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ABSTRACT. The work described in this paper builds on the polyhedral semantics of the
Spatial Logic for Closure Spaces (SLCS) and the geometric spatial model checker PolyLogicA.
Polyhedral models are central in domains that exploit mesh processing, such as 3D computer
graphics. A discrete representation of polyhedral models is given by cell poset models,
which are amenable to geometric spatial model checking using SLCS,,, a weaker version of
SLCS. In this work we show that the mapping from polyhedral models to cell poset models
preserves and reflects SLCS,,. We also propose weak simplicial bisimilarity on polyhedral
models and weak +-bisimilarity on cell poset models, where by “weak” we mean that the
relevant equivalence is coarser than the corresponding one for SLCS, leading to a greater
reduction of the size of models and thus to more efficient model checking.

We show that the proposed bisimilarities enjoy the Hennessy-Milner property, i.e. two
points are weakly simplicial bisimilar iff they are logically equivalent for SLCS,. Similarly,
two cells are weakly +-bisimilar iff they are logically equivalent in the poset-model interpre-
tation of SLCS,,. Furthermore we present a model minimisation procedure and prove that it
correctly computes the minimal model with respect to weak +-bisimilarity, i.e. with respect
to logical equivalence of SLCS,. The procedure works via an encoding into LTSs and then
exploits branching bisimilarity on those LTSs, exploiting the minimisation capabilities as
included in the mCRL2 toolset. Various examples show the effectiveness of the approach.
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FIGURE 1. 3D maze (la), black and white rooms (1b) and red rooms (1c)
in the 3D maze (source [BCG122|).

1. INTRODUCTION AND RELATED WORK

Spatial and spatio-temporal model checking have recently been successfully employed in
a variety of application areas, including Collective Adaptive Systems [CLM*16, CGGT18,
AAV24, ADT24|, signal analysis [NBC'18|, image analysis [CLLM16, HJIK 15, BBC*20|,
and polyhedral modelling [BCG'22, CGL123a, BCG'24a, BCG'24b|. Interest in these
methods for spatial analysis is increasing in Computer Science and in other domains, including
initially unanticipated ones, such as medical imaging [BCLM19b, BBC*21].

Spatial model checking is a global technique: it comprises the automatic verification of
properties, expressed in a suitable spatial logic, such as the Spatial Logic for Closure Spaces
(SLCS) |[CLLM14, CLLM16], for each point of a spatial model. The logic SLCS has been
defined originally for closure models, i.e. models based on Cech closure spaces [Cech66], a
generalisation of topological spaces, and model checking algorithms have been developed for
finite closure models also in combination with discrete time, leading to spatio-temporal model
checking [CGGT18|. The spatial model checker VoxLogicA, proposed in [BCLM19b], is very
efficient in checking properties of large images — represented as symmetric finite closure
models — expressed in SLCS [BCLM19b, BCLM19a, BBC*21]. For example, the automatic
segmentation via a suitable SLCS formula characterising the white matter of the brain in a
3D MRI image consisting of circa 12M voxels (i.e. 256 x 256 x 181), requires approximately
10 seconds, using VoxLogicA on a desktop computer [BCLM19al.!

In [CLMV22, CLMV25]| several bisimulations for finite closure spaces have been studied,
with the aim to improve the efficiency of model checking via model minimisation. These
notions cover a spectrum from CM-bisimilarity, an equivalence based on proximity — similar
to and inspired by topo-bisimilarity for topological models [BB07] — to CMC-bisimilarity,
CM-bisimilarity specialisation for quasi-discrete closure models, and CoPa-bisimilarity, an
equivalence based on conditional reachability. Each of these bisimilarities has been equipped
with its logical characterisation.

ntel Core i9-9900K processor (with 8 cores and 16 threads) and 32GB of RAM. Note that VoxLogicA
checks such logical specifications for every point in the model exploiting parallel execution, memoization, and
state-of-the-art imaging libraries [BCLM19b].
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The spatial model checking techniques mentioned above, targeting grid-based structures,
have been extended to polyhedral models [BCGT22, LQ23|. Polyhedra are subsets in R”
generated by simplicial complexes, i.e. finite collections of simplexes satisfying certain
conditions. A simplex is the convex hull of a set of affinely independent points. Given a
set PL of proposition letters, a polyhedral model is obtained from a polyhedron by assigning
a polyhedral subset to each proposition letter p € PL, namely those points that “satisfy”
proposition p. Polyhedral models in R? can be used for (approximately) representing objects
in continuous 3D space. This is typical of many 3D visual computing techniques, where an
object is split into suitable geometric parts of different size. Such ways of splitting of an object
are known as mesh techniques and include triangular surface meshes or tetrahedral volume
meshes (see [LPZ12]). Interestingly, polyhedral models can conveniently be represented by
discrete structures, the so-called cell poset models: each point of the polyhedron is mapped
to a (unique) “cell”, i.e. an element of the associated cell poset model. Cell poset models,
being a particular case of Kripke models, are amenable to discrete model checking.

In [BCGT22|, a variant of SLCS for polyhedral models, called SLCS., in the sequel, as
well as a geometric model checking algorithm have been proposed. The latter has been
implemented in the PolyLogicA model checker, together with PolyVisualizer, a tool for
visualising and inspecting polyhedral models (see [BCGT22]| for details). Example 1.1 below
gives an idea of the framework of spatial model checking using PolyLogicA.

Example 1.1. Figure 1a shows a “3D maze” example originating from [BCG*22]. The maze
consists of “rooms” that are connected by “corridors”. The rooms come in four colours: white,
black, green, and red for only one room. The cells of white, black, green, red rooms satisfy
(only) predicate letter white, black, green, red, respectively. Predicate letter corridor
is satisfied by (all and only the cells of) corridors. The green rooms are all situated at the
outer boundary of the maze and represent the surroundings of the maze that can be reached
via an exit. The white, black, and red rooms and related corridors are situated inside the
maze and form the maze itself. Figure 1b shows all the white and black rooms. Figure 1c
shows the red room. The corridors between rooms are dark grey. Valid paths through the
maze should only pass by white/red rooms and related corridors to reach a green room
without passing by black rooms or corridors that connect to black rooms. All the images
shown in Figure 1 are generated by PolyLogicA and can be visualised (and inspected by)
PolyVisualizer: the result of a model checking session is presented by showing an image
where the cells that satisfy the formula of interest are shown opaque, while the rest of the
image is shown transparent in the background. For instance, in Figure 1b the result of model
checking the simple SLCS, formula black V white by PolyLogicA is shown, and similarly
for Figure 1c and formula red. L]

SLCS, can express spatial properties of points lying in polyhedral models, and, in
particular, conditional reachability properties. Besides negation and conjunction, SLCS,
provides the ~ reachability operator. Informally, a point x in a polyhedral model satisfies
the conditional reachability formula v(®1, ®9) if there is a topological path starting from x,
ending in a point y satisfying ®s, and such that all the intermediate points of the path between
z and y satisfy ®;. Note that neither x nor y is required to satisfy ®;. Many interesting
properties, such as proximity (in the topological sense, i.e. “being in the topological closure
of”) or “being surrounded by” can be expressed using reachability (see [BCGT22]).

Moreover, in [BCGT22| simplicial bisimilarity (denoted by ~, in the sequel) has been
proposed for polyhedral models, and it has been shown that it enjoys the Hennessy-Milner
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Property (HMP) with respect to SLCS,. In [CGL"23a| £-bisimilarity (denoted by ~4 in the
sequel) has been proposed for cell poset models, that also enjoys the HMP for SLCS,.

In this paper we introduce a weaker version of conditional reachability, denoted by 7.
A point z in a polyhedral model satisfies the conditional reachability formula n(®;, ®9) if
there is a topological path starting from z, ending in a point y satisfying ®5, and x and all
the intermediate points of the path between z and y satisfy ®;. Thus now z is required
to satisfy ®;. The operator n can be expressed using v and we will show that the logic
where v has been replaced by n — SLCS,,, in the sequel — is strictly weaker than SLCS, in
the sense that it distinguishes fewer points than SLCS,. Furthermore, as mentioned above,
SLCS,, can express proximity — that boils down to the standard possibility modality < in
the poset model interpretation — whereas SLCS,, cannot. We show that the mapping from
a polyhedral model to its cell poset model preserves and reflects SLCS,: a point satisfies a
formula of SLCS,, if and only if the cell which it is mapped to satisfies the formula?. This
result paves the way to the definition and implementation of model checking techniques for
SLCS;, on polyhedral models, by working on their discrete representations.

Model reduction for cell poset models, as a means for improving model checking efficiency
is our main concern in the present work. In particular, we are interested in techniques
based on spatial bisimilarity. For that purpose we introduce weak simplicial bisimilarity
on polyhedral models (=) showing that it enjoys the HMP with respect to SLCS, — =~
coincides with the logical equivalence =, as induced by SLCS, — and a notion of bisimulation
equivalence for cell poset models, namely weak +-bisimilarity (~4, to be read as ‘weak
plus-minus’ bisimilarity) such that two points in the polyhedral model are weakly simplicial
bisimilar if and only if their cells are weakly +-bisimilar. We show that also on cell poset
models the HMP holds: ~ coincides with =,,.

The reason why we are interested in SLCS,, is that it characterises bisimilarities — in
the polyhedral model and the associated poset model — that are coarser than simplicial
bisimilarity and +-bisimilarity, respectively (thence the adjective “weak” in the names of the
two bisimilarities). This allows for greater model reduction, as we will see, for instance, in
Example 4.14 and Figure 7. At the same time, interesting reachability properties can be
expressed in SLCS,,, as shown, for instance, by the following example.

Example 1.2. Let us consider again the polyhedral model of Figure 1la. Suppose we are
interested in all those white rooms from which an exit (i.e. green room) can be reached
without passing by black rooms or corridors connected to black rooms. Moreover, we want
to know which route — in the sense of rooms and corridors — one can follow from each
such white room for reaching an exit. We start by defining some auxiliary formulas: a cell
satisfies formula n(corridor, white) A —n(corridor, green V black V red) if it belongs to a
corridor and from such a cell only (cells of) white rooms — i.e. neither green, nor black, nor
red — can be reached via the corridor. For the sake of readability, we name such a formula
CorWW. Formula CorWG, defined as n(corridor, white) A n(corridor, green), is satisfied by
those cells of corridors between white and green rooms. Next, we define formula WtG that
characterises the cells of white rooms, corridors between white rooms, and corridors between
white and green rooms, by which one can reach a green room, i.e. without passing by black
rooms or corridors connected to black rooms: WtG = n((white V CorWW V CorWG), green).
Keeping in mind that in the answer to our model checking query we want to see the green exits

2A similar feature was shown to hold for SLCS., in [BCGT22].
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(A) (B) (c)

FIGURE 2. Spatial model checking results of the properties Q1 (2a), Q2 (2b)
and Q3 (2c¢) for the 3D maze of Figure 1. (source: [BCG22]).

as well, we define the complete query Q1 by WtG V n(green, WtG). The result of PolyLogicA
applied on Q1 and the “maze” is shown in Figure 2a.

Suppose now we are interested in showing the white rooms, and connecting corridors,
from which both a green room and the red room can be reached, without having to pass by
black rooms (and related corridors), i.e. we want to show if and how one can reach an exit
from the red room. The relevant query Q2 is given by the formula 7((Q1 V CorWR),red) V
n((red V CorWR), Q1) where CorWR stands for n(corridor, white) A n(corridor,red). The
result of the model checking session is shown in Figure 2b.

Finally, Figure 2c shows the white rooms, and related corridors, from which it is not
possible to reach a green room without having to pass by a black room and is the result of
model checking the formula Q3 defined as (white V CorWW) A —WtG. s

Building upon the theoretical results for SLCS,;,, weak simplicial bisimilarity and weak
+-bisimilarity, we introduce a minimisation procedure based on weak +-bisimilarity, namely
weak +-minimisation. The procedure uses an encoding of cell poset models into labelled
transition systems (LTSs) following an approach that is similar to that presented in [CGL*23b|
for finite closure models. More precisely, in the case of cell poset models, there is a one-to-one
correspondence between the states of the LTS and the cells of the poset model. It is shown
that two cells are weakly +-bisimilar in the poset model if and only if they — as states of
the encoded LTS — are branching bisimulation equivalent. This provides an effective way
for computing the equivalence classes for the set of cells, from which the minimal model
is built, on which SLCS,, model checking can be safely performed. In fact, efficient LTS
minimisation tools are available for branching bisimulation, such as the one provided by the
mCRL2 toolset [GJKW17]. As we will see in Section 7, this can lead to a drastic reduction of
the size of the spatial model, thus increasing the practical efficiency of spatial model checking.
Figure 3a shows an example of a maze, composed of 6,145 cells of three colours: white, green,
and grey — for corridors. This model is reduced to an LTS consisting of only 38 states, which
is a reduction of two orders of magnitude. The different white, green and grey states of the
minimised LTS represent the various equivalence classes of cells in the original polyhedral
model. Even if this is a synthetic example, chosen on purpose for its symmetry properties, it
illustrates the potential of the approach. Figure 3b only gives a first visual impression of
spatial minimisation for polyhedra. We postpone the discussion of the details to Section 7.
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(B) Minimal LTS

FIGURE 3. A maze (3a) and its respective minimal LTS (3b).

In conclusion, in the present paper, we focus on model reduction — as a way of improving
model checking efficiency — and spatial reachability — rather than prozimity. In particular,
we are interested in a framework for model reduction with the following features:

(1) It should be sound and complete, i.e. be based on a notion of bisimilarity that enjoys the
Hennessy-Milner Property (HMP) so that completeness and soundness of the optimised
model checking procedure — via model reduction — are guaranteed.

(2) It should be optimal with respect to the logic of interest, in the sense of yielding the
minimal model with respect to the equivalence induced by the logic of interest, but also
a useful one. In this respect we have been inspired by the use of branching bisimilarity
in the context of LTSs: branching bisimilarity — that is weaker than strong bisimilarity

— enjoys the HMP with respect to CTL* without X (next) — that is weaker than full

CTL* — and both the equivalence and its logical characterisation are widely used in
concurrency theory and its applications. In essence, weak simplicial bisimilarity in the
context of spatial logic is a re-interpretation in space of branching bisimilarity in the
context of temporal logic. Similarly, SLCS,, can be seen as the spatial counterpart of
CTL*\ X.

(3) It should exploit existing tools for minimisation via bisimulation, since at present pow-
erful and efficient model minimisation techniques and tools are available for branching
bisimilarity minimisation.

As we mentioned above, the fact that logical equivalence =, is coarser than =, implies
that poset model minimisation modulo =, results in models that can be smaller than those
obtained modulo =,, and this is one reason why we focus on SLCS,, in the present paper. As
is to be expected, we do not have a general measure of the “gain”, in terms of percentage of
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reduction in the number of cells of the input models, when using =, instead of =,, because
this depends on the specific model.

Furthermore, we show that SLCS,, is of interest for reasoning about reachability, which
is an essential feature in topological structures, as illustrated by the examples presented
in this paper. There are also additional notions that can easily be expressed using the 7
modality such as “double reachability” and “being surrounded”. The former are properties
like “there is a path (from the point of interest) reaching — while passing only through points
satisfying ®; — a point satisfying ®9 that can (also) be reached from a point satisfying @3
via a path passing through points satisfying ®5”. By exploiting the non-directionality of
topological paths, this can be expressed by the following SLCS,, formula:

n(®1, (P2, 3)).

A formula like the above can be used for modelling an emergency egress situation — e.g. in
a building modelled as a polyhedral model — in which, for instance, ®; characterises points
in a building (such as the one schematised by the polyhedral model shown in Figure 1) that
are accessible to somebody to be rescued in that building (including the place where the
person is located), but are not accessible to a rescue team; ®3 characterises the place where
the rescue team is located while ®9 characterises points that are accessible to the rescue
team (here we assume that ®3 implies @9 — if not, just replace ®3 with &3 A ®3). The team
and those to be rescued can thus meet in a point satisfying the nested n-formula 7(®q, ®3).

The notion of “being surrounded” can be expressed using the n modality as described below.
We say that starting from a point x that satisfies ®; one cannot “escape” from ®; without
“passing through” ®s — i.e. is “surrounded” by ®o — if any path starting from x and reaching
a point that does not satisfy ®; must first pass through ®s. More precisely, x must satisfy
®; and there is no path from x leading to a point satisfying neither ®; nor ®, without first
passing through a point satisfying ®3. In SLCS,, this is captured by the following formula:

b1 A —|77(—|q)2, —|((I)1 V CI)Q))

Note that if x itself satisfies ®9, then starting from x one cannot escape from ®; without
passing through ®,.3
Below, we summarise the main contributions of this paper:

e presentation of SLCS,, a spatial logic for polyhedral models which is weaker than SLCS.;

e introduction of weak simplicial bisimilarity on polyhedral models (/,) and showing that it
enjoys the HMP with respect to SLCS,;

e introduction of weak +-bisimilarity on cell poset models (~1) with the corresponding
HMP result;

e introduction of a novel cell poset model minimisation procedure based on weak +-
bisimilarity — and exploiting an encoding to LTSs and branching bisimilarity — including
the formal proof of its correctness;

e proof-of-concept of the practical potential and effectiveness of this approach through a
prototype toolchain and spatial model checking examples. It is shown that the cell poset
models can be drastically reduced by several orders of magnitude.

3As we will see in Section 3, the spatial properties discussed above can be expressed also in SLCS, (see
Lemma 3.5).
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The first three items above have been presented originally in [BCG*24a| where only
some of the proofs of the relevant results where shown: in the present paper, all proofs are
presented in detail. The last two items above are original contributions.

The paper is structured as follows. We provide a summary of necessary background
information in Section 2. Section 3 introduces SLCS;, and addresses its relationship with SLCS,.
It is also shown that SLCS, is preserved and reflected by the mapping F from polyhedral
models to finite cell poset models. Weak simplicial bisimilarity and weak +-bisimilarity
are defined in Section 4 where it is also shown that they enjoy the HMP with respect to
the interpretation of SLCS,, on polyhedral models and on finite poset models, respectively.
The minimisation procedure, based on weak +-bisimilarity and exploiting its relationship
with branching bisimulation equivalence, is defined in Section 5 where its correctness is also
addressed. The procedure is currently implemented by means of an experimental toolchain
using mCRL2 and is introduced in Section 6. Examples of use of the toolchain are presented
in Section 7. Conclusions and a discussion on future work are reported in Section 8.

Finally, in Appendix A detailed proofs are provided and, in Appendix B, an additional
minimisation example is shown.

2. BACKGROUND AND NOTATION

In this section we introduce notation and recall necessary background information, the
relevant details of the language SLCS., its polyhedral and poset models, the truth-preserving
map F between these models, simplicial bisimilarity and 4-bisimilarity.

For sets X and Y, a function f : X — Y, and subsets A C X and B C Y we define f(A)
and f~Y(B) as {f(a)|a € A} and {a| f(a) € B}, respectively. The restriction of f on A is
denoted by f|A. The powerset of X is denoted by 2%. For a binary relation R C X x X
we let R~ = {(y, )| (x,y) € R} denote its converse and let R* denote R U R™. For partial
orders =< we will use the standard notation > for <~ and « < y whenever < y and x # y
(and similarly for = > y). If R is an equivalence relation on A, we let A/R denote the
quotient of A via R. In the remainder of the paper we assume that a set PL of proposition
letters is fixed. The sets of natural numbers and of real numbers are denoted by N and R,
respectively. We use the standard interval notation: for x,y € R we let [z, y]| be the set
{reR|z<r <y}, [x,y) ={r € R|z <r <y}, and so on. Intervals of R are equipped
with the Euclidean topology inherited from R. We use a similar notation for intervals over N:
for n,m € N, [m;n| denotes the set {i € N|m < i <n}, [m;n) ={i e N|m <i<n}, and
so on. Finally, for topological space (X,7) and A C X we let Cr(A) denote the topological
closure of A.

Below we recall some basic notions, assuming that the reader is familiar with topological
spaces, Kripke models, and posets.

2.1. Polyhedral Models and Cell Poset Models. A simplex o of dimension d is the
convex hull of a set {vg,...,vq} of d+ 1 affinely independent points in R™, with d < m, i.e.
o={Xvo+...+Ava|Xo,-...,A\q €[0,1] and Zfzo A; = 1}. For instance, a segment AB
together with its end-points A and B is a simplex in R™, for m > 1. Any subset of the set
{vo,...,vq} of points characterising a simplex o induces a simplex ¢’ in turn, and we write
o' C o, noting that C is a partial order, e.g. AC AC AB, BC BC AB and ABC AB.

The barycentre b, of o is defined as follows: b, = Zg:o ﬁvi.
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The relative interior ¢ of a simplex o is the same as o “without its borders”, i.e. the
set {Aovo + ... + Agvd | Ao, .-, Ag € (0,1] and Z?:o Ai = 1}. For instance, the open
segment AB , without the end-points A and B is the relative interior of segment AB. The
relative interior of a simplex is often called a cell and is equal to the topological interior
taken inside the affine hull of the simplex.* A partial order is defined on cells: we say that
01 < oz if and only if o7 C Cp(o3) where, we recall, Cr denotes the topological closure
operator. It is easy to see that < is indeed a partial order. Note furthermore that C and <
are compatible, in the sense that o7 < o3 if and only if o1 C 9. In the above example, we
have A < A< AB,B < B < AB, and AB < AB.

A simplicial complex K is a finite collection of simplexes of R™ such that: (i) if o € K
and ¢’ C o then also ¢/ € K;; (ii) if 0,0’ € K and o No’ # (), then cNo’ C o and cNo’ C o'.
The cell poset of simplicial complex K is (K, <) where K is the set {5 |0 € K}, and < is
the union of the partial orders on the cells of the simplexes of K.

The polyhedron |K| of K is the set-theoretic union of the simplexes in K. Note that
| K| inherits the topology of R™ and that K forms a partition of polyhedron |K|. Note
furthermore that different simplicial complexes can give rise to the same polyhedron.

A polyhedral model is a pair P = (P, Vp) where P = |K| for some simplicial complex K
and Vp : PL — 2F maps every proposition letter p € PL to the set of points of P satisfying p.
It is required that, for all p € PL, Vp(p) is always a union of cells in K. A poset model is a
triple F = (W, %, Vr) where (W, X) is a poset that is equipped with a valuation function
Vr : PL — 2W. Given a polyhedral model P = (P, Vp) with P = |K]|, for some simplicial
complex K, we say that F = (W, <, Vr) is the cell poset model of P relative to K if and
only if W = K, (IN(, <) is the cell poset of K, and, for all o € K, we have: & € Vr(p) if
and only if ¢ C Vp(p). We will omit to specify “relative to K” if this is clear from the
context. For all z € P, we let F(z) denote the unique cell & € K such that 2 € 5. Note
that F(z) is well defined, since K is a partition of | K|, and that F : P — K is a continuous
function [BMMP18, Corollary 3.4]. With slight overloading, we let F(P) denote the cell
poset model of P. In the following, when we say that F is a cell poset model, we mean
that there exist a simplicial complex K and a polyhedral model P = (|K|, Vp) such that
F =F(P). Finally, note that poset models are a subclass of Kripke models.

Figure 4 shows a polyhedral model. There are three proposition letters, red, green, and
grey, shown by different colours (4a). The model is “unpacked” into its cells in Figure 4b.
The latter are collected in the cell poset model, whose Hasse diagram is shown in Figure 4c.

on
Q0
oty

e

D
(a) (®) ()

FIGURE 4. A polyhedral model Py (4a) with its cells (4b) and the Hasse
diagram of the related cell poset (4c).

4But note that the relative interior of a simplex composed of just a single point is the point itself and not
the empty set.
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FIGURE 5. (ba) A topological path 7 from a point z to vertex D in
the polyhedral model P, of Figure 4a. (5b) The corresponding +-path

(K, ABC’,/BT‘,E\CTD,ﬁ), in blue, in the Hasse diagram of the cell poset
model F(P). Note that the +-path does not pass through CD but it goes
directly from B/C\'E to D. This reflects the fact that, for small € > 0 we have
m(l—e¢) € BCD while m(1) = D and 7([0,1]) N CD = 0.

2.2. Paths. In a topological space (X, 7), a topological path from z € X is a total, continuous
function 7 : [0,1] — X such that 7(0) = z. We call 7(0) and m(1) the starting point and
ending point of m, respectively, while 7 (r) is an intermediate point of w, for all r € (0,1).
Figure 5a shows a path from a point z in the open segment AB to point D in the polyhedral
model of Figure 4a.

Topological paths relevant for our work are represented in cell posets by so-called +-paths,
a subclass of undirected paths [BCGT22|. For technical reasons’ in this paper we extend the
definition given in [BCG122| to general Kripke frames.

Given a Kripke frame (W, R), an undirected path of length ¢ € N from w is a total
function 7 : [0;¢] — W such that 7(0) = w and, for all i € [0;¢), R¥(n(i),n(i + 1)). The
starting point and ending point are 7(0) and m(¢), respectively, while 7(7) is an intermediate
point, for all i € (0;¢). For an undirected path 7 of length ¢ we often use the sequence
notation (w;)_, where w; = (i) for i € [0;¢].

Given paths 7’ = (wg)flzo and 7 = (wg’)flo, with wj, = wy{, the sequentialisation
o [0;0 + 0] — W of 7’ with 7" is the path from w{, defined as follows:

D (i), if i € [0: 0],
(m - 7)) :{ 77”((2')—6’), if[z' e][z';sz”].

For a path m = (w;){_, and k € [0;/] we define the k-shift of 7, denoted by 71k, as
follows: w1k = (wj+k)§;’f) and, for 0 < m < ¢, we let m<m denote the path obtained
from 7 by inserting a copy of m(m) immediately before m(m) itself. In other words, we have:
w—m = (w|[0;m]) - (m(m), 7(m)) - (7Tm)). Finally, any path =|[0; k], for some k € [0; ], is
a (non-empty) prefix of .

An undirected path 7 : [0;¢] — W is a +-path if and only if £ > 2, R(m(0),n(1)) and
R~ (m(¢—1),m(£)).

Example 2.1. The +-path (Zl\é,m, §6’, E&E, 5), drawn in blue in Figure 5b, passes
through the same cells, and in the same order, as the topological path from « in the polyhedral
model Py of Figure 4 shown in Figure 5a (source [CGL123a]). )

SWe are interested in model checking structures resulting from the minimisation, via bisimilarity, of cell
poset models, and such structures are often just (reflexive) Kripke models rather than poset models.
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Note that a topological path could, in principle, pass through some cells infinitely often.
Such paths are not relevant for our theory since they play no role in the semantics of the
logic and have no impact on weak simplicial bisimilarity, neither on the proofs of related
results and, consequently, we are not interested in representing them. We will come back to
this issue in Section 4.

In the context of this paper it is often convenient to use a generalisation of +-paths,
so-called “down paths”, |-paths for short: a |-path from w, of length £ > 1, is an undirected
path 7 from w of length ¢ such that R~ (w(¢ — 1),7(¢)). Finally, it is also convenient
to use a subclass of +-paths, namely f|-paths (to be read “up-down paths”): an 1 -path
from w, of length 2¢, for £ > 1, is a +-path 7 of length 2¢ such that R(w(2i),7(2¢ + 1)) and
R~ (m(2i 4+ 1), m(2i + 2)), for all ¢ € [0; 7).

Clearly, every 1]-path is also a +-path and every +-path is also a |-path. The following
lemmas ensure that in reflerive Kripke frames {]-, -, and |-paths can be safely used
interchangeably since for every +-path there is an 1]-path with the same starting and ending
points and with the same set of intermediate points, occurring in the same order (Lemma 2.2
below, proven in Appendix A.1). Furthermore, for every |-path there is a {|-path with the
same starting and ending points and with the same set of intermediate points, occurring in
the same order (Lemma 2.3 below, proven in Appendix A.2). Finally, for every |-path there
is a +-path with the same starting and ending points and with the same set of intermediate
points, occurring in the same order (Lemma 2.4 below, proven in Appendix A.3).

Lemma 2.2. Given a reflexive Kripke frame (W, R) and a +-path 7 : [0;¢] — W, there is
a f-path 7' : [0;0] = W, for some £, and a total, surjective, monotonic non-decreasing
function f :[0;0'] — [0;£] such that ©'(§) = w(f(j)) for all j € [0;¢]. []

Lemma 2.3. Given a reflexzive Kripke frame (W, R) and a |-path 7 : [0;£] — W, there is
a f-path @ : [0;0"] — W, for some ', and a total, surjective, monotonic non-decreasing
function f:[0;0'] = [0; €] such that ©'(§) = w(f(j)) for all j € [0;¢]. []

Lemma 2.4. Given a reflexzive Kripke frame (W, R) and a |-path 7 : [0;¢] — W, there is
a +-path @' : [0;0"] — W, for some ', and a total, surjective, monotonic, non-decreasing

function f :[0;0'] — [0; €] with ©'(§) = w(f(j)) for all j € [0;]. []

2.3. The Logic SLCS, and Related Bisimilarities. In [BCG'22|, SLCS,, a version of
SLCS for polyhedral models, has been presented that consists of predicate letters, negation,
conjunction, and the single modal operator -, expressing conditional reachability. The
satisfaction relation for v(®1,®s), for a polyhedral model P = (P, Vp), with P = |K]| for
some simplicial complex K, and x € P, as defined in [BCG'22], is recalled below:

P,z = v(P1,P2) < a topological path 7 : [0,1] — |K| exists such that 7(0) = z,
P,n(1) = ®2,and P, 7(r) = &4 for all r €(0,1).
We also recall the interpretation of SLCS, on poset models. The satisfaction relation for
v(®1, Pg), for a poset model F = (W, <, Vr) and w € W, is as follows:
F,w = vy(®1,P2) <  a t-path 7w :[0;¢] - W exists such that 7(0) = w,
F,m(l) | ®2,and F,w(i) = @y for all i €(0;).
In [BCGT22] it has also been shown that, for all € P and SLCS,, formulas ®, we have:
P,z | @ if and only if F(P),F(z) E ®. In addition, simplicial bisimilarity, a novel
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notion of bisimilarity for polyhedral models, has been defined. It is based on the notion of
stmplicial path: given a polyhedral model P = (P, Vp), with P = |K| for some simplicial
complex K, a topological path 7 in P is simplicial if and only if there is a finite sequence
ro=0<...<rp=1of values in [0,1] and cells &1,...,5 € K such that, for all i € [1; k]
we have that 7((r;_1,7;)) C ;.9

Definition 2.5. Given a polyhedral model P = (P, Vp), with P = |K| for some simplicial
complex K, a symmetric binary relation Z C P x P is a simplicial bisimulation if, for all
x1,x2 € P, whenever Z(x1,x2) holds, we have that:

(1) Va'(z1) = V5! (22) and
(2) for each simplicial path 7; from z; there is a simplicial path 7y from x9, such that
Z(m1(r),ma(r)) for all r € [0,1].

Two points x1,x9 € P are simplicial bisimilar, written xq NE T9, if there exists a simplicial
bisimulation Z such that Z(z1, z2). o

It has been shown that simplicial bisimilarity enjoys the classical Hennessy-Milner
property: two points z1,x2 € P are simplicial bisimilar if and only if they satisfy the same
SLCS, formulas, i.e. they are equivalent with respect to the logic SLCS.,, written x; 57; 9.

The result has been extended to +-bisimilarity on finite poset models, a notion of
bisimilarity based on +-paths: given finite poset model F = (W, %, Vr), wy,ws € W are
+-bisimilar, written x1 ~f 9, if and only if they satisfy the same SLCS, formulas, i.e.

7 9 (see [CGL*23a for details). In summary, we have:

il E’Y

F(P) F(xy) iff F(z1) ~5) F(z2).

il Nf €T iff I P i) iff ]F(:Cl) E'y

=

In Section 4 we show a similar result for a weaker logic introduced in the next section, and
originally presented in [BCG'24al. Finally, in [BCG™22] it has been shown that the classical
modality < can be expressed using . We recall that for polyhedral model P = (P, Vp) and
for poset model F = (W, <, Vr), the semantics of ¢ is defined as follows:

PaxECP & zelr{a’eP|P,2d/ =D}

F,wkE 0P & w €W exists such that w < w’ and F,w' = ®.

It turns out that O@ is equivalent to y(®, true), for all SLCS, formulas ®.
We close this section with a small example.

Example 2.6. With reference to Figure 4a, we have that no red point, call it y, in the
open segment C'D is simplicial bisimilar to the red point C. In fact, although both y and C
satisfy v(green, true), we have that C satisfies also y(grey, true), which is not the case
for y. Similarly, with reference to Figure 4c, cell C satisfies ~v(grey, true), which is not
satisfied by CD. &

6Essentially, simplicial paths have been introduced for avoiding to have to deal with “bad” paths, e.g.
paths that can oscillate infinitely often between a set of cells.
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2.4. Labelled Transition Systems and Related Bisimilarities.

Definition 2.7. A labelled transition system, LTS for short, is a tuple (S, L, —) where S is
a non-empty set of states, L is a non-empty set of transition labels and —C S x L x S is
the transition relation. °

For 7 € L denoting the “silent” action we let ¢ s ¢ whenever t = t' or there are
to,...,tn, for n > 0 such that tg = t, t,, = t' and t; — t;41 for i € [0;n).

Definition 2.8 (Strong Bisimulation and Strong Equivalence). Given an LTS S = (S, L, —)
a binary relation B C S x S is a strong bisimulation if, for all s1,se € S, if B(s1,s2) then
the following holds:

(1) if 51 2, sy for some X and si, then s4 exists such that so 2, sh and B(s], s), and

(2) if s9 2, sh for some X\ and sg, then s| exists such that s; 2, sy and B(s], sb).

We say that s; and sy are strongly equivalent in S, written s; ~° s if a strong bisimulation

B exists such that B(sy, s2). o

It has been shown that ~5 is the union of all strong bisimulations in S, it is the largest
strong bisimulation and it is an equivalence relation [Mil89].

Definition 2.9 (Branching Bisimulation and Equivalence). Given an LTS S = (S, L, —)
such that 7 € L a binary relation B C S x S is a branching bisimulation iff, for all s,t,s" € S,

and \ € L, whenever B(s,t) and s — s, it holds that: (i) B(s/,¢) and A = 7, or (ii)
B(s,t),B(s',t') and t — £, 1 2 t/, for some t,t' € S.

Two states s,t € S are called branching bisimilar in S, written s <:>§ t if B(s,t) for some
branching bisimulation B for S. °

It has been shown that <:>§ is the union of all branching bisimulations in S, it is the
largest branching bisimulation and it is an equivalence relation [GW96].
We will omit the superscript S in ~% and <:>§ when this will not cause confusion.

3. WEAK SLCS ON POLYHEDRAL MODELS

In this section we introduce SLCS,;, a logic for polyhedral models that is weaker than SLCS,,
yet is still capable of expressing interesting conditional reachability properties. We present
also an interpretation of the logic on finite poset models.

Definition 3.1 (Weak SLCS on polyhedral models - SLCS,;). The abstract language of SLCS,,
is the following:

P u=p| P | Q1 APy | n(P1, P2).
The satisfaction relation of SLCS,, with respect to a given polyhedral model P = (P, Vp),
with P = | K| for some simplicial complex K, SLCS,, formula ®, and point = € P is defined
recursively on the structure of ® as follows:

P.xlp & € Vp(p);
P,x = & P,z | @ does not hold;
P,:L’):q)l/\q)g = P,.%l:q)l andp,x):(ﬁg;
P,z En(P1,P2) < a topological path 7 : [0,1] — P exists such that
7(0) =z, P,7(1) E @2, and P, 7w(r) = @1 for all  €[0,1).
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Remark 3.2. It is worth pointing out that the definition of the satisfaction relation of SLCS,,
does not depend on the specific simplicial complex K that generates the polyhedron P = |K|.
In other words: given polyhedral models P’ = (P,Vps) with P = |K'| and P" = (P, Vpn)
with P = |K”| = |K’| and Vpr = Vpu, for all SLCS, formulas ® and x € P the following
holds: P,z |= @ iff P,z = ®. x*

As usual, disjunction (V) is derived as the dual of A. Note that the only difference
between n(®q, ®2) and v(Py, P2) is that the former requires that also the first element of a
path witnessing the formula satisfies ®1, hence the use of the left closed interval [0, 1) here.
Although this might seem at first sight only a very minor difference, it has considerable
consequences: 7 cannot express <, which, instead, can be expressed in terms of v (see
Remark 3.8 and Remark 3.18 below).

Definition 3.3 (SLCS,, Logical Equivalence). Given a polyhedral model P = (P, Vp), with
P = |K| for some simplicial complex K, and x1,z2 € P, we say that z1 and zy are logically
equivalent with respect to SLCS,,, written x; Eﬁ xg, if and only if, for all SLCS,, formulas ®,
it holds that P,z; = ® if and only if P, x2 = ©. o

In the following, we will refrain from indicating the model P explicitly as a superscript
of 55 when it is clear from the context. Below, we show that SLCS, can be encoded into
SLCS,, so that the latter is at least as expressive as the former.

Definition 3.4. We define the encoding & of SLCS,, into SLCS., as follows:

Ep) =rp E(@1NADy) = E(P1)NE(D2)
E(-P) = —&(P) EM(P1,®2)) = E(P1) Ay(E(P1),E(P2)) .

The following lemma is easily proven by structural induction on ® (see Appendix A.4).

Lemma 3.5. Let P = (P, Vp), with P = |K| for some simplicial complex K, be a polyhedral
model, x € P, and ® a SLCS,, formula. Then P,z = ® if and only if P,x |= E(P). (]

A direct consequence of Lemma 3.5 is that SLCS, is weaker than SLCS,.

Proposition 3.6. Let P = (P,Vp), with P = |K| for some simplicial complex K, be a
polyhedral model. For all x1,x9 € P the following holds: if 11 = x2 then x1 =, 2. ]

Remark 3.7. The converse of Proposition 3.6 does not hold, as shown by the polyhedral
model Ps = (Ps, Vp,y) in Figure 6a, where Py is the simplex Kg generated by points A, B,
and C, i.e. the triangle ABC, and Vp, is specified by the colours in the figure. It is easy

to see that, for all x € 21\36, we have A #, v and A =, x. Let, in fact, x € ABC. Clearly,
A #, x since Ps, A |= y(red, true) whereas Ps, x [~ vy(red, true). It can easily be shown,

by induction on the structure of formulas, that A =, x for all x € ZEE (see Appendix A.5).
As an additional, a bit more complex, example, let us consider the polyhedral model Py of

Figure 4. It is easy to see that every x € CE satisfies ~(green, true), while for no y € DEF
we have P4,y |= y(green, true). So, for all such x and y, we have  #, y. On the other

hand, as we will see in Example 4.14 of Section 4 (on page 21), cells CE and DEF will fall
in the same equivalence class of =, on F(P4) and so, by Theorem 3.20 below — guaranteeing
that SLCS,, is preserved and reflected by mapping F — and Theorem 5.11 of Section 5 —
stating correctness of &-minimisation — we get that # =, y. The above reasoning can be

e~

generalised to any pair of points = € DUE UCE UDE and Yy € F U DF UEF U DEF:
we have x =, y but z #, v. *
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(a)

FIGURE 6. A polyhedral model (6a) Pg, and the Hasse diagram of its cell
poset model (6b).

Remark 3.8. The example of Figure 6a is useful also for showing that the classical topological
interpretation of the modal logic operator & cannot be expressed in SLCS,,. Clearly, in the

model of the figure, we have Pg, A = Ored while Pg, x |= Ored for no x € ABC. On the
other hand, A =, z holds for all x € ABC, as we have just seen in Remark 3.7. So, if ¢
were expressible in SLCS,;, then A and x should have agreed on ¢red for each x € ABC. %

Below, we re-interpret SLCS,, on finite Kripke models instead of polyhedral models. The
only difference from Definition 3.1 is, of course, the fact that n-formulas are defined using
+-paths instead of topological ones.

Definition 3.9 (SLCS,, on finite Kripke models). The satisfaction relation of SLCS, with
respect to a given finite Kripke model K = (W, R, Vx), an SLCS,, formula ®, and an element
w € W, is defined recursively on the structure of ®:

K,awkEp & we Ve(p);
K,wE -® & Kow fE
K,wE®P AP, & KwlE® and K,wE $y;
K,wl=n(®,P2) < at-path 7:[0;¢] — W exists such that
m(0) = w, K,7m(f) = @2, and K, 7(i) = ®y for all i € [0;¢). o

Remark 3.10. We recall here that £-paths are defined on general Kripke frames, of
which finite posets are a subclass. The reason why in Definition 3.9 we use finite Kripke
models, instead of restricting it to finite poset models, stems from the fact that the result
of minimisation of a finite poset model, modulo weak +-bisimilarity, is, in general, not
guaranteed to be again a poset model, whereas it is guaranteed to be a (reflexive) finite
Kripke model. As we will see in Section 5, the fact that the minimal model is not necessarily
a poset model does not affect correctness of the minimisation procedure, and so it does not
constitute a problem for the optimised model checking method presented in this paper. In
the rest of this section, as well as in Section 4, we will anyway be interested in poset models,
so that we will restrict the relevant results to the latter. *

The following result, proven in Appendix A.6, states that to evaluate an SLCS,, formula
n(®1, P2) in a poset model, it does not matter whether one considers +-paths or |-paths.

Proposition 3.11. Given a finite poset model F = (W,<,Vr), w € W, and SLCS,, formulas

D1 and o, the following statements are equivalent:

(1) There exists a £-path © : [0;€] — W for some { with 7(0) = w, F,w({) = P2, and
F,m(i) |E @1 for all i € [0;4).
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(2) There exists a -path m : [0;0'] — W for some ¢ with w(0) = w, F,n({') = ®2, and
F,m(i) = ®1 for alli € [0; ). []

Definition 3.12 (Logical Equivalence). Given a finite poset model F = (W, %, Vr) and
elements wi,ws € W we say that wy and wy are logically equivalent with respect to SLCS,),

written wy Enf wy, if and only if, for all SLCS,, formulas @, it holds that F,w; = ® if and
only if F,wy = ®. °

Again, in the following, we will refrain from indicating the model F explicitly in En}—

when it is clear from the context. It is useful to define a “characteristic” SLCS,, formula y(w)
that is satisfied by all and only those elements w’ with w’ =, w, as shown in Appendix A.7.

Definition 3.13. Given a finite poset model F = (W, %, Vr), wi,ws € W, define SLCS,,
formula 0y, 1w, as follows: if wy =, wa, then set 4y, v, = true, otherwise pick some SLCS,
formula 1 such that F,w; = ¢ and F,wy = =, and set 0y, 1w, = 9. For w € W define

X(w) = /\w/EW 510,“’" i
Proposition 3.14. Given a finite poset model F = (W, %, V), for wi,wy € W, it holds
that F,ws |= x(w1) if and only if wy =, ws. L]

The following lemma is the poset model counterpart of Lemma 3.5 (see Appendix A.8):

Lemma 3.15. Let F = (W, <, VF) be a finite poset model, w € W, and ® an SLCS,, formula.
Then F,w = @ if and only if F,w = E(P). ]

Thus we get, as for the interpretation on polyhedral models, that SLCS,, on finite poset
models is weaker than SLCS,:

Proposition 3.16. Let F = (W, <, Vr) be a finite poset model. For all wi,wy € W the
following holds: if wi =, wa then wy =, ws. L]

Remark 3.17. As expected, the converse of Proposition 3.16 does not hold, as shown by
the poset model F(Pg) of Figure 6b. Clearly, A Fy ABC. In fact F(Ps), A |= v(red, true)
whereas F(Pg), ABC = v(red, true). On the other hand, it can be easily shown, by induction
on the structure of formulas, that A =, ABC (see Appendix A.9). With reference to the

of Section 4, we have that D, E, F',CE,DE, DF, EF, and DEF are all equivalent according
to weak +-bisimilarity. We invite the reader to check that, letting ¢q, ¢1, @2, 1, Y2, 13, and
14 be defined as

¢o = y(green, true) Y1 = o
¢1 = v(—¢o, true) Yo = g A 21
$2 = v(¢o A ~¢1, true) Y3 = 1 A d1 Ao

Yy = ¢o NP1 N\ P2

we have

P, DF = —¢o, and the same holds for l/)ﬁ, EF and ﬁ,
P1,CE =~y A1,

Pa, DE |= ~¢o A ¢1 A =2, and

Py, E = =do A ¢1 A b2

As a consequence, each of 11,19, 93, and 14 cannot be true in conjunction with any of the
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others and so, the classes {DF DEF EF FY, {C’E} {DE} and {E} must definitely be
distinct in the quotient of Wy modulo =,. *

Remark 3.18. As for the case of the continuous interpretation of SLCS,, the example
of Figure 6b is useful also for showing that the classical modal logic operator ¢ cannot
be expressed in SLCS,. Clearly, in the model of the ﬁgure we have F(Pg), A = Ored

while F(Ps), ABC i~ Ored. On the other hand A = ABC hOldb as we have just seen in

Remark 3.17. So, if & were expressible in SLCS,, then A and ABC should have agreed on
Ored. *

The following result, proven in Appendix A.10, is useful to set up a bridge between the
continuous and the discrete interpretations of SLCS,,.

Lemma 3.19. Given a polyhedral model P = (P,Vp), with P = |K| for some simplicial
complex K, for all & € P and formulas ® of SLCS,, the following holds: P,z = ® if and only

ifF(P),F(z) E (D). []
As a direct consequence of Lemma 3.15 and Lemma 3.19 we get, by Theorem 3.20 below,
proven in A.11, the bridge between the continuous and the discrete interpretations of SLCS,;:

Theorem 3.20. Given a polyhedral model P = (P, Vp), with P = |K| for some simplicial
complex K, for all x € P and formulas ® of SLCS,, it holds that: P,z |= ® if and only if

F(P),F(z) |= . O

This theorem allows one to go back and forth between the polyhedral model and the
corresponding poset model without losing anything expressible in SLCS,,.

4. WEAK SIMPLICIAL BISIMILARITY

In this section, we introduce weak versions of simplicial bisimilarity and +-bisimilarity and
we show that they coincide with logical equivalence induced by SLCS;, in polyhedral and poset
models, respectively. We are looking for a notion of bisimilarity that enjoys the HMP with
respect to SLCS,, i.e. that coincides with =,. We already know that simplicial bisimilarity
~ enjoys the HMP with respect SLCS,, i.e. ~, ==, and, moreover, that =, is weaker than
=,. Here, by “weaker” we mean coarser, i.e. one that includes simplicial bisimilarity, in the
sense of set inclusion, =, C =,,.

A natural step in the search for such a notion of bisimilarity is to reconsider the definition
of simplicial bisimilarity, recalled in Section 2.3 (see Definition 2.5), and seek to weaken its
conditions. Of course, the first condition cannot be relaxed in any meaningful way: equivalent
points must at least satisfy the same predicate letters. Let us thus focus on the second
condition, namely the one concerning topological paths. The condition requires that as “one
moves on” 7y using cursor r, the corresponding point on 71, i.e. m(r), must be related by
Z to the current point in mo, namely mo(r). The points in w2 and 71, while one moves the
cursor 7, must go “hand in hand” in Z.

One way of relaxing the above condition is to require only that (2.a) the ending points
of w1 and my are related — i.e. Z(m1(1),m2(1)) — and (2.b) for each other point ys of 7o,
there is a point y; of mp, different from 71 (1), such that y; and ys are related — i.e. for each
ro € [0,1) there is 7 € [0,1) such that Z(71(r1), m2(r2)).

Interestingly, it turns out that the bisimilarity induced by a definition of bisimulation
relation where condition (2) is relaxed as above, coincides exactly with =,, the logical
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equivalence induced by SLCS,! In practice, we do not even need the notion of simplicial path,
in the sense that the actual definition, given below, is based on general topological paths
and characterises an equivalence relation — which we call weak simplicial bisimilarity, ~, —
that coincides with =, as guaranteed by Theorem 4.9. The proof of this theorem, as well as
those of all results related to ~,, does not require the use of simplicial paths.

Definition 4.1 (Weak Simplicial Bisimulation). Given a polyhedral model P = (P, Vp),
with P = | K| for some simplicial complex K, a symmetric relation Z C |K|x|K| is a weak
simplicial bisimulation if, for all x1,x9 € | K|, whenever Z(x1,x2), it holds that:

(1) Vo' ({z1}) = Vo' ({z2});

(2) for each topological path m from x1, there is a topological path my from x9 such that
Z(m1(1),m2(1)) and for all o € [0, 1) there is 71 € [0,1) such that Z (w1 (r1), m2(r2)).
Two points x1,z2 € P are weakly simplicial bisimilar, written z; ~% z9, if there is a weak
simplicial bisimulation Z such that B(z1, z2). .

Example 4.2. With reference to Figure 6a, the binary relation Z composed of all those
pairs of points that have the same colour, i.e.

Z:(Eu%u@)%@w\(@U%umf)

is a weak simplicial bisimulation. Take, for example, any pair (z,y) € ABx BC'": both x and y
satisfy only one predicate letter, namely red. In addition, let 7, be any topological path
starting from x and such that 7,(1) is red. Then it is easy to see, just by visual inspection,
that one can find a path 7, from y such that m,(1) is red and, for each intermediate point
of m, there is in 7, an intermediate point of the same colour. The reasoning for the case
in which 7, (1) is blue is similar. Thus z ~, y. The reasoning can be extended to all pairs
in Z: actually =, coincides with Z for the polyhedral model of Figure 6a.

As an additional example, let us consider the polyhedral model P4 of Figure 4a and
points A and D therein. It is easy to see that there is no weak simplicial bisimulation Z such
that Z(A, D). Suppose such a Z exists. Take 71 from D such that, 71 (r) = D for all r € [0, 7],

and () C m1((7,1]) € CDE, for some 7 € (0,1). Clearly, any 7 from A should be such that

—_—

ma(1) € CDE, otherwise Z(mi(1),m2(1)) would not hold. But any topological path starting

—_~—

from A and ending in C'DFE would necessarily pass by red points, and for any such red point
ma(re) for some ry € (0,1) there would be no 1 € (0,1) such that Z(m1(r1), m2(r2)), since no
point of 7y is red. As one would expect, we have also that Py, D |= n(green V grey, green)
whereas Py, A [~ n(green V grey, green). &

Definition 4.3 below rephrases Definition 4.1 for finite posets and discrete paths and it
settles the finite poset counterpart of weak simplicial bisimilarity, namely weak +-bisimilarity,
a weaker version of +-bisimilarity introduced in [CGL*23a|. The second condition in the
definition deals with |-paths. In particular, for a weak 4-bisimulation Z on a poset model,
it is required that, for all nodes w;, wy of the poset, whenever Z (w1, ws), for each |-path
71 = (w1, uy,dy), there is a =-path” 7y from wsy of some length ¢5 > 2 such that (ii.a) the
ending elements of m; and w9 are related — i.e. Z(dy,m2(¢2)) — and (ii.b) for each other
element vy of 7y there is an element vy of 7y, different from 71 (2), such that v; and vy are
related — i.e. for all j € [0;£2), there is i € [0;2) such that Z(m (i), m2(j)). In other words,

"Recall that +-paths are a subclass of |-paths.
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since m1(0) = w; and 71 (1) = wy, it is required that Z(wi,m2(j)) or Z(u1,m2(j)) holds for
all 7 € [0;¢2). Note that it is sufficient to consider |-paths of length 2 starting from w;. As
shown by Theorem 4.12, the resulting relation ~, coincides with =,.

Definition 4.3 (Weak +-bisimulation). Given a finite poset model F = (W, <%, Vr), a

symmetric binary relation Z C W xW is a weak 4-bisimulation if, for all wi,we € W,

whenever Z(wy,ws), it holds that:

(1) V&' ({w1}) = V&' ({wa});

(2) for each uy,d; € W such that wy <* uy 3= dj there is a £-path 75 : [0;£3] — W from wo
such that Z(dy,m2(¢2)) and, for all j € [0;¢2), it holds that Z(wy,m2(j)) or Z(u1,m2(7)).

We say that wy is weakly #-bisimilar to wy, written wy a7 ws if there is a weak +-bisimulation
Z such that Z(wy,ws). .

For example, all red cells in the Hasse diagram of Figure 6b are weakly 4-bisimilar and
all blue cells are weakly +-bisimilar.

The following lemma shows that, in a polyhedral model P, weak simplicial bisimilarity ~%,
as given by Definition 4.1, is stronger than =, — logical equivalence with respect to SLCS,;:

Lemma 4.4. Given a polyhedral model P = (P,Vp), with P = |K| for some simplicial
P

complex K, for all x1,x9 € P, the following holds: if x1 ~, x2 then x1 =, x3. []
Proof. By induction on the structure of the formulas. We consider only the case n(®1, ®2).
Suppose x1 A~ x9 and P,z = n(P1, P2). Then there is a topological path m from x; such
that P,m1(1) E ®2 and P,m(r1) | 1 for all 1 € [0,1). Since 21 ~, 2, then there is
a topological path 7o from zo such that m(1) &, m2(1) and for each ro € [0,1) there is
r1 € 10,1) such that 7 (r]) &, m2(re). By the Induction Hypothesis, we get P, ma(1) = P9
and, for each ro € [0,1) P, ma(re) = ®1. Thus P,zo = n(P1, D3). []

Furthermore, logical equivalence induced by SLCS,, is stronger than weak simplicial-
bisimilarity, as implied by Lemma 4.8 below, which uses the following auxiliary lemmas,
proven in Appendix A.12, Appendix A.13, and Appendix A.14 respectively.

Lemma 4.5. Given a finite poset model F = (W,<,Vr) and weak *-bisimulation Z C
WxW, for all wy,ws such that Z (w1, ws), the following holds: for each |-path m : [0; k1] —
W from wy there is a |-path ma : [0; k2] — W from wa such that Z(m1(k1), m2(k2)) and, for
each j € [0; ka), exists i € [0; k1) such that Z(mi(i), m2(7)). ]

Lemma 4.6. Given a polyhedral model P = (P,Vp), with P = |K| for some simplicial
complexr K, and associated cell poset model F(P) = (W, <, Vg(py), for any -path  : [0;£] —
W, there is a topological path ' : [0,1] — | K| such that: (i) F(x'(0)) = 7(0), (it) F(7'(1)) =
7(0), and (iii) for all v € (0,1) exists i < £ such that F(7'(r)) = m(i). []

Lemma 4.7. Given a polyhedral model P = (P,Vp), with P = |K| for some simplicial
complex K, and associated cell poset model F(P) = (W, %, Vi(p)), for any topological path
7 :[0,1] — | K| the following holds: F(n([0,1])) is a connected subposet of W and there are
k>0 and a |-path & : [0;k] — W from F(w(0)) to F(m(1)) such that, for all i € [0;k),
r €10,1) exists with (i) = F(w(r)). ]

Lemma 4.8. In a given polyhedral model P = (P,Vp), with P = |K| for some simplicial
complex K, it holds that =, is a weak simplicial bisimulation.
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Proof. Let x1,x22 € |K| be such that x1 =, x2. The first condition of Definition 4.1 is
clearly satisfied since x1 =, z2. Suppose 1 is a topological path from z;. By Lemma 4.7,
F(m1([0,1])) is a connected subposet of K and a J-path #; : [0;k1] — K from F(m1(0))
to F(m1(1)) exists such that, for all ¢ € [0;k1), r1 € [0,1) exists with 71(i) = F(mi(r1)).
We also know that F(z1) =, F(x2), as a consequence of Theorem 3.20, since z; =, z2. In
addition, due to Lemma 4.11 below, we also know that F(z;) ~4 F(x2). By Lemma 4.5, we
get that there is a -path 7o : [0; k2] — K such that 71(k1) =5, 7r2(k2) and, for each j € [0; k2),
i € [0; k1) exists such that 71(i) =, 72(j). By Lemma 4.6, it follows that there is topological
path mo from xo satisfying the three conditions of the lemma and, again by Theorem 3.20,
we have that mo(1) =, m1(1). In addition, for any ro € [0, 1), since F(ma(r2)) = 72(j) for
J € [0;k2) (condition (ii) of Lemma 4.6) there is ¢ € [0; k1) such that 71 (i) =, 72(j). Finally,
by construction, there is r; € [0, 1) such that F(m(r1)) = 71(7). By Theorem 3.20, we arrive
at mi(r1) =, ma(ra2). []

On the basis of Lemma 4.4 and Lemma 4.8, we have that the largest weak simplicial
bisimulation exists, it is a weak simplicial bisimilarity, it is an equivalence relation, and it
coincides with logical equivalence in the polyhedral model induced by SLCS,;, thus establishing
the HMP for ~% with respect to SLCS,,

Theorem 4.9. Given a polyhedral model P = (P,Vp), with P = |K| for some simplicial

compler K, and x1,x2 € P, the following holds: x1 = 77 o if and only if x1 %E ws. []

Similar results hold for poset models. The followmg lemma shows that, in every finite
poset model F, weak - bisimilarity (Definition 4.3) is stronger than logical equivalence with
respect to SLCS,;, i.e. ~f C = —J:

Lemma 4.10. Given a finite poset model F = (W, <, VF), for all wy,wy € W, if wy ~F wy

then wi ]:wQ

Proof. By induction on formulas. We consider only the case n(®1, ®3). Suppose w; A4 wo
and F,w; = n(®q, P2). Then, there is (a £-path and so) a |-path m from w; of some
length k; such that F,m (k1) | ®2 and for all i € [0;k1) it holds that F,mi(i) E ®;.
By Lemma 4.5, we know that a |-path my from ws exists of some length ko such that
m1(k1) =4 ma(ks) and for all j € [0;ke) exists ¢ € [0;k1) such that m(i) =4 m(j). By
the Induction Hypothesis, we then get that F,ma(ke) = ®2 and for all j € [0; k2) we have
F,m2(j) = ®1. This implies that F, we = n(®q, Pa). L]

Furthermore, logical equivalence induced by SLCS,, is stronger than weak +-bisimilarity,
ie. E;;: C zi: , as implied by the following:
Lemma 4.11. In a finite poset model F = (W,<,Vr), = —77 1s a weak £-bisimulation.
Proof. If wy =, wy, then the first requirement of Definition 4.3 is trivially satisfied. We prove
that =, satisfies the second requirement of Definition 4.3. Suppose w1 =,, we and let w1, d; be
as in the above-mentioned requirement. This implies that F,w; = n(x(w1) V x(u1), x(d1)),
where, we recall, x(w) is the ‘characteristic formula’ for w as in Definition 3.13. Since
w1 =, wa, we also have that F,ws = n(x(w1) V x(u1), x(d1)) holds. This in turn means
that a |-path 72 of some length ko from wo exists such that F,ma(k2) = x(d1) and for all
j € [0:k2) we have F,ma(j) = x(wy) V x(u), ie. Foma(j) = x(wy) or F,ma(j) b ().
Consequently, by Proposition 3.14, we have: ma(k2) =, di and, for all j € [0; k2), m2(j) =, w1
or m(j) =, u1, so that the second condition of the definition is fulfilled. ]
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FIGURE 7. The minimal model F(Py4)min, modulo weak +-bisimilarity (7a),
and modulo £-bisimilarity (7b), of the cell poset model F(Py) of Figure 4c.
Note that the minimal model modulo +-bisimilarity is a poset model and so
it is represented by its Hasse diagram.

On the basis of Lemma 4.10 and Lemma 4.11, we have that the largest weak +-
bisimulation exists, it is a weak 4-bisimilarity, it is an equivalence relation, and it coincides
with logical equivalence in the finite poset induced by SLCS,;:

Theorem 4.12. For every finite poset model F = (W, %, Vr), w1, ws € W, the following

holds: wy E%: we if and only if wi ~F ws. L]

By this we have established the HMP for ~4 with respect to SLCS,,.

Recalling that, by Theorem 3.20, given polyhedral model P = (|K|, Vp) for all x € |K]|
and SLCS,, formula ®, we have that P,z |= ® if and only if F(P),F(x) = ®, we get the
following final result:

Corollary 4.13. Given a polyhedral model P = (P, Vp), with P = |K| for some simplicial
complex K, for all x1,x9 € P the following holds:

o1~ o iff 1 =7 mo iff Flan) =P F(a) iff Fla1) 257 F(as). O

This says that SLCS,-equivalence in a polyhedral model is the same as weak simplicial
bisimilarity, which maps by F to the weak +-bisimilarity in the corresponding poset model,
where the latter coincides with the SLCS,-equivalence.

In the example below, and in the sequel, whenever we show a graphical representation of
a minimal model in a figure, we use the following convention: each node of the Kripke model
is coloured according to the predicate letter satisfied by the cells belonging to the equivalence
class represented by the node — obviously, since all such cells are weakly +-bisimilar, they all
satisfy the same predicate letters® — whereas the colour of the border of the node identifies
the equivalence class itself, and is, therefore, unique within the model. Note that the colour
of the borders of the nodes have only an illustrative purpose. In particular, they are not
related to the colours expressing the evaluation of proposition letters.

Example 4.14. Figure 7a shows the minimal model F(P4)min, modulo 4, of the poset
model F(P,) shown in Figure 4c. F(Py)min is built using the procedure that will be de-
scribed in detail in Section 5. Note that F(P4)min is not a poset model, but it is a reflex-
ive Kripke model. As we can see in the figure, we have four equivalence classes. More

8In the examples, for the sake of readability, each cell satisfies a single predicate letter, namely its “colour”.
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spec1ﬁcally, the classes are: € = {A} represented by the grey node with orange border,

border, C’3 = {D E, F CE DE DF EF, DEF} represented by the grey node with brown

border, and, finally, C4 = {CDE }, represented by the he green node with violet border.

As we will see in Section 5, the fact that D < CD holds, with De C3 and CD e Co,
implies that (Cs,C3) belongs to the acce551b111ty relation Rmm of the Krlpke model F(Py)min-
Similarly, we have that the fact that C <CE holds, with C€Cyand CF € Cs, implies that
(C2,C3) € Rpin. With the same rationale, since D < D holds, we have that (Cs, C3) € Ruin.

Finally, since A< AB and C'D C’DE we get that {(C1,C2), (Ca,Cy4)} C Rpin whereas
we can see from Figure 7a that (C’l, C4) € Rmin- The presence of cycles as the above, as well
as the fact that transitivity of the accessibility relation is not guaranteed, imply that the
minimal model of a poset model, modulo =4, is not necessarily a poset model. Anyway, it is
guaranteed, by construction, to be a reflexive Kripke model.

Note that cell A of the poset model of Figure 4c is in a different equivalence class, namely
C1, than any other grey cell of the poset model: the latter cells belong to C3. In fact, it
is easy to see that there is no weak +-bisimulation Z such that Z(A,w) for any w € Cs.
This is because condition (2) of Definition 4.3 cannot be satisfied, as shown in the sequel.
Suppose for instance Z (;I 15) for some weak bisimulation relation Z. Then, with reference
to Definition 4.3, take wy = D and uy = dy = CDE: clearly w; <F u; = di. Any 7y from

A should end in CDE, otherwise B(d;,m2(¢2)) would not hold, since VF_(;%)(dl) = green

and Vp(p,)(green) = {51\)5} But any path from A and ending in CDE would necessarily
pass by a cell, say ma(j), for some j € (0;¢2) such that m(j) € VF(p4)(red) For such
a j we would have that neither Z(w1,m2(j)) would hold, since w; = D & Vg (py) (red),
nor Z(uy,m2(j)), for the same reason. So, there exists no weak +-bisimulation containing
(A,D). And, in fact, we also have that F(Py),D = n(green V grey,green) whereas
F(Py), A I~ n(green V grey, green).

As another example suppose Z (A DEF ) for some weak bisimulation relation Z and let

wy =up = DEF and dy = D. Any 79 from from A should necessarily end in a grey cell. But
such a cell cannot be A, since we already know that no +-bisimulation can contain (A D).
And, on the other hand, if m3(¢2) € C3, then we would have a similar problem as above, with
the unavoidable red elements of 9. From the logical perspective, we see that F(P,), DEF =
n(grey,n(green V grey, green)) whereas F(P4),g ¥~ n(grey,n(green V grey, green)).
The reasoning for all the other cases is similar. Finally, the reader can easily check that
both F(P4), D |= n(grey Vred,red) and F(Py), E = n(grey Vred, red). Actually, any grey
point satisfies the above formula.

Weak +-bisimilarity ensures that, for each £-path in the poset model, there is a
corresponding +-path in the minimal model and vice-versa. For/i\r_litance El\e_/ +-path
(Co, Oy, Co, Cs, C3) in the minimal model corresponds to +-path (AB, ABC, BC, BCD, 5) in
the poset model — witnessing, in both cases, F(P4), AB = n(red, grey). The correspondence,
of course, is not unlque for instance, the above £-path in the minimal model corresponds
also to the +-path (AB, ABC’ C,CD, D).

Finally, in Figure 7b the minimal model of F(P4) with respect to =, is shown. Note
that the minimal model is a poset model and, in fact, in the figure its Hasse diagram is
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shown. We have 10 equivalence classes, namely C’O ={B,AB,AC,BC,BD, ABC BC’D},
¢ = {CD}, ¢4y = {D}, Cy = {C}, C} = {CDE}, ¢ = {E}, C = {CE}, ¢} = {DE},
C{ = {F, DF,EF DEF} and Cj = {A}. )

5. BUILDING THE MINIMAL MODEL MODULO LOGICAL EQUIVALENCE

In this section we present a minimisation procedure for finite poset models modulo weak
+-bisimilarity or, equivalently, modulo =,. Given a finite poset model F = (W, <, V), the
procedure consists of three steps:

Step 1: The poset model F is encoded as an LTS denoted S¢(F). The set of states of S¢(F)
is W itself. The encoding is such that it is ensured that logically equivalent elements of F are
mapped into branching bisimilar states of S¢(F). Thus, for wi,ws € W that are logically
equivalent with respect to SLCS,, in the poset model F, i.e. wq =7 wy, we have that they are

NG
branching bisimilar as states in the LTS S¢(F), i.e. w; HSC(]:)

Step 2: The LTS S¢(F) is reduced modulo branching bisimilarity using available software
tools, such as mCRL2 [GJKW17|. This step yields the set of equivalence classes of W

for @EC(F). Because of the correspondence of logical equivalence and branching bisimilarity,
we obtain W/ E‘Z]: .

Step 3: The minimal model Frin = (Wmin, Rmin, V7,,,) is built. It turns out that this
model is not necessarily a poset model (see the example in Figure 7a). However, it is a
reflexive Kripke model where Wi, = W/ En]: , Rmin is a relation induced by the ordering <
of F, and, most importantly, SLCS,;, is preserved and reflected, i.e. for each w € W and

SLCS,, formula @ the following holds: F,w = @ if and only if Fuin, [w]=, = @.

In the remainder of this section we focus on Step 1 and Step 3.

5.1. The Encoding of F as S¢(F). We obtain the LTS S¢(F) = (S, L, —) from the
poset F as specified in Definition 5.1 below. S¢(F) is an LTS representing each node w € W
of F as a distinct state. So, we  put S = W. For example, the set of states of the LTS S¢(F3)

of Figure 8d is {D, E, F, DE, EF}, i.e. the same as that of the nodes of Fy = F(Ps).

The set L of transition labels includes all predicate letters in PL, plus the “silent move” 7,
typical of LTSs in concurrency theory, and the two special labels ¢ and d, the meaning of
which will be discussed later. In our example of Figure 8, we have L = {blue,red, 7, c,d}.
We use transitions in S¢(F) for several purposes, as follows. For each state w, the fact that
w (represents a node of F that) satisfies a predicate letter p is represented by a self-loop:
each predicate letter p € PL such that w € Vz(p) is represented in S¢(F) by a transition
from w to itself, labelled by p (Rule (PLC)). The transitions labelled by 7 relate those states
in S¢(F) representing nodes in F that are related by < or by = and satisfy the same set of
predicate letters (Rule (TAU)). Intuitively, this represents in the LTS the fact that “nothing
changes” when moving from one such node w to another one, w’ (including w itself).

On the contrary, the fact that two states w and w’ represent “adjacent” nodes of F — i.e.
nodes related by <* — which do not satisfy the same set of predicate letters, is modelled by
transitions w — w’ and w’ — w, where ¢ stands for “change”, with the obvious meaning

(see Rule (CNG)).
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Finally, Rule (DWN) makes sure that whenever w > v’ in F, a transition labelled d
goes from (the state representing) w to (that representing) w’. The label d stands for “down”.

“Marking” the pair (w,w’) with the transition w 4, W' is relevant for identifying (the end
of) |-paths. Recall that such paths are the most fundamental ones for the semantics and
the properties of SLCS,,. We invite the reader to check that all the transitions in the LTS of
Figure 8d are generated according to the above mentioned rules.

Definition 5.1. For a finite poset model 7 = (W, <, V) and symbols 7,c,d ¢ PL, the LTS

Sc(F) is defined by S¢(F) = (S, L, —) where

e the set of states S is the set W,

e the set of labels L consists of PL U {7, c,d};

e the transition relation — is the smallest relation on S x L x S induced by the following
transition rules.

pre) L EVr) oAy =5 Ve () = Vel
w — w w — w
(NG 2 <* V;l({cwb # V' ({w'}) (DwN) 7 v
w — w w — w
F

In order to show that the above definition establishes that w; =

5 we if and only if

w1 wo, it is convenient to consider an intermediate structure, that is an LTS too. We
denote this second LTS by S4(F). This structure helps in the proofs to separate concerns
related to the various equivalences that are involved. Suppose that nodes wy and we of F
are encoded by the states s; and s9 in Sy (F), respectively. We will have that w; and wy are
logically equivalent in F with respect to SLCS,, if and only if states s; and sy are strongly
bisimilar (in the classical sense [Mil89]) in S4(F), written s; ~54(F)sy. Furthermore, it will
hold that s; and s are strongly bisimilar in S4(F) if and only if w; and wy are branching
bisimilar in S¢(F), thus providing the correctness of the construction.

LTS S4(F) is more abstract than S¢(F) in the sense that all the nodes of F that satisfy
the same proposition letters and that are connected via <* are mapped to the same state of
Sa(F). Thus, intuitively, a state of Sa(F) corresponds to a class of states of S¢(F). This is
a class of states representing nodes w and w’ in F for which “nothing changes” when moving
from w to w’, as discussed above. More precisely, define © = { V' ({w}) | w € W} and
consider, for a € ©, the a-connected components of F. Then, each state s of S4(F) is an
a-connected component of F, for some « as above. So, we group together all the nodes in W
that can reach one another only via a path in F composed of elements all satisfying exactly
the same proposition letters. The above intuition is formalised by the following definition.

Definition 5.2. Given a finite poset model F = (W, %, Vr), we define relation = C W x W
as the set of pairs (w;,wy) such that an undirected path 7 of some length ¢ exists with
m(0) = w1, m(0) = wy, and V' ({r(i)}) = Vz' ({x(4)}), for all 4, j € [0;4]. .

The relevant definitions lead straightforwardly to the following observation.

Proposition 5.3. Let F = (W, %, Vx) be a finite poset model. Then = is an equivalence
relation on W. []
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FIGURE 8. (8a) A polyhedral model Pg; (8b) Hasse diagram of the poset
model Fg = F(Pg); (8c) minimal Kripke model Fgpin; (8d) the LTS S¢(Fg)
obtained from Fg by the encoding of Definition 5.1; (8¢) The LTS S4(F3)
obtained from Fg by the encoding of Definition 5.4. Note that whenever

0 V4 .. a4 . .
w — w and W' — w a “double transition” w <— w’ is drawn in the
figure between w and w'.

The encoding to the more “abstract” LTS is defined in Definition 5.4 below. The states of
Sc(F) are the equivalence classes of W modulo the equivalence relation =, i.e. S =W/=.
With reference to Figure 8, we obtain two states, namely {lND,l/)\E} and {E,ﬁ,ﬁ}, as
shown in Figure 8e. The set L of transition labels includes the powerset of the set of
predicate letters in 2P, plus the two special labels s, d. In our example of Figure 8, we have
Ls = {0, {blue}, {red}, {blue,red},s,d}.

Similarly to Rule (PLC) for the definition of S¢(F), Rule (PL) induces a self-loop in
each state of S4(F) (representing equivalence class) [w]—. This transition is labelled with the
set of predicate letters V]f-l(w) satisfied by the elements of the class. Note that, by definition
of =, all the elements of such an equivalence class satisfy the same set of predicate letters.
Transitions labelled by d (Rule (Down)) have the same interpretation as in the definition of
Sc(F) while those labelled by s (Rule (Step)) model a single step in <*, regardless of there
being “a change” or not.

Definition 5.4. Given a finite poset model F = (W, <, Vr), and s,d ¢ PL, we define the
LTS Sa(F) = (S, L,—) where

o the set S of states is the quotient W/= of W modulo =;
e the set L of labels is 2°2 U {s,d};
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e the transition relation is the smallest relation on W x L x W induced by the following
transition rules:

(PL) fw]= 7Y )

w=<T W w = w'
(Step) = (Down) -
[wle — [w]= [wle — [W]=

The following theorem ensures that any two elements wq and ws of a finite poset model F
are logically equivalent in F with respect to SLCS,, if and only if their equivalence classes
[wi]= and [wz]= are strongly bisimilar in S4(F). The theorem uses the following lemma,
proven in Appendix A.15:

Lemma 5.5. Given a finite poset model F = (W, <,Vr) and wy,wy € W the following
holds: if w1 = we, then w1 =, wa. ]

Theorem 5.6. Let F = (W, =<, Vr) be a finite poset model. For all wi,ws € W it holds that
w1 =L wy if and only if [wi]— ~SA) [w,] .

=n

Proof. We first prove that if [wq]— ~SalF) [wa]— then wq E%: wsy. We proceed by induction on
SLCS,, formulas and consider only the case n(®1, ®2), since the other cases are straightforward.
Suppose [wy]= ~54U) [wo]— and F,w; = n(®1, ®s). Since F,w; = (P, ®2), there is (a
+-path, and so, by Proposition 3.11) a J-path 7 from w; of some length ¢; > 1 such that
F,m(l1) = @2 and F,m (i) = @y for all i € [0;¢1). At this point, we use induction on ¢;,
together with structural induction on the formulas, for showing that also F,ws = n(®1, P2)
holds.

Base case: /1 = 1.
In this case we have F,w; = ®; and F,m (1) = P2, with w; = m(1). Moreover, by
the Induction Hypothesis on formulas, we also have F,wy = ®;. In addition, by Rule

(Down), we get [wq]— N [71(1)]=. Since [wi]= ~ [wa]—= by hypothesis, we also get

[we)] N [wh] =, for some [wh]— with [w)]— ~ [m1(1)]=. Note that, by definition of = and
since [wa]— N [wh]—, there is a path 7}, from ws of some length ¢} such that 74 (j) = wy for
all j € [0;45] and 75 (4}) = wh, with w] € [w)]—. Recalling that F,wy = ®1, by Lemma 5.5,
we also get that F,75(j) = @, for all j € [0;45]. Recalling also that F,m;(1) = @9, again
by the Induction Hypothesis on formulas, from [wh]— ~ [m1(1)]=, we get F,w) = P2 and,
by Lemma 5.5, we also get F,w} = ®2. Consider now path 7 : [0; 5 + 1] — W defined as

follows: ()it 0.2
. mo(7) it j €054,
772(]):{ 2// if =/ ’
Wy it g=1405+1.
Clearly, 2 is a |-path from ws since 7 is an undirected path and ma(€}) = ma (s + 1).
Furthermore, we have shown above that F,ma (¢ + 1) | @9 and F,m(j) E @ for all
J €06, +1).
Thus, we have that F,wy = n(®1, ®2), witnessed by .

Induction step: We assume the assertion holds for £; = n, for n > 1 and we show it holds



Vol. 22:1 WEAK SIMPLICIAL BISIMILARITY AND MINIMISATION 6:27

for /1 =n+1.
Since w; <* 71(1), by Rule (Step), we have that [wi]— — [r1(1)]=, and since, by

hypothesis, [wi]— ~ [wz]—, we also know that [we]— —» [w)]— for some w) such that
[wh]— ~ [m1(1)]=. Furthermore, F, (1) = n(®1, P2) since ¢; > 2 and that this is witnessed
by 71 1 1, which is a |-path of length n. Thus, by the Induction Hypothesis on ¢1, we get
that F, wh = n(®1, ®2) since [wh]— ~ [r1(1)]= (see above). From [wa]— — [w)]—, by Rule
(Step), we know that w € [ws]— and w’ € [wh]— exist such that w <* w'. Since w € [wa]—
an undirected path 75 exists from ws to w, of some length ¢}, such that 74 (j) = wo for all
J € 10;45]. By the Induction Hypothesis on formulas, we know that F,ws = @1, and so, by
Lemma 5.5, we get also F,m5(j) | @4 for all j € [0;¢,]. Moreover, since F, wh = n(®1, P2)
(see above) and w’ = w}, again by Lemma 5.5, we get F,w’ = n(®1, P2). This means that
there is a +-path 7} from w’ of some length ¢4 witnessing F,w’ = n(®1, ®3). Define 7 as
follows: 7} - (w,w') - 7wl. Tt is easy to see that my is a |-path witnessing F,wq = n(®1, P2).
Now we prove that if wq 5177: wg then [wi]— ~SalF) [wa]—. We do this by showing that
the following binary relation B on W is a strong bisimulation:

B = {(s1,52) € S x S|there are w; € s1, wy € so such that wy =, wy}.

Let, without loss of generality, s; = [wi]—= and sy = [ws]—, for some wi,wy € W with
w1 =y, we and suppose B([wi]—, [wa]=), with wy =, wa. We distinguish three cases:

Case A: [wi]= - [w}]= with o € 2PL.

If [wi]= = [w)]= for some o € 2" and w| € W, then, by Rule (PL), we know that
[wi]= = [wi]=. Furthermore, since wy =, wa, we also know that Vz'({ws}) = V= ({w1}) =
«. In addition, again by Rule (PL), we get that [ws]— —— [ws]— and, by hypothesis
B([wi]=, [wa]=).

Case B: [wi]— -5 [w)]—

If [w1]= N [w]]= for some w} € W, then, by Rule (Down) there are w € [w;]—~ and
w' € [w}]= such that w = w'. Note that (w,w’) is a |-path witnessing F, w = n(x(w), x(w’)),
where x is as in Definition 3.13 on page 16. Since w = w;, we have that F,w; =
n(x(w), x(w’)) holds, by Lemma 5.5. Moreover, since, by hypothesis, wi =, wa, we also
have F,ws = n(x(w), x(w')). Then a +-path 7 : [0;¢] — W exists from wy such that
F,m(0) &= x(w') and F,7(j) = x(w) for all j € [0;¢). This in turn, by Proposition 3.14,
means that 7(¢) =, v’ and 7 (j) =, w for all j € [0;¢). By Lemma 5.5, since v’ = w}, we
get w' =, w), and by transitivity, since m(¢) =, w’ (see above), we also have 7 (¢) =, wj.
Similarly, we get m(j) =, w =, wi, which implies VZ'({r(j)}) = Vz'({w1}), for all
j € [0;£). Recall that wy =, wo, which implies V7! (w2) = VZ' ({w1}) and so we get also
VE {7(5)}) = V' ({wa}), for all j € [0;£). In addition, for all j € [0;¢) we have that 7|[0; ;]
connects m(0) = wy to m(j). This means that, for all j € [0;¢), 7(j) € [we]= = [7(£ —1)]=
and since m(¢ — 1) > w(¢), by Rule (Down) we deduce [r(¢ — 1)]= 4, [7(¢)]=, that is
[wa] = N [7(£)]—=. Recall that m(¢) =, w}, so that, by definition of relation B, we finally
get B([w]=, [r(0)]=).

Case C: [wi]= — [w}]=
Suppose, finally, that [w]— = [w]= for some w} € W. We distinguish two cases:
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Case C1: w) € [wi]—. In this case, by Lemma 5.5, we have also w] =, wi. Furthermore,
w1 =, wy by hypothesis, thus we get w| =, wo. But then, since wy <% wy, by Rule (Step),
we know that [ws]— —>+ [wa]— and since w| =, wa, by definition of relation B, we finally
get B([wi]=, [wa]=).

Case C2: w} ¢ [w1]—. We know there are w € [w1]= and w’ € [w}]= such that w <* w’
Since w = wy, then VZ'({w}) = Vz'({w1}) and since v’ = wf, then V' ({w'}) =
VZ!({w}}). Furthermore, since w <* w’, there is path (w,w’) connecting w with w’. So
there is a path connecting w; to w} and if V' ({w1}) = Vz'({w}}) would hold, it could
not be that wi ¢ [wi]~. Consequently, it must be Vz'({w1}) # VZ'({w}}), which in turn
implies wy #, w}. We note that the following holds:

Fywr = n(x(w), n(x(wi) V x(wh), x(w})))
and, since wy =, wy we also have

F,wa = n(x(wr), n(x(w1) V x(wy), x(w}))).

Let m be a +-path from ws witnessing the above formula and let k be the first index such
that F,7(k) E x(w}). We have that, for all j € [0;k), F,7(j) E x(w1) and 7|[0; j] connects
m(0) = wy to 7(j ) Furthermore, for all such j, we have 7(j) =, wi, by Proposition 3.14,
which entails V2" ({7 (j)}) = Vz'({wi}). Thus n(j) € [wo]= for all j € [0;k) and since
7(k — 1) <* 7(k) we have, by Rule (Step) [wo]— —= [r(k)]=. Finally, recalling that, again
by Proposition 3.14, w| =, w(k), we get B([w}]=, [7(k)]=). []

The following theorem ensures that [wi]— and [wz]~ are strongly bisimilar in S4(F) if
and only if w; and wy are branching bisimilar in S¢(F). The theorem uses the following
lemma, proven in Appendix A.16:

Lemma 5.7. Consider a finite poset model F = (W, <%, Vr). Then for all wy,wy € W the

following holds: if [wi]= ~SAF) [wo] ., then VZ!({wi}) = V! ({wa}). []
Theorem 5.8. Let F = (W, =<, Vr) be a finite poset model. For all wi,ws € W it holds that
Sc(F)

[w1]— ~SAF) [w]— if and only if wy £, ws.
Proof. We first prove that if [wi]= ~54(F) [wy]_ then wy ¢ Sc(F)
following relation is a branching bisimulation:

Be = {(wy,wy) € W x W | [wi]— ~54) [wy] 1.

Let us assume Be(wi, w2). We have to consider a few cases:

we. We show that the

Case A: wq RN wy.

If w; -2 wy, then, by Rule (PLC), we have p € V' ({w1}). By definition of Bc and by hy-
pothesis we know that [w1]~ ~ [ws]— and so, by Lemma 5.7, we get V="' ({w1}) = V' ({w2}).
It follows then that p € V;l({wg}) and, again by Rule (PLC), we finally get wy —— ws,
which is the required mimicking step since B(w1, ws2).

Case B: w; — wi.

If w; — w) for some w} € W, then, by Rule (TAU), we know that w; <* w/, with
Vi ({w1}) = Vz'({w]}), which, by definition of =, means [w}]— = [w;]— and since
[wi]= ~S4F) [wy]_ by definition of Be, given that Be(wy,ws), we get [w)]— ~S4C) [wy]_
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This, in turn, again by definition of B¢, means Be(w], ws).

Case C: w; — w).

If w, < w! for some w} € W, then, by Rule (CNG), we know that w; <* w}, with
Vi ({w1}) # V&' ({w]}), and, by Rule (Step), we have [wi]— — [w}]~. Since, by def-
=5 [wh)= for
some [wh]— ~SAF) [wi]_. From [ws]— -+ [wh]—, by Rule (Step), we know there are

inition of Bo and by hypothesis, [w;]|— ~SalF) [wa]—, we also have [wq]_—
w3 € [wa]~ and w} € [wh]_ such that w3 <* wh. By Lemma 5.7, since [wy]— ~SalF) [apg]
by hypothesis and [w}]— ~S4(F) [wh]_ (see above), we have VZ'({wi}) = Vz'({ws})
and VZ'({w}}) = VE'({wh}) and since VZ'({w1}) # VE'({w}}) (see above), we get
Vi ({ws}) = V&' ({w}) # V' ({wl}) = VZ'({wh}). Consequently, since ws € [wo]—
and wh € [wh]—, we also finally get that V=" ({ws}) # Vz'({w}}). Thus, by rule (CNG),
we know that ws — ws. Now, since ws € [wz]—, by definition of = and by construction
of S¢(F) we know there are sq,...s, € W with sy = wy, s, = w3 such that s; — s;,1
and sj;1 — s, for all i € [0;n). We note that Be(wi,s;) for all ¢ € [0;n]. In fact

for each 7 € [0;n] we have that [s;]— = [ws]~ by definition of = and we also know that
[wo]— ~S4(F) [wy]~, since Bo(wi,ws) by hypothesis. Thus we get [s;]— ~54(F) [wy]_,
i.e. Bo(wi,s;). Furthermore, we also note that Beo(w), wj). In fact [wh]— = [wh]~, since

A ]

)

w} € [wh]—. Furthermore, [w)]— ~S4) [w]]_ (see above). So, we get [wh]—
i.e. Beo(w),w}). In conclusion, we have that if w; —— w) for some w) € W, then
Wy = 89 — 81 —> ... —= 8, = w3 — wh with Bo(w),w}) and Be(wy,s;) for all
i € [0;n].

Case D: w; - wi.

If wq 4, w) for some wj € W, then, by Rule (DWN), we know that wy > w}, and, by
Rule (Down), we have [w;]|— N [wi]=. Since, by definition of Bc and by hypothesis,
[wi]— ~SAF) [wy]—, we also have [wg]— 4, [wh]— for some [wh]— ~S4F) [w)]~. From
[wa] = 4 [wh] =, by Rule (Down), we know there are w3 € [we]= and wh € [w)]_ such
that ws = wj and, by Rule (DWN) we know that ws 4, ws. Now, since w3 € [wa]=, by
definition of = and by construction of S¢(F) we know there are sq,...s, € W with sy = wo,
sp = ws such that s; — s;+1 and 5,41 — s;, for all i € [0;n). We note that Bo(wi, s;)
for all ¢ € [0;n]. In fact for each i € [0;n] we have that [s;]— = [wa]— by definition of =
and we also know that [wa]— ~54F) [w;]_, since Bo(wy,ws) by hypothesis. Thus we get
[si]l= ~54F) [wy]=, i.e. Be(wy,si). Furthermore, we also note that Be(w),w}). In fact
[whl= = [wh]=, since wh € [wh]—. In addition, [wh]— ~S4Z) [w]]= (see above). So, we
get [wh]— ~S4F) [w)]=, i.e. Bo(w),wy). In conclusion, we have that if w; N w) for
some w) € W, then wg = 59 — 81 — ... — 8, = W3 4, wh with Be(w), ws) and
Be(ws, s;) for all i € [0;n].
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We now prove that if wy <:>§C(f) we, then [wq]— ~Sa(F) [wo]—~. We show that the
following relation is a strong bisimulation:

By ={(s1,82) € S x S|there are wy € s1, wy € sg such that wy <:>§C(]:) ws).
Let, without loss of generality, s; = [wi]— and sy = [ws]—~ for some wi,wy € W with

wq <:>§C(f) wa, and suppose B ([wi]=, [wa]=). We distinguish three cases:

Case A: [wi]= -5 [w]]= with a € 2P

By Rule (PL), if [wi]— — [w}]= for a € 2P* and w| € W, then [w}]— = [w;]= and
a = V;l({wl}). On the one hand, if p € a then w; —» w; by rule (PLC). Since
Wy <:>§C(f) wy it follows that wy — ... — Wy —» wh for we,w) € W such that

pE V;l({wg}), Wo <:>§C(]:) wi, and wh QEC(}-) wy. By rule (TAU), p € V;l({wg}). Thus,

a C VZ'({w2}). On the other hand, if p € VZ'({wa}) then ws 25 wy by rule (PLC).

Sc(F)

Since wy €, wy we have that w, Ty D w B w) for wy,w] € W such that

p € V! ({wi}), vy <:>§C(f) wa, W) ﬁfcu:) wy. By rule (TAU) we obtain that p € V2! ({w1}).

Thus, p € a. Hence, V;l({wg}) C a. So, V;l({wg}) = o Therefore, [wo]— -+ [wy]— by
rule (PL). By assumption, B4 ([wi]=, [we]—) for target states [w1]— and [wz]— as required.

Case B: [wy]|= 4, [w]]=

If [wi]= N [w]]= for some w] € W, then, by Rule (Down), we know that there are
w3 € [wi]= and wj € [w]]= such that ws = wj. This implies, by Rule (DWN), that
w3 N ws. By definition of = and by construction of S¢(F) we know that there are
m > 0 and tg,...,t,, € W with tg = w1, t,,, = w3 such that ; SN ti+1 and t;41 -5t
for all i € [0;m). This implies that w; <:>§C(]:) ws, and consequently ws <:>§C(f) ws, since

Sc(F)

w1 <:>§C(]:) wy by hypothesis. Furthermore, since w3 € wy, there are n > 0 and

. d Sc(F
V0s - -3 Un, U1 € W with wy = v9g — -+ — v, — Up41, such that wh <:>bC( ) Unt1

and ws @EC(F) v; for all i € [0;n]. Moreover, by Rule (DWN), we have v,, = v,41 which
imples, by Rule (Down), that [v,|— LN [Un+1]=. Note that, by construction of S¢(F) we
also have Vz'(w2) = V3! (vg) = ... = V£ (v,) and so [v;] = [ws]= for all i € [0;n]. Thus,
[wa]= = [vp]= 4, [Un41]=. Furthermore, B4 ([w§]=, [vn4+1]=) holds, since wj <:>§C(]:) Upt1
(see above) and, recalling that [w]— = [w]]=, we also know that B4 ([w}]=, [vnt1]=).

Case C: [wi]— — [w}]=

If [wi]l= — [w}]= for some w| € W, then, by Rule (Step), we know that there are
w3 € [wi]= and w} € [w}]= such that ws <+ wy. We distinguish two cases:

Case C1: V' ({ws}) = VZ'({w}}).

If Va'({ws}) = V= ({w}}), then, by Rule (TAU), we know w3 —— wj. But then, by

definition of =, we get [w3]— = [w4]~ and since [w3]— = [wi]= and [w§]= = [w]]= (see
above), we get [w}]— = [wi]—. On the other hand, since, trivially, wa <* ws, by Rule
(Step), we also get that [wp]— —— [ws]—. Moreover, since by hypothesis, we also have

Ba([w1]=, [wa]=), we finally get that also Ba([w}]=, [wa]=).
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Case C2: V]f-l({w?,}) # Vﬁl({wé})
It V&' ({ws}) # V&' ({wh}), then, by Rule (CNG), we know ws —+ w§. By definition

of = and by construction of S¢(F) we know that there are m > 0 and tg,...,t,, € W
with to = wy, t,, = w3 such that t; — t;41 and t;;; — t;, for all i € [0;m). This
implies that w; <:>§C(f) ws, and consequently ws @EC(H w3, since wi QEC(F) wy by
hypothesis. Furthermore, since ws @EC(I) wy, there are n > 0 and vg,...,vp,vny1 € W
with wy =v9 — -+ — Uy — VUp41, such that wh <:>§C(f) Vpe1 and ws @EC(]:) v; for all

i € [0;n]. Moreover, by Rule (CNG), we have v,, <* v, 1 which imples, by Rule (Step), that
[vn]— = [Un41]—. Note that, by construction of S¢(F) we also have V! (w2) = V3! (vg) =
s = V}l(vn) and so [v;] = [wa]= for all i € [0;n]. Thus, [wo]= = [v4]= —= [Uni1]=.
Furthermore, B4 ([w}]=, [vnt+1]=) holds, since w} <:>§C(f) Un+1 (see above) and, recalling
that [wh]= = [w]]=, we also know that B4 ([w]]=, [vnt1]=). []

From Theorems 5.6 and 5.8 we finally obtain our claim:

Corollary 5.9. Let F = (W, %, Vr) be a finite poset model. For all wi,ws € W the following

holds: wy E%: wo if and only if wy QEC(F) wo. O

Now that we have characterised logical equivalence =, for SLCS,, for the elements of a finite
poset model F in terms of branching bisimilarity < for the LTS S¢(F), we can compute
the minimal LTS modulo branching bisimilarity with standard techniques available, such as
branching bisimilarity minimisation provided by the mCRL2 toolset.

5.2. Building the Minimal Model. Via the correspondence of SLCS,, logical equivalence
for a poset model and branching bisimilarity of its encoding, one can obtain the equivalence
classes of =, by identifying the branching bisimilar states in the LTS. With the equivalence
classes modulo =, for the poset model available, we can consider the ensued quotient model.
We obtain a Kripke model that is minimal with respect to =,,, but which is not necessarily a
poset model.

Definition 5.10 (Fuyin). For a finite poset model F = (W, <, Vr) let the Kripke model
Fmin = (Wmina Rin, V]-'min) have

e set of nodes Wy, = W/ =,, the equivalence classes of W with respect to =,,
e accessibility relation Ry € Winin X Winin satisfying

Ruin([w1], [we]) if and only if w| < wh for some w} =, wy and w) =, wo

for wy,wy € W, and
e valuation Vz__ : PL — 2Wmin guch that

V(@) = {[w] € Wiin | W' € V£(p) for some v’ =, w }
for p € PL. °

Clearly, Fumin is a finite reflexive Kripke model. Reflexivity of the accessibility relation Ry
is immediate from reflexivity of the ordering <. Furthermore, it is minimal with respect
to SLCS,, by definition of =, and W/ =,. An example of the minimal Kripke model of the
polyhedral model in Figure 8a is shown in Figure 8c. The following theorem ensures that the
model defined above is sound and complete with respect to the logic, so that the minimisation
procedure is correct.
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Theorem 5.11. Given a finite poset model F = (W, <,Vr) let Fmin be defined as in
Definition 5.10. Then, for each w € W and SLCS,; formula ® the following holds: F,w |=
® if and only if Fuin, [w]=, F @.

Proof. We first prove that F,w = ® implies Fin, [w]=, F ®. We proceed by induction
on the structure of ® and we show the proof only for & = n(®Pq, Py) the other cases being
straightforward. Suppose F,w [ n(®1,P2). This means there is a +-path 7 of some
length ¢ > 2 such that 7(0) = w, F,n({) = ®2, and F,nw(i) = ®; for all i € [0;¢). Now
define mmin @ [0;€] — Winin with myin(¢) = [7(7)] for all ¢ € [0;¢]. We show that 7y, is a
+-path with respect to Rpin. We have that Riin(7Tmin(0), Tmin(1)) by definition of Ry,
because m(0) € [7(0)] = Tmin(0), 7(1) € [7(1)] = Tmin(1) and 7(0) < (1) by assumption.
Similarly, we have that R_. (mmin(¢ — 1), Tmin(£)) and also that RE. (Tmin (i), Tmin (i + 1))
for all i € (0;¢ — 1). Furthermore, since F,7(¢) |= @2, by the Induction Hypothesis, we have
that Finin, Tmin(¢) | ®2. Similarly, we have that Fiin, mmin (i) E @1 for all i € [0;¢) since
F,m(i) F ®1. So Fuin, [w]=, F n(P1, P2).

Now we prove that Fuyin, [w]=, = @ implies F,w = ®. Also in this case we proceed
by induction on the structure of ® and we show the proof only for & = n(®;, P2). Sup-
pose Fuin, [w|=, = n(®1,P2). Hence there is a +-path myi, such that mui(0) = [w]=,,
Fins T(lmin) | P2, and Fuin, Tmin (i) F @1 for all i € [0; £in). Since Ry is reflexive, using
Lemma 2.2, we know that there is also an fJ-path Ty, from [w]=, of some length 2k, for
k > 1, with the same starting-/ending points and the same intermediate points as mpy;, and
that obviously witnesses 1(®1, ®2) for [w]=,. By induction on k, in the sequel, we show that
there is a +-path 7 from w witnessing 7(®1, ®2).

Base case: k= 1.
In this case, we have that 7in(0) = [w]=,, Fmin; Tmin(0) & ®1 Fumin, Tmin(1) F 1, and
Fmins Tmin(2) | ®2. Furthermore, since i, is an f)-path with respect to Ry, we know
that

7Armin(o) = [w]znv Rmin (ﬁ'min (0)7 ﬁ'min(l))’ RI;in (ﬁmin(l)v ﬁ'min(2))
and, by definition of Ry, there are wy € fmin(0) = [w]=,, W], w] € Tmin(1), and wy €
7imin(2) such that wy < w} and w{ = wa. Moreover, by the Induction Hypothesis with
respect to the structure of formulas, we have that F, wy = ®1, F,w} | ®1, F,w] = @1, and
F,wa = ®y. Note that F,w] = n(®1, P2), witnessed by the following +-path: (wf, w],ws).
But then we have that also F,w] = n(®1, ®2) holds since w] =, w{, recalling that w},w/ €
min(1) € W/ =,, . There is then a +-path 7’ : [0;¢'] — W from w| of some length ¢ such
that F, 7' (¢) = @2 and F,7'(i) = @, for all i € [0;¢). Furthermore, wy < w} by hypothesis
and so m = (wo,w}) -7 : [0;¢/ + 1] — W is a +-path from wy witnessing F, wo | n(P1, P2).
Finally, recalling that w,wg € 7min(0) € W/ =, we know that w =, wp and so we have
proven the assertion F,w = n(®q, ®2).

Induction step: k£ = n+1 assuming the assertion holds for k = n, for n > 0.
Since k > 1, we know that Fiin, Tmin(1) E ®1 and Finin, Tmin(2) &= ®1 A =P4. Furthermore,

Tmin(0) = [w]=, ; Rmin(fmin(0), Tmin(1)); Bipin (Fmin (1), Amin(2))

because Ty is an f)-path. By definition of Ry, there are wg € min(0) = [w]=, , wi, wy €
Tmin (1) and wy € Trmin(2) such that wy < w) and wY = wy. By the Induction Hypothesis with
respect to the structure of the formula, we get that F,wy | @1, F,w] = &1, F,w] E P4,
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and F,ws = ®; A =®9. We consider now the f}-path iy T 2 from 7pin(2) of length 2n,
noting that it witnesses n(®1, ®2), since so does 7in and k£ > 1. In other words, we have
that Fmin, Tmin(2) = n(P1, ®2) with we € 7pin(2). By the Induction Hypothesis with respect
to k, we then have that F,wy = n(®1, ®2). So there is a f|-path mo : [0; 2] — W from wy
of some length ¢5 such that F,ma(ls) = @2 and F,ma(i) = @y for i € [0;¢2). Note that
F,m2(0) = @1 as well, since m2(0) = wy and F,wy = ®1 A = P2 (see above). Let us consider
now the path 7" = (w/, w}, wy) - ma. Such a path is an fJ-path since so is 7o, and w} = ws by
hypothesis. Note that f]-path 7" witnesses F,w] = n(®1, ®2). But then we have that also
F,w) = n(®1, ®2) holds since w) =, wY, recalling that w}, w{ € min(1) € W/ =, . Thus, we
have that the following holds: F,w] E ®1An(®1, P2). There is then a +-path 7’ : [0; '] — W
from w) of some length ¢ such that F,7'(¢') | ®3 and F,7'(i) = ®; for all ¢ € [0;¢).
Furthermore, wy < w) by hypothesis and so 7 = (wp,w}) - 7’ : [0;¢' + 1] — W is a £-path
from wo witnessing F,wo |= n(®1, ®2). Finally, recalling that w, wy € min(0) € W/ =,, we
know that w =, wy and so we have proven the assertion F,w = n(®1, ®2).

Finally, the following theorem turns out to be useful for simplifying the procedure for
the effective construction of Fin:

Theorem 5.12. For any poset model F = (W, %, Vr) and Fuin as of Definition 5.10 and

for all ay, a9 € Winin, it holds that Ryin (a1, ) if and only if o 4, a1 18 a transition of
the minimal LTS obtained from Sc(F) via branching bisimilarity.

Proof. In the sequel, we let S¢(F)/ €4 denote the minimal LTS obtained from S¢(F) via
branching bisimilarity. First of all, by Corollary 5.9, Wi,y coincides with the quotient of

the set of states W of S¢(F) modulo branching bisimilarity. Now, suppose that ag 4, aq
is a transition of S¢(F)/ <. By standard construction of the minimal LTS modulo an

equivalence on its state set, we know that wy € a1 and wy € s exist such that wo i wi 18
a transition of S¢(F). But then, by Rule (DWN), we get that w; < wy and so, by definition
of Fuin, we finally get Rpyin(a1,a2). If, on the other hand, Ruyin(a1,a2) holds, then we
know that there exist w1 € a1 and wse € ao such that wi < we, by definition of Fi;,. But

then, by Rule (DWN), we get that wo 4, wy is a transition of Sc(F). Again, by standard
construction of the minimal LTS modulo an equivalence on its state set, we know that

as %5 @y is a transition of Sc(F)/ €p. []

Remark 5.13. The fact that the minimal model might not be a poset model does not
constitute a problem, at any (i.e. theoretical, implementation, user) level. More specifically,
at the theoretical level, Theorem 5.11 guarantees that SLCS, interpreted on a finite poset
model F is preserved and reflected by the minimisation result Fii,, despite the finite reflexive
Kripke model F,i, is not necessarily a poset model. The above, via Theorem 3.20, guarantees
that SLCS,, is preserved and reflected by the full chain of translations, from the polyhedral
model P to the minimal model F(P)min via finite poset F(P).
In summary, we have:

PaE® iff F(P),Fa)=® iff F(P)um [F(z)=, £ . (5.1)

Taking the first and the last statements of (5.1) above we get the following: a point = of a
polyhedral model P, laying in a cell o of P, satisfies a SLCS,, formula ® in the polyhedral
interpretation of ® on P if and only if the node of the Kripke model F(P)yi, that (uniquely)

represents the equivalence class [F(z)]=, of F(x) = ¢ modulo =, (or, equivalently modulo
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weak +-bisimilarity) satisfies ® in the relational interpretation of ® on F(P)pin. At the
implementation level, an experimental prototype of a variant of PolyLogicA has been
developed that is capable to deal with general Kripke models and 1 semantics, as briefly
discussed in Section 6 below. At the user level, we observe that the user deals only with
the description of the polyhedral model P and the input formula ® as input and the (figure
showing the) cells satisfying ® as output of model checking. All the details of the minimisation
procedure are hidden to the user. *

6. AN EXPERIMENTAL MINIMISATION TOOLCHAIN

In this section we provide a brief overview of an experimental toolchain to study the
minimisation procedure for polyhedral models and to illustrate the practical potential of the
theory presented in the previous section. The further development and a thorough analysis
of the toolchain will be the subject of future work. Figure 9 illustrates the elements of
the toolchain that, starting from a polyhedral model in json format, produces the set of
equivalence classes and the minimal Kripke model. The former may serve as input for the
PolyVisualizer tool? [BCG122], a polyhedra visualizer, to inspect the results, whereas the
latter can be used for spatial model checking. For that purpose, a variant of PolyLogicA is
required, since minimal models may turn out not to be posets. In particular, they might
not be transitive (see the discussion in Example 4.14 and in Section 5). In addition, the
variant has to accomodate for the different semantics of the reachability operators v and
n. An experimental prototype of the tool has been developed and it is publicly available.!©
The complexity of the model checking algorithm is linear in the size of the model and the
number of sub-formulas to be checked. A fully fledged implementation and efficiency study
is left for future work.

The toolchain is also able to map the results obtained on the minimal Kripke model
back to the original polyhedral model, because of the direct correspondence between the
states of the Kripke model and the equivalence classes.

[ Poly2Poset ]—»[ Poset2mcr12]—> mecrl2lps Ips2lts — ltsMinimise

los2lns findStates Classes +
PS£IpSpp renamel.ps Kripke model

F1cUrE 9. Toolchain for polyhedral model minimisation. Parts in green are
command line operations of the mCRL2 toolset. Parts in blue are developed in
Python in the context of the current paper.

The toolchain uses several command line operations provided by the mCRL2 toolset
[BGK™19] (shown in green in Figure 9) and a number of operations developed in the context
of this paper (shown in blue in Figure 9). The prototype aims to demonstrate the feasibility
of our approach from a qualitative perspective, providing support for examples that illustrate
the practical usefulness of the theory. The operation Poly2Poset transforms the polyhedral
model into a poset model. The operation Poset2mcrl2 encodes the poset model into a mCRL2

Ihttp:/ /ggrilletti2 scienceontheweb.net/poly Visualizer /poly Visualizer _static_maze.html
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specification of an LTS following the procedure defined in Definition 5.1. The operations
mcrl2lps and lps2lts transform the encoding into a linearised LTS-representation which
is then minimised (1tsMinimise) via branching bisimulation. The operation 1ps2lpspp
provides a textual version of the linear process which is used to obtain the correspondence
between internal state labels of the minimised LTS and the cells of the original polyhedral
model present in the equivalence classes. The latter, in turn, are essential for the genera-
tion of the result files of model checking the minimised model and form the input to the
PolyVisualizer (together with the original polyhedral model and a colour definition file).
Figure 10 and Figure 11 in the next section show an example.!? Maintaining the relation
between internal state labels of the minimised LTS and the original states of the poset and
polyhedral model is the most tricky part of the toolchain as such internal state labels are
assigned dynamically in the 1ps21ts procedure. This aspect is dealt with by the findStates
and renameLps procedures.

7. MINIMISATION AT WORK

In this section, we show, as a proof of concept, an example of use of the experimental
toolchain presented in Section 6. Figure 10a shows a simple symmetric 3D maze composed
of one white room in the middle, 26 green rooms, and connecting grey corridors. Like in the
previous examples, the cells of the white and green rooms satisfy only predicate letter white
and green, respectively. Those of corridors satisfy only corridor. In total, the structure
consists of 2,619 cells. We have chosen a symmetric structure on purpose. This makes it
easy to interpret the various equivalence classes as nodes of the minimal Kripke model of
this structure, shown in Figure 10c. Note the considerable reduction that is obtained: from
2,619 cells to just 7 in the minimal model (observe furthermore that, for this example, the
minimal model is also a poset model).

Figure 10b shows the minimal LTS with respect to branching bisimilarity as produced
by mCRL2.!' The minimal Kripke model with respect to =, obtained (see Theorem 5.12)
from the LTS of Figure 10b is shown in Figure 10c. The Kripke model has seven nodes
— of course, in direct correspondence with the seven states of the minimal LTS. Node C1
represents the class of the cells of the white room and is coloured in white in the figure, three
nodes (€3, CO, and C5) correspond to cells of corridors and are coloured in grey, and the
other three (C4, €2, and C6) correspond to cells of green rooms, and are coloured in green.
Green node C4 (visualised on the original polyhedron in Figure 10d) represents the class of
(the cells of) green rooms that are directly connected to the white room by a corridor. Green
node C2 (visualised in Figure 10e) represents the class of (the cells of) green rooms situated
on the edges of the maze. Green node C6 (visualised in Figure 10f) represents the class of
green rooms situated at the corners of the maze.

It is not difficult to find SLCS,, formulas that distinguish the various green classes. For
example, the cells in C4 satisfy ¢1 = n(green V n(corridor, white), white), whereas no cell
in C2 or C6 satisfies ¢1. To distinguish class C2 from C6, one can observe that cells in C2
satisfy ¢o = n(green V n(corridor, ¢1), ¢1) whereas those in C6 do not satisfy ¢o. Figure 11

10The  software and examples are available at https://github.com/VoxLogicA-Project/
Polyhedra-minimisation.
Hpe numbering of the states is as generated by mCRL2.


https://github.com/VoxLogicA-Project/Polyhedra-minimisation
https://github.com/VoxLogicA-Project/Polyhedra-minimisation
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green green
corridor corridor corridor

(B) Minimal LTS

[
Sy

(¢) Min. Kripke model

(p) C4 (8) C2 (r) C6

FIGURE 10. A magze with 27 rooms: 26 green and one white in the middle.

shows the result of PolyLogicA model checking for the formulas ¢; (see Figure 11b) and ¢,
(see Figure 11c).*?

Table 1 provides a detailed overview regarding the time performance of the various
components of the toolchain (see Figure 9) on four models of the maze of different sizes.!3 In
each model all green rooms form the outer frame of the maze and white rooms are positioned
inside the maze. The table has one separate column for each maze. The first horizontal
block shows the number of cells and vertices for the models, as well as the number of the
equivalence classes. The names of the components of the toolchain are listed in the first
column of the second horizontal block of the table. In the list two additional activities appear,
namely, loading of the model (loadData) and the production of the equivalence classes and
of the minimal Kripke model (createJsonFiles and createModelFile, respectively). The
remaining columns show the computing time of each component, in seconds. The third block

12711 tests were performed on a workstation equipped with an Intel(R) Core(TM) i9-9900K CPU @ 3.60
GHz (8 cores, 16 threads).

13Maze 3x3x3 is shown in Figure 10a, Maze 3x5x3 in Figure 12a (in Appendix B), and Maze 3x5x4 in
Figure 3a.
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FIGURE 11. (11a) The 3D maze. Results of PolyLogicA model checking of
the formulas ¢; (11b) and ¢2 (11c) on the minimised model as they are shown
to the user by PolyVisualizer — results are mapped back automatically by
the procedure onto the full 3D maze.

TABLE 1. Performance for 3D maze example. All times are in seconds.

‘ ‘ Maze 3x3x3 ‘ Maze 3x5x3 ‘ Maze 3x5x4 | Maze 5x5x5 ‘

Nr. of classes 7 21 38 21
Nr. of cells 2,619 3,568 6,145 13,375
Nr. of vertices 216 288 480 1,000
poly2poset 0.35 0.34 0.43 1.10
loadData 0.00 0.00 0.01 0.02
poset2mcrl?2 0.16 0.30 0.42 0.95
mcrl2lps 1.71 3.51 5.42 23.72
1ps2lpspp 0.24 0.41 0.57 1.95
findStates 0.17 0.31 0.41 4.18
renamelps 0.54 0.95 1.34 4.47
1ps2lts 21.41 78.26 135.22 794.33
ltsMinimise 0.06 0.23 0.24 0.35
createJsonFiles 6.35 51.37 160.53 587.99
createModelFile 0.01 0.01 0.01 0.03
Model checking original model 8.76 24.90 64.50 671.30
Model checking minimised model 0.02 0.03 0.03 0.03

shows the model checking times for formulas ¢; and ¢, in the original as well as the minimal
models.

Note the substantial reduction in size (several orders of magnitude) of the minimised
model, where the number of states corresponds to the number of equivalence classes, compared
to the full model (number of cells). This leads to a similar reduction in model checking time
(see last two lines of Table 1). Clearly, the time for encoding (poset2mcrl2) and minimising
(see 1tsMinimise) the model is very small, whereas there seems to be a bottleneck of
computing time needed for the mCRL2 procedure 1ps21ts. However, the latter step may be
avoided by implementing the encoding directly into the binary mCRL2 LTS format. This
requires usage of the mCRL2 C++ application programming interface, and is left to future work.

In summary, the considerable reduction of the models and their relative model checking
times are very encouraging, also considering that the minimised model, once obtained, can
be used for multiple model checking sessions.
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8. CONCLUSIONS

Polyhedral models are widely used in domains that exploit mesh processing such as 3D
computer graphics. These models are typically huge, consisting of very many cells. Spatial
model checking of such models is an interesting, novel approach to verify properties of such
models and to visualise the results in a graphically appealing way. In previous work the
polyhedral model checker PolyLogicA was developed for this purpose [BCGT22].

In [BCG122] simplicial bisimilarity was proposed for polyhedral models — i.e. models of
continuous space — while +-bisimilarity, the corresponding equivalence for cell-poset models
— discrete representations of polyhedral models — was first introduced in [CGL*23a|. In
order to support large model reductions, in this paper the novel notions of weak simplicial
bisimilarity and weak +-bisimilarity have been presented, and the correspondence between
the two has been studied. We have also presented SLCS,, a weaker version of the Spatial
Logic for Closure Spaces on polyhedral models, and we have shown that simplicial bisimilarity
enjoys the Hennessy-Milner property (Theorem 4.9). Furthermore, we have shown that
the property holds for £-bisimilarity on poset models and the interpretation of SLCS,, on
such models (Theorem 4.12). SLCS, can be used in the geometric spatial model checker
PolyLogicA for checking spatial reachability properties of polyhedral models. Model checking
results can be visualised by projecting them onto the original polyhedral structure, showing
in a specific colour all the cells satisfying the property of interest.

In order to reduce model checking time and computing resources, we have proposed
an effective procedure that computes the minimal model, modulo logical equivalence with
respect to the logic SLCS,), of a polyhedral model. Such minimised models are also amenable
to model checking with a variant of PolyLogicA dealing with general Kripke models and
with the n modality.

The procedure has been formalised and proven correct. A prototype implementation of
the procedure has been developed in the form of a toolchain, that also involves operations
provided by the mCRL2 toolset, to study the practical feasibility of the approach and to
identify possible bottlenecks. We have also shown how the model checking results of the
minimal model can be projected back onto the original polyhedral model. This provides a
direct 3D visual inspection of the results through the polyhedra visualizer PolyVisualizer.

In future work we aim at a more sophisticated implementation of the procedure, possibly
using in a more direct way the minimisation operations provided by mCRL2 and integrating the
various steps in the procedure. Such an implementation, would also enable us to experiment
applying our methodology and supporting tools to real-world case studies. On the theoretical
side, an interesting issue that is beyond the scope of the present paper, and that we would
like to address in future work, is the relationship between SLCS,,, SLCS,, and <. Finally, we
would be interested in extending SLCS,,/SLCS, with additional operators, for example those
concerning notions of distance, and in applying our spatial model checking framework to a
larger number of case studies.
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APPENDIX A. DETAILED PROOFS

A.1. Proof of Lemma 2.2.

Lemma 2.2. Given a reflezive Kripke frame (W, R) and a £-path 7 : [0;¢] — W, there
is a N-path ©" : [0;0'] — W, for some {', and a total, surjective, monotonic non-decreasing

function f :[0;0'] — [0;£] such that ©'(j) = w(f(j)) for all j € [0;¢].

Proof. We proceed by induction on the length ¢ of £-path 7.

Base case: { = 2.

In this case, by definition of £-path, we have R(7(0),7(1)) and R~ (mw(1),n(2)), which, by
definition of f{-path, implies that 7 itself is an f|-path and f : [0;¢] — [0;/] is just the
identity function.

Induction step. We assume the assertion holds for all +-paths of length ¢ and we prove it
for £+ 1. Let 7 : [0;£ + 1] — W be a £-path. Then R~ (w(¢), 7(¢{ + 1)), since 7 is a £-path.
We consider the following cases:

Case A: R~ (n(¢{ —1),7(¢)) and R~ (w(¢), 7(¢ + 1)).

In this case, consider the prefix m; = 7|[0; ¢] of 7, noting that 7 is a +-path of length ¢. By
the Induction Hypothesis there is an f{-path 7} of some length ¢] and a total, surjective,
monotonic non-decreasing function g : [0; ¢}] — [0; ] such that 7] (j) = m1(9(j)) = 7(g9(j)) for
all j € [0;¢;]. Note that 7} (¢}) = m(¢) so that the sequentialisation of 7} with the two-element
path (w(¢), (¢ + 1)) is well-defined. Consider path 7/ = (7} - (7w(£), 7(¢ + 1))) < ¢, of
length ¢} + 2 consisting of 7 followed by m(¢) followed in turn by m(¢+ 1). In other words,
' = (7} (0)... 7 (¢), (), (€ + 1)), with 7} (¢]) = w(¢) — recall that R is reflexive. It is
easy to see that 7’ is an f-path and that function f : [0;¢] + 2] — [0; £+ 1], with f(j) = g(j)
for j € [0;44], f(¢4 +1) = € and f(¢} +2) = £+ 1, is total, surjective, and monotonic
non-decreasing.

Case B: R(n(¢{ — 1),7(¢)) and R~ (7(¢), (£ + 1)).

In this case the prefix 7|[0;¢] of 7 is not a £-path. We then consider the path consisting of
prefix 7|[0; {—1] where we add a copy of w(£—1), i.e. the path 71 = (7|[0;£—1]) + ({—1) — we
can do that because R is reflexive. Note that 7 is a £=-path and has length ¢. By the Induction
Hypothesis there is an f{-path 7} of some length ¢} and a total, surjective, monotonic non-
decreasing function g : [0; )] — [0; ¢] such that 7} (j) = m1(9(j)) = w(g(j)) for all j € [0;¢}].
Consider path 7’ =7} - (7(¢ — 1), w(¢), m(£ + 1)), of length ¢} 4+ 2, that is well defined since
71 (¢}) = w(¢ — 1) by definition of 71. In other words, 7’ = (7}(0), ..., 7 (£}), 7(€), (£ + 1)),
with 7} (¢}) = m(£—1). Path 7’ is an f|-path. In fact 7’|[0; ¢}] = 7] is an {-path. Furthermore,
) =7l —1), R(r({ —1),7(¢)), R (w(£),7({+ 1)) and w(£ + 1) = 7' (¢} + 2). Finally,
function f : [0;¢] + 2] — [0;¢ + 1], with f(j) = g(j) for j € [0;¢}], f(¢} +1) = £ and
f(¢) 4+ 2) = £+ 1, is total, surjective, and monotonic non-decreasing. []

A.2. Proof of Lemma 2.3.
Lemma 2.3. Given a reflexive Kripke frame (W, R) and a |-path 7 : [0;¢] — W, there is

an N-path 7 : [0;0'] — W, for some {', and a total, surjective, monotonic non-decreasing

function f :[0;0'] — [0;£] such that ©'(§) = w(f(j)) for all j € [0;¢].
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Proof. The proof is carried out by induction on the length ¢ of .

Base case. ¢ = 1. Suppose ¢ = 1, i.e. 7 : [0;1] - W with R (7(0),7(1)). Then let
7' :[0;2] = W be such that 7/(0) = 7’(1) = 7(0) and 7’'(2) = (1) — we can do that since
R is reflexive — and f : [0;2] — [0;1] be such that f(0) = f(1) =0 and f(2) = 1. Clearly 7’
is an f|-path and 7/(j) = w(f(4)) for all j € [0;2].

Induction step. We assume the assertion holds for all |-paths of length ¢ and we prove it
for ¢+ 1. Let 7 : [0;¢+ 1] — W a |-path and suppose the assertion holds for all |-paths
of length ¢. In particular, it holds for m 1 1, i.e., there is an f{-path 7" of some length
¢" with 7”(0) = =(1), and total, monotonic non-decreasing surjection g : [0;¢"] — W
such that 7”(j) = w(g(j)) for all j € [0;¢"]. Suppose R(m(0), (1)) does not hold. Then,
since R is reflexive, we let 7’ = (7(0), 7(0),m(1)) - 7" and f : [0;¢" + 2] — [0;¢ + 1] with
f(0)=f(1)=0and f(j) =g(j —2) for all j € [2;¢" + 2]. If instead R(7w(0), (1)), then we
let 7' = (7(0),7(1),7(1)) - 7" and f : [0;¢" 4+ 2] — [0;¢ + 1] with f(0) =0, f(1) = 1 and
f) =g —2) forall j € [2;¢" +2]. []

A.3. Proof of Lemma 2.4.

Lemma 2.4. Given a reflexive Kripke frame (W, R) and a |-path 7 : [0; €] — W, there is
a +-path @' : [0;0"] — W, for some ', and a total, surjective, monotonic, non-decreasing

function f :[0; 0] — [0; ] with ©'(§) = w(f(4)) for all j € [0;¢].

Proof. The assertion follows directly from Lemma 2.3 since every {}-path is also a +-path. []

A.4. Proof of Lemma 3.5.

Lemma 3.5. Let P = (|K|,Vp) be a polyhedral model, x € |K| and ® a SLCS,, formula.
Then P,x =@ iff P,z = E(P).

Proof. By induction on the structure of ®. We consider only the case n(®, ®2). Suppose
P,z = n(Py, P2). By definition there is a topological path 7 such that P, 7 (1) = ®2 and
P,m(r) = @, for all r € [0,1). By the Induction Hypothesis this is the same to say that
P,m(l) = E(P2) and P, w(r) = E(Py) for all 7 € [0,1), i.e. P,z =E(P1), P,w(l) = E(P2)
and P, w(r) = £(Py) forall r € (0,1). In other words, we have P, x = E(®1)Av(E(P1), E(P2))
that, by Definition 3.4 on page 14 means P,z = £(n(P1, P2)).

Suppose now P,z = E(n(P1, P2)), i.e. P,z = E(P1) Ay(E(P1),E(P2)), by Definition 3.4
on page 14. Since P,z = v(E(P1), E(P2)), there is a path 7 such that P, 7(1) = £(P2) and
P,m(r) = E(Pq) for all r € (0,1). Using the Induction Hypothesis we know the following
holds: P,z = @1, P,m(1) = @2, and P, w(r) = @; for all r € (0,1), i.e. P,7(1) = @2 and
P,m(r) = @ for all € [0,1). So, we get P,z |=n(P1, Da). []
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A.5. Proof concerning the example of Remark 3.7.

The assertion can be proven by induction on the structure of formulas. The case for
proposition letters, negation and conjunction are straightforward and omitted.

Suppose Pg, A = n(P1, P3). Then there is a topological path 74 : [0,1] — Ps from A
such that Pg, m4(1) = @9 and Ps, ma(r) = @y for all r € [0,1). Since Pg, A = @1, by the
Induction Hypothesis, we have that Pg, z = ®; for all x € ABC. For each x € ABC, define
7z ¢ [0,1] = Ps as follows, for arbitrary v € (0, 1):

TA+ S, ifr e [0,v),

(1) =
mA(T=2), if r € [v,1].

Function 7, is continuous. Furthermore, for all y € [0,v), we have that Pg, 7, (y) = @1, since
m.(y) € ABC. Also, for all y € [v,1) we have that Ps, . (y) |= @1, since m,(y) = ma(¥=),
0 < ¥ < 1and for y € [0,1) we have that Ps,ma(y), = ®1. Thus Ps,m.(r) = @ for

—v
all » € [0,1). Finally, m,(1) = m4(1) and Pg,ma(1l) = ®2 by hypothesis. Thus, 7, is a
topological path that witnesses Pg, z = 1n(P1, P2).
The proof of the converse is similar, using instead function 74 : [0, 1] — Py defined as

follows, for arbitrary v € (0,1):

Ip+ =LA, if r € [0,v),

ma(r) =
mp(1=p), if 7 € [v,1].

A.6. Proof of Proposition 3.11.

Proposition 3.11. Given a finite poset model F = (W,<,Vr), w € W, and SLCS,, formulas

D1 and o, the following statements are equivalent:

(1) There exists a £-path m : [0;4] — W for some ¢ with 7(0) = w, F,n({) = 2 and
F,m(i) = @1 for alli € [0;4).

(2) There exists a |-path 7 : [0;¢'] — W for some ' with 7(0) = w, F,7({') &= @2 and
F,w(i) = ®1 for alli € [0;4).

Proof. The equivalence of statements (1) and (2) follows directly from Lemma 2.4 and the
fact that +-paths are also |-paths. ]

A.7. Proof of Proposition 3.14.

Proposition 3.14. Given a finite poset model F = (W, <, Vx), for wi,ws € W, it holds
that

F,wy = x(w1) if and only if wy =, wa.

Proof. Suppose w1 #;, wa, then we have F,wa [~ 0w, w,, and so F,wa = A e Owiw- If,
instead, w1 =, wa, then we have: dy, w; = 0w, ,w, = true by definition, since wy =, wy and
w1 =y wa. Moreover, for any other w, we have that, in any case, F, w1 = 0w, w holds and
since wy =, wa, also F,wa |= 0y, w holds. So, in conclusion, F, w2 = A, cyp Owiw- ]
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A.8. Proof of Lemma 3.15.

Lemma 3.15. Let F = (W, %, VF) be a finite poset model, w € W and ® a SLCS,; formula.
Then F,w = @ iff F,w = E(P).

Proof. Similar to that of Lemma 3.5, but with reference to the finite poset intepretation of
the logic. []

A.9. Proof concerning the example of Remark 3.17.

We prove the assertion by induction on the structure of formulas. The case for atomic
proposition letters, negation and conjunction are straightforward and omitted. Suppose
F,A = n(Py, P2). Then, there is a £-path 7 of some length ¢ > 2 such that 7(0) = A,

() | P2 and 7r( ) £ @1 for all i € [0;£). Since F, A ): @y, by the Induction Hypothesis, we
have that F, ABC = ®,. Consider then path 7/ (ABC ABC ,A) - . Path 7 is a +-path
and it witnesses F, ABC ): (P, a).

Suppose now F, ABC = n(®1, P2) and let m be a +-path witnessing it. Then, path

(A, ABC ABC’) 7 is a £-path witnessing F, A = n(®1, ®s).

A.10. Proof of Lemma 3.19.

The proof of the lemma uses a similar result, for the v operator, that we have already
proven in [BCGT22| namely:

Theorem 4.4 of [BCG122|. Let P = (P,Vp) be a polyhedral model and x € P. Then,
for every formula ® of SLCS., we have that: P,z |= ® if and only if F(P),F(z) = ®.

Lemma 3.19. Given a polyhedral model P = (|K|,Vp), for all x € |K| and formulas ® of
SLCS,, the following holds: P,x |= ® if and only if F(P),F(z) = £(P).

Proof. The proof is by induction on the structure of ®. We consider only the case n(®1, ®2).
Suppose P,z = n(P1,P2). By Lemma 3.5 we get P,z = £(n(P1,P2)) and then, by
Definition 3.4, we have P,z = E(P1) A y(E(P1),E(P2)), that is P,z = E(P1) and P,z =
v(E(P1),E(P2)). Again by Lemma 3.5 on page 14, we get also P,z = ®; and so, by
the Induction Hypothesis, we have F(P),F(z) = £(®1). Furthermore, by Theorem 4.4
of [BCGT22] we also get F(P),F(x) = v(E(P1),E(P2)). Thus we get F(P),F(x) | E(P1) A
A(E(®1), E(®2), that is F(P), F(z) k= £(1(®1, ®s)).
Suppose now F(P),F(z) = E(n(Py1, P2)). This means F(P),F(z) = E(P1) Ay (E(P1), E(P2)),
that is F(P),F(z) | £(®1) and F(P),F(z) E v(E(P1),E(P2)). By the Induction Hypothesis
we get that P,z | ®;. Furthermore, by Theorem 4.4 of [BCGT22| we also get P,z =
Y(E(P1),E(P2)). This means that there is topological path m such that P, (1) = £(®2)
and P,7m(r) = E(Py) for all r € (0,1). Using Lemma 3.5 we also get P,m(1) = P2 and
P,m(r) = ®; for all » € (0,1) and since also P,z |= ®; (see above), we get P, (1) = @9
and P,w(r) = ®; for all r € [0, 1), that is P,z |= n(Py, P2). ]
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A.11. Proof of Theorem 3.20.

Theorem 3.20. Given a polyhedral model P = (| K|, Vp), for all x € |K| and formulas ® of
SLCS,, it holds that: P,x = ® if and only if F(P),F(x) = ®.

Proof. Using Lemma 3.19, we know that P,z = @ if and only if F(P),F(x) E(D).
Moreover, by Lemma 3.15, we know that F(P),F(z) = £(®) if and only if F(P),F(z) = @,
which brings us to the result. L]

A.12. Proof of Lemma 4.5.

Lemma 4.5. Given a finite poset model F = (W, <, Vr) and weak £-bisimulation Z C W X
W, for all wy,wa such that Z(wy,ws), the following holds: for each |-path w1 : [0; k1] — W
from wy there is a |-path wy : [0; ko] = W from wy such that Z(m1(k1), m2(k2)) and for each
J € [0; ko) there is i € [0;k1) such that Z(m (i), m2(5)).

Proof. Let 71 : [0;k1] — W be a |-path from w;. By Lemma 2.3 on page 11 we know
that there is an f}-path 7 : [0;2h] — W and total, monotonic non-decreasing surjection
f:[0;2h] — [0; k1] such that 711(j) = m1(f(j)) for all j € [0;2h]. Furthermore, by Lemma A.1
below, we know that there is a |-path ma : [0; k2] — W from wy such that Z(71(2h), m2(k2))
and for each j € [0; k2) there is i € [0;2h) such that Z(71(i),m2(j)). In addition, 71(0) =
m1(0) = wy, Z(m1(k1), m2(k2)) since Z(71(2h), ma(k2)) and 71(2h) = 71 (k1). Finally, for each
J € [0; k2) there is i € [0; k1) such that Z(m (i), m2(j)), since there is n € [0;2h) such that
Z(71(n),m2(j)) and f(n) =i for some i € [0; k1). ]

Lemma A.l1. Given a finite poset model F = (W,=<,Vr) and a weak +-bisimulation
Z C W x W, for all wi,ws such that Z(wi,ws), the following holds: for each -path
71 1 [0;2h] — W from w; there is a |-path mo : [0; k] — W from we such that Z(71(2h), m2(k))
and for each j € [0; k) there is i € [0;2h) such that Z(mi(i),m2(7)).

Proof. We prove the assertion by induction on h.

Base case. h =1.

If h =1, the assertion follows directly from Definition 4.3 on page 19 where wi = 71(0),u; =
m1(1) and dy = m1(2).

Induction step. We assume the assertion holds for f]-paths of length 2h or less and we
prove it for f{-paths of length 2(h + 1).

Suppose 7 is a f]-path of length 2h + 2 and consider f{-path 7} = m1|[0;2h]. By the
Induction Hypothesis, we know that there is a |-path 7} : [0;&] — W from wy such
that Z(7}(2h), 75 (k")) and for each j € [0; k') there is i € [0;2h) such that Z (7} (), 75(j)).
Clearly, this means that Z(m1(2h), 74(k")) and for each j € [0; k") there is i € [0;2h) such that
Z(m1(i),74(4)). Furthermore, since Z(m1(2h), 75(k")) and Z is a weak +-bisimulation, we
also know that there is a |-path 74 : [0; k"] — W from 7 (k') such that Z(m(2h+2), 75 (k"))
and for each j € [0;k”) there is @ € [2h;2h + 2) such that Z(m (i), 75(j)). Let ma :
[0;k" + k"] — W be defined as my = w4 - 7§. Clearly my is a |-path, since so is 5.
Furthermore Z (71 (2h +2), ma (k' + k")) since Z(m1(2h+2), 75 (k")) and 74 (k") = mo (k' +k").
Finally, it is straightforward to check for all j € [0; k" + k") there is ¢ € [0;2h + 2) such that
Z(mi (i), w2 (). O
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A.13. Proof of Lemma 4.6.

Lemma 4.6. Given a polyhedral model P = (|K|,Vp), and associated cell poset model
F(P) = (W, <, Vrp)), for any |-path m : [0;£] — W, there is a topological path ©" : [0,1] —
|K| such that: (i) F(7'(0)) = 7(0), (ii) F(x'(1)) = 7 (¢), and (iii) for all v € (0,1) there is
i < £ such that F(7'(r)) = 7 (4).

Proof. Since 7 is a J-path, we have that either Cr(F~!(n(k — 1))) C Cr(F~!(x(k))) or
Cr(F~Y(n(k))) C Cr(F~Y(n(k—1))), for each k € (0;£]'*. Tt follows that there is a continuous
map  : [£7%, %] — | K| such that, in the first case, F(m},(472)) = 7(k—1) and 7}, (57, 4]) C
Cr(F~Y(m(k))), while in the second case, m,([%72, %)) C Cp(F~(n(k — 1))) and F(m}, (%)) =
m(k). In fact 7 can be realised as a linear bijection to the line segment connecting the
barycenters in the corresponding cell, either in F~!(7(k)) or in F~!(7(k — 1)), respectively.

For each k € (0;¢), both ﬂ}c(%) and 7r§€+1(%) coincide with the barycenter of F~1(n(k)),
so that defining 7 (r) = m},(r) for r € [E71, 5] correctly defines a topological path (actually a
piece-wise linear path), satisfying (i) and (ii). Finally since 7 is a |-path, 7(¢) < w(£ — 1), so
that 7/([57,1)) € F~1(7(¢ — 1)). This implies (iii) above. ]

A.14. Proof of Lemma 4.7.

Lemma 4.7. Given a polyhedral model P = (|K|,Vp), and associated cell poset model
F(P) = (W, =X, Vr(p)), for any topological path 7 : [0,1] — |K]| the following holds: F(w([0,1]))
is a connected subposet of W and there is k > 0 and a |-path & : [0;k] = W from F(7(0)) to
F(m(1)) such that for all i € [0;k) there is r € [0,1) with w(i) = F(m(r)).

Proof. Continuity of F o m ensures that F(7([0,1])) is a connected subposet of W. Thus
there is an undirected path 7 : [0;k] — W from F(7(0)) to F(w(1)) of some length & > 0.
In particular, 7(k — 1) = @(k), as shown in the sequel, by contradiction. Suppose that
w(k — 1) < w(k). This would mean that there is € < 1, with n(e) € F(n(e)) = 7(k — 1),
such that 7(r") € 7(k) = F(x(1)) for no ' € (¢,1) — otherwise #(k — 1) = @ (k) would
hold. But the fact that no such an r’ exists contradicts the fact that 7 is continuous, since
continuity requires that for each neighbourhood Nj(7(1)) of (1) there is a neighbourhood
Ny(1) € [0,1] of 1 such that 7(t) € N1(n(1)) whenever t € Ny(1). We thus conclude that
(k —1) = 7t(k), and so 71 is a |-path. By definition and connectedness of F(7([0,1])) we
finally get that for all ¢ € [0; k) there is r € [0,1) with 7 (i) = F(w(r)). []

A.15. Proof of Lemma 5.5.

Lemma 5.5. Given a finite poset model F = (W, %,Vr) and wi,wy € W the following
holds: if w1 = we, then w1 =, wa.

Proof. By induction on the structure of SLCS,, formulas. We show only the case for n(®1, ®2)
since the others are straightforward. Suppose F,w; = n(®1, ®2). Then there is a +-path
7 from wy of some length ¢ such that F,7(¢) = ®2 and F,7(i) = & for all i € [0;¢). In
particular, we have that F,w; = ®;. So, by the Induction Hypothesis, since w; = wo,
we get that also F,wy = ®1. In addition, by definition of =, and given that wy = wy,

4yWe recall here that o1 C o9 iff 01 < 02 and that o = Cr (7).
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there is an undirected path 7" of some length ¢ such that 7/(0) = we,n(¢') = w; and
VE{#'(4)}) = VE({#'(4)}), for all 4, € [0;¢]. Note that, by definition of =, we have
that 7/(k) = w; for all k € [0;¢']. Thus, again by the Induction Hypothesis, we also get
F, ' (k) E @, for all k € [0;¢]. Clearly, the sequentialisation 7’ - 7 of 7/ with 7 is a |-path
since 7 is a 4=-path. Furthermore, by Lemma 2.4, there is a =-path 7" with the same starting
and ending points as 7’ - 7, and with the same set of intermediate points, occurring in the
same order. Thus 7" witnesses F,ws |= n(®1, P2). []

A.16. Proof of Lemma 5.7.

Lemma 5.7. Consider a finite poset model F = (W, <,Vr). Then for all wi,wy € W the
following holds: if [wi]= ~S4F) [wo]—, then VZ'({wi}) = VZ! ({ws}).

V' ({w1})
Proof. By Rule (PL), we have [w1]— ~— " |

wi]— and, by hypothesis, we also have

Va1 ({w
[wa] = fﬂf}) [wh] =, for some [wh]— ~ [wi]—~. But then, using again Rule (PL), we get
1

[wh]~ = [wo]— and VE' ({w1}) = VF' ({ws}). u

APPENDIX B. 3D MaAZE EXAMPLE OF SECTION 7

Below, the spatial logic specification in ImgQL is shown, that was used for model checking the
various maze-variants in Table 1 in Section 7 with PolyLogicA. ImgQL is the input language of
PolyLogicA in which spatial logic properties of SLCS,, can be expressed. In the specification
below, first the polyhedral model is loaded in json format. After that, the atomic propositions
green, white and corridor are defined. This is followed by a number of properties for the
magze that should be self-explanatory. They include the formulas for ¢ and ¢ that were
introduced in Section 7. Finally, the lines starting by save are defining which results to save
in a file. Such files contain the name of a property and for each property a list of true/false
items, one for each cell in the polyhedral model and in the order in which these cells are
defined in that polyhedral model.

load model = "polyInput_Poset.json"

let green = ap("G")
let white = ap("W")
let corridor = ap("corridor")

let greenOrWhite = (green | white)

let oneStepToWhite eta((green | eta(corridor,white)),white)

let twoStepsToWhite eta((green | eta(corridor,oneStepToWhite)), oneStepToWhite) & (!oneStepToWhite)

let threeStepsToWhite = eta((green | eta(corridor,twoStepsToWhite)), twoStepsToWhite) &
(1twoStepsToWhite) & (!oneStepToWhite)

let phil
let phi2

= eta((green | eta(corridor,white)),white)

= eta((green | eta(corridor,oneStepToWhite)), oneStepToWhite)
save 'green" green

save "white" white

save "corr" corridor

save "phil" phil

save "phi2" phi2
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(A) Maze 3x5x3 (B) Minimised LTS

FIGURE 12. Maze of dimension 3x5x3 (Fig. 12a) and its respective minimal
LTSs (Figs. 12b).

Figure 12 shows the 3x5x3 maze and its minimised LTS. Note that in the LTS not all
transition labels are shown in order to avoid cluttering of the image. However, states
corresponding to corridors, green rooms and white rooms, are shown in grey, green and white,
respectively.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany
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