call it y, in the
open segment CD is simplicial bisimilar to the red point C. In fact, although both y and C
satisfy γ(green, true), we have that C satisfies also γ(grey, true), which is not the case
for y. Similarly, with reference to Figure 4c, cell C̃ satisfies γ(grey, true), which is not
satisfied by C̃D. ♣

6Essentially, simplicial paths have been introduced for avoiding to have to deal with “bad” paths, e.g.
paths that can oscillate infinitely often between a set of cells.
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2.4. Labelled Transition Systems and Related Bisimilarities.

Definition 2.7. A labelled transition system, LTS for short, is a tuple (S,L,−→) where S is
a non-empty set of states, L is a non-empty set of transition labels and −→⊆ S × L× S is
the transition relation. •

For τ ∈ L denoting the “silent” action we let t τ∗−→ t′ whenever t = t′ or there are
t0, . . . , tn, for n > 0 such that t0 = t, tn = t′ and ti

τ−→ ti+1 for i ∈ [0;n).

Definition 2.8 (Strong Bisimulation and Strong Equivalence). Given an LTS S = (S,L,−→)
a binary relation B ⊆ S × S is a strong bisimulation if, for all s1, s2 ∈ S, if B(s1, s2) then
the following holds:

(1) if s1
λ−→ s′1 for some λ and s1, then s′2 exists such that s2

λ−→ s′2 and B(s′1, s
′
2), and

(2) if s2
λ−→ s′2 for some λ and s2, then s′1 exists such that s1

λ−→ s′1 and B(s′1, s
′
2).

We say that s1 and s2 are strongly equivalent in S, written s1 ∼S s2 if a strong bisimulation
B exists such that B(s1, s2). •

It has been shown that ∼S is the union of all strong bisimulations in S, it is the largest
strong bisimulation and it is an equivalence relation [Mil89].

Definition 2.9 (Branching Bisimulation and Equivalence). Given an LTS S = (S,L,−→)
such that τ ∈ L a binary relation B ⊆ S×S is a branching bisimulation iff, for all s, t, s′ ∈ S,
and λ ∈ L, whenever B(s, t) and s

λ−→ s′, it holds that: (i) B(s′, t) and λ = τ , or (ii)
B(s, t̄), B(s′, t′) and t τ∗−→ t̄, t̄ λ−→ t′, for some t̄, t′ ∈ S.

Two states s, t ∈ S are called branching bisimilar in S, written s ↔S
b t if B(s, t) for some

branching bisimulation B for S. •

It has been shown that ↔S
b is the union of all branching bisimulations in S, it is the

largest branching bisimulation and it is an equivalence relation [GW96].
We will omit the superscript S in ∼S and ↔S

b when this will not cause confusion.

3. Weak SLCS on Polyhedral Models

In this section we introduce SLCSη, a logic for polyhedral models that is weaker than SLCSγ ,
yet is still capable of expressing interesting conditional reachability properties. We present
also an interpretation of the logic on finite poset models.

Definition 3.1 (Weak SLCS on polyhedral models - SLCSη). The abstract language of SLCSη
is the following:

Φ ::= p | ¬Φ | Φ1 ∧ Φ2 | η(Φ1,Φ2).

The satisfaction relation of SLCSη with respect to a given polyhedral model P = (P,VP),
with P = |K| for some simplicial complex K, SLCSη formula Φ, and point x ∈ P is defined
recursively on the structure of Φ as follows:

P, x |= p ⇔ x ∈ VP(p);
P, x |= ¬Φ ⇔ P, x |= Φ does not hold;
P, x |= Φ1 ∧ Φ2 ⇔ P, x |= Φ1 and P, x |= Φ2;
P, x |= η(Φ1,Φ2) ⇔ a topological path π : [0, 1]→ P exists such that

π(0) = x, P, π(1) |= Φ2, and P, π(r) |= Φ1 for all r ∈[0,1). •
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Remark 3.2. It is worth pointing out that the definition of the satisfaction relation of SLCSη
does not depend on the specific simplicial complex K that generates the polyhedron P = |K|.
In other words: given polyhedral models P ′ = (P,VP ′) with P = |K ′| and P ′′ = (P,VP ′′)
with P = |K ′′| = |K ′| and VP ′ = VP ′′ , for all SLCSη formulas Φ and x ∈ P the following
holds: P ′, x |= Φ iff P ′′, x |= Φ. ⋇

As usual, disjunction (∨) is derived as the dual of ∧. Note that the only difference
between η(Φ1,Φ2) and γ(Φ1,Φ2) is that the former requires that also the first element of a
path witnessing the formula satisfies Φ1, hence the use of the left closed interval [0, 1) here.
Although this might seem at first sight only a very minor difference, it has considerable
consequences: η cannot express 3, which, instead, can be expressed in terms of γ (see
Remark 3.8 and Remark 3.18 below).

Definition 3.3 (SLCSη Logical Equivalence). Given a polyhedral model P = (P,VP), with
P = |K| for some simplicial complex K, and x1, x2 ∈ P , we say that x1 and x2 are logically
equivalent with respect to SLCSη, written x1 ≡P

η x2, if and only if, for all SLCSη formulas Φ,
it holds that P, x1 |= Φ if and only if P, x2 |= Φ. •

In the following, we will refrain from indicating the model P explicitly as a superscript
of ≡P

η when it is clear from the context. Below, we show that SLCSη can be encoded into
SLCSγ so that the latter is at least as expressive as the former.

Definition 3.4. We define the encoding E of SLCSη into SLCSγ as follows:

E(p) = p
E(¬Φ) = ¬E(Φ)

E(Φ1 ∧ Φ2) = E(Φ1) ∧ E(Φ2)
E(η(Φ1,Φ2)) = E(Φ1) ∧ γ(E(Φ1), E(Φ2)) •

The following lemma is easily proven by structural induction on Φ (see Appendix A.4).

Lemma 3.5. Let P = (P,VP), with P = |K| for some simplicial complex K, be a polyhedral
model, x ∈ P , and Φ a SLCSη formula. Then P, x |= Φ if and only if P, x |= E(Φ).

A direct consequence of Lemma 3.5 is that SLCSη is weaker than SLCSγ .

Proposition 3.6. Let P = (P,VP), with P = |K| for some simplicial complex K, be a
polyhedral model. For all x1, x2 ∈ P the following holds: if x1 ≡γ x2 then x1 ≡η x2.

Remark 3.7. The converse of Proposition 3.6 does not hold, as shown by the polyhedral
model P6 = (P6,VP6) in Figure 6a, where P6 is the simplex K6 generated by points A, B,
and C, i.e. the triangle ABC, and VP6 is specified by the colours in the figure. It is easy
to see that, for all x ∈ ÃBC, we have A ̸≡γ x and A ≡η x. Let, in fact, x ∈ ÃBC. Clearly,
A ̸≡γ x since P6, A |= γ(red, true) whereas P6, x ̸|= γ(red, true). It can easily be shown,
by induction on the structure of formulas, that A ≡η x for all x ∈ ÃBC (see Appendix A.5).
As an additional, a bit more complex, example, let us consider the polyhedral model P4 of
Figure 4. It is easy to see that every x ∈ C̃E satisfies γ(green, true), while for no y ∈ D̃EF
we have P4, y |= γ(green, true). So, for all such x and y, we have x ̸≡γ y. On the other
hand, as we will see in Example 4.14 of Section 4 (on page 21), cells C̃E and D̃EF will fall
in the same equivalence class of ≡η on F(P4) and so, by Theorem 3.20 below — guaranteeing
that SLCSη is preserved and reflected by mapping F — and Theorem 5.11 of Section 5 —
stating correctness of ±-minimisation — we get that x ≡η y. The above reasoning can be
generalised to any pair of points x ∈ D̃ ∪ Ẽ ∪ C̃E ∪ D̃E and y ∈ F̃ ∪ D̃F ∪ ẼF ∪ D̃EF :
we have x ≡η y but x ̸≡γ y. ⋇
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(a)

Ã C̃ B̃

ÃC ÃB B̃C

ÃBC

(b)

Figure 6. A polyhedral model (6a) P6, and the Hasse diagram of its cell
poset model (6b).

Remark 3.8. The example of Figure 6a is useful also for showing that the classical topological
interpretation of the modal logic operator 3 cannot be expressed in SLCSη. Clearly, in the
model of the figure, we have P6, A |= 3red while P6, x |= 3red for no x ∈ ÃBC. On the
other hand, A ≡η x holds for all x ∈ ÃBC, as we have just seen in Remark 3.7. So, if 3
were expressible in SLCSη, then A and x should have agreed on 3red for each x ∈ ÃBC. ⋇

Below, we re-interpret SLCSη on finite Kripke models instead of polyhedral models. The
only difference from Definition 3.1 is, of course, the fact that η-formulas are defined using
±-paths instead of topological ones.

Definition 3.9 (SLCSη on finite Kripke models). The satisfaction relation of SLCSη with
respect to a given finite Kripke model K = (W,R,VK), an SLCSη formula Φ, and an element
w ∈W , is defined recursively on the structure of Φ:

K, w |= p ⇔ w ∈ VK(p);
K, w |= ¬Φ ⇔ K, w ̸|= Φ;
K, w |= Φ1 ∧ Φ2 ⇔ K, w |= Φ1 and K, w |= Φ2;
K, w |= η(Φ1,Φ2) ⇔ a ±-path π : [0; ℓ]→W exists such that

π(0) = w, K, π(ℓ) |= Φ2, and K, π(i) |= Φ1 for all i ∈ [0; ℓ). •

Remark 3.10. We recall here that ±-paths are defined on general Kripke frames, of
which finite posets are a subclass. The reason why in Definition 3.9 we use finite Kripke
models, instead of restricting it to finite poset models, stems from the fact that the result
of minimisation of a finite poset model, modulo weak ±-bisimilarity, is, in general, not
guaranteed to be again a poset model, whereas it is guaranteed to be a (reflexive) finite
Kripke model. As we will see in Section 5, the fact that the minimal model is not necessarily
a poset model does not affect correctness of the minimisation procedure, and so it does not
constitute a problem for the optimised model checking method presented in this paper. In
the rest of this section, as well as in Section 4, we will anyway be interested in poset models,
so that we will restrict the relevant results to the latter. ⋇

The following result, proven in Appendix A.6, states that to evaluate an SLCSη formula
η(Φ1,Φ2) in a poset model, it does not matter whether one considers ±-paths or ↓-paths.

Proposition 3.11. Given a finite poset model F = (W,≼,VF ), w ∈W , and SLCSη formulas
Φ1 and Φ2, the following statements are equivalent:
(1) There exists a ±-path π : [0; ℓ] → W for some ℓ with π(0) = w, F , π(ℓ) |= Φ2, and
F , π(i) |= Φ1 for all i ∈ [0; ℓ).
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(2) There exists a ↓-path π : [0; ℓ′] → W for some ℓ′ with π(0) = w, F , π(ℓ′) |= Φ2, and
F , π(i) |= Φ1 for all i ∈ [0; ℓ′).

Definition 3.12 (Logical Equivalence). Given a finite poset model F = (W,≼,VF) and
elements w1, w2 ∈W we say that w1 and w2 are logically equivalent with respect to SLCSη,
written w1 ≡F

η w2, if and only if, for all SLCSη formulas Φ, it holds that F , w1 |= Φ if and
only if F , w2 |= Φ. •

Again, in the following, we will refrain from indicating the model F explicitly in ≡F
η

when it is clear from the context. It is useful to define a “characteristic” SLCSη formula χ(w)
that is satisfied by all and only those elements w′ with w′ ≡η w, as shown in Appendix A.7.

Definition 3.13. Given a finite poset model F = (W,≼,VF), w1, w2 ∈ W , define SLCSη
formula δw1,w2 as follows: if w1 ≡η w2, then set δw1,w2 = true, otherwise pick some SLCSη
formula ψ such that F , w1 |= ψ and F , w2 |= ¬ψ, and set δw1,w2 = ψ. For w ∈ W define
χ(w) =

∧
w′∈W δw,w′ . •

Proposition 3.14. Given a finite poset model F = (W,≼,VF), for w1, w2 ∈ W , it holds
that F , w2 |= χ(w1) if and only if w1 ≡η w2.

The following lemma is the poset model counterpart of Lemma 3.5 (see Appendix A.8):

Lemma 3.15. Let F = (W,≼,VF ) be a finite poset model, w ∈W , and Φ an SLCSη formula.
Then F , w |= Φ if and only if F , w |= E(Φ).

Thus we get, as for the interpretation on polyhedral models, that SLCSη on finite poset
models is weaker than SLCSγ :

Proposition 3.16. Let F = (W,≼,VF) be a finite poset model. For all w1, w2 ∈ W the
following holds: if w1 ≡γ w2 then w1 ≡η w2.

Remark 3.17. As expected, the converse of Proposition 3.16 does not hold, as shown by
the poset model F(P6) of Figure 6b. Clearly, Ã ̸≡γ ÃBC. In fact F(P6), Ã |= γ(red, true)

whereas F(P6), ÃBC ̸|= γ(red, true). On the other hand, it can be easily shown, by induction
on the structure of formulas, that Ã ≡η ÃBC (see Appendix A.9). With reference to the
polyhedral model P4 of Figure 4, its poset model F(P4) = (W4,≼,VF(P4)), and Example 4.14

of Section 4, we have that D̃, Ẽ, F̃ , C̃E, D̃E, D̃F , ẼF , and D̃EF are all equivalent according
to weak ±-bisimilarity. We invite the reader to check that, letting ϕ0, ϕ1, ϕ2, ψ1, ψ2, ψ3, and
ψ4 be defined as

ϕ0 = γ(green, true)
ϕ1 = γ(¬ϕ0, true)
ϕ2 = γ(ϕ0 ∧ ¬ϕ1, true)

ψ1 = ¬ϕ0
ψ2 = ϕ0 ∧ ¬ϕ1
ψ3 = ϕ1 ∧ ϕ1 ∧ ¬ϕ2
ψ4 = ϕ0 ∧ ϕ1 ∧ ϕ2

we have

P4, D̃F |= ¬ϕ0, and the same holds for D̃EF , ẼF and F̃ ,
P4, C̃E |= ¬ϕ0 ∧ ¬ϕ1,
P4, D̃E |= ¬ϕ0 ∧ ϕ1 ∧ ¬ϕ2, and
P4, Ẽ |= ¬ϕ0 ∧ ϕ1 ∧ ϕ2.
As a consequence, each of ψ1, ψ2, ψ3, and ψ4 cannot be true in conjunction with any of the
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others and so, the classes {D̃F , D̃EF , ẼF , F̃}, {C̃E}, {D̃E}, and {Ẽ} must definitely be
distinct in the quotient of W4 modulo ≡γ . ⋇

Remark 3.18. As for the case of the continuous interpretation of SLCSη, the example
of Figure 6b is useful also for showing that the classical modal logic operator 3 cannot
be expressed in SLCSη. Clearly, in the model of the figure, we have F(P6), Ã |= 3red

while F(P6), ÃBC ̸|= 3red. On the other hand Ã ≡η ÃBC holds, as we have just seen in
Remark 3.17. So, if 3 were expressible in SLCSη, then Ã and ÃBC should have agreed on
3red. ⋇

The following result, proven in Appendix A.10, is useful to set up a bridge between the
continuous and the discrete interpretations of SLCSη.

Lemma 3.19. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, for all x ∈ P and formulas Φ of SLCSη the following holds: P, x |= Φ if and only
if F(P),F(x) |= E(Φ).

As a direct consequence of Lemma 3.15 and Lemma 3.19 we get, by Theorem 3.20 below,
proven in A.11, the bridge between the continuous and the discrete interpretations of SLCSη:

Theorem 3.20. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, for all x ∈ P and formulas Φ of SLCSη it holds that: P, x |= Φ if and only if
F(P),F(x) |= Φ.

This theorem allows one to go back and forth between the polyhedral model and the
corresponding poset model without losing anything expressible in SLCSη.

4. Weak Simplicial Bisimilarity

In this section, we introduce weak versions of simplicial bisimilarity and ±-bisimilarity and
we show that they coincide with logical equivalence induced by SLCSη in polyhedral and poset
models, respectively. We are looking for a notion of bisimilarity that enjoys the HMP with
respect to SLCSη, i.e. that coincides with ≡η. We already know that simplicial bisimilarity
∼△ enjoys the HMP with respect SLCSγ , i.e. ∼△=≡γ and, moreover, that ≡η is weaker than
≡γ . Here, by “weaker” we mean coarser, i.e. one that includes simplicial bisimilarity, in the
sense of set inclusion, ≡γ ⊂≡η.

A natural step in the search for such a notion of bisimilarity is to reconsider the definition
of simplicial bisimilarity, recalled in Section 2.3 (see Definition 2.5), and seek to weaken its
conditions. Of course, the first condition cannot be relaxed in any meaningful way: equivalent
points must at least satisfy the same predicate letters. Let us thus focus on the second
condition, namely the one concerning topological paths. The condition requires that as “one
moves on” π2 using cursor r, the corresponding point on π1, i.e. π1(r), must be related by
Z to the current point in π2, namely π2(r). The points in π2 and π1, while one moves the
cursor r, must go “hand in hand” in Z.

One way of relaxing the above condition is to require only that (2.a) the ending points
of π1 and π2 are related — i.e. Z(π1(1), π2(1)) — and (2.b) for each other point y2 of π2,
there is a point y1 of π1, different from π1(1), such that y1 and y2 are related — i.e. for each
r2 ∈ [0, 1) there is r1 ∈ [0, 1) such that Z(π1(r1), π2(r2)).

Interestingly, it turns out that the bisimilarity induced by a definition of bisimulation
relation where condition (2) is relaxed as above, coincides exactly with ≡η, the logical
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equivalence induced by SLCSη! In practice, we do not even need the notion of simplicial path,
in the sense that the actual definition, given below, is based on general topological paths
and characterises an equivalence relation — which we call weak simplicial bisimilarity, ≈△ —
that coincides with ≡η, as guaranteed by Theorem 4.9. The proof of this theorem, as well as
those of all results related to ≈△, does not require the use of simplicial paths.

Definition 4.1 (Weak Simplicial Bisimulation). Given a polyhedral model P = (P,VP),
with P = |K| for some simplicial complex K, a symmetric relation Z ⊆ |K|×|K| is a weak
simplicial bisimulation if, for all x1, x2 ∈ |K|, whenever Z(x1, x2), it holds that:
(1) V−1

P ({x1}) = V−1
P ({x2});

(2) for each topological path π1 from x1, there is a topological path π2 from x2 such that
Z(π1(1), π2(1)) and for all r2 ∈ [0, 1) there is r1 ∈ [0, 1) such that Z(π1(r1), π2(r2)).

Two points x1, x2 ∈ P are weakly simplicial bisimilar, written x1 ≈P
△ x2, if there is a weak

simplicial bisimulation Z such that B(x1, x2). •

Example 4.2. With reference to Figure 6a, the binary relation Z composed of all those
pairs of points that have the same colour, i.e.

Z =
(
ÃB ∪ B̃C ∪ ÃC

)2
∪
(
ABC2 \

(
ÃB ∪ B̃C ∪ ÃC

)2
)

is a weak simplicial bisimulation. Take, for example, any pair (x, y) ∈ ÃB×B̃C: both x and y
satisfy only one predicate letter, namely red. In addition, let πx be any topological path
starting from x and such that πx(1) is red. Then it is easy to see, just by visual inspection,
that one can find a path πy from y such that πy(1) is red and, for each intermediate point
of πy there is in πx an intermediate point of the same colour. The reasoning for the case
in which πx(1) is blue is similar. Thus x ≈△ y. The reasoning can be extended to all pairs
in Z: actually ≈△ coincides with Z for the polyhedral model of Figure 6a.

As an additional example, let us consider the polyhedral model P4 of Figure 4a and
points A and D therein. It is easy to see that there is no weak simplicial bisimulation Z such
that Z(A,D). Suppose such a Z exists. Take π1 from D such that, π1(r) = D for all r ∈ [0, r̄],
and ∅ ⊂ π1((r̄, 1]) ⊂ C̃DE, for some r̄ ∈ (0, 1). Clearly, any π2 from A should be such that
π2(1) ∈ C̃DE, otherwise Z(π1(1), π2(1)) would not hold. But any topological path starting
from A and ending in C̃DE would necessarily pass by red points, and for any such red point
π2(r2) for some r2 ∈ (0, 1) there would be no r1 ∈ (0, 1) such that Z(π1(r1), π2(r2)), since no
point of π1 is red. As one would expect, we have also that P4, D |= η(green ∨ grey,green)
whereas P4, A ̸|= η(green ∨ grey,green). ♣

Definition 4.3 below rephrases Definition 4.1 for finite posets and discrete paths and it
settles the finite poset counterpart of weak simplicial bisimilarity, namely weak ±-bisimilarity,
a weaker version of ±-bisimilarity introduced in [CGL+23a]. The second condition in the
definition deals with ↓-paths. In particular, for a weak ±-bisimulation Z on a poset model,
it is required that, for all nodes w1, w2 of the poset, whenever Z(w1, w2), for each ↓-path
π1 = (w1, u1, d1), there is a ±-path7 π2 from w2 of some length ℓ2 ≥ 2 such that (ii.a) the
ending elements of π1 and π2 are related — i.e. Z(d1, π2(ℓ2)) — and (ii.b) for each other
element v2 of π2 there is an element v1 of π1, different from π1(2), such that v1 and v2 are
related — i.e. for all j ∈ [0; ℓ2), there is i ∈ [0; 2) such that Z(π1(i), π2(j)). In other words,

7Recall that ±-paths are a subclass of ↓-paths.
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since π1(0) = w1 and π1(1) = u1, it is required that Z(w1, π2(j)) or Z(u1, π2(j)) holds for
all j ∈ [0; ℓ2). Note that it is sufficient to consider ↓-paths of length 2 starting from w1. As
shown by Theorem 4.12, the resulting relation ≈△ coincides with ≡η.

Definition 4.3 (Weak ±-bisimulation). Given a finite poset model F = (W,≼,VF), a
symmetric binary relation Z ⊆ W×W is a weak ±-bisimulation if, for all w1, w2 ∈ W ,
whenever Z(w1, w2), it holds that:
(1) V−1

F ({w1}) = V−1
F ({w2});

(2) for each u1, d1 ∈W such that w1 ≼± u1 ≽ d1 there is a ±-path π2 : [0; ℓ2]→W from w2

such that Z(d1, π2(ℓ2)) and, for all j ∈ [0; ℓ2), it holds that Z(w1, π2(j)) or Z(u1, π2(j)).
We say that w1 is weakly±-bisimilar to w2, written w1 ≈F

± w2 if there is a weak±-bisimulation
Z such that Z(w1, w2). •

For example, all red cells in the Hasse diagram of Figure 6b are weakly ±-bisimilar and
all blue cells are weakly ±-bisimilar.

The following lemma shows that, in a polyhedral model P , weak simplicial bisimilarity≈P
△ ,

as given by Definition 4.1, is stronger than ≡η – logical equivalence with respect to SLCSη:

Lemma 4.4. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, for all x1, x2 ∈ P , the following holds: if x1 ≈P

△ x2 then x1 ≡η x2.

Proof. By induction on the structure of the formulas. We consider only the case η(Φ1,Φ2).
Suppose x1 ≈△ x2 and P, x1 |= η(Φ1,Φ2). Then there is a topological path π1 from x1 such
that P, π1(1) |= Φ2 and P, π1(r1) |= Φ1 for all r1 ∈ [0, 1). Since x1 ≈△ x2, then there is
a topological path π2 from x2 such that π1(1) ≈△ π2(1) and for each r2 ∈ [0, 1) there is
r′1 ∈ [0, 1) such that π1(r′1) ≈△ π2(r2). By the Induction Hypothesis, we get P, π2(1) |= Φ2

and, for each r2 ∈ [0, 1) P, π2(r2) |= Φ1. Thus P, x2 |= η(Φ1,Φ2).

Furthermore, logical equivalence induced by SLCSη is stronger than weak simplicial-
bisimilarity, as implied by Lemma 4.8 below, which uses the following auxiliary lemmas,
proven in Appendix A.12, Appendix A.13, and Appendix A.14 respectively.

Lemma 4.5. Given a finite poset model F = (W,≼,VF) and weak ±-bisimulation Z ⊆
W×W , for all w1, w2 such that Z(w1, w2), the following holds: for each ↓-path π1 : [0; k1]→
W from w1 there is a ↓-path π2 : [0; k2]→W from w2 such that Z(π1(k1), π2(k2)) and, for
each j ∈ [0; k2), exists i ∈ [0; k1) such that Z(π1(i), π2(j)).

Lemma 4.6. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, and associated cell poset model F(P) = (W,≼,VF(P)), for any ↓-path π : [0; ℓ]→
W , there is a topological path π′ : [0, 1]→ |K| such that: (i) F(π′(0)) = π(0), (ii) F(π′(1)) =
π(ℓ), and (iii) for all r ∈ (0, 1) exists i < ℓ such that F(π′(r)) = π(i).

Lemma 4.7. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, and associated cell poset model F(P) = (W,≼,VF(P)), for any topological path
π : [0, 1]→ |K| the following holds: F(π([0, 1])) is a connected subposet of W and there are
k > 0 and a ↓-path π̂ : [0; k] → W from F(π(0)) to F(π(1)) such that, for all i ∈ [0; k),
r ∈ [0, 1) exists with π̂(i) = F(π(r)).

Lemma 4.8. In a given polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, it holds that ≡η is a weak simplicial bisimulation.
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Proof. Let x1, x2 ∈ |K| be such that x1 ≡η x2. The first condition of Definition 4.1 is
clearly satisfied since x1 ≡η x2. Suppose π1 is a topological path from x1. By Lemma 4.7,
F(π1([0, 1])) is a connected subposet of K̃ and a ↓-path π̂1 : [0; k1] → K̃ from F(π1(0))
to F(π1(1)) exists such that, for all i ∈ [0; k1), r1 ∈ [0, 1) exists with π̂1(i) = F(π1(r1)).
We also know that F(x1) ≡η F(x2), as a consequence of Theorem 3.20, since x1 ≡η x2. In
addition, due to Lemma 4.11 below, we also know that F(x1) ≈± F(x2). By Lemma 4.5, we
get that there is a ↓-path π̂2 : [0; k2]→ K̃ such that π̂1(k1) ≡η π̂2(k2) and, for each j ∈ [0; k2),
i ∈ [0; k1) exists such that π̂1(i) ≡η π̂2(j). By Lemma 4.6, it follows that there is topological
path π2 from x2 satisfying the three conditions of the lemma and, again by Theorem 3.20,
we have that π2(1) ≡η π1(1). In addition, for any r2 ∈ [0, 1), since F(π2(r2)) = π̂2(j) for
j ∈ [0; k2) (condition (ii) of Lemma 4.6) there is i ∈ [0; k1) such that π̂1(i) ≡η π̂2(j). Finally,
by construction, there is r1 ∈ [0, 1) such that F(π1(r1)) = π̂1(i). By Theorem 3.20, we arrive
at π1(r1) ≡η π2(r2).

On the basis of Lemma 4.4 and Lemma 4.8, we have that the largest weak simplicial
bisimulation exists, it is a weak simplicial bisimilarity, it is an equivalence relation, and it
coincides with logical equivalence in the polyhedral model induced by SLCSη, thus establishing
the HMP for ≈P

△ with respect to SLCSη:

Theorem 4.9. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, and x1, x2 ∈ P , the following holds: x1 ≡P

η x2 if and only if x1 ≈P
△ w2.

Similar results hold for poset models. The following lemma shows that, in every finite
poset model F , weak ±-bisimilarity (Definition 4.3) is stronger than logical equivalence with
respect to SLCSη, i.e. ≈F

± ⊆≡F
η :

Lemma 4.10. Given a finite poset model F = (W,≼,VF ), for all w1, w2 ∈W , if w1 ≈F
± w2

then w1 ≡F
η w2.

Proof. By induction on formulas. We consider only the case η(Φ1,Φ2). Suppose w1 ≈± w2

and F , w1 |= η(Φ1,Φ2). Then, there is (a ±-path and so) a ↓-path π1 from w1 of some
length k1 such that F , π1(k1) |= Φ2 and for all i ∈ [0; k1) it holds that F , π1(i) |= Φ1.
By Lemma 4.5, we know that a ↓-path π2 from w2 exists of some length k2 such that
π1(k1) ≈± π2(k2) and for all j ∈ [0; k2) exists i ∈ [0; k1) such that π1(i) ≈± π2(j). By
the Induction Hypothesis, we then get that F , π2(k2) |= Φ2 and for all j ∈ [0; k2) we have
F , π2(j) |= Φ1. This implies that F , w2 |= η(Φ1,Φ2).

Furthermore, logical equivalence induced by SLCSη is stronger than weak ±-bisimilarity,
i.e. ≡F

η ⊆≈F
±, as implied by the following:

Lemma 4.11. In a finite poset model F = (W,≼,VF ), ≡F
η is a weak ±-bisimulation.

Proof. If w1 ≡η w2, then the first requirement of Definition 4.3 is trivially satisfied. We prove
that ≡η satisfies the second requirement of Definition 4.3. Suppose w1 ≡η w2 and let u1, d1 be
as in the above-mentioned requirement. This implies that F , w1 |= η(χ(w1) ∨ χ(u1), χ(d1)),
where, we recall, χ(w) is the ‘characteristic formula’ for w as in Definition 3.13. Since
w1 ≡η w2, we also have that F , w2 |= η(χ(w1) ∨ χ(u1), χ(d1)) holds. This in turn means
that a ↓-path π2 of some length k2 from w2 exists such that F , π2(k2) |= χ(d1) and for all
j ∈ [0; k2) we have F , π2(j) |= χ(w1) ∨ χ(u1), i.e. F , π2(j) |= χ(w1) or F , π2(j) |= χ(u1).
Consequently, by Proposition 3.14, we have: π2(k2) ≡η d1 and, for all j ∈ [0; k2), π2(j) ≡η w1

or π2(j) ≡η u1, so that the second condition of the definition is fulfilled.
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Figure 7. The minimal model F(P4)min, modulo weak ±-bisimilarity (7a),
and modulo ±-bisimilarity (7b), of the cell poset model F(P4) of Figure 4c.
Note that the minimal model modulo ±-bisimilarity is a poset model and so
it is represented by its Hasse diagram.

On the basis of Lemma 4.10 and Lemma 4.11, we have that the largest weak ±-
bisimulation exists, it is a weak ±-bisimilarity, it is an equivalence relation, and it coincides
with logical equivalence in the finite poset induced by SLCSη:

Theorem 4.12. For every finite poset model F = (W,≼,VF), w1, w2 ∈ W , the following
holds: w1 ≡F

η w2 if and only if w1 ≈F
± w2.

By this we have established the HMP for ≈± with respect to SLCSη.
Recalling that, by Theorem 3.20, given polyhedral model P = (|K|,VP) for all x ∈ |K|

and SLCSη formula Φ, we have that P, x |= Φ if and only if F(P),F(x) |= Φ, we get the
following final result:

Corollary 4.13. Given a polyhedral model P = (P,VP), with P = |K| for some simplicial
complex K, for all x1, x2 ∈ P the following holds:

x1 ≈P
△ x2 iff x1 ≡P

η x2 iff F(x1) ≡F(P)
η F(x2) iff F(x1) ≈F(P)

± F(x2).

This says that SLCSη-equivalence in a polyhedral model is the same as weak simplicial
bisimilarity, which maps by F to the weak ±-bisimilarity in the corresponding poset model,
where the latter coincides with the SLCSη-equivalence.

In the example below, and in the sequel, whenever we show a graphical representation of
a minimal model in a figure, we use the following convention: each node of the Kripke model
is coloured according to the predicate letter satisfied by the cells belonging to the equivalence
class represented by the node — obviously, since all such cells are weakly ±-bisimilar, they all
satisfy the same predicate letters8 — whereas the colour of the border of the node identifies
the equivalence class itself, and is, therefore, unique within the model. Note that the colour
of the borders of the nodes have only an illustrative purpose. In particular, they are not
related to the colours expressing the evaluation of proposition letters.

Example 4.14. Figure 7a shows the minimal model F(P4)min, modulo ≈±, of the poset
model F(P4) shown in Figure 4c. F(P4)min is built using the procedure that will be de-
scribed in detail in Section 5. Note that F(P4)min is not a poset model, but it is a reflex-
ive Kripke model. As we can see in the figure, we have four equivalence classes. More

8In the examples, for the sake of readability, each cell satisfies a single predicate letter, namely its “colour”.
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specifically, the classes are: C1 = {Ã}, represented by the grey node with orange border,
C2 = {B̃, C̃, ÃB, ÃC, B̃C, B̃D, C̃D, ÃBC, B̃CD}, represented by the red node with cyan
border, C3 = {D̃, Ẽ, F̃ , C̃E, D̃E, D̃F , ẼF , D̃EF}, represented by the grey node with brown
border, and, finally, C4 = {C̃DE}, represented by the green node with violet border.

As we will see in Section 5, the fact that D̃ ≼ C̃D holds, with D̃ ∈ C3 and C̃D ∈ C2,
implies that (C3, C2) belongs to the accessibility relation Rmin of the Kripke model F(P4)min.
Similarly, we have that the fact that C̃ ≼ C̃E holds, with C̃ ∈ C2 and C̃E ∈ C3, implies that
(C2, C3) ∈ Rmin. With the same rationale, since D̃ ≼ D̃ holds, we have that (C3, C3) ∈ Rmin.
Finally, since Ã ≼ ÃB and C̃D ≼ C̃DE, we get that {(C1, C2), (C2, C4)} ⊆ Rmin whereas
we can see from Figure 7a that (C1, C4) ̸∈ Rmin. The presence of cycles as the above, as well
as the fact that transitivity of the accessibility relation is not guaranteed, imply that the
minimal model of a poset model, modulo ≈△, is not necessarily a poset model. Anyway, it is
guaranteed, by construction, to be a reflexive Kripke model.

Note that cell Ã of the poset model of Figure 4c is in a different equivalence class, namely
C1, than any other grey cell of the poset model: the latter cells belong to C3. In fact, it
is easy to see that there is no weak ±-bisimulation Z such that Z(Ã, w) for any w ∈ C3.
This is because condition (2) of Definition 4.3 cannot be satisfied, as shown in the sequel.
Suppose for instance Z(Ã, D̃) for some weak bisimulation relation Z. Then, with reference
to Definition 4.3, take w1 = D̃ and u1 = d1 = C̃DE: clearly w1 ≼± u1 ≽ d1. Any π2 from
Ã should end in C̃DE, otherwise B(d1, π2(ℓ2)) would not hold, since V−1

F(P4)
(d1) = green

and VF(P4)(green) = {C̃DE}. But any path from Ã and ending in C̃DE would necessarily
pass by a cell, say π2(j), for some j ∈ (0; ℓ2) such that π2(j) ∈ VF(P4)(red). For such
a j we would have that neither Z(w1, π2(j)) would hold, since w1 = D̃ ̸∈ VF(P4)(red),
nor Z(u1, π2(j)), for the same reason. So, there exists no weak ±-bisimulation containing
(Ã, D̃). And, in fact, we also have that F(P4), D̃ |= η(green ∨ grey,green) whereas
F(P4), Ã ̸|= η(green ∨ grey,green).

As another example, suppose Z(Ã, D̃EF ) for some weak bisimulation relation Z and let
w1 = u1 = D̃EF and d1 = D̃. Any π2 from from Ã should necessarily end in a grey cell. But
such a cell cannot be Ã, since we already know that no ±-bisimulation can contain (Ã, D̃).
And, on the other hand, if π2(ℓ2) ∈ C3, then we would have a similar problem as above, with
the unavoidable red elements of π2. From the logical perspective, we see that F(P4), D̃EF |=
η(grey, η(green ∨ grey,green)) whereas F(P4), Ã ̸|= η(grey, η(green ∨ grey,green)).
The reasoning for all the other cases is similar. Finally, the reader can easily check that
both F(P4), D̃ |= η(grey∨ red, red) and F(P4), Ẽ |= η(grey∨ red, red). Actually, any grey
point satisfies the above formula.

Weak ±-bisimilarity ensures that, for each ±-path in the poset model, there is a
corresponding ±-path in the minimal model and vice-versa. For instance the ±-path
(C2, C2, C2, C2, C3) in the minimal model corresponds to ±-path (ÃB, ÃBC, B̃C, B̃CD, D̃) in
the poset model — witnessing, in both cases, F(P4), ÃB |= η(red,grey). The correspondence,
of course, is not unique: for instance, the above ±-path in the minimal model corresponds
also to the ±-path (ÃB, ÃBC, C̃, C̃D, D̃).

Finally, in Figure 7b the minimal model of F(P4) with respect to ≡γ is shown. Note
that the minimal model is a poset model and, in fact, in the figure its Hasse diagram is
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shown. We have 10 equivalence classes, namely C ′
0 = {B̃, ÃB, ÃC, B̃C, B̃D, ÃBC, B̃CD},

C ′
1 = {C̃D}, C ′

2 = {D̃}, C ′
3 = {C̃}, C ′

4 = {C̃DE}, C ′
5 = {Ẽ}, C ′

6 = {C̃E}, C ′
7 = {D̃E},

C ′
8 = {F̃ , D̃F , ẼF , D̃EF}, and C ′

9 = {Ã}. ♣

5. Building the Minimal Model Modulo Logical Equivalence

In this section we present a minimisation procedure for finite poset models modulo weak
±-bisimilarity or, equivalently, modulo ≡η. Given a finite poset model F = (W,≼,VF ), the
procedure consists of three steps:

Step 1: The poset model F is encoded as an LTS denoted SC(F). The set of states of SC(F)
is W itself. The encoding is such that it is ensured that logically equivalent elements of F are
mapped into branching bisimilar states of SC(F). Thus, for w1, w2 ∈W that are logically
equivalent with respect to SLCSη in the poset model F , i.e. w1 ≡F

η w2, we have that they are
branching bisimilar as states in the LTS SC(F), i.e. w1 ↔SC(F)

b w2.

Step 2: The LTS SC(F) is reduced modulo branching bisimilarity using available software
tools, such as mCRL2 [GJKW17]. This step yields the set of equivalence classes of W
for ↔SC(F)

b . Because of the correspondence of logical equivalence and branching bisimilarity,
we obtain W/≡F

η .

Step 3: The minimal model Fmin = (Wmin, Rmin,VFmin) is built. It turns out that this
model is not necessarily a poset model (see the example in Figure 7a). However, it is a
reflexive Kripke model where Wmin =W/≡F

η , Rmin is a relation induced by the ordering ≼
of F , and, most importantly, SLCSη is preserved and reflected, i.e. for each w ∈ W and
SLCSη formula Φ the following holds: F , w |= Φ if and only if Fmin, [w]≡η |= Φ.

In the remainder of this section we focus on Step 1 and Step 3.

5.1. The Encoding of F as SC(F). We obtain the LTS SC(F) = (S,L,→) from the
poset F as specified in Definition 5.1 below. SC(F) is an LTS representing each node w ∈W
of F as a distinct state. So, we put S =W . For example, the set of states of the LTS SC(F8)

of Figure 8d is {D̃, Ẽ, F̃ , D̃E, ẼF}, i.e. the same as that of the nodes of F8 = F(P8).
The set L of transition labels includes all predicate letters in PL, plus the “silent move” τ ,

typical of LTSs in concurrency theory, and the two special labels c and d, the meaning of
which will be discussed later. In our example of Figure 8, we have L = {blue, red, τ, c,d}.
We use transitions in SC(F) for several purposes, as follows. For each state w, the fact that
w (represents a node of F that) satisfies a predicate letter p is represented by a self-loop:
each predicate letter p ∈ PL such that w ∈ VF(p) is represented in SC(F) by a transition
from w to itself, labelled by p (Rule (PLC)). The transitions labelled by τ relate those states
in SC(F) representing nodes in F that are related by ≼ or by ≽ and satisfy the same set of
predicate letters (Rule (TAU)). Intuitively, this represents in the LTS the fact that “nothing
changes” when moving from one such node w to another one, w′ (including w itself).

On the contrary, the fact that two states w and w′ represent “adjacent” nodes of F — i.e.
nodes related by ≼± — which do not satisfy the same set of predicate letters, is modelled by
transitions w c−→ w′ and w′ c−→ w, where c stands for “change”, with the obvious meaning
(see Rule (CNG)).
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Finally, Rule (DWN) makes sure that whenever w ≽ w′ in F , a transition labelled d
goes from (the state representing) w to (that representing) w′. The label d stands for “down”.
“Marking” the pair (w,w′) with the transition w d−→ w′ is relevant for identifying (the end
of) ↓-paths. Recall that such paths are the most fundamental ones for the semantics and
the properties of SLCSη. We invite the reader to check that all the transitions in the LTS of
Figure 8d are generated according to the above mentioned rules.

Definition 5.1. For a finite poset model F = (W,≼,VF ) and symbols τ, c,d /∈ PL, the LTS
SC(F) is defined by SC(F) = (S,L,→) where
• the set of states S is the set W ;
• the set of labels L consists of PL ∪ {τ, c,d};
• the transition relation → is the smallest relation on S × L× S induced by the following

transition rules.

(PLC)
w ∈ VF (p)
w

p−→ w
(TAU)

w ≼± w′ V−1
F ({w}) = V−1

F ({w′})
w

τ−→ w′

(CNG)
w ≼± w′ V−1

F ({w}) ̸= V−1
F ({w′})

w
c−→ w′

(DWN)
w ≽ w′

w
d−→ w′

•

In order to show that the above definition establishes that w1 ≡F
η w2 if and only if

w1 ↔SC(F)
b w2, it is convenient to consider an intermediate structure, that is an LTS too. We

denote this second LTS by SA(F). This structure helps in the proofs to separate concerns
related to the various equivalences that are involved. Suppose that nodes w1 and w2 of F
are encoded by the states s1 and s2 in SA(F), respectively. We will have that w1 and w2 are
logically equivalent in F with respect to SLCSη if and only if states s1 and s2 are strongly
bisimilar (in the classical sense [Mil89]) in SA(F), written s1 ∼SA(F)s2. Furthermore, it will
hold that s1 and s2 are strongly bisimilar in SA(F) if and only if w1 and w2 are branching
bisimilar in SC(F), thus providing the correctness of the construction.

LTS SA(F) is more abstract than SC(F) in the sense that all the nodes of F that satisfy
the same proposition letters and that are connected via ≼± are mapped to the same state of
SA(F). Thus, intuitively, a state of SA(F) corresponds to a class of states of SC(F). This is
a class of states representing nodes w and w′ in F for which “nothing changes” when moving
from w to w′, as discussed above. More precisely, define Θ = { V−1

F ({w}) | w ∈ W } and
consider, for α ∈ Θ, the α-connected components of F . Then, each state s of SA(F) is an
α-connected component of F , for some α as above. So, we group together all the nodes in W
that can reach one another only via a path in F composed of elements all satisfying exactly
the same proposition letters. The above intuition is formalised by the following definition.

Definition 5.2. Given a finite poset model F = (W,≼,VF ), we define relation ⇌ ⊆W ×W
as the set of pairs (w1, w2) such that an undirected path π of some length ℓ exists with
π(0) = w1, π(ℓ) = w2, and V−1

F ({π(i)}) = V−1
F ({π(j)}), for all i, j ∈ [0; ℓ]. •

The relevant definitions lead straightforwardly to the following observation.

Proposition 5.3. Let F = (W,≼,VF) be a finite poset model. Then ⇌ is an equivalence
relation on W .
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Figure 8. (8a) A polyhedral model P8; (8b) Hasse diagram of the poset
model F8 = F(P8); (8c) minimal Kripke model F8min; (8d) the LTS SC(F8)
obtained from F8 by the encoding of Definition 5.1; (8e) The LTS SA(F8)
obtained from F8 by the encoding of Definition 5.4. Note that whenever
w

ℓ−→ w′ and w′ ℓ−→ w a “double transition” w ℓ←→ w′ is drawn in the
figure between w and w′.

The encoding to the more “abstract” LTS is defined in Definition 5.4 below. The states of
SC(F) are the equivalence classes of W modulo the equivalence relation ⇌, i.e. S =W/⇌.
With reference to Figure 8, we obtain two states, namely {D̃, D̃E} and {Ẽ, F̃ , ẼF}, as
shown in Figure 8e. The set L of transition labels includes the powerset of the set of
predicate letters in 2PL, plus the two special labels s,d. In our example of Figure 8, we have
L8 = {∅, {blue}, {red}, {blue, red}, s,d}.

Similarly to Rule (PLC) for the definition of SC(F), Rule (PL) induces a self-loop in
each state of SA(F) (representing equivalence class) [w]⇌. This transition is labelled with the
set of predicate letters V−1

F (w) satisfied by the elements of the class. Note that, by definition
of ⇌, all the elements of such an equivalence class satisfy the same set of predicate letters.
Transitions labelled by d (Rule (Down)) have the same interpretation as in the definition of
SC(F) while those labelled by s (Rule (Step)) model a single step in ≼±, regardless of there
being “a change” or not.

Definition 5.4. Given a finite poset model F = (W,≼,VF), and s,d /∈ PL, we define the
LTS SA(F) = (S,L,→) where

• the set S of states is the quotient W/⇌ of W modulo ⇌;
• the set L of labels is 2PL ∪ {s,d};
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• the transition relation is the smallest relation on W × L ×W induced by the following
transition rules:

(PL) [w]⇌
V−1
F ({w})
−→ [w]⇌

(Step)
w ≼± w′

[w]⇌
s−→ [w′]⇌

(Down)
w ≽ w′

[w]⇌
d−→ [w′]⇌

•

The following theorem ensures that any two elements w1 and w2 of a finite poset model F
are logically equivalent in F with respect to SLCSη if and only if their equivalence classes
[w1]⇌ and [w2]⇌ are strongly bisimilar in SA(F). The theorem uses the following lemma,
proven in Appendix A.15:

Lemma 5.5. Given a finite poset model F = (W,≼,VF) and w1, w2 ∈ W the following
holds: if w1 ⇌ w2, then w1 ≡η w2.

Theorem 5.6. Let F = (W,≼,VF ) be a finite poset model. For all w1, w2 ∈W it holds that
w1 ≡F

η w2 if and only if [w1]⇌ ∼SA(F) [w2]⇌.

Proof. We first prove that if [w1]⇌ ∼SA(F) [w2]⇌ then w1 ≡F
η w2. We proceed by induction on

SLCSη formulas and consider only the case η(Φ1,Φ2), since the other cases are straightforward.
Suppose [w1]⇌ ∼SA(F) [w2]⇌ and F , w1 |= η(Φ1,Φ2). Since F , w1 |= η(Φ1,Φ2), there is (a
±-path, and so, by Proposition 3.11) a ↓-path π1 from w1 of some length ℓ1 ⩾ 1 such that
F , π1(ℓ1) |= Φ2 and F , π1(i) |= Φ1 for all i ∈ [0; ℓ1). At this point, we use induction on ℓ1,
together with structural induction on the formulas, for showing that also F , w2 |= η(Φ1,Φ2)
holds.

Base case: ℓ1 = 1.
In this case we have F , w1 |= Φ1 and F , π1(1) |= Φ2, with w1 ≽ π1(1). Moreover, by
the Induction Hypothesis on formulas, we also have F , w2 |= Φ1. In addition, by Rule
(Down), we get [w1]⇌

d−→ [π1(1)]⇌. Since [w1]⇌ ∼ [w2]⇌ by hypothesis, we also get
[w2]⇌

d−→ [w′
2]⇌, for some [w′

2]⇌ with [w′
2]⇌ ∼ [π1(1)]⇌. Note that, by definition of ⇌ and

since [w2]⇌
d−→ [w′

2]⇌, there is a path π′2 from w2 of some length ℓ′2 such that π′2(j) ⇌ w2 for
all j ∈ [0; ℓ′2] and π′2(ℓ′2) ≽ w′′

2 , with w′′
2 ∈ [w′

2]⇌. Recalling that F , w2 |= Φ1, by Lemma 5.5,
we also get that F , π′2(j) |= Φ1 for all j ∈ [0; ℓ′2]. Recalling also that F , π1(1) |= Φ2, again
by the Induction Hypothesis on formulas, from [w′

2]⇌ ∼ [π1(1)]⇌, we get F , w′
2 |= Φ2 and,

by Lemma 5.5, we also get F , w′′
2 |= Φ2. Consider now path π2 : [0; ℓ′2 + 1]→W defined as

follows:

π2(j) =

{
π′2(j) if j ∈ [0; ℓ′2],

w′′
2 if j = ℓ′2 + 1.

Clearly, π2 is a ↓-path from w2 since π′2 is an undirected path and π2(ℓ
′
2) ≽ π2(ℓ

′
2 + 1).

Furthermore, we have shown above that F , π2(ℓ′2 + 1) |= Φ2 and F , π2(j) |= Φ1 for all
j ∈ [0; ℓ′2 + 1).

Thus, we have that F , w2 |= η(Φ1,Φ2), witnessed by π2.

Induction step: We assume the assertion holds for ℓ1 = n, for n ⩾ 1 and we show it holds
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for ℓ1 = n+ 1.
Since w1 ≼± π1(1), by Rule (Step), we have that [w1]⇌

s−→ [π1(1)]⇌, and since, by
hypothesis, [w1]⇌ ∼ [w2]⇌, we also know that [w2]⇌

s−→ [w′
2]⇌ for some w′

2 such that
[w′

2]⇌ ∼ [π1(1)]⇌. Furthermore, F , π1(1) |= η(Φ1,Φ2) since ℓ1 ⩾ 2 and that this is witnessed
by π1 ↑ 1, which is a ↓-path of length n. Thus, by the Induction Hypothesis on ℓ1, we get
that F , w′

2 |= η(Φ1,Φ2) since [w′
2]⇌ ∼ [π1(1)]⇌ (see above). From [w2]⇌

s−→ [w′
2]⇌, by Rule

(Step), we know that w ∈ [w2]⇌ and w′ ∈ [w′
2]⇌ exist such that w ≼± w′. Since w ∈ [w2]⇌

an undirected path π′2 exists from w2 to w, of some length ℓ′2, such that π′2(j) ⇌ w2 for all
j ∈ [0; ℓ′2]. By the Induction Hypothesis on formulas, we know that F , w2 |= Φ1, and so, by
Lemma 5.5, we get also F , π′2(j) |= Φ1 for all j ∈ [0; ℓ′2]. Moreover, since F , w′

2 |= η(Φ1,Φ2)
(see above) and w′ ⇌ w′

2, again by Lemma 5.5, we get F , w′ |= η(Φ1,Φ2). This means that
there is a ±-path π′′2 from w′ of some length ℓ′′2 witnessing F , w′ |= η(Φ1,Φ2). Define π2 as
follows: π′2 · (w,w′) · π′′2 . It is easy to see that π2 is a ↓-path witnessing F , w2 |= η(Φ1,Φ2).

Now we prove that if w1 ≡F
η w2 then [w1]⇌ ∼SA(F) [w2]⇌. We do this by showing that

the following binary relation B on W is a strong bisimulation:

B = {(s1, s2) ∈ S × S | there are w1 ∈ s1, w2 ∈ s2 such that w1 ≡η w2}.

Let, without loss of generality, s1 = [w1]⇌ and s2 = [w2]⇌, for some w1, w2 ∈ W with
w1 ≡η w2 and suppose B([w1]⇌, [w2]⇌), with w1 ≡η w2. We distinguish three cases:

Case A: [w1]⇌
α−→ [w′

1]⇌ with α ∈ 2PL.
If [w1]⇌

α−→ [w′
1]⇌ for some α ∈ 2PL and w′

1 ∈ W , then, by Rule (PL), we know that
[w′

1]⇌ = [w1]⇌. Furthermore, since w1 ≡η w2, we also know that V−1
F ({w2}) = V−1

F ({w1}) =
α. In addition, again by Rule (PL), we get that [w2]⇌

α−→ [w2]⇌ and, by hypothesis
B([w1]⇌, [w2]⇌).

Case B: [w1]⇌
d−→ [w′

1]⇌

If [w1]⇌
d−→ [w′

1]⇌ for some w′
1 ∈ W , then, by Rule (Down) there are w ∈ [w1]⇌ and

w′ ∈ [w′
1]⇌ such that w ≽ w′. Note that (w,w′) is a ↓-path witnessing F , w |= η(χ(w), χ(w′)),

where χ is as in Definition 3.13 on page 16. Since w ⇌ w1, we have that F , w1 |=
η(χ(w), χ(w′)) holds, by Lemma 5.5. Moreover, since, by hypothesis, w1 ≡η w2, we also
have F , w2 |= η(χ(w), χ(w′)). Then a ±-path π : [0; ℓ] → W exists from w2 such that
F , π(ℓ) |= χ(w′) and F , π(j) |= χ(w) for all j ∈ [0; ℓ). This in turn, by Proposition 3.14,
means that π(ℓ) ≡η w

′ and π(j) ≡η w for all j ∈ [0; ℓ). By Lemma 5.5, since w′ ⇌ w′
1, we

get w′ ≡η w
′
1, and by transitivity, since π(ℓ) ≡η w

′ (see above), we also have π(ℓ) ≡η w
′
1.

Similarly, we get π(j) ≡η w ≡η w1, which implies V−1
F ({π(j)}) = V−1

F ({w1}), for all
j ∈ [0; ℓ). Recall that w1 ≡η w2, which implies V−1

F (w2) = V−1
F ({w1}) and so we get also

V−1
F ({π(j)}) = V−1

F ({w2}), for all j ∈ [0; ℓ). In addition, for all j ∈ [0; ℓ) we have that π|[0; j]
connects π(0) = w2 to π(j). This means that, for all j ∈ [0; ℓ), π(j) ∈ [w2]⇌ = [π(ℓ− 1)]⇌

and since π(ℓ − 1) ≽ π(ℓ), by Rule (Down) we deduce [π(ℓ − 1)]⇌
d−→ [π(ℓ)]⇌, that is

[w2]⇌
d−→ [π(ℓ)]⇌. Recall that π(ℓ) ≡η w

′
1, so that, by definition of relation B, we finally

get B([w′
1]⇌, [π(ℓ)]⇌).

Case C: [w1]⇌
s−→ [w′

1]⇌
Suppose, finally, that [w1]⇌

s−→ [w′
1]⇌ for some w′

1 ∈W . We distinguish two cases:
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Case C1: w′
1 ∈ [w1]⇌. In this case, by Lemma 5.5, we have also w′

1 ≡η w1. Furthermore,
w1 ≡η w2 by hypothesis, thus we get w′

1 ≡η w2. But then, since w2 ≼± w2, by Rule (Step),
we know that [w2]⇌

s−→ [w2]⇌ and since w′
1 ≡η w2, by definition of relation B, we finally

get B([w′
1]⇌, [w2]⇌).

Case C2: w′
1 /∈ [w1]⇌. We know there are w ∈ [w1]⇌ and w′ ∈ [w′

1]⇌ such that w ≼± w′.
Since w ⇌ w1, then V−1

F ({w}) = V−1
F ({w1}) and since w′ ⇌ w′

1, then V−1
F ({w′}) =

V−1
F ({w′

1}). Furthermore, since w ≼± w′, there is path (w,w′) connecting w with w′. So
there is a path connecting w1 to w′

1 and if V−1
F ({w1}) = V−1

F ({w′
1}) would hold, it could

not be that w′
1 /∈ [w1]⇌. Consequently, it must be V−1

F ({w1}) ̸= V−1
F ({w′

1}), which in turn
implies w1 ̸≡η w

′
1. We note that the following holds:

F , w1 |= η(χ(w1), η(χ(w1) ∨ χ(w′
1), χ(w

′
1)))

and, since w1 ≡η w2 we also have

F , w2 |= η(χ(w1), η(χ(w1) ∨ χ(w′
1), χ(w

′
1))).

Let π be a ±-path from w2 witnessing the above formula and let k be the first index such
that F , π(k) |= χ(w′

1). We have that, for all j ∈ [0; k), F , π(j) |= χ(w1) and π|[0; j] connects
π(0) = w2 to π(j). Furthermore, for all such j, we have π(j) ≡η w1, by Proposition 3.14,
which entails V−1

F ({π(j)}) = V−1
F ({w1}). Thus π(j) ∈ [w2]⇌ for all j ∈ [0; k) and since

π(k − 1) ≼± π(k) we have, by Rule (Step) [w2]⇌
s−→ [π(k)]⇌. Finally, recalling that, again

by Proposition 3.14, w′
1 ≡η π(k), we get B([w′

1]⇌, [π(k)]⇌).

The following theorem ensures that [w1]⇌ and [w2]⇌ are strongly bisimilar in SA(F) if
and only if w1 and w2 are branching bisimilar in SC(F). The theorem uses the following
lemma, proven in Appendix A.16:

Lemma 5.7. Consider a finite poset model F = (W,≼,VF). Then for all w1, w2 ∈W the
following holds: if [w1]⇌ ∼SA(F) [w2]⇌, then V−1

F ({w1}) = V−1
F ({w2}).

Theorem 5.8. Let F = (W,≼,VF ) be a finite poset model. For all w1, w2 ∈W it holds that
[w1]⇌ ∼SA(F) [w2]⇌ if and only if w1 ↔SC(F)

b w2.

Proof. We first prove that if [w1]⇌ ∼SA(F) [w2]⇌ then w1 ↔SC(F)
b w2. We show that the

following relation is a branching bisimulation:

BC = {(w1, w2) ∈W ×W | [w1]⇌ ∼SA(F) [w2]⇌}.
Let us assume BC(w1, w2). We have to consider a few cases:

Case A: w1
p−→ w1.

If w1
p−→ w1, then, by Rule (PLC), we have p ∈ V−1

F ({w1}). By definition of BC and by hy-
pothesis we know that [w1]⇌ ∼ [w2]⇌ and so, by Lemma 5.7, we get V−1

F ({w1}) = V−1
F ({w2}).

It follows then that p ∈ V−1
F ({w2}) and, again by Rule (PLC), we finally get w2

p−→ w2,
which is the required mimicking step since B(w1, w2).

Case B: w1
τ−→ w′

1.
If w1

τ−→ w′
1 for some w′

1 ∈ W , then, by Rule (TAU), we know that w1 ≼± w′
1, with

V−1
F ({w1}) = V−1

F ({w′
1}), which, by definition of ⇌, means [w′

1]⇌ = [w1]⇌ and since
[w1]⇌ ∼SA(F) [w2]⇌ by definition of BC , given that BC(w1, w2), we get [w′

1]⇌ ∼SA(F) [w2]⇌.
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This, in turn, again by definition of BC , means BC(w
′
1, w2).

Case C: w1
c−→ w′

1.
If w1

c−→ w′
1 for some w′

1 ∈ W , then, by Rule (CNG), we know that w1 ≼± w′
1, with

V−1
F ({w1}) ̸= V−1

F ({w′
1}), and, by Rule (Step), we have [w1]⇌

s−→ [w′
1]⇌. Since, by def-

inition of BC and by hypothesis, [w1]⇌ ∼SA(F) [w2]⇌, we also have [w2]⇌
s−→ [w′

2]⇌ for
some [w′

2]⇌ ∼SA(F) [w′
1]⇌. From [w2]⇌

s−→ [w′
2]⇌, by Rule (Step), we know there are

w3 ∈ [w2]⇌ and w′
3 ∈ [w′

2]⇌ such that w3 ≼± w′
3. By Lemma 5.7, since [w1]⇌ ∼SA(F) [w2]⇌

by hypothesis and [w′
1]⇌ ∼SA(F) [w′

2]⇌ (see above), we have V−1
F ({w1}) = V−1

F ({w2})
and V−1

F ({w′
1}) = V−1

F ({w′
2}) and since V−1

F ({w1}) ̸= V−1
F ({w′

1}) (see above), we get
V−1
F ({w2}) = V−1

F ({w1}) ̸= V−1
F ({w′

1}) = V−1
F ({w′

2}). Consequently, since w3 ∈ [w2]⇌
and w′

3 ∈ [w′
2]⇌, we also finally get that V−1

F ({w3}) ̸= V−1
F ({w′

3}). Thus, by rule (CNG),
we know that w3

c−→ w′
3. Now, since w3 ∈ [w2]⇌, by definition of ⇌ and by construction

of SC(F) we know there are s0, . . . sn ∈ W with s0 = w2, sn = w3 such that si
τ−→ si+1

and si+1
τ−→ si, for all i ∈ [0;n). We note that BC(w1, si) for all i ∈ [0;n]. In fact

for each i ∈ [0;n] we have that [si]⇌ = [w2]⇌ by definition of ⇌ and we also know that
[w2]⇌ ∼SA(F) [w1]⇌, since BC(w1, w2) by hypothesis. Thus we get [si]⇌ ∼SA(F) [w1]⇌,
i.e. BC(w1, si). Furthermore, we also note that BC(w

′
1, w

′
3). In fact [w′

3]⇌ = [w′
2]⇌, since

w′
3 ∈ [w′

2]⇌. Furthermore, [w′
2]⇌ ∼SA(F) [w′

1]⇌ (see above). So, we get [w′
3]⇌ ∼SA(F) [w′

1]⇌,
i.e. BC(w

′
1, w

′
3). In conclusion, we have that if w1

c−→ w′
1 for some w′

1 ∈ W , then
w2 = s0

τ−→ s1
τ−→ . . .

τ−→ sn = w3
c−→ w′

3 with BC(w
′
1, w

′
3) and BC(w1, si) for all

i ∈ [0;n].

Case D: w1
d−→ w′

1.
If w1

d−→ w′
1 for some w′

1 ∈ W , then, by Rule (DWN), we know that w1 ≽ w′
1, and, by

Rule (Down), we have [w1]⇌
d−→ [w′

1]⇌. Since, by definition of BC and by hypothesis,
[w1]⇌ ∼SA(F) [w2]⇌, we also have [w2]⇌

d−→ [w′
2]⇌ for some [w′

2]⇌ ∼SA(F) [w′
1]⇌. From

[w2]⇌
d−→ [w′

2]⇌, by Rule (Down), we know there are w3 ∈ [w2]⇌ and w′
3 ∈ [w′

2]⇌ such
that w3 ≽ w′

3 and, by Rule (DWN) we know that w3
d−→ w′

3. Now, since w3 ∈ [w2]⇌, by
definition of ⇌ and by construction of SC(F) we know there are s0, . . . sn ∈W with s0 = w2,
sn = w3 such that si

τ−→ si+1 and si+1
τ−→ si, for all i ∈ [0;n). We note that BC(w1, si)

for all i ∈ [0;n]. In fact for each i ∈ [0;n] we have that [si]⇌ = [w2]⇌ by definition of ⇌
and we also know that [w2]⇌ ∼SA(F) [w1]⇌, since BC(w1, w2) by hypothesis. Thus we get
[si]⇌ ∼SA(F) [w1]⇌, i.e. BC(w1, si). Furthermore, we also note that BC(w

′
1, w

′
3). In fact

[w′
3]⇌ = [w′

2]⇌, since w′
3 ∈ [w′

2]⇌. In addition, [w′
2]⇌ ∼SA(F) [w′

1]⇌ (see above). So, we
get [w′

3]⇌ ∼SA(F) [w′
1]⇌, i.e. BC(w

′
1, w

′
3). In conclusion, we have that if w1

d−→ w′
1 for

some w′
1 ∈ W , then w2 = s0

τ−→ s1
τ−→ . . .

τ−→ sn = w3
d−→ w′

3 with BC(w
′
1, w

′
3) and

BC(w1, si) for all i ∈ [0;n].
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We now prove that if w1 ↔SC(F)
b w2, then [w1]⇌ ∼SA(F) [w2]⇌. We show that the

following relation is a strong bisimulation:

BA = {(s1, s2) ∈ S × S | there are w1 ∈ s1, w2 ∈ s2 such that w1 ↔SC(F)
b w2}.

Let, without loss of generality, s1 = [w1]⇌ and s2 = [w2]⇌ for some w1, w2 ∈ W with
w1 ↔SC(F)

b w2, and suppose BA([w1]⇌, [w2]⇌). We distinguish three cases:

Case A: [w1]⇌
α−→ [w′

1]⇌ with α ∈ 2PL:
By Rule (PL), if [w1]⇌

α−→ [w′
1]⇌ for α ∈ 2PL and w′

1 ∈ W , then [w′
1]⇌ = [w1]⇌ and

α = V−1
F ({w1}). On the one hand, if p ∈ α then w1

p−→ w1 by rule (PLC). Since
w2 ↔SC(F)

b w1 it follows that w2
τ−→ . . .

τ−→ w̄2
p−→ w′

2 for w̄2, w
′
2 ∈ W such that

p ∈ V−1
F ({w̄2}), w̄2 ↔SC(F)

b w1, and w′
2
↔SC(F)

b w1. By rule (TAU), p ∈ V−1
F ({w2}). Thus,

α ⊆ V−1
F ({w2}). On the other hand, if p ∈ V−1

F ({w2}) then w2
p−→ w2 by rule (PLC).

Since w1 ↔SC(F)
b w2 we have that w1

τ−→ . . .
τ−→ w̄1

p−→ w′
1 for w̄1, w

′
1 ∈ W such that

p ∈ V−1
F ({w̄1}), w̄1 ↔SC(F)

b w2, w′
1
↔SC(F)

b w2. By rule (TAU) we obtain that p ∈ V−1
F ({w̄1}).

Thus, p ∈ α. Hence, V−1
F ({w2}) ⊆ α. So, V−1

F ({w2}) = α. Therefore, [w2]⇌
α−→ [w2]⇌ by

rule (PL). By assumption, BA([w1]⇌, [w2]⇌) for target states [w1]⇌ and [w2]⇌ as required.

Case B: [w1]⇌
d−→ [w′

1]⇌

If [w1]⇌
d−→ [w′

1]⇌ for some w′
1 ∈ W , then, by Rule (Down), we know that there are

w3 ∈ [w1]⇌ and w′
3 ∈ [w′

1]⇌ such that w3 ≽ w′
3. This implies, by Rule (DWN), that

w3
d−→ w′

3. By definition of ⇌ and by construction of SC(F) we know that there are
m ⩾ 0 and t0, . . . , tm ∈ W with t0 = w1, tm = w3 such that ti

τ−→ ti+1 and ti+1
τ−→ ti,

for all i ∈ [0;m). This implies that w1 ↔SC(F)
b w3, and consequently w2 ↔SC(F)

b w3, since
w1 ↔SC(F)

b w2 by hypothesis. Furthermore, since w3 ↔SC(F)
b w2, there are n ⩾ 0 and

v0, . . . , vn, vn+1 ∈ W with w2 = v0
τ−→ · · · τ−→ vn

d−→ vn+1, such that w′
3
↔SC(F)

b vn+1

and w3 ↔SC(F)
b vi for all i ∈ [0;n]. Moreover, by Rule (DWN), we have vn ≽ vn+1 which

imples, by Rule (Down), that [vn]⇌
d−→ [vn+1]⇌. Note that, by construction of SC(F) we

also have V−1
F (w2) = V−1

F (v0) = . . . = V−1
F (vn) and so [vi] = [w2]⇌ for all i ∈ [0;n]. Thus,

[w2]⇌ = [vn]⇌
d−→ [vn+1]⇌. Furthermore, BA([w

′
3]⇌, [vn+1]⇌) holds, since w′

3
↔SC(F)

b vn+1

(see above) and, recalling that [w′
3]⇌ = [w′

1]⇌, we also know that BA([w
′
1]⇌, [vn+1]⇌).

Case C: [w1]⇌
s−→ [w′

1]⇌
If [w1]⇌

s−→ [w′
1]⇌ for some w′

1 ∈ W , then, by Rule (Step), we know that there are
w3 ∈ [w1]⇌ and w′

3 ∈ [w′
1]⇌ such that w3 ≼± w′

3. We distinguish two cases:
Case C1: V−1

F ({w3}) = V−1
F ({w′

3}).
If V−1

F ({w3}) = V−1
F ({w′

3}), then, by Rule (TAU), we know w3
τ−→ w′

3. But then, by
definition of ⇌, we get [w3]⇌ = [w′

3]⇌ and since [w3]⇌ = [w1]⇌ and [w′
3]⇌ = [w′

1]⇌ (see
above), we get [w′

1]⇌ = [w1]⇌. On the other hand, since, trivially, w2 ≼± w2, by Rule
(Step), we also get that [w2]⇌

s−→ [w2]⇌. Moreover, since by hypothesis, we also have
BA([w1]⇌, [w2]⇌), we finally get that also BA([w

′
1]⇌, [w2]⇌).
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Case C2: V−1
F ({w3}) ̸= V−1

F ({w′
3}).

If V−1
F ({w3}) ̸= V−1

F ({w′
3}), then, by Rule (CNG), we know w3

c−→ w′
3. By definition

of ⇌ and by construction of SC(F) we know that there are m ⩾ 0 and t0, . . . , tm ∈ W

with t0 = w1, tm = w3 such that ti
τ−→ ti+1 and ti+1

τ−→ ti, for all i ∈ [0;m). This
implies that w1 ↔SC(F)

b w3, and consequently w2 ↔SC(F)
b w3, since w1 ↔SC(F)

b w2 by
hypothesis. Furthermore, since w3 ↔SC(F)

b w2, there are n ⩾ 0 and v0, . . . , vn, vn+1 ∈ W
with w2 = v0

τ−→ · · · τ−→ vn
c−→ vn+1, such that w′

3
↔SC(F)

b vn+1 and w3 ↔SC(F)
b vi for all

i ∈ [0;n]. Moreover, by Rule (CNG), we have vn ≼± vn+1 which imples, by Rule (Step), that
[vn]⇌

s−→ [vn+1]⇌. Note that, by construction of SC(F) we also have V−1
F (w2) = V−1

F (v0) =

. . . = V−1
F (vn) and so [vi] = [w2]⇌ for all i ∈ [0;n]. Thus, [w2]⇌ = [vn]⇌

s−→ [vn+1]⇌.
Furthermore, BA([w

′
3]⇌, [vn+1]⇌) holds, since w′

3
↔SC(F)

b vn+1 (see above) and, recalling
that [w′

3]⇌ = [w′
1]⇌, we also know that BA([w

′
1]⇌, [vn+1]⇌).

From Theorems 5.6 and 5.8 we finally obtain our claim:

Corollary 5.9. Let F = (W,≼,VF ) be a finite poset model. For all w1, w2 ∈W the following
holds: w1 ≡F

η w2 if and only if w1 ↔SC(F)
b w2.

Now that we have characterised logical equivalence ≡η for SLCSη for the elements of a finite
poset model F in terms of branching bisimilarity ↔b for the LTS SC(F), we can compute
the minimal LTS modulo branching bisimilarity with standard techniques available, such as
branching bisimilarity minimisation provided by the mCRL2 toolset.

5.2. Building the Minimal Model. Via the correspondence of SLCSη logical equivalence
for a poset model and branching bisimilarity of its encoding, one can obtain the equivalence
classes of ≡η by identifying the branching bisimilar states in the LTS. With the equivalence
classes modulo ≡η for the poset model available, we can consider the ensued quotient model.
We obtain a Kripke model that is minimal with respect to ≡η, but which is not necessarily a
poset model.

Definition 5.10 (Fmin). For a finite poset model F = (W,≼,VF) let the Kripke model
Fmin = (Wmin, Rmin,VFmin) have
• set of nodes Wmin =W/≡η, the equivalence classes of W with respect to ≡η,
• accessibility relation Rmin ⊆Wmin ×Wmin satisfying

Rmin([w1], [w2]) if and only if w′
1 ≼ w′

2 for some w′
1 ≡η w1 and w′

2 ≡η w2

for w1, w2 ∈W, and
• valuation VFmin : PL→ 2Wmin such that

VFmin(p) = { [w] ∈Wmin |w′ ∈ VF (p) for some w′ ≡η w }
for p ∈ PL. •

Clearly, Fmin is a finite reflexive Kripke model. Reflexivity of the accessibility relation Rmin

is immediate from reflexivity of the ordering ≼. Furthermore, it is minimal with respect
to SLCSη by definition of ≡η and W/ ≡η. An example of the minimal Kripke model of the
polyhedral model in Figure 8a is shown in Figure 8c. The following theorem ensures that the
model defined above is sound and complete with respect to the logic, so that the minimisation
procedure is correct.
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Theorem 5.11. Given a finite poset model F = (W,≼,VF) let Fmin be defined as in
Definition 5.10. Then, for each w ∈ W and SLCSη formula Φ the following holds: F , w |=
Φ if and only if Fmin, [w]≡η |= Φ.

Proof. We first prove that F , w |= Φ implies Fmin, [w]≡η |= Φ. We proceed by induction
on the structure of Φ and we show the proof only for Φ = η(Φ1,Φ2) the other cases being
straightforward. Suppose F , w |= η(Φ1,Φ2). This means there is a ±-path π of some
length ℓ ⩾ 2 such that π(0) = w, F , π(ℓ) |= Φ2, and F , π(i) |= Φ1 for all i ∈ [0; ℓ). Now
define πmin : [0; ℓ] → Wmin with πmin(i) = [π(i)] for all i ∈ [0; ℓ]. We show that πmin is a
±-path with respect to Rmin. We have that Rmin(πmin(0), πmin(1)) by definition of Rmin

because π(0) ∈ [π(0)] = πmin(0), π(1) ∈ [π(1)] = πmin(1) and π(0) ≼ π(1) by assumption.
Similarly, we have that R−

min(πmin(ℓ − 1), πmin(ℓ)) and also that R±
min(πmin(i), πmin(i+ 1))

for all i ∈ (0; ℓ− 1). Furthermore, since F , π(ℓ) |= Φ2, by the Induction Hypothesis, we have
that Fmin, πmin(ℓ) |= Φ2. Similarly, we have that Fmin, πmin(i) |= Φ1 for all i ∈ [0; ℓ) since
F , π(i) |= Φ1. So Fmin, [w]≡η |= η(Φ1,Φ2).

Now we prove that Fmin, [w]≡η |= Φ implies F , w |= Φ. Also in this case we proceed
by induction on the structure of Φ and we show the proof only for Φ = η(Φ1,Φ2). Sup-
pose Fmin, [w]≡η |= η(Φ1,Φ2). Hence there is a ±-path πmin such that πmin(0) = [w]≡η ,
Fmin, π(ℓmin) |= Φ2, and Fmin, πmin(i) |= Φ1 for all i ∈ [0; ℓmin). Since Rmin is reflexive, using
Lemma 2.2, we know that there is also an ↑↓-path π̂min from [w]≡η of some length 2k, for
k ⩾ 1, with the same starting-/ending points and the same intermediate points as πmin and
that obviously witnesses η(Φ1,Φ2) for [w]≡η . By induction on k, in the sequel, we show that
there is a ±-path π from w witnessing η(Φ1,Φ2).

Base case: k = 1.
In this case, we have that π̂min(0) = [w]≡η , Fmin, π̂min(0) |= Φ1 Fmin, π̂min(1) |= Φ1, and
Fmin, π̂min(2) |= Φ2. Furthermore, since π̂min is an ↑↓-path with respect to Rmin, we know
that

π̂min(0) = [w]≡η , Rmin(π̂min(0), π̂min(1)), R
−
min(π̂min(1), π̂min(2))

and, by definition of Rmin, there are w0 ∈ π̂min(0) = [w]≡η , w′
1, w

′′
1 ∈ π̂min(1), and w2 ∈

π̂min(2) such that w0 ≼ w′
1 and w′′

1 ≽ w2. Moreover, by the Induction Hypothesis with
respect to the structure of formulas, we have that F , w0 |= Φ1, F , w′

1 |= Φ1, F , w′′
1 |= Φ1, and

F , w2 |= Φ2. Note that F , w′′
1 |= η(Φ1,Φ2), witnessed by the following ±-path: (w′′

1 , w
′′
1 , w2).

But then we have that also F , w′
1 |= η(Φ1,Φ2) holds since w′

1 ≡η w
′′
1 , recalling that w′

1, w
′′
1 ∈

π̂min(1) ∈ W/ ≡η . There is then a ±-path π′ : [0; ℓ′]→ W from w′
1 of some length ℓ′ such

that F , π′(ℓ′) |= Φ2 and F , π′(i) |= Φ1 for all i ∈ [0; ℓ′). Furthermore, w0 ≼ w′
1 by hypothesis

and so π = (w0, w
′
1) · π′ : [0; ℓ′ + 1]→W is a ±-path from w0 witnessing F , w0 |= η(Φ1,Φ2).

Finally, recalling that w,w0 ∈ π̂min(0) ∈ W/ ≡η, we know that w ≡η w0 and so we have
proven the assertion F , w |= η(Φ1,Φ2).

Induction step: k = n+1 assuming the assertion holds for k = n, for n > 0.
Since k > 1, we know that Fmin, π̂min(1) |= Φ1 and Fmin, π̂min(2) |= Φ1 ∧ ¬Φ2. Furthermore,

π̂min(0) = [w]≡η , Rmin(π̂min(0), π̂min(1)), R
−
min(π̂min(1), π̂min(2))

because π̂min is an ↑↓-path. By definition of Rmin, there are w0 ∈ π̂min(0) = [w]≡η , w′
1, w

′′
1 ∈

π̂min(1) and w2 ∈ π̂min(2) such that w0 ≼ w′
1 and w′′

1 ≽ w2. By the Induction Hypothesis with
respect to the structure of the formula, we get that F , w0 |= Φ1, F , w′

1 |= Φ1, F , w′′
1 |= Φ1,
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and F , w2 |= Φ1 ∧ ¬Φ2. We consider now the ↑↓-path π̂min ↑ 2 from π̂min(2) of length 2n,
noting that it witnesses η(Φ1,Φ2), since so does π̂min and k > 1. In other words, we have
that Fmin, π̂min(2) |= η(Φ1,Φ2) with w2 ∈ π̂min(2). By the Induction Hypothesis with respect
to k, we then have that F , w2 |= η(Φ1,Φ2). So there is a ↑↓-path π2 : [0; ℓ2]→ W from w2

of some length ℓ2 such that F , π2(ℓ2) |= Φ2 and F , π2(i) |= Φ1 for i ∈ [0; ℓ2). Note that
F , π2(0) |= Φ1 as well, since π2(0) = w2 and F , w2 |= Φ1 ∧ ¬Φ2 (see above). Let us consider
now the path π′′ = (w′′

1 , w
′′
1 , w2) ·π2. Such a path is an ↑↓-path since so is π2, and w′′

1 ≽ w2 by
hypothesis. Note that ↑↓-path π′′ witnesses F , w′′

1 |= η(Φ1,Φ2). But then we have that also
F , w′

1 |= η(Φ1,Φ2) holds since w′
1 ≡η w

′′
1 , recalling that w′

1, w
′′
1 ∈ π̂min(1) ∈W/ ≡η . Thus, we

have that the following holds: F , w′
1 |= Φ1∧η(Φ1,Φ2). There is then a ±-path π′ : [0; ℓ′]→W

from w′
1 of some length ℓ′ such that F , π′(ℓ′) |= Φ2 and F , π′(i) |= Φ1 for all i ∈ [0; ℓ′).

Furthermore, w0 ≼ w′
1 by hypothesis and so π = (w0, w

′
1) · π′ : [0; ℓ′ + 1]→W is a ±-path

from w0 witnessing F , w0 |= η(Φ1,Φ2). Finally, recalling that w,w0 ∈ π̂min(0) ∈W/ ≡η, we
know that w ≡η w0 and so we have proven the assertion F , w |= η(Φ1,Φ2).

Finally, the following theorem turns out to be useful for simplifying the procedure for
the effective construction of Fmin:

Theorem 5.12. For any poset model F = (W,≼,VF ) and Fmin as of Definition 5.10 and
for all α1, α2 ∈Wmin, it holds that Rmin(α1, α2) if and only if α2

d−→ α1 is a transition of
the minimal LTS obtained from SC(F) via branching bisimilarity.

Proof. In the sequel, we let SC(F)/↔b denote the minimal LTS obtained from SC(F) via
branching bisimilarity. First of all, by Corollary 5.9, Wmin coincides with the quotient of
the set of states W of SC(F) modulo branching bisimilarity. Now, suppose that α2

d−→ α1

is a transition of SC(F)/ ↔b. By standard construction of the minimal LTS modulo an
equivalence on its state set, we know that w1 ∈ α1 and w2 ∈ α2 exist such that w2

d−→ w1 is
a transition of SC(F). But then, by Rule (DWN), we get that w1 ≼ w2 and so, by definition
of Fmin, we finally get Rmin(α1, α2). If, on the other hand, Rmin(α1, α2) holds, then we
know that there exist w1 ∈ α1 and w2 ∈ α2 such that w1 ≼ w2, by definition of Fmin. But
then, by Rule (DWN), we get that w2

d−→ w1 is a transition of SC(F). Again, by standard
construction of the minimal LTS modulo an equivalence on its state set, we know that
α2

d−→ α1 is a transition of SC(F)/↔b.

Remark 5.13. The fact that the minimal model might not be a poset model does not
constitute a problem, at any (i.e. theoretical, implementation, user) level. More specifically,
at the theoretical level, Theorem 5.11 guarantees that SLCSη interpreted on a finite poset
model F is preserved and reflected by the minimisation result Fmin, despite the finite reflexive
Kripke model Fmin is not necessarily a poset model. The above, via Theorem 3.20, guarantees
that SLCSη is preserved and reflected by the full chain of translations, from the polyhedral
model P to the minimal model F(P)min via finite poset F(P).

In summary, we have:

P, x |= Φ iff F(P),F(x) |= Φ iff F(P)min, [F(x)]≡η |= Φ. (5.1)

Taking the first and the last statements of (5.1) above we get the following: a point x of a
polyhedral model P, laying in a cell σ̃ of P, satisfies a SLCSη formula Φ in the polyhedral
interpretation of Φ on P if and only if the node of the Kripke model F(P)min that (uniquely)
represents the equivalence class [F(x)]≡η of F(x) = σ̃ modulo ≡η (or, equivalently modulo
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weak ±-bisimilarity) satisfies Φ in the relational interpretation of Φ on F(P)min. At the
implementation level, an experimental prototype of a variant of PolyLogicA has been
developed that is capable to deal with general Kripke models and η semantics, as briefly
discussed in Section 6 below. At the user level, we observe that the user deals only with
the description of the polyhedral model P and the input formula Φ as input and the (figure
showing the) cells satisfying Φ as output of model checking. All the details of the minimisation
procedure are hidden to the user. ⋇

6. An Experimental Minimisation Toolchain

In this section we provide a brief overview of an experimental toolchain to study the
minimisation procedure for polyhedral models and to illustrate the practical potential of the
theory presented in the previous section. The further development and a thorough analysis
of the toolchain will be the subject of future work. Figure 9 illustrates the elements of
the toolchain that, starting from a polyhedral model in json format, produces the set of
equivalence classes and the minimal Kripke model. The former may serve as input for the
PolyVisualizer tool9 [BCG+22], a polyhedra visualizer, to inspect the results, whereas the
latter can be used for spatial model checking. For that purpose, a variant of PolyLogicA is
required, since minimal models may turn out not to be posets. In particular, they might
not be transitive (see the discussion in Example 4.14 and in Section 5). In addition, the
variant has to accomodate for the different semantics of the reachability operators γ and
η. An experimental prototype of the tool has been developed and it is publicly available.10
The complexity of the model checking algorithm is linear in the size of the model and the
number of sub-formulas to be checked. A fully fledged implementation and efficiency study
is left for future work.

The toolchain is also able to map the results obtained on the minimal Kripke model
back to the original polyhedral model, because of the direct correspondence between the
states of the Kripke model and the equivalence classes.

Poly2Poset Poset2mcrl2 mcrl2lps

lps2lpspp

lps2lts

findStates
renameLps

ltsMinimise

Classes +
Kripke model

Figure 9. Toolchain for polyhedral model minimisation. Parts in green are
command line operations of the mCRL2 toolset. Parts in blue are developed in
Python in the context of the current paper.

The toolchain uses several command line operations provided by the mCRL2 toolset
[BGK+19] (shown in green in Figure 9) and a number of operations developed in the context
of this paper (shown in blue in Figure 9). The prototype aims to demonstrate the feasibility
of our approach from a qualitative perspective, providing support for examples that illustrate
the practical usefulness of the theory. The operation Poly2Poset transforms the polyhedral
model into a poset model. The operation Poset2mcrl2 encodes the poset model into a mCRL2

9http://ggrilletti2.scienceontheweb.net/polyVisualizer/polyVisualizer_static_maze.html
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specification of an LTS following the procedure defined in Definition 5.1. The operations
mcrl2lps and lps2lts transform the encoding into a linearised LTS-representation which
is then minimised (ltsMinimise) via branching bisimulation. The operation lps2lpspp
provides a textual version of the linear process which is used to obtain the correspondence
between internal state labels of the minimised LTS and the cells of the original polyhedral
model present in the equivalence classes. The latter, in turn, are essential for the genera-
tion of the result files of model checking the minimised model and form the input to the
PolyVisualizer (together with the original polyhedral model and a colour definition file).
Figure 10 and Figure 11 in the next section show an example.10 Maintaining the relation
between internal state labels of the minimised LTS and the original states of the poset and
polyhedral model is the most tricky part of the toolchain as such internal state labels are
assigned dynamically in the lps2lts procedure. This aspect is dealt with by the findStates
and renameLps procedures.

7. Minimisation at Work

In this section, we show, as a proof of concept, an example of use of the experimental
toolchain presented in Section 6. Figure 10a shows a simple symmetric 3D maze composed
of one white room in the middle, 26 green rooms, and connecting grey corridors. Like in the
previous examples, the cells of the white and green rooms satisfy only predicate letter white
and green, respectively. Those of corridors satisfy only corridor. In total, the structure
consists of 2,619 cells. We have chosen a symmetric structure on purpose. This makes it
easy to interpret the various equivalence classes as nodes of the minimal Kripke model of
this structure, shown in Figure 10c. Note the considerable reduction that is obtained: from
2,619 cells to just 7 in the minimal model (observe furthermore that, for this example, the
minimal model is also a poset model).

Figure 10b shows the minimal LTS with respect to branching bisimilarity as produced
by mCRL2.11 The minimal Kripke model with respect to ≡η obtained (see Theorem 5.12)
from the LTS of Figure 10b is shown in Figure 10c. The Kripke model has seven nodes
— of course, in direct correspondence with the seven states of the minimal LTS. Node C1
represents the class of the cells of the white room and is coloured in white in the figure, three
nodes (C3, C0, and C5) correspond to cells of corridors and are coloured in grey, and the
other three (C4, C2, and C6) correspond to cells of green rooms, and are coloured in green.
Green node C4 (visualised on the original polyhedron in Figure 10d) represents the class of
(the cells of) green rooms that are directly connected to the white room by a corridor. Green
node C2 (visualised in Figure 10e) represents the class of (the cells of) green rooms situated
on the edges of the maze. Green node C6 (visualised in Figure 10f) represents the class of
green rooms situated at the corners of the maze.

It is not difficult to find SLCSη formulas that distinguish the various green classes. For
example, the cells in C4 satisfy ϕ1 = η(green∨ η(corridor,white),white), whereas no cell
in C2 or C6 satisfies ϕ1. To distinguish class C2 from C6, one can observe that cells in C2
satisfy ϕ2 = η(green∨ η(corridor, ϕ1), ϕ1) whereas those in C6 do not satisfy ϕ2. Figure 11

10The software and examples are available at https://github.com/VoxLogicA-Project/
Polyhedra-minimisation.

11The numbering of the states is as generated by mCRL2.

https://github.com/VoxLogicA-Project/Polyhedra-minimisation
https://github.com/VoxLogicA-Project/Polyhedra-minimisation
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(b) Minimal LTS
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Figure 10. A maze with 27 rooms: 26 green and one white in the middle.

shows the result of PolyLogicA model checking for the formulas ϕ1 (see Figure 11b) and ϕ2
(see Figure 11c).12

Table 1 provides a detailed overview regarding the time performance of the various
components of the toolchain (see Figure 9) on four models of the maze of different sizes.13 In
each model all green rooms form the outer frame of the maze and white rooms are positioned
inside the maze. The table has one separate column for each maze. The first horizontal
block shows the number of cells and vertices for the models, as well as the number of the
equivalence classes. The names of the components of the toolchain are listed in the first
column of the second horizontal block of the table. In the list two additional activities appear,
namely, loading of the model (loadData) and the production of the equivalence classes and
of the minimal Kripke model (createJsonFiles and createModelFile, respectively). The
remaining columns show the computing time of each component, in seconds. The third block

12All tests were performed on a workstation equipped with an Intel(R) Core(TM) i9-9900K CPU @ 3.60
GHz (8 cores, 16 threads).

13Maze 3x3x3 is shown in Figure 10a, Maze 3x5x3 in Figure 12a (in Appendix B), and Maze 3x5x4 in
Figure 3a.
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(a) (b) ϕ1 (c) ϕ2

Figure 11. (11a) The 3D maze. Results of PolyLogicA model checking of
the formulas ϕ1 (11b) and ϕ2 (11c) on the minimised model as they are shown
to the user by PolyVisualizer — results are mapped back automatically by
the procedure onto the full 3D maze.

Table 1. Performance for 3D maze example. All times are in seconds.

Maze 3x3x3 Maze 3x5x3 Maze 3x5x4 Maze 5x5x5

Nr. of classes 7 21 38 21
Nr. of cells 2,619 3,568 6,145 13,375
Nr. of vertices 216 288 480 1,000

poly2poset 0.35 0.34 0.43 1.10
loadData 0.00 0.00 0.01 0.02
poset2mcrl2 0.16 0.30 0.42 0.95
mcrl2lps 1.71 3.51 5.42 23.72
lps2lpspp 0.24 0.41 0.57 1.95
findStates 0.17 0.31 0.41 4.18
renamelps 0.54 0.95 1.34 4.47
lps2lts 21.41 78.26 135.22 794.33
ltsMinimise 0.06 0.23 0.24 0.35
createJsonFiles 6.35 51.37 160.53 587.99
createModelFile 0.01 0.01 0.01 0.03

Model checking original model 8.76 24.90 64.50 671.30
Model checking minimised model 0.02 0.03 0.03 0.03

shows the model checking times for formulas ϕ1 and ϕ2, in the original as well as the minimal
models.

Note the substantial reduction in size (several orders of magnitude) of the minimised
model, where the number of states corresponds to the number of equivalence classes, compared
to the full model (number of cells). This leads to a similar reduction in model checking time
(see last two lines of Table 1). Clearly, the time for encoding (poset2mcrl2) and minimising
(see ltsMinimise) the model is very small, whereas there seems to be a bottleneck of
computing time needed for the mCRL2 procedure lps2lts. However, the latter step may be
avoided by implementing the encoding directly into the binary mCRL2 LTS format. This
requires usage of the mCRL2 C++ application programming interface, and is left to future work.

In summary, the considerable reduction of the models and their relative model checking
times are very encouraging, also considering that the minimised model, once obtained, can
be used for multiple model checking sessions.



6:38 Bezhanishvili, Bussi, Ciancia, Gabelaia, Jibladze, Latella, Massink, and de Vink Vol. 22:1

8. Conclusions

Polyhedral models are widely used in domains that exploit mesh processing such as 3D
computer graphics. These models are typically huge, consisting of very many cells. Spatial
model checking of such models is an interesting, novel approach to verify properties of such
models and to visualise the results in a graphically appealing way. In previous work the
polyhedral model checker PolyLogicA was developed for this purpose [BCG+22].

In [BCG+22] simplicial bisimilarity was proposed for polyhedral models — i.e. models of
continuous space — while ±-bisimilarity, the corresponding equivalence for cell-poset models
— discrete representations of polyhedral models — was first introduced in [CGL+23a]. In
order to support large model reductions, in this paper the novel notions of weak simplicial
bisimilarity and weak ±-bisimilarity have been presented, and the correspondence between
the two has been studied. We have also presented SLCSη, a weaker version of the Spatial
Logic for Closure Spaces on polyhedral models, and we have shown that simplicial bisimilarity
enjoys the Hennessy-Milner property (Theorem 4.9). Furthermore, we have shown that
the property holds for ±-bisimilarity on poset models and the interpretation of SLCSη on
such models (Theorem 4.12). SLCSη can be used in the geometric spatial model checker
PolyLogicA for checking spatial reachability properties of polyhedral models. Model checking
results can be visualised by projecting them onto the original polyhedral structure, showing
in a specific colour all the cells satisfying the property of interest.

In order to reduce model checking time and computing resources, we have proposed
an effective procedure that computes the minimal model, modulo logical equivalence with
respect to the logic SLCSη, of a polyhedral model. Such minimised models are also amenable
to model checking with a variant of PolyLogicA dealing with general Kripke models and
with the η modality.

The procedure has been formalised and proven correct. A prototype implementation of
the procedure has been developed in the form of a toolchain, that also involves operations
provided by the mCRL2 toolset, to study the practical feasibility of the approach and to
identify possible bottlenecks. We have also shown how the model checking results of the
minimal model can be projected back onto the original polyhedral model. This provides a
direct 3D visual inspection of the results through the polyhedra visualizer PolyVisualizer.

In future work we aim at a more sophisticated implementation of the procedure, possibly
using in a more direct way the minimisation operations provided by mCRL2 and integrating the
various steps in the procedure. Such an implementation, would also enable us to experiment
applying our methodology and supporting tools to real-world case studies. On the theoretical
side, an interesting issue that is beyond the scope of the present paper, and that we would
like to address in future work, is the relationship between SLCSη, SLCSγ , and 3. Finally, we
would be interested in extending SLCSη/SLCSγ with additional operators, for example those
concerning notions of distance, and in applying our spatial model checking framework to a
larger number of case studies.
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Appendix A. Detailed Proofs

A.1. Proof of Lemma 2.2.

Lemma 2.2. Given a reflexive Kripke frame (W,R) and a ±-path π : [0; ℓ] → W , there
is a ↑↓-path π′ : [0; ℓ′]→W , for some ℓ′, and a total, surjective, monotonic non-decreasing
function f : [0; ℓ′]→ [0; ℓ] such that π′(j) = π(f(j)) for all j ∈ [0; ℓ′].

Proof. We proceed by induction on the length ℓ of ±-path π.
Base case: ℓ = 2.
In this case, by definition of ±-path, we have R(π(0), π(1)) and R−(π(1), π(2)), which, by
definition of ↑↓-path, implies that π itself is an ↑↓-path and f : [0; ℓ] → [0; ℓ] is just the
identity function.

Induction step. We assume the assertion holds for all ±-paths of length ℓ and we prove it
for ℓ+ 1. Let π : [0; ℓ+ 1]→W be a ±-path. Then R−(π(ℓ), π(ℓ+ 1)), since π is a ±-path.
We consider the following cases:
Case A: R−(π(ℓ− 1), π(ℓ)) and R−(π(ℓ), π(ℓ+ 1)).
In this case, consider the prefix π1 = π|[0; ℓ] of π, noting that π1 is a ±-path of length ℓ. By
the Induction Hypothesis there is an ↑↓-path π′1 of some length ℓ′1 and a total, surjective,
monotonic non-decreasing function g : [0; ℓ′1]→ [0; ℓ] such that π′1(j) = π1(g(j)) = π(g(j)) for
all j ∈ [0; ℓ′1]. Note that π′1(ℓ′1) = π(ℓ) so that the sequentialisation of π′1 with the two-element
path (π(ℓ), π(ℓ + 1)) is well-defined. Consider path π′ = (π′1 · (π(ℓ), π(ℓ + 1))) ← ℓ′1, of
length ℓ′1 + 2 consisting of π′1 followed by π(ℓ) followed in turn by π(ℓ+ 1). In other words,
π′ = (π′1(0) . . . π

′
1(ℓ

′
1), π(ℓ), π(ℓ+ 1)), with π′1(ℓ

′
1) = π(ℓ) — recall that R is reflexive. It is

easy to see that π′ is an ↑↓-path and that function f : [0; ℓ′1 +2]→ [0; ℓ+1], with f(j) = g(j)
for j ∈ [0; ℓ′1], f(ℓ′1 + 1) = ℓ and f(ℓ′1 + 2) = ℓ + 1, is total, surjective, and monotonic
non-decreasing.
Case B: R(π(ℓ− 1), π(ℓ)) and R−(π(ℓ), π(ℓ+ 1)).
In this case the prefix π|[0; ℓ] of π is not a ±-path. We then consider the path consisting of
prefix π|[0; ℓ−1] where we add a copy of π(ℓ−1), i.e. the path π1 = (π|[0; ℓ−1])← (ℓ−1) — we
can do that because R is reflexive. Note that π1 is a ±-path and has length ℓ. By the Induction
Hypothesis there is an ↑↓-path π′1 of some length ℓ′1 and a total, surjective, monotonic non-
decreasing function g : [0; ℓ′1]→ [0; ℓ] such that π′1(j) = π1(g(j)) = π(g(j)) for all j ∈ [0; ℓ′1].
Consider path π′ = π′1 · (π(ℓ− 1), π(ℓ), π(ℓ+ 1)), of length ℓ′1 + 2, that is well defined since
π′1(ℓ

′
1) = π(ℓ− 1) by definition of π1. In other words, π′ = (π′1(0), . . . , π

′
1(ℓ

′
1), π(ℓ), π(ℓ+ 1)),

with π′1(ℓ′1) = π(ℓ−1). Path π′ is an ↑↓-path. In fact π′|[0; ℓ′1] = π′1 is an ↑↓-path. Furthermore,
π′(ℓ′1) = π(ℓ− 1), R(π(ℓ− 1), π(ℓ)), R−(π(ℓ), π(ℓ+ 1)) and π(ℓ+ 1) = π′(ℓ′1 + 2). Finally,
function f : [0; ℓ′1 + 2] → [0; ℓ + 1], with f(j) = g(j) for j ∈ [0; ℓ′1], f(ℓ′1 + 1) = ℓ and
f(ℓ′1 + 2) = ℓ+ 1, is total, surjective, and monotonic non-decreasing.

A.2. Proof of Lemma 2.3.

Lemma 2.3. Given a reflexive Kripke frame (W,R) and a ↓-path π : [0; ℓ]→ W , there is
an ↑↓-path π′ : [0; ℓ′] → W , for some ℓ′, and a total, surjective, monotonic non-decreasing
function f : [0; ℓ′]→ [0; ℓ] such that π′(j) = π(f(j)) for all j ∈ [0; ℓ′].
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Proof. The proof is carried out by induction on the length ℓ of π.
Base case. ℓ = 1. Suppose ℓ = 1, i.e. π : [0; 1] → W with R−(π(0), π(1)). Then let
π′ : [0; 2]→W be such that π′(0) = π′(1) = π(0) and π′(2) = π(1) — we can do that since
R is reflexive — and f : [0; 2]→ [0; 1] be such that f(0) = f(1) = 0 and f(2) = 1. Clearly π′
is an ↑↓-path and π′(j) = π(f(j)) for all j ∈ [0; 2].
Induction step. We assume the assertion holds for all ↓-paths of length ℓ and we prove it
for ℓ + 1. Let π : [0; ℓ + 1] → W a ↓-path and suppose the assertion holds for all ↓-paths
of length ℓ. In particular, it holds for π ↑ 1, i.e., there is an ↑↓-path π′′ of some length
ℓ′′ with π′′(0) = π(1), and total, monotonic non-decreasing surjection g : [0; ℓ′′] → W
such that π′′(j) = π(g(j)) for all j ∈ [0; ℓ′′]. Suppose R(π(0), π(1)) does not hold. Then,
since R is reflexive, we let π′ = (π(0), π(0), π(1)) · π′′ and f : [0; ℓ′′ + 2] → [0; ℓ + 1] with
f(0) = f(1) = 0 and f(j) = g(j − 2) for all j ∈ [2; ℓ′′ + 2]. If instead R(π(0), π(1)), then we
let π′ = (π(0), π(1), π(1)) · π′′ and f : [0; ℓ′′ + 2] → [0; ℓ + 1] with f(0) = 0, f(1) = 1 and
f(j) = g(j − 2) for all j ∈ [2; ℓ′′ + 2].

A.3. Proof of Lemma 2.4.

Lemma 2.4. Given a reflexive Kripke frame (W,R) and a ↓-path π : [0; ℓ]→ W , there is
a ±-path π′ : [0; ℓ′′] → W , for some ℓ′, and a total, surjective, monotonic, non-decreasing
function f : [0; ℓ′]→ [0; ℓ] with π′(j) = π(f(j)) for all j ∈ [0; ℓ′].

Proof. The assertion follows directly from Lemma 2.3 since every ↑↓-path is also a ±-path.

A.4. Proof of Lemma 3.5.

Lemma 3.5. Let P = (|K|,VP) be a polyhedral model, x ∈ |K| and Φ a SLCSη formula.
Then P, x |= Φ iff P, x |= E(Φ).

Proof. By induction on the structure of Φ. We consider only the case η(Φ1,Φ2). Suppose
P, x |= η(Φ1,Φ2). By definition there is a topological path π such that P, π(1) |= Φ2 and
P, π(r) |= Φ1 for all r ∈ [0, 1). By the Induction Hypothesis this is the same to say that
P, π(1) |= E(Φ2) and P, π(r) |= E(Φ1) for all r ∈ [0, 1), i.e. P, x |= E(Φ1), P, π(1) |= E(Φ2)
and P, π(r) |= E(Φ1) for all r ∈ (0, 1). In other words, we have P, x |= E(Φ1)∧γ(E(Φ1), E(Φ2))
that, by Definition 3.4 on page 14 means P, x |= E(η(Φ1,Φ2)).

Suppose now P, x |= E(η(Φ1,Φ2)), i.e. P, x |= E(Φ1)∧γ(E(Φ1), E(Φ2)), by Definition 3.4
on page 14. Since P, x |= γ(E(Φ1), E(Φ2)), there is a path π such that P, π(1) |= E(Φ2) and
P, π(r) |= E(Φ1) for all r ∈ (0, 1). Using the Induction Hypothesis we know the following
holds: P, x |= Φ1, P, π(1) |= Φ2, and P, π(r) |= Φ1 for all r ∈ (0, 1), i.e. P, π(1) |= Φ2 and
P, π(r) |= Φ1 for all r ∈ [0, 1). So, we get P, x |= η(Φ1,Φ2).
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A.5. Proof concerning the example of Remark 3.7.

The assertion can be proven by induction on the structure of formulas. The case for
proposition letters, negation and conjunction are straightforward and omitted.

Suppose P6, A |= η(Φ1,Φ2). Then there is a topological path πA : [0, 1] → P6 from A
such that P6, πA(1) |= Φ2 and P6, πA(r) |= Φ1 for all r ∈ [0, 1). Since P6, A |= Φ1, by the
Induction Hypothesis, we have that P6, x |= Φ1 for all x ∈ ÃBC. For each x ∈ ÃBC, define
πx : [0, 1]→ P6 as follows, for arbitrary v ∈ (0, 1):

πx(r) =


r
vA+ v−r

v x, if r ∈ [0, v),

πA(
r−v
1−v ), if r ∈ [v, 1].

Function πx is continuous. Furthermore, for all y ∈ [0, v), we have that P6, πx(y) |= Φ1, since
πx(y) ∈ ÃBC. Also, for all y ∈ [v, 1) we have that P6, πx(y) |= Φ1, since πx(y) = πA(

y−v
1−v ),

0 ≤ y−v
1−v < 1 and for y ∈ [0, 1) we have that P6, πA(y), |= Φ1. Thus P6, πx(r) |= Φ1 for

all r ∈ [0, 1). Finally, πx(1) = πA(1) and P6, πA(1) |= Φ2 by hypothesis. Thus, πx is a
topological path that witnesses P6, x |= η(Φ1,Φ2).

The proof of the converse is similar, using instead function πA : [0, 1]→ P6 defined as
follows, for arbitrary v ∈ (0, 1):

πA(r) =


r
vp+

v−r
v A, if r ∈ [0, v),

πp(
r−v
1−v ), if r ∈ [v, 1].

A.6. Proof of Proposition 3.11.

Proposition 3.11. Given a finite poset model F = (W,≼,VF ), w ∈W , and SLCSη formulas
Φ1 and Φ2, the following statements are equivalent:
(1) There exists a ±-path π : [0; ℓ] → W for some ℓ with π(0) = w, F , π(ℓ) |= Φ2 and
F , π(i) |= Φ1 for all i ∈ [0; ℓ).

(2) There exists a ↓-path π : [0; ℓ′] → W for some ℓ′ with π(0) = w, F , π(ℓ′) |= Φ2 and
F , π(i) |= Φ1 for all i ∈ [0; ℓ).

Proof. The equivalence of statements (1) and (2) follows directly from Lemma 2.4 and the
fact that ±-paths are also ↓-paths.

A.7. Proof of Proposition 3.14.

Proposition 3.14. Given a finite poset model F = (W,≼,VF), for w1, w2 ∈ W , it holds
that

F , w2 |= χ(w1) if and only if w1 ≡η w2.

Proof. Suppose w1 ̸≡η w2, then we have F , w2 ̸|= δw1,w2 , and so F , w2 ̸|=
∧

w∈W δw1,w. If,
instead, w1 ≡η w2, then we have: δw1,w1 ≡ δw1,w2 ≡ true by definition, since w1 ≡η w1 and
w1 ≡η w2. Moreover, for any other w, we have that, in any case, F , w1 |= δw1,w holds and
since w1 ≡η w2, also F , w2 |= δw1,w holds. So, in conclusion, F , w2 |=

∧
w∈W δw1,w.
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A.8. Proof of Lemma 3.15.

Lemma 3.15. Let F = (W,≼,VF ) be a finite poset model, w ∈W and Φ a SLCSη formula.
Then F , w |= Φ iff F , w |= E(Φ).

Proof. Similar to that of Lemma 3.5, but with reference to the finite poset intepretation of
the logic.

A.9. Proof concerning the example of Remark 3.17.

We prove the assertion by induction on the structure of formulas. The case for atomic
proposition letters, negation and conjunction are straightforward and omitted. Suppose
F , Ã |= η(Φ1,Φ2). Then, there is a ±-path π of some length ℓ ≥ 2 such that π(0) = Ã,
π(ℓ) |= Φ2 and π(i) |= Φ1 for all i ∈ [0; ℓ). Since F , Ã |= Φ1, by the Induction Hypothesis, we
have that F , ÃBC |= Φ1. Consider then path π′ = (ÃBC, ÃBC, Ã) · π. Path π′ is a ±-path
and it witnesses F , ÃBC |= η(Φ1,Φ2).

Suppose now F , ÃBC |= η(Φ1,Φ2) and let π be a ±-path witnessing it. Then, path
(Ã, ÃBC, ÃBC) · π is a ±-path witnessing F , Ã |= η(Φ1,Φ2).

A.10. Proof of Lemma 3.19.

The proof of the lemma uses a similar result, for the γ operator, that we have already
proven in [BCG+22] namely:

Theorem 4.4 of [BCG+22]. Let P = (P,VP) be a polyhedral model and x ∈ P . Then,
for every formula Φ of SLCSγ we have that: P, x |= Φ if and only if F(P),F(x) |= Φ.

Lemma 3.19. Given a polyhedral model P = (|K|,VP), for all x ∈ |K| and formulas Φ of
SLCSη the following holds: P, x |= Φ if and only if F(P),F(x) |= E(Φ).

Proof. The proof is by induction on the structure of Φ. We consider only the case η(Φ1,Φ2).
Suppose P, x |= η(Φ1,Φ2). By Lemma 3.5 we get P, x |= E(η(Φ1,Φ2)) and then, by
Definition 3.4, we have P, x |= E(Φ1) ∧ γ(E(Φ1), E(Φ2)), that is P, x |= E(Φ1) and P, x |=
γ(E(Φ1), E(Φ2)). Again by Lemma 3.5 on page 14, we get also P, x |= Φ1 and so, by
the Induction Hypothesis, we have F(P),F(x) |= E(Φ1). Furthermore, by Theorem 4.4
of [BCG+22] we also get F(P),F(x) |= γ(E(Φ1), E(Φ2)). Thus we get F(P),F(x) |= E(Φ1) ∧
γ(E(Φ1), E(Φ2)), that is F(P),F(x) |= E(η(Φ1,Φ2)).
Suppose now F(P),F(x) |= E(η(Φ1,Φ2)). This means F(P),F(x) |= E(Φ1)∧ γ(E(Φ1), E(Φ2)),
that is F(P),F(x) |= E(Φ1) and F(P),F(x) |= γ(E(Φ1), E(Φ2)). By the Induction Hypothesis
we get that P, x |= Φ1. Furthermore, by Theorem 4.4 of [BCG+22] we also get P, x |=
γ(E(Φ1), E(Φ2)). This means that there is topological path π such that P, π(1) |= E(Φ2)
and P, π(r) |= E(Φ1) for all r ∈ (0, 1). Using Lemma 3.5 we also get P, π(1) |= Φ2 and
P, π(r) |= Φ1 for all r ∈ (0, 1) and since also P, x |= Φ1 (see above), we get P, π(1) |= Φ2

and P, π(r) |= Φ1 for all r ∈ [0, 1), that is P, x |= η(Φ1,Φ2).
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A.11. Proof of Theorem 3.20.

Theorem 3.20. Given a polyhedral model P = (|K|,VP), for all x ∈ |K| and formulas Φ of
SLCSη it holds that: P, x |= Φ if and only if F(P),F(x) |= Φ.

Proof. Using Lemma 3.19, we know that P, x |= Φ if and only if F(P),F(x) |= E(Φ).
Moreover, by Lemma 3.15, we know that F(P),F(x) |= E(Φ) if and only if F(P),F(x) |= Φ,
which brings us to the result.

A.12. Proof of Lemma 4.5.

Lemma 4.5. Given a finite poset model F = (W,≼,VF ) and weak ±-bisimulation Z ⊆W ×
W , for all w1, w2 such that Z(w1, w2), the following holds: for each ↓-path π1 : [0; k1]→W
from w1 there is a ↓-path π2 : [0; k2]→W from w2 such that Z(π1(k1), π2(k2)) and for each
j ∈ [0; k2) there is i ∈ [0; k1) such that Z(π1(i), π2(j)).

Proof. Let π1 : [0; k1] → W be a ↓-path from w1. By Lemma 2.3 on page 11 we know
that there is an ↑↓-path π̂1 : [0; 2h] → W and total, monotonic non-decreasing surjection
f : [0; 2h]→ [0; k1] such that π̂1(j) = π1(f(j)) for all j ∈ [0; 2h]. Furthermore, by Lemma A.1
below, we know that there is a ↓-path π2 : [0; k2]→W from w2 such that Z(π̂1(2h), π2(k2))
and for each j ∈ [0; k2) there is i ∈ [0; 2h) such that Z(π̂1(i), π2(j)). In addition, π̂1(0) =
π1(0) = w1, Z(π1(k1), π2(k2)) since Z(π̂1(2h), π2(k2)) and π̂1(2h) = π1(k1). Finally, for each
j ∈ [0; k2) there is i ∈ [0; k1) such that Z(π1(i), π2(j)), since there is n ∈ [0; 2h) such that
Z(π̂1(n), π2(j)) and f(n) = i for some i ∈ [0; k1).

Lemma A.1. Given a finite poset model F = (W,≼,VF) and a weak ±-bisimulation
Z ⊆ W × W , for all w1, w2 such that Z(w1, w2), the following holds: for each ↑↓-path
π1 : [0; 2h]→W from w1 there is a ↓-path π2 : [0; k]→W from w2 such that Z(π1(2h), π2(k))
and for each j ∈ [0; k) there is i ∈ [0; 2h) such that Z(π1(i), π2(j)).

Proof. We prove the assertion by induction on h.
Base case. h = 1.
If h = 1, the assertion follows directly from Definition 4.3 on page 19 where w1 = π1(0), u1 =
π1(1) and d1 = π1(2).
Induction step. We assume the assertion holds for ↑↓-paths of length 2h or less and we
prove it for ↑↓-paths of length 2(h+ 1).
Suppose π1 is a ↑↓-path of length 2h + 2 and consider ↑↓-path π′1 = π1|[0; 2h]. By the
Induction Hypothesis, we know that there is a ↓-path π′2 : [0; k′] → W from w2 such
that Z(π′1(2h), π′2(k′)) and for each j ∈ [0; k′) there is i ∈ [0; 2h) such that Z(π′1(i), π′2(j)).
Clearly, this means that Z(π1(2h), π′2(k′)) and for each j ∈ [0; k′) there is i ∈ [0; 2h) such that
Z(π1(i), π

′
2(j)). Furthermore, since Z(π1(2h), π′2(k′)) and Z is a weak ±-bisimulation, we

also know that there is a ↓-path π′′2 : [0; k′′]→W from π′2(k
′) such that Z(π1(2h+2), π′′2 (k

′′))
and for each j ∈ [0; k′′) there is i ∈ [2h; 2h + 2) such that Z(π1(i), π′2(j)). Let π2 :
[0; k′ + k′′] → W be defined as π2 = π′2 · π′′2 . Clearly π2 is a ↓-path, since so is π′′2 .
Furthermore Z(π1(2h+2), π2(k

′+ k′′)) since Z(π1(2h+2), π′′2 (k
′′)) and π′′2 (k′′) = π2(k

′+ k′′).
Finally, it is straightforward to check for all j ∈ [0; k′ + k′′) there is i ∈ [0; 2h+ 2) such that
Z(π1(i), π2(j)).
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A.13. Proof of Lemma 4.6.

Lemma 4.6. Given a polyhedral model P = (|K|,VP), and associated cell poset model
F(P) = (W,≼,VF(P)), for any ↓-path π : [0; ℓ]→W , there is a topological path π′ : [0, 1]→
|K| such that: (i) F(π′(0)) = π(0), (ii) F(π′(1)) = π(ℓ), and (iii) for all r ∈ (0, 1) there is
i < ℓ such that F(π′(r)) = π(i).

Proof. Since π is a ↓-path, we have that either CT (F−1(π(k − 1))) ⊑ CT (F−1(π(k))) or
CT (F−1(π(k))) ⊑ CT (F−1(π(k−1))), for each k ∈ (0; ℓ]14. It follows that there is a continuous
map π′k : [k−1

ℓ , kℓ ]→ |K| such that, in the first case, F(π′k(
k−1
ℓ )) = π(k−1) and π′k((

k−1
ℓ , kℓ ]) ⊆

CT (F−1(π(k))), while in the second case, π′k([
k−1
ℓ , kℓ )) ⊆ CT (F

−1(π(k − 1))) and F(π′k(
k
ℓ )) =

π(k). In fact π′k can be realised as a linear bijection to the line segment connecting the
barycenters in the corresponding cell, either in F−1(π(k)) or in F−1(π(k − 1)), respectively.

For each k ∈ (0; ℓ), both π′k(
k
ℓ ) and π′k+1(

k
ℓ ) coincide with the barycenter of F−1(π(k)),

so that defining π′(r) = π′k(r) for r ∈ [k−1
ℓ , kℓ ] correctly defines a topological path (actually a

piece-wise linear path), satisfying (i) and (ii). Finally since π is a ↓-path, π(ℓ) ≼ π(ℓ− 1), so
that π′([ ℓ−1

ℓ , 1)) ⊆ F−1(π(ℓ− 1)). This implies (iii) above.

A.14. Proof of Lemma 4.7.

Lemma 4.7. Given a polyhedral model P = (|K|,VP), and associated cell poset model
F(P) = (W,≼,VF(P)), for any topological path π : [0, 1]→ |K| the following holds: F(π([0, 1]))
is a connected subposet of W and there is k > 0 and a ↓-path π̂ : [0; k]→W from F(π(0)) to
F(π(1)) such that for all i ∈ [0; k) there is r ∈ [0, 1) with π̂(i) = F(π(r)).

Proof. Continuity of F ◦ π ensures that F(π([0, 1])) is a connected subposet of W . Thus
there is an undirected path π̂ : [0; k] → W from F(π(0)) to F(π(1)) of some length k > 0.
In particular, π̂(k − 1) ≽ π̂(k), as shown in the sequel, by contradiction. Suppose that
π̂(k − 1) ≺ π̂(k). This would mean that there is ϵ < 1, with π(ϵ) ∈ F(π(ϵ)) = π̂(k − 1),
such that π(r′) ∈ π̂(k) = F(π(1)) for no r′ ∈ (ϵ, 1) — otherwise π̂(k − 1) = π̂(k) would
hold. But the fact that no such an r′ exists contradicts the fact that π is continuous, since
continuity requires that for each neighbourhood N1(π(1)) of π(1) there is a neighbourhood
N2(1) ⊆ [0, 1] of 1 such that π(t) ∈ N1(π(1)) whenever t ∈ N2(1). We thus conclude that
π̂(k − 1) ≽ π̂(k), and so π̂1 is a ↓-path. By definition and connectedness of F(π([0, 1])) we
finally get that for all i ∈ [0; k) there is r ∈ [0, 1) with π̂(i) = F(π(r)).

A.15. Proof of Lemma 5.5.

Lemma 5.5. Given a finite poset model F = (W,≼,VF) and w1, w2 ∈ W the following
holds: if w1 ⇌ w2, then w1 ≡η w2.

Proof. By induction on the structure of SLCSη formulas. We show only the case for η(Φ1,Φ2)
since the others are straightforward. Suppose F , w1 |= η(Φ1,Φ2). Then there is a ±-path
π from w1 of some length ℓ such that F , π(ℓ) |= Φ2 and F , π(i) |= Φ1 for all i ∈ [0; ℓ). In
particular, we have that F , w1 |= Φ1. So, by the Induction Hypothesis, since w1 ⇌ w2,
we get that also F , w2 |= Φ1. In addition, by definition of ⇌, and given that w2 ⇌ w1,

14We recall here that σ1 ⊑ σ2 iff σ̃1 ≼ σ̃2 and that σ = CT (σ̃).
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there is an undirected path π′ of some length ℓ′ such that π′(0) = w2, π(ℓ
′) = w1 and

V−1
F ({π′(i)}) = V−1

F ({π′(j)}), for all i, j ∈ [0; ℓ′]. Note that, by definition of ⇌, we have
that π′(k) ⇌ w1 for all k ∈ [0; ℓ′]. Thus, again by the Induction Hypothesis, we also get
F , π′(k) |= Φ1 for all k ∈ [0; ℓ′]. Clearly, the sequentialisation π′ · π of π′ with π is a ↓-path
since π is a ±-path. Furthermore, by Lemma 2.4, there is a ±-path π′′ with the same starting
and ending points as π′ · π, and with the same set of intermediate points, occurring in the
same order. Thus π′′ witnesses F , w2 |= η(Φ1,Φ2).

A.16. Proof of Lemma 5.7.

Lemma 5.7. Consider a finite poset model F = (W,≼,VF). Then for all w1, w2 ∈W the
following holds: if [w1]⇌ ∼SA(F) [w2]⇌, then V−1

F ({w1}) = V−1
F ({w2}).

Proof. By Rule (PL), we have [w1]⇌
V−1
F ({w1})−→ [w1]⇌ and, by hypothesis, we also have

[w2]⇌
V−1
F ({w1})−→ [w′

2]⇌, for some [w′
2]⇌ ∼ [w1]⇌. But then, using again Rule (PL), we get

[w′
2]⇌ = [w2]⇌ and V−1

F ({w1}) = V−1
F ({w2}).

Appendix B. 3D Maze Example of Section 7

Below, the spatial logic specification in ImgQL is shown, that was used for model checking the
various maze-variants in Table 1 in Section 7 with PolyLogicA. ImgQL is the input language of
PolyLogicA in which spatial logic properties of SLCSη can be expressed. In the specification
below, first the polyhedral model is loaded in json format. After that, the atomic propositions
green, white and corridor are defined. This is followed by a number of properties for the
maze that should be self-explanatory. They include the formulas for ϕ1 and ϕ2 that were
introduced in Section 7. Finally, the lines starting by save are defining which results to save
in a file. Such files contain the name of a property and for each property a list of true/false
items, one for each cell in the polyhedral model and in the order in which these cells are
defined in that polyhedral model.

load model = "polyInput_Poset.json"

let green = ap("G")
let white = ap("W")
let corridor = ap("corridor")

let greenOrWhite = (green | white)

let oneStepToWhite = eta((green | eta(corridor,white)),white)
let twoStepsToWhite = eta((green | eta(corridor,oneStepToWhite)), oneStepToWhite) & (!oneStepToWhite)
let threeStepsToWhite = eta((green | eta(corridor,twoStepsToWhite)), twoStepsToWhite) &

(!twoStepsToWhite) & (!oneStepToWhite)

let phi1 = eta((green | eta(corridor,white)),white)
let phi2 = eta((green | eta(corridor,oneStepToWhite)), oneStepToWhite)

save "green" green
save "white" white
save "corr" corridor
save "phi1" phi1
save "phi2" phi2
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(a) Maze 3x5x3
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(b) Minimised LTS

Figure 12. Maze of dimension 3x5x3 (Fig. 12a) and its respective minimal
LTSs (Figs. 12b).

Figure 12 shows the 3x5x3 maze and its minimised LTS. Note that in the LTS not all
transition labels are shown in order to avoid cluttering of the image. However, states
corresponding to corridors, green rooms and white rooms, are shown in grey, green and white,
respectively.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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