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SIMPLE CLASSES OF AUTOMATIC STRUCTURES
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ABSTRACT. We study two subclasses of the class of automatic structures: automatic struc-
tures of polynomial growth and Presburger structures. We present algebraic characterisations
of the groups and the equivalence structures in these two classes.

1. INTRODUCTION

Automatic structures, introduced in [Hod76, Hod82, KN95|, form a quite large class of
infinite structures with good algorithmic properties. Unfortunately these structures are
less well-behaved from an algebraic perspective. In particular, the class lacks good closure
properties. A persistent and non-trivial problem has been to obtain algebraic characterisations
of when a structure of a certain kind admits an automatic presentation, or to prove that
such a characterisation is not possible. There is quite a long list of papers devoted to this
topic [Blu99, Del04, KRS05, KNRS07, NT08, Tsall, FT13, HKLL13, AGKP14, Rub21]. As
a further indication of the difficulty of the problem, let us also mention that it is X{-complete
to decide whether a given computable structure is automatic [BHK'19].

Because of the difficulty of the full problem, several authors have introduced subclasses
of automatic structures that are simpler to deal with. The most well-known such class is
that of unary automatic structures [Blu99, KR01] which, unfortunately, turned out to be
too simple to be of much interest. A second subclass is that of automatic structures of
polynomial growth, which was introduced in [Bar07], see also [Hus16, GK20].

In the present article we consider two subclasses of automatic structures and we give
characterisations of two kinds of algebras in these classes: groups and equivalence structures.
The first class is that of structures of polynomial growth. Automatic equivalence structures
of polynomial growth have already been characterised in [GK20], but the proof in that article
contains an error caused by a confusion about what kind of coefficients the polynomials
under consideration have. Below we provide a new proof of this result, together with a
characterisation of automatic groups of polynomial growth.

The second class of automatic structures seems to be new: structures interpretable in
Presburger arithmetic. This class properly contains the class of structures of polynomial
growth. Also for this class we present characterisations of which groups and equivalence
structures it contains.

The overview of the article is as follows. We start in Section 2 with recalling some
preliminaries. Sections 3 and 4 introduce the two classes we will be studying: automatic
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structures of polynomial growth and Presburger structures. We present several algebraic
characterisations of such structures in Sections 5 and 6. In the former, we study linear orders
and groups, in the latter, equivalence structures.

2. PRELIMINARIES

Let us fix notation and terminology. For k < w, we write [k] := {0,...,k — 1}. We denote
the disjoint union of two sets A and B by A+ B := {0} x AU {1} x B. The range of a
function f : A — B is rng f := f[A]. We use three different orderings on X*: <joy is the
lezicographic ordering, <jex the length-lexicographic one, and <y¢ is the prefiz ordering. For
further details and all omitted proofs, we refer the reader to [Blu].

An automatic structure is a relational structure where the universe and each relation
is given by a regular language over some alphabet. To formally define what it means for a
relation to be regular, we encode tuples of words by a single word over the product alphabet.

Definition 2.1. Let X be an alphabet and [J ¢ X a new letter.

(a) The convolution of words wy,...,w,—1 € X* is the word
ag,0 ap,1 ao,1—1

a1,0 a1 ari—1
w0®...®wn71:: .

C’«n—.l,O an—.l,l Gn—i7l—1
over the alphabet (X' + {{J})" where
[ := max |w;|
<n
and a; ; is the j-th letter of w; or a; ; := U if w; has less than j letters.
(b) A relation R C X* x --- x X* is regular if the language

Lr:={wo® - ®@wp_1| (wo,...,wp—1) €ER}

is regular.

(c) A relational I'-structure A = (A, R) is automatic if A= (Lp, (Lr)ger) where Lp is
a regular language over some alphabet 3’ and all relations R are regular. In this case we call
the structure (Lp, (Lg)rer) an automatic presentation of 2. Structures 2 with functions
are called automatic, if the corresponding relational structure is automatic that is obtained
from 2 by replacing each function by its graph. Usually we identify the elements a of an
automatic structure with the words representing them. The length of this word is denoted
by [all. .

The main reason automatic structures are so well-behaved algorithmically is the fact
that their first-order theory is decidable. In fact, decidability holds for the following extension
of first-order logic.
Definition 2.2. We denote first-order logic by FO, while FOC(U) is the extension of FO by
the following quantifiers.

I*zp(x)  ‘There are infinitely many elements x satisfying ¢’.

Elk’m:rgo(w) ‘The number of elements x satisfying ¢ is finite and
congruent k modulo m’.

UX@(X) ‘There exists an infinite relation X satisfying ¢’.
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where z is a first-order variable, X a second-order one (not necessarily monadic), and in the
last case we require that X occurs only negatively in . 4

Decidability now follows from the following theorem (which is a combination of results
from [KN95, Blu99, KRS04, KL10]).
Theorem 2.3. Given an automatic structure 2 (represented by a tuple of automata) and
an FOC(U)-formula ¢(Z) (without free second-order variables), one can effectively compute
an automaton recognising the relation ©* defined by .

As a consequence of this result, one can show that automatic structures are closed under
a variety of logical operations. Let us introduce one of them.
Definition 2.4. Let L be a logic like FO or FOC(U) and let k < w.

(a) A (k-dimensional) L-interpretation is defined by a list of formulae

7= (6(), (¢r(Z0s - - s Tnp—1))Rex)

where X' is a relational signature, § and ¢g are L-formula over some signature I', ng is the
arity of the relation R, and Z, Z; are k-tuples of variables.
Given a [-structure 2, such an interpretation defines a X-structure

T() := (0%, (VR)Rex)
with universe
o i={ac A" | A=)}
and relations
o = { (@0, ..., ang—1) € A" | A = 0R(ao, ..., Gng-1) } -

(b) We say that a structure B is L-interpretable in 2 if B = 7(2), for some L-
interpretation 7. J

Proposition 2.1 [Blu99]. Let A be an automatic structure and 7 an FOC(U)-interpretation.
Then (1) is automatic.

We can characterise automatic structures via interpretations in various structures. The
most natural ones of these are the following ones. %g,(w, <) denotes the structure whose
elements are all finite subsets of w and that has two relations: inclusion C and the relation <
defined by

A<B :iff A={a}and B={b} for some a <b.
The p-ary tree <[p]*, <ot (SUCK) kp) :16n> has the prefix-order
u<prv ciff v=wzx, forsomex € p|*,
p successor functions sucg(v) := vk, and the equal-length predicate
U=lenv ciff  Ju|=|v].
Finally, <N ,+, |p> is the expansion of Presburger Arithmetic by the divisibility predicate

klpm :iff kisa power of p dividing m.

Theorem 2.2 [Blu99, CL07]. Let 2 be a structure. The following statements are equivalent.

(1) A is automatic.
(2) 2A is FO-interpretable in Pgp(w, <)
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(3) A is FO-interpretable in <[p <ot (SUCk) k<) 1en>, for some p > 2.
(4) 2 is FO-interpretable in <N, -+, |p>, for some p > 2.

3. AUTOMATIC STRUCTURES OF POLYNOMIAL GROWTH

Characterising which structures have an automatic presentation is a very hard problem.
To simplify the task, we introduce several subclasses of automatic structures where it is
easier to prove characterisations. We start with the following one, which was first introduced
in [B4r07].

Definition 3.1. A language L C X* has polynomial growth if there exists a polynomial p(z)
such that

{weLl||lw<n} <pn), foralln<w.

Similarly, we say that an automatic structure 2 has polynomial growth if there exists a
polynomial p(x) such that

[{acAlllal <n}| <p(n), foraln<w.

In this case we also say that 2 is poly-growth automatic. 4
Example. The infinite grid (Z x Z, Ey, E1) is poly-growth automatic. (We can represent a
point (i, k) € Z x Z by the word azbl’C ) 4

The characterisation of automatic structures via interpretations from Theorem 2.2 can
be transferred to poly-growth automatic structures as follows.
Theorem 3.2. Let 2 be a structure. The following statements are equivalent.

(1) A is an automatic structure of polynomial growth.
(2) A has an automatic presentation whose universe is a finite union of languages of the
form

UQUGUIV] * - * Uf—1 Vg1 U ,  With Ug, . .., Uk, V0, . .., Vk—1 € 2.

(3) A has an automatic presentation whose universe is a finite union of languages of the

form
B OG) A (B (B )
for distinct letters ag, ..., an,bo,...,bp—1 (with distinct members of the union using

disjoint alphabets).
(4) A is (k-dimensionally) FO-interpretable in (N, <,m | -), for some m, k.
(5) A is (k-dimensionally) FO-interpretable in (w, <), for some k.

Proof. The equivalence (1) < (4) is Theorem 3.3.6 of [Bar07].
(1) & (2) follows since, according to [SYZS92], every regular language of polynomial
growth can be written as a finite union of languages of the form

UGUHULV] * * * Uf—1 VU,  With ug, ..., ug,vo, ..., vp—1 € XF,
(3) = (2) is trivial. For (2) = (3), let E be the relation of all pairs (w, w’) where

_ 10 i1
w—uovo U1V - Un— 1Un 1

obkolo m1bk121 L M- 1b n 1lln 1 mn
n—

and W' = ag 1 wr
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for ig,...,ip—1 < w and m; := |u;| and k; := |v;|. Note that F is regular since we can write
its convolution Lg as

[0 ® a®][vo @ bg]"[ua @ a7 for @ B']" -+
[un—1 ® apy [on—1 ® Uy ] fun @ @]

We claim that the image of the presentation of 2l under £ is again an automatic presentation
of A. Let R C A™ be a relation of 2 and let R’ be its image under E. We have to show
that R’ is regular. Let X be the alphabet used by the given presentation of 2 and let I" be the
alphabet such that E C X* x I'*. By Theorem 2.2, there exists an FO-formula () defining R
in the tree <Z*, <ot (5UCq)gex, :16n>. Modifying ¢ slightly, we obtain an FO-formula ¢'(Z)
defining R in

1= <(2 + I')", <pf, (Suca)aex+r, :len> .

We can define the image R’ inside ¥ by the formula
(@) =3¢ @) A N\ By

i<n
This implies that R’ is regular.
(5) = (4) is trivial.
(4) = (5) We can define a 2-dimensional FO-interpretation of (N, <,m |-) in (w, <) by
encoding the number mk + i by the pair (k,7). This leads to the formulae

S(xz’) :=a" <m,
p<(@ryy) =x <yVvz=yrd <y,
gom‘.(a;a:’) =2 =0. ]

Lemma 3.3. The class of poly-growth automatic structures is closed under finite disjoint
unions and finite direct products.

Proof. If we have FO-interpretations of 2 and 8 in (w, <), we can use them to construct
interpretations of 2 + B and A x B in (w, <). []

4. PRESBURGER STRUCTURES

Our second class is slightly larger than that of the poly-growth automatic structures. The
definition is as follows.
Definition 4.1. (a) A Presburger structure is a structure 2 for which there exists a
(many-dimensional) FO-interpretation of 2 in (N, +).

(b) We say that a subset S C N" is Presburger-definable if it is FO-definable in (N, +). 4
Proposition 4.2. FEvery poly-growth automatic structure is a Presburger structure and
every Presburger structure is automatic.

Proof. The first claim follows from Theorem 3.2 and the fact that there exists an FO-
interpretation of (N, <,m |-) in (N, +). The second claim follows by Theorem 2.2. []

To better understand Presburger structures, we need some results about which kinds of
relations are definable in (N, +).
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Definition 4.3. (a) A function ¢ : N™ — N" is affine if it is of the form

o(Z) :=u+ Z v;x;, for some u,vg,...,Um—1 € N
<m
(b) A set S C N" is semilinear if it is of the form

S=mgpoU---Urngyg_1,

for suitable affine functions ¢q, ..., YE_1-

(c) We call S simple if it is of the form S = rng ¢ for some affine function ¢ : N —
N™ such that the images p(eg),...,p(emnm—1) of the unit vectors e, ..., e,—1 are linearly
independent in Q™. 4

Definition 4.4. (a) For k,m,p € N with p > 1, we write
klpm :iff k=p"|m, forsomeneN.

(b) Two natural numbers k,l € N are multiplicatively independent if the only integer
solution to the equation k™ =" is n =0 = m. 4

It turns out that the Presburger-definable sets are exactly the semilinear ones.
Theorem 4.5. Let S C N™. The following statements are equivalent.

1) S is semilinear.

2) S is FO-definable in (N, +).

3) S is FOC(U)-definable in (N, +).

4) There are multiplicatively independent numbers k,l > 2 such that S is FO-definable
in both (N, +, |) and (N, +, ;).

(5) There is some m < w such that S is quantifier-free definable in the structure

<N7+7§7m ‘ '707 1>

(
(
(
(

Proof. (1) < (2) is a classical result from [GS66].

(5) = (2) is trivial.

(2) = (5) holds since the structure (N, 4+, <, (m|+)m<w, 0, 1) admits quantifier elimination
(see, e.g., [Mar02]).

(2) = (3) is trivial.

(3) = (4) Fix an FOC(U)-definable set S C N™. The structures 9Ny := (N, +, |x) and
M := (N, +, ;) have automatic presentations based on, respectively, the k-ary encoding
and the l-ary encoding. By Theorem 2.3, these presentations can be expanded to ones of,
respectively, (M, S) and (DM, .S). Finally, it follows by Theorem 2.2 that S is FO-definable
in both 91, and ;.

(4) = (2) is a classical result by Cobham and Semenov (see [DR21] for an introduction).

[]

The following result will be useful below to simplify semilinear sets.

Proposition 4.6 (Ito [[to69], Eilenberg, Schiitzenberger [ES69]). Every semilinear set
S CN" can be written as a disjoint union of finitely many simple semilinear sets.

Our next aim is to derive a bound on the out-degree of a semilinear relation.
Definition 4.7. (a) A vector partition function is a function f : N® — N that, for some
matrix A € N maps a tuple Z € N" to the number of tuples § € N™ such that z = Ay.
We denote the vector partition function associated with A by ¥4 : N — N. (Note that not
every matrix has an associated vector partition function since the equation £ = Ay might
have infinitely many solutions.)
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(b) A generalised vector partition function is a function of the form

= Z@Z)Al(f + Ei) , for A; € N"*™i and ¢ € N".
1<s

(c) A function g : N — N is a piecewise polynomial if there exists a partition S of N”
into semilinear sets such that, for every S € S, the restriction g [ S is a polynomial in
Qlzo,.. 7n_1]. ]
Proposition 4.8 (Sturmfels [Stu95]). FEvery vector partition function is piecewise polyno-
mial.
Corollary 4.9. FEvery generalised vector partition function is piecewise polynomial.
Definition 4.10. For z,a € N", we write

%= a0t 4
Proposition 4.11 (Woods [Wool5]). Let R C N¥ x N! be a semilinear relation of finite
out-degree. The function d : N¥ — N mapping each tuple u € N* to its R-out-degree is a

generalised vector partition function.

Proof. We give a simplified proof of the original, stronger statement from [Wool5]. With
each relation S C NF* we associate the formal power-series

fs(@,9) Zﬂf
(¢,dyesS

We can use Proposition 4.6 to write R = SpU---U.S,_1 as a finite disjoint union of
simple semilinear sets S; = rng ¢;. Suppose that

©i(0) = uu; and p;(e;) = vwvw, for j < s;.

A direct calculation shows that

fSi (fa g) = - » ~ - .
(1 —z%og%o)...(1— fvi,siflgvi,si—l)

Hence, we obtain

which implies that

Y d@z®= > |{d|{e.d)e R} 2"

cENFK cENFK
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Since generalised vector partition functions are closed under addition, it is therefore sufficient
to prove that, given a power-series of the form,

— iC

bzt = _ _

the coefficient function g is a generalised vector partition function. In this case, we obtain

S b+ )7 = !
b

(1 — jfbo) C (1 — a_':afmfl)

= [Z 5;#050] [ Z j,ufmflam—lj|

po<w Pm—1<w
— E 7HOA0++tm—10m—1
— M Hm m ,

105 —1<W
which implies that g(z + ¢) is equal to the number of tuples i € N satisfying
Z = poao + -+ fm—10Gm—1 -
Hence, g(z) = ¥ 4(Z + ¢), for some A and c. ]

Example. Let R C N? x N be the set of all triples (a,b,c) such that c is an even number
with a < ¢ < b. This relation is definable in (N, +) and, hence, semilinear. Its out-degree is

0 ifa>b,
d(a,b) == t(b—a)+1 fora<band a,b even,
T %(b—a) for a < b and a,b odd,
1

5(b—a+1) otherwise.

In particular, note that d € Q[a,b], but d ¢ Nla,b]. Finally, note that d is the a vector
partition function associated with the equation

al oo 1] |7
b_121g' )

5. GROWTH ARGUMENTS

To prove that certain structures are not poly-growth automatic we can use the following
growth argument, which follows from Theorem 2.3 together with a pumping argument
originally due to Khoussainov and Nerode [KN95].

Definition 5.1. Let 2 be a structure and ¢(Z,y) a formula. For a set U C A and a number
n < w, we define the set N,(U,n) of reachable elements at distance n by

N,(U,0):=U,

and  Ny(U,n+1):=Ny(Un)U{be A|AE= ¢(a,b) for somea CU }. 4
Lemma 5.2. Let 2 be an automatic structure. For every FOC(U)-formula o(Z;Z) of finite
out-degree, there exists a constant k such that

A= p(ase) implies al <|¢|+k, foralla,c.
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Lemma 5.3. Let 2 be a poly-growth automatic structure, U C A finite, and ¢ a formula of
finite out-degree. Then there exist constants d,k > 0 such that

IN,(U,n)| <n 4k, foraln<w.
Proof. Let | :== max {||c|| | ¢ € U }. By Lemma 5.2, we can find a constant ¢ such that
lla|| <l+en, foralla e Ny(U,n).

By assumption, there exists a polynomial p(x) such that the universe of 2 contains at
most p(n) words of length at most n. Consequently,

|INo(U,n)| < p(l+cn). ]

Our first case study concerns linear orders. We start with ordinals.
Theorem 5.4. An ordinal (o, <) is poly-growth automatic if, and only if, o < w®.

Proof. (=) It was shown in [Del04] that all automatic ordinals are smaller than w®.

(<) It follows by Lemma 3.3 and Theorem 3.2 that the class of poly-growth automatic
ordinals is closed under ordinal addition and multiplication. Furthermore, (w, <) is poly-
growth automatic. []

Definition 5.5. Let 2 be a coloured linear order.

(a) A is scattered if the order of the rationals cannot be embedded into A.

(b) 2 is regular if it can be (1-dimensionally) MSO-interpreted in the infinite binary tree
({0, 1}*, sucy, sucy ). 4
Proposition 5.6. Let 2 be a coloured linear order. If 2 is regular and scattered, it is
poly-growth automatic.

Proof. Tt is a well-known result (see, e.g., Section V1.4 of [Blu]) that every scattered regular
linear order 2 can be constructed from finite linear orders using finite ordered sums and
right multiplication by w or w°P. By Lemma 3.3 and Theorem 3.2, all of these operations
preserve poly-growth automaticity. ]

Ezample. The converse is not true. Let (w, <, P) be the order with
P:={nn+1)/2|n<w}.

This order has an automatic presentation (a*b*, <jex,a”) with polynomial growth, but it is not
regular. (It cannot be expressed using the operations from the proof of Proposition 5.6).

Instead of the converse, we can use Lemma 5.3 to prove the following weaker statement.
Definition 5.7. Let Z be the set consisting of all finite linear orders together with w, w°P
(w with the opposite ordering), and Z. By induction on an ordinal «, we define classes VD,
of linear orders as follows.

VDO = {0, 1} 5
VDoy1 :={ Y, | I € 2, A € VD, },
VDy := U VD,, for limit ordinals §.

a<d
The VD-rank VD(2) of a linear order 2 is the least ordinal a with 20 € VD,. If no such
ordinal exists, we set VD(2l) := oc. .

Proposition 5.8. For every poly-growth automatic linear order 2, we have VD(2l) < w.
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Proof. For the proof, we introduce a second rank for linear orders. The condensation cn(2)
of a linear oder 2 is the quotient 2/~ by the equivalence relation

x~y :iff  there are only finitely many elements between x and y .
For each ordinal «, we define the a-th iteration of cn by
en®(2A) :=2A, cn®(QA) = en(en®(A)),

and, for a limit ordinal &, cn®(2l) is the colimit of the sequence (cn®(2A))q<s. The finite
condensation rank FC(2A) of A is the least ordinal a such that ecn®™(A) = cn®(A). It has been
shown in [KRS05] that FC(2l) is finite, for every automatic linear order 2. Furthermore, it is
known that FC(21) = VD(2l), for every scattered countable linear order (see, e.g., Section 5.3
of [Ros82]).

Hence, it is sufficient to show that every poly-growth automatic linear order is scattered.
For a contradiction, suppose that there exists a poly-growth automatic linear order 2l that
is not scattered. Set n := FC(2). Then cn™(2) = (Q, <). Since we can FOC-interpret cn™(2l)
in 2, the order (Q, <) is poly-growth automatic. Let ¢(z,y, z) be the formula stating that
z is the <jjex-least element with x < z < y. Then ¢ has finite out-degree and

IN,({a,b},n)| =2+2""1, fora<b
(in the structure (Q, <)). A contradiction to Lemma 5.3. ]

Next, let us take a look at groups and semigroups. A characterisation of all finitely
generated Presburger groups follows immediately from the corresponding characterisation
of automatic groups. (Here, an automatic group is an automatic structure that happens
to be a group. There is also a commonly used notion of an automatic group due to
Thurston [ECH"92], which is more restrictive and which we will not be dealing with in this
article.)

Proposition 5.9. Let & be a finitely generated group. The following statements are equi-
valent.

(1) & is a Presburger structure.
(2) & is automatic.
(3) & is virtually abelian.

Proof. (2) < (3) has been proved as Theorem 8 of [OT05]; (1) = (2) is trivial; and (3) = (1)
follows from Remark 4 in [OT05] where the authors construct an interpretation of & in
(Z,+) and, hence, also in (N, +) (see also Section XII.9 of [Blu]). []

The class of poly-growth automatic groups turns out to be much smaller. Before giving
the characterisation, let us take a quick look at poly-growth automatic semigroups.
Lemma 5.10. Let & be a semigroup such that there exists an embedding of (N '\ {0}, +)
into &. Then G s not poly-growth automatic.

Proof. Suppose that & = (S, +) is an automatic semigroup into which (N '\ {0}, +) can be
embedded, and let ¢ be the image of 1 under this embedding. By Lemma 3.2 of [KNRSO07],
there exists a constant £ such that

|Inc|| < |lc|| + kloggn, forall n.
It follows that

n < 20m=lel/kimplies  ||ne|| < m.



Vol. 22:1 SIMPLE CLASSES OF AUTOMATIC STRUCTURES 5:11

Hence, the set {a € S| ||a|| < m} contains at least 2(~l¢l)/k clements and & is not of
polynomial growth. []

It turns out that the only poly-growth automatic groups are the finite ones.
Theorem 5.11. A group is poly-growth automatic if, and only if, it is finite.

Proof. Let ® = (G, -, 71 ¢) be a poly-growth automatic group. By Lemma 5.2 there exists

a constant k such that

e for every a € G, there is some b € G with ||a|| < ||b]| < [la|l + &,

o ||abl| < max {lall, [bl} + &

o o[ < Jlaf + k.

Setting m := ||e]|, it follows that, for each n < w, there exists some element a,, € A of length
m+4kn < ||ap|| < m +4kn + k.

Set Dy := {e},

Cn ::{ago...a8”71 |807...,8n71€{071}}’

n—1

D,:={at|abeC,}.
We claim that

(i) [lell < m+4k(n —1) + 2k, for alln >0 and c € C),
(ii) |le|]] < m + 4kn, for all c € D,,
(iii) |Cp| =2™.
It follows that G contains at least 2" elements of length at most 4kn. A contradiction to the
fact that & has polynomial growth. Hence, it remains to prove the above claims.
(1) We proceed by induction on n. For n = 1, we have ||e|]| = m and [|ag|| < m+k < m+2k.
For the inductive step, let ¢ € C),. If ¢ € Cj,_1, the claim follows by inductive hypothesis.
Otherwise, we can write ¢ = dap—1 with d € D,,_1. Then ||d||, ||an—1]] < m +4k(n —1) + k
implies, by choice of k, that

lle|]] <m+4k(n —1) + 2k.

(1) Let a,b € Cy. By (1), we have ||al|, ||b]] < m + 4k(n — 1) + 2k. By choice of k, this
implies that

la™ || < m 4 4k(n — 1) 4 2k + 2k = m + 4kn.

(111) Suppose that

In " for 8g,...,8m,t0,. . tn € {0,1}.

sO..- Sn_ to---
ay a,* =agy ---a

We prove that s; = t; by induction on n. Set

to tn—1

Sn—
" oand ci=af---a, ).

o— S0
b:=ay ---a),"

If s, = t,, we obtain b = ¢ and the claim follows by inductive hypothesis. Otherwise, we
may assume without loss of generality that s, = 0 and ¢, = 1. Hence,

b =ca, implies a, = cveD,.

By (111), it follows that |la,| < m 4 4kn. A contradiction to our choice of ay,. []
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6. EQUIVALENCE STRUCTURES

The aim of this last section is to prove characterisations both of Presburger equivalence
relations and of poly-growth automatic equivalence relations.
Definition 6.1. (a) An equivalence structure is a structure of the form (A, ~) where ~ is
an equivalence relation on A.
(b) Given a function g : N* — (N\ {0}) U {o0}, we denote by &(g) the equivalence
structure with exactly |g7! (k)| classes of size k, for each k € (N'\ {0}) U {oo}. 4
Our aim is to prove the following two characterisations.
Theorem 6.2. An equivalence structure 2 is a Presburger structure if, and only if,

A E(g) + €

where g is a generalised vector partition function and € is a countable equivalence structure
with only infinite classes.

Theorem 6.3. An equivalence structure A is poly-growth automatic if, and only if, it can
be written as a finite disjoint union of

e structures of the form &(p), for polynomials p € N[z], and
e countable equivalence structures where every class is infinite.

Remark. Theorem 6.3 was already stated in [GK20], but the proof in that article contained
an error: for one direction the authors require a polynomial with natural coefficients, but
the other direction only produces polynomials with rational ones. Below we will present a
new, correct proof. J
We start with a simple lemma that helps us to define interpretations of structures of
the form €(g) in well-ordered structures, i.e., structures where one of the relations is a
well-ordering.
Lemma 6.4. Let 2 be a well-ordered structure and g : N — N a function. There exists
an FO-interpretation of €(g) in A if, and only if, there are k,m < w, an injective function
o :N" — A* and an FO-definable relation R C A* x A™ such that

dn(@) = {g@ ifa=o(e),

0 otherwise,
where dg is the function mapping a tuple a to its R-out-degree.

Proof. (<) Given R, we set
(z,y) ~(T,y) :iff z=27.
Then (R, ~) = €&(g).
(=) Let 7 = (6(%), p(Z,7)) be a k-dimensional FO-interpretation of &(g) = (E,~) in A
and let v : 6% — E be the corresponding isomorphism. By definition of &(g), there exists a
bijection p : N* — E/~ such that

lp(k)| = g(k), for all k€ N™.

Set =~ := ¢* and let P C 6* be the set containing the minimal (w.r.t. the lexicographic
ordering induced by the well-ordering of 2() element of each ~-class. Then R := ~N (P x N™)
is FO-definable and the R-out-degree of an element a € P is

[al~| = [[v@)]~| = 9(r~" (¥(@)]~)) = g((0™" 0 qov)(@)),
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where ¢ : E — E/~ is the projection. Since the restriction of p~" ogowv to P is bijective, we

obtain the desired function o by setting
o:=(p togov|P)"t:N— A ]
Our characterization of Presburger equivalence structures can now be proved as follows.
Proof of Theorem 6.2. (<) Note that the equivalence structures €; := (N, F}) and € :=
(N2, E..) with
E1:=NxN and Ey:={((n,i),(n,j))|nijeN}
are Presburger structures. (¢€; has a single infinite class and €, has countably infinitely

many.) Since Presburger structures are closed under finite disjoint unions, it therefore remains
to show that &(g) is Presburger, for every generalised vector partition function

9(x) == a (T+a), for Ay € N™ and ¢ € N".
k<s

Given such a function g, set m := maxy mg. The relation
R:={(z,5,k) e N" xN" x N | k <s, Agj =Z + ¢,
y¢:Oforika}
is Presburger definable and the out-degree of z € N” is equal to
ka(f + ) = 9(z).
k<s

Consequently, we can use Lemma 6.4 to find an FO-interpretation of &(g) in (N, +, <).

(=) Suppose that there exists a k-dimensional FO-interpretation of 2 in (N, +). Note
that the substructure 2y of 2 consisting of all finite equivalence classes can be defined by
the FOC-formula

p(x) == —I%yYly ~ 2] .
By Theorem 4.5, it therefore follows that %y is also a Presburger structure. Hence, it is
sufficient to prove that 2y = &(g), for some generalised vector partition function. Let
P C A C N" be the set containing the <j..-minimal element of every ~-class. Since P is
definable, so is the relation R := ~ N (P x A). It therefore follows by Proposition 4.11 that

the function d : N® — N mapping a tuple k to its R-out-degree is of the form

p(E) = Ya(z+e).

1<s
Since
- kl~| ifkeP
d(R) = |[k]~| ifke >
0 otherwise
we further have 2 = €(d). []

We can make the description in Theorem 6.2 more explicit by replacing vector partition
functions by certain polynomials.
Definition 6.5. A polynomial p € Q[xo,...,2z,—1] is positive if the associated polynomial
function Q™ — Q restricts to a function N* — N\ {0}. 4
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Lemma 6.6. Let g be a generalised vector partition function. Then €(g) can be written
as a finite union of structures of the form &(p), for positive polynomials p with integer
coefficients.

Proof. By Proposition 4.8, g € Q[Z] is piecewise polynomial. Hence, there exists a finite
partition S of N” into semilinear sets and a family of polynomials (gs)ses such that

gl S=¢qg, foral SeS§.

By Proposition 4.6, we may assume that every S € § is simple. For each S € S, fix
an injective affine function ¢g with S = rngpg. Then gg o g is a polynomial in Q[z].
Furthermore, we have

€(9) =) €(gsops)
SeS
by injectivity of ¢g.

To conclude the proof, it is therefore sufficient to show that every structure of the form
¢(¢q) with ¢ € Q[z] can be written as a finite disjoint union of structures &(h) with positive
h € Z[z]. We can write ¢ = %qg with go € Z[Z] and 0 < p < w. For each tuple ¢ € [u]", we
obtain a polynomial

pe(®) = q(pz + ¢) € Z[z].

(Note that the constant term of pz belongs to Z since ¢ induces a function N* — N.)
Furthermore, we have

Eg) = Y E(pe).
ceu) []

Let us turn to poly-growth automatic equivalence structures. One direction of The-
orem 6.3 consists of the following lemma.
Lemma 6.7. For every positive p € Qxo[zo, ..., Tn_1], the structure €(p) is poly-growth
automatic.

Proof. Suppose that
p=+Y NE%, for g, Ao, Am1 €N,
j<m
Let k; := max; a;; be the maximal exponent of z; in p, and let R be the relation of all tuples
(Z,50 - Tn1,2,w) € N x N 5 ... 5 NFn—1 » N x N
such that
z<m,
w < Az,
Yij <x;, fori<mnandj<aj,,
vij =0, fori<nandaj; <j<k.
Then R is definable in (w, <) and the R-out-degree of z € N" is equal to

Z )\j.’i‘aj .

j<m
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Consequently, we can use Lemma 6.4 to construct an FO-interpretation of &(pg) in (w, <),
where pg := up.

Finally, note that &(p) can be obtained from &(py) by taking every p-th element of
each equivalence class. Hence, €(p) is isomorphic to the substructure of &(pgy) defined by
the formula

p(x) == Fyly ~ 2 Ay <pex 7] -

We have obtained FOC-interpretations of €(p) in &(pg) and of €(po) in (w, <). By Theorem 3.2
(and the fact that FOC-interpretations are closed under composition), it follows that &(p) is
poly-growth automatic. []

For the other direction, we need some results about sets FO-definable in the structure
(w, <).
Definition 6.8. (a) For a partial function f: A — B, we denote by R(f) := (A, ker f) the
equivalence structure where

ket f = {{ad) | a,a € dom(f), f(a) = f(a)}.
(b) For a relation R C A x B, let fibgr : B — N U {oo} be the function
fibp(b) :==[{a€ Al {a,b) € R}|.

(¢) A polynomial p(z) is basic if it can be written as a sum of products of binomial
coeflicients of the form

<a05L‘0 4+t ap_1xp_1+b

) with ag,...,an_1,b,c € N.
c

_l
Remark. Note that R(f) = €(fibs). Hence we can use the former if we want to construct
structures of the form &(p). 4

Similarly to how we can characterise the Presburger-definable relations by the notion of
a semilinear set, we can describe relations definable in (w, <) in a purely combinatorial way.
We will show below that, for every n-ary FO-definable relation R, there exists some number
s < w such that we can write R as a finite union of equivalence classes of the equivalence
relation

a~gb :iff forall i <n, we have a; =b; < s or a;,b; > s, and,
for all ¢, j < n, one of the following conditions holds:
— a;=aj+kand b;=0b; +k, forsome0<k<s,
— a;>aj+sand b; >bj + s,
— a; <aj—sand b; <b; —s.
We call the equivalence classes of this relation s-cells. Each s-cell can uniquely be described
by a permutation o : [n] — [n] and a function d : [n] — [s] + {oo} as follows.

Definition 6.9. Let s,n < w. Given a permutation o : [n] — [n] and a function d : [n] —
[s] + {00}, we denote by C(o,d) the set of all tuples @ € N™ such that

d(0) < oo implies a, () = d(0),

(0)
implies ag() > s,

d(0) = o0
d(i) < oo implies @, () = ag(i—1) +d(i), fori>0,
d(i) = co implies a,(;y > Ag(i—1) + 5, fori>0.
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Sets of this form are called s-cells. a
Ezxzample. The 4-cell C(id,d) associated with the identity permutation and the function
d:[7] — [4] + {oco} given by

d(0) :=o00, d(1):=2, d(2):=0, d(3):=00,

d(4):=1, d(5):=o00, d(6):=0

contains all tuples @ € N7 satisfying the following inequalities.

ap > 4, ag=ay=ap+2, az3>ax+4,
ag=a3+1, ag=a5>aq4+4. 4
Lemma 6.10.

(a) Two s-cells are either disjoint or equal.

(b) In the structure (w,<), every FO-definable relation R is a finite union of disjoint
s-cells, for some s < w.

(c) For every s-cell C(o,d), there exists an injective affine function g : w™ — w™ with
rng g = C(o,d).

(d) For allm,n,s < w, there exist finitely many polynomials po, .. .,pr—1 € N[Z] with the
following properties. For every s-cell C(o,d) C w™ x w™, there exists a quantifier-free
formula (%) and some i < k such that

pl(l_)) if {w, S) ): 0(5)7

0 otherwise,,

fibo(,a) (b) = {

where, in case i = k, we use the definition pg(T) := co.
Furthermore, for every affine map ¢ whose range is included in the set defined
by 0, the composition p; o ¢ is a basic polynomial.

Proof. (a) Consider two s-cells C(o,d) and C(o’,d’) that share a common element a €
C(o,d)NC(c’,d"). Then

Ag0) < 0 S lg(n-1) and  agr(o) < < gy,
which implies that (aq(;))i<n = (@o/(3))i<n. Consequently,
o'=100 and d=d,

for some permutation 7 such that a, ;) = a;, for all i. It follows that C(o,d) = C(100,d) =
C(o',d).

(b) Since the structure (w, <,suc,0) admits quantifier elimination (see, e.g., Section 3.2
of [End01]), the relation R is a finite union of relations definable by a conjunction of atomic
formulae and their negations. Such a conjunction can be written as a conjunction of formulae
of the form

r,=z;+c, x;>xj+c, x=c, z;>c, forceN.

In particular, it can be written as a finite union of s-cells, for some s. Hence, so can R.
Disjointness follows by (a).

(c) It is sufficient to construct g for cells of the form C(id,d) since we then obtain
the corresponding function for C'(o,d) with an arbitrary permutation o by permuting the

coordinates of g in accordance to o. We construct g by induction on the dimension n
of C(id, d).
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If n = 1 and d(0) < s, we have C(id,d) = {d(0)} and we can set g : N — N with
g(0) :=d(0). If n = 1 and d(0) = oo, we have C(id,d) = d(0) + N and we can set g : N — N
with g(z) := x + d(0).

For the inductive step, suppose that n > 1. By inductive hypothesis, there exists
a function ¢’ : N — N”~! whose range is the projection of C(id,d) to the first n — 1
coordinates. Suppose that the components of ¢’ are gg,...,gn_2 : N — N. We set g :=
(90, - -+ gn—2, gn—1) where the additional component g, is defined as follows. If d(n—1) < s,
we set

gn_l(a_c) = gn_g(a_:) + d(n — 1) .
If d(n — 1) = o0, we set
gn-1(Z,y) = gn—2(Z) +y +d(n - 1).

(d) Tt is sufficient to prove the claim for tuples b with by < --- < b, _1. For other tuples
we then obtain the desired polynomials p; and formulae 6 by permuting the variables. Hence,
fix such a tuple b. We claim that

_ bO_SO b‘_bA_l_S.
ﬁbO(a,d)(b):< ; > 11 (J L ]>’
0 : j
0<j<n
for suitable constants sj,t; < w. For j <n —1, let
Ip:={i<m|o(i)<o(m+0)},

Lijw={i<m]om+j)<o()<om+j+1)}.

Then i € I if bj_1 < ag(y < b for some/all tuples a with ab € C(o,d). (To avoid case

distinctions, we will use the convention that b_; := 0 for the rest of the proof.) Furthermore,
set

19 :={i € I | d(i) = oo and there is i’ € I; with
i’ >iand d(i') =00 }.
Note that every a, ¢y with i’ € I; \ IJQ is at a fixed distance from some a,(;) with ¢ € IJQ.

Hence, to choose a tuple @ with ab € C(c, d) amounts to choosing the values for ag(;) With
i€I§U---UIY . There are

tj = ]IJQ\

such elements aq(;y with @ € I]Q, and the number of choices for each of them is equal to
bj —bj_1 — s; where

sj=» {d(i)|iel, d(i)# oo}

is the number of choices that are inadmissible because they are too close to some other
element. Consequently, there are

bj — bj_l — Sj
tj

choices for the part of @ between b;_1 and b;.
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Having established the above claim, it follows from its proof that we can use the formula

H(i’) =20 > So A\ /\ Tjy1 2T+ 85
j<n—1
/\/\{a?j =xj-1+S; |tj :0}.
Finally, let ¢ be an affine map whose range is included in the set .S defined by 6 and
suppose that the associated coordinate maps are

©i(y Z a;;y; + ¢;  with coefficients aj;, c; € N.

i

Since rng ¢ C S, we have
0;(7) — pj_1(§) —s; >0, forallg.
Consequently,
Z(aayi —aj-1)yi + (cj —cj_1) > s;, forally,
i
which implies that
aj; = aj; —aj—1,; >0, foralli,
Bj=cj—cj-1—s;20.

Hence, we have

fibc(o,a)(
ﬂ) I 0 (Y) — pj-1(y) — s;
: tj
0<j<n

>, o, zyz + Bo 7] >0 0GiYi + B

; t; ’

0<j<n
which is basic. []

Lemma 6.11. Let 2 be an equivalence structure with no infinite classes. The following
statements are equivalent.
(1) A is poly-growth automatic.
(2) A= R(f) for some partial function f:w™ — W™ that is FO-definable in (w, <).
(3) A is a finite disjoint union of structures of the form &(p), for some polynomial
p € N[z].

Proof. (3) = (1) We have seen in Lemma 6.7 that every structure &(p) with p € N[z] is
poly-growth automatic. Consequently, so is every finite disjoint union of such structures.
(1) = (2) Suppose that A = (A, ~) is poly-growth automatic and let f: A — A be the
function mapping each element a € A to the <jjo,-minimal element of its ~-class. Since 2 is
FO-interpretable in (w, <), we can regard f as a partial function Wk — Wk, for some k. It
follows that 2 = R(f).
(2) = (3) Let f:w™ — w™ be a definable partial function. Note that

A(f) = €(fiby).
For s,n < w, we denote by C;; the set of all s-cells of dimension n. We can use Lemma 6.10 (b)
to find some constant s such that we can write (the graph of) f as a disjoint union of s-cells.
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By Lemma 6.10(d), there exist a finite set P of polynomials and a finite set @ of
FO-formulae such that, for every C € C3 there is some p € P and some 0 € © such that

m—+n>

fibc(b) = p(b), for all b € w™ satisfying 0.
Using Lemma 6.10 (b) again, we obtain a constant ¢ such that the relations defined by the
formulae in © are unions of t-cells. It follows that there exists a function 7¢ : Cf, — P such
that

fibc | D =nc(D), foral CeCs,, and DeCl, .
Consequently,
fiby | D= {rmc(D)|C€Csy,, CCf}, forevery DeCh,

which is a polynomial in Q[z].
For each D € C!, fix an affine map pp with rngpp = D. Then

€(fibs) = > €(fibf o vp)
Dect,
and it follows by Lemma 6.10 (d) that each map gp :=fibf o ¢p is a basic polynomial.
Fix a number ¢ € N such that ¢ > k, for every binomial coefficient (k:) appearing in gp

and set

dn(x0, ... tn_1) == gp(wo+ ¢y Tp1 +c).
Then

¢(gp) = €(9p)
and every binomial coefficient appearing in g7, is of the form

(aoxo + -+ ap—1Tp—1 + b)
k

1
= g H(aofvo + -+ ap_1Tn-1 + (b — Z)) with b > k.
Ti<k
In particular g}, € Q>[Z].
Finally, fix a number d such that d - g}, € N[Z] and set

gh(xo,...,on 1) = gp(dxo,...,dvy_1).
Then
€(gp) = €(gp) and gp € Nz].
Since
R(f) = €(fiby) = Y €(fibyogp)= ) €(gp).
Dect, Dect,
the claim follows. L]

Proof of Theorem 6.3. (=) Let 2 be poly-growth automatic. We decompose it as A = B+ €
where B is an equivalence structures with only finite classes and € is one with only infinite
classes. Since B and C' are FOC-definable, it follows that 8 and € are poly-growth automatic.
Furthermore, we can use Lemma 6.11 to decompose B into a disjoint union of structures of
the form &(p) with p € N[z].
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(«<=) We have seen in Lemma 6.7 that every structure of the form &(p) with p € N[z]
is poly-growth automatic. Furthermore, the equivalence structures 2, := (0*, Fy) and
UAno = (0°1*, Eoo) with

By :=0"x0" and Ey:={(0"1F,0"") | nkil<w}

are poly-growth automatic. (2(; has a single infinite class and 20, has countably infinitely
many.) The claim follows since the class of poly-growth automatic structures is closed under
finite disjoint unions. L]
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